
Managing Event-Driven Applications in
Heterogeneous Fog Infrastructures

Zur Erlangung des akademischen Grades eines
Doktors der Ingenieurwissenschaften

(Dr.-Ing.)

von der KIT-Fakultät für Wirtschaftswissenschaften
des Karlsruher Instituts für Technologie (KIT)

genehmigte
DISSERTATION

von

M.Sc. Patrick Wiener

Tag der mündlichen Prüfung: 14. Februar 2022
Referent: Prof. Dr. York Sure-Vetter
Korreferent: Prof. Dr. Jens Nimis

Karlsruhe 2022

Abstract

The steady increase in digitalization propelled by the Internet of Things (IoT) has led
to a deluge of generated data at unprecedented pace. Thereby, the promise to realize
data-driven decision-making is a major innovation driver in a myriad of industries. Based
on the widely used event processing paradigm, event-driven applications allow to analyze
data in the form of event streams in order to extract relevant information in a timely
manner. Most recently, graphical flow-based approaches in no-code event processing
systems have been introduced to significantly lower technological entry barriers. This
empowers non-technical citizen technologists to create event-driven applications comprised
of multiple interconnected event-driven processing services. Still, today’s event-driven
applications are focused on centralized cloud deployments that come with inevitable
drawbacks, especially in the context of IoT scenarios that require fast results, are limited
by the available bandwidth, or are bound by the regulations in terms of privacy and
security. Despite recent advances in the area of fog computing which mitigate these short-
comings by extending the cloud and moving certain processing closer to the event source,
these approaches are hardly established in existing systems. Inherent fog computing
characteristics, especially the heterogeneity of resources alongside novel application man-
agement demands, particularly the aspects of geo-distribution and dynamic adaptation,
pose challenges that are currently insufficiently addressed and hinder the transition to a
next generation of no-code event processing systems.

The contributions of this thesis enable citizen technologists to manage event-driven ap-
plications in heterogeneous fog infrastructures along the application life cycle. Therefore,
an approach for a holistic application management is proposed which abstracts citizen
technologists from underlying technicalities. This allows to evolve present event process-
ing systems and advances the democratization of event-driven application management
in fog computing. Individual contributions of this thesis are summarized as follows:

1. A model, manifested in a geo-distributed system architecture, to semantically
describe characteristics specific to node resources, event-driven applications and
their management to blend application-centric and infrastructure-centric realms.

2. Concepts for geo-distributed deployment and operation of event-driven applica-
tions alongside strategies for flexible event stream management.

3. A methodology to support the evolution of event-driven applications including
methods to dynamically reconfigure, migrate and offload individual event-driven
processing services at run-time.

The contributions are introduced, applied and evaluated along two scenarios from the
manufacturing and logistics domain.

Contents

Figures ix

Tables xi

Listings xiii

Abbreviations xv

I Introduction 1

1 Introduction 3
1.1 Research Questions . 5
1.2 Research Methodology . 7
1.3 Contributions and Impact . 8
1.4 Guide to the Reader . 11

II Preliminaries 13

2 Foundations 15
2.1 Event Processing . 15

2.1.1 Background . 15
2.1.2 Events . 17
2.1.3 Event Streams . 18
2.1.4 Event Processing Networks . 19

2.2 Distributed Event-Based Systems . 21
2.2.1 Event-Driven Architecture . 21
2.2.2 Publish/Subscribe . 23
2.2.3 Processing Pipelines . 24

2.3 Decentralized Computing . 27
2.3.1 Background . 27
2.3.2 Fog Computing . 28
2.3.3 Fog Computing Architecture . 32

3 Motivation 37
3.1 Democratizing Application Management in Fog Computing 37

3.1.1 Factory 4.0 . 38
3.1.2 Smart Urban Logistics . 40

3.2 Needs . 42

Contents

3.3 Problem Statement . 46
3.3.1 Graphical Flow-based Systems . 46
3.3.2 Managing Geo-Distributed Processing Pipelines 48

3.4 Conclusion . 50

4 Related Work 51
4.1 Related Work on Distributed Event-Based Systems 51

4.1.1 Geo-Distributed Event Processing 51
4.1.2 Geo-Distributed Publish/Subscribe 54

4.2 Related Work on Fog Application Management 55
4.2.1 Orchestration and Deployment . 56
4.2.2 Reconfiguration and Migration . 58

4.3 Conclusion . 60

III Main Part 61

5 Requirements 63
5.1 Requirements Elicitation . 63
5.2 Model/Architecture-specific Requirements 64
5.3 System-specific Requirements . 67

6 Resource Exploitation 69
6.1 Heterogeneity Dimensions . 69
6.2 Pipeline Application Model . 71
6.3 Fog Infrastructure Model . 73
6.4 Node Model . 74

6.4.1 Node Resource . 76
6.4.2 Node Metadata . 80
6.4.3 Deployment Container . 81
6.4.4 Reconfigurable Static Property . 82
6.4.5 Event Stream Relay . 82

6.5 Architecture . 84
6.6 Tools . 88
6.7 Summary . 89

7 Pipeline Deployment 91
7.1 Walkthrough . 91
7.2 Life Cycle . 92
7.3 Geo-Distribution . 94

7.3.1 Deployment Options and Operation Policies 95
7.3.2 Validation and Selection . 97
7.3.3 Event Stream Management . 100

Contents

7.3.4 Pipeline Element and Relay Distribution 108
7.3.5 Node Controller . 110

7.4 Tools . 113
7.5 Summary . 115

8 Pipeline Adaptation 117
8.1 Walkthrough . 117
8.2 Methodology . 118
8.3 Run-Time Evolution . 121

8.3.1 Reconfiguration . 122
8.3.2 Migration . 126
8.3.3 Offloading . 130

8.4 Tools . 136
8.5 Summary . 138

IV Finale 139

9 Evaluation 141
9.1 Evaluation Framework . 141
9.2 Case Studies . 143

9.2.1 Case Study 1: Cobot-based Product Quality Inspection 144
9.2.2 Case Study 2: Autonomous Delivery Robot Platform 147
9.2.3 Discussion . 151

9.3 Conceptual Investigation . 153
9.3.1 Requirements Fulfillment . 154
9.3.2 Discussion . 157

9.4 Performance Tests . 158
9.4.1 Setup . 158
9.4.2 Evaluations and Results . 161
9.4.3 Discussion . 174

10 Conclusion 175
10.1 Summary . 175
10.2 Significance . 178
10.3 Outlook . 178

Bibliography 181

Figures

1.1 Structure of the thesis . 12

2.1 Exemplified event creation and resulting event stream 18

2.2 Graphical notion of an event processing network 20

2.3 Hierarchical fog computing architecture . 33

3.1 Running example: Dynamic EPN management and location monitoring
for delivery robots . 41

3.2 Directed and sense-process-respond model 42

3.3 Interplay of common organizational roles with citizen technologists 45

3.4 Exemplified processing pipeline in Apache StreamPipes 47

3.5 No-code event processing system to create and manage processing pipe-
lines in the fog . 49

5.1 Mapping of research questions to requirements 64

6.1 Heterogeneity dimensions and varying manifestations in fog computing . 70

6.2 Running example: Pipeline element requirements and static properties . . 73

6.3 Node model: Overview . 75

6.4 Geo-distributed architecture: Overview . 85

6.5 Node overview, monitor and management: Tool support 88

7.1 Pipeline element life cycle . 93

7.2 Geo-distributed pipeline deployment: Architecture overview 95

7.3 Cardinality of communication between pipeline elements 101

7.4 Locality-aware event dissemination strategy: Intra and inter-node commu-
nication models . 103

7.5 Running example: Event stream management 107

7.6 Running example: Pipeline element and event stream relay distribution . 109

7.7 Node controller, pipeline element and event stream relay operation: Ar-
chitecture overview . 110

7.8 Geo-distributed pipeline management: Tool support 114

Figures

8.1 Pipeline adaptation methodology: Overview 119

8.2 Pipeline adaptation methodology: Adaptation gate and adaptation event . 120

8.3 Pipeline evolution at run-time: Architecture overview 121

8.4 Processor run-time reconfiguration performed by node controller 125

8.5 Running example: Run-time geofence reconfiguration 126

8.6 Migration scheme in action . 129

8.7 Offloading scheme in action . 132

8.8 Running example: Offloading manifest and run-time offloading of point-
in-polygon processor . 136

8.9 Pipeline evolution at run-time: Tool support 137

9.1 Evaluation framework: Overview . 142

9.2 Excerpt of performed cobot-based quality checks 144

9.3 Setup phase: Adding new cloud node with node tags 145

9.4 Operation phase: Product quality inspection and KPI analytics pipeline . 146

9.5 Delivery robot and package box prototypes and test scenarios 148

9.6 Setup phase: Adding new fog node with geolocation 149

9.7 Operation phase: Location monitoring pipeline 150

9.8 Mapping case studies to fog computing characteristics and applicational
and organizational needs . 152

9.9 Mapping of research questions to requirements 154

9.10 Performance evaluation: Resource consumption scenarios 164

9.11 Performance evaluation: Latency scenarios 166

9.12 Performance evaluation: Offloading scenarios 171

9.13 Performance evaluation: Offloading time, migration time, downtime . . . 172

Tables

2.1 Programming paradigms to realize processing pipelines 26

6.1 Comparison of pipeline element requirement types 72

9.1 Requirements fulfillment: Model and architecture-specific requirements . 156

9.2 Requirements fulfillment: System-specific requirements 157

9.3 Fog computing testbed: Node overview . 158

9.4 Fog computing testbed: Pairwise network latencies (in ms) 159

9.5 Fog computing testbed: Assignment of components to nodes 161

9.6 Performance tests: Overview . 162

9.7 Cobot-based product quality inspection: ROS bag event overview 162

9.8 Performance evaluation: Latency statistics (in ms) and performance im-
provements . 167

Listings

6.1 Hardware node resource definition: Example 77

6.2 Software node resource definition: Example. 78

6.3 Connectivity node resource definition: Example 78

6.4 Connectivity node resource requirement definition: Example 79

6.5 Hardware node resource requirement definition: Example 79

6.6 Node metadata definition: Example . 80

6.7 Deployment container definition: Example 81

6.8 Reconfigurable static property definition: Example 82

6.9 Event stream relay definition: Example 83

Abbreviations

EC Event consumer

EDA Event-driven architecture

EP Event producer

EPA Event processing agent

EPN Event processing network

IIoT Industrial Internet of Things

IoT Internet of Things

LAEDS Locality-aware event dissemination strategy

MAPE Monitor-Analyze-Plan-Execute

SPR Sense-process-respond

Part I

Introduction

1
Introduction

The steady increase in digitalization efforts has led to a deluge of generated data with the
Internet of Things (IoT) acting as a key innovation driver, in particular in domains such as
smart city, manufacturing, energy, or logistics. Never before have deployed sensors and
smart devices been able to produce new real-time data as prolifically as experienced today.
Especially in industrial environments, the adoption of the Industrial Internet of Things
(IIoT) which refers to a network of interconnected sensors, devices, and other industrial
assets [Jeschke et al. 2017], offers substantial opportunities and attracts businesses to
invest in order to harvest new data sources. Alongside the promise to realize data-driven
decision-making, companies have great expectations in achieving added value through
improvements in product and process quality, the development of new digital business
models and establishing competitive advantages. Yet, the added business value does not
result from the raw data itself but from the information gained from a real-time data
analysis process.

In this regard, event processing is a widely used processing paradigm to analyze data in
the form of event streams to extract relevant information in a timely manner. To lower the
rather high technological entry barriers into event processing, graphical flow-based ap-
proaches employed in no-code event processing systems have been proposed [Kleinfeld
et al. 2014; Riemer et al. 2014; Noor et al. 2019]. The visual modeling approach makes
event processing accessible for non-technical domain specialists and allows them to
create applications in a self-service manner. Such event-driven applications are described as
processing pipelines which consist of multiple, loosely-coupled and self-contained event-
driven processing services. Based on the conceptual event processing network model,
the individual event-driven processing services represent a collection of event producers,
event processing agents and event consumers which shape the pipeline structure [Sharon
and Etzion 2007]. In this matter, distributed event-based systems have been prevalent for
realizing event-driven applications at large-scale [Carzaniga et al. 1998] which has led to
the general concepts and principles of the event-driven architecture [Bruns and Dunkel
2010]. The presented characteristics make event-driven applications well suited for a
broad application in a myriad of IIoT-related scenarios. Typical use cases include, among
others, continuous monitoring, complex event processing or anomaly detection. However,
today’s event-driven applications are static and focused on centralized cloud deploy-
ments. Over the past decade, the cloud has acted as the de facto computing environment

4 1 Introduction

for multiple reasons, including the ubiquitous, on-demand access to network-centric
services such as virtualized resources that can be provisioned and released with minimal
management effort to allow for dynamic scalability [Tai et al. 2010; Baun et al. 2011].
However, there are some inevitable drawbacks to the centralized approach in view of
emerging IoT and IIoT scenarios that require time-sensitive decisions, are limited in
available bandwidth [Satyanarayanan et al. 2009], or are bound by regulations with
respect to privacy and security [Zhou et al. 2017]. Unclear development of costs and
concerns about third-party handling of sensitive data further intensify the shortcomings
of the centralized cloud model [Vaquero and Rodero-Merino 2014; Sunyaev 2020]. These
limitations have driven the development of a novel decentralized computing paradigm
referred to as fog computing [Bonomi et al. 2012]. By extending the cloud, fog computing
envisions to move certain processing steps and their management closer to the edge of
the network, i.e., closer to the event source. Despite these advantages, fog computing so
far finds little adoption in practice [Bermbach et al. 2018].

From an infrastructure perspective, some of the reasons are the inherent fog computing
characteristics [Bonomi et al. 2012; Iorga et al. 2018]. Apart from mobility aspects and the
exposure to the physical environment, the aspects of resource heterogeneity in particular
are poorly addressed in modern event processing systems. From an event processing
perspective, managing geo-distributed event-driven-applications is complex and requires
deep technical knowledge from multiple domains. Moreover, the static nature of current
event-driven applications is not suitable to account for the dynamics in fog comput-
ing environments and to evolve the application to new analytical and business needs.
On the one hand, this includes topological changes which characterize where along the
cloud-edge continuum the processing is executed. On the other hand, this also involves
the modification of processing semantics describing how events are processed. These
problems are further exacerbated by the recent paradigm shift in enterprises towards
establishing a data-driven culture that requires appropriate platform support. Here, the
term citizen technologists is used to describe a set of newly emerging organizational roles
that make data-driven decisions in industrial business processes by combining profound
domain knowledge with basic IT and data analysis skills [Gröger 2018]. Technical prob-
lems have been investigated in various domains, including (complex) event processing,
distributed event-based systems, or application orchestration. Still, there lacks a holistic
management approach for geo-distributed event-driven applications with fog computing
as an enabler to usher the next generation of no-code event processing systems to be
leveraged by citizen technologists.

By combining both application-centric and infrastructure-centric worlds into a holistic
approach, this embraces citizen technologists to go beyond existing boundaries which are
hindered by the capabilities of today’s systems. This not only provides citizen technolo-
gists with the ability to centrally model event-driven applications, but to self-reliantly
manage them in heterogeneous fog infrastructures along the applicational life cycle
without much effort.

1.1 Research Questions 5

In the course of this thesis, we propose enhancements to the next generation of no-code
event processing systems in fog computing which allow to drive the democratization
movement from IT experts to citizen technologists. In view of this, a holistic approach
to managing geo-distributed event-driven applications in heterogeneous fog comput-
ing infrastructures is developed which pursues the following objectives: First, creating
heterogeneity-awareness for the event-driven application to adequately exploit compu-
tational resources independent from the underlying infrastructure. Second, deploying
and operating event-driven applications in geographically dispersed fog environments.
Third, adapting event-driven applications to accommodate both the dynamics of fog
computing and the changes in domain requirements.

1.1 Research Questions

Our research aims to provide a holistic application management approach to a next
generation of no-code event processing systems in fog computing. This empowers citi-
zen technologists with little or no software engineering and infrastructure management
knowledge to perform the following tasks: (1) deploy geo-distributed event-driven ap-
plications on heterogeneous computational resources spanning across the cloud-edge
continuum while freely configuring deployment targets, (2) operate individual event-
driven processing services in geo-distributed fog computing infrastructures along their
application life cycle and (3) modify employed application-specific logic or execution tar-
gets of event-driven processing services at run-time to account for changing requirements.
Consequently, this leads to the following principal research question:

How can citizen technologists be enabled to manage event-driven applications in
geographically distributed fog computing infrastructures?

The principal research question comprises three key aspects that need more elaboration:
event-driven application, citizen technologist, and fog computing.

Event processing allows to continuously process event streams by applying application-
specific logic while data is in motion. Often, this follows an event-driven architecture
with individual, loosely-coupled event-driven processing services communicating in a
publish/subscribe manner. The composition of these event-driven processing services
forms the event-driven application, also referred to as processing pipeline. More recently,
no-code development platforms have started to democratize the development of event-
driven applications by means of graphical flow-based modeling approaches [Riemer
2016]. This has significantly lowered rather high technological entry barriers making it
particularly appealing for organizational roles such as citizen technologists to create new
business applications for consumption by others [Wong et al. 2015; Gröger 2018]. Finally,
fog computing describes a decentralized compute infrastructure organized in a layered,

6 1 Introduction

hierarchical architecture from the local edge layer closest to real-world IoT devices, over
a regional fog layer to the global cloud layer [Bonomi et al. 2014]. We argue that fog
computing serves as an enabler for the next generation of no-code event processing
systems as it allows to move certain processing in closer proximity to the event source by
extending the cloud towards the edge of the network. Such event processing systems not
only provide citizen technologists with the ability to create event-driven applications,
but also assist them in managing these applications in geo-distributed fog environments,
so that they can focus on the actual domain problem [Fischer et al. 2009].

The principal question itself can be further broken down into three sub-questions, each
targeting different aspects of the main research question. Each sub-question is motivated
in Section 3.3.2.
Research Question 1 (Exploit). How can event-driven applications exploit heterogeneous
computational resources in fog computing infrastructures?

The first research question investigates resource management matters of event-driven
applications in fog computing infrastructures. As fog computing extends the cloud
resource layer towards the network edge, event processing systems are faced with con-
strained and heterogeneous resources driven by specialization and dispersion of custom
hardware [Terzo et al. 2019]. The main challenge of this research question involves the
development of a generic and extensible model which allows to link infrastructure-related
aspects (e.g., resource offers) and application-related aspects (e.g., resource requirements)
alongside relevant deployment and operation considerations for event-driven applica-
tions. The model is incorporated in a holistic application management approach and
serves as a foundational building block to support the platform-independent deployment
and operation of event-driven processing services in a heterogeneity-aware manner. The
research question is answered in Chapter 6 and evaluated in Chapter 9.
Research Question 2 (Deploy). How can we deploy and operate event-driven applications that
span multiple geographically distributed nodes?

The second research question covers aspects of deployment and operation of individual
event-driven processing services which we refer to as pipeline elements. A composition of
logically connected pipeline elements form the actual processing pipeline that may span
multiple geographically distributed computational resources within the fog infrastruc-
tures. Hereby, occurring challenges are manifold: On the one hand, citizen technologists
must be given some degree of freedom in selecting appropriate deployment locations for
pipeline elements in order to incorporate their domain and application knowledge. On
the other hand, apart from sufficient support for citizen technologists in configuring de-
ployment locations, concepts for geo-distributed deployment and operation are required.
Further, a management service on node level needs to be developed evolving around
the pipeline element life cycle which also allows the coordination of complex data flows
in fog infrastructures. The research question is answered in Chapter 7 and evaluated in
Chapter 9.

1.2 Research Methodology 7

Research Question 3 (Adapt). How can we reconfigure and relocate existing event-driven
processing services at run-time?

Due to the nature of event streams, event-driven applications typically execute for an
indefinite amount of time. As a result, an application’s ability to adapt to changing
conditions or requirements is crucial for its successful operation [Andrade et al. 2014].
The research question addresses two main adaptation aspects. The first part deals with the
modification of design-time decisions for user-provided pipeline element configurations
at run-time to reconfigure the processing behavior. The second part works towards
run-time displacements of individual pipeline elements from their original to a new node
execution target. Developing a generic methodology that covers both adaptation aspects
while incorporating human interaction is beneficial for the next generation of no-code
event processing systems to facilitate fast information retrieval at minimal effort. The
research question is answered in Chapter 8 and evaluated in Chapter 9.

1.2 Research Methodology

The underlying research methodology in this thesis follows the design science paradigm
in information system research [Hevner et al. 2004]. The conceptual framework of the
design science paradigm derives business needs from a specific environment, e.g., people,
organizations, and technologies, defining the problem domain. The objective behind
information system research is to build and evaluate purposeful IT artifacts which satisfy
articulated needs by systematically applying existing foundations and methodologies
from a knowledge base [Hevner et al. 2004]. Thereby, the notion of artifacts is not
strictly limited to software or hardware artifacts, but also includes constructs, models
and methods utilized in the course of the development and use of information systems.
Hevner et al. suggest a systematic problem solving approach for research conducting
the design science paradigm which relies on seven key guidelines, namely (G1) Design
as an Artifact, (G2) Problem Relevance, (G3) Design Evaluation, (G4) Research Contributions,
(G5) Research Rigor, (G6) Design as a Search Process and (G7) Communication of Research.

In this thesis, all seven key guidelines are considered. Various artifacts in the form of
models, concepts and methods apart from software artifacts are discussed in Chapters 6
to 8 to address related research questions (G1). In Chapter 3, we conduct thorough
studies of the problem domain, identify relevant business needs and state current limi-
tations in view of the problem relevance (G2). We provide extensive design evaluation
focusing on different aspects of the developed artifacts (G3). Therefore, the research
contributions of this thesis are models, concepts and methods which are integrated into
a software artifact realizing a holistic application management system as a middleware
for no-code development environments in order to deploy and operate event-driven
applications in heterogeneous fog computing infrastructures (G4). Moreover, we present

8 1 Introduction

foundations in Chapter 2, discuss existing methodologies as part of related work in
Chapter 4, and derive requirements associated with constructing the artifact in Chapter 5
which are complemented in Chapter 9 by providing evaluation results (G5, G6). Both
research contributions and evaluation results (G7) have been presented and discussed at
various venues both to expert academics and practitioners of technology-oriented and
management-oriented audience which we further detail in the next section.

1.3 Contributions and Impact

The contributions of this thesis follow the outlined research questions in Section 1.1 and
provide both conceptual and methodological foundations for managing event-driven
applications in heterogeneous fog infrastructures.

(C1) Model and Architecture. We present a generic model describing node-specific
resource characteristics complemented by additional metadata containing in-depth
information such as the dedicated node type or the location. As we discuss, there are
various heterogeneity dimensions to be considered regarding resource management
matters in fog computing. Thus, the goal is to provide a lightweight and extensible
description explicitly expressing node resource offers that builds the foundation
to assist citizen technologists through the actual deployment process by internally
verifying selected deployment configurations with dedicated node resource require-
ments from the event-driven application side. In this regard, we re-use and extend
vocabularies of previous work [Riemer 2016; Zehnder et al. 2020] to incorporate
additional concepts in view of platform and technology-agnostic geo-distributed
deployment and operation. Moreover, we suggest a geo-distributed system archi-
tecture according to derived requirements that builds on top of state-of-the-art
application management approaches and extend them in terms of heterogeneity-
awareness. This contribution is related to Research Question 1.

(C2) Concepts. We propose deployment and operation concepts for geo-distributed
event-driven applications in fog infrastructures. This combines both notions of cen-
tral orchestration as well as local execution and coordination along the life cycle of
respective pipeline elements. To this extent, we instantiate the aforementioned node
model as part of the design of a local node controller service which is capable to au-
tomatically extract and expose node-specific resource information at startup while
providing the possibility to modify or add metadata at any later stage. Further, the
node controller service applies a flexible locality-aware event dissemination strategy
for event streams between any two adjacent but dislocated pipeline elements. This
represents a crucial task to realize a geo-distributed operation as it avoids expensive
network round trips to remote message brokers. Moreover, citizen technologists
are offered to chose among different deployment and operation options that best
align with their use case. This contribution is related to Research Question 2.

1.3 Contributions and Impact 9

(C3) Methodology. We introduce an adaptation methodology which uses side-inputs
to pipeline elements as a key abstraction to inject special control directives in the
form of adaptation events. This facilitates the run-time evolution of deployed event-
driven applications in terms of two specific adaptation types. On the one hand, this
includes the run-time reconfiguration to alter pipeline element configurations from
design-time. On the other hand, this denotes the run-time relocation of pipeline ele-
ments. In the latter case, this includes migration actions that are actively performed
by citizen technologists in view of changing requirements apart from autonomic
offloading actions that are triggered by the system to account for contextual changes.
This contribution is related to Research Question 3.

Research Projects and Publications. The main contributions of this thesis result from
the work in several German-funded research and industry projects that were presented
in peer-reviewed publications at international top-tier venues which we describe in the
following.

BigGIS (Scalable Geographic Information Systems for Predictive and Prescriptive
Analytics, 04/2015-03/2018, BMBF)

The goal behind BigGIS was to develop a scalable geographic information system that
supports decision-making in a multitude of IoT-related use cases including disaster man-
agement using airborne data from unmanned aerial vehicles. This required processing
of large and heterogeneous spatio-temporal data from (potentially) unreliable sources.
Thereby, we initially discovered the importance to incorporate the knowledge of domain
experts in the analytical decision-making process. In BigGIS, the adaptation methodology
allowing domain experts to continuously refine and evolve event-driven applications has
been developed and instantiated in a flexible event-driven architectural design.

Publications

� Patrick Wiener, Manuel Stein, Daniel Seebacher, Julian Bruns, Matthias Frank, Vil-
iam Simko, Stefan Zander, and Jens Nimis. BigGIS: A Continuous Refinement
Approach to Master Heterogeneity and Uncertainty in Spatio-Temporal Big Data
(Vision Paper). Proceedings of the 24th ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems (SIGSPACIAL ’16). 2016,
New York, NY, USA. CCC Blue Sky Ideas Award, Best Vision Paper Runners Up
Award. (see [Wiener et al. 2016]).

� Patrick Wiener, Viliam Simko, and Jens Nimis. Taming the Evolution of Big Data
and Its Technologies in BigGIS - A Conceptual Architectural Framework for
Spatio-Temporal Analytics at Scale. Proceedings of the 3rd International Confer-
ence on Geographical Information Systems Theory, Applications and Management
(GISTAM). 2017, Porto, Portugal. (see [Wiener et al. 2017]).

10 1 Introduction

LieferBot-E (Automated Supply and Disposal of Urban Neighborhoods through
Autonomous Electrified Vehicles, 01/2018 - 06/2021, BMWi)

The major part of this thesis results from the work in the research project LieferBot-E.
Hereby, the project investigated the utilization of electrified delivery robot platforms to
autonomously pursue package delivery tasks whereby the benefits are twofold: (1) relieve
courier, express, and parcel service providers of cost-intensive last-mile delivery and
(2) mitigate issues for cities regarding high traffic density, noise and pollution. The goal
was to realize a delivery robot monitoring use case while alleviating dispatcher and
fleet operator from any technical burdens when deploying and operating respective
event-driven monitoring applications in geo-distributed fog infrastructures. Therefore,
the challenge was to develop concepts facilitating flexible cloud to edge deployments and
realizing geo-distributed event stream management. Hence, individual pipeline elements
are either executed in the cloud or can be moved to the delivery robot platform itself.
Concepts and methods for supporting citizen technologists in managing geo-distributed
event-driven applications are inspired and derived from the key idea of this application
scenario. Besides, we conducted evaluations in a real-world setup.

Publications

� Patrick Wiener, Philipp Zehnder, and Dominik Riemer. Towards Context-Aware
and Dynamic Management of Stream Processing Pipelines for Fog Computing.
2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC). 2019,
Larnaca, Cyprus. (see [Wiener et al. 2019]).

� Patrick Wiener, Philipp Zehnder, Marco Heyden, Patrick Philipp, and Dominik
Riemer. Fogsy: Towards Holistic Industrial AI Management in Fog and Edge
Environments. KuVS-Fachgespräch Fog Computing (KuVS). 2020, Wien, Essen.
(see [Wiener et al. 2020a]).

� Patrick Wiener, Philipp Zehnder, and Dominik Riemer. Managing Geo-Distributed
Stream Processing Pipelines for the IIoT with StreamPipes Edge Extensions. Pro-
ceedings of the 14th ACM International Conference on Distributed and Event-Based
Systems (DEBS). 2020, New York, NY, USA. (see [Wiener et al. 2020b]).

Moreover, the key ideas and research challenges were thoroughly discussed at the Doc-
toral Symposium of the 19th International Middleware Conference (Middleware), 2018,
Rennes, Britanny, France.

Research and Developer Talks. Parts of the work were also presented in a tutorial
at the 19th Annual IEEE/ACM International Symposium in Cluster, Cloud, and Grid
Computing (CCGrid), 2019, Larnaca, Cyprus, as well as at international top venues such
as Flink Forward, ApacheCon, ApacheCon Asia besides several Meetups around the
world. These talks at developer conferences bridge the gap between research and practice
and support the adoption of our contributions in industry.

1.4 Guide to the Reader 11

Open-Source Contributions. In addition, the presented contributions are integrated
into the open-source project Apache StreamPipes1, an IIoT analytics tool which enables
non-technical domain experts to create event-driven applications in a self-service manner.
Apache StreamPipes is part of the IoT and IIoT open-source ecosystem within the well-
known and renowned Apache Software Foundation, an American nonprofit corporation
supporting numerous open-source software projects. This further aids in distributing
our contributions on a global scale by providing transparency and accessibility to target
interest groups.

1.4 Guide to the Reader

The remainder of this thesis is structured as shown in Figure 1.1. First, we introduce
underlying terms, concepts and architectures with regard to event processing, distri-
buted event-based systems and fog computing in Chapter 2. Readers familiar with
these domains may also skip this chapter to fast-forward. Building on the theoretical
foundations, Chapter 3 motivates our research from an application and user point of
view by deriving relevant needs from two IIoT-related scenarios used to formulate a
problem statement. Chapter 4 reviews related work from the field of distributed event-
based systems and application management in fog computing with similar problems
evolving around geo-distributed event processing. In Chapter 5, essential requirements
for this thesis are derived by performing a requirements elicitation process. Therefore,
the requirements elicitation process is based on the outlined research questions, further
complemented by identified needs and problems from the motivation as well as the
knowledge obtained from a systematic review of related work. Afterwards, in Chapter 6
we introduce our generic node model encompassing concepts from the application and
infrastructure realms and propose a geo-distributed architecture framing the overall
system design. Building on top of the fundamental node model, we state geo-distributed
pipeline deployment and operation concepts, propose a strategy for flexible event stream
management and introduce the node controller for local run-time management in Chap-
ter 7. Thereafter, we first present a generic adaptation methodology alongside relevant
key abstractions to support pipeline evolution at run-time prior to suggesting methods
for three specific adaptation types in Chapter 8. Chapter 9 presents evaluation results
and thorough discussions which is followed by a conclusion and an outlook for future
work in Chapter 10.

1https://streampipes.apache.org/

https://streampipes.apache.org/

12 1 Introduction

2 Foundations 3 Motivation

1 Introduction

4 Related Work

5 Requirements

6 Resource
Exploitation

8 Pipeline
Adaptation

7 Pipeline
Deployment

9 Evaluation

10 Conclusion

P
re

lim
in

ar
ie

s
M

ai
n

P
ar

t
Fi

na
le

Figure 1.1 Structure of the thesis

Part II

Preliminaries

2
Foundations

In this chapter, we introduce concepts and theoretical foundations needed for the re-
mainder of this thesis. First, we introduce event processing, relevant terminologies and a
conceptual model for event-driven applications in Section 2.1 before presenting funda-
mentals of distributed event-based systems in Section 2.2. Lastly, we introduce fog computing
in Section 2.3 and elaborate on related computing models.

2.1 Event Processing

The imminent need to continuously process large amounts of data and to deduce action-
able insights under very short delays catalyzed the evolution of models and systems that
are capable in dealing with these requirements. Ever since, the field of event processing
has gained significant attention in disparate research communities. Unsurprisingly, this
has led to the evolution of different terminologies related to event processing in general.
In principle, most of them can be categorized into one of the two terms: data stream
processing [Babcock et al. 2002] and complex event processing [Luckham 2002]. Following,
we briefly highlight cornerstones and fundamental developments along the historical
evolution of both models. Then, we introduce the notion of events and event streams before
presenting event processing networks, a conceptual model for event-driven applications.

2.1.1 Background

Data stream processing (DSP) emphasizes the modeling and efficient processing of transient
data streams opposed to persistent relations of traditional database management system
(DBMS). Active DBMS [McCarthy and Dayal 1989] were proposed to extend traditional
DBMS in allowing users to specify actions to be automatically triggered for reacting to
continuous changes in the data based on event-condition-action rules [Dayal et al. 1988].
More specifically, these systems are classified as closed or open databases depending on
whether rules are only applied on changes to internally stored data or also allowed to
incorporate external event sources respectively [Cugola and Margara 2012]. In contrast to
traditional DBMS that execute one-time queries over point-in-time dataset snapshots, the

16 2 Foundations

idea of continuous queries was proposed and incorporated in the Tapestry system [Terry
et al. 1992]. Hereby, queries are deployed once and continually evaluated over the data.
Data stream management systems (DSMSs) were introduced to deal with data-intensive
streaming applications by executing continuous queries on transient and unbounded data
streams. Thereby, users are actively provided with updated answers in a timely manner,
potentially sacrificing some accuracy if necessary [Babu and Widom 2001; Babcock et al.
2002; Abadi et al. 2003]. This is also referred to as the DBMS-Active, Human-Passive
model [Carney et al. 2002]. A DSMS must ensure to produce deterministic and repeatable
output which is crucial for fault tolerance and recovery mechanisms [Stonebraker et al.
2005]. However, this is in contrast to the non-deterministic behavior of a DSMS where
accuracy is sacrificed by load shedding mechanisms to minimize the degradation in
system utility in high load situations [Abadi et al. 2003]. Most popular representatives
of DSMSs include STREAM [Babu and Widom 2001], Aurora [Abadi et al. 2003] or
TelegraphCQ [Chandrasekaran et al. 2003], commonly considered as the first generation
stream processing engines (SPEs). The introduction of the MapReduce paradigm [Dean and
Ghemawat 2004] marked the beginning of subsequent generations of SPEs for massively-
parallel DSP with prominent examples originating both in industry (Storm at Twitter,
Samza at LinkedIn) and academia (Spark Streaming at UC Berkley, Flink at TU Berlin).

Parallel to DSMSs, the research area of complex event processing (CEP) was introduced as
a way to distill meaningful information from simple events into fewer, yet more useful,
complex events [Luckham 2002]. The causality between events is modeled by reactive
behaviors of involved processing components by the use of event patterns [Luckham and
Vera 1995], whereby providers and receivers of information are decoupled [Buchmann
and Koldehofe 2009]. Information between producers and consumers are disseminated
in the form of events from a large number of distributed sources, e.g., machine sensory
in manufacturing. The asynchronous communication and the decoupling form the basis
for high interoperability in CEP [Bruns and Dunkel 2010]. Accordingly, CEP allows to
continuously process events through aggregation and composition to generate complex
events by using event pattern rules that are matched against the incoming events to detect
situations of interest [Cugola and Margara 2012].

Nowadays, the separations between CEP and DSP more and more dissolve [Hirzel 2012;
Luckham 2020]. Hence, we subsume both models under the more general and abstract
term of event processing as defined by Etzion and Niblett [Etzion and Niblett 2010]:

Definition 1 (Event Processing). Event processing refers to performing operations on
events including reading, creating, transforming and deleting events.

The supremacy of event processing over traditional DBMS in use cases such as continuous
data analytics has led to a wide adoption in various industries and further provides
fundamentals for emerging event-driven applications [Hueske and Kalavri 2019] with
recent advancements in the context of the Industrial Internet of Things (IIoT).

2.1 Event Processing 17

2.1.2 Events

Events are the most elementary and fundamental entity with regard to event processing.
The term event was coined by Luckham in the context of CEP and signifies an activity
in a system that has happened and can be subjected to computer processing [Luckham
2002]. An event comprises three additional aspects that further describe its characteris-
tics [Luckham 2002]: (1) form (attributes contained in an event), (2) significance (activity
an event signifies), (3) relativity (relationship among events, e.g., by time, causality, and
aggregration). However, the term system may be misleading in the sense that it is not
strictly enforcing to be only limited to computer systems. In fact, any happening of
interest leading to a state change in a given domain that can be observed is considered
an event [Mühl et al. 2006; Etzion and Niblett 2010]. In that sense, events can occur in
the form of physical events such as sensor measurements in a machinery, or as gener-
ally arbitrary system inherent events. This is reflected in the definition by Etzion and
Niblett [Etzion and Niblett 2010].

Definition 2 (Event). An event is an occurrence within a particular system or domain;
it is something that has happened or is contemplated as having happened in that
domain.

Besides widening the scope for origins of events, it also addresses cases in which events
are created without an actual occurrence (i.e., activity) having happened—that is, when
the observation of the activity led to a false positive [Etzion and Niblett 2010]. Events are
considered to be programmatic representations, so-called event objects or event instances
which pertain to a dedicated event type, that is, a specification for a group of event objects
of the same structure and semantics intent [Etzion and Niblett 2010]. An event type has a
set of associated constituent attributes (i.e., form) which define the logical event structure
[Etzion and Niblett 2010]:

� Header—describes meta-information about an event, e.g., its timestamp.
� Payload—contains the actual information itself.
� Open content—may contain additional information on the event instance.

Finally, there is another term to distinguish that is often used in the context of events. A
message (or notification) is a datum that conveys a serialized form of events [Etzion and
Niblett 2010]. Thus, a message can be viewed as a data container on the network level in
order to transmit events between endpoints of the underlying communication mechanism,
i.e., between event producers and event consumers [Mühl et al. 2006]. Depending on
the designated communication mechanism, a message may also contain several events,
e.g., when retrieving batches of events from an event log [Etzion and Niblett 2010]. In
this regard, distributing events in the system requires for the participating processing
entities to agree on a common data format referring to a specific event representation,
e.g., JavaScript Object Notation (JSON).

18 2 Foundations

2.1.3 Event Streams

The primary abstraction associated with event processing is the notion of an event stream.
In this matter, data that are to be processed are not available for random access from disk
or memory, but arrive in the form of one or more continuous event streams [Babcock et al.
2002]. Thereby, the event stream model varies from the conventional relation model and
accommodates a set of characteristics associated with continuous processing, that are
(1) events arrive online, (2) the event order cannot be influenced by the system, (3) event
streams are potentially unbounded, (4) once an event is processed it is either discarded
or archived and cannot be retrieved easily [Babcock et al. 2002]. Especially the last point
stresses the fact that event streams often come at high frequency and volume and thus
cannot be stored efficiently. Consequently, this poses the real-time requirement on the
processing part as it oftentimes can only pass over the data once. Event streams can be
classified as base event streams, i.e., event streams are external to the application, or derived
event streams, i.e., intermediary event streams produced internally [Arasu et al. 2006].
Etzion and Niblett define the term as follows [Etzion and Niblett 2010]:

Definition 3 (Event Stream). An event stream (or stream) is a set of associated events.
It is often a temporally totally ordered set (that is to say, there is a well-defined
timestamp-based order to the events in the stream). [...]

Thus, event streams can be understood as a countably infinite sequence of event objects
which are continuously generated and made available over time as exemplified in Fig-
ure 2.1.The notion of time is a central concept in event processing as it allows events to be
associated with a certain timestamp (or time step) from a given time domain marking
the point when the event was generated, e.g., creation time [Andrade et al. 2014]. In
particular, this mapping step (event to time domain) is crucial to evaluate the timeliness of
the event as the potential value of the information content decays over time. As an event
stream reflects the occurrence of an activity that has happened it commonly adheres an
append-only logic [Babu and Widom 2001]. Events are considered immutable and thus
are generally no subject of updates or deletions, even though approaches exist that do
allow future changes by means of revision flags and reevaluation [Abadi et al. 2005].

Real-World
Occurrence

Smart
Gripper
Module

Payload

...

Header

Open Content Event at Time Step 0

Event Stream

Sensors

(hi, pi, ci)

(h1, p1, c1)

(h0, p0, c0)

R

(hi, pi, ci)

(h1, p1, c1)

(h0, p0, c0)

R

(hi, pi, ci)

(h1, p1, c1)

(h0, p0, c0)

R

Figure 2.1 Exemplified event creation and resulting event stream

2.1 Event Processing 19

2.1.4 Event Processing Networks

An event-driven application can be logically represented as an event processing net-
work [Perrochon et al. 1999; Luckham 2002; Sharon and Etzion 2007]. The event processing
network (EPN) is a conceptual model to describe the structure of an event-driven ap-
plication at an abstract level without the notion of any technical details. Based on the
event-driven architecture, an architectural pattern defining principles for the event-driven
processing behavior, EPNs aim to express the event-based interactions and processing
specifications among components that serve as a basis for realizing event processing
architectures in general [Sharon and Etzion 2007]. An EPN can be viewed as an ensem-
ble of platform-independent components: event producer, event processing agent, event
consumer and event channel. In general, EPN components are considered distributed,
loosely coupled while exchanging events asynchronously, mostly based on a push-based
event distribution (fire-and-forget). An EPN can also be viewed as a graph as defined
in [Sharon and Etzion 2007]:

Definition 4 (Event Processing Network). An event processing network is a graph,
where vertices are represented by a collection of event processing agents, event
producers, event consumers, and edges denote to interconnecting event channels.

Any event object that flows between interconnected components must be transferred
through a channel which is a directed link from emitting to receiving components [Sharon
and Etzion 2007]. Besides, an EPN may also contain feedback loops where certain outputs
of downstream event processing agents are fed back to an upstream event processing
agent in the network. While EPNs can form arbitrary topologies, it always describes the
flow of events through the network from producer to consumer and specifies intermediate
event processing (if any) [Etzion and Niblett 2010].

Next, we briefly introduce each constituent of an EPN as depicted in Figure 2.2 which
provides an overview over the graphical notation of an EPN, with arrows indicating the
flow of events.

Event Producer. An event producer (EP) is an entity located at the edge of an EPN that
observes its environment and emits raw events into the EPN via channels to be consumed
by any party of interest, i.e., either event processing agents or event consumers [Etzion
and Niblett 2010]. Thereby, producer do not mutate any state of the system they are
observing [Luckham 2002]. Within the EPN, producers represent source nodes, i.e., only
directed edges exist that originate from the producer. As the EPN describes an abstract
model, producers are only seen as a proxy to an actual event producer typically in the
real-world. Therefore, Etzion and Niblett propose three categories of real-world event
producer: hardware, software and human interaction [Etzion and Niblett 2010]. The
latter refers to events that are generated in the course of a human interaction such as
manual acknowledgement of good parts and bad parts in an end of line quality check.

20 2 Foundations

Event
Channel

(C) Event
Processing

Agent
(EPA)

Event
Producer

(EP)
Event

Consumer
(EC)

EP

EP EPA

EC

EPA

C

C

C

C

C

EPAC
C

Figure 2.2 Graphical notion of an event processing network

Event Processing Agent. An event processing agent (EPA) is responsible to mediate
between producers and consumers as a consumers expectations may not always match
what is provided [Sharon and Etzion 2007]. For instance, one is generally not interested
in raw sensor readings but would like to be informed when a certain threshold value
is exceeded. For that matter, EPAs allow to apply intermediary event processing logic
"on-the-fly" while events are in transit. Although there are typically different types of
EPAs, they all follow the same procedure: first, EPAs receive input events over one or
more channels, then they process them, and finally output new derived events to one or
more channels. EPAs can be categorized in three base classes [Etzion and Niblett 2010]:

� Filter—discard events based on a given criteria
� Pattern detection—examine a collection of events for matching patterns
� Transformation—modify event properties or structure, e.g., split or aggregate events

Furthermore, a distinction can be made between stateless and stateful EPAs. Stateless
EPAs (e.g., filtering) process each event entirely independent from the preceding events.
On the contrary, stateful EPAs (e.g., aggregation) keep "state" between events and thus
past events influence the behavior of how current events are processed. Moreover, Etzion
and Niblett formulate an EPA hierarchy based on the aforementioned base classes that
we explicitly exclude from this work [Etzion and Niblett 2010].

Event Consumer. An event consumer (EC) can be viewed as the logical counterpart
of a producer and represents sink node that receives events from its preceding com-
ponents [Etzion and Niblett 2010]. Once a consumer receives events it will perform a
certain task based on its predefined internal logic. Similar to producers, consumers can
be broadly categorized in any of these three classes: hardware, software, and human

2.2 Distributed Event-Based Systems 21

interaction [Etzion and Niblett 2010]. Examples include triggering actions in an actuator,
live visualizations of events in dashboards, or sending system-generated notifications
over an instant messaging service.

Event Channel. An event channel provides a mechanism for distributing events between
linked components within the EPN. To this extent, a channel receives events from one or
more sources, derives routing decisions, and forwards the input events without changing
it to one or more downstream targets in accordance with these routing decision [Etzion
and Niblett 2010]. Opposed to simple channels that only mark one-to-one mappings
between source and target, modeled channels allow sophisticated routing schemes, e.g.,
many-to-one, one-to-many or many-to-many, including a configurable quality of service (QoS)
behavior [Chandy and Schulte 2009]. This significantly reduces the overall complexity
due to shared channels by decoupling producers, agents and consumers. In this way,
any entity in the topology can be dynamically added or removed at run-time without
affecting the overall availability of the application. Oftentimes, channels are implemented
as a message-oriented middleware to decouple EPN entities [Etzion and Niblett 2010].

2.2 Distributed Event-Based Systems

The dynamics in networked environments, especially in emerging application domains
such as IIoT, pose new requirements on the automation of data exchange thus shifting
the focus of data and service distribution away from a stationary world to one that is
in flux [Mühl et al. 2006]. For many years, distributed event-based systems and their
underlying event-based architectural style have been prevalent for realizing event-driven
applications at large-scale [Carzaniga et al. 1998]. In the following, we introduce the
fundamental concepts and principles of event-driven architecture followed by publish/sub-
scribe, a core messaging mechanism for asynchronous push-based communication in
distributed event-based systems, before presenting processing pipelines as a processing
topology pattern for distributed event-driven applications.

2.2.1 Event-Driven Architecture

Distributed event-based systems at large-scale imply a high degree of loose coupling and
heterogeneity among its components in terms of execution and interoperation. A common
architectural style to account for such demands is the event-driven architecture (EDA)
which is a structure based event observation, generation and notification [Rosenblum
and Wolf 1997]. The goal of EDA is to increase efficiency, agility and flexibility of such
event-driven system [Bruns and Dunkel 2010]. Accordingly, the event-driven model
characterizes the behavior of arbitrary components within an EDA, where their processing

22 2 Foundations

is triggered by the occurrence of events. In this respect, event-driven applications are
sometimes viewed as sense-process-respond (SPR) applications that react to and generate
new events [Schiefer et al. 2007; Chandy and Schulte 2007]. Thus, the event-driven model
entails three recurrent steps that characterize the basic principles of EDA [Bruns and
Dunkel 2010]:

� Sense—events are detected immediately after being created
� Process—analyses of detected events, e.g., aggregate, correlate, classify, discard
� Respond—reactions to analyses are initiated in a timely manner, i.e., generate derived

events or invoke other distributed services in real-time

Consequently, these SPR principles are the foundation for distributed event-based systems
that are embedded in the underlying architectural design as well as all constituent
components. An EDA possesses key characteristics with regard to its communication model
and processing model [Bruns and Dunkel 2010].

In contrast to conventional request/response (also request/reply) interactions that pre-
cipitate tight coupling of communicating parties and thus impair scalability [Franklin
and Zdonik 1998], the event-based architectural style facilitates a clear separation of com-
munication and computation by inherently decoupling participating components. This is
achieved by using a mediating middleware which conveys events from event producing
entities to event consuming entities based on expressed consumer interests without them
having any prior knowledge about each other [Carzaniga et al. 1998; Eugster et al. 2003].
As a result, this allows to not only scale-out across multiple nodes but also to dynami-
cally add or remove individual components at run-time without others being affected
which leads to high compositionality and reconfigurability of the EDA [Carzaniga et al.
1998]. Further, decoupling individual components reduces dependencies to a minimum,
namely to the coordination of the syntactic structure and the semantics of the conveyed
events [Bruns and Dunkel 2010]. A key characteristic of this event-based communi-
cation model is that it follows a push-based opposed to a pull-based approach as in
request/response to provide asynchronous, non-blocking event transfer oftentimes real-
ized by a middleware that implements the publish/subscribe pattern, further detailed
in Section 2.2.2. In this regard, the event-based communication model acts inverse to
request/response as the initiator of communication, namely the event producing compo-
nent, actively provides the data [Mühl et al. 2006]. Consuming components immediately
react to received events by processing them according to their inherent application logic.
As a result, the event-based communication model mitigates elementary disadvantages of
request/response in dynamic networked systems [Mühl et al. 2006] that include potential
system congestion due to unnecessary requests from short polling intervals as well as
increased update latencies and potentially stale data due to long polling intervals which
makes it superior in the context of data dissemination [Franklin and Zdonik 1997; Fiege
et al. 2002]. Using events as a uniform primitive for information exchange simplifies the
construction of complex systems composed of several autonomously operating, distri-
buted components which aids in evolving event-driven applications to cope with new

2.2 Distributed Event-Based Systems 23

requirements [Sullivan and Notkin 1990; Bates et al. 1998]. It is noteworthy, that not every
software system that deals with events automatically meets the criteria for an EDA. As
previously mentioned, events may also occur in response to requests or remote procedure
calls. Furthermore, the EPN and its dedicated EPAs (see Section 2.1.4) are considered an
integral part of the processing model of a sophisticated EDA [Bruns and Dunkel 2010].

EDA is oftentimes complemented with a microservice architectural style that views
components as self-contained, independently deployable and scalable services having a
bounded domain context and thus facilitate a clear separation of concerns. Similarly to
EDA, event-driven applications built from microservices aim to be as decoupled and as
cohesive as possible while exposing interfaces that support lightweight messaging for
producing and consuming events [Lewis and Fowler 2014]. Combining both architectural
styles aids in obtaining non-functional requirements such as performance, scalability,
and availability and allows to realize complex distributed and extensible event-driven
applications which are capable of consuming, processing, aggregating, or correlating
large amounts of events in real-time. Moreover, advancements in the field of container
technology, a lightweight virtualization paradigm at the operating system level, have
evolved into the de facto standard for deploying and operating distributed event-driven
applications with wide adoption in both academia and industry [Alshuqayran et al. 2016;
Kang et al. 2016; Pahl et al. 2020].

2.2.2 Publish/Subscribe

Publish/subscribe (or pub/sub) is a messaging mechanism for push-based communica-
tion and a common approach to realize event channels of the mediating middleware in
EDAs. In contrast to synchronous point-to-point communication that leads to rigid and
static application structures, publish/subscribe is an interaction scheme that provides
loose coupling between participating parties, that are publisher (also referred to as pro-
ducer) and subscriber (also referred to as consumer) which are decoupled by a mediating
event service (also referred to as broker). In general, subscribers issue their interest in
certain events in the form of a subscription at the broker and are subsequently notified in
case any publishers published matching events [Eugster et al. 2003]. The actual event dis-
semination happens asynchronously without the publishers and the subscribers knowing
about each other which leads to a full decoupling in various dimensions [Eugster et al.
2003]:

� Space—publisher and subscriber are unaware of each other
� Time—publisher and subscriber do not need to simultaneously participate
� Synchronization—publisher and subscriber operate in a non-blocking way

Depending on the supported expressivity of subscriptions, publish/subscribe models
can be broadly classified as topic-based and content-based [Eugster et al. 2003].

24 2 Foundations

Topic-based Publish/Subscribe. Inspired by early work in the context of group com-
munication in distributed systems [Birman and Joseph 1987; Birman 1993; Powell 1996],
the topic-based publish/subscribe scheme (also called subject-based) was introduced and
allows publishers to administer messages in named logical channels commonly referred
to as topics (or subjects) [Oki et al. 1993]. Thereby, publishers usually annotate messages
with a dedicated topic that subscribers can use in order to issue a subscription. In prac-
tice, topic-based publish/subscribe maps individual topics to distinct communication
channels. Though this approach can be implemented very efficiently, one of the major
drawbacks is the usage of static topic schemes that are governed by publishers resulting in
a lack of sufficient expressivity with respect to subscribers. To alleviate this shortcoming,
additions have been proposed such as permitting topic hierarchies, that is, topics can be
organized by specifying containment relationships along the possibility for subscribers to
articulate simple expressions based on keyword matchings or wildcards [TIBCO 1999].

Content-based Publish/Subscribe. The content-based publish/subscribe scheme mitigates
the downsides of the topic-based approach by allowing subscriptions based on actual
event properties conveyed in the message rather than a predefined criterion [Rosenblum
and Wolf 1997]. In this matter, subscribers specify subscription predicates using con-
straints to express the interest in only matching events [Mühl 2001]. These predicates
can also be logically combined to form complex subscription patterns. As predicates are
evaluated on the event content instead of static topic schemes, sophisticated protocols
are required that incur higher overhead at run-time [Eugster et al. 2003].

2.2.3 Processing Pipelines

In distributed event-based systems, we often face the notion of processing pipelines. A
processing pipeline (or pipeline) refers to a specific processing topology pattern which
describes the structure, organization and interaction of all entities that provide real-
time event processing capabilities [Bruns and Dunkel 2010]. The idea of patterns was
introduced in the field of building architecture [Alexander et al. 1977; Alexander 1979]
and since then has been transferred to several other disciplines, most notably software
engineering where Gamma et al. coined the term design patterns [Gamma et al. 1993;
Gamma et al. 1994]. In general, patterns serve as a blueprint for recurring design problems
in the development of a software system and differ in terms of their granularity thereby
ranging from architectural patterns at the highest level of abstraction, over design patterns
to idioms at lowest level [Buschmann et al. 1996]. A processing pipeline is an architectural
pattern specifying the logical view [Kruchten 1995] of event-driven applications. Event-
based systems are usually structured hierarchically, i.e., the most abstract views refeis
to the general application logic, which in turn is composed or orchestrated of multiple
smaller and independent processing services [Bruns and Dunkel 2010]. Consequently,
events are processed in stages as a sequence of multiple interconnected processing

2.2 Distributed Event-Based Systems 25

services according to the pipes-and-filters pattern [Mcllroy 1964; Buschmann et al. 1996]
which views the set of filters and their connecting pipes as a pipeline. Processing pipelines
have characteristics that resemble the ones of EPNs (see Section 2.1.4). Events originating
from upstream event sources are forwarded via interconnected stages until they reach
downstream application systems for event handling. In between, each processing service
represents an event processing agent which operates on incoming events with the goal
to derive meaningful insights after multiple stages according to the overall application
objective.

In principle, processing pipelines can be realized in various programming styles, however
generally structuring the application program as a directed acyclic graph according to the
dataflow programming paradigm [Dennis and Misunas 1974], whereby we differentiate
between code-based imperative and declarative as well as graphical flow-based programming
paradigms as contrasted in Table 2.1.

Imperative and Declarative Programming. Both imperative and declarative program-
ming models are commonly found in modern stream processing engines, e.g., Flink,
Spark. These stream processing engines typically provide higher-level APIs as an abstrac-
tion on top of a set of core operators which are executed inside the streaming runtime.
Oftentimes, these are complemented by domain-specific libraries for CEP, graph process-
ing or machine learning. Internally, data exchange between subsequent operators is done
via non-blocking I/O event channels. While imperative programming models allow
for more expressiveness and fine-grained topology configuration, declarative program-
ming models based on SQL-like interfaces for relational processing using declarative
queries aim at a wider adoption [Armbrust et al. 2015; Begoli et al. 2019]. However, both
programming models are aimed at experienced technical users.

Flow-Based Programming. Conversely to imperative and declarative paradigms, flow-
based programming models [Morrison 1994] further introduce another abstraction layer.
In doing so, this allows to visually describe the logical view of the pipeline topology
by means of a graphical user interface (GUI) which is receiving enormous attention due
to advancements in both academia and industry. We further differentiate between two
categories of flow-based programming models that vary fundamentally in terms of their
execution environment, namely technology-specific [Giang 2019; Mahapatra 2019] and
technology-agnostic [Riemer 2016]. In technology-specific environments, the graphical user
interface is added as an abstraction layer on top of existing APIs to interact with stream
processing engines that may involve validation and automated code generation [Mahapa-
tra and Prehofer 2019]. In technology-agnostic environments, the graphical user interface
is added as an abstraction layer on top of an EDA where a set of loosely-coupled, stan-
dalone event-driven processing services in the sense of EPNs components are operated
in combination with a publish/subscribe broker acting as an event channel. In the latter
case, the actual EPN or pipeline management, namely the orchestration, is handled by

26 2 Foundations

Attribute Imperative & Declarative Flow-based
Interface code-based (API) graphical (GUI)
Abstraction low, moderate high
EPN-Technology specific specific, agnostic
EPN-Management internal external
EPA-Runtime low-level operator event-driven processing service
Event Channel non-blocking I/O channel publish/subscribe broker
Target User technical non-technical

Table 2.1 Programming paradigms to realize processing pipelines

an external service. In general, the graphical flow-based paradigm abstracts complexities
of underlying runtime environment and management from end users and offers an intu-
itive entry point to create event-driven applications in a drag and drop fashion which
makes it suitable for non-technical users. Hereafter, we focus on processing pipelines
that are created using the graphical flow-based programming paradigm with emphasize
on technology-agnostic event-driven processing services leveraging a publish/subscribe
message broker for event dissemination throughout the EPN.

Flow-based Pipeline Authoring. Based on EPN principles and manifested in an EDA,
methodologies for graphical flow-based modeling and authoring of processing pipelines
have been proposed that use semantic web services to facilitate the development of
distributed event-driven applications [Riemer et al. 2014; Riemer 2016]. Here, an event-
driven application is comprised of arbitrary potentially heterogeneous event-driven
processing services also subsumed under the term pipeline elements for different EPN
constituents (EP, EPA, EC). Thus, a processing pipeline can be defined as follows [Riemer
et al. 2014]:

Definition 5 (Processing Pipeline). A processing pipeline is a composition of arbitrary,
potentially distributed, heterogeneous event-driven processing services (or pipeline
elements).

Thereby, individual pipeline elements provide a description graph that contains a complete
specification of the corresponding event-driven processing service, namely information
on run-time event streams produced by an EP or requirements and output strategies
of an EPA and EC. Furthermore, pipeline elements are considered either active or pas-
sive [Riemer 2016]. For instance, EP pipeline elements are classified as passive as they only
provide information on their published event stream. These include descriptions of corre-
sponding event schema, stream quality properties such as frequency and corresponding
stream grounding. The stream grounding denotes technical aspects regarding the event
representation like JSON, or Thrift1, as well as the run-time transport protocol to realize

1https://thrift.apache.org/

https://thrift.apache.org/

2.3 Decentralized Computing 27

the event channel. Therefore, the transport protocol commonly utilizes a topic-based
publish/subscribe messaging mechanism like the Message Queuing Telemetry Transport
(MQTT) protocol. In contrast, EPA and EC are active pipeline elements. Active pipeline
elements are instantiated at run-time using binding information such as static data to
configure the inherent functional logic and information about the input and output event
streams which are part of an invocation graph that is sent to the dedicated processing
service when being invoked, i.e., instantiated [Riemer 2016]. Both the declaration of
pipeline element specifications in the setup phase and the instantiation via invocation in
the execution phase are part of the overall interaction model with a central pipeline man-
agement that orchestrates the processing pipelines using a request/response messaging
pattern. However, run-time operations of individual pipeline elements are completely
detached from the modeling phase. Consequently, logically connected pipeline elements
are only loosely-coupled, using a topic-based publish/subscribe middleware between
intermittent processing stages.

2.3 Decentralized Computing

In recent years, the rapid increase in digitalization initiatives such as Industry 4.0 in
industrial domains have catered the emergence of novel application scenarios evolving
around the IIoT which come along new challenges and domain-specific needs. Thus
ever since, these circumstances have urged the development of new concepts, system
architectures and compute paradigms for decentralization to ensure overall QoS. In the
following, we touch upon key milestones along the historical evolution of decentralized
computing and introduce fog computing. Next, we elaborate on its characteristics to further
sharpen the terminology and distinguish it from related computing paradigms, before
presenting a conceptual view on the fog computing architecture.

2.3.1 Background

The beginnings of decentralized computing in general can be traced back to the introduc-
tion of content delivery networks [Dilley et al. 2002]. A content delivery network (CDN)
uses nodes at locations geographically closer to end users to provide cached content such
as images and videos targeted at saving network bandwidth to reduce service bottlenecks.
Noble et al. showed how different types of applications, namely web browsers, video
streaming and speech recognition, could run on resource-constrained mobile devices
with acceptable performance by offloading dedicated compute intensive tasks to nearby
servers in order to relieve the overall system load [Noble et al. 1997] which was fur-
ther extended to improve battery life [Flinn and Satyanarayanan 1999]. Satyanarayanan
generalized these concepts and introduced cyber foraging [Satyanarayanan 2001], which
was further refined in [Balan et al. 2002] and seen as one of the early works for edge

28 2 Foundations

computing [Mouradian et al. 2018]. In cyber foraging, resource-limited mobile devices
temporarily exploit proximate servers, so-called surrogates, that are connected to the
Internet through high-bandwidth networks. A major cornerstone along the way was the
introduction of cloud computing that received particular attention when Amazon initially
promoted its virtual computing environment, the Amazon Elastic Compute Cloud, or
Amazon EC2 [Barr 2006]. Cloud computing opened up a plethora of new opportunities
including Infrastructure-as-a-Service (IaaS) offerings with on-demand access to virtualized,
scalable resources in terms of compute, storage and network [Baun et al. 2011]. However,
consolidating data at a central location implies larger average latencies in application
scenarios that involve mobile devices. Satyanarayanan et al. were among the first to
observe the need of emerging applications that require low latency and thus local data
processing to enable timely decision-making. As a result, Satyanarayanan et al. propose
a two-tier architecture that includes the cloud on the first tier as well as cloudlets on the
second tier [Satyanarayanan et al. 2009]. Cloudlets or "data center in a box" are Internet
infrastructure components that are decentralized and geographically widely dispersed
computational resources that are ideally self-managing and offer proximate compute
capability in a single hop communication link to nearby mobile devices [Satyanarayanan
et al. 2009]. Besides, cloudlets only store soft states that are cached copies of data or code
while hard state exclusively remains in the cloud which makes cloudlets more resilient
to failures [Satyanarayanan et al. 2009].

2.3.2 Fog Computing

Fog computing was first introduced by Cisco as a concept that extends the existing cloud
computing paradigm to the edge of the network [Bonomi et al. 2012]. According to Bonomi
et al., fog computing is a highly virtualized platform that provides computation, storage,
and networking services between end devices and cloud servers that are typically, but
not exclusively located at the edge of the network [Bonomi et al. 2012]. Thereby, fog
computing aims to overcome precedented shortcomings of cloud-centric approaches
by moving substantial amounts of computational resources in closer vicinity of the spa-
tially distributed event sources, analogous to the "code-to-data" principle. Additionally,
the proposed paradigm still embraces benefits of the existing cloud model in terms
of powerful and elastically scalable compute resources. Thus, fog computing serves
as an extension and expansion of cloud computing, rather than a substitute [Hu et al.
2017]. While fog computing naturally provides lower latencies and allows for real-time
processing of sensitive data, the remaining distilled data are transferred to the cloud
and used for running complex compute-expensive big data analytics, training machine
learning models, long-term storage, or general application management [Hong et al. 2013;
Bittencourt et al. 2015; Hu et al. 2017]. Typical domains include industrial automation,
transportation, and networks of sensors and actuators [Stojmenovic and Wen 2014].

2.3 Decentralized Computing 29

As of today, there still exists no common consensus on the term fog computing itself,
neither by researchers nor practitioners. There are numerous other computing paradigms
that coincide with fog computing such as the previously mentioned cyber foraging and
cloudlets as well as more recent compute paradigms, most notably edge computing [Shi et
al. 2016] and mist computing [Preden et al. 2015], Yet, this further hinders the convergence
towards a generally agreed-on definition. While cloudlet, edge and mist computing
paradigms are more geared towards the things side, fog computing focus more on the
infrastructure side in order to better address the necessities in the advent of emerging
IoT scenarios [Shi et al. 2016; Satyanarayanan 2017]. As these fields of research are still in
their infancy the boundaries between the partially overlapping paradigms are oftentimes
fluid. An essential commonality between fog computing and its related paradigms, above
all, edge computing, is the attempt to gather, process and analyze data from real-world
event sources, e.g., industrial machines in the case of manufacturing, more efficiently
compared to the existing cloud computing model by pushing intelligence and processing
capability down to where the data originates. Despite this mutual objective there are
vital differences with regard to where exactly the actual intelligence is placed [Mahmood
and Ramachandran 2018]. In view of this, a commonly used term refers to the edge of the
network as opposed to the core network which we will discuss in Section 2.3.3 in more
detail.

Hence, it is hardly surprising that fog computing is either considered synonymous with
other decentralized computing paradigms such as edge computing [Shi et al. 2016; Hao et
al. 2017; Mahmood and Ramachandran 2018] or is defined as a combination of edge, cloud
and any computational resources in between, so-called fog nodes [Hong et al. 2013; Shi
and Dustdar 2016; Bermbach et al. 2018]. In this work, we take the latter perspective and
refer to the definition of fog computing provided by the National Institute of Standards
and Technology [Iorga et al. 2018]:

Definition 6 (Fog Computing). Fog computing is a layered model for enabling ubiq-
uitous access to a shared continuum of scalable computing resources. The model
facilitates the deployment of distributed, latency-aware applications and services,
and consists of fog nodes (physical or virtual), residing between smart end devices
and centralized (cloud) services.

Fog computing can be distinguished from other related computing paradigms by the fol-
lowing intrinsic characteristics: (1) contextual location awareness and low latency, (2) geo-
graphical distribution, (3) heterogeneity, (4) interoperability and federation, (5) real-time
interactions, and (6) scalability and agility of federated fog cluster. These characteristics
of fog computing are oftentimes complemented by two additional associated characteris-
tics: (7) predominance of wireless access and (8) support for mobility [Iorga et al. 2018;
Bonomi et al. 2012]. In the following, we elaborate on each of these characteristics in
detail.

30 2 Foundations

� Contextual location awareness and low latency—Location awareness is a relevant factor
in fog computing as most applications tend to be location dependent. On the one
hand, location awareness aids to attain low latency for mission-critical applica-
tions [Iorga et al. 2018; Bonomi et al. 2012]. On the other hand, it allows to account
for data ownership and locality needs in order to keep sensitive data in given phys-
ical or logical boundaries to preserve privacy [Vaquero and Rodero-Merino 2014].
Therefore, fog nodes must be aware of their logical location in the network. This
can be achieved either by static, a priori configuration of the location at setup time
or autonomously when joining the cluster by determining their location relative to
nearby nodes with known locations [Tammemäe et al. 2018].

� Geographical distribution—In contrast to the centralized cloud, fog computing targets
applications that require geographically distributed deployments [Bonomi et al.
2012]. Fog computing infrastructures are comprised of widely dispersed computa-
tional resources that allow to run processing and analytics tasks where they are
best suited anywhere along the cloud-edge continuum to improve the overall QoS
of dedicated application scenario. This plays a vital role not only in stationary
deployments in the context of the IIoT and smart manufacturing [Chen et al. 2018;
Wiener et al. 2020a; Pop et al. 2021], but also in dynamic and mobile deployments
such as connected vehicle applications [Hong et al. 2013; Hou et al. 2016].

� Heterogeneity—An essential characteristic of fog computing is that computational
resources are heterogeneous in nature. Opposed to cloud computing environments
that mostly consist of homogenous, powerful resources, the fog computing architec-
ture is typically comprised of a multitude of heterogeneous, volatile and constrained
physical resources that collect and process data acquired through different kinds
of network communication technologies [Iorga et al. 2018; Chiang et al. 2017]. As
indicated by Bonomi et al., fog nodes occur in a variety of form factors and thus
offer vastly varying hardware resources in terms of memory, secondary storage,
processor types and architectures. Additionally, fog nodes are either virtualized
or physical nodes that are deployed in a variety of environments [Bonomi et al.
2012; Bonomi et al. 2014]. Moreover, these platforms run various types of operating
systems as well dedicated software packages that lead to an increasingly large set of
different hardware and software capabilities [Bonomi et al. 2014]. With the increas-
ing adoption and affordable access to hardware-accelerated compute units tailored
for running artificial intelligence (AI) applications, heterogeneity in fog computing
environments is further exacerbated. Heterogeneity is considered a crucial aspect
for any type of systems operating in fog computing environments and needs to be
dealt with in the application management middleware, in particular, regarding the
deployment of individual application components [Mouradian et al. 2018].

� Interoperability and federation—The seamless support of certain services requires the
cooperation between different fog service providers. Hence, fog nodes have to be
able to interoperate, and services must be federated across different application
areas [Bonomi et al. 2012]. Unlike cloud environments that leverage resource

2.3 Decentralized Computing 31

pooling inside large data centers to even out variability in demand, fog and edge
environments are strictly limited available computational resources [Bermbach
et al. 2018]. As a consequence, new forms of competition and cooperation among
different fog service providers will arise [Kai et al. 2016].

� Real-time interactions—Unlike other computing paradigms such as cloud computing,
real-time interactions are one of the key characteristics of fog computing. Due to the
nature of real-world deployments where event sources permanently observe their
surroundings and continuously produce streams of events that come at varying fre-
quencies and volumes, applications scenarios are generally concerned with timely
decision-making as the conveyed information may decay over time. Consequently,
real-time event processing is preferred without any interruptions [Bonomi et al.
2012; Madakam and Bhagat 2018].

� Scalability and agility of federated fog clusters— While individual fog nodes are resource-
bound, at its core, fog computing allows to adaptively scale when considering clus-
ters of fog nodes or even clusters of clusters. To this extent, these clusters support
elastic computing, resource pooling, data-load changes, and volatile network con-
ditions [Iorga et al. 2018]. Fog computing infrastructures can grow with minimal
disruption in order to adequately support arising applicational demands which
allows organizations to start modestly and seamlessly scale the initial infrastructure
to large-scale deployments [Byers 2017]. Additionally, fog computing allows for
cooperative offloading and load sharing [Shin and Chang 1989] among neighboring
fog nodes to reduce processing delays and thus prevent overloading potentially
contented node resources [Yousefpour et al. 2018].

� Predominance of wireless access—Although fog computing is used in wired envi-
ronments such as in stationary industrial settings on the factory shop floor, the
large scale of wireless sensors as well as mobile application scenarios demand
for distributed computing power in close vicinity [Iorga et al. 2018]. Similar to
computational resources, the network infrastructure of fog computing is also het-
erogeneous ranging from high-speed links in cloud data centers to wireless access
technologies such as ZigBee, 3G, WiFi or 5G connecting edge devices [Bonomi et al.
2012; Stojmenovic and Wen 2014].

� Support for mobility—As many fog applications require to directly interact with mo-
bile devices, it is mandatory for fog computing to support mobility techniques and
protocols [Bonomi et al. 2012]. For instance, in connected vehicles scenarios, moving
vehicles are viewed as computational resources that form powerful cluster once
they connect with each other [Hou et al. 2016]. Fog computing well supports mobile
scenarios of moving nodes and their interactions to nearby stationary resources by
means of geo-distributed data replication [Mayer et al. 2017] as well as offloading
and migration schemes [Saurez et al. 2016; Puliafito et al. 2018]. The mobility aspect
of fog computing is a key characteristic that distinguishes fog computing from edge
and cloud computing [Mahmood and Ramachandran 2018].

32 2 Foundations

The described characteristics for fog computing not only aid to sharpen the understanding
of the term itself, but allows to contrast it to other computing paradigms in this context.
It is worthy to note, that not all general characteristics may be equally present in potential
application scenarios leveraging fog computing as an enabling technology.

2.3.3 Fog Computing Architecture

Fog computing extends the traditional cloud computing model by providing computa-
tional resources in closer proximity to geographically dispersed end devices, namely
IoT devices on the ground. Thereby, the decentralized fog computing model differs from
related conventional computing models in terms of their proposed architecture [Hu et al.
2017]. In recent year, many different architectures for fog computing have been pro-
posed [Bonomi et al. 2012; Masip-Bruin et al. 2016; Liang et al. 2017; Hong and Varghese
2019; Karagiannis and Schulte 2020]. Most of these architectures are derived from the
fundamental structure which views fog computing systems to be organized in multiple,
hierarchical resource layers. The hierarchical fog computing architecture generally re-
sembles three logical layers that comprise an edge layer at the bottom, closest to the IoT
devices, an intermediary fog layer, and a cloud layer at the top of the hierarchy as depicted
in Figure 2.3. Accordingly, fog computing envisions a seamless resource management
across the hierarchical architecture that allows to place computing anywhere along the
cloud-edge continuum [Bonomi et al. 2014; Chiang et al. 2017].

In the following, we elaborate on the individual layers constituting to fog computing in
more detail starting by clarifying the notion of edge of the network.

Where is the "edge" of the network? The edge of the network denotes to the area
where an IoT device or the local area network interfaces with the core of the network
(or Internet). In turn, nearby computational resources or services are provided to those
IoT devices to either facilitate enhanced operation or enable to realize data-driven use
cases that involve low-latency analytics. While in the telecommunication industry the
term edge describes the edge of the mobile network, within the radio access network
close to mobile subscribers [Hu et al. 2015], other work in the area of IoT assume the
edge to be within the local area network, i.e., on the factory shop floor, where physical
assets and field devices such as sensors, actuators, motors are located [Garcia Lopez
et al. 2015; Chen et al. 2018]. According to Yousefpour et al., the edge of the network is
considered the immediate first hop from real-world event sources where intelligence is
placed [Yousefpour et al. 2019]. Hereafter, we refer to the network edge in a more relaxed
definition being the resource layer closest to the event source represented by real-world
end devices.

The edge layer is the layer closest to real-world IoT devices and thus the physical environ-
ment. IoT devices are typically small, resource-limited and oftentimes purpose-built for

2.3 Decentralized Computing 33

Cloud
Node
(CN)

CN

Edge
Node
(EN)

Fog
Node
(FN)

EN

Sense

Process Respond

Processing (P)
P

P

P

IoT
devices

Edge layer
(local)

Fog layer
(regional)

Cloud layer
(global)

CN

EN EN

FNFN

federated
cluster

PP

P P

P

AI

P

Figure 2.3 Hierarchical fog computing architecture comprised of edge, fog, and cloud layer

a given task such as single sensors and actuators, embedded systems, programmable
logic controller, or machines. These devices may be widely geographically distributed
and are generally responsible for observing their physical surroundings, sensing relevant
features of real-world objects, and transmitting these events to the nearby edge layer for
processing or storage [Hu et al. 2017]. Computational resources in this layer are provided
by so-called edge nodes. Edge nodes are capable to immediately process received events
in real-time and autonomously conduct decision-making as they are much closer to the
Internet of Things (IoT) devices compared to fog nodes [Shi et al. 2016; Varghese and Buyya
2018]. In contrast to cloud data centers, spatial mobility of IoT devices as well as edge
nodes is frequent, though not the default [Stojmenovic and Wen 2014]. For instance,
while autonomous delivery robots are inherently mobile, connected industrial machines
remain stationary [Wiener et al. 2019]. If required, edge nodes may respond their decision
to corresponding IoT devices at minimal delay, e.g., to trigger a certain robot operation
in case of an automated quality inspection, to close the sense-process-respond loop as
discussed in Section 2.2.1. Typical edge nodes range from base stations and routers, to
general-purpose single-board computer and industrial PC, to specialized computer sys-
tems containing miniaturized AI accelerators. Especially the latter has gained increasing
popularity in recent years. With AI applications on the uprise, deployments on such
edge nodes not only facilitate more efficient and effective model inferencing, but are
also enablers for promising techniques such as federated learning, active learning or
transfer learning at the edge, which is subsumed under the umbrella term edge AI or
edge intelligence [Zhou et al. 2019; Rausch and Dustdar 2019; Greengard 2020; Tziouvaras

34 2 Foundations

and Foukalas 2020]. This underpins the fact that computational resources in fog comput-
ing architectures are most likely heterogeneous platforms. Similar to IoT devices, edge
nodes are exposed to the physical world making them error prone, unreliable in terms of
network connectivity and potentially accessible by third-parties, e.g., when installed in
public areas.

The fog layer introduces an additional intermediary resource layer by leveraging fog
nodes that are computational resources residing between the edge and the cloud in the
network topology [Bonomi et al. 2012]. Fog nodes can either be physical nodes, e.g.,
gateways, switches, servers, or virtual nodes, e.g., virtualized switches, virtual machines,
cloudlets [Iorga et al. 2018]. In addition, fog nodes provide lower access latencies in both
directions (edge to fog and vice versa) and serve edge nodes as an additional nearby
resource pool apart from higher and more reliable bandwidth opposed to the far distant
cloud data centers [Varshney and Simmhan 2017; Satyanarayanan et al. 2009]. That said,
on the one hand the fog layer is seen analogous to a CDN, however located closer to the
edge [Vaquero and Rodero-Merino 2014]. On the other hand, it functions as a reversed
CDN [Satyanarayanan et al. 2015] allowing data originating from IoT devices to be staged
in the fog layer and periodically pushed to the cloud for long-term storage after some
additional processing [Bonomi et al. 2012; Dastjerdi et al. 2016]. Therefore, fog nodes are
connected with the upper cloud layer via high bandwidth Internet connections to obtain
more powerful computing and storage capabilities [Hu et al. 2017]. Still, similarly to edge
nodes, fog nodes are heterogeneous by definition with varying resource characteristics.
Likewise, the fog layer also manifests fog nodes that are either stationary at a fixed
location, e.g., on the factory shop floor, or mobile when installed on moving vehicles or
platforms [Luan et al. 2016]. Fog nodes may form clusters in order to pool computational
resources to be obtained by edge nodes or end devices when needed [Bonomi et al. 2012].
Clusters can either exist vertically to support isolation, horizontally to support federation,
or relative in terms of their latency distance to end devices respectively edge nodes.
Moreover, fog nodes are aware of their geographical distribution and logical location
within the fog node cluster and provide data management and communication services
between the edge layer and the fog computing service or centralized cloud computing
resources, if required [Iorga et al. 2018].

The cloud layer is at the top of the hierarchical fog computing architecture and consists
of mostly homogeneous, powerful computational resources referred to as cloud nodes
that are centrally located inside operated data centers. Depending on whether cloud
refers to either public or private cloud, these resources are available to anyone in an on-
demand fashion, or exclusively accessible to private enterprises [Varshney and Simmhan
2017]. To this extent, the cloud layer has the widest geographical coverage, but, at the
same time the highest latencies to the end devices at the edge of network [Bonomi et
al. 2012]. Nevertheless, the cloud layer offers the illusion of infinite computing and
storage capabilities usually in the form of virtualized and managed environments and is
commonly used for compute-intensive big data analytics with low delay requirements to

2.3 Decentralized Computing 35

extract meaningful knowledge from preprocessed and aggregated data originating from
the lower fog and edge layer besides long-term storage [Hu et al. 2017; Bermbach et al.
2018]. In addition, the cloud layer serves as the central entry point for human-interaction
that include visualization and reporting, human-machine interactions as well as general
application and cluster management [Bonomi et al. 2012; Bittencourt et al. 2015].

From an application point of view, similar to the physical mobility of edge and fog
nodes, logical mobility of application components deployed in the inherently distributed
fog computing architecture is common. In this regard, lightweight operating system-
level virtualization in terms of containers proofs to be a feasible approach to best fit the
heterogeneous, constrained and scarce resource pool. Containers are seen an appropriate
execution environment providing portability and isolation for individual application
components [Pahl and Lee 2015; Ismail et al. 2015; Bellavista and Zanni 2017; Dupont et al.
2017]. Among a variety of application models in the field of fog computing, processing
pipelines are widely used for formulating complex distributed event-driven applications
due to their real-time processing ability [Shi et al. 2012; Giang et al. 2015; Brogi et al. 2018;
Karamoozian et al. 2019]. The application management of such event-driven applications
involves orchestrating and coordinating both application components as well as data
and control flows. Such an application management can either be centralized or a
distributed [Mahmud et al. 2020]. In the centralized case, a single management service
has a global view of the fog environment and performs necessary orchestration decisions,
therefore, typically located at an accessible location, e.g., the cloud layer. In contrast, the
distributed case utilizes several management services spread across nodes on the lower
edge or fog layer that generally operate independently and act according to their limited
local view of the fog environment, including distributed forms of coordination such as
peer-to-peer [Vaquero and Rodero-Merino 2014; Varshney and Simmhan 2017].

Finally, nor the fog and edge layer or the cloud layer are perceived as a mandatory layer
as different scenarios might pose different needs on the architecture according to the
actual requirements of IoT devices or applications [Iorga et al. 2018; Sunyaev 2020].

3
Motivation

In this chapter, we motivate our research by introducing two scenarios in the context
of the Industrial Internet of Things in Section 3.1. We derive related applicational and
organizational needs to facilitate the democratization movement towards managing
event-driven applications in fog computing in Section 3.2. In Section 3.3, we highlight
limitations of current systems alongside problem statements inline with the main research
questions of this thesis before concluding in Section 3.4.

3.1 Democratizing Application Management in Fog
Computing

We are in the midst of witnessing profound shifts across many industries caused by the
confluence of emerging technological breakthroughs in a wide variety of fields such
as artificial intelligence, robotics, autonomous vehicles, and the IoT [Schwab 2016]. In
particular the proliferation of the IoT and its industrial adoption within the IIoT [Jeschke
et al. 2017] has led to a deluge of produced data due to the ubiquitous presence and the
progression in the installation of new IoT devices and connected industrial equipment
in a myriad of applications. Respective IIoT application domains among others include
Factory 4.0, which focuses on improvements in product and process quality of industrial
assets on the factory shop floor or Smart Urban Logistics which targets innovative package
delivery concepts leveraging autonomous robot delivery platforms. This offers compa-
nies new possibilities for digital transformation and establishing data-driven solutions
aside from the development of novel digital products and business models [Gröger 2018].
Yet, most companies are capturing only a fraction of the potential value of the actual data
and analytics due to several reasons that hinder the full adoption. From a technical and
application perspective the sheer flood of data cannot be stored or efficiently transmitted
to the cloud, whereby newly arising IoT deployments require geo-distribution alongside
location awareness and low latency [Bonomi et al. 2012]. From a legal perspective, incen-
tive problems and regulatory issues exist which pose additional barriers [Henke et al.
2016]. This has driven the development fog computing enabled by the decrease in hard-
ware size and costs alongside the massive adoption of specialization in hardware [Terzo

38 3 Motivation

et al. 2019] which has resulted in unprecedented availability of computational resources
at the edge of the network capable of running even sophisticated AI workloads [Dasher
2019]. The hierarchical fog computing model reflects a staged event processing model
where preliminary processing is done at the edge to deliver real-time insights, provide
higher availability and account for data locality needs while a subset of the results are
moved to regional fog nodes or the cloud to perform additional processing. In this
matter, democratizing the management of event-driven applications in fog computing
extends the ability to realize IIoT scenarios beyond regular IT experts by empowering
business domain specialists to independently perform necessary tasks with the assistance
of specialized tools and platforms. Eventually, this aids companies to exploit the full
potential towards establishing a data-driven culture.

In the following, we introduce the two aforementioned scenarios and specifically elab-
orate on various applicational demands and requirements that shape the application
space for geo-distributed event-driven applications. Moreover, the Smart Urban Logistics
scenario introduces a running example which is used throughout this thesis to exem-
plify the developed models, concepts and methods. Although the scenario in question
targets an emerging field that has so far only been investigated in pilot applications,
it nevertheless provides a comprehensible example that covers all relevant aspects to
describe the problem domain. Further, we derive needs for flexible, geo-distributed
event-driven application management in fog computing environments which we use to
identify relevant gaps to be bridged to motivate our research contributions.

3.1.1 Factory 4.0

While the disruption achieved by increasing industrial automation is an immanent topic to
date especially holding true in high-cost countries such as Germany, we are on the leap to
witness a fourth industrial revolution driven by the IIoT towards cyber-physical systems,
a new generation of systems integrating computational and physical abilities to interact
with humans using a variety of new modalities [Lee 2008]. Over the years, increasing
digitalization has dominated industrial domains initiating the convergence of operational
technology and information technology [Pop et al. 2021]. While the former deals with
the operation of physical processes and corresponding machinery and conveyer belts on
shop floor level, the latter addresses the actual data and information flow. In this context,
fog computing has been identified as the decentralized computing paradigm to achieve
this convergence [Steiner and Poledna 2016; Alcaraz 2019]. Thus, various applications
exist, of which continuous asset monitoring and the use of collaborative robots are typical
examples [Wiener et al. 2020a].

Collaborative robots are one of the major automation trends in recent years that support
companies in many applications, e.g., assembly, placement, handling or picking [Mathe-
son et al. 2019]. Especially in the latter case, opposed to manually performing repetitive
and dull quality inspection tasks, collaborative robots can be leveraged to execute these

3.1 Democratizing Application Management in Fog Computing 39

tasks at high accuracy without exhaustion which is key to ensure high product quality,
and thus enhanced customer satisfaction. Here, data from equipped sensors can be used
to quickly assess the product quality by analyzing produced event streams in real-time to
detect deviations from specified targets defined by manufacturing or quality engineers.
Thereby, a dedicated EPA processing service either containing a conventional rule-based
algorithm or more sophisticated AI-based algorithm must be deployed on an edge node
in close proximity for timely actions. Depending on the result of the real-time quality
check, the robot either continues with its actual assembly tasks or automatically sorts out
products with insufficient quality for rework or as scrap. Moreover, aggregated process
data are sent to a central location in the cloud where another EPA calculates relevant
production key performance indicators (KPIs) for assessing the overall quality objectives,
parallel to storing the data for general traceability purposes, to support historical analysis
or to build up training data. With shortening product life cycles, increasing number of
product variants due to customization, or lot-size one production, the changeability of
a production system is key to withstand continuous changes and surrounding turbu-
lences [ElMaraghy and Wiendahl 2014]. Similarly, individual event-driven processing
services of deployed pipelines must adapt as well, for instance, to facilitate live modi-
fications of dedicated analytics parameters when the robot retools for a new product
variant.

Similarly in industrial operations, asset condition monitoring captures the state of ma-
chines and equipment of manufacturing companies while running. Machine health state
can be continuously assessed by measurements from various sensors, e.g., acceleration,
pressure, or vibration. These sensor event streams require timely analysis to detect any
abnormal machine behavior to immediately initiate countermeasures. In addition, pre-
dictions on the remaining useful life for the asset or tools are among common predictive
maintenance applications. This let manufacturers identify and fix causes for costly un-
planned downtime to increase machine utilization and availability. However, assessing
machine health is difficult. Given the average lifespan of industrial machines, brownfield
IIoT deployments are common [Bhattacharjee 2018]. At the same time, sensor data comes
at high velocity and volume where hidden problems and guesswork of domain experts
can incur extra expenses. To alleviate domain experts and facilitate edge intelligence
applications, pre-trained models can be wrapped inside machine learning (ML)-EPA and
be deployed on local edge nodes located on the shop floor level. By using specialized ma-
chine connectors, employed algorithms can either signal anomalous behavior or predict
future break down times to schedule enhanced maintenance tasks. Results are also used
to update third-party systems on enterprise or factory level including business relevant
enterprise resource planning as well as quality management systems, e.g., to optimize
production plans or maintenance measures accordingly. Since most industrial providers
have large machine parks running many of these processing services, resource pooling
and thus sharing of available edge resources is common. In the event of high system
load, some EPAs must be offloaded elsewhere, e.g., to nearby fog nodes.

40 3 Motivation

3.1.2 Smart Urban Logistics

A well-known challenge for courier, express, and parcel service providers occurs as part
of the so-called last-mile logistics, which comprises all activities that need to be done
to deliver goods from distribution hubs to the final customer. Commonly referred to
as the last-mile problem, this final leg of the supply chain constitutes to the most costs
with estimates ranging up to 50% of the total shipping costs [Joerss et al. 2016] while
bearing the greatest inefficiencies for many organizations. One of the reasons for this is
the fact that the last mile usually involves several stops with a low package drop-off rate,
in addition to general waiting times at package handover. As consumers increasingly
turn to e-commerce to satisfy all their shopping needs, this leads to a wide variety of
problems, especially in urban areas. Increasing noise pollution, rising emission levels as
well as high traffic congestion are among the top issues in many cities, which are further
exacerbated by concepts such as same-day delivery.

This has driven the development of new innovative concepts and ideas to shape the
future of intelligent and economically friendly urban logistics solutions, chief among
them are last-mile delivery robots [Joerss et al. 2016; Wiener et al. 2019]. Delivery robots
are intelligent carrier platforms to autonomously deliver packages to the end consumers
to cut high costs, reducing the carbon footprint while ensuring high customer satisfaction.
From regional satellite hubs close to urban areas, packages might either be delivered at
fixed defined handover times or delivered to dedicated package boxes to be picked up at
any time [Joerss et al. 2016]. To perform the necessary delivery task, delivery robots are
equipped with various sensors that constantly produce data at high volume and high ve-
locity. Data include, above all, point cloud data from laser scanners for obstacle detection
and avoidance, acceleration data for incident detection, and geolocation information from
the Global Positioning Service (GPS) module for location tracking. Thereby, expected timely
results with low latency, typical bandwidth constraints and network reliability concerns
due to the mobile environment do not allow for a traditional cloud-only approach. By
using a fog computing approach, computational resources at the edge and fog layer are
exploited. In this context, delivery robots themselves act as edge nodes while package
boxes can be considered as regional fog nodes. Still, the cloud is used for centralized
fleet monitoring, for long-term storage purposes as well as for burst-out cases to run
resource-intensive analytics which cannot be satisfied by neither the edge nor fog nodes.
Figure 3.1 depicts a theoretical, but representative example of delivery robots operating
in the city of Karlsruhe, with two satellite hubs and three package boxes.

Running Example: Location Monitoring for Delivery Robots. As delivery robots
operate autonomously, it is crucial to employ monitoring mechanisms and immediately
notify the fleet operator in case of any malfunctions or incidents to initiate timely actions.
A common application in the field of fleet management deals with geofencing which
allows to monitor mobile objects located by GPS [Reclus and Drouard 2009]. Another

3.1 Democratizing Application Management in Fog Computing 41

Figure 3.1 Running example: Dynamic EPN management and location monitoring for delivery robots.
Map data © OpenStreetMap [OpenStreetMap contributors 2021]

set of geographical coordinates form a virtual boundary for a real-world geographical
area, a so-called geofence, which is used to decide whether the tracked object is inside or
outside this area [Reclus and Drouard 2009]. Consequently, the fleet operator specifies
the valid operation area for the provided delivery service offer as shown in Figure 3.1.
In order to perform the geofencing task, fleet operators need to create an event-driven
application for location monitoring which requires to be geo-distributed and executed
on respective delivery robots to benefit from the local edge processing capability. The
geofence assessment can be realized by using a domain-specific EPA which implements
the well-known point-in-polygon algorithm [Shimrat 1962]. Apart from this, the location
monitoring pipeline comprises an additional EC component which sends a notification
to the central fleet control center in the cloud to alert the fleet operator when a delivery
robot leaves the operation area. Figure 3.1 exemplifies the running location monitoring
application for two different tours, including a detected violation of the geofence criteria.
In addition, as the real world is rather dynamic than static, arising changes might require
adaptations to the running components. For instance, as the delivery robot service
expands to new urban areas, fleet operators require to update the valid operation area
employed in the point-in-polygon EPA. At the same time, it is not possible to stop, change
and redeploy the application, so such configuration updates have to be done at run-time.
Moreover, due to resource sharing on the delivery robot (edge node), in the event of
over-utilization it is necessary to move certain EPAs to regional package boxes (fog nodes)
in a burst-out manner which poses the need for a dynamic EPN management.

42 3 Motivation

3.2 Needs

In general, the presented scenarios have in common that they decompose complex
analytical problems into smaller subtasks, that are a collection of generic or purpose-
built EPAs combined as part of a processing pipeline to achieve an overall business goal.
These EPAs target different layers of the hierarchical fog architecture, ranging from edge
and fog deployments for fast response times ensuring low latency and data locality
needs, to cloud deployments for subsequent processing of pre-filtered or pre-aggregated
data as well as overall monitoring and storage. This chain of logically interconnected
event processing components in the EPN represents a dedicated processing pipeline.
Individual pipeline elements, including event producers, event processing agents and
event consumers, are executed at geographically dispersed locations along the cloud-
edge continuum. Next, we discuss applicational needs in the context of the presented
scenarios before elaborating on the democratization movement and derived needs in
more detail. Thereby, we introduce and clarify the notion of the citizen technologist, a
newly emerging organizational role which forms the basis of our research efforts.

Applicational Needs. The previously discussed scenarios and their IIoT-related char-
acteristics ranging from low latency to data locality are proxies for general problem
classes that shape the overall event-driven application space in fog computing. In this
context, two model categories denoting the logical mobility of applications [Varshney
and Simmhan 2017] can be distinguished at the highest level, which we refer to as directed
models and sense-process-respond models as illustrated in Figure 3.2.

Edge

Fog

Cloud

P

P

P

P

P

orchestration,
adaptation

edge processing,
monitoring

Processing
(P)

(a) directed

Edge

Fog

Cloud

P

P

P P

P

P

edge AI,
decision offloading

data
enrichment

S

P R

P

P

S

P R

S

P R

S

P R

(b) sense-process-respond

Figure 3.2 Directed and sense-process-respond model for event-driven applications in fog computing.
Adapted from [Varshney and Simmhan 2017].

3.2 Needs 43

In the directed model, processing pipelines and dedicated event producers, EPAs and event
consumers are vertically oriented, either originating from cloud to edge or vice versa.

� Centralized pipeline orchestration—Here, the cloud acts as the central control center
for orchestrating and managing geographically distributed processing pipelines.
Besides the actual initial deployment process, life cycle management of these IIoT
applications include adaptations of running processing pipelines in the form of
reconfiguration as well as migration intends of individual processing services at
run-time (see next).

� Adaptive pipelines—As processing pipelines and their underlying event processing
paradigm operate on unbounded event streams, they are hypothetically no subject
to being finished at any given point in time as it is the case for batch processing.
However, as event streams might evolve or contextual circumstances might changes,
e.g., when a changeover happens in a production process, it enforces processing
pipelines to adaptively reconfigure some of their application logic of dedicated
EPA components [Rehman et al. 2019]. Similarly, as surrounding context changes
are common, especially on the fog and edge layer as computational resources are
subjects to being exposed to the real-world, individual pipeline elements may be
migrated from one node to another to support node mobility aspects or perform
node maintenance work.

� Edge processing pipelines—Edge processing applications in the IIoT mostly deal
with big data induced volume and velocity challenges. Hereby, data produced
by sensor-rich assets such as machines or field aggregates like delivery robots are
preprocessed, filtered and aggregated to remove irrelevant or erroneous data right
at its source and only send relevant data to the fog or cloud to reduce overall network
costs. This resembles a geographically distributed extract, transform, load process
where data from real-world IoT devices ultimately reach the cloud for archival,
analytics, or integration into other third-party IT systems.

� Remote condition monitoring pipelines—When looking at general deployment scenar-
ios in fog computing, unsurprisingly having a central control center for observing
and assessing the current state of industrial assets or field devices is crucial. From a
monitoring and management perspective, domain specialists can quickly compare
the current health state by using adequate visualizations as well as relevant metrics
and KPIs.

The sense-process-respond model refers to closed-loop scenarios where commonly real-time
responses are required as the result of intelligent analytics EPAs that preferably run at
the edge layer. If feasible, the decision-making can also be delegated upwards and thus
be offloaded to either the fog or cloud layer. Similarly, event streams coming from the
cloud can be leveraged at the fog or edge layer, e.g., for enriching local sensor data with
external information. In return, enriched data are sent back to supply other event-driven
processing services in the cloud.

44 3 Motivation

� Edge AI pipelines—In edge AI processing pipelines, individual ML-EPA pipeline
elements are deployed in close proximity to the event source, either on edge or
fog nodes, to provide minimal latency and ensure a high QoS even in situations
of network outages that can occur in unreliable wireless setups. Thereby, results
are used in many contexts and typically lead to a dedicated action. For instance,
upon detecting a quality defect in the case of a visual inspection pipeline, a part is
automatically sorted out for rework or as scrap. In contrast to stateless filter EPA
or stateful aggregation EPA, ML-EPA mark special components of an analytical
processing pipeline as they may address certain hardware requirements towards
the underlying compute node. That is the case, when a graphics processing unit
(GPU) is required for improved inferencing speeds.

� Data enrichment pipelines—Deployed EPAs at either the fog or edge layer may rely on
other information provided by third-party systems to be used to enrich their own
processing. For instance, issued delivery tours by a central tour planning system
are sent to the delivery robot (edge node). A dedicated EPA keeps track of all stops
and once a package delivery is completed, sends an acknowledgement back to
the central tour planning system. Such information provide the basis to compute
domain-specific process KPIs that are visualized in a central control center.

It is worthy to note, that a combination of these models may be conceivable, if needed to
realize complex processing pipelines [Varshney and Simmhan 2017].

Organizational Needs. Throughout the past, we have witnessed recurrent movements
that were subject to lowering rather high technological entry barriers by introducing new
paradigms such as graphical flow-based approaches. Graphical flow-based approaches
are manifested in more user-oriented systems that give business domain specialists tech-
nical capabilities outside their area of specialization, mostly by using abstraction as a
key technique to hide unwanted complexities. To accommodate these rapid changes of
digital transformations and streamline the work of domain specialists in solving mission-
critical problems, the previously separate business and IT worlds have started to converge
as a new class of individuals rise in today’s enterprises. This marks an organizational
paradigm shift towards acquiring a data-driven culture where business domain specialists
are enabled to make data-driven decisions in industrial business processes themselves
by combining their profound domain expertise with general knowledge in software
development, engineering and data analysis techniques [Gröger 2018]. In this regard,
appropriate tool support is crucial to enable non-expert users in realizing respective
event-driven applications in a self-service fashion. Fortunately, advances in research areas
such as automated machine learning [Thornton et al. 2013; Hutter et al. 2019], and the
increasing prevalence of no-code or low-code platforms that recently received tremendous
traction in industry, make the development of event-driven applications accessible to
non-technical end users through graphical flow-based approaches. While the low-code
approach reduces the amount of conventional hand coding to a minimum, the no-code

3.2 Needs 45

approach further extends this and dispenses any coding and lets non-programmers
describe processing pipelines by intuitively configuring individual processing service
blueprints. These newly emerging organizational roles can be grouped under the um-
brella term citizen technologists shown in Figure 3.3, whereas citizen developers, citizen data
engineers and citizen data scientists describe three concrete incarnations [Wong et al. 2015;
Brinker 2018; Gröger 2018].

Citizen Technologist

Model
(ML-EPA)

Application
Focus

Citizen
Developer

Operation
Focus

Citizen
Data Engineer

Data
Focus

Citizen
Data Scientist

Software
Engineer

EP,EPA,EC

Business
User Insights

Data
Scientist

Specialized
ML-EPA

Requirements

Create & Manage Event-Driven Applications

Figure 3.3 Interplay of common organizational roles with citizen technologists

Citizen developers are business domain specialists that are technically enabled to create
and manage event-driven applications by using no-code event processing systems. Most
notably, they are focused on building event-driven applications solving unique business
domain challenges while incorporating requirements by external business user that in
turn are provided with meaningful data-driven insights as the result of analytical pro-
cessing pipelines [Wong et al. 2015]. Moreover, citizen data engineers play a vital role as
their groundwork fundamentally alleviates citizen data scientists in facilitating the actual
model and analytics tasks by providing cleansed, prepared and occasionally labeled
training data. Not only are citizen data engineers capable of composing, building and
managing processing pipelines along the overall data life cycle. They also know how to
operationalize ML models in the form of ML-EPA and see data-driven projects through
to production as they understand both domain and model requirements. Thereby, both
citizen developer and citizen data engineers are closely interacting with other organi-
zational roles: On the one hand, software engineers that develop and provide generic
implementations for EPs, EPAs, and ECs. On the other hand, expert data scientists that
create and provide specialized ML-EPAs. Similarly, citizen data scientists also possess a
deep domain knowledge with clear understanding of corresponding needs where their
primary job function is outside the field of data science in enterprise departments such
as manufacturing, or process engineering [Tapadinhas and Idoine 2016; Gröger 2018].
Thereby, citizen data scientist are focused on the actual data analytics part.While citizen
data scientists are not necessarily involved in creating and managing event-driven appli-
cations, they oftentimes provide relevant software artifacts in the form of ML-EPAs as
the outcome of other no-code platforms with support for automated machine learning.

46 3 Motivation

Throughout this work, when mentioning the term citizen technologists, we equally refer to
citizen developers and citizen data engineers while withdrawing citizen data scientists
from our consideration, as these roles reflect our focused target audience for managing
event-driven applications.

3.3 Problem Statement

The previously described needs are used to identify problems of current solutions. We
first outline existing approaches for graphical flow-based pipeline authoring and execu-
tion in no-code/low-code event processing systems and present limitations that currently
hinder their applicability in fog computing settings. Thereafter, we state major conceptual
and technical challenges based on the previous findings that need to be overcome on the
way to democratize event-driven application management in fog computing.

3.3.1 Graphical Flow-based Systems

Recent developments of no-code event processing systems for pipeline authoring and ex-
ecution allow to significantly lower technological entry barriers and provide tool support
for non-technical citizen developers and citizen data engineers to model event-driven
applications in a self-service manner. Thereby, several tools exist that fall into this cate-
gory, chief among them is Apache StreamPipes1. StreamPipes is an incubator project of
the Apache Software Foundation that is built on a graphical flow-based programming
approach and provides a reusable toolbox to easily connect, analyze and exploit a variety
of industrial event streams without any programming skills as depicted in Figure 3.4.
Therefore, it leverages different technologies especially from the fields of event process-
ing, distributed computing and semantic web. Originating from the foundational work
of Riemer et al. [Riemer et al. 2014; Riemer et al. 2015; Riemer 2016] which we briefly
touched in Section 2.2.3, StreamPipes allows to model processing pipelines as a sequence
of pipeline elements from an extensible toolbox and execute them in a distributed en-
vironment consisting of multiple, potentially heterogeneous runtime implementations.
Pipeline elements are encapsulated in a service bundle, i.e., a dedicated pipeline element
microservice, and contain the application logic that operates on incoming events in an
event-driven fashion, once instantiated upon pipeline start. StreamPipes realizes the
event-driven architecture using a technology-agnostic EPN design which is not exclu-
sively limited to the EPA level but also reflected in the underlying message transport
layer. Here, the message transport layer represents event channels in the EPN offering
a topic-based publish/subscribe model for event dissemination between any intercon-
nected pipeline elements with support for a variety of different messaging systems. On

1https://streampipes.apache.org/

https://streampipes.apache.org/

3.3 Problem Statement 47

Figure 3.4 Exemplified processing pipeline in Apache StreamPipes

top, it uses semantics to provide guidance to non-technical users throughout the pipeline
authoring process. Besides StreamPipes, other solutions for low-code flow-based pro-
gramming of event-driven applications are available, both commercially, namely KNIME2,
crosser.io3, and open source, namely Apache Nifi4, Node-RED5, or aFlux6 with similar
approaches, but different execution environments ranging from single-node runtimes to
specialized stream processing engines in the field of big data.

Limitations. First, today’s graphical flow-based systems are focused on static processing
pipeline deployments in centralized cloud environments. This comes with inevitable
downsides in the context of IIoT scenarios that require fast results, are limited by the
available bandwidth, or bound to regulations regarding data sovereignty and data owner-
ship. Second, heterogeneity of computational resources along the cloud-edge continuum
is not explicitly taken into account by current systems. It remains unclear if a node is
suitable for executing dedicated processing services. For instance, when deploying and
executing ML-EPA, in most cases GPU acceleration is required for reasonable fast infer-
encing speeds. Apart from that, it is oftentimes critical to have a ML framework version
installed on the given node that is compatible to the one used for training. In view of this,

2https://knime.com/
3https://crosser.io/
4https://nifi.apache.org/
5https://nodered.org/
6https://aflux.org/

https://knime.com/
https://crosser.io/
https://nifi.apache.org/
https://nodered.org/
https://aflux.org/

48 3 Motivation

existing solutions lack finding suitable deployment targets during the node selection
process to assist citizen technologists. Third, unlike the cloud, fog and edge resources
are physical resources exposed to the real world and thus are more prone to errors like
node failures and unreliable network connections, especially in wireless setups with
mobile edge nodes such as last-mile delivery robots. Hereby, a challenge is to deal with
such intermittent network outages. Lastly, as current solutions run in centralized cloud
environments, albeit distributed in data center clusters, it is usually the norm to have the
underlying messaging system running inside the central same infrastructure. However,
relying on a centralized messaging system is impractical in the context of distributed fog
computing environments. Such an approach results multiple edge-cloud round trips in
the worst case alongside other non-negligible problems regarding privacy violations and
security concerns.

In summary, while the actual pipeline authoring part in state-of-the-art no-code/low-
code event processing systems has been extensively studied, geo-distributing processing
pipelines in the uprise of fog computing is complex. This introduces a new set of non-
trivial conceptual and technical implications that require a holistic management approach
to execute and administer event-driven processing services across all layers.

3.3.2 Managing Geo-Distributed Processing Pipelines

Distributing event-driven applications over pool of geo-distributed compute nodes is
complex—especially for citizen technologists that lack necessary technical knowledge.
Flexible deployment concepts as well as suitable pipeline element life cycle management
strategies play a vital role for evolving current event processing systems. However, chal-
lenges arise on multiple fronts in view of managing geo-distributed pipeline deployments,
especially in transient and heterogeneous fog computing environments. In the advent of
data and analytics democratization, technical challenges are further exacerbated by an
organizational paradigm shift with emerging functional roles of citizen technologists as
the main driver. Ensuring reliable event processing under changing conditions is crucial
to realize mission-critical scenarios as discussed.

Apart from the lack of solutions for citizen technologists to administer geo-distributed
event-driven applications using no-code event processing systems, we are confronted
with underlying technical challenges that arise in view of inherent characteristics of
the fog computing model. Altogether, this currently hinders a full adoption of related
application management activities by citizen technologists. To this end, the application
management including geo-distributed pipeline deployment, operation and life cycle
management faces a variety of challenges, including resource heterogeneity across all
layers which is paired with use case specific demands. This ranges from the flexible
pipeline element allocation on dedicated target nodes to account for data locality needs
to the adaptation of pipeline elements in terms of live reconfiguration or migration
to encounter business-driven changes. Realizing such needs requires deep technical

3.3 Problem Statement 49

No-Code Event Processing System

Citizen Technologist

Training
Data

Model
(ML-EPA)

Processing Pipeline

ML-EPA

Application
Focus

Citizen
Developer

Operation
Focus

Citizen
Data Engineer

Data
Focus

Citizen
Data Scientist

Storage,
Visualization,
Monitoring,

Actions

Software
Engineer

EP,EPA,EC

Create & Manage Event-Driven Applications

Business
User Insights

ResultsEvents

Respond

Data
Scientist

Specialized
ML-EPA

Requirements

Event Sources
(IoT Devices)

Respond

Sense Process
Application Management Layer

Edge Fog Cloud

Exploit Deploy Adapt

Figure 3.5 No-code event processing system to create and manage processing pipelines in the fog

knowledge in domains such as distributed event-based systems, orchestration, cluster
management, which can hardly be stemmed by citizen technologists. Consequently, this
poses the following challenges towards a holistic event-driven application management
employed in a no-code event processing system as illustrated in Figure 3.5 comprising
the following key elements:

� Exploit—Fog computing environments are largely heterogeneous in terms of compu-
tational resources which not only manifests quantitatively in the amount of memory
or primary storage, but also with regard to dedicated chip architectures, operating
systems and other capabilities (see Section 2.3.2). To improve the exploitation of
resources requires to master the overall heterogeneity which implies the need to
first create awareness on what specific resource characteristics are available in the
first place. This demands having a rich node resource description in a machine-
processable manner which is exposed by each of the participating nodes. Such a
node description paired with a suitable system architecture facilitates event-driven
application management in fog computing and builds the groundwork to realize ad-
ditional key elements of the holistic management approach, namely geo-distributed
pipeline deployment, run-time management and adaptation. Further, this allows to
better assist citizen technologists in administrating pipelines along their life cycle,
e.g., by proposing eligible deployment targets for individual pipeline elements.

50 3 Motivation

� Deploy—Deploying processing pipelines that span over multiple geographically
distributed locations from edge to cloud while still being able to cover the applica-
tion life cycle is non trivial and involves three main building blocks. First, a central
distribution mechanism and node management that oversees the pool of available
resources which covers required deployment and adaptation aspects. Second, a
management service on nodes that is responsible for all administration tasks along
the life cycle of a pipeline element. Third, a flexible event stream routing to realize
inter-node communication between adjacent pipeline elements hosted on different
deployment targets in a technology-independent way.

� Adapt—Once the pipeline is deployed and running, contextual changes or new
business demands might occur making it necessary to apply changes to individual
pipeline elements. Related to the previously presented scenarios, this involves
technical aspects of pipeline element reconfiguration to update or refine specific
configurations, for instance geofence coordinates, as well as pipeline element relo-
cation that addresses migration activities both vertically (across the layers) as well
as horizontally (within a given layer). Therefore, a methodology is needed that
reflects the event-driven processing pattern and is incorporated in the design of
the application management middleware including the local management services
with support for in-flight modifications of running pipeline elements, that are,
modifications without redeployment.

In summary, current state-of-the-art no-code/low-code event processing systems lack an
appropriate management middleware for fog operations that fully exploits available node
resources, allows for geo-distributed deployment, operation and run-time modification
of event-driven applications while hiding technical complexities from end users.

3.4 Conclusion

In this chapter, we presented the underlying motivation of our research as part of this
thesis. We introduced two scenarios in the context of IIoT upon which we discussed
relevant applicational as well as organizational needs and identified gaps of current
systems. In conclusion, we are on the verge of a next generation of event-driven applica-
tions that are centrally modeled and executed over a pool of geographically distributed
computational resources in heterogeneous fog computing environments. The need for a
holistic application management approach for geo-distributed event-driven applications
in the fog has been identified which targets the demands of citizen technologists. This
serves as a crucial prerequisite that requires investigation in order to bridge the gap and
allow data and analytics democratization from IT experts to knowledge workers to be
further enhanced.

4
Related Work

In this chapter, we review current state of the art in the area of distributed event-based
systems in Section 4.1 and application management in fog computing in Section 4.2.

4.1 Related Work on Distributed Event-Based Systems

In the following, we analyze related work in the context of distributed event-based
systems and focus on two research directions, namely geo-distributed event processing
and related programming models in Section 4.1.1 and geo-distributed publish/subscribe
Section 4.1.2.

4.1.1 Geo-Distributed Event Processing

Distributed event processing has been broadly studied in both academia as well as in-
dustry with emerging novel application areas, such as the Internet of Things (IoT) [Dias
de Assunção et al. 2018; Dayarathna and Perera 2018]. Event processing has encoun-
tered significant evolutions throughout the years from first-generation SPEs such as
STREAM [Babu and Widom 2001], Aurora [Abadi et al. 2003], or Borealis [Abadi et al.
2005], to second-generation SPE for massively-parallel processing in the era of big data
such as Apache Flink1, Apache Spark with Spark Streaming2 or Apache Samza3, to more
general application frameworks allowing to specify and execute user-defined functions
denoting the third generation. In recent years, novel architecture designs induced by the
plethora of devices in the context of IoT have been proposed which use decentralized
computing paradigms such as edge and fog computing for data stream processing intro-
ducing the genesis of a fourth generation of stream processing [Dias de Assunção et al.
2018].

1https://flink.apache.org/
2https://spark.apache.org/
3https://samza.apache.org/

https://flink.apache.org/
https://spark.apache.org/
https://samza.apache.org/

52 4 Related Work

SpanEdge is introduced in [Sajjad et al. 2016] which is a unified approach for stream
processing over cloud-based and near-edge data centers aiming to decrease overall la-
tency and bandwidth consumption incurred by communication over wide-area network
links in stream processing applications. The authors propose a master-worker runtime
environment and introduce a task grouping scheme for Apache Storm4 enabling devel-
opers to assign dataflow graph operators to so-called local-tasks that are executed in
close proximity to the event source, e.g., cloudlets [Satyanarayanan et al. 2009], while
downstream operators run inside global-tasks in the cloud. In [Renart et al. 2017], an edge-
based programming framework is introduced that allows users to define data-driven
reactive behaviors by orchestrating stream processing applications to geographically
distributed computational resources while hiding low-level communication in an net-
work overlay layer using the content-based publish/subscribe messaging mechanism.
An elastic stream processing model for the IoT is presented in [Hochreiner et al. 2015;
Hochreiner et al. 2016]. In contrast to static stream processing application deployments
in typical SPEs at fixed locations, usually dedicated cloud data center, a resource elas-
ticity mechanism is introduced that allows for cost-efficient cross-regional cloud data
center operation to account for constant changes in data load in volatile IoT use cases.
Thereby, initial deployment topologies are flexibly reconfigured at run-time by elastically
provisioning computational resources to maintain a defined level of QoS to prevent situ-
ations of over-/under-provisioning. In follow up work, the Vienna platform for elastic
stream processing (VISP) was proposed to realize elastic data stream processing in fog
computing environments leveraging virtualized resources provided by containers to host
individual processing operators [Hießl et al. 2019].

Similar approaches applying decentralized compute paradigms can be found in the
domain of CEP. While CEP is similar to stream processing providing results without
undue delay and the processing of input event streams, it uses a rule-based programming
model in contrast to exploratory programming model in stream processing [Hießl et al.
2019; Dautov et al. 2018]. Schilling et al. identify the problem of centralized CEP systems
that are not suitable for widely dispersed application scenarios such as nation-wide power
grids in terms of processing costs and communication overhead [Schilling et al. 2010].
To this end, the authors present a distributed heterogeneous event processing system
that interconnects a set of common heterogeneous centralized engines within network
of nodes to enable geographically distributed processing while providing managing
capabilities such as inter-node communication as part of the distributed system. [Hong
et al. 2013] introduce Mobile Fog, a high-level, cloud-based programming model for
developing and distributing fog applications by providing a simplified programming
abstraction to dynamically scale applications at run-time using on-demand fog or cloud
resources. Further, [Luthra and Koldehofe 2019] investigates CEP over fog infrastructures
and present ProgCEP, a programming model facilitating the design and development of
placement algorithms that dictate the geo-distributed deployment of CEP operators such
as filters, joins for distributed query processing. To this end, ProgCEP builds on top of the

4https://storm.apache.org/

https://storm.apache.org/

4.1 Related Work on Distributed Event-Based Systems 53

AdaptiveCEP query language [Weisenburger et al. 2017] and reuses a standard set of CEP
operators which allow to specify QoS demands that must be fulfilled by the underlying
fog computing infrastructure. In addition, it exposes commonly used resource metrics,
e.g., latency, bandwidth, or CPU load on a central broker while also providing access to
decentralized monitoring algorithms such as Vivaldi [Dabek et al. 2004], a lightweight
algorithm to predict communication latencies between nodes.

Apart from code-based approaches, graphical flow-based programming models and
systems which follow an EDA design are actively researched [Issarny et al. 2016; Ravindra
et al. 2017]. In [Giang et al. 2015], a distributed dataflow programming model for IoT ap-
plication development is proposed and validated as an extensions for IBM’s Node-RED5,
called Distributed Node-RED [Blackstock and Lea 2014], which provides a mechanism
to deploy processing pipelines called flows over heterogeneous compute resources by
specifying static requirements and constraints, however lacking the support for dynamic
adaptations. These shortcomings are investigated in the DDFlow declarative program-
ming abstraction with support for dynamic adaptation in case of node failures or unstable
network [Noor et al. 2019]. Despite the similarities to our work from an operations point
of view, the proposed adaptation scheme lacks support to update processing semantics
at run-time. Riemer et al. propose a semantic model and methodology for discovery
and binding of real-time processing services from arbitrary stream processing engines
that allow to author event processing pipelines using a graphical editor [Riemer et al.
2014; Riemer 2016]. The proposed ontologies for EPN constituents, e.g., semantic EPA,
comprise both functional and non-functional aspects to abstract from heterogeneous exe-
cution environments in order to automatically verify processing pipelines on a semantic
level at design-time. While the EDA principles are inherent to the suggested architecture
facilitating geo-distributed event processing in principal, it lacks a resource model for
the heterogeneous fog computing infrastructures and disregards application life cycle
management aspects to account for dynamic adaptations which we aim to support with
our work.

Besides academic efforts, several companies offer fog and edge computing platform
services such as general-purpose platforms by major cloud vendors, namely Google
Cloud IoT, Amazon Greengrass, Microsoft Azure IoT Edge, IBM Edge Computing, or
more specific ones oriented towards IIoT in the manufacturing domain such as Crosser6,
FogHorn7 or Nebbiolo8. While these offerings provide the possibility to distribute event
processing capabilities to edge and fog nodes, they are generally statically configured
and thus lack support in dynamic environments. In contrast, in our work we aim for a
flexible deployment of processing pipelines and provide adaptation mechanisms such as
reconfiguration or migration of individual processing services at run-time.

5https://nodered.org/
6https://crosser.io/
7https://www.foghorn.io/
8https://www.nebbiolo.tech/

https://nodered.org/
https://crosser.io/
https://www.foghorn.io/
https://www.nebbiolo.tech/

54 4 Related Work

4.1.2 Geo-Distributed Publish/Subscribe

While message-oriented middlewares, publish/subscribe systems in particular, have
enjoyed immense research interest [Eugster et al. 2003] with systems such as Hermes [Piet-
zuch and Bacon 2002], the emergence of IoT and decentralized computing paradigms
such as fog computing have led to new research challenges and opportunities, especially
in the area of geo-distributed publish/subscribe.

Enhancements to the traditional publish/subscribe models in mobile operating envi-
ronments are discussed in [Huang and Garcia-Molina 2004]. In addition to centralized
broker architectures, several distributed approaches are presented for improved scal-
ability and fault tolerance. Centralized broker architectures in particular are typically
impractical in dynamic environments due to excessive network round trips, although
they use existing techniques such as quenching [Segall and Arnold 1997] to discard events
at the event source when there are no active subscriptions. More recent research investi-
gate IoT-related challenges and incorporate concepts of QoS such as latency-awareness
in the design of geo-distributed publish/subscribe systems. For instance, EMMA is
distributed QoS-aware publish/subscribe messaging for edge computing applications
that considers brokers on arbitrary edge resources and dynamically reconfigures client-
broker connections at run-time based on their latency [Rausch et al. 2018]. Similarly,
PubSubCoord has identified the need for edge-cloud integration in the realm of IIoT and
proposes an autonomous, coordination and discovery service that provides a topic-based
publish/subscribe model for operating over wide area networks [An et al. 2017]. The
proposed architecture consists of a two-tier broker hierarchy deployed over a publish/-
subscribe overlay network to achieve low-latency local area network and scalable wide
area network event dissemination. Additionally, it exploits and extends the well-known
Apache Zookeeper9 distributed coordination service to dynamically create dissemination
paths when participating publishers and subscribers leave and join the system. Unlike
costly gossip-based approaches that use probabilistic broadcasting for event and query
dissemination [Costa et al. 2005], TinyMQ was introduced targeting the challenges of
wireless sensor networks [Shi et al. 2011]. TinyMQ is a content-based publish/subscribe
middleware using an overlay network constructed on top of the sensor network that logi-
cally connects sensor nodes independent of their geographical position while providing
virtual addresses as unique identifiers. Based on these virtual addresses, a hash-based
mechanism for content-related message and routing mapping determines the correspond-
ing subscription and notification paths for given queries and events to meet at dedicated
rendezvous nodes along the network topology from publisher to subscriber. Moreover, a
selective event routing strategy for inter-broker event dissemination in geo-distributed
publish/subscribe systems is proposed in [Hasenburg and Bermbach 2020]. Thereby,
geo-context information related to either the publisher or subscriber location are consid-
ered to select suitable rendezvous points. Apart from efficient event routing strategies,

9https://zookeeper.apache.org/

https://zookeeper.apache.org/

4.2 Related Work on Fog Application Management 55

Zehnder et al. introduce edge-based event stream reduction strategies for distributed
topic-based publish/subscribe systems to dynamically adapt events at run-time based
on common data reduction and transformation strategies adhering to specific subscriber
requirements. [Zehnder et al. 2019]. The authors propose the concept of virtual events,
i.e., events that are reconstructed on subscriber-side without physical event transfer,
by leveraging a semantic schema registry that stores information about subscriber and
their individual data requirements as Resource Description Framework (RDF) triples in
a machine-processable way. Publishers use this additional background knowledge to
automatically decide how to preprocess events and what events to actually send. To this
end, the proposed approach is a relaxation of the typical publish/subscribe paradigms
that foresees strict decoupling between publishing and subscribing entities.

Numerous application messaging protocols in the context of IoT have been proposed,
chief among the MQTT protocol. MQTT is an open OASIS standard which implements
the topic-based publish/subscribe interaction scheme [Al-Fuqaha et al. Fourthquarter
2015]. Due to its lightweight nature and capability to support unreliable networks,
MQTT is a designated candidate for IoT-related scenarios, especially in constrained envi-
ronments such as edge and fog nodes, yet only providing general-purpose messaging
capabilities. To this end, several research propose extensions of the standard implemen-
tation, e.g., MQTT for wireless sensor networks called MQTT-SN (formerly known as
MQTT-S) [Hunkeler et al. 2008], or GeoMQTT which provides spatio-temporal filtering
capabilities [Herle and Blankenbach 2016]. Besides, various open-source solutions exist
that implement core functionality of publish/subscribe in general, mostly targeting the
more simplified topic-based model such as Eclipse Mosquitto10. This also includes con-
cepts of broker bridging where multiple broker instances deployed in different networks
internally forward published messages on static topic schemes. Moreover, many com-
mercial offerings exist most notably provided by major cloud vendors that are integral
parts of current event processing solutions as previously discussed. However, these
approaches are generally limited in their operational capability and not flexible as they
rely on static configurations.

4.2 Related Work on Fog Application Management

Application management in fog computing includes several research topics which have
been actively studied in the last years. Chief among them are the fields of orchestration
and deployment of event-driven applications which we cover in Section 4.2.1, besides
work on dynamic adaptation and migration schemes relevant to fog applications which
we examine in Section 4.2.2.
10https://mosquitto.org/

https://mosquitto.org/

56 4 Related Work

4.2.1 Orchestration and Deployment

Advancements in distributed systems in terms of cluster management with early work
on systems such as Omega [Schwarzkopf et al. 2013], Borg [Verma et al. 2015] or more
recently Kubernetes11 [Burns et al. 2016] are major enablers that serve as the foundation of
today’s orchestration and deployment concepts for event-driven applications in fog and
edge computing environments. As such, these approaches have evolved around operating
system-level virtualization technologies such as containerization [Bernstein 2014; Pahl
and Lee 2015]. Container technology including the most prominent representatives such
as Docker12 or LXC13, has become the de facto gold standard for application orchestration
in many fog-related scenarios. In addition to code portability and isolation capabilities
where computing resources are split up and dynamically shared, the overall lightweight
character of containers with minimal resource footprint have led to a wide adoption
in both academia and industry, in particular of importance for edge deployments in
constrained setups [Ismail et al. 2015; Bellavista and Zanni 2017].

LEONORE is introduced which is a cloud-based framework for elastic provisioning of
application components on resource-constrained edge devices for large-scale IoT de-
ployments within a service-oriented infrastructure [Vögler et al. 2015]. Thereby, both
push-based and pull-based approaches for application deployments are supported by
making use of a local device agent service which either reacts on requests from the central
provisioning service or independently schedules provisioning tasks to off-peak times.
GeeLytics is an edge-based analytics platform to perform real-time stream processing
based on container virtualization for task distribution and dynamic topology execu-
tion [Cheng et al. 2015]. In contrast to static deployments as part of conventional SPE,
run-time adaptations of processing topologies are considered in order to flexibly react
to changing demands on the consumer side (here actuators). Foggy, a framework for
dynamic resource provisioning and automated container-based application deployment
is proposed in [Yigitoglu et al. 2017], presenting a more fine-grained description of re-
quirements including prioritization to enable preemption as well as privacy constraints
in terms of the actual placement in the infrastructure hierarchy. Container virtualization
is used to enable to maximize resources efficiency and task-sharing while ensuring iso-
lation. The authors propose a policy-driven procedure to distribute multi-component
applications by orchestrating corresponding containers within the fog infrastructure.
FogFrame is another application orchestration framework for building and maintaining
fog landscapes which provides necessary communication mechanisms for instantiating
and maintaining service execution in the fog [Skarlat et al. 2018]. Therefore, FogFrame
provides general functionality to pool computational resources at cloud or edge level
in order to form a so-called fog landscape. Apart from fog landscape configuration
mechanisms and application management [Skarlat et al. 2016], FogFrame uses heuristic
11https://kubernetes.io/
12https://www.docker.com/
13https://linuxcontainers.org/

https://kubernetes.io/
https://www.docker.com/
https://linuxcontainers.org/

4.2 Related Work on Fog Application Management 57

algorithms for service placement on potential nodes based on resource constraints and
QoS criteria in addition to mechanisms for recovering from overloaded nodes and specific
failures. Moreover, numerous other related work exist in the area of microservice-based
application orchestration and deployment [Santoro et al. 2017; Chang et al. 2017; Cheng
et al. 2018; Wöbker et al. 2018], among some introducing new terminologies such as
osmotic computing [Villari et al. 2016], or capillary computing [Taherizadeh et al. 2018].

Another related research direction is the model-driven orchestration and deployment
which addresses challenges with regard to automating the provisioning and operational
management of applications while ensuring portability and interoperability based on
declarative deployment models [Endres et al. 2017]. According to a review by Bergmayr
et al., the OASIS standard Topology and Orchestration Specification for Cloud Applications
(TOSCA) is among the most prominent modeling approaches with implementations such
as Alien4Cloud14, Cloudify15, and OpenTOSCA [Binz et al. 2013]. To this end, TOSCA
uses the concept of service templates to declare application topologies and orchestration
of services, while specifying corresponding components, i.e., infrastructure components
(e.g., a Raspberry Pi), middleware components (e.g., a message broker), or application
components (e.g., a Java software artifact) and their relations among each other using
defined semantics [Wurster et al. 2020]. Generally, the described services are provisioned
in designated infrastructures while their management behavior must comply with the
given constraints or policies. Originally solely focused on cloud deployments, recent re-
search investigates the usage of TOSCA in the context of IoT in geographically distributed
infrastructures. In [Képes et al. 2019] an approach based on the declarative TOSCA stan-
dard for the automated deployment of distributed applications on heterogeneous target
environments consisting of public and private clouds is shown, thereby tackling the issue
of deploying components in environments having restricted inbound communication
capabilities. While the presented approach greatly addresses accessibility and security
aspects, particularly for IIoT application deployments, it is focused on static configura-
tions and lacks support to adapt deployments at run-time. Therefore, Tsagkaropoulos
et al. propose to extend TOSCA for edge and fog deployments to support generic use
case patterns ranging from traditional distributed execution paradigms such as hybrid
cloud, or multi-cloud deployments to more recently emerging paradigms such as server-
less computing including Function-as-a-Service (FaaS) [Baldini et al. 2017], or edge-based
deployments [Tsagkaropoulos et al. 2021]. Therefore, semantic enhancements for two
TOSCA flavors are provided, namely type-level and instance-level TOSCA templates,
and integrated in previous work in the context of PrEstoCloud [Verginadis et al. 2017].
These TOSCA flavors are the main constituents of the suggested sequential deployment
approach which consists of a design-time modeling phase and an execution phase. In
the design-time modeling phase users define their applications including requirements,
optimization and placement criteria based on an extension of the YAML specification for
TOSCA. Once this specification of the type-level template is provided and validated, the
14https://alien4cloud.github.io/
15https://cloudify.co/

https://alien4cloud.github.io/
https://cloudify.co/

58 4 Related Work

execution phase is triggered where an optimized instance-level description is generated
and used to initiate the automated deployment procedure. Similar work extend TOSCA
either for serverless computing and FaaS-based applications [Casale et al. 2020], or in
combination with other modeling efforts such as the Open Cloud Computing Interface
(OCCI) [Challita et al. 2021] aiming at the standardization of a common API for cloud
offerings, primarily Infrastructure-as-a-Service. However, all of these approaches are
not explicitly focused on geographically distributed deployments and do not focus on
specifics regarding multi-connected event-driven applications in the sense of processing
pipelines. Apart from TOSCA, an analytical pipeline definition and deployment language,
referred to as PADL, is introduced which allows to model and deploy distributed analyti-
cal pipelines over edge and fog computing environments in a technology-independent
and infrastructure-agnostic fashion [Díaz-de-Arcaya et al. 2020]. Therefore, PADL is
focused on operationalizing AI pipelines with support for predictive model interchange
formats such as Predictive Model Markup Language (PMML) [Guazzelli et al. 2009], or
Portable Format for Analytics (PFA) [Pivarski et al. 2016]. PADL allows users to define
deployment flows by specifying input and output channels for different models, resource
requirements, or node constraints using a domain-specific language based on the YAML
format. While all above approaches allow to declare orchestration manifests and enact
fog deployments, they are text-based making it generally impractical for our targeted
audience to define such deployments and reason about. In contrast, our approach aims to
automatically generate node resource information using an extensible node description
at setup time to assist citizen technologists in the deployment and administration process
at design-time.

Moreover, several open-source container orchestrators exist that evolved around the idea
of unified edge-cloud deployments either extending Kubernetes such as kubeEdge16,
k3s17 or providing similar functionality ioFog18, or fog0519. However, their focus lies on
cluster management aspects such as resource management, networking, besides high-
availability of service deployments, yet neglecting needs induced by geo-distributed
event-driven applications and our non-technical target audience (see Section 3.2).

4.2.2 Reconfiguration and Migration

Statically configured deployments of processing pipelines that span the hierarchical
fog computing architecture are not suitable to commensurate the dynamics of such
environments and support continuously evolving analytical needs. Dynamic adaptation
strategies and mechanisms have been proposed over the years in the context of application
reconfiguration and migration.
16https://kubeedge.io/
17https://k3s.io/
18https://iofog.org/
19https://fog05.io/

https://kubeedge.io/
https://k3s.io/
https://iofog.org/
https://fog05.io/

4.2 Related Work on Fog Application Management 59

Early work in dynamic query modification in stream processing facilitates the online
modification of continuous queries by introducing the notion of control lines that carry
messages with revises parameters and functions in order to update individual operator
parameters as well as the operator behavior themselves [Abadi et al. 2005]. Similar
ideas about dynamic operator adaptation can be found in [Andrade et al. 2014], where
individual operators may exchange dedicated messages via control directives in order to
alter the modus operandi of another operator. Moreover, hierarchical control patterns for
self-adaptive elastic stream processing over fog computing environments by means of
scaling and migration actions are proposed in [Cardellini et al. 2018] in accordance to the
Monitor-Analyze-Plan-Execute (MAPE) loop as a pattern for self-adaptive systems [Kephart
and Chess 2003], yet only taking hardware-related node resources into consideration
with strong focus on query-driven stream processing.

Cloud4IoT is a platform which offers automatic microservice-based container orchestra-
tion and deployment and allows for dynamic configuration in terms of horizontal and
vertical container migration at run-time [Dupont et al. 2017]. Therefore, it provides a dis-
covery mode to autonomously detect new bluetooth low energy devices in the proximity
of an IoT gateway. This enables a plug-and-play integration of new sensor devices while
using signal strength to deploy and undeploy containers on device join/leave actions.
In addition, it leverages state-of-the-art container and orchestrator technology, namely
Docker and Kubernetes. In contrast to our work, we assume processing pipelines that are
comprised of multiple, event-driven processing services as our application model while
Cloud4IoT considers standalone, request/response services that are stateless. Further, the
discussed migration approach is limited by the capabilities of the underlying technology
while relying on a centralized cloud orchestrator to initiate any migration action which is
a hindrance in unreliable network environments. We argue that such offloading decisions
can be decentralized to a node-level management service that can observe its context and
self-reliantly trigger such relocation actions in combination with a centralized coordina-
tion. Preliminary work on a container-based approach discussing an infrastructure-level
and application-level controller for autonomic data stream processing applications in
fog computing infrastructures is presented in [Brogi et al. 2018]. To this end, the authors
propose a two-level adaptation approach introducing a fog node controller to manage
node resources and application controller to manage the actual application and motivate
this by an intra-node and inter-node scenario. While the intra-node scenario depicts how
application containers can be autonomously scaled based on resource requests issued by
the application controller, the inter-node scenario investigates how application containers
can be migrated between nodes upon migration requests issued by the fog node con-
troller. Yet, the presented approach is technology-dependent relying on native Docker
features for elastic resource assignment besides using the project checkpoint/restore in
userspace20 for snapshotting and migrating application containers as a whole following a
pause-and-resume approach [Heinze et al. 2014]. Thereby, the application is first paused,
with their internal state being persisted, transferred and restored at the new destination
20https://criu.org/

https://criu.org/

60 4 Related Work

to resume operation. Similar approaches to support mobility aspects are investigated in
other work, e.g., in terms of virtual machine-based migration [Bittencourt et al. 2015], or
container-based migration in companion fog computing [Puliafito et al. 2018]. Another
related work is Foglets, a programming model for managing geographically distributed
situation-aware event-driven applications in the fog [Saurez et al. 2016]. Therefore,
Foglets exposes designated APIs to cater the application development and deployment
process. Moreover, it allows to place individual processing tasks at different levels of
the hierarchical fog architecture while providing algorithms for migrating individual
application components to support device mobility.

4.3 Conclusion

Albeit existing research employs similar management capabilities for event-driven appli-
cations as our approach, either an application-centric or infrastructure-centric view is
taken. Yet, in order to fully exploit the potential both aspects need to be equally reflected
in a holistic application management approach for geo-distributed event-driven applica-
tions. Besides geo-distributed event processing and publish/subscribe which, taken in
isolation, have proven their applicability in resource-constrained fog computing envi-
ronments, such a holistic application management approach also considers deployment
and adaptation aspects and provides an abstraction layer to mitigate any heterogeneity
issues induced by the manifold of node types. Current approaches still rely on partly
complex domain-specific languages and notations for describing dedicated deployment
topologies in the model-driven engineering domain. In addition, most of the presented
related work focuses on declarative programming models that are not suited for non-
technical programmers who require graphical approaches to model EPNs that only few
work address—yet either lacking support for users to select suitable deployment config-
urations or not facilitating mechanisms to dynamically adapt event-driven application
deployments. Current approaches lack adequate modeling efforts towards capturing
relevant resource information beyond commonly used hardware-related aspects in a
machine-processable way which is crucial to enact heterogeneity-awareness in the appli-
cation management layer to better assist citizen technologists along the application life
cycle. Consequently, a holistic management approach for the next generation of event
processing systems in fog computing is required.

Part III

Main Part

5
Requirements

This chapter presents various requirements this work builds upon. Thereby, requirements
are derived from the outlined research questions which are further complemented by
identified needs and problems elaborated within the motivation while reflecting obser-
vations from related work. In the following, we introduce the requirements elicitation
process in Section 5.1 before describing the resulting model and architecture-specific
requirements in Section 5.2 and system-specific requirements in Section 5.3.

5.1 Requirements Elicitation

As an integral part within requirements engineering, requirements elicitation refers to
the process whose objective is to seek, uncover, acquire, and elaborate requirements
for computer-based systems [Zowghi and Coulin 2005]. As such, requirements elicita-
tion involves a set of activities that include (1) understanding the application domain,
(2) identifying the sources of requirements, (3) analyzing the stakeholders, (4) selecting
the techniques, approaches, and tools to use and (5) eliciting the requirements from
stakeholders and other sources [Zowghi and Coulin 2005].

In this thesis, the required activities to derive relevant requirements in the course of the
elicitation process are presented and discussed in various chapters and sections. Gaining
understanding of the application domain marks a crucial success factor in the early stages of
the overall procedure. Our work targets application domains such as the IoT and IIoT that
require a holistic management approach for event-driven applications in fog computing
environments to facilitate the imminent need for data and analytics democratization, as
described in Chapter 2 and Chapter 3. Sources of requirements are manifold, however in
information systems design, requirements are mostly induced by stakeholders such as our
target audience, namely citizen technologists. Our work analyzes potential stakeholders
and shows an interplay of various organizational roles in the context of our targeted
application domain and prioritizes our intended target audience of citizen technologists,
yet still reflecting concerns of other related roles. Techniques, approaches and tools presents
another relevant activity to gather requirements. A common approach in research relies
on deep analysis of existing approaches on a given subject of investigation. We follow this

64 5 Requirements

principle and discuss shortcomings of current no-code/low-code solutions for graphical
flow-based systems, in addition to state-of-the-art approaches which we reviewed and
assessed from different viewpoints within Chapter 4. Identified gaps are further taken
into consideration when deriving requirements.

Following, we present derived requirements according to model-specific and architecture-
specific aspects focusing on Research Question 1 as well as system-specific aspects related
to Research Question 2 and Research Question 3 as summarized in Figure 5.1. At this
point, it is worthy to note that even though we discuss these requirement categories
independently they are strongly interrelated as each category represents an essential
pillar in pursuing our overall research objective.

System-specific

No-Code Event Processing System

Processing Pipeline

ML-EPA

Application Management Layer

Edge Fog Cloud

Exploit Deploy Adapt

ResultsEvents

Event Sources
(IoT Devices)

Storage,
Visualization,
Monitoring,

Actions

RQ1: Exploit
How can event-driven applications

exploit heterogeneous
computational resources in fog

computing infrastructures?

RQ3: Adapt

How can we reconfigure and
relocate existing event-driven

processing services at run-time?

RQ2: Deploy
How can we deploy and operate
event-driven applications that

span multiple geographically
distributed nodes?

Requirements Elicitation

Model/Architecture-specific

Heterogeneity-aware
(R1, R2)

Extensible & Interoperable
(R3, R4, R5, R6, R7)

Geo-Distributed Architecture
(R8, R9)

Adaptivity
(R18)

Modification Support
(R19)

Fluidity Support
(R20, R21)

System-specific

Geo-Distributed Deployment
(R10, R11, R12, R13, R14)

Geo-Distributed Operation
(R15, R16)

Resiliency
(R17)

Figure 5.1 Mapping of research questions to requirements

5.2 Model/Architecture-specific Requirements

Within this category of requirements, we cover aspects related to the node model and the
geo-distributed system architecture regarding Research Question 1. The first requirement

5.2 Model/Architecture-specific Requirements 65

entails matters regarding one of the crucial points in application management in fog
computing, namely the diverse resource capabilities of edge, fog and cloud nodes sub-
sumed under the term heterogeneity. Single-board computers such as Raspberry Pi’s
(e.g., a Raspberry Pi Model 4 with 4-core CPU, up to 8 GB memory) or more recently
ARM64-based NVIDIA Jetson models (e.g., Jetson Xavier with 8-core CPU, 32 GB mem-
ory and GPU support) are widely considered popular edge nodes [Bellavista and Zanni
2017; Yigitoglu et al. 2017], while special-purposes industrial PC as fog nodes in addition
to on-demand virtual machine offerings in the cloud further complement the resource
landscape. In Section 3.3.2, we have argued that operating event-driven applications
in ever-changing compute environments is enhanced by explicitly dealing with such
heterogeneity aspects. This implies creating heterogeneity-awareness and transparency for
the managing middleware over available resources. In this regard, node resources go
beyond traditional hardware-related resource types, e.g., CPU, memory, or non-volatile
storage devices in order to also considering additional capabilities that are relevant to
meet the application demands. This leads to the following requirement:
Requirement R1: Heterogeneity-aware
Each node should expose a node description encapsulating available resources and capabilities.

While the former requirement addresses aspects towards the exposure of the node
description to the outside world, the following one contemplates to how these resource
information are obtained. Therefore, this requires the instantiation of the node description
to be platform-agnostic, i.e., independent of underlying infrastructure specificities.
Requirement R2: Platform-agnostic
Instantiating the node description should be agnostic to underlying infrastructure specificities.

As specialization in hardware has been massively adopted to satisfy the insatiable need
for computing capability [Terzo et al. 2019], the extensibility of such a node model plays a
crucial role in the given context. As applicational resource demands increase, in particular
due to advancements in AI applications moving towards the edge of the network, novel
resource types appear with new capabilities such as hardware-accelerated computer chips
(see Section 2.3.2). Moreover, additional domain-specific knowledge in the form of metadata
must be added to a node description in order to better assist citizen technologists in
selecting eligible deployment target nodes. For instance, such domain-specific knowledge
may indicate certain privacy zones, affiliations to a given logical location on factory or
shop floor level or arbitrary other information that facilitate to structure and organize
nodes according to the respective applicational use case.
Requirement R3: Extensibility
The model can be extended to employ new resources characteristics.
Requirement R4: Domain Knowledge
The model supports additional domain-specific metadata which can be altered at run-time.

The next requirement is interoperability. In order to ensure that the exposed model
description is interoperable, the model representation should build on existing standards.

66 5 Requirements

Here, RDF is as a well-established concept in web technologies to describe data models.
This allows us to integrate and reuse existing vocabularies for many domains.
Requirement R5: Interoperability
RDF is used as a data model to represent the node description.

Our goal is to allow citizen technologists to focus on building and deploying event-
driven applications to create an added value. In this context, the EPN and thus the
dataflow model (see Section 2.2.3) is well suited to address needs of IoT applications
and alleviate the distribution of individual processing services on remote nodes. Hence,
as software engineers provide implementations for individual EPN components (see
Section 3.2), they must be provided with model primitives and concepts for extending the
existing vocabularies to address specific resource requirements as they can best estimate
how much resources are essential to execute the event processing logic. Here, existing
vocabularies for EPN components [Riemer 2016; Zehnder et al. 2020] should be obtained
and extended to consider resource requirement declarations as in the case of an ML-EPA
requiring GPU support.
Requirement R6: Dataflow Composition
The application model forms a geo-distributed EPN of different event-driven components.
Requirement R7: Requirement Declaration
Individual EPN components can declare resource requirements.

Apart from the actual model view, there is also an architecture view which deals with
requirements to structure the geo-distributed management architecture which builds the
foundation for system-related considerations discussed in the subsequent section. To or-
chestrate and operate event-driven applications over a pool of geographically dispersed
resources, this enforces the requirement of having a two-level application management
approach. This approach is required to comprise both mechanisms of centralized man-
agement and local management. While the former oversees the node cluster and acts as
the core entry point for users, the latter is engaged in management activities on node
level ensuring smooth operation along the application life cycle in a self-aware manner.
Requirement R8: Two-level Management
The general architecture comprises a central coordinator and local management entities.

Further, while cloud resources are commonly considered vastly scalable, edge and fog
resources typically imply limited scalability as they are mostly physical nodes. Conse-
quently, resources are likely to be shared between different types of services that are
executed on a given node. This requires for lightweight resource isolation approaches that
are best addressed by leveraging current state-of-the-art virtualization technologies such
as containerization to accommodate event-driven processing services and their dedicated
event processing logic.
Requirement R9: Isolation
Management and event-driven processing services are bundled and provisioned as containers.

5.3 System-specific Requirements 67

5.3 System-specific Requirements

In this section, we present requirements related to the system associated with Research
Question 2 and Research Question 3. These requirements are influenced by non-negligible
fog computing characteristics (see Section 2.3.2) apart from applicational needs (see Sec-
tion 3.2). In addition, the requirements cover technical aspects along the application
life cycle to ensure an application management which incorporates necessary deploy-
ment and adaptation concepts. The first requirement deals with geo-distribution. With
the ever-growing interest in data-driven decision making and emerging applicational
needs tied to specific requirements in terms of latency or privacy considerations, it is
essential for a managing middleware to support event-driven application deployments
in geo-distributed environments such as fog computing. Therefore, the system needs
to be capable of proving geo-distributed deployment and execution concepts to deploy
arbitrary pipeline topologies. To realize this deployment step, participating nodes are
required to inhabit a management entity which registers its capabilities as part of the
exposed node description (see Requirement R1: Heterogeneity-aware) at the central coordi-
nator and handle management matters along the application life cycle in an autonomous
fashion. Moreover, all management tasks should be handled system-internally which
requires abstraction.
Requirement R10: Geo-Distribution
Arbitrary pipeline topologies can be deployed and executed on geographically dispersed nodes.
Requirement R11: Node Autonomy
Nodes manage local deployments, continuously observe their context and trigger decisions.
Requirement R12: Abstraction
The system should abstract from low-level management details.

This typically leads to a trade-off between hiding technical details from citizen technolo-
gists while providing enough flexibility to adequately express deployment and operation
preferences. To this extent, the compatibility between pipeline element requirements and
node resource offers must be validated such that only suitable deployment targets are
shown to the user, where suitability is assured according to a matching mechanism. To
further support citizen technologists along the pipeline deployment process, an approach
is required which provides flexible deployment options and gives freedom of choice to
fulfill use case-specific demands. Thus, configurable and extensible pipeline deployment
and operation options should be provided.
Requirement R13: Matching
The system can match node resource requirements and node resource offers and only select eligible
deployment targets for event-driven processing services.
Requirement R14: Deployment Support
The system supports citizen technologists by providing pipeline deployment options.

68 5 Requirements

Requirement R15: Operation Support
The system supports citizen technologists by providing pipeline operation policies.

As processing pipelines potentially span across multiple layers along the cloud-edge con-
tinuum, event streams between any two interconnected pipeline elements must be flexibly
managed. This includes leveraging location information for intra-node communication
and providing a mechanism for inter-node communication.
Requirement R16: Event Routing
The system is capable of ensuring flexible intra-node and inter-node event routing.

In dynamic environments such as fog computing where a subset of nodes are exposed
to real world, component failures can lead to unanticipated behavior and unavailabil-
ity [Cristian 1991]. In particular, unreliable network and temporary node unavailability
are more likely to occur than in the cloud. This also affects the previously explained
event routing as target nodes for inter-node communication might not be reached. Thus,
this poses the requirement to handle situations of potential node unavailability or unin-
tentional node restarts in a resilient and robust manner to ensure business continuity.
Requirement R17: Resiliency
The system can deal with unreliabilities in fog computing infrastructures in a resilient manner.

Next, we regard requirements that evolve around aspects of adaptivity. In Section 4.2.2,
we mentioned that statically configured pipeline deployments are infeasible to account
for both the dynamic nature of fog computing as well as evolving analytical and business
needs. The same is true if edge nodes are mobile or computational resources are heavily
utilized. In any case, this requires pipeline evolution support by having a generic adaptation
methodology for both reconfiguration and migration that facilitates an adaptive behavior
of processing pipelines at run-time with minimal interruption. Lastly, the latter point
forms the basis to incorporate capabilities of context-awareness that, in principle, enable
systems to detect and respond to changes in their situated environment [Schilit et al. 1994].
Consequently, nodes should be able to continuously observe their system context and
assess when certain resource capacities are exhausted to conduct offloading decisions.
Requirement R18: Adaptivity
The system employs a generic adaptation methodology allowing event-driven applications to evolve.
Requirement R19: Reconfiguration Support
The system supports changes in the processing logic of pipeline elements.
Requirement R20: Migration Support
The system supports to migrate pipeline elements between nodes.
Requirement R21: Context-aware Offloading
Nodes can self-reliantly initiate offloading decisions based on observed context changes.

6
Resource Exploitation

In this chapter, we present results with regard to Research Question 1 and demonstrate
how event-driven applications can exploit heterogeneous resources in fog computing.
Therefore, we first categorize and describe key heterogeneity dimensions for administrating
geo-distributed event-driven applications in Section 6.1. Next, we formalize the pipeline
application and fog infrastructure model in Section 6.2 and Section 6.3. Afterwards, we pro-
pose a generic and extensible node model in Section 6.4 and detail related concepts which
build the foundation for the subsequent investigations within this work. In Section 6.5,
we present an architecture for the overall management approach which integrates the
node model to create heterogeneity-awareness. Lastly, we briefly highlight provided tool
support in Section 6.6 and summarize the chapter in Section 6.7.

6.1 Heterogeneity Dimensions

A crucial factor for the management of event-driven applications in fog computing relates
to dealing with heterogeneity aspects of the underlying compute infrastructure. Contrary
to virtual machines in the cloud, edge and fog nodes are typically physical, inherently
heterogeneous and come at varying form factors and characteristics including dissimilar
processor architectures, different operating systems and hardware resources as discussed
in Section 2.3.2. This poses new requirements towards a uniform resource management
for event-driven applications within fog computing, as the general assumption of homo-
geneous node resources must be discarded. In particular during resource allocation in the
pipeline deployment phase, it is crucial to find eligible execution targets according to indi-
vidual pipeline element requirements, user preference and specific capabilities of nodes.
As an initial step, we categorize heterogeneity aspects in fog computing infrastructures
into three general dimensions as shown in Figure 6.1:

� Hardware—The hardware dimension subsumes all hardware-level node resources.
This includes system resources such as number of CPU cores and processor ar-
chitectures (e.g., x86, ARM32, ARM64), amount of random access memory, and
secondary storage types (e.g., solid-state drive, hard disk drive) and storage amount,
in addition to novel resources such as GPU (e.g., NVIDIA Volta, or Maxwell).

70 6 Resource Exploitation

Edge

Fog

Cloud

128GB RAM

x86

ARM64

8 Core

64 Core

900TB SSD

4GB RAM

16GB SHDC

4 Core

Edge

Fog

Cloud

Edge

Fog

Cloud

ROS

OPC UA

Ubuntu

Raspbian

runC

runC-nvidia

CUDA 10runC

ARM32

x86

MQTT

Docker 20.10.5

Docker 19.3.12

Volta GPU

runC-nvidia

Maxwell GPU

Hardware Software Connectivity (protocols) IoT devices (sensors, actuators)

Modbus ...

CoAP

Hardware Software Connectivity

Figure 6.1 Heterogeneity dimensions and varying manifestations in fog computing

� Software—The software dimension covers aspects in conjunction with all software-
level information. This includes information such as operating system type and
version (e.g., Linux, macOS, Windows), container runtime type and version (e.g.,
general runC1, or runC-nvidia2 to support GPU-accelerated ML-EPAs), alongside
several other information such as specific driver versions (e.g., CUDA 10) that play
a vital role from a resource management perspective.

� Connectivity—Lastly, the connectivity dimension denotes all specific node capabili-
ties with regard to IoT device accessibility to either collect data or trigger actions.
This especially targets event producers in the in the directed application models,
and both event producers and event consumers within SPR application model
(see Section 3.2). In particular in the IIoT, a large number of IoT protocols exist.
That include protocols build on open protocol standards, e.g., MQTT, CoAP, ROS,
Modbus, OPC UA, as well as propriety protocols which are mostly vendor-specific.
Despite rare cases where IoT devices actively push raw data to cloud-level message
brokers, this is generally assumed to be impractical in the IIoT due to privacy, or
bandwidth concerns. Hence, it is more common for nearby edge and fog nodes to
be capable of connecting to IoT devices to collect data, if not edge nodes themselves
are equipped with sensor modules such as a camera.

1A run-time container that handles kernel-level interaction of running containers in compliance with the
OCCI specification (https://opencontainers.org/) and used by container technologies such as Docker.

2A forked and modified version of runC served by NVIDIA, providing a run-time container that is
GPU-aware and used by container technologies such as Docker.

https://opencontainers.org/

6.2 Pipeline Application Model 71

6.2 Pipeline Application Model

In this section, we introduce a formal model for processing pipelines that serves an
abstract definition for modeling event-driven applications which we consider as an input
for our application management middleware. To this extent, we briefly introduce related
pipeline element types that assimilate the abstract definition of EPN components, and
thus fall into any of the following three categories:

� Adapter—An adapter allows to connect to an external event source in a configurable
(e.g., MQTT, ROS, OPC UA) way in order to provide an event stream [Zehnder et al.
2020]. Each event stream provides a description graph with information on the event
schema itself (i.e., event properties) and the designated stream grounding (i.e., a
transport format such as JSON, and transport protocol such as MQTT, or Kafka)
that is used to publish events. Adapters are wrapped inside an EP-service. Through
the concept of service invocation, EP-services instantiate adapter instances.

� Processor—A processor provides an arbitrary type of event processing logic that
is applied on an event stream at run-time. Processors are encapsulated in an EPA-
service and expose a description graph which contains information on supported
stream groundings, static properties (i.e., user-defined configuration options), or
its output event schema. This description is used to verify compatibility between
any two interlinked element on a semantic level. Like adapters, EPA-services also
instantiate processor instances via service invocation [Riemer 2016].

� Sink—A sink is similar to a processor and thus one or more sinks are wrapped
within an EC-service, at the exception that sinks do not produce any output event
streams, thus marking the end of a processing pipeline [Riemer 2016].

Pipeline Element Requirements. As previously mentioned, semantic compatibility
between various pipeline elements based on stream requirements have been extensively
researched [Riemer 2016]. However, these data-level requirements only represent a subset
of requirements that are indispensable to facilitate geo-distributed deployments. Hence,
we propose additional requirements in compliance with the stated heterogeneity dimen-
sions from Section 6.1 which are summarized in Table 6.1. First, there are hardware-level
requirements which state the resource amount a pipeline elements needs in order to
operate smoothly. This includes the number of CPU cores, amount of memory or disk
space, or GPU-support for efficient model inferencing in case of ML-EPAs. Second, there
are software-level requirements. These requirements incorporate information such as
operating system types, container runtime version or other libraries. Finally, there are
connectivity-level requirements which cover network and IoT protocol related aspects.
As such connections to IoT devices only occur for EPN constituents that are interfacing
external producers or consumers. Consequently, connectivity-level requirements are
only appropriate for adapters and sinks, excluding processors.

72 6 Resource Exploitation

Requirement Type Adapter (A) Processor (P) Sink (S)
Data l, s l, s l, s

Hardware s s s

Software s s s

Connectivity s — s

l Requirements types in [Riemer 2016]
s Requirements types in this thesis
— Processors do not pose connectivity requirements

Table 6.1 Comparison of pipeline element requirement types

Formal Application Model. The pipeline application model consists of a set of con-
nected pipeline elements wrapped inside dedicated EP-services, EPA-services, and EC-
services. More formally, we model a processing pipeline 𝒫 denoting a multi-component,
event-driven application as an EPN, where a pipeline is represented as a triple𝒫=(𝒱 , ℰ , Π).
Here, 𝒱=𝐴 ∪ 𝑃 ∪ 𝑆 is a finite set of all pipeline elements denoting vertices, such that 𝐴

is a set of adapters with 𝐴 ̸= ∅, 𝑃 is a set of processors, 𝑆 is a set of sinks with 𝑆 ̸= ∅.
Moreover, ℰ is a set of directed event stream edges that connect adjacent pipeline elements,
such that ℰ=(𝐴× 𝑃) ∪ (𝐴× 𝑆) ∪ (𝑃 × 𝑃) ∪ (𝑃 × 𝑆) without cycles ∀𝑝 ∈ 𝑃 : (𝑝𝑖, 𝑝𝑖) ̸= ℰ .
Consequently, the minimal valid pipeline consists of one adapter connected to one sink,
with no intermediary processor. Further, Π denotes a set of deployment and operation
policies which are further detailed in Section 7.3.1. Lastly, we introduce the notion of
pipeline element adjacency alongside the definition for predecessor and successor pipeline
elements. The adjacency characteristic describes the logical connection among any two
pipeline elements in the processing pipeline and allows to infer useful knowledge from a
deployment and operation perspective.

Definition 7 (Pipeline Element Adjacency). Within a pipeline 𝒫=(𝒱 , ℰ , Π), we con-
sider two pipeline elements 𝜌𝑖, 𝜌𝑗 ∈ 𝒱 , 𝜌𝑖 ̸= 𝜌𝑗 adjacent, if there exists a directed event
stream edge (𝜌𝑖, 𝜌𝑗) ∈ ℰ from 𝜌𝑖 to 𝜌𝑗 where 𝜌𝑖 ∈ 𝒱∖𝑆 and 𝜌𝑗 ∈ 𝒱∖𝐴. Then, the
pipeline element 𝜌𝑖 is called the predecessor and 𝜌𝑗 is called the successor.

We model a pipeline element 𝜌 ∈ 𝒱 as a triple 𝜌=(ℱ𝜌, Δ𝜌,ℛ𝜌), where ℱ𝜌 is the event
processing logic, Δ𝜌 is a set of static properties that represent custom user inputs which
allows citizen technologists to configure 𝜌 when the pipeline is modeled. In addition,
ℛ𝜌=ℛ𝑑

𝜌∪ℛℎ
𝜌 ∪ℛ𝑠

𝜌∪ℛ𝑐
𝜌 is a set of resource requirements for dataℛ𝑑

𝜌, hardwareℛℎ
𝜌 , software

ℛ𝑠
𝜌, and connectivityℛ𝑐

𝜌 requirements. Thereby, connectivity requirements can only be
specified for adapters and sinks ∀𝜌 ∈ 𝒱∖𝑃 : |ℛ𝑐

𝜌|≥0 and are not permitted for processors
∀𝜌 ∈ 𝒱∖(𝐴 ∪ 𝑆) : ℛ𝑐

𝜌=∅. In general, while resource requirements are specified by the
corresponding software engineer at pipeline element development time, static properties
are bound to application-specific demands of the respective use case. Hence, citizen
technologists who perform the actual pipeline modeling task also configure individual
pipeline elements and thus specify relevant static properties at pipeline creation time.

6.3 Fog Infrastructure Model 73

Example. Figure 6.2 shows the location monitoring pipeline 𝒫𝑙𝑜𝑐=(𝒱𝑙𝑜𝑐, ℰ𝑙𝑜𝑐, Π𝑙𝑜𝑐) comprised of
three pipeline elements 𝒱𝑙𝑜𝑐={𝑎1, 𝑝2, 𝑠3} and their event stream edges ℰ𝑙𝑜𝑐={(𝑎1, 𝑝2), (𝑝2, 𝑠3)} as
introduced in Section 3.1.2. In brief, the GPS location of the delivery robot is constantly monitored
and a custom notification is sent to the fleet operators upon leaving the specified geofence denoting
a valid operation area. At this point, pipeline policies are not provided until we introduce them in
Section 7.3.1. The bottom part of Figure 6.2 cover related requirementsℛ𝜌 and static properties
Δ𝜌 for dedicated pipeline elements. While the processor and sink declare the same hardware
requirements, there are differences in the other requirement types. For instance, the adapter 𝑎1
defines a GPS connectivity requirementℛ𝑐

1={meda:gpsmodule} that requires connectivity to
a GPS module indicated by a domain-specific vocabulary. Besides, the subsequent point-in-
polygon processor states a data requirementℛ𝑑

2={geo:lat,geo:long} expecting the event stream
to contain events whose payload include latitude and longitude event properties in the WGS84
reference format according to the W3C Basic Geo Vocabulary3 prefixed with geo.

Events

Delivery Robot
GPS Module

Result

a1

p2

s3

Software Engineer (EP, EPA, EC Developer) Citizen Technologist

configured at pipeline creation timespecified at pipeline element development time

Location Monitoring Pipeline

a1 p2 s3

GPS Adapter Point-in-Polygon Processor Notification Sink

Static PropertiesRequirements

Ploc=(Vloc, Eloc,⇧loc)

R

i

Rh
a1

={+Q`2b=1, K2K=50J"}, Rc
a1

={bT,;TbKQ/mH2}

Rd
p2

={;2Q,H�i, ;2Q,HQM;}, Rh
p2

={+Q`2b=1, K2K=50J"}
Rh

s3
={+Q`2b=1, K2K=50J"}

�b2`B�H,a1={]f/2pfb2`B�Hy]}
�;2Q72M+2,p2={(49.1, 8.4), (49.0, 8.5)}
��H2`i,s3={];2Q72M+2 H27i5]}

R

Rh
a1

={+Q`2b=1, K2K=50J"}, Rc
a1

={bT,;TbKQ/mH2}

Rd
p2

={;2Q,H�i, ;2Q,HQM;}, Rh
p2

={+Q`2b=1, K2K=50J"}
Rh

s3
={+Q`2b=1, K2K=50J"}

�b2`B�H,a1={]f/2pfb2`B�Hy]}
�;2Q72M+2,p2={(49.1, 8.4), (49.0, 8.5)}
��H2`i,s3={];2Q72M+2 H27i5]}

R

Rh
a1

={+Q`2b=1, K2K=50J"}, Rc
a1

={bT,;TbKQ/mH2}

Rd
p2

={;2Q,H�i, ;2Q,HQM;}, Rh
p2

={+Q`2b=1, K2K=50J"}
Rh

s3
={+Q`2b=1, K2K=50J"}

�b2`B�H,a1={]f/2pfb2`B�Hy]}
�;2Q72M+2,p2={(49.1, 8.4), (49.0, 8.5)}
��H2`i,s3={];2Q72M+2 H27i5]}

R

Rh
a1

={+Q`2b=1, K2K=50J"}, Rc
a1

={bT,;TbKQ/mH2}

Rd
p2

={;2Q,H�i, ;2Q,HQM;}, Rh
p2

={+Q`2b=1, K2K=50J"}
Rh

s3
={+Q`2b=1, K2K=50J"}

�b2`B�H,a1={]f/2pfb2`B�Hy]}
�;2Q72M+2,p2={(49.1, 8.4), (49.0, 8.5)}
��H2`i,s3={];2Q72M+2 H27i5]}

R

Ri

� 2 �i

R

Ri

� 2 �i

R

�b2`B�H,a1={]f/2pfiiv�*Jy]}Rc
a1

={K2/�,;TbKQ/mH2}

Figure 6.2 Running example: Pipeline element requirements and static properties

6.3 Fog Infrastructure Model

The fog computing infrastructure consists of set of nodes that possess varying resource
capabilities with subject to the previously stated heterogeneity dimensions discussed in
Section 6.1. Additional characteristics that differentiate individual nodes such as a node’s
logical location allow to address qualitative requirements, e.g., data sovereignty.

3https://www.w3.org/2003/01/geo/

https://www.w3.org/2003/01/geo/

74 6 Resource Exploitation

Formal Infrastructure Model. We formally model a fog computing infrastructure as
a graph ℐ=(𝒩 ,ℒ). Thereby, 𝒩=𝒩𝑒 ∪𝒩𝑓 ∪𝒩𝑐 is a finite set of nodes comprised of edge
nodes 𝒩𝑒, fog nodes 𝒩𝑓 , and cloud nodes 𝒩𝑐. In addition, ℒ is a set of network links
connecting nodes. Due to the vast design space dictated by a myriad of applicational use
cases, the graph structure for fog computing infrastructures greatly varies which leads to
a manifold of different network topologies [Karagiannis and Schulte 2020]. For the sake
of simplicity, we assume ℐ to be a complete graph, i.e., ℐ is an undirected graph in which
every pair of distinct nodes is connected by a network link.

We consider a node 𝑛 ∈ 𝒩 to be a triple 𝑛=(𝒪𝑛, 𝒞𝑛,𝒟𝑛), where 𝒪𝑛=𝒪ℎ
𝑛 ∪𝒪𝑠

𝑛 ∪𝒪𝑐
𝑛 is a set

of resource offers including hardware𝒪ℎ
𝑛, software𝒪𝑠

𝑛 and connectivity𝒪𝑐
𝑛 resource offers.

Thereby, connectivity resource offers allow to alleviate the connection to IoT devices and
are only valid for edge and fog nodes, i.e., |𝒪𝑐

𝑛|≥0,∀𝑛 ∈ 𝒩∖𝒩𝑐. We assume cloud nodes
to not establish any direct connection to IoT devices due to limited bandwidth or privacy
concerns, i.e., 𝒪𝑐

𝑛=∅,∀𝑛 ∈ 𝒩𝑐. Further, 𝒞𝑛={𝑐NC, 𝑐MB, 𝑐𝒱} denotes a set of deployment
containers. There are two system management containers, namely a node controller
container 𝑐NC which is introduced later this chapter and a message broker container 𝑐MB
providing publish/subscribe messaging capability. In addition, there exists a pipeline
element container 𝑐𝒱 containing all pipeline elements for EP-, EPA-, and EC-services. 𝒟𝑛

is a set of node metadata that include a unique node identifier, its IP address, the node
type, as well as its logical affiliation, e.g., edge, fog, or cloud, besides the geographic
location in the case of mobile nodes. Moreover, it contains domain-specific background
knowledge that entails custom node tags 𝒯 allowing to add arbitrary annotations. Adding
meaningful annotations aid the node selection process for potentially larger node sets.
Consequently, this allows to provide system-side support for citizen technologists prior
to the pipeline deployment in order to select only eligible node targets.

We assume each node to run one instance of the node controller container. Further,
we define that edge and fog nodes run one instance of the message broker container.
In contrast, at the cloud layer, only a subset of all cloud nodes run a container for a
distributed, shared message broker due to scalability and high-availability reasons.

6.4 Node Model

The central entity of interest for executing pipeline elements within the fog computing
infrastructure is a node. Shown in Figure 6.3, we present a novel node model that builds
the foundation for the so-called NodeDescription. This node description is exposed
by each node controller across all layers of the hierarchical fog architecture and sits
at the core of our holistic management approach. In essence, the node description
allows to create awareness of node specificities. On the basis of explicitly modeling
heterogeneity dimensions, this is vital to enable event-driven application management
over geo-distributed fog infrastructures.

6.4 Node Model 75

Node
Resource

Node
Metadata

hasNode
Metadata

Node
Tag

hasNode
Tags

Connectivity
NodeResource

Hardware
NodeResource

Software
NodeResource

Geo
Location

hasGeo
Location

Deployment
Container

hasDeployment
Container

PipelineElement
Container

epa:Pipeline
Element

requires
NodeResource

Event
StreamRelay

epa:Stream
Grounding

epa:Transport
Protocol

System
Container

epa:Event
Stream

hasTransport
Protocol

has

epa:Static
Property

produces/
requires

hasStatic
Property

fromSource
toTargets

hasSupportedPipelineElements

contains

hasNode
TransportProtocol

ad:Adapter

epa:SEPA

epa:SEC

Container
Runtime

CPU
MEM
DISK
NET
GPU

Operating
System

hasEvent
StreamRelays

Message
Broker

reused
vocabularies

Reconfigurable
StaticProperty

Node

offers
NodeResource

Figure 6.3 Node model: Overview

The node model reflects before stated formalisms besides reusing and integrating existing
modeling efforts. This allows to create interoperability among systems by combining
different ontologies for a new objective by means of extension, specialization or adapta-
tion [Pinto and Martins 2000]. Accordingly, we reuse the following vocabularies:

� Event Processing Application (EPA)—The EPA vocabulary [Riemer 2016] provides
a rich set of processing service descriptions for all types of pipeline elements. As
our focus is on the management part of processing pipelines and not the pipeline
modeling and authoring part, the EPA vocabulary is beneficial to our work. Yet,
we enrich existing concepts to accommodate new properties in order to fulfill
requirements constituting geo-distributed pipeline deployment, operation and
adaptation. We use the prefix epa to identify the EPA vocabulary and refer to
[Riemer 2016] for a more in-depth description of relevant concepts.

� Adapter—The adapter vocabulary [Zehnder et al. 2020] already extends parts of
EPA in terms of a richer adapter model for EP-services. We use the prefix ad to
identify the adapter vocabulary and refer to [Zehnder et al. 2020] for more details.

� General vocabularies—We use the prefix rdf for the RDF vocabulary, rdfs for the
RDF Schema vocabulary, qudt for the QUDT vocabulary4, geo for the Basic Geo
vocabulary, xsd for the W3C XML Schema Definition Language.

4http://www.qudt.org/

http://www.qudt.org/

76 6 Resource Exploitation

In general, we can subdivide our node model in five elementary parts:

� NodeResource—Node resource offers, node resource requirements
� NodeMetadata—Additional node characteristics
� DeploymentContainer—Deployment definition for containerized services
� ReconfigurableStaticProperty—Concept to reconfigure EPAs at run-time
� EventStreamRelay—Concept for flexible event stream routing between nodes

Following, we give a detailed introduction of each part of the node model which is
illustrated in Figure 6.3 and prefixed with meda to identify the developed vocabulary.

6.4.1 Node Resource

Node resources are essential to executing any kind of event-driven application regardless
of a node’s type and location in terms of edge, fog, or cloud node and thus considered as
part of the NodeResource description. Since we are facing the challenge of managing pro-
cessing pipelines in a geo-distributed environment spreading across edge, fog and cloud
layers, these resources are considered highly heterogeneous. Apart from conventional
hardware resources, there are also other resource types to take into account. Overall, we
model three distinct concepts for resource offers to reflect a node’s ability to host certain
pipeline elements, namely: (1) HardwareNodeResource, (2) SoftwareNodeResource,
and (3) ConnectivityNodeResource.

HardwareNodeResource subsume any type of resources that are essential for processing
(compute), I/O (network) and storing data (storage). This typically includes resource
types such as CPU, memory, disk, and network present in any modern compute platform
that is inline with our notion of edge, fog, and cloud nodes presented in Section 2.3.3
and thus differ from IoT devices or microcontrollers. Consequently, our model specifies
concepts for CPU, memory, disk, network and GPU as computational resources that are
subclasses of the HardwareNodeResource concept as shown in Figure 6.3. In general,
while there are multiple information that might be of interest in each subclass, we
primarily focus on technical specifications, e.g., number of cores, total memory, or total
disk space. Despite the benefits of containerized application deployments, a major
drawback stems from the fact that container images5 are platform-dependent, i.e., an
image that is build for one processor architecture cannot be readily used and executed
on another one. The fact that computational resources in fog computing are highly
heterogeneous, also in terms of processor architectures, further exacerbates the situation.
Therefore, the CPU concept defines the processor architecture which is an essential
information in order to assess whether a node can safely run a dedicated containerized
event-driven processing services.

5A container image is an immutable, static file that contains executable code libraries, dependencies, tools,
and other files needed to run an application.

6.4 Node Model 77

Example. Listing 6.1 defines hardware resources for an NVIDIA Xavier AGX edge node with an
ARM 64-bit CPU and GPU support.

1 @prefix meda: <https://managing-eda.example.de/vocabulary/v1/> .
2
3 <meda:xavier/cpu>
4 a meda:CpuHardwareNodeResource ;
5 meda:cores 8 ;
6 meda:arch <meda:arm64> .
7
8 <meda:xavier/mem>
9 a meda:MemHardwareNodeResource ;

10 meda:memTotal 32 ;
11 meda:unit qudt:GigaBYTE .
12
13 <meda:xavier/disk>
14 a meda:DiskHardwareNodeResource ;
15 meda:diskTotal 500 ;
16 meda:unit qudt:GigaBYTE .
17
18 <meda:xavier/net>
19 a meda:NetHardwareNodeResource ;
20 meda:nic "eth0" ;
21 meda:transferRate 1000 ;
22 meda:unit qudt:MegaBIT-PER-SEC .
23
24 <meda:xavier/gpu>
25 a meda:GpuHardwareNodeResource ;
26 meda:cudaCores 512 ;
27 meda:model "Volta" .

Listing 6.1 Hardware node resource definition: Example

The concept of SoftwareNodeResource has two subclasses, namely OperationSystem and
ContainerRuntime. While the former holds information about the operating system of a
node (e.g., "Ubuntu 18.04.5 LTS") operating system type (e.g., Linux), or kernel version
(e.g., "5.10"), the latter describes specifications on the actual container runtime6. Although
for simplicity, we consider DockerContainerRuntime or NvidiaContainerRuntime as
specific incarnations of ContainerRuntime, our model is not exclusive to them. Especially,
NvidiaContainerRuntime contains information about the present CUDA driver version
that aids in preventing version incompatibilities and library conflicts when invoking ML-
EPAs. As ML-EPAs contain pre-trained models, including neural networks, such models
are oftentimes specifically dimensioned for the usage in constrained IoT environments
and optimized for specific target GPU architectures to improve inferencing speeds, e.g.,
through quantization, pruning, or clustering to reduce model size and latency with no
or minimal loss of accuracy.

6We assume that a container runtime compliant to the OCCI specifications is present on each node that
serves as an abstraction for our approach to interact with low-level interfaces.

78 6 Resource Exploitation

Example. Listing 6.2 defines software resources for an NVIDIA Xavier AGX edge node with
installed runc-nvidia container runtime.

1 @prefix meda: <https://managing-eda.example.de/vocabulary/v1/> .
2
3 <meda:xavier/operatingsystem>
4 a meda:OperatingSystem ;
5 meda:os "Ubuntu 18.04.5 LTS" ;
6 meda:hasOsType <meda:linux> ;
7 meda:kernelVersion "4.9.140-tegra" .
8
9 <meda:xavier/containerruntime>

10 a meda:NvidiaContainerRuntime ;
11 meda:apiVersion "1.41" ;
12 meda:serverVersion "20.10.5" ;
13 meda:cudaVersion: "11.0" ;
14 meda:cudaDriverVersion: "450.36.06" .

Listing 6.2 Software node resource definition: Example

Lastly, the ConnectivityNodeResource concept allows to define specific knowledge
in terms of accessibility to certain IoT devices such as sensors, actuators or machines,
either locally (e.g., camera connected to an USB port on a Raspberry Pi, or GPS module
attached to a serial port) or remotely (e.g., network-accessible OPC UA server). This allows
to automatically retrieve relevant configuration properties necessary to alleviate the
connection process to external event sources for adapters or sinks.

Example. Listing 6.3 defines a connectivity resource to a locally accessible GPS module on the
NVIDIA Xavier AGX edge node.

1 @prefix meda: <https://managing-eda.example.de/vocabulary/v1/> .
2
3 <meda:xavier/gpsmodule>
4 a meda:ConnectivityNodeResource ;
5 rdfs:label "GPS module" ;
6 meda:hasDeviceType <meda:gpsmodule> ;
7 meda:hasAccessType <meda:local> ;
8 meda:connectionUrl "/dev/ttyACM0" .

Listing 6.3 Connectivity node resource definition: Example

To find eligible deployment target nodes, it is necessary for pipeline elements to express
required node resources which we cover using the relation requiresNodeResource. This
relation is introduced as an extension to the adapter [Zehnder et al. 2020] and EPA
vocabulary [Riemer 2016]. Other relevant relations are briefly outlined as follows. For
adapters (ad:Adapter), the protocol encompasses information on how to connect to the
event source (ad:hasProtocol) while transformation rules define essential preprocessing
steps (ad:hasRule). In terms of processors (epa:SEPA) and sinks (epa:SEC), there are
event stream requirements on data-level (epa:requiresStream), information on supported

6.4 Node Model 79

stream grounding (epa:supportedGrounding), output strategies (epa:hasOutputStrategy,
exclusive to processors) or static properties (epa:hasStaticProperty). We clarify the notion
of eligibility in Section 7.3.2 where we provide a detailed description of the respective
validation procedure. Listings 6.4 and 6.5 illustrate connectivity requirements on the
basis of an adapter and hardware requirements on the basis of a processor.

Example. Listing 6.4 shows the definition for a GPS connectivity node resource requirement
within the specific GPS adapter description from Figure 6.2.

1 @prefix meda: <https://managing-eda.example.de/vocabulary/v1/> .
2
3 <meda:gps>
4 a ad:SpecificDataStreamAdapter ;
5 rdfs:label "GPS adapter" ;
6 ad:hasProtocol <ad:protocol/stream/gps> ;
7 epa:hasFormat <epa:format/json> ;
8 epa:hasDataStream <epa:gps/geostream1> ;
9 ad:hasRule <ad:gps/transformationrule1> ;

10 meda:requiresNodeResource <meda:gps/requirement1> .
11
12 <meda:gps/requirement1>
13 a meda:ConnectivityNodeResource ;
14 meda:hasDeviceType <meda:gpsmodule> .

Listing 6.4 Connectivity node resource requirement definition: Example

Example. Listing 6.5 shows the definition for a hardware node resource requirement (1 core, 50
MB memory) within the point-in-polygon processor description from Figure 6.2.

1 @prefix meda: <https://managing-eda.example.de/vocabulary/v1/> .
2
3 <meda:pip>
4 a epa:SEPA ;
5 rdfs:label "Point-in-Polygon" ;
6 rdfs:description "Processor performing point-in-polygon (pip) algorithm" ;
7 epa:requiresStream <epa:geostream1> ;
8 epa:supportedGrounding <epa:mqttgrounding> ;
9 epa:hasOutputStrategy <epa:pip/outputstrategy> ;

10 epa:hasStaticProperty <epa:pip/coordinate1>, <epa:pip/coordinate2> ;
11 meda:requiresNodeResource <meda:pip/requirement1>, <meda:pip/requirement2> .
12
13 <meda:pip/requirement1>
14 a meda:CpuHardwareNodeResource ;
15 meda:cores 1 .
16
17 <meda:pip/requirement2>
18 a meda:MemHardwareNodeResource ;
19 meda:memory 50 ;
20 meda:unit qudt:MegaBYTE .

Listing 6.5 Hardware node resource requirement definition: Example

80 6 Resource Exploitation

6.4.2 Node Metadata

The concept of NodeMetadata complements the node resource description and provides
additional metadata allowing to further differentiate or cluster nodes according to logical
identifiers. Thereby, a node can be classified either as a virtual node (mostly the case for
cloud nodes), or as a physical node (common for edge and fog nodes). Besides, nodes can
be logically associated with a resource layer, i.e., edge, fog, or cloud. In order to establish
communication to a node, the NodeMetadata concept contains related properties to
access a node either by its IP address or via its fully qualified domain name. Moreover,
the GeoLocation concept indicates the physical location of a node by reusing latitude
and longitude properties from the W3C Basic Geo Vocabulary. However, referring to
GPS coordinates to express a node’s location is not practical in all cases. For instance,
in the discussed Factory 4.0 use case, edge nodes are directly installed on the shop
floor with fog nodes typically residing on the companies premises. This demands an
alternative approach to reflect the node location while also allowing to specify relative
location characteristics that are relevant from a deployment point of view. To this end,
the NodeTag concept allows to add arbitrary information tags in the form of plain string
literals that enclose additional domain-specific knowledge to express relative location
information. Both concepts can jointly coexist such that mobile edge nodes can also have
complementing node tags as shown in Listing 6.6.

Example. Listing 6.6 depicts a node metadata resource for a mobile edge node (e.g., a delivery
robot) that has a built-in NVIDIA Jetson Xavier AGX compute platform as a local edge node.

1 @prefix meda: <https://managing-eda.example.de/vocabulary/v1/> .
2
3 <meda:xavier/nodemetadata>
4 a meda:NodeMetadata ;
5 meda:nodeControllerId "drobot-01.node-controller" ;
6 meda:nodeControllerUrl "http://drobot01.example.de:7077" ;
7 meda:nodeModel "Jetson-AGX" ;
8 meda:hasNodeType <meda:physical> ;
9 meda:hasAssociatedResourceLayer <meda:edge> ;

10 meda:ipv4 "10.8.0.2" ;
11 meda:fqdn "drobot01.example.de" ;
12 meda:hasGeoLocation <meda:xavier/geolocation> ;
13 meda:hasNodeTags <meda:xavier/nodetag> .
14
15 <meda:xavier/geolocation>
16 a meda:GeoLocation ;
17 geo:lat 49.012502 ;
18 geo:long 8.426035 .
19
20 <meda:xavier/nodetag>
21 a meda:NodeTag ;
22 meda:tag "edge", "drobot", "ka-east" .

Listing 6.6 Node metadata definition: Example

6.4 Node Model 81

6.4.3 Deployment Container

The container technology has many benefits and well-addresses the demands in resource-
limited and heterogeneous fog infrastructures. Thus, the DeploymentContainer concept
is an extensible and generic description of relevant properties for containerized services
independent from the present container runtime. This includes the service identifier, the
corresponding image tag and container name, as well as exposed ports. Besides, there are
also properties that allow software engineers to define which processor architectures and
operating system types are supported for the given image in order to verify the compati-
bility of an image on the underlying architecture. Additional configurations can be made
by passing environment variables while labels allow to annotate dedicated containers,
e.g., provide additional meta-information useful for filtering for specific instance types
in the operation phase. In our case, we consider two types of DeploymentContainer,
namely PipelineElementContainer and SystemContainer whereby each image wraps
dedicated pipeline elements (i.e., ad:Adapter, epa:SEPA, epa:SEC) or a message broker
technology respectively. In general, these deployment manifests are used by the node
controller in the setup phase to automatically instantiate containers suited for the node.
Afterwards, pipeline elements register themselves at the node controller. Thereby, only
supported ones are accepted and linked with the hasSupportedPipelineElements relation
(see Figure 6.3) given their resource requirements and the node’s resource offers.

Example. Listing 6.7 illustrates a pipeline element container description with an image suitable of
running on "x86", "ARM32" and "ARM64" nodes and shows supported operating systems.

1 @prefix meda: <https://managing-eda.example.de/vocabulary/v1/> .
2
3 <meda:deploymentcontainer/pe>
4 a meda:PipelineElementContainer ;
5 meda:serviceId "svc/org.example.pe" ;
6 meda:image "exampleorg/pipeline-elements:0.1" ;
7 meda:name "pipeline-element-container" ;
8 meda:exposedPorts 8090 ;
9 meda:hasSupportedArchs <meda:x86>, <meda:arm32>, <meda:arm64> ;

10 meda:hasSupportedOs <meda:linux>, <meda:darwin>, <meda:windows> ;
11 meda:hasContainerEnvVars <meda:containerenvvar/nodecontroller> ;
12 meda:hasContainerlabels <meda:containerlabel/nodetype> .
13
14 <meda:containerenvvar/nodecontroller>
15 a meda:ContainerEnvVar ;
16 meda:envKey "NODE_CONTROLLER_URL" ;
17 meda:envValue "http://node-controller:7077" .
18
19 <meda:containerlabel/nodetype>
20 a meda:ContainerLabel ;
21 meda:labelKey "org.example.container.type" ;
22 meda:labelValue "pipeline-element" .

Listing 6.7 Deployment container definition: Example

82 6 Resource Exploitation

6.4.4 Reconfigurable Static Property

The concept of epa:StaticProperty allows pipeline element developers to specify con-
figurations which are declared during modeling-time, and in turn, are necessary to
be configured by citizen technologists at design-time. Thus, static properties are user-
defined and configured by citizen technologists during pipeline creation time [Riemer
2016]. Yet thereafter, these properties are considered immutable and cannot be modified
to accommodate use case-specific changes to support pipeline evolution in terms of
adaptation. A naive stop-the-world approach involves stopping the pipeline, updating
relevant static properties of pipeline elements and redeploying it. However, not only does
this oblige manual intervention by citizen technologists but also leads to an unwanted
application unavailability which is infeasible in continuous monitoring scenarios in indus-
trial settings. While the former is tolerable, the latter is not. To mitigate this, we introduce
the concept of ReconfigurableStaticProperty which inherits general properties from
epa:StaticProperty while adding an additional relation to denote whether a given static
property is reconfigurable (epa:isReconfigurable), and thus can be altered through an
adaptation mechanism at pipeline execution time which we detail in Section 8.3.1.

Example. Listing 6.8 shows the definition of two reconfigurable static properties, here exemplified
retrieve geofence coordinates as part of the point-in-polygon processor from Figure 6.2. The
property epa:isReconfigurable is set to true for both coordinate static properties.

1 @prefix meda: <https://managing-eda.example.de/vocabulary/v1/> .
2
3 <epa:pip/coordinate1>
4 a epa:FreeTextStaticProperty ;
5 rdfs:label "Top-left coordinate" ;
6 rdfs:description "Specify top-left coordinate (Example: ’lat,long’)" ;
7 epa:requiredDatatype xsd:string ;
8 epa:isReconfigurable true .
9

10 <epa:pip/coordinate2>
11 a epa:FreeTextStaticProperty ;
12 rdfs:label "Bottom-right coordinate" ;
13 rdfs:description "Specify bottom-right coordinate (Example: ’lat,long’)" ;
14 epa:requiredDatatype xsd:string ;
15 epa:isReconfigurable true .

Listing 6.8 Reconfigurable static property definition: Example

6.4.5 Event Stream Relay

As a processing pipeline might span the cloud-edge continuum, with individual pipeline
elements being executed on different deployment targets. This induces the necessity
to employ an inter-node communication mechanism that allows to disseminate event

6.4 Node Model 83

streams between adjacent pipeline elements executed on different nodes. Following
the topic-based publish/subscribe pattern, pipeline elements produce (adapters, pro-
cessors) or require (processors, sinks) a dedicated epa:EventStream which denotes a
concept to declare various event stream properties and related stream specifications,
chief among is the epa:StreamGrounding. The grounding allows pipeline elements to
declare supported event transport protocols (epa:TransportProtocol). This is a generic
concept for flexibly engaging various publish/subscribe message broker technologies,
e.g., epa:MqttTransportProtocol or epa:KafkaTransportProtocol. We extend this by
introducing the EventStreamRelay concept for inter-node communication that allows
to map a source transport protocol to an arbitrary number of target transport protocols
depending on the cardinality of communication while employing additional relay strategies
which we detail in Section 7.3.3. The attentive reader will have noticed that we operate
in a multi-broker and thus multi-transport protocol environment, as briefly stated in
Section 6.3. We based this design decision on the dynamics in the fog where intermittent
network failures are common. Having one message broker per node instance not only
prevents excessive round trips in edge-only deployments, but also facilitates local event
exchange for intra-node communication in cases where adjacent pipeline elements share
the same deployment target. This type of publish/subscribe communication is addressed
using event stream grounding matching strategies [Riemer 2016].

Example. Listing 6.9 defines an event stream relay between the point-in-polygon processor
(executed on an edge node) and the notification sink (executed on a cloud node) from Figure 6.2.
The epa:MqttTransportProtocol denote a lightweight edge transport protocol used by the
point-in-polygon processor while the notification sink leverages a shared cloud transport protocol
epa:KafkaTransportProtocol. Note the topic equality.

1 @prefix meda: <https://managing-eda.example.de/vocabulary/v1/> .
2
3 <meda:eventrelay/edgenode>
4 a meda:EventStreamRelay ;
5 meda:nodeControllerUrl "http://drobot01.example.de:7077" ;
6 meda:relayOption "buffer" ;
7 meda:fromSource <epa:source/pointinpolygon> ;
8 meda:toTargets <epa:target/notification> .
9

10 <epa:source/pointinpolygon>
11 a epa:MqttTransportProtocol ;
12 epa:brokerHostname "10.8.0.2" ;
13 epa:port 1883 ;
14 epa:topicName "org.example.point.in.polygon-1234" .
15
16 <epa:target/notification>
17 a epa:KafkaTransportProtocol ;
18 epa:brokerHostname "10.8.0.37" ;
19 epa:port 9092 ;
20 epa:topicName "org.example.point.in.polygon-1234" .

Listing 6.9 Event stream relay definition: Example

84 6 Resource Exploitation

6.5 Architecture

The scale, heterogeneity, and dynamics of fog computing make the use and management
of computing resources for event-driven applications quite complex, especially for non-
technical citizen technologists. In the domain of cloud-native application orchestration, a
common architectural pattern for designing distributed, container-based systems evolves
around the master-worker paradigm with systems such as Borg [Verma et al. 2015], a
predecessor of today’s de facto container orchestrator Kubernetes7. In general, such
system architectures have at least one coordinating master and multiple workers each of
which are hosted on available compute nodes that offer their resources to be consumed
by arbitrary application services provisioned as containerized microservices. Oftentimes,
these core management modules are complemented by other infrastructure services, e.g.,
providing distributed storage, or overlay networking capabilities, which allow to further
abstract technical infrastructure complexities in terms of placement, deployment, or life
cycle management from the application development itself.

Within this work, we build on top of these principle ideas while assimilating the master-
worker paradigm in our distributed system architecture for event-driven application
management. This geo-distributed architecture outlines the overall structure for the
holistic application management middleware. In contrast to general-purpose container
orchestrators, we target the architectural design on the applicational and organizational
needs (see Section 3.2) that arise in the context of geo-distributed pipeline administration
in fog computing. Figure 6.4 gives an overview of the distributed system architecture for
managing event-driven applications and depicts the initial node registration during the
setup phase which we discuss in the following.

Master-Worker Paradigm. As mentioned, the general architectural design follows the
well-known master-worker paradigm for distributed systems that results in different
responsibility levels for each management entity. Hence, we consider two types of
components, namely a central coordinator and manager as part of the node management
acting as the master, as well as a node-local management service which we refer to
as node controller representing a worker. Apart from related management tasks, the
node controller holds an instance of the NodeDescription and exposes it via web-based
standards which will be detailed later in this section. Despite a worker node’s location and
type (i.e., virtual or physical), we treat all nodes the same from a management standpoint
and thus assume a single, logical resource pool of varying characteristics. Nevertheless,
worker nodes are classified according to their associated resource layer within the fog
architecture hierarchy as discussed in Section 6.4.2, which provides additional knowledge
in the course of pipeline element deployment and adaptation to account for use case
specific requirements. For instance, Figure 6.4 shows four nodes: one edge node 𝑛1 ∈ 𝒩𝑒,
one fog node 𝑛2 ∈ 𝒩𝑓 and two additional cloud nodes 𝑛3, 𝑛4 ∈ 𝒩𝑐. The provisioning

7https://kubernetes.io/

https://kubernetes.io/

6.5 Architecture 85

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

Node Controller Node Controller

PE-Service PE-Service

Node
Description

Container Runtime CR

Hardware HW

Message Brokerlocal MBlocal

Application Management Layer (Cloud)

Pipeline
Element

Node Controller

PE-Service

CR

HW

Node Controller

PE-Service

CR

HW

ND

Pipeline Management

edge packagebox aws awsfrankfurt frankfurt
gps

Node tags IoT devices (e.g., GPS module)Connectivity

drobot

HTTP POST
(JSON-LD)

Deploy Adapt

ka-east
/dev/ttyACM0

ka-east

PEPEPE

Message Brokershared

Exploit
Node Management

ND

Node Life Cycle
Management

Node
Monitoring

Node
Sync

ND

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

Figure 6.4 Geo-distributed architecture: Overview

and orchestration model within the architecture evolves around operating system-level
containerization and thus assumes any container runtime compliant to the Open Cloud
Computing Interface be present (see Section 6.1). For the sake of simplicity, Figure 6.4
only shows worker nodes being equipped with a container runtime, yet we also assume
central application management components to be flexibly provisioned via containers
as this also eases the overall system setup in the cloud. Consequently, apart from the
management logic entailed in the node controller container, each node hosts a dedicated
pipeline element container that contains a pipeline element service employing EP-, EPA,
EC event processing logic, in addition to a message broker container. As stated in the
formal infrastructure model, cloud nodes are exceptional as they use a scalable and
shared message broker that typically runs multiple replica on cloud nodes as indicated
for node 𝑛3 and node 𝑛4.

Node Management—Master. The node management is the central interface to the
pipeline management and all worker node affairs. Thereby, both the node manage-
ment and pipeline management are part of the central application management which
runs in the cloud. We made this decision based on the general graphical flow-based
development approach, where processing pipelines are centrally modeled and thus are

86 6 Resource Exploitation

already present to be prepared for geo-distribution. The pipeline management receives
processing pipeline definitions 𝒫=(𝒱 , ℰ , Π) and prepares individual pipeline elements
for deployment while issued adaptation requests in terms of reconfiguration, migra-
tion or offloading, are processed within adaptation modules. Both the deployment and
adaptation aspects are inherent fog-related challenges and at the core of our conceptual
considerations. This presents key differentiations to existing work on pipeline manage-
ment [Riemer 2016]. Concepts for geo-distributed pipeline management with regard
to deployment, operation and adaptation will be described in the following Chapters 7
and 8 in detail.

Besides, the node management deals with various core tasks on a central level, including
the following: (1) node life cycle management from join, re-join, update and delete while
providing necessary handlers to deal with create, read, update, and delete operation
with the database, (2) cluster-wide monitoring to assess both liveness and current re-
source utilization once a node has registered and placed its resources at disposal and
(3) node synchronization actions, including deactivating nodes for maintenance, adding
or updating node tags and connectivity information when an edge node is equipped
with an additional sensor, or provide new DeploymentContainer descriptions for newly
developed pipeline element containers to ensure updates.

Node Controller—Worker. In contrast, the node controller resides on every node and
is a local management service responsible for the following tasks: (1) generating the
NodeDescription upon startup and registration at the central node management, (2) man-
aging container deployments based on the DeploymentContainer concept agnostic to
the underlying compute platform, (3) mediating deployment and adaptation requests be-
tween central pipeline management and the dedicated pipeline element service and thus
accompany the whole pipeline element life cycle, (4) executing event stream relay requests
according to centrally generated EventStreamRelay descriptions for flexible inter-node
communication while incorporating resiliency mechanisms to deal with temporary net-
work interrupts and (5) observing the resource utilization of a node and leveraging
methods to self-reliantly decide when to offload certain pipeline elements.

Hereafter, we briefly outline the node controller registration where individual node
controller instances register themselves and their NodeDescription at the central node
management. This serves as a prerequisite for the subsequent pipeline deployment in
Chapter 7 and pipeline adaptation in Chapter 8 where we give an in-depth description
on the actual management part both on the central application management layer as well
as on the node level for the node controller.

Node Controller Registration. Each node hosts a dedicated node controller service
which itself is provisioned as a system container. The node controller generates the
respective NodeDescription of its underlying node upon startup according to the node

6.5 Architecture 87

model described in Section 6.4. Here, the NodeDescription holds generic deployment
container descriptions for the pipeline element container as well as message broker con-
tainer that may be auto-deployed after a successful node registration to ease the setup
process. These generic deployment descriptions are independent of the underlying con-
tainer runtime and contain relevant information on what types of processor architectures,
i.e., x86, ARM32, ARM64, are supported by the designated container images, such that
the node controller is capable of automatically selecting the correct image type suited
for the underlying infrastructure. As previously stated, this is necessary as container
images are platform-dependent and are thus purpose-built to target specific processor
architectures, such that images build for x86 platforms are not capable to run on ARM
platforms without any cross-compilation. Consequently, we assume that both pipeline
element container images and their respective DeploymentContainer description are
provided a priori by software engineers who develop dedicated event-driven processing
services as mentioned in Section 3.2. For provisioning and interacting with running
containers, the node controller implements interfaces to interact with the corresponding
container runtime environment on the system and delegates low-level tasks such as
container instantiation to it.

Moreover, system information regarding hardware and software resources that are part of
the NodeDescription are automatically gathered. Additional metadata and connectivity
information can either be passed prior to registration by using configuration parameters
or ex post as part of the tool contributions to ensure extensibility. To allow a node to
be considered for executing pipeline elements, the NodeDescription needs to be made
available and registered at the central node management. After the RDF model for the
NodeDescription is instantiated, the description is serialized in JSON-LD8 and sent to
the central node management by the node controller in order to register its resource
description alongside other relevant metadata. Subsequently, the node description is
persistently stored inside a designated database.

Example. Let us consider a potential fog infrastructure for the smart urban logistics scenario
as depicted in Figure 6.4. In this matter, the autonomous delivery robot is a mobile edge node
that contains of a built-in NVIDIA Xavier AGX. Moreover, the delivery robot operates in the east
urban district in the city of Karlsruhe. A fog node is installed and available at a nearby package
box in the same urban district, complemented by two cloud nodes. Thus, each node is associated
with certain clarifying node tags, namely for the edge node 𝑛1 "edge", "drobot", "ka-east", for the
fog node 𝑛2 "packagebox", and "ka-east" while both cloud nodes 𝑛3, 𝑛4 are tagged with "aws"
and "frankfurt". In addition, the edge node on the delivery robot has a special connectivity offer
that allows it to directly connect to a GPS module indicated by the "gps" connectivity label which
is accessible over a local serial port, here "/dev/ttyACM0".

8JSON-LD is a lightweight Linked Data format and allows to encode RDF data in a more human-friendly
and readable manner. In contrast to other representations such as Turtle or RDF/XML, JSON-LD
is based on the well-known JSON format, is more concise and thus better suited for constrained
environments such as within fog computing and the IIoT due to a reduced message overhead.

88 6 Resource Exploitation

Figure 6.5 Node overview, monitor and management: Tool support

6.6 Tools

The concepts described in this chapter are transferred and integrated into the Apache
StreamPipes project. It should be noted that we take a user-centric view when we talk
about the tool support in question thereby targeting our citizen technologist role, yet
with complete backend support. Figure 6.5 depicts the node overview of four registered
nodes based on the previously shown architecture overview. Citizen technologists are
presented with a node overview to quickly assess potential deployment targets, includ-
ing node resources, node metadata (i.e., node tags, connectivity labels) and live node
conditions, e.g., "online". The latter is the result of a node liveness check which is per-
formed by the central node monitoring component at regular intervals. If the liveness
check fails for several consecutive times, nodes are considered "offline" until they re-join.
Individual node tags and connectivity information can be added or altered at run-time.
Therefore, users can update the node description using a setting dialog where a node
can also be deactivated, e.g. to perform maintenance tasks. In the latter case, nodes are
marked as "deactivated". Moreover, nodes can be added at run-time to extend the fog
infrastructure. Therefore, the web interface provides a designated dialog to configure
relevant settings. Finally, a deployment command is provided to manually start the node
controller container which then registers itself and auto-deploys a set of containerized
services according to entailed DeploymentContainer descriptions.

6.7 Summary 89

6.7 Summary

In this chapter, we introduced relevant concepts for event-driven applications to exploit
heterogeneous computational resources in fog infrastructures in view of Research Ques-
tion 1. The first contribution is a generic and extensible node model that allows to capture
node-specific resource characteristics that exceed conventional hardware specifications
and incorporate both software and connectivity-related aspects alongside additional
node metadata to address the needs emerging from three heterogeneity dimensions in
fog computing. Moreover, our model reuses and extends existing vocabularies in order to
alleviate both the deployment process and the provide a foundation for later adaptation
schemes as a result of arising applicational needs to account for dynamics in the context
of IIoT. The second contribution is a geo-distributed architecture for the management
of event-driven application deployments over heterogeneous computational resources.
Inspired by well-established designs for distributed systems, the architectural design
follows the master-worker paradigm and proposes a two-level management approach
with a central node management complemented by multiple worker nodes equipped
with a dedicated node controller service. Consequently, worker nodes can be added at
run-time allowing the system to grow with use case-specific demands. The proposed
node model sits at the core of the architecture and allows to create awareness of relevant
resource characteristics which be used for the declaration of node resource requirements
on the application side. Both model and architecture provide the required foundation
for subsequent investigations with regard to pipeline deployment discussed in Chapter 7
as well as pipeline adaptation discussed in Chapter 8 as part of the operation phase.
Lastly, we presented the central node overview and management interface shown to
citizen technologists which is based on the integration efforts of the node model into the
knowledge base of Apache StreamPipes to provide necessary tool support.

7
Pipeline Deployment

In the last chapter, we laid fundamental concepts and introduced an architecture includ-
ing main buildings blocks as a basis for a two-level application management approach for
event-driven applications in fog infrastructures. In this chapter, we present concepts and
methods with regard to Research Question 2 and elaborate how to deploy and operate event-
driven applications in heterogeneous fog infrastructures. After an initial walkthrough in
Section 7.1, we introduce pipeline element life cycle stages in Section 7.2. Afterwards, we
elaborate how pipeline elements are geo-distributed along the cloud-edge continuum in
Section 7.3 which involves both central application management and node-local manage-
ment aspects. Next, we present tool support of our conceptual work in Section 7.4 before
we summarize the chapter in Section 7.5.

7.1 Walkthrough

After the initial setup phase involving node controller registration, the subsequent phase
deals with the application-side whose focus is on management-related objectives for
processing pipelines and their comprised pipeline elements. This involves a clear view of
the life cycle for processing pipelines and consequently for individual pipeline elements
which are subject to our geo-distributed deployment approach. As a prerequisite for
executing pipeline elements, pipeline element containers are to be deployed by the
node controller according to their deployment container descriptions while ensuring
compatibility to the underlying infrastructure. Once the pipeline element containers are
deployed, the individual pipeline elements register themselves at the node controller
which proxies a service registration request to the central application management. As we
will discuss in the following in more detail, this step employs an initial eager requirements-
resource validation in order to filter unsupported pipeline element requirements which
cannot be fulfilled by the given node, e.g., because the required hardware resources exceed
the available ones. As a result, the node description is updated to only contain supported
pipeline elements. This information is further leveraged to compare node resource offers
against node resources requirements issued by pipeline elements during the pipeline
configuration process prior to the actual deployment and distribution. Resulting eligible
nodes are exposed to citizen technologists at pipeline authoring completion and used for

92 7 Pipeline Deployment

manual node selection. Once citizen technologists submit a pipeline deployment request,
the corresponding pipeline graph alongside deployment options and operation policies
are sent to the pipeline management for geo-distribution. In brief, this involves the
generation of event stream relays for adjacent pipeline elements on different deployment
targets and distributing invocation requests for pipeline elements and event stream relays
to dedicated node controllers of chosen nodes. The node controller in turn further re-
distributes pipeline element invocation requests to the colocated pipeline element service
to instantiate individual pipeline elements while initializing necessary event stream
relays for inter-node communication. In the remainder of this chapter, we clarify the
pipeline element cycle and further detail the previously introduced architecture from
Section 6.5 with regard to central pipeline management concepts and elaborate on the
essential role of the node controller.

7.2 Life Cycle

In order for citizen technologists to use pipeline elements for modeling processing pipe-
lines in the first place, respective containerized pipeline element services need to be
provisioned on geo-distributed nodes within the fog infrastructure. In general, we differ-
entiate between three different phases within the pipeline element life cycle:

� Setup phase—The setup phase is tied to the node controller registration discussed
in Section 6.5. The node controller initiates the deployment of the pipeline element
container which starts an eager validation and registration procedure where pre-
filter criteria are applied. Consequently, only pipeline elements that are supported
by the given node are registered and made available.

� Operation phase—The operation phase spans from the (1) pipeline authoring, over
(2) pipeline deployment, to (3) pipeline adaptation. Hereby, pipeline authoring
concerns discussed in [Riemer 2016] are extended to allow citizen technologists to
configure and specify preference-based deployment options and operation policies.
These specifications are considered by the central application management layer
when preparing the geo-distributed pipeline deployment and are further detailed
in Section 7.3. After this step, pipeline elements are invoked and consequently
running. Pipeline adaptation denotes run-time evolution aspects of individual
pipeline elements, e.g., reconfiguration or relocation, which is the focus of Chapter 8.

� Maintenance phase—Lastly, started pipeline element containers are removed in the
maintenance phase, e.g., to update the DeploymentContainer description followed
by a container restart. This phase is out of scope in this work.

Figure 7.1 summarizes the pipeline element life cycle and presents significant stages that
each pipeline element surpasses. Hereafter, our main concern is the operation phase. Yet,
we clarify the pipeline element registration step during the setup phase in the following,
as this is a prerequisite for subsequent deployment efforts.

7.2 Life Cycle 93

8⇢ 2 V\Vs

8⇢ 2 Vs\(A [S)

8⇢ 2 V\Vs

8⇢ 2 Vs\(A [S)

in
validation runningavailable

invoke

detach

register

removed

start pipeline element (PE)
container

remove PE
container

start PE
container

invalid

failed validation

Setup phase Operation phase Maintenance phase

reconfigure

dV

8⇢ 2 Vs

⇢ 2 Vs

8⇢ 2 Vs\{A [S}
8⇢ 2 V\{Vs}

1

dV

8⇢ 2 Vs

⇢ 2 Vs

8⇢ 2 Vs\{A [S}
8⇢ 2 V\{Vs}

1

dV

8⇢ 2 Vs

⇢ 2 Vs

8⇢ 2 Vs\{A [S}
8⇢ 2 V\{Vs}

1

cV

cV cV

Figure 7.1 Pipeline element life cycle

Setup Phase—Eager Validation and Registration. As discussed in Section 6.5, each
node controller holds a node description including generic definitions for deployment
containers which allow to provision the underlying node with containerized services
such as the pipeline element container. After the node controller starts the corresponding
pipeline element container 𝑐𝒱 , the contained pipeline element service is initialized. The
service tries to register its description including all wrapped pipeline elements 𝒱 at the
node controller which ultimately forwards service registration requests to the central
node management to be stored. To forward a service description which only contains
supported pipeline elements 𝒱𝑠, each pipeline element is validated according to its
specified resource requirementsℛ𝜌 and compared to the present resource offers 𝒪𝑛 of
the underlying node. Therefore, we introduce a set of helper functions.

req(𝜌) = ℛ𝜌 𝜌 ∈ 𝒱
off(𝑛) = 𝒪𝑛 𝑛 ∈ 𝒩

While the function req(𝜌) allows to extract all resource requirements from a pipeline
element, the function off(𝑛) extracts all resource offers from a node. Therefore, given
a pipeline element 𝜌 ∈ 𝒱 and a node 𝑛 ∈ 𝒩 , the boolean function isSupported(ℛ𝜌,𝒪𝑛)
defines whether a pipeline element is supported by this node.

𝜌 ∈ 𝒱 , 𝑛 ∈ 𝒩 , req(𝜌) = ℛ𝜌, off(𝑛) = 𝒪𝑛 :
(︁
isSupported(ℛ𝜌,𝒪𝑛) ⇐⇒

∀𝑟 ∈ ℛ𝑡
𝜌 ⊆ ℛ𝜌,∃𝑜 ∈ 𝒪𝑡

𝑛 ⊆ 𝒪𝑛 : (isSatisfied𝑡(𝑟, 𝑜))
)︁

Consequently, pipeline elements are only considered supported if all their requirements
are fulfilled by the node resource offers. Here, isSatisfied𝑡 represents individual boolean
functions per resource type 𝑡, i.e., hardware, software, and connectivity type, that take

94 7 Pipeline Deployment

a resource requirement and a resource offer as inputs and validate them according to
a specific validation scheme. For volatile hardware resources, e.g., memory, the eager
validation procedure performs its validation based on the theoretical maximum value
for a required resource type, e.g., total memory. Here, the main objective is to early
identify incompatibilities prior to the pipeline authoring. Consider a pipeline element
that requires GPU support such as a ML-EPA for inferencing or scoring—consequently,
only nodes equipped with a GPU are eligible and thus capable of executing such a pipeline
element. Although the validation concept is explicitly kept generic and considers all
resource levels equally, in praxis connectivity and software-related resource offers change
infrequently, such that mainly hardware resources are decisive. Algorithm 1 illustrates
how the function isSupported is leveraged within the node controller to eagerly validate
pipeline element candidates while only supported pipeline elements 𝒱𝑠 are subsequently
registered and made available on the central application management layer. At the same
time, the node description is updated accordingly to hold references to supported pipeline
elements to prevent a reevaluation in case of a pipeline element service restart, e.g., in
the presence of a container or node failure. All other pipeline elements are considered
invalid and are thus not supported.

Algorithm 1 Eager validation upon pipeline element service registration
Input: node description 𝑛, set of all pipeline elements 𝒱
Output: set of supported pipeline elements 𝒱𝑠

1: 𝒱𝑠← ∅
2: 𝒪𝑛 ← off(𝑛)
3: for each 𝜌 ∈ 𝒱 do
4: ℛ𝜌 ← req(𝜌)
5: if ℛ𝜌 ̸= ∅ then
6: if isSupported(ℛ𝜌,𝒪𝑛) then ◁ requirements validation
7: 𝒱𝑠 ← 𝒱𝑠 ∪ 𝜌

8: 𝑛← setSupportedPipelineElements(𝒱𝑠) ◁ update node description
9: return 𝒱𝑠

7.3 Geo-Distribution

As an outcome of the setup phase, the registration of node descriptions allows to gain
transparency and cater the awareness for present node resources. Alongside the eager
validation applied to shortlist pipeline elements to only node-supported ones, this builds
the foundation of the operation phase. In this respect, administrating the geo-distribution
of pipelines marks a critical point within the operation phase and requires to be dealt with
at both the central application management level and the node level. In the following, we

7.3 Geo-Distribution 95

Node

Node

Application Management Layer (Cloud)
Pipeline Management

Node
Management

Message Brokerlocal

Container Runtime

Hardware

Node Controller

PE-Service

Running PEAvailable PEControl flow Data flow (pub/sub)

Node Controller

PE-Service

CR

HW

PEPE

Node Controller

PE-Service

HW

aws awsfrankfurt frankfurt

PEs3

edge
gps

drobot ka-east
/dev/ttyACM0

CR

Message Brokershared

Sinks s1 s2 ...

Adapters a1 a2 ...

Processors p2 p2 ...

Persistent Storage

PS PS

AdaptPipeline Element &
Relay Distribution

Relay
Generation

Validation
& Selection

PE
InvocationRelay

Invocation

HTTP POST
(JSON-LD)

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

1

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

1

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

1

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

1

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

1

Ploc=({a1, p2, s3}, {(a1, p2), (p2, s3)}, (⇡d,loc, ⇡o,loc))

1

Vloc

Eloc

⇧loc

1

Vloc

Eloc

⇧loc

1

Vloc

Eloc

⇧loc

1

PE
InvocationPE

Invocation

Deploy

Figure 7.2 Geo-distributed pipeline deployment: Architecture overview

elaborate on relevant management concepts employed in the overall system design and
provide an in-depth description of each constituent part along the deployment process.
Therefore, Figure 7.2 further details our previously introduced architecture overview
with regard to geo-distributed pipeline deployment.

7.3.1 Deployment Options and Operation Policies

In Section 6.2, we introduced our formal pipeline application model 𝒫=(𝒱 , ℰ , Π). Aside
from comprised pipeline elements 𝒱 and their directed event stream edges ℰ , we also
consider additional preference-based configurations Π. Preference-based configurations
Π=(𝜋𝑑, 𝜋𝑜) are defined by citizen technologists at the end of the pipeline authoring process.
So, apart from the actual analytical objective of a given pipeline, citizen technologists
are provided with additional settings to flexibly configure deployment options 𝜋𝑑 and
operation policies 𝜋𝑜 for processing pipelines according to use case-specific requirements.

96 7 Pipeline Deployment

This step is essential as it not only prepares pipelines for deployment, but also sets run-
time instructions for the remaining operation phase. In view of the preparation, this
includes the validation and selection of eligible nodes, methods for flexible event stream
management and the final geo-distribution of the pipeline to dispersed nodes in the fog
infrastructure which we detail in later.

In general, we differentiate between two types of preference-based configurations:

� Deployment options—Deployment options describe an arbitrary set of mapping
strategies that allow to assign individual pipeline elements to eligible deployment
target nodes.

� Operation policies—Operation policies denote run-time behavior of pipelines and
their surrounding application management.

Thereby, deployment options fall in the general research area of application placement or
scheduling. In the context of fog computing, this is oftentimes referred to as the fog
application assignment problem which has been broadly studied also in terms of multi-
component application placements [Wang et al. 2017; Bahreini and Grosu 2017]. As our
main focus is on event-driven application management in fog environments, formulating
a fog application assignment problem is out of scope for this work. In contrast, we assume
an a priori assignment as a result of user-made assignment decisions. To this extent,
citizen technologists are supported by the system and only presented valid and eligible
nodes deployment targets per pipeline element. We refer to this as the custom deployment
option. The custom deployment option further benefits from additional node metadata,
in particular from node tags. Node tags allow to further filter nodes according to its
semantics, in general representing any form of domain-specific meaning such the logical
location of a node.

In contrast, operation policies target relevant preference-based configurations that allow
citizen technologists to pass specific run-time instructions. These instructions are addi-
tionally added to the pipeline description and taken into consideration by the application
management. In particular, this targets the node controller due to its responsibility for
managing pipeline elements and associated tasks throughout the operation phase. In
contrast to deployment options where node assignments are applied per pipeline element,
operation policies general reflect global pipeline policies and are always applied on pipeline-
level, i.e., they are equally effective for all pipeline elements. In this work, we focus on
two types of operation policies with respect to (1) event stream relay management, and
(2) preemption. Operation policies for event stream relays 𝜋𝑟

𝑜 provide global operation
guidelines for the event stream relay mechanism employed in the node controller. Con-
cretely, we are concerned with the reactive behavior of event dissemination in case of
intermittent network outages. Thus, citizen technologists can choose between different
resiliency options for event stream relays. The relay operation policy is generic, like all
other policies and deployment options. Yet, in this work we exemplify two concrete
options, namely purge or buffer. While the naive purging option simply drops events

7.3 Geo-Distribution 97

between adjacent pipeline elements during a network outage, the buffer option implicates
a specific buffering strategy which allows to hold and persist output events from the
preceding pipeline elements. Further, operation policies for preemption 𝜋𝑝

𝑜 provide global
operation directives regarding a policy-driven offloading approach employed in the node
controller. This is part of the run-time adaptation of processing pipelines which we detail
in Section 8.3.3. In brief, citizen technologists may enable preemption and set a priority
class for a given pipeline. This information is obtained and used by the node controller
to evict lower-prioritized pipeline elements in the event of undesired context changes
during the execution, e.g., when a node is over-utilized. Similar to deployment options,
operation policies are extensible and allow to be further expanded in dependence of
additional run-time management tasks.

Example. Again, let us consider a four node fog infrastructure for the smart urban logistics
scenario and recall the location monitoring pipeline 𝒫𝑙𝑜𝑐 described in Figure 6.2. In contrast
to our initial settings, the citizen technologist now specifies additional deployment options and
operation policies. Figure 7.2 depicts the deployment request for 𝒫𝑙𝑜𝑐 with additional preference-
based configurations Π𝑙𝑜𝑐=(𝜋𝑑,𝑙𝑜𝑐, 𝜋𝑜,𝑙𝑜𝑐). Therefore, after choosing the custom deployment options
𝜋𝑑,𝑙𝑜𝑐=(⟨selected=𝑐𝑢𝑠𝑡𝑜𝑚⟩, ⟨nodeTags=𝒯𝑙𝑜𝑐⟩) including the node tags 𝒯𝑙𝑜𝑐={”𝑎𝑤𝑠”, ”𝑒𝑑𝑔𝑒”},
the citizen technologists is presented with a validated list of eligible deployment target nodes.
Moreover, the overall operation policies 𝜋𝑜,𝑙𝑜𝑐=(𝜋𝑟

𝑜,𝑙𝑜𝑐, 𝜋𝑝
𝑜,𝑙𝑜𝑐) comprise configurations for the event

stream relay management which is set to buffer 𝜋𝑟
𝑜,𝑙𝑜𝑐=(⟨buffer=𝑡𝑟𝑢𝑒⟩). Additionally, preemption

is enabled with a "high" priority class 𝜋𝑝
𝑜,𝑙𝑜𝑐=(⟨enabled=𝑡𝑟𝑢𝑒⟩, ⟨prio=ℎ𝑖𝑔ℎ⟩).

7.3.2 Validation and Selection

Previously, we assumed citizen technologists to be presented with a list of pre-filtered
deployment target nodes which we refer to as eligible nodes. In this section, we clarify
the notion of eligibility in the given context. After that, we describe how to find eligible
nodes as potential deployment targets which are provided to citizen technologists in the
node selection process.

To assist citizen technologists when assigning individual pipeline elements to nodes,
two tasks are required by the system: First, it must ensure the basic compatibility of
a given pipeline element with respect to present nodes. Second, it must assess and
validate the actual available node resource offers to reflect run-time changes in resource
usage. Moreover, user-selected node tags introduce additional criteria to shortlist node
candidates. This needs to be taken into account when finding eligible deployment target
nodes as they present meaningful domain-specific knowledge to citizen technologists. In
essence, given an individual pipeline element the notion of eligibility refers to nodes that
(1) are online and healthy at the time, (2) support to execute this pipeline element as a
result of the eager validation (see Section 7.2), (3) match at least one of the selected node
tags (if any) and (4) satisfy all resource requirements.

98 7 Pipeline Deployment

This demands an iterative validation approach that involves coarse to fine-grained node
filtering to find eligible nodes for a given pipeline element. Algorithm 2 shows our
validation approach which we explain in the following.

Algorithm 2 Coarse to fine-grained validation procedure for eligible nodes filtering
Input: a pipeline element 𝜌 ∈ 𝒱 in pipeline 𝒫 , set of selected node tags 𝒯
Output: set of eligible nodes 𝒩𝑒𝑙,𝜌 for pipeline element 𝜌

1: 𝒩𝑒𝑙,𝜌 ← ∅
2: 𝒩𝑜 ← getOnlineAndHealthyNodes ◁ node health monitor
3: if 𝒩𝑜 ̸= ∅ then
4: for each 𝑛 ∈ 𝒩𝑜 do
5: 𝒱𝑠 ← getSupportedPipelineElements(𝑛) ◁ eager validation
6: if containsElement(𝒱𝑠, 𝜌) then
7: 𝒩𝑒𝑙,𝜌 ← 𝒩𝑒𝑙,𝜌 ∪ 𝑛 ◁ pre-filter step num. 1
8: if 𝒩𝑒𝑙,𝜌 ̸= ∅ then
9: if 𝒯 ̸= ∅ then

10: 𝒩𝑒𝑙,𝑚 ← ∅
11: for each 𝑛 ∈ 𝒩𝑒𝑙,𝜌 do
12: 𝒯𝑛 ← getNodeTags(𝑛)
13: if anyTagMatch(𝒯𝑛, 𝒯) then ◁ node tag validation
14: 𝒩𝑒𝑙,𝑚 ← 𝒩𝑒𝑙,𝑚 ∪ 𝑛

15: 𝒩𝑒𝑙,𝜌 ← 𝒩𝑒𝑙,𝜌 ∩𝒩𝑒𝑙,𝑚 ◁ filter step num. 2
16: ℛ𝜌 ← req(𝜌)
17: 𝒩𝑒𝑙,𝑠 ← ∅
18: for each 𝑛 ∈ 𝒩𝑒𝑙,𝜌 do
19: 𝒪′

𝑛 ← off(𝑛) ◁ node resource monitor
20: if isSupported(ℛ𝜌,𝒪′

𝑛) then ◁ requirements validation
21: 𝒩𝑒𝑙,𝑠 ← 𝒩𝑒𝑙,𝑠 ∪ 𝑛

22: 𝒩𝑒𝑙,𝜌 ← 𝒩𝑒𝑙,𝜌 ∩𝒩𝑒𝑙,𝑠 ◁ filter step num. 3
return 𝒩𝑒𝑙,𝜌

The general idea behind the approach is to iteratively reduce the set of nodes which
ultimately leads to a subset of eligible nodes 𝒩𝑒𝑙,𝜌 for a given pipeline element 𝜌 and
selected node tags 𝒯 . Hereafter, when referring to a node we oftentimes imply the
NodeDescription whose concepts were discussed in the previous chapter. First, all online
and healthy nodes 𝒩𝑜 are collected from the node health monitor—a central service
within the node monitoring component and part of the node management that constantly
performance health checks and liveness probes on registered node controllers as discussed
in Section 6.5. Hence, if a registered node is considered "offline" or "unhealthy", either
because it is temporarily unavailable, e.g., due network outages in the edge and fog
layer, or due a software failure, it is excluded from this initial set of nodes. Next, each

7.3 Geo-Distribution 99

available node contains a set of supported pipeline elements 𝒱𝑠 as a result of the eager
validation which is now leveraged in order to pre-filter for nodes that support the given
pipeline element 𝜌 (Lines 4 to 7). Thereafter, the subset of temporary eligible nodes can
be validated with regard to potential user-selected node tags 𝒯 (Lines 9 to 15). Thereby, a
node must have at least one of the selected node tags to be further considered as eligible.
If citizen technologists do not select any node tags, this step is skipped. Lastly, the
resource requirements ℛ𝜌 for the given pipeline element are extracted and compared
against the current resource offers 𝒪′

𝑛 of each of the remaining temporary eligible nodes
using the introduced isSupported(ℛ𝜌,𝒪′

𝑛) function (Lines 16 to 22). It is worth noting
that the current hardware resource offers typically differ from the initial ones which
are used in the setup phase. This is due to the fact that all pipeline elements on a
node operate in a shared resource pool. To this end, available hardware resources are
continuously collected by the node resource monitor—another central service within
the node monitoring component that constantly gathers resources information via the
node controllers. If all pipeline elements requirements are still satisfied, this node is
considered eligible and appended to the set. Finally, the set of eligible nodes 𝒩𝑒𝑙,𝜌 for the
given pipeline element is returned to be utilized by citizen technologists.

Citizen technologists complete the pipeline authoring process by selecting an eligible
deployment target node per pipeline element.The resulting set 𝒵 = {<𝜌,𝑛>, ...}which
holds a key-value data structure with pipeline element-node description pairs is then
sent to the pipeline management. Here, individual pipeline element descriptions are first
updated with the assigned node and operation policies which are then used together
with directed event stream edges ℰ and preference-based configurations Π to create a
so-called configured pipeline 𝒫𝑐. The configured pipeline serves as a basis for generating
event stream relays which we discuss in the next section. Algorithm 3 shows the required
steps to create a configured pipeline.

Algorithm 3 Complete processing pipeline configuration
Input: a set of pipeline element-node description pairs 𝒵 , incomplete pipeline 𝒫𝑖

Output: configured pipeline 𝒫𝑐

1: 𝒫𝑐,𝒱𝑐 ← ∅
2: 𝒱 ← getPipelineElements(𝒫𝑖)
3: ℰ ← getDirectedEventStreamEdges(𝒫𝑖)
4: Π← getOptionsAndPolicies(𝒫𝑖) ◁ preference-based configurations
5: for each 𝜌 ∈ 𝒱 do
6: 𝑛← findSelectedNode(𝜌,𝒵)
7: 𝜌← updateDesc(𝑛, extractOp(Π)) ◁ set node target and operation policies
8: 𝒱𝑐 ← 𝒱𝑐 ∪ 𝜌

9: 𝒫𝑐 ← (𝒱𝑐, ℰ , Π) ◁ create configured pipeline
10: return 𝒫𝑐

100 7 Pipeline Deployment

7.3.3 Event Stream Management

After selecting eligible deployment target nodes for pipeline elements, the configured
pipeline including deployment options and operation policies is sent to the application
management layer in order to prepare the geo-distribution. As a result of the node
assignments, pipelines potentially span multiple layers along the cloud-edge continuum
with adjacent pipeline elements being dislocated on different fog infrastructure nodes.
This induces the need to provide a suitable mechanism that allows to forward output event
streams of preceding pipeline elements deployed on one node to their succeeding pipeline
elements deployed on another one. As a consequence, a crucial aspect within our holistic
management approach for event-driven applications is the event stream management, in
particular in terms of event stream relays based on the EventStreamRelay concept. In
the following, we first introduce the notion of location by defining pipeline element
co- and dislocation before elaborating on the cardinality of communication between
pipeline elements. Lastly, we introduce an event dissemination strategy for event-driven
applications in fog computing, present a definition for event stream relays and show how
to generate unique event stream relays for adjacent, dislocated pipeline elements.

First, let us introduce a helper function when dealing with pipeline element locations.
The function targetNode(𝜌) allows to retrieve the user-selected deployment target node
from the pipeline element description.

targetNode(𝜌) = 𝑛 𝜌 ∈ 𝒱 , 𝑛 ∈ 𝒩

Thus, we can formally define pipeline element colocation as follows:

Definition 8 (Pipeline Element Colocation). Within a configured pipeline
𝒫𝑐=(𝒱 , ℰ , Π), we consider two pipeline elements 𝜌𝑖, 𝜌𝑗 ∈ 𝒱 : 𝜌𝑖 ̸= 𝜌𝑗 colocated, if
the target node of 𝜌𝑖 is 𝑛𝑖, such that targetNode(𝜌𝑖) = 𝑛𝑖 and the target node of 𝜌𝑗 is
𝑛𝑗 , such that targetNode(𝜌𝑗) = 𝑛𝑗 and 𝑛𝑖 = 𝑛𝑗 for 𝑛𝑖, 𝑛𝑗 ∈ 𝒩 .

Similarly, we can formally define pipeline element dislocation which, in principle, is the
negation of pipeline element colocation (and vice versa).

Definition 9 (Pipeline Element Dislocation). Within a configured pipeline
𝒫𝑐=(𝒱 , ℰ , Π), we consider two pipeline elements 𝜌𝑖, 𝜌𝑗 ∈ 𝒱 : 𝜌𝑖 ̸= 𝜌𝑗 dislocated, if
the target node of 𝜌𝑖 is 𝑛𝑖, such that targetNode(𝜌𝑖) = 𝑛𝑖 and the target node of 𝜌𝑗 is
𝑛𝑗 , such that targetNode(𝜌𝑗) = 𝑛𝑗 and 𝑛𝑖 ̸= 𝑛𝑗 for 𝑛𝑖, 𝑛𝑗 ∈ 𝒩 .

Cardinality of Communication. As the pipeline application model discussed in Sec-
tion 6.2 assumes an EPN, potentially arbitrary pipeline topologies can occur. In contrast
to simple, linear pipeline topologies, more sophisticated and complex structures may be

7.3 Geo-Distribution 101

P S

Publisher Subscriber

S

tpout
i

tpin
j,1

tpin
j,2

tpin
j,m

⇢i 2 V\{S}, ⇢j,k 2 V\{A}, k 2 {1, 2, . . . , m}
⇢i 2 V\{S}, ⇢j 2 V\{A}

tpout
i

tpin
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

tpout
i

tpin
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

tpout
i

tpin
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

⇢i 2 V\S, ⇢j 2 V\A

⇢i 2 V\S, ⇢j,k 2 V\A, k={1, 2, . . . , m}(a) single-connected

PS S

S

S

tpout
i

tpin
j,1

tpin
j,2

tpin
j,m

⇢i 2 V\{S}, ⇢j,k 2 V\{A}, k 2 {1, 2, . . . , m}
⇢i 2 V\{S}, ⇢j 2 V\{A}

tpout
i

tpin
j,1

tpin
j,2

tpin
j,m

⇢i 2 V\{S}, ⇢j,k 2 V\{A}, k 2 {1, 2, . . . , m}
⇢i 2 V\{S}, ⇢j 2 V\{A}

tpout
i

tpin
j,1

tpin
j,2

tpin
j,m

⇢i 2 V\{S}, ⇢j,k 2 V\{A}, k 2 {1, 2, . . . , m}
⇢i 2 V\{S}, ⇢j 2 V\{A}

tpout
i

tpin
j,1

tpin
j,2

tpin
j,m

⇢i 2 V\{S}, ⇢j,k 2 V\{A}, k 2 {1, 2, . . . , m}
⇢i 2 V\{S}, ⇢j 2 V\{A}

tpout
i

tpin
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

tpout
i

tpin
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m
tpout

i

tpin
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m
tpout

i

tpin
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

⇢i 2 V\S, ⇢j 2 V\A

⇢i 2 V\S, ⇢j,k 2 V\A, k={1, 2, . . . , m}
(b) multi-connected

Figure 7.3 Cardinality of communication between pipeline elements

modeled by citizen technologists including segments where the pipeline splits. In such a
case, the pipeline element that fans-out the event stream has more than one successor
which is, in general, what we refer to as the cardinality of communication. Hence, the
actual cardinality of communication for a given pipeline element is determined by the
number of its successors. Despite arbitrary pipeline topologies, we can generally classify
the cardinality of communication according to the following two categories which are
illustrated in Figure 7.3:

� Single-connected—A single-connected communication considers a 1:1-mapping be-
tween exactly two adjacent pipeline elements, i.e., between a predecessor 𝜌𝑖 and its
only successor 𝜌𝑗 . Events published by 𝜌𝑖 over its output transport protocol 𝑡𝑝out

𝑖

are subscribed by 𝜌𝑗 over its input transport protocol 𝑡𝑝in
𝑗 . The cardinality is 1.

� Multi-connected—A multi-connected communication is a 1:𝑚-mapping between one
predecessor 𝜌𝑖 and multiple successors 𝜌𝑗,𝑘 for 𝑘 = {1, 2, . . . , 𝑚}. While the prede-
cessor is always the same a multitude of successors exist. Still, events published by
𝜌𝑖 over its output transport protocol 𝑡𝑝out

𝑖 are subscribed by each successor over its
dedicated input transport protocol 𝑡𝑝in

𝑗,𝑘. Here, the cardinality is 𝑚. As can be seen,
the single-connected communication is a specialization of the multi-connected one
for 𝑘 = 1.

In general, as the communication model among any two interconnected pipeline elements
is based on the topic-based publish/subscribe pattern, the event stream relay extends this
by providing a flexible publish/subscribe concept that allows to map event streams from
arbitrary source transport protocols to arbitrary target transport protocols as pointed out
in Section 6.4.5. In particular, this approach generalizes the event dissemination among
various message broker technologies and reflects the induced needs within the IIoT in
terms of lightweight edge and fog transport protocols such as MQTT and scalable cloud
transport protocols such as Kafka.

102 7 Pipeline Deployment

Locality-Aware Event Dissemination Strategy. Following, we elaborate on the con-
cepts behind our locality-aware event dissemination strategy (LAEDS). Thereby, LAEDS sits at
the core of the event stream management approach for operating geo-distributed process-
ing pipelines and builds the foundations for event stream relays. Thereby, event stream
relays play a vital role in realizing complex flows of events in highly geo-distributed
systems such as fog computing infrastructures. In this regard, by assigning deployment
target nodes to pipeline elements, we introduced the notion of location to a pipeline
element which is a decisive factor for LAEDS as it determines whether adjacent pipeline
elements are co- or dislocated. As such, we provided a formal introduction to the fog
infrastructure model in Section 6.3 and stated related assumptions about both local and
shared message broker with publish/subscribe capability. Hereby, LAEDS tries to re-
duce excessive network round trips to remote message brokers while still employing the
flexibility of the publish/subscribe mechanism. Therefore, the main objective is to keep
event dissemination between adjacent and colocated pipeline elements local referred to
as intra-node communication and only leave a node to forward events if any two adjacent
pipeline elements are dislocated which is referred to as inter-node communication. The
communication models employed using LAEDS can be described as following and are
further exemplified in Figure 7.4.

� Intra-node communication model—Used between any two adjacent and colocated pipeline
elements deployed on edge or fog nodes over a local message broker. Adjacent and
colocated pipeline elements on cloud nodes use a shared message broker for event
dissemination not necessarily residing on the same node.

� Inter-node communication model—Used between any two adjacent and dislocated
pipeline elements and require an event stream relay to realize edge-edge, edge-
fog, edge-cloud or fog-cloud communication (and vice versa). Similarly to the
intra-node case, adjacent and dislocated pipeline elements on cloud nodes, i.e.,
cloud-cloud communication, use a shared message broker and do not require an
event stream relay.

While the intra-node communication model is targeted by extending state-of-the-art
transport protocol negotiation and matching mechanisms [Riemer 2016], the inter-node
communication model typically requires the event stream relay concept. In this case, the
output event stream of the preceding pipeline element is first sent to the local message
broker. From there, it is intercepted and forwarded by the event stream relay manager
component of the node controller which we discuss in Section 7.3.5. The reason for this
additional step is to incorporate resiliency options for event stream relays in situations
where network connections are interrupted, e.g., events can be buffered and re-sent
after reestablishing the connection. A special case for both communication models are
adjacent pipeline elements on cloud nodes. Here, shared cloud message brokers are
typically highly available due to several broker replica instances deployed on multiple
nodes which makes event stream relays obsolete.

7.3 Geo-Distribution 103

Node

Message Brokerlocal,i

Node Controller

PE-Service
P SS P

tpout
i

tpin
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

tpout
i

tpin
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

ni nj

ni 2 N\Nc, tp
out
i = tpin

j

ni, nj 2 N\Nc, ni 6= nj , tp
out
i 6= tpin

j(a) intra-node (local broker)
edge, fog only

Node Node

MBlocal,i MBlocal,j

NCNC S P

S PPS

tpout
i

tpin
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

tpout
i

tpin
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

ni nj ni nj

s(tpfrom
i) tpto

j)

ni 2 N\Nc, tp
out
i = tpin

j

ni, nj 2 N\Nc, ni 6= nj , tp
out
i 6= tpin

j

(b) inter-node (local broker + relay)
edge↔edge, fog↔fog, edge↔fog

ni 2 N\{Nc}, tpQmi
i = tpBM

j

ni 2 Nc, tp
Qmi
i = tpBM

j

ninj 2 N\{Nc}, ni 6= nj , tp
Qmi
i 6= tpBM

j

ninj 2 Nc, ni 6= nj , tp
Qmi
i = tpBM

j

Node

Message Brokershared

Node Controller

PE-Service
P SS P

tpQmi
i

tpBM
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

tpQmi
i

tpBM
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

ni nj

(c) intra-node (shared broker)
cloud only

Node Node

Message Brokershared

NC

S PPS

NC tpQmi
i

tpBM
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

tpQmi
i

tpBM
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

ni nj ni nj

ni, nj 2 Nc, ni 6= nj , tp
out
i = tpin

j

(d) inter-node (shared broker)
cloud↔cloud

Figure 7.4 Locality-aware event dissemination strategy: Intra and inter-node communication models

Event Stream Relay—Definition and Generation. In the following, we focus on inter-
node communication and elaborate on the notion of event stream relays that are a key
enabler for geo-distributed operation of processing pipelines. Hereafter, we will occa-
sionally use the shorter term relay as a synonym for event stream relay. As previously
discussed, a relay serves as an intermittent proxy for inter-node event dissemination
between adjacent, dislocated pipeline elements. While the transport protocol description
for the message broker technology can differ, the identifying topic for the corresponding
event stream and thus for publish/subscribe interaction stays the same. Event stream
relays are exclusive to its respective processing pipeline and are thus not shared among
different pipelines. Consequently, relays are generated according to the user-defined
mapping of pipeline elements to deployment target nodes and are thus typically static
during the operation phase. Yet, with one exception during pipeline element migration
which requires relay modification and is subject of Section 8.3.2. Another crucial aspect
results from the topic-based publish/subscribe communication mechanism employed
within our event stream model which demands for unique target transport protocols. For
instance, consider two colocated successors, so-called neighboring successors—in such a
case, there must only be one relay instance present that forwards events from the preced-
ing pipeline element to the target input stream transport protocols to prevent run-time
event duplicates on the subscriber side. Thus, the cardinality of communication differ-

104 7 Pipeline Deployment

entiates the logical level and the physical level. The logical level denotes conceptualized
processing pipelines as modeled by citizen technologists. The physical level denotes the
actual event dissemination during pipeline operation dependent on the node assignment
of pipeline elements. Therefore, not all logical predecessor-successor connections result
in an instantiated relay. Further, relays are transient and only exist at pipeline run-time
during the operation phase. In general, we can define event stream relays as follows:

Definition 10 (Event Stream Relay). An event stream relay 𝑠 ∈ 𝒮𝑟 is a transient,
inter-node communication mechanism for adjacent, dislocated pipeline elements. A
relay is a quadruple 𝑠=(𝑛, 𝜋𝑟

𝑜, 𝑡𝑝from
𝑖 , Γto

𝑗), where 𝑛 is the originating node 𝑛 ∈ 𝒩 , 𝜋𝑟
𝑜 is

the relay operation policy, 𝑡𝑝from
𝑖 is the source transport protocol for the output-side

of the predecessor 𝜌𝑖 ∈ 𝒱∖𝑆, and Γto
𝑗 is a set of unique target transport protocols for

the input-side of successors 𝜌𝑗,𝑘 ∈ 𝒱∖𝐴, 𝑘 = {1, 2, . . . , 𝑚}.

Given an event stream relay 𝑠, the cardinality of communication on a physical level is
determined by the size of the set of unique target transport protocols Γto

𝑗 . Hence, the
physical cardinality of communication is at most 𝑚, i.e., the number of successors for a
minimum of 𝑚+1 nodes as a prerequisite for evenly distributed and dislocated successors
without any neighboring effects:

card(𝑠) = |Γto
𝑗 | =

⎧⎨⎩ multi-connected, for |Γto
𝑗 | > 1 with |Γto

𝑗 | ≤ 𝑚

single-connected, for |Γto
𝑗 | = 1

Next, we will elaborate on how event stream relays are generated within the central
pipeline management. Hence, given the configured processing pipeline 𝒫𝑐=(𝒱 , ℰ , Π)
with a user-selected deployment target node per pipeline element, we can break down
the general task of constructing event stream relays in two phases that altogether reflect
the previously stated criteria for event stream relays according to Definition 10, namely
(1) adjacency, (2) dislocation and (3) uniqueness. First, relevant pipeline element pairs need
to be identified where relays are indispensable (criteria 1 and 2). Second, a distinct set of
target transport protocols with only unique elements, i.e., no duplicates, must be ensured
(criteria 3). This is especially of relevance in the case of a multi-connected communication
with several successors. For the first part, we can formulate a logical statement expressed
within the boolean function reqRelay(𝜌𝑖, 𝜌𝑗) which defines whether an event stream
relay between two input pipeline elements is generally required.

𝜌𝑖 ∈ 𝒱∖𝑆, 𝜌𝑗 ∈ 𝒱∖𝐴, 𝜌𝑖 ̸= 𝜌𝑗 :
(︁
reqRelay(𝜌𝑖, 𝜌𝑗) ⇐⇒

adjacent(𝜌𝑖, 𝜌𝑗) ∧ dislocated(𝜌𝑖, 𝜌𝑗)
)︁

First, given a set of directed event stream edges ℰ from our pipeline description, the
boolean function adjacent(𝜌𝑖, 𝜌𝑗) defines whether two pipeline elements are adjacent
according to Definition 7 (see Section 6.2).

𝜌𝑖 ∈ 𝒱∖𝑆, 𝜌𝑗 ∈ 𝒱∖𝐴, 𝜌𝑖 ̸= 𝜌𝑗 :
(︁
adjacent(𝜌𝑖, 𝜌𝑗) ⇐⇒ ∃(𝜌𝑖, 𝜌𝑗) ∈ ℰ

)︁

7.3 Geo-Distribution 105

Second, the boolean function dislocated(𝜌𝑖, 𝜌𝑗) determines whether two pipeline ele-
ments are dislocated according to Definition 9. We can leverage the helper function
targetNode(𝜌) in order to extract the assigned deployment target node for a given
pipeline element.

𝜌𝑖, 𝜌𝑗 ∈ 𝒱 , 𝜌𝑖 ̸= 𝜌𝑗 :
(︁
dislocated(𝜌𝑖, 𝜌𝑗) ⇐⇒

∃𝑛𝑖, 𝑛𝑗 ∈ 𝒩 : (targetNode(𝜌𝑖) = 𝑛𝑖, targetNode(𝜌𝑗) = 𝑛𝑗, 𝑛𝑖 ̸= 𝑛𝑗)
)︁

While both the adjacency and dislocation criteria postulate the general reason to instan-
tiate an event stream relay at all, it is the uniqueness criteria that needs to be carefully
considered when instantiating a relay to prevent run-time event duplicates as previously
mentioned. This particularly applies for potential neighboring successors that are both
dislocated from the same predecessor but in turn are colocated. Consequently, these neigh-
boring successors not only share the same node but also share the same input transport
protocol on their subscriber side, e.g., the same local node broker and the same topic
scheme. In order to evaluate the uniqueness criteria for a relay we can examine the existence
of an event stream relay 𝑠 ∈ 𝒮𝑟 for a given source-target transport protocol relation and
use the negation to assess whether or not such as a relay can be considered as unique.
Let us introduce two helper functions when dealing with an event stream relay.

fromSourceTp(𝑠) = 𝑡𝑝from
𝑖 𝑠 ∈ 𝒮𝑟

toTargetsTp(𝑠) = Γto
𝑗 𝑠 ∈ 𝒮𝑟

While the function fromSourceTp(𝑠) allows to extract the source transport protocol of
the relay, the function toTargetTp(𝑠) extracts the set of unique target transport protocols
for all successors. Finally, the boolean function completeMatch(𝑡𝑝out

𝑖 , 𝑡𝑝in
𝑗) determines

whether an even stream relay already exists given an output stream transport protocol of
a predecessor and an input stream transport protocol of a successor. Hereby, Γ denotes a
set of all transport protocols.

𝑡𝑝out
𝑖 , 𝑡𝑝in

𝑗 ∈ Γ :
(︁
completeMatch(𝑡𝑝out

𝑖 , 𝑡𝑝in
𝑗) ⇐⇒

∃𝑠 ∈ 𝒮𝑟 : (fromSourceTp(𝑠) = 𝑡𝑝from
𝑖 , toTargetsTp(𝑠) = Γto

𝑗 , Γto
𝑗 ⊂ Γ

(𝑡𝑝from
𝑖 = 𝑡𝑝out

𝑖) ∧ ∃!𝑡𝑝to
𝑗 ∈ Γto

𝑗 : (𝑡𝑝to
𝑗 = 𝑡𝑝in

𝑗)))
)︁

Given the inputs, the existence of an event stream relay and thus a complete match can
be assured by verifying matching transport protocols for both the source-side and the
target-side against existing relay descriptions. This requires a full property match of the
provided transport protocol descriptions. For instance, two epa:MqttTransportProtocol
instances which contain the same properties for the broker hostname "localhost", the
port "1883" and the topic scheme "org.example.point.in.polygon-1234" are considered
matching. If both condition are met, a designated relay was already added to the relay
set for another neighboring successor. Hence, the logical event stream edge from the
predecessor to the inspected successor is already covered by an existing relay.

106 7 Pipeline Deployment

Algorithm 4 Event stream relay generation
Input: a configured pipeline 𝒫𝑐=(𝒱 , ℰ , Π)
Output: set of event stream relays 𝒮𝑟

1: 𝒮𝑟 ← ∅
2: 𝜋𝑟

𝑜 ← getRelayOption(𝒫𝑐) ◁ global relay operation policy
3: 𝒱 ← getPipelineElements(𝒫𝑐)
4: 𝒱∖𝑆 ← findPredCandidates(𝒱) ◁ set of potential predecessors
5: 𝒱∖𝐴← findSuccCandidates(𝒱) ◁ set of potential successors
6: ℰ ← getDirectedEventStreamEdges(𝒫𝑐)
7: for each 𝜌𝑖 ∈ 𝒱∖𝑆 do
8: for each 𝜌𝑗 ∈ 𝒱∖𝐴 do
9: 𝑝𝑟𝑒𝑑← 𝜌𝑖

10: 𝑠𝑢𝑐𝑐← 𝜌𝑗

11: if reqRelay(𝑝𝑟𝑒𝑑, 𝑠𝑢𝑐𝑐) then ◁ verify adjacency & dislocation
12: 𝑛𝑝𝑟𝑒𝑑 ← targetNode(𝑝𝑟𝑒𝑑)
13: 𝑡𝑝from

𝑝𝑟𝑒𝑑 ← outTp(𝑝𝑟𝑒𝑑)
14: 𝑡𝑝to

𝑠𝑢𝑐𝑐 ← inTp(𝑠𝑢𝑐𝑐)
15: Γto

𝑠𝑢𝑐𝑐 ← ∅ ∪ 𝑡𝑝to
𝑠𝑢𝑐𝑐 ◁ init target protocol set

16: 𝑠new ← 𝑛𝑒𝑤 EventStreamRelay(𝑛𝑝𝑟𝑒𝑑, 𝜋𝑟
𝑜, 𝑡𝑝from

𝑝𝑟𝑒𝑑 , Γto
𝑠𝑢𝑐𝑐)

17: if 𝒮𝑟 ̸= ∅ then
18: 𝒮𝑟 ← 𝒮𝑟 ∪ 𝑠new
19: else if ¬completeMatch(𝑡𝑝from

𝑝𝑟𝑒𝑑 , 𝑡𝑝to
𝑠𝑢𝑐𝑐) then ◁ verify uniqueness

20: 𝑠old ← findRelay(𝑡𝑝from
𝑝𝑟𝑒𝑑 ,𝒮𝑟)

21: if 𝑠old ̸= 𝑛𝑢𝑙𝑙 then
22: appendToTargetsTp(𝑠old, 𝑡𝑝to

𝑠𝑢𝑐𝑐) ◁ update description
23: else
24: 𝒮𝑟 ← 𝒮𝑟 ∪ 𝑠new

return 𝒮𝑟

Algorithm 4 incorporates the stated relay criteria and functions to describe how an
event stream relay is generated based on a configured pipeline 𝒫𝑐. First, a set of event
stream relays is initialized to store all generated ones for the given pipeline. Apart from
the relay operation policy, a valid predecessor and successor candidate set of pipeline
elements as well as all directed event stream edges are extracted from the pipeline
description in a preliminary step (Lines 2 to 6). Next, we iterate over the candidate sets
and perform a pairwise evaluation of preceding pipeline elements 𝑝𝑟𝑒𝑑 and succeeding
pipeline elements 𝑠𝑢𝑐𝑐 to assess whether an event stream relay is required. This essentially
validates the fundamental two relay criteria, namely adjacency and dislocation, by means
of the introduced function (Line 11). Next, all required relay properties according to
Definition 10 are extracted, including the originating node, the source transport protocol
as well as the target transport protocol which is added to an initial target protocol set.

7.3 Geo-Distribution 107

a1

p2 s3

adjacent,
colocated

adjacent,
dislocated

NodeN=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

Node

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

other
pipeline elements

(a) 𝑎1 and 𝑝2: adjacent, colocated
𝑝2 and 𝑠3: adjacent, dislocated

a1

p2 s3

P

P SRelayS

intra-node
inter-node

NodeN=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

Node

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

tp7`QK
p2

tpiQ
s3

tp7`QK
p2

tpiQ
s3

(b) LAEDS: intra-node for 𝑎1 → 𝑝2
LAEDS: inter-node for 𝑝2 → 𝑠3

Figure 7.5 Running example: Event stream management

This allows to create an initial, yet temporary, relay 𝑠new for the current 𝑝𝑟𝑒𝑑−𝑠𝑢𝑐𝑐-pair
(Line 16) which can be added to the overall relay set if this is still empty. Otherwise, the
uniqueness criteria must be evaluated to ensure that there is no such relay already present
(Line 19). Still in a multi-connected case, additional target protocols must be added to the
target set to provide the originating node controller with essential information where to
publish events to. Therefore, it is necessary to evaluate if there is a relay, here referred to
𝑠old, which has the same source transport protocol as the current temporary one (Line 20).
If so, the target transport protocol is added as an additional entry and used to update the
existing relay description. If this is not the case, the existing temporary relay is added as
a new entry to the overall relay set. Eventually, after iterating over all 𝑝𝑟𝑒𝑑−𝑠𝑢𝑐𝑐-pairs,
the required relays of the given pipeline are generated and the set of event stream relays
is returned.

These are then leveraged in combination with the configured pipeline to distribute
individual pipeline elements alongside event stream relay invocation requests which we
will describe next.

Example. Figure 7.5 highlights essential points in view of event stream management aspects.
Again, let us use the location monitoring pipeline 𝒫𝑙𝑜𝑐 and its three pipeline elements, namely
the GPS adapter 𝑎1, the point-in-polygon processor 𝑝2 and the notification sink 𝑠3. In order to
examine how the event stream management based on LAEDS works, we rely on a configured
pipeline𝒫𝑙𝑜𝑐,𝑐. The configured pipeline contains information on assigned node for pipeline elements
apart from operation policies such as the relay operation policy specified by citizen technologists.
This allows to determine what communication model (intra-node, inter-node) between adjacent
pipeline elements is employed. Here, the GPS adapter 𝑎1 and the point-in-polygon processor 𝑝2
are assigned to the edge node 𝑛1. At the same, the notification sink 𝑠3 is assigned to the cloud node
𝑛3. This provides essential location information to determine that both 𝑎1 and 𝑝2 are adjacent and
colocated while 𝑝2 and 𝑠3 are adjacent but dislocated (Figure 7.5a). As defined by LAEDS, the
communication model between 𝑎1 and 𝑝2 falls into the category of the intra-node communication
using the local node broker of the edge node. However, as the point-in-polygon processor 𝑝2
and the notification sink 𝑠3 fulfill the two preliminary criteria for event stream relays, namely

108 7 Pipeline Deployment

adjacency and dislocation, an event stream relay is required to realize inter-node communication
from the edge node 𝑛1 to the cloud node 𝑛3. As the point-in-polygon processor 𝑝2 has no further
succeeding pipeline elements, the uniqueness criteria is fulfilled. Consequently, an event stream
relay needs to be generated (Figure 7.5b). According to Definition 10, the generated event stream
relay 𝑠 = (𝑛1, ⟨buffer=𝑡𝑟𝑢𝑒⟩, 𝑡𝑝from

𝑝2 , {𝑡𝑝𝑡𝑜
𝑠3}) comprises four essential elements which define it:

(1) the origin node for the relay, here the edge node 𝑛1, (2) the user-select relay operation policy
𝜋𝑟

𝑜 which can be taken from the configured pipeline 𝒫𝑙𝑜𝑐,𝑐, here the citizen technologist enabled
the buffer option, (3) the publisher output transport protocol of the predecessor, here the point-in-
polygon processor with outTp(𝑝2) = 𝑡𝑝from

𝑝2 for its output publisher and (4) a set of subscriber
input transport protocols of the successors, here only the notification sink inTp(𝑠3) = 𝑡𝑝𝑡𝑜

𝑠3 which is
subsequently added to the overall target transport protocol set. So, while there is topic equality on
both the source and the target transport protocols, the actual represented broker technology might
differ. In our case, the relay mediates between the lightweight epa:MqttTransportProtocol on
the edge node and the scalable epa:KafkaTransportProtocol on the cloud node.

7.3.4 Pipeline Element and Relay Distribution

From the central application management side, the generation of required event stream
relays for a processing pipeline finalizes the required preparation steps prior to geo-
distributing individual pipeline elements and required event stream relays to chosen
deployment target nodes. Afterwards, all run-time management tasks regarding the exe-
cution and operation of individual pipeline elements are delegated to the node controller
which we describe in Section 7.3.5.

In order to distribute pipeline elements and even stream relays to destined deployment
target nodes, we leverage the concept of service invocation as explained in Section 6.2.
Therefore, this allows to easily instantiate required pipeline elements and relays upon
receiving individual service invocation requests for event stream relay invocation and
pipeline element invocation. While the event stream relay invocation request encompasses
an EventStreamRelay description which is directly processed within the node controller
itself, the pipeline element invocation request is proxied by the node controller to the
colocated pipeline element service. In turn, the pipeline element service leverages the
entailed invocation graph which contains all user-defined configurations and allows to
instantiate the designated pipeline element type as briefly touched in Section 2.2.3. In
general, invocation graphs are serialized as JSON-LD and sent to the respective node
controllers via the web standard Hypertext Transfer Protocol (HTTP). Thereby, pipeline
elements and event stream relays are iteratively rolled-out. At first, all required event
stream relays are instantiated. Afterwards, all pipeline elements of the pipeline graph
are instantiated according to a post-order traversal, i.e., downstream pipeline elements
are started prior to upstream ones. Instantiated relays and the configured pipeline are
persisted within the central database on cloud level.

7.3 Geo-Distribution 109

Node

Message Brokerlocal

Node Controller S P Node

Message Brokershared

NC

aws

Events

Delivery Robot
GPS Module

Result
a1 p2P S P

ka-east

/dev/ttyACM0

PIP Processor

edge

gps

GPS Adapter

drobot

s3S

frankfurt

Notification Sink

PE
Invocation

HTTP POST
(JSON-LD)

Control flow Data flow Pub/SubSP

2

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

Relay
Invocation

1

�+s(tp7`QK
p2

)tpiQ
s3

)

PE
Invocation

4

�+a1, p2

�+s3

�+a1, p2

�+s3

PE
Invocation

3

�+p2

Figure 7.6 Running example: Pipeline element and event stream relay distribution

In view of the remainder of this work, we introduce a formalism for both invoking
and detaching pipeline element and event stream relays. The notation opts to aid the
reader to better understand respective management tasks during the operation phase.
Consequently, we use the symbol "○+ " to indicate a service invocation request and "○− " to
indicate a service detach request as shown in the following overview:

Formalism for the notation
{○+ ,○−}𝑠(𝑡𝑝from

𝑖 , Γto
𝑗) Relay {invocation, detach} request to {start all, stop all} relays

from the output transport protocol of a predecessor 𝑡𝑝from
𝑖 to

a unique set of input transport protocols of successors Γto
𝑗 .

{○+ ,○−}𝑠(𝑡𝑝from
𝑖) 𝑡𝑝to

𝑗) Relay {invocation, detach} request to {start, stop} an individual
relay from the output transport protocol of a predecessor
𝑡𝑝from

𝑖 to the input transport protocol of one successor 𝑡𝑝to
𝑗 .

{○+ ,○−}𝜌𝑖 Pipeline element {invocation, detach} request to {start, stop} a
specific pipeline element 𝜌𝑖.

Example. Figure 7.6 depicts the pipeline element and event stream relay distribution and in-
stantiation of 𝒫𝑙𝑜𝑐 on two deployment target nodes. Numbers at the invocation requests indicate
the deployment sequence. Nodes were selected by the citizen technologist after being validated
while respecting custom deployment options 𝜋𝑑,𝑙𝑜𝑐=(⟨selected=𝑐𝑢𝑠𝑡𝑜𝑚⟩, ⟨nodeTags=𝒯𝑙𝑜𝑐⟩) of
the given node tags 𝒯𝑙𝑜𝑐={”𝑎𝑤𝑠”, ”𝑒𝑑𝑔𝑒”} and stated pipeline element requirements. First, the
relay is instantiated○+𝑠(𝑡𝑝from

𝑝2) 𝑡𝑝to
𝑠3) for the inter-node communication between the dislocated

point-in-polygon processor 𝑝2 and the notification sink 𝑠3 by the node controller on the edge
node 𝑛1. Subsequently, the notification sink is started ○+𝑠3 on the cloud node 𝑛3. Lastly, the
point-in-polygon processor○+𝑝2 and the GPS adapter○+𝑎1 are started on the edge node 𝑛1.

110 7 Pipeline Deployment

Node

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

edge
gps

drobot ka-east
/dev/ttyACM0

Node

Message Brokerlocal

Container Runtime

Node Controller

N
od

e
M

an
ag

er

Offloading
Manager

Pipeline Element
Manager
Container
Manager

API

Event Stream
Relay Manager

PE-Service

Sinks

Processors

Adapters

s1 ...

p1 p2

a1 ...

Running PEAvailable PE

Node Controller

PE-Service

HW

aws frankfurt

PEs3

Persistent Storage

Node Controller

PE-Service

CR

HW

aws frankfurt

PS CRPS

Message Brokershared

Application Management Layer (Cloud)

Pipeline Management
Node Life Cycle
Management

Node
Monitoring

Node
Sync Deploy Adapt

HC HCHealth
Check

Resource
Collection

RC RC

ARM64

x86 x86

CPU MEM DISK NET GPU

PEPEs3S
P

HTTP GET

Control flow Data flow Pub/SubSP

Exploit
Node Management

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

Figure 7.7 Node controller, pipeline element and event stream relay operation: Architecture overview

7.3.5 Node Controller

In this section, we focus on the node controller which receives pipeline element and
event stream relay descriptions from the central pipeline management and assures local
execution and run-time management during the operation phase. Yet, the node controller
covers all related life cycle phases discussed in Section 7.2 in order to ensure a holistic
event-driven application management on node level. Following, we provide an in-depth
overview of the node controller architecture and elaborate on its interplay with the
container runtime and the pipeline element and message broker service as illustrated in
Figure 7.7.

In short, the node controller comprises six core components:

� REST API—Common API using web standard HTTP protocol
� Node Manager—Deals with all node-local management tasks
� Container Manager—Common interface to the container runtime
� Pipeline Element Manager—Manages pipeline elements throughout their life cycle
� Event Stream Relay Manager—Manages the execution of event stream relays
� Offloading Manager—Policy-driven offloading detailed in Section 8.3.3

7.3 Geo-Distribution 111

In general, we distinguish between two types of communication, namely data flow and
control flow. The former denotes the discussed dissemination of events throughout the
pipeline from external IoT event sources over adapters and processors to sinks. The
latter characterizes all system-side messages that in turn carry internal events essential
for various management-related tasks in terms of pipeline deployment and operation.
Therefore, the node controller exposes a set of management endpoints over a REST API
for external communication and internal communication as shown in Figure 7.7. On
the one hand, external communications describes all communication with the central
application management layer, e.g., to perform regular health checks and collect resource
metrics. On the other hand, internal communication refers to node-level communication
to the pipeline element service.

The node manager component is responsible for all node-related management tasks that
includes the instantiation of the NodeDescription for the underlying node resources on
hardware, software and connectivity level alongside the registration at the central node
management during the setup phase as presented in Section 6.5. In addition, the node
controller handles the collection and monitoring of resource metrics during the operation
phase and provides management interfaces to disable a node in preparation for eventual
node maintenance. In particular, the node manager’s ability to observe the current
node resource consumption is leveraged within the previously described validation
procedure to find eligible deployment target nodes prior to pipeline deployment. Relevant
metrics are regularly retrieved by the central node monitoring component over the
REST API to update the global view on the actual resource situation. Another aspect is
related to the usage of container technology for the orchestration of services in general.
While the feasibility of container technology within fog computing is indisputable, it
introduces a non-negligible challenge in terms of file system littering. This results from
partly downloaded container images and outdated volume mappings which reduces
the effective disk storage. In particular on resource-constrained edge nodes with limited
storage capacity, this becomes a serious issue. Hence, the node manager automatically
removes unused image cache and volume mappings to free up disk space.

The container manager is the central interface to the present container runtime on a node
and is responsible to handle all matters related to orchestrating and managing container-
ized services, i.e., starting, inspecting, stopping the pipeline element container or message
broker container instances. Therefore, the node controller contains a set of Deployment-
Container descriptions which we discussed in Section 6.4.3. These descriptions are
explicitly kept generic such that the container manager is able to construct concrete orches-
tration commands in dependence of the concrete container runtime present. Moreover,
upon acknowledging the successful registration of the node controller, the initialization
routine instructs the container manager to perform an auto-deployment of respective
DeploymentContainer suitable for the given CPU architecture, e.g., x86, ARM64, which
starts the pipeline element container and subsequently follows the individual life cycle
stages which are reflected within the pipeline element manager.

112 7 Pipeline Deployment

Hence, the pipeline element manager is a central component within the node controller
as its responsibility lies in overseeing and managing pipeline elements along their life
cycle. This includes several operations, including (1) performing the eager validation
upon pipeline element service registration to early identify supported pipeline elements
as discussed in Section 7.2, (2) propagating service invocation and detach requests to the
pipeline element service to start and stop corresponding pipeline elements, (3) conducting
run-time adaptations such as pipeline element reconfiguration, migration or offloading
which is part of Chapter 8. Lastly, when a pipeline element container is removed from a
node, e.g., when performing an update to a new pipeline element service version, the
pipeline element manager first clears the list of supported pipeline elements within the
NodeDescription before issuing an update request to the central application management
to deregister and remove these elements from the central storage. To perform these
operations, the pipeline element manager entails several interaction handlers that each
address a different stage within the pipeline element life cycle. For instance, once a
certain pipeline element is invoked, a specific interaction handler deals with the received
service invocation request and proxies it to the pipeline element service. Moreover,
other interaction handlers exist, including ones for pipeline element reconfiguration
detailed in Section 8.3.1 and offloading detailed in Section 8.3.3. In general, the objective
of the pipeline element manager is to ensure the uptime of invoked pipeline elements at
run-time in resilient manner. Therefore, once successfully invoked, a reference for the
running pipeline element instance is stored in a persistent storage solution external to
the container environment due to the ephemeral characteristic of containers as shown
in Figure 7.7. Consequently, in case of a node failure or restart, the node controller first
redeploys the containerized pipeline element and message broker service. It then checks
for formerly stored instance references in the persistent storage and automatically restarts
pre-invoked pipeline elements accordingly in order to recover from the failure and ensure
the availability of this part of the processing pipeline.

The event stream relay manager is another key component of local management capabilities
of the node controller. While we already discussed the fundamentals of event stream
relays and their generation as part of the central application management in Section 7.3.3,
it is the job of the event stream relay manager to instantiate dedicated relays according to
the relay service invocation requests and their contained EventStreamRelay description.
Therefore, it acts as both subscriber and publisher at the same time while mediating
among arbitrary transport protocols for adjacent pipeline elements on different nodes
and forwarding event streams from one message broker to another. The EventStreamRe-
lay description not only includes relevant mapping information about the source and
target transport protocol but also carries essential preference-based operation policies
for relays as discussed in Section 7.3.1. These operation policies denote global run-time
management aspects at pipeline-level that, in the case of relays, apply for all event stream
relays of the given pipeline. The main objective behind this approach is to allow citizen
technologists to configure the event stream relay manager for situations of unreliable net-
work which in the present work includes, but is not limited to, a purge and a buffer option.

7.4 Tools 113

In fog computing, where a subset of nodes are exposed to the physical surroundings
of the real world, including mobile node scenarios, a stable network connection cannot
be guaranteed at any time and requires a resiliency mechanism employed in the event
stream management. Therefore, the proposed relay options are generic preference-based
configurations which define certain resilient behavior for the management of event-driven
applications in order to meet use case-specific demands. While the purge option is a
naive strategy that simply discards events in case of an offline situation and is valuable
in situations where temporary unavailability of the the application can be tolerated. The
buffer option implicates a strategy that stores events upon detecting connectivity issues
to the downstream message broker of the succeeding pipeline element by providing a
suitable and flexible storage approach. Upon reestablishing a stable connection, buffered
events are re-sent while guaranteeing the order. For instance, such a flexible storage
approach for buffering event streams can be achieved by leveraging ring buffer data
structures over a fixed-length queue. Hence, the fixed length determines the maximum
capacity of events that can be buffered in order to bridge intermittent network outages.
Moreover, overflow situations can be managed by either dropping incoming events or
overwriting the oldest event in the queue. Lastly, a reference for instantiated event stream
relays is persistently stored external to the node controller container which is used to
recover from node failures by reinstantiating previously active relays.

Lastly, the offloading manager is a component which prevents node resource overload by
using a policy-driven approach to define specific pipeline element offloading policies
according to one or more node resource violations. Upon detecting a violation, a pre-
defined selection strategy is triggered to find a pipeline element candidate to be offloaded
at run-time. This allows to move decision-making to the node controller itself which
leads to a partial node autonomy where the node controller observes its own context and
acts according to the defined strategy. Therefore, the offloading manager leverages the
information on the preemption operation policy and the configured priority class which
are defined by citizen technologists upon completing the pipeline authoring process. The
offloading approach will be detailed in Section 8.3.3.

7.4 Tools

The concepts and methods presented and discussed within this chapter is integrated
into the Apache StreamPipes project in order to allow citizen technologists to specify
preference-based deployment options and operation policies to deploy and operate geo-
distributed pipelines. Figure 7.8 exemplifies the configuration dialog presented to citizen
technologists as part of the advanced deployment settings. Here, the known location mon-
itoring pipeline with its three pipeline elements is prepared for deployment. Therefore,
the configuration dialog splits into two parts, namely operation policies and deployment
options. While preemption is enabled with the priority class set to "high" in addition to a

114 7 Pipeline Deployment

Figure 7.8 Geo-distributed pipeline management: Tool support

buffer relay option as pipeline global operation polices, the custom deployment option is
chosen with user-selected node tags, here "aws" and "edge", to alleviate the node selection
process. Eligible deployment target nodes are elected within the application manage-
ment layer according to the discussed coarse to fine-grained node filtering procedure
and presented to the user for final selection. Besides the custom deployment options,
default and locality-aware ones exist that incorporate specific node mapping strategies
and demonstrate the extensibility of the concept. The former can be used for simple
data acquisition tasks for event streams originating from IoT devices, where the adapter
is deployed on a user-selected edge node and all remaining pipeline elements are as-
signed to central cloud nodes. In contrast, the latter follows a basic bin packing approach
and assigns as many pipeline elements as possible on the node that hosts the adapter
until node resources are exhausted. Remaining, unassigned pipeline elements will be
randomly assigned to other nodes. Still, the custom deployment options provides the
most flexibility to citizen technologists and is well-suited for a broad spectrum of use
cases including the ones presented in this thesis. Consequently, this represents another
crucial building block to face the emerging needs towards democratizing the application
management in fog computing.

7.5 Summary 115

7.5 Summary

In this chapter, we presented concepts and methods with regard to geo-distributed
pipeline deployment and operation in view of Research Question 2. The first contribution
denotes concepts for geo-distributed pipeline management including deployment and
operation aspects which are entailed in the central application management within our
proposed system architecture. As such, after having clarified critical stages along the
pipeline element life cycle and discussed the eager validation procedure to early dismiss
any incompatibilities, the main focus lied on the overall geo-distributed deployment and
operation process. We presented preference-based deployment options that allow citizen
technologists to assign pipeline elements to only eligible deployment target nodes. There-
fore, we defined an extensible coarse to fine-grained validation procedure to find eligible
deployment target nodes for pipeline elements while considering both user-selected node
tags and actual resource availability. In addition, preference-based operation policies
can be chosen to configure the run-time behavior of a processing pipeline and their
surrounding application management. The second contribution is a generic approach
for the dissemination of event streams referred to as event stream relays that forward
event streams between logically adjacent but physically dislocated pipeline elements.
The employed locality-aware event dissemination strategy for intra-node and inter-node
communication was proposed which uses node assignment information of configured
pipelines to infer location knowledge on adjacent pipeline elements and decide which
communication model to use. In the case of a required inter-node communication, loca-
tion information in addition to the cardinality of communication are used in the event
stream relay generation procedure. The third contribution is a node controller which
manages the local execution of pipeline elements and event stream relays along the
pipeline element life cycle. Therefore, the node controller interacts with the application
management layer and receives service invocation requests for pipeline elements and
event stream relays which in turn are are either delegated to the colocated pipeline ele-
ment service or processed internally. Finally, as previously presented, the concepts from
this chapter are implemented and available within the Apache StreamPipes projects to
give necessary tool support to citizen technologists to deploy and operate geo-distributed
pipelines in fog infrastructures.

8
Pipeline Adaptation

In the previous chapter, we introduced conceptual work for geo-distributed pipeline
deployment, operation and management. Within this chapter, we present concepts and
methods related to Research Question 3 and discuss how to adapt processing pipelines
at run-time which involves reconfiguration and relocation aspects of running pipeline
elements. First, we give a brief walkthrough in Section 8.1 before proposing a general
adaptation methodology in line with the definition of the event term in Section 8.2. Next,
we present run-time evolutions for processing pipelines in Section 8.3. We show relevant
realizations of the conceptual work as part of tool support in Section 8.4 before summarizing
in Section 8.5.

8.1 Walkthrough

After geo-distributing all pipeline elements and event stream relays for a user-modeled
pipeline, from a holistic application management standpoint, it is crucial to deal with
changing conditions due to the dynamics in the real-world or newly arising application-
specific requirements. Considering this properly allows to sustain turning raw data into
insights and ultimately to meaningful knowledge on the user-side. Yet, this demands
for a suitable pipeline adaptation methodology that allows in-flight modifications of
running pipeline elements, i.e., run-time changes without the need for redeployment.
On the one hand, such modifications include reconfiguration actions of pipeline element
configurations, e.g., quality threshold parameters, or geofence coordinates, that need
to be updated and refined accordingly. On the other hand, this also implies relocation
actions where individual pipeline elements are migrated and thus moved away from
their original deployment target nodes to another eligible one, both within a resource
layer and across the hierarchical fog architecture. Consequently, as such adaptation
forces occur, dedicated pipeline adaptations are to be performed which are categorized
as external adaptations triggered by citizen technologists or internal adaptations triggered
by the system itself. Hence, in order to realize the proposed adaptation methodology, the
previously introduced system architecture is complemented by concepts and methods
as part of essential adaptation components at the central application management layer
and, analogously, on the node controller level.

118 8 Pipeline Adaptation

8.2 Methodology

Unbounded, streaming event sources and their resulting event streams characterize the
event processing model entailed within processing pipelines. Once deployed, processing
pipelines and their comprised pipeline elements are continuous and long-running which
implies static run-time behavior and restricted flexibility of the corresponding event-
driven application to adapt to changes. However, as the real-world cannot be assumed to
be static, this demands for suitable mechanisms in order to allow altering initial configu-
rations and execution targets of individual pipeline elements if necessary. Though naive
approaches including a stop-the-world pattern may be realized by stopping, updating,
and redeploying existing processing pipelines using concepts described in Chapter 7, this
inevitably increases pipeline downtimes and thus incurs service unavailability which is
not acceptable for most real-world scenarios, in particular in the case of mission-critical
deployments.

Consequently, this demands an approach which allows processing pipelines to evolve
over time, commonly referred to as pipeline evolution. According to [Andrade et al. 2014],
the notion of pipeline evolution describes the ability for the event-driven application
to dynamically adapt to changing conditions or requirements. Thereby, there are two
decisive dimensions which underpin the adaptation methodology, namely the adaptation
type, and decision-making origin explained in the following.

� Adaptation type—The type of adaptation can be either a reconfiguration or a relocation.
In the former case, static properties which configure the event processing logic
entailed in individual pipeline elements are altered compared to their original
configuration value without affecting the overall pipeline deployment topology.
In contrast in the latter case, individual pipeline elements are moved from their
original deployment target node to another eligible one. This profoundly affects
the overall pipeline execution topology and requires necessary treatment.

� Decision-making origin—The decision-making origin represents either external and
internal decision-making. The former includes user-initiated adaption actions based
on domain knowledge of citizen technologists. The latter reflects autonomous, system-
initiated adaptation actions within the application management components of
our proposed architecture according to inherent context knowledge. In general,
context-awareness is the ability of a system to independently detect and respond to
changes in their situated environment [Schilit et al. 1994]. In our case, context-aware
processing pipelines allow to be modified at run-time based on contextual changes.
The term context may depend on time, location, resource utilization or any other
property with relevance for the application.

Deduced from the notion of events from Section 2.1.2, where events are occurrences
within a particular system or domain, the flow of desired pipeline adaptation actions
from either decision-making origin can itself be represented as events. Concretely, both
system-initiated and user-initiated actions express the intention of a specific adaptation

8.2 Methodology 119

Endogenous
Forces

Citizen
Technogolist

Application
Management

Context Knowledge

Domain Knowledge

InsightData Evolution

Respond

Sense ProcessSense Process

Respond

Events

Event Sources
(IoT Devices)

Exogenous
Forces

Influencing Adaptation Forces

impactF1 F3

F4 FN

F2

...

Figure 8.1 Pipeline adaptation methodology: Overview

and thus create events which can be observed and lead to a state change as postulated by
[Mühl et al. 2006]. This either affects the encapsulated event processing logic in the case of
a reconfiguration or the whole pipeline execution topology in the case of a relocation.

In the following, we propose an adaptation methodology on the basis of the event
terminology and characteristics. The methodology attaches to the introduced sense-
process-respond principles of EDAs (see Section 2.2.1) and is depicted in Figure 8.1.
Over time, event-driven applications are continually impacted by influencing adaptation
forces, namely exogenous and endogenous forces. For instance, exogenous adaptation
forces result from newly arising business requirements or changing applicational needs.
Moreover, endogenous adaptation forces are induced by mobile edge nodes leading to
geo-context changes or by exceeding thresholds for computational resource limits leading
to system-context changes. As a conceptual model, the methodology centers around the
two previously described dimensions. Thereby, it offers certain degrees of freedom to
citizen technologists to apply their domain expert knowledge while also incorporating the
ability for system-side context knowledge employed within the application management.
This not only allows to continuously refine analytical results. But, it also aids to build up
the user’s trust and confidence for the event processing part itself while arouse curiosity
during the iterative process—from first results provided by the processing pipeline,
over initial interesting and meaningful findings when citizen technologists apply their
domain knowledge to interpret these results, to issued pipeline adaptation actions in
order to generate new and refined results. Eventually, this allows to gain valuable insights
while benefiting from the cognitive and perceptive skills of human-system interaction to
facilitate continuous pipeline evolution.

120 8 Pipeline Adaptation

Events

Event Sources
(IoT Devices)

Storage,
Visualization,
MonitoringResults

Citizen Technologist

AG AG

AG AG

AG

Adaptation
Gate

Application Management Layer

Edge Fog Cloud

Exploit Deploy Adapt

Domain Knowledge

Context Knowledge

Adaptation Types

Adaptation
Events

relocatereconfigure

Respond

Sense Process
Respond

D
at

a

In
sig

ht

Adaptation
Actions

Findings

ni njni nj

Figure 8.2 Pipeline adaptation methodology: Adaptation gate and adaptation event

Therefore, we introduce two key abstractions which facilitate the event processing pattern
and sit at the core of the adaptation methodology, namely adaptation gates and adaptation
events which are defined as follows:

Definition 11 (Adaptation Gate and Adaptation Event). An adaptation gate is a
special-purpose side input to pipeline elements tasked with receiving designated
adaptation actions in the form of specific adaptation events. An adaptation event
is a transient event created by the user or the system that contains instructions to
dynamically change internal configurations of an associated pipeline element.

Figure 8.2 illustrates the adaptation methodology applied to our architecture on a high-
level while leveraging both adaptation gates and adaptation events to inject adaptation
actions from citizen technologists or the application management-side. Conceptually,
adaptation gates do not differ from regular input ports consuming an event stream from
external IoT event sources or preceding pipeline elements other than the event type.
Hereby, in contrast to regular events, adaptation events do not produce any output events.
Instead, adaptation events are used to either alter internal configurations, i.e., static
properties, which are part of the event processing logic (reconfiguration) or prepare
the migration of the corresponding pipeline element (relocation). In order to realize
the concept of adaptation gates and adaptation events, we base our methodology on
the topic-based publish/subscribe messaging pattern. Thereby, adaptation events are
published on a unique system-managed topic scheme which binds to the adaptation gate
(additional subscriber) of the associated pipeline element instance. Similar to regular
subscribers, the adaptation gate is generated upon pipeline element instantiation.

8.3 Run-Time Evolution 121

Node

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

edge
gps

drobot ka-east
/dev/ttyACM0

Node

Message Brokerlocal

Container Runtime

Node Controller

N
od

e
M

an
ag

er

Offloading
Manager

Pipeline Element
Manager
Container
Manager

API

Event Stream
Relay Manager

PE-Service

Sinks

Processors

Adapters

s1 ...

p1 p2

a1 ...

Running PEAvailable PE

Node Controller

PE-Service

HW

aws frankfurt

PEs3

Persistent Storage

Node Controller

PE-Service

CR

HW

aws frankfurt

PS CRPS

Message Brokershared

ARM64

x86 x86

CPU MEM DISK NET GPU

S
P

Control flow Data flow Pub/SubSP

HTTP POST/DELETE
(JSON-LD)

Application Management Layer (Cloud)

Pipeline Management

Node
Management Deploy

PEPEs3

Adaptation
Gate

P

Pipeline
Adaptation

Action

PAA

Adapt

Modified Pipeline

Reconfiguration
Handler
Executor

Migration
Handler
Executor

Offloading
Handler

Pipeline Generator

query/store
pipeline/relays

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

P ! P 0

Figure 8.3 Pipeline evolution at run-time: Architecture overview

8.3 Run-Time Evolution

The proposed system architecture is complemented by essential components in order to
realize the adaptation methodology at both the central application management layer
and the node controller described in the following and illustrated in Figure 8.3.

As applicational needs and requirements change over time, citizen technologists may
issue pipeline adaption actions in the form of reconfigurations or relocations. This
allows to alter running pipelines from their original state 𝒫 to a modified state 𝒫 ′ (yet still
configured) using the central graphical interface (not shown in Figure 8.3). As a result, the
application management layer receives altered pipeline descriptions, further processes
respective adaptation actions and redistributes them according to involved nodes. Despite
these degrees of freedom for citizen technologists, the adaptation approach is kept generic
and thus not limited to user-initiated actions only. In fact, adaptation capabilities are
employed within the offloading manager of the node controller. Concretely, the offloading
manager continuously observes node resource metrics and initiates offloading actions to
evict pipeline elements in order to prevent over-utilized nodes while respecting specified

122 8 Pipeline Adaptation

operation policies for preemption, e.g., the priority class. Finally, both user-initiated
and system-initiated pipeline adaptation actions are continuous by nature and allow
processing pipelines to evolve over time to adequately adapt to the constant changes.

Next, we detail the stated adaptation types with regard to reconfiguration and relocation to
support pipeline evolution at run-time and give a detailed description on concepts and
involved components. In the following, we focus on user-initiated reconfigurations of
pipeline elements and deliberately exclude system-initiated ones on the basis of context
knowledge, though generally supported by the concepts. Regarding relocation actions, we
further differentiate between external, user-initiated relocations referred to as migration
and internal, system-initiated relocations referred to as offloading.

8.3.1 Reconfiguration

Reconfiguration of deployed processing pipelines implies updating initially specified
user configurations, i.e., static properties, of associated pipeline elements and thus alter
employed parameters from their original value to a new target value as influencing
adaptation forces arise. User-initiated reconfiguration actions are an integral part of the
reconfiguration process as they provide citizen technologists with the ability to directly
manipulate the event processing logic at run-time. Hence, this approach symbiotically
combines system-side processing capabilities with human-side perceptive skills, cognitive
reasoning according to expert domain knowledge. On the technical side, reconfigurations
are based on the concept of ReconfigurableStaticProperty (see Section 6.4.4) and used
to denote reconfigurable user configurations. In the operation phase, an additional
reconfigure transition in the running state of the pipeline element life cycle (see Section 7.2)
allows to mutate the original event processing logic by altering the respective static
property. While the concepts behind pipeline element reconfiguration are generic, in
practice, such run-time modifications are only of relevance for processors and sinks,
omitting adapters. This is due to the fact that adapters only emit raw events originating
from real-world IoT devices and thus do not mutate any state. Yet, we illustrate the
execution of run-time reconfigurations on the basis of processors in the following.

First, this requires essential preparation steps for modified pipelines at the central appli-
cation management layer in order to send out specific reconfiguration action requests
to involved node controllers. Second, node controllers need to construct and publish
adaptation events from received reconfiguration actions on adaptation gates bound to
running processor instances to alter specific reconfigurable static properties as illustrated
in Figure 8.3. Given a modified pipeline 𝒫 ′, the reconfiguration handler employed within
the central pipeline management is responsible for (1) computing reconfiguration actions,
(2) triggering the reconfiguration executor to submit these reconfiguration actions to
involved node controllers and (3) proxying the reconfiguration status message back to
the graphical user interface to inform citizen technologists (not shown in Figure 8.3).
Algorithm 5 states all relevant steps performed by the reconfiguration handler.

8.3 Run-Time Evolution 123

Algorithm 5 Compute and execute reconfiguration actions for modified reconfigurable static
properties of processors within the reconfiguration handler
Input: modified pipeline 𝒫 ′

Output: reconfiguration status message

1: 𝒫𝑜𝑙𝑑,𝒱 ′∖(𝐴′ ∪ 𝑆 ′),𝒱𝑜𝑙𝑑∖(𝐴𝑜𝑙𝑑 ∪ 𝑆𝑜𝑙𝑑),𝒜𝑟𝑒𝑐, 𝑆𝑡𝑎𝑡𝑢𝑠𝑟𝑒𝑐 ← ∅ ◁ initialize
2: 𝑖𝑑← getPipelineId(𝒫 ′)
3: 𝒫𝑜𝑙𝑑 ← queryPipelineById(𝑖𝑑) ◁ get stored pipeline
4: 𝒱 ′∖(𝐴′ ∪ 𝑆 ′)← getProcessors(𝒫 ′)
5: 𝒱𝑜𝑙𝑑∖(𝐴𝑜𝑙𝑑 ∪ 𝑆𝑜𝑙𝑑)← getProcessors(𝒫𝑜𝑙𝑑)
6: for each 𝜌′ ∈ 𝒱 ′∖(𝐴′ ∪ 𝑆 ′) do
7: for each 𝜌𝑜𝑙𝑑 ∈ 𝒱𝑜𝑙𝑑∖(𝐴𝑜𝑙𝑑 ∪ 𝑆𝑜𝑙𝑑) do
8: if matchingProcessors(𝜌′, 𝜌𝑜𝑙𝑑) then
9: Δ𝜌′ ← getStaticProperties(𝜌′)

10: Δ𝑜𝑙𝑑
𝜌 ← getStaticProperties(𝜌𝑜𝑙𝑑)

11: Δ𝑟𝑒𝑐
𝜌′ ← ∅

12: for each 𝛿𝜌′ ∈ Δ𝜌′ do
13: for each 𝛿𝑜𝑙𝑑

𝜌 ∈ Δ𝑜𝑙𝑑
𝜌 do

14: if isRec(𝛿𝜌′) and isRec(𝛿𝑜𝑙𝑑
𝜌) then ◁ reconfigurable properties

15: if matchAndModified(𝛿𝜌′ , 𝛿𝑜𝑙𝑑
𝜌) then

16: Δ𝑟𝑒𝑐
𝜌′ ← Δ𝑟𝑒𝑐

𝜌′ ∪ 𝛿𝜌′ ◁ modified property set
17: if |Δ𝑟𝑒𝑐

𝜌′ | > 0 then
18: 𝑎𝑟𝑒𝑐 ← 𝑛𝑒𝑤 ReconfigurationAction(𝜌′, Δ𝑟𝑒𝑐

𝜌′)
19: if 𝑎𝑟𝑒𝑐 /∈ 𝒜𝑟𝑒𝑐 then
20: 𝒜𝑟𝑒𝑐 ← 𝒜𝑟𝑒𝑐 ∪ 𝑎𝑟𝑒𝑐

21: for each 𝑎𝑟𝑒𝑐 ∈ 𝒜𝑟𝑒𝑐 do
22: 𝑠𝑟𝑒𝑐 ← 𝑛𝑒𝑤 ReconfigurationExecutor(𝑎𝑟𝑒𝑐).𝑒𝑥𝑒𝑐𝑢𝑡𝑒() ◁ invoke reconfiguration
23: 𝑆𝑡𝑎𝑡𝑢𝑠𝑟𝑒𝑐 ← 𝑆𝑡𝑎𝑡𝑢𝑠𝑟𝑒𝑐 ∪ 𝑠𝑟𝑒𝑐

24: if allSuccessful(𝑆𝑡𝑎𝑡𝑢𝑠𝑟𝑒𝑐) then ◁ verify reconfiguration success
25: overwriteAndStore(𝒫 ′) ◁ store modified pipeline
26: return reconfiguration successful, stored 𝒫 ′

27: else
28: rollback(𝒫𝑜𝑙𝑑) ◁ rollback to old pipeline
29: return reconfiguration failed, rolled back 𝒫𝑜𝑙𝑑

To compute reconfiguration actions, it is necessary to first retrieve the description of
the currently running pipeline 𝒫𝑜𝑙𝑑 from the database. As the modified pipeline and
the old pipeline are syntactically equal, a pairwise comparison is performed between
all reconfigurable static properties to find the ones that were changed in oder to store
them in a modified property set Δ𝑟𝑒𝑐

𝜌′ (Lines 6 to 16). This modified property set is
used to instantiate new reconfiguration actions per modified processor. Each of the

124 8 Pipeline Adaptation

reconfiguration actions is then handed to the reconfiguration executor in order to submit
the request to designated node controllers (Line 22). Eventually, the node controller
returns a status message containing information on the success or failure of a processor
reconfiguration which is collected in a set of status messages. Lastly, all status messages
are verified for success which determines whether to overwrite the old pipeline in favor
of the modified one, or to initiate a rollback to the original state of static property values.
In addition, an overall reconfiguration status message is returned to inform citizen
technologists about the current state (Lines 24 to 29).

On the node controller side, upon receiving the reconfiguration action, the pipeline
element manager is instructed to execute the run-time reconfiguration of the processor
instance defined in the request. In this matter, the reconfiguration action is first processed
in order to extract the entailed information on the modified property set in addition to
the associated processor instance that is affected by the reconfiguration. We introduce
two helper functions to prepare the execution of the run-time reconfiguration within the
pipeline element manager component of the node controller:

genAEvent(Δ𝑟𝑒𝑐
𝜌′) = 𝑒𝑟𝑒𝑐

𝑗 Δ𝑟𝑒𝑐
𝜌′ ⊆ Δ𝜌

genAGate(𝜌′) = 𝑡𝑝𝑟𝑒𝑐
𝑗 𝜌′ ∈ 𝒱

To this end, the genAEvent(Δ𝑟𝑒𝑐
𝜌′) function takes the modified property set and gener-

ates the required adaptation event which uses a key-value based data structure with a
reference identifier for the processor instance as the key and the modified property as
the value. Furthermore, the genAGate(𝜌′) function computes the correct adaptation gate
bound to the associated, modified processor instance. This represents an additional side-
input in the form of a reconfiguration transport protocol using a unique system-managed
topic scheme. At this point, it is worth noting that each processor which models a static
property as reconfigurable, automatically subscribes to the reconfiguration transport
protocol to receive adaptation events. This assimilates the mechanism of regular input-
side subscribers using their input transport protocols to receive events from preceding
pipeline elements.

Figure 8.4 illustrates two points in time in the running state of processors 𝜌𝑖 and 𝜌𝑗 . Time
𝑡𝑟𝑢𝑛 shows the running state after being instantiated in the course of the geo-distributed
pipeline deployment (Figure 8.4a). As shown, not all processors contain reconfigurable
static properties. While processor 𝜌𝑗 contains reconfigurable static properties and thus
instantiates a side-input subscriber upon invocation, the static properties used in 𝜌𝑖

are not reconfigurable and thus cannot be changed at runtime. At time 𝑡𝑟𝑒𝑐, the node
controller receives the reconfiguration action request (Figure 8.4b) and performs essential
local preparation tasks prior to executing the run-time reconfiguration which involves
the following four steps: In step 1, the corresponding adaptation event is generated
by leveraging the genAEvent(Δ𝑟𝑒𝑐

𝜌′) function. Next, in step 2, the adaptation gate is
generated by using the genAGate(𝜌′) function, i.e., reconfiguration transport protocol for
the associated processor instance. After, in step 3, the adaptation event is published using

8.3 Run-Time Evolution 125

Message Brokerlocal,i

PE-Service
PS

Node Controller

Node

S P
S

Pipeline Element Manager
API

Adaptation Event Publisher

Reconfiguration Action Handler

ni nj

tpQmi
i

tpBM
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

tpQmi
i

tpBM
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m

tprec
j

(a) 𝑡𝑟𝑢𝑛: running 𝜌𝑖 and 𝜌𝑗

Message Brokerlocal,i

PE-Service
PS

Reconfiguration
Action

Node Controller

Node

S P
S

HTTP POST
(JSON-LD)

Pipeline Element Manager
API

1

2

3

4

ni nj

tpQmi
i

tpBM
j

⇢i ⇢j ⇢j,1 ⇢j,2 ⇢j,m⇢0j

tprec
j

�+arec

test

erec
j

;2M�1p2Mi(�rec
⇢0) = erec

j

;2M�:�i2(⇢0) = tprec
j

Tm#(erec
j , tprec

j)

(b) 𝑡𝑟𝑒𝑐: reconfigure 𝜌𝑗 to modified state 𝜌′
𝑗

Figure 8.4 Processor run-time reconfiguration performed by node controller

the reconfiguration transport protocol. On the pipeline element service side and in the
final step 4, the underlying processor runtime instantaneously receives the adaptation
event over its reconfiguration side-input and finalizes the reconfiguration. Therefore, the
modified property set is reconstructed from the adaptation event and used to update the
static properties of the associated processor instance. After successfully completing the
reconfiguration, the node controller informs the central application management layer
about its success by returning a corresponding reconfiguration status message.

Example. Figure 8.5 shows two pickup and delivery scenarios (tour1 and tour2) in the city of
Karlsruhe. At the same time, the location monitoring pipeline 𝒫𝑙𝑜𝑐 is deployed on the delivery
robot and running. This includes, among the others, the geofencing component referred to as
the point-in-polygon processor 𝑝2. During the delivery from the satellite hub (SH) to a package
box (PB), the geolocation of the delivery robot is constantly monitored and compared against the
initially provided geofence for tour1 employed as a static property in 𝑝2. Figure 8.5a shows the GPS
trace for tour1 where no violations are detected. After a larger tour2 is scheduled, the delivery robot
pursues the delivery, yet this time to another PB. As shown in Figure 8.5b shows the situation
without any run-time reconfiguration. The geofencing criteria is violated as the statically defined
valid operation area (geofence) cannot be updated. To overcome this limitation, the geofence can
be modeled as reconfigurable in order to be modified during operation. At the same time when
sending out the tour schedule for tour2, the fleet operator updates the valid operation area by
reconfiguring the geofence. Figure 8.5c illustrates the reconfiguration action request 𝑎𝑟𝑒𝑐 sent
from the cloud to the delivery robot containing the updated coordinates 𝛿′

𝑔𝑒𝑜𝑓𝑒𝑛𝑐𝑒 for the modified
processor 𝑝′

2. Figure 8.5d shows the GPS trace for tour2 with reconfiguration.

126 8 Pipeline Adaptation

(a) tour1: 𝒫𝑙𝑜𝑐 with initial geofence (b) tour2: 𝒫𝑙𝑜𝑐 without reconfiguration

(c) update valid area (reconfigure geofence) (d) tour2: 𝒫𝑙𝑜𝑐 with reconfiguration

Figure 8.5 Running example: Run-time geofence reconfiguration. Map data © OpenStreetMap [Open-
StreetMap contributors 2021].

8.3.2 Migration

Another essential run-time adaptation type characterizes the relocation of pipeline ele-
ments. In concrete view of migrating individual pipeline elements from their original
deployment target node to another eligible one, the act of migration describes the result
of an external, user-initiated migration action. Thereby, the migration action is based
on the domain expertise of citizen technologists reacting to exogenous adaptation forces
such as accounting for new business requirements that affect where along the cloud-edge
continuum the event processing is performed. However, such a relocation profoundly
modifies the existing pipeline deployment topology in terms of physical execution lo-
cation of individual pipeline elements which potentially violates the stated criteria for
event stream relays discussed in Section 7.3.3. Within this thesis, we focus on migrating
stateless pipeline elements thereby explicitly leaving out state migration concepts which
preserve processing semantics during migration [To et al. 2018; Brogi et al. 2018]. Similar
to the reconfiguration, we illustrate the migration concepts on the basis of processors.

8.3 Run-Time Evolution 127

Following, we give an in-depth description on the run-time migration which broadly
splits into an initial preparation performed within the migration handler and a step-wise
execution of migration actions within the migration executor as depicted in Figure 8.3.
Given the modified and configured pipeline 𝒫 ′ containing a new processor node target,
the migration handler is responsible for (1) computing the processor migration action,
(2) triggering the migration executor to perform the step-wise migration and (3) proxying
the migration status message back to the graphical user interface (not shown in Figure 8.3).
Algorithm 6 summarizes the relevant preparation steps in the migration handler.

Algorithm 6 Compute and execute processor migration action within the migration handler
Input: modified and configured pipeline 𝒫 ′

Output: migration status message

1: 𝒱 ′∖(𝐴′ ∪ 𝑆 ′),𝒱𝑜𝑙𝑑∖(𝐴𝑜𝑙𝑑 ∪ 𝑆𝑜𝑙𝑑)← ∅ ◁ initialize
2: 𝑖𝑑← getPipelineId(𝒫 ′)
3: 𝒫𝑜𝑙𝑑 ← queryPipelineById(𝑖𝑑) ◁ get stored pipeline
4: 𝒮old

𝑟 ← queryRelaysById(𝑖𝑑) ◁ get stored relays
5: 𝒮new

𝑟 ← generateRelays(𝒫 ′) ◁ generate new relays
6: 𝒱 ′∖(𝐴′ ∪ 𝑆 ′)← getProcessors(𝒫 ′)
7: 𝒱𝑜𝑙𝑑∖(𝐴𝑜𝑙𝑑 ∪ 𝑆𝑜𝑙𝑑)← getProcessors(𝒫𝑜𝑙𝑑)
8: for each 𝜌𝑛𝑒𝑤 ∈ 𝒱 ′∖(𝐴′ ∪ 𝑆 ′) do
9: for each 𝜌𝑜𝑙𝑑 ∈ 𝒱𝑜𝑙𝑑∖(𝐴𝑜𝑙𝑑 ∪ 𝑆𝑜𝑙𝑑) do

10: if matching(𝜌𝑛𝑒𝑤, 𝜌𝑜𝑙𝑑) and dislocated(𝜌𝑛𝑒𝑤, 𝜌𝑜𝑙𝑑) then
11: 𝑠old

𝑝𝑟𝑒𝑑 ← evalPredRelay(𝜌𝑜𝑙𝑑,𝒮old
𝑟 ,𝒮new

𝑟) ◁ old predecessor relay
12: 𝑠old

𝑠𝑢𝑐𝑐 ← evalSuccRelay(𝜌𝑜𝑙𝑑,𝒮old
𝑟 ,𝒮new

𝑟) ◁ old successor relay
13: 𝑠new

𝑝𝑟𝑒𝑑 ← evalPredRelay(𝜌𝑛𝑒𝑤,𝒮new
𝑟 ,𝒮old

𝑟) ◁ new predecessor relay
14: 𝑠new

𝑠𝑢𝑐𝑐 ← evalSuccRelay(𝜌𝑛𝑒𝑤,𝒮new
𝑟 ,𝒮old

𝑟) ◁ new successor relay
15: 𝑎𝑚𝑖𝑔 ← 𝑛𝑒𝑤 MigrationAction(𝜌𝑛𝑒𝑤, 𝜌𝑜𝑙𝑑,

𝑠new
𝑝𝑟𝑒𝑑, 𝑠old

𝑝𝑟𝑒𝑑, 𝑠new
𝑠𝑢𝑐𝑐, 𝑠old

𝑠𝑢𝑐𝑐)
16: 𝑠𝑚𝑖𝑔 ← 𝑛𝑒𝑤 MigrationExecutor(𝑎𝑚𝑖𝑔).𝑒𝑥𝑒𝑐𝑢𝑡𝑒() ◁ start migration scheme
17: if successful(𝑠𝑚𝑖𝑔) then ◁ verify migration success
18: overwriteAndStore(𝒫 ′,𝒮 ′

𝑟) ◁ store pipeline and relays
19: return migration successful, stored 𝒫 ′ and 𝒮new

𝑟

20: else
21: rollback(𝒫𝑜𝑙𝑑,𝒮old

𝑟) ◁ initialize rollback
22: return migration failed, rolled back 𝒫𝑜𝑙𝑑 and 𝒮old

𝑟

At this point before elaborating on the preparation steps, it is noteworthy that whenever
referred to "old", we mean the state of an entity (e.g., processor, relay) before the migration.
In contrast, whenever referred to "new", we mean the state of an entity after the migration.
In order to construct a migration action, the running pipeline and relay descriptions
are first queried from the central database where they were persisted after finishing the

128 8 Pipeline Adaptation

geo-distributed deployment. Next, a set of new event stream relays for the modified and
configured pipeline 𝒫 ′ are generated using Algorithm 4 from Section 7.3.3. Both the new
pipeline description 𝒫 ′ and the old one 𝒫𝑜𝑙𝑑, as well as the new set of relay descriptions
𝒮 ′

𝑟 and the old one 𝒮old
𝑟 , build the foundation for comparing and assessing origin and

target execution states prior and after the processor migration. Consequently, the list of
processors from 𝒫 ′ and 𝒫𝑜𝑙𝑑 are traversed in order to first find the processor affected by
the migration (Line 10).

Apart from identifying the processor affected by the migration, event stream relays need
to be reevaluated to guarantee proper inter-node event dissemination provoked by the
change of execution location. In particular in cases where preceding pipeline elements are
multi-connected it is crucial to assure relay correctness. For instance, consider an adjacent
and colocated predecessor-successor pair (𝑝𝑟𝑒𝑑−𝑠𝑢𝑐𝑐) prior to the migration, end up
dislocated due to the 𝑠𝑢𝑐𝑐 being migrated to another node. In principle, this fulfills
the preliminary relay criteria and induces the need for instantiating a corresponding
relay instance from the 𝑝𝑟𝑒𝑑 to the new 𝑠𝑢𝑐𝑐 node. Yet, only if it also complies with
the uniqueness criteria. In cases where the 𝑝𝑟𝑒𝑑 is multi-connected and the migrated
𝑠𝑢𝑐𝑐 ends up neighboring to another present successor after the migration, no new relay
is allowed to prevent run-time event duplicates. Similarly, an adjacent and dislocated
𝑝𝑟𝑒𝑑−𝑠𝑢𝑐𝑐 pair prior to the migration, end up colocated afterwards. In such a case the
previous relay instance might be removed, yet only if no other previously neighboring
successor exists on the origin node which still requires this relay. Therefore, both the
old predecessor and successor relays are evaluated in order to decide whether to keep
or remove an already running relay instance while the new predecessor and successor
relays are evaluated in order to assess if and where new relay instances need to be added
(Lines 11 to 14). Next, a new migration action is created and delegated to the migration
executor component responsible for performing the migration. The migration executor
returns a status message containing information on the success or failure of the processor
migration. This status message is verified and used to decide whether to overwrite
and store new pipeline and relay descriptions or to initiate a rollback to the original
execution state. Lastly, an overall migration status message is returned to inform the
citizen technologist about the current state (Lines 17 to 22).

Upon receiving the migration action, the migration executor performs several consecutive
steps aimed at sending out relay and processor invocation and detach requests in a
coordinated fashion.

Therefore, we propose the following step-wise migration scheme:

1. Start new pipeline element 𝜌𝑛𝑒𝑤 and new successor relays 𝑠new
𝑠𝑢𝑐𝑐 (if required)

2. Stop subscriber of old pipeline element 𝜌𝑜𝑙𝑑 and await in-flight events to be processed
3. Remove old predecessor relay 𝑠old

𝑝𝑟𝑒𝑑 to old pipeline element (if any and permitted)
4. Start new predecessor relay 𝑠new

𝑝𝑟𝑒𝑑 to new pipeline element (if required)
5. Remove old pipeline element 𝜌𝑜𝑙𝑑 and any old successor relays 𝑠old

𝑠𝑢𝑐𝑐 (if any)

8.3 Run-Time Evolution 129

PS

R

Node

Node
migrateS

S P S

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

(a) before migration

Node

Node

PS

S P

S

S

S P

R

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

(b) start new processor 𝜌new
𝑗,1 on node 𝑛2

Node

Node

PS

S P

S

S

S P

R
S

✗
stop subscriber

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

(c) stop subscriber of old processor 𝜌old
𝑗,1

Node

Node

PS

S P

S

S

R S P

R

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

(d) start new predecessor relay 𝑠new
𝑝𝑟𝑒𝑑

PS

S P

S

S

S P

R✗
Node

Node

R

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

✗

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

(e) remove old processor 𝜌old
𝑗,1 and successor relay 𝑠old

𝑠𝑢𝑐𝑐

PS

S

S

R S

Node

Node

P

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

n1 n2

⇢i ⇢j,2 ⇢k

⇢QH/
j,1 ⇢M2r

j,1

sQH/
succ sM2r

pred

�+sM2r
pred

��sQH/
succ

��⇢QH/
j,1

�+⇢M2r
j,1

(f) after migration

Figure 8.6 Migration scheme in action: Excerpt of a running pipeline 𝒫=(𝒱, ℰ , Π) with two processors
𝜌𝑖, 𝜌old

𝑗,1 ∈ 𝒱∖(𝐴 ∪ 𝑆) and two sinks 𝜌𝑗,2, 𝜌𝑘 ∈ 𝒱∖(𝐴 ∪ 𝑃), directed event stream edges
ℰ () and running relay for inter-node communication between 𝜌old

𝑗,1 and its successor
𝜌𝑘. Processor 𝜌old

𝑗,1 is supposed to be migrated from edge node 𝑛1 ∈ 𝒩𝑒 to cloud node
𝑛2 ∈ 𝒩𝑐 shown in (a). Step-wise migration scheme for the processor is depicted in (b)-(e).
Final pipeline execution topology after migration is shown in (f).

Figure 8.6 illustrates the migration scheme in action making use of the notation for
pipeline element and relay invocation "○+ " and detach "○−" requests introduced in Sec-
tion 7.3.4. As indicated in the migration scheme, some of the steps may be skipped. This
greatly depends on the origin and target pipeline execution topology and the involved
node types as both determine whether or not relays need to be instantiated or removed.

In the following, the migration steps for processor 𝜌old
𝑗,1 are exemplified which is supposed

to be migrated from edge node 𝑛1 to cloud node 𝑛2. In the given case, the excerpt
of pipeline 𝒫 consists of two processors 𝜌𝑖 and 𝜌old

𝑗,1 and two sinks 𝜌𝑗,2 and 𝜌𝑘 that are
deployed over both nodes. Moreover, directed event stream edges are highlighted with

130 8 Pipeline Adaptation

intra-node communication on the edge node apart from inter-node communication from
edge to cloud node with one running event stream relay between the processor subject
of the migration and its only successor (Figure 8.6a). In step 1, a corresponding pipeline
element invocation request is sent to the node controller of the migration target node, here
the cloud node, to start a new processor instance for the same processor type (Figure 8.6b).
As the new processor ends up colocated to its only successor, new successor relays are not
required. Next in step 2, similarly to the reconfiguration of processors, the adaptation
gate and adaptation event concepts are used in the course of the migration for injecting
migration instructions. As such, the node controller publishes the adaptation event on
the adaptation gate of the old processor to stop the subscriber from retrieving published
events from its predecessor while awaiting remaining in-flight events to be fully processed
(Figure 8.6c). This step marks a crucial point of the migration scheme as it effectively
interrupts the flow of events through the pipeline. Consequently, all successors, here
the sink on the cloud node, do temporarily not receive new events which we refer to as
the downtime timespan. The step 3 is skipped as no old predecessor relay exists due to
the initial colocation of the predecessor and the old processor. In step 4 the downtime
terminates with the instantiation of the new predecessor relay to the cloud node which
reestablishes the event stream (Figure 8.6d). Finally, in step 5, all old instances that are no
longer required are terminated, here the old processor as well as the old successor relay
on the origin edge node (Figure 8.6e). This allows the transition into the final pipeline
execution topology after the migration is completed (Figure 8.6f). The migration executor
informs the migration handler about the overall migration status. If any of the described
steps fail, the handler initiates a rollback to old pipeline execution topology.

After clarifying the adaptation types that result from user-initiated interactions based on
external decisions, we focus on system-initiated adaptation measures in the following
section. Therefore, we present an approach for pipeline element offloading as a result of
internal decision-making based on system context knowledge.

8.3.3 Offloading

The dynamics and mobility aspects in fog environments in addition to shared computa-
tional resources constantly influence the pipeline execution topology at run-time and
require to question initial user-specified deployment decisions. As these types of adapta-
tion forces can hardly be evaluated by human, it is essential to provide certain autonomic
mechanisms in response to impactful contextual changes in the node’s operational and
system context. Therefore, the context must be adequately monitored and assessed in
order to first create situation awareness [Mozzaquatro et al. 2017] followed by conducting
system-initiated adaptation actions. For instance, as computational resources of a node
are typically shared among multiple pipeline elements of potentially multiple pipelines,
it is inevitable to constantly observe the current utilization to assure healthy node op-
eration and act accordingly upon detecting any deviations. A manifestation of such a

8.3 Run-Time Evolution 131

system-initiated adaptation action describes the offloading of a pipeline element from
its origin node to a new target node, whereby the offloading decision itself is made by
the node controller. In this context, Monitor-Analyze-Plan-Execute (MAPE) over a shared
knowledge base, referred to as MAPE-K, is a well-recognized architectural pattern in
autonomic computing for realizing self-adaptive systems [Kephart and Chess 2003; Brun
et al. 2009]. In this thesis, we apply the MAPE-K approach as follows: (1) monitor and
collect data over the system context and its environment, (2) analyze the gathered data
and evaluate if an adaptation needs to be performed, (3) plan the adaptation actions to
achieve a given goal, (4) execute the adaptation action, all while using a common and
(5) shared knowledge base. The shared knowledge base maintains data, adaptation goals
and additional state and is used during the MAPE phases. Hereafter, we focus on node
resource utilization as this denotes a major impact factor driving the need for offloading,
particularly on resource-constrained edge nodes. In addition, we focus on processors,
as with the adaptation types discussed earlier. Yet, prior to elaborating on the act of
offloading from a technical perspective, we need to first clarify how contextual changes
can be detected and responded to in the first place which requires a generic concept.

Offloading Manifest. In order to realize offloading, a policy-driven approach is used to
assess the utilization level of a node based on so-called offloading manifests. An offloading
manifest comprises (1) a resource property to be observed, (2) an evaluation policy declaring
a violation condition for the resource property and (3) a selection strategy to find a suit-
able offloading candidate. In addition, internal state and relevant context information,
e.g., collected resource properties, the number of consecutive violations, or the defined
preemption operation policy (see Section 7.3.1), are shared among the individual stages.
Offloading manifests are globally registered on all participating nodes. From an architec-
tural point of view, the node controller, concretely the offloading manager, periodically
evaluates registered offloading manifests. The outcome of this evaluation determines
whether or not an offloading action is required and, if so, an offloading candidate is
selected. Only after having identified an offloading candidate, the pipeline element
manager requests the central application management to proceed with the offloading.
We follow the centrally coordinated approach to completing the offloading as this part
relies on centrally hosted information on available, eligible nodes and existing pipeline
descriptions used construct a new, modified pipeline description.

In summary, the proposed offloading scheme spans the following stages on the basis of the
registered offloading manifests, whereby stages (1) to (4) are performed on local node
level and stage (5) is coordinated from the central application management level:

1. Collect required metrics for resource properties
2. Detect and evaluate any violations using defined evaluation policies
3. Select offloading candidate using defined selection strategy
4. Send out offloading action to central offloading component
5. Find new eligible node, generate new configured pipeline, execute offloading

132 8 Pipeline Adaptation

Node Controller

Message Brokerlocal,i

PE-Service
PS

Node

S P

Offloading Manager
API

Node Manager

Monitor Analyze &
Plan

Pipeline Element Manager
ExecuteKnowledge

CPU MEM DISK ...

ni nj

Mrp

⇢i,1 ⇢i,2

�+aQz

Mrp,�, Vr

2p�Hm�i2(�, Mrp)

b2H2+i(T`BQ, Vr) ! ⇢c

Q77HQ�/(⇢i,2) ! aQz

Mrp

⇢i,1 ⇢i,2

�+aQz

Mrp,�, Vr

2p�Hm�i2(�, Mrp)

b2H2+i(T`BQ, Vr) ! ⇢c

Q77HQ�/(⇢i,2) ! aQz

(a) MAPE-K

Node Controller

Message Brokerlocal,i

PE-Service
PS

Node

S P

Offloading Manager
API

Node Manager

Resource
Monitor

Offloading
Action

HTTP POST
(JSON-LD)

1 2
3

Pipeline Element Manager
4

CPU MEM DISK ...v

v

offload

ni nj

Mrp

⇢i,1 ⇢i,2

�+aQz

Mrp,�, Vr

2p�Hm�i2(�, Mrp)

b2H2+i(T`BQ, Vr) ! ⇢c

Q77HQ�/(⇢i,2) ! aQz

Mrp

⇢i,1 ⇢i,2

�+aQz

Mrp,�, Vr

2p�Hm�i2(�, Mrp)

b2H2+i(T`BQ, Vr) ! ⇢c

Q77HQ�/(⇢i,2) ! aQz

Mrp

⇢i,1 ⇢i,2

�+aQz

Mrp,�, Vr

2p�Hm�i2(�, Mrp)

b2H2+i(T`BQ, Vr) ! ⇢c

Q77HQ�/(⇢i,2) ! aQz

Mrp

⇢i,1 ⇢i,2

�+aQz

Mrp,�, Vr

2p�Hm�i2(�, Mrp)

b2H2+i(T`BQ, Vr) ! ⇢c

Q77HQ�/(⇢i,2) ! aQz
Mrp

⇢i,1 ⇢i,2

�+aQz

Mrp,�, Vr

2p�Hm�i2(�, Mrp)

b2H2+i(T`BQ, Vr) ! ⇢c

Q77HQ�/(⇢i,2) ! aQz

⇢c = ⇢i,22p�Hm�i2(�, Mrp)

b2H2+i(T`BQ, Vr)

Q77HQ�/(⇢i,2)

2p�Hm�i2(�, Mrp)

b2H2+i(T`BQ, Vr)

Q77HQ�/(⇢i,2)

(b) offloading action upon CPU threshold violation

Figure 8.7 Offloading scheme in action: Node 𝑛𝑖 shows involved node controller components, two
running processors 𝜌𝑖,1 ∈ 𝒱𝑟 part of pipeline 𝒫1 (preemption enabled, prio "high") and
𝜌𝑖,2 ∈ 𝒱𝑟 part of pipeline 𝒫2 (preemption enabled, prio "low"). MAPE-K constituents are
depicted in (a). Offloading steps for 𝜌𝑖,2 are shown in (b) after violating the threshold-
based CPU evaluation policy 𝜆thold

𝑐𝑝𝑢 from the offloading manifest Φ, using resource property
metrics ℳ𝑟𝑝, running processor instance set 𝒱𝑟 and a priority selection strategy 𝜅prio.

Next, we give an in-depth description of the offloading scheme and elaborate on each of
the individual steps while commenting on the role of all involved architecture components
from the node level to the central application management level. Figure 8.7 illustrates the
offloading scheme in action showing all relevant stages on the node level. Consequently,
the node controller employs the MAPE-K pattern which is distributed over several
components, namely the node manager, the offloading manager, the pipeline element
manager and an in-memory database (Figure 8.7a). Starting with step 1, the resource
monitor constantly observes the node resource usage and collects run-time metrics for all
resource offers at regular intervals. Latest resource offers are stored alongside computed
resource property metricsℳ𝑟𝑝 (e.g., CPU utilization) in the in-memory database which
also contains registered user-specified offloading manifests Φ and running processor
descriptions 𝒱𝑟. The knowledge base provides the foundation for all the following steps.
In step 2, the offloading manager performs the evaluation of all offloading manifests at
regular intervals. Algorithm 7 summarizes the relevant steps. The evaluation policies
are assessed in order to detect any violations in a timely manner. Thereby, the relevant
resource property metric is extracted from the set of collected metricsℳ𝑟𝑝, e.g., CPU
utilization, and added to a metrics history set which is leveraged when formulating

8.3 Run-Time Evolution 133

Algorithm 7 Evaluate registered offloading manifests
Input: A set of offloading manifests Φ, a set of collected resource property metricsℳ𝑟𝑝

1: for each 𝑜𝑚 ∈ Φ do
2: 𝜆𝑟𝑝 ← getEvaluationPolicy(𝑜𝑚) ◁ get evaluation policy
3: 𝑚𝑟𝑝 ← extractMetricType(𝑜𝑚,ℳ𝑟𝑝) ◁ get metric 𝑚𝑟𝑝 ∈ (0, 1)
4: 𝜆𝑟𝑝.addMetric(𝑚𝑟𝑝) ◁ add to metrics history setℳℎ

5: if 𝜆𝑟𝑝.isViolated() then ◁ check evaluation policy
6: 𝜅← getSelectionStrategy(𝑜𝑚) ◁ get selection strategy
7: 𝒱𝑟 ← ∅
8: 𝒱𝑟 ← getRunningProcessors() ◁ get running processors
9: 𝜌𝑐 ← select(𝜅,𝒱𝑟) ◁ trigger candidate selection

10: offload(𝜌𝑐) ◁ trigger offloading

certain evaluation conditions regarding the definition of evaluation policies. As a result,
such a time-series for a dedicated metric can be used to detect possible trends apart
from mitigating bursty resource spikes. Upon detecting a policy violation, the offloading
scheme proceeds by first extracting the specified selection strategy followed by retrieving
all currently running processor instances on the underlying node (Lines 6 to 8). These
information are then used to trigger the candidate selection in step 3 and subsequently
the offloading in step 4. If no violation for any registered offloading manifest occurs, the
overall procedure is terminated until the next evaluation interval starts.

Though the concepts of offloading manifests as well as its evaluation policies and selection
strategies are generic to widen the design space, within this thesis, we refer to concrete
realizations aligned with Figure 8.7b. Therefore, Algorithm 8 excerpts a threshold-based
evaluation policy, where resource property metrics 𝑚𝑟𝑝 are compared to statically defined
thresholds 𝑇𝑟𝑝 that result in a violation if the threshold is exceeded. Further, a maximum
number of permissible violations 𝑁𝜗 is used to prevent costly offloadings due to single
outliers.

Algorithm 8 Threshold-based evaluation policy 𝜆thold
𝑟𝑝

Input: Resource property threshold 𝑇𝑟𝑝 ∈ (0, 1), max. permissible violations 𝑁𝜗 ∈ N>0
Output: 𝑡𝑟𝑢𝑒 if policy is violated, else 𝑓𝑎𝑙𝑠𝑒

1: 𝜗← 0 ◁ initialize
2: ℳℎ ← getMetrics() ◁ get metrics history set
3: for each 𝑚𝑟𝑝 ∈ℳℎ do
4: if 𝑚𝑟𝑝 > 𝑇𝑟𝑝 then ◁ exceeding threshold condition
5: 𝜗← 𝜗 + 1
6: return 𝜗 > 𝑁𝜗 ◁ exceeding violations condition

134 8 Pipeline Adaptation

Example. Figure 8.7b uses a threshold-based CPU evaluation policy with a configured CPU
utilization threshold 𝑇cpu and a maximum number of permissible 𝑁𝜗. Therefore, collected CPU
utilization metrics 𝑚cpu are compared to the given threshold while increasing the number of
detected violations 𝜗 for 𝑚cpu > 𝑇cpu. When 𝑁𝜗 + 1 violations are detected within the CPU
metrics history set, the overall policy is violated.

After having detected that an offloading is required, a suitable offloading candidate
needs to be found which is done using a specific selection strategy. An example for such
a selection strategy is shown in Algorithm 9 which illustrates a priority-based approach.
The overall objective behind the priority selection strategy is to find the lowest-prioritized
processor leveraging the operation policy for preemption as described in Section 7.3.1.
If preemption enabled by citizen technologists, information on the configured priority
class are retrieved and leveraged to find lowest-prioritized processors for all currently
running processor instances on the present node. Concretely, upon receiving a set
of all currently running processors 𝒱𝑟 as a preliminary step, a dedicated offloading
candidate set 𝒱𝑐 is populated by inspecting the preemption operation policy of the
running processors. As some pipelines may have not been configured to use preemption,
corresponding processors are assumed low-prioritized, such that their priority class is
updated accordingly. Eventually, the lowest-prioritized processor from the offloading
candidate set is returned.

Algorithm 9 Priority selection strategy 𝜅prio

Input: A set of all currently running processors 𝒱𝑟

Output: Offloading candidate 𝜌𝑐

1: 𝒱𝑐 ← ∅ ◁ initialize
2: for each 𝜌 ∈ 𝒱𝑟 do
3: 𝜋𝑜 ← getOperationPolicy(𝜌) ◁ get operation policy
4: if ¬preempt(𝜋𝑜) and prio(𝜋𝑜) = 𝑛𝑢𝑙𝑙 then ◁ check preemption setting
5: 𝜌← setPrioClass(𝑙𝑜𝑤) ◁ treat as low-prioritized
6: 𝒱𝑐 ← 𝒱𝑐 ∪ 𝜌 ◁ append to candidate set
7: return selectLowestPrioritized(𝒱𝑐)

Example. Figure 8.7b uses a priority selection strategy 𝜅prio to select a lowest-prioritized processor
offloading candidate from the set of running processors 𝒱𝑟 = {𝜌𝑖,1, 𝜌𝑖,2}. The two processors
are part of two pipelines 𝒫1 (preemption enabled, prio "high") and 𝒫2 (preemption enabled, prio
"low"). After populating the offloading candidate set 𝒱𝑐, with 𝒱𝑐 = 𝒱𝑟, the lowest-prioritized
processor 𝜌𝑖,2 from pipeline 𝒫2 is selected and used for offloading.

The selected offloading candidate is passed to the pipeline element manager which
constructs a corresponding offloading action 𝑎off and sends it to the central offloading
component within the application management layer to finalize the offloading scheme as
shown in Figure 8.7b.

8.3 Run-Time Evolution 135

Next, we describe the final step 5 to complete the offloading at the central level as
illustrated in Figure 8.3. This involves three sub-tasks, namely (1) finding a new eligible
node, (2) generating a new configured pipeline and (3) executing the offloading. The
idea is to reduce the offloading problem into a migration problem allowing to reuse
existing components and algorithms. Thus, after receiving the offloading action request,
the offloading handler performs all necessary steps summarized in Algorithm 10.

Algorithm 10 Completing offloading within central offloading handler
Input: Offloading action 𝑎off
Output: Offloading status message

1: 𝒫 ′
𝑐,𝒫𝑜𝑙𝑑,𝒩𝑒𝑙,𝜌 ← ∅ ◁ initialize

2: 𝜌𝑐 ← extractProcessor(𝑎off)
3: 𝒫𝑜𝑙𝑑 ← findAssocPipeline(𝜌𝑐) ◁ find associated pipeline
4: 𝒯 ← getNodeTags(𝒫𝑜𝑙𝑑) ◁ get node tags
5: 𝒩𝑒𝑙,𝜌 ← 𝑛𝑒𝑤 NodeValidator(𝜌𝑐, 𝒯).𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒() ◁ call Algorithm 2
6: 𝑛′ ← selectNodeCandidate(𝒩𝑒𝑙,𝜌) ◁ random node selection
7: 𝒵 ′ ← updateMapping((𝜌𝑐, 𝑛′),𝒫𝑜𝑙𝑑) ◁ update mappings
8: 𝒫 ′

𝑐 ← 𝑛𝑒𝑤 PipelineGenerator(𝒵 ′,𝒫𝑜𝑙𝑑).𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒() ◁ call Algorithm 3
9: 𝑠𝑚𝑖𝑔 ← 𝑛𝑒𝑤 MigrationHandler(𝒫 ′

𝑐).ℎ𝑎𝑛𝑑𝑙𝑒() ◁ call Algorithm 6
10: if successful(𝑠𝑚𝑖𝑔) then
11: return offloading successful
12: else
13: return offloading failed, blacklist 𝜌𝑐 and try another processor

First, the offloading candidate is used to find its associated pipeline which is used to
extract declared node tags (if any). Consequently, the validation procedure employed
in Algorithm 2 (see Section 7.3.2) can be leveraged to find a set of eligible node targets.
It is worthy to note, that the current node is not considered eligible anymore as it lacks
sufficient resource offers. From the set of eligible nodes, a new node candidate must be
found according to a dedicated node selection strategy. Similarly to selection strategies for
offloading candidates, the concept behind node candidate selection strategies is generic
and allows for arbitrary procedures to be realized. In this thesis, we apply a random node
selection from the set of eligible nodes. Accordingly, the declared pipeline element-node
mapping by citizen technologists is now updated with the new target node. This finalizes
essential preparations to complete the pipeline configuration by calling the pipeline
generator component which employs Algorithm 3 (see Section 7.3.2). Lastly, the modified
and configured pipeline is passed to the migration handler to perform the relocation
task for the offloading candidate according to the step-wise migration scheme. After the
migration operation is successfully performed, the offloading is considered complete and
is acknowledged to the issuing node controller instance by sending an offloading status
message. In case of a failure, the node controller is informed to blacklist the offloading
candidate and select another one which restarts the process.

136 8 Pipeline Adaptation

P R

Node

Node

offload

S P S

CPU MEM DISKv

Evaluation policy:
Selection strategy:

Offloading manifest

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

(a) before offloading

P

Node

Node

S

S PR

CPU MEM DISK

Evaluation policy:
Selection strategy:

Offloading manifest

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

N=Ne [Nf [Nc

n1 2 Ne

n2 2 Nf

n3 2 Nc

n4 2 Nc

R

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ

a1 pQH/
2 pM2r

2 s3

sQH/
succ

��⇢QH/
2 ,��sQH/

succ

�+⇢M2r
2

�+sM2r
pred

�i?QH/
cpu

T`BQ(b) after offloading

Figure 8.8 Running example: Offloading manifest and run-time offloading of point-in-polygon processor

Example. Figure 8.8 shows the location monitoring pipeline example deployed on edge node 𝑛1
and cloud node 𝑛3. The offloading manifest entails a threshold-based CPU evaluation policy 𝜆thold

𝑐𝑝𝑢

(threshold 𝑇𝑐𝑝𝑢 = 80%, max. violations 𝑁𝜗 = 3), and a priority selection strategy 𝜅prio. After the
policy is violated (for 4 violations), the point-in-polygon processor is selected, and, hence offloaded
to the cloud node 𝑛3 while respecting the new pipeline execution topology (Figure 8.8a). After the
offloading is completed, excessive CPU utilization on 𝑛1 is reduced (Figure 8.8b).

8.4 Tools

The concepts of this chapter are integrated into the Apache StreamPipes project to allow
geo-distributed event-driven applications to support run-time evolutions for all discussed
adaptation types. Therefore, Figure 8.9 gives an overview of the graphical support for
citizen technologists, yet focusing on user-initiated reconfiguration and migration actions
as the offloading is managed system-internally. As requirements change over time,
citizen technologists such as the fleet operators for delivery robots can easily initiate
run-time adaptation actions from the graphical user interface for both reconfigurations
and migrations while being abstracted from any technical details in the application
management layer. Thereby, fleet operators can update the valid operation area employed
as a reconfigurable geofence property in the point-in-polygon processor. Concretely, they
can provide an updated geofence version in the form of a GeoJSON1, a widely adopted
format for encoding geographic data structures and known to fleet operators (Figure 8.9a).
For live migration, fleet operators can change deployment target nodes for processors on-
the-fly to account for flexibly decide where certain event processing must be performed
(Figure 8.9b). Overall, the comprehensive tool support for all adaptation types enables to
operate mission-critical event-driven applications to account for business-driven changes
and the dynamics in fog environments.

1https://geojson.org/

https://geojson.org/

8.4 Tools 137

(a) Processor reconfiguration at run-time

(b) Processor migration at run-time

Figure 8.9 Pipeline evolution at run-time: Tool support

138 8 Pipeline Adaptation

8.5 Summary

In this chapter, we presented our conceptual work with regard to run-time adapta-
tions of processing pipelines in view of Research Question 3. The main contribution is
an adaptation methodology for event-driven applications which attaches to the sense-
process-respond principles of event-driven architectures. We first elaborated on the
necessity for supporting pipeline evolutions aspects in general.Therefore, we approached
the conceptual considerations by stating two decisive adaptation dimensions, namely
adaptation types and decision-making origin, which both underpin our proposed adapta-
tion methodology as described in Section 8.2. We further introduced adaptation gates and
adaptation events abstractions on the basis of the event processing pattern for applying
the adaptation methodology to processing pipelines which allow to pass configuration
and control directives to pipeline elements at run-time. In view of the adaptation types,
we described three run-time evolutions for event-driven applications to account for both
exogenous and endogenous adaptation forces in Section 8.3. First, run-time reconfig-
urations on reconfigurable static properties of pipeline elements allow to alter initial
design-time decisions regarding the event processing logic which facilitate citizen technol-
ogists to dynamically change the run-time behavior of event-driven applications. Second,
we introduced a step-wise migration scheme which is capable of adapting initial pipeline
execution topologies to account for new business requirements in order to dynamically
displace certain pipeline elements from one node execution location to another one any-
where along the cloud-edge continuum. Third, we presented an offloading scheme for
decision-making on node level. Influenced by the MAPE-K pattern, this allows node
controllers to observe the operational and system context of the underlying node based
on resource utilization metrics in order to deduce run-time offloading actions on dedi-
cated pipeline elements in a self-aware manner. In this respect, we proposed the generic
concept of offloading manifests. Offloading manifests comprise evaluation policies for
defining violating conditions on resource property metrics and selection strategies to
subsequently scope specific offloading candidates. Subsequently, offloading candidates
are offloaded in coordination with the central application management by reducing the
offloading into a migration problem. Finally, we presented necessary tool support for
citizen technologists to perform run-time adaptations on geo-distributed pipelines in fog
infrastructures to facilitate constant pipeline evolution. In this respect, all concepts from
this chapter were integrated into the Apache StreamPipes project.

Part IV

Finale

9
Evaluation

In this chapter, we evaluate our proposed approach for a holistic application management
of event-driven applications in heterogeneous fog computing infrastructures in view of
all research questions. Evaluations are performed based on implemented artifacts for the
discussed models, concepts and methods in Chapters 6 and 7 as well as Chapter 8. In
Section 9.1, we first define an overall evaluation framework which systematically structures
our conducted evaluations before describing developed software artifacts of the reference
implementations. Section 9.2 presents two case studies covering practical experiences of
applying our concepts in real-world deployments to evaluate the applicability in typical
IIoT domains. Section 9.3 assesses the fulfillment of requirements by means of a conceptual
investigation with regard to postulated research questions and identified needs. Lastly,
we perform performance tests covering operation and adaptation aspects in Section 9.4.

9.1 Evaluation Framework

Within this thesis, we gradually introduced concepts to tackle our stated research ques-
tions. Thereby, our research aims at achieving a holistic application management ap-
proach for geo-distributed event-driven applications in fog environments that targets
non-technical audience such as citizen technologists and allows to enhance data and
analytics democratization from IT expert to knowledge workers. From foundational
modeling efforts for enhanced resource exploitation and a geo-distributed architectural
design in Chapter 6, over pipeline deployment and operation aspects in Chapter 7, to
pipeline adaptations facilitating the application evolution in Chapter 8. Consequently,
the pursued goal of the evaluation is to assess whether our contributions are able to solve
the identified problems and needs in newly emerging application domains such as the
IIoT. As our underlying research methodology is based on the design science paradigm
for information systems, evaluating the derived artifacts is an essential task. To this ex-
tent, a systematic and comprehensive evaluation framework is required. The evaluation
framework considers various dimensions and viewpoints, uses specific evaluation metrics
and respective evaluation methods in order to investigate the designated evaluation artifact.
Figure 9.1 gives an overview of our evaluation framework.

142 9 Evaluation

Research
Question

Evaluation
Metric

Evaluation
Method

Evaluation
Artifact

Expressivity Performance

Performance Tests

Requirements Fulfillment

Conceptual InvestigationCase Studies

Node Model Node ControllerSystem

RQ1: Exploit

How can event-driven applications
exploit heterogeneous

computational resources in fog
computing infrastructures?

RQ3: Adapt

How can we reconfigure and
relocate existing event-driven
processing services at run-

time?

RQ2: Deploy

How can we deploy and operate
event-driven applications that

span multiple geographically
distributed nodes?

Figure 9.1 Evaluation framework: Overview

First, we use case studies to reflect emerging applicational and organizational needs from
Chapter 3. We demonstrate the practical applicability and expressivity of our concepts
behind the node model and methods employed within the developed system by present-
ing experiences gathered in real-world deployments. Second, elicited requirements from
Chapter 5 are analyzed to evaluate the fulfillment level of all derived artifacts in terms of
a conceptual investigation. As we specifically target holistic application management tasks
regarding the deployment, operation and adaptation of geo-distributed event-driven
applications in fog computing infrastructures, it is crucial to conduct performance eval-
uations of our developed system. Therefore, extensive performance tests over various
scenarios are conducted for the developed system and the node controller leveraging a
real-world fog computing testbed. This allows to obtain insights on the run-time perfor-
mance with regard to operation and adaptation aspects and provide the foundation to
draw conclusions on potential limitations of our concepts and methods.

Software Artifacts. While our introduced models, concepts and methods for managing
geo-distributed event-driven applications in heterogeneous fog computing infrastruc-
tures are language and tool-independent, we provide a reference implementation of
all presented architectural components as an extension for the graphical flow-based
open-source project Apache StreamPipes. At its core, StreamPipes natively builds on
top of the EPA and adapter vocabulary which we reuse and extend as part of our node
model as stated in Section 6.4. All components are developed in Java, packaged as
Maven1 modules and distributed as multi-architecture Docker images in order to fa-
cilitate platform-agnostic deployment and operation of respective containerized node
controller, pipeline element, message broker and other relevant services regardless of the
present CPU architecture.

1https://maven.apache.org/

https://maven.apache.org/

9.2 Case Studies 143

In brief, all our introduced concepts are either developed as standalone core modules or
seamlessly integrated as extensions to employ geo-distributed event-driven application
management capabilities in StreamPipes which we summarize in the following:

� Models—The introduced node model and related concepts from Section 6.4 are
added and integrated to the existing knowledge base of StreamPipes.

� Node management—The proposed node management functionality from Section 6.5
is implemented and added to the core of StreamPipes.

� Pipeline management—The presented components for geo-distribution and event
stream relay management from Section 7.3 and run-time evolution from Section 8.3
are implemented to complement existing core management functionality.

� Node controller—All node controller components elaborated in Section 7.3.5 are
implemented and bundled as a standalone module to be deployed as a containerized
service on each participating node in the fog computing infrastructure.

The aforementioned components built the foundation of the holistic geo-distributed
application management in StreamPipes. Yet, additional adaptations are necessary with
regard to our targeted citizen technologist and related peripheral organizational roles
involved in the pipeline element development process.

� Web application—The web frontend is extended to encompass a node overview and
management interface shown in Section 6.6, advanced pipeline deployment and
operation options illustrated in Section 7.4, and reconfiguration and migration
interfaces depicted in Section 8.4.

� Run-time wrapper—A new Java run-time wrapper for processors is developed which
entails the proposed adaptation methodology from Section 8.2.

� Software development kit (SDK)—The SDK is extended to enable developers to declare
node resource requirements and reconfigurable static properties.

9.2 Case Studies

In order to evaluate our developed approach for managing geo-distributed processing
pipelines from a practical viewpoint, we applied our concepts in various real-world
deployments within the IIoT domain by leveraging the developed tool extensions within
Apache StreamPipes. Following, we elaborate on the use cases and present experiences
drawn from the real-world setup with regard to the expressivity of the proposed models
and general applicability of the concepts and methods employed in the architectural
design of the system building upon these. First, we present a product quality inspection
use case leveraging a collaborative robot in an automated assembly process within
the manufacturing domain in Section 9.2.1. Second, we illustrate a remote condition
monitoring use case for autonomous delivery robot platforms in Section 9.2.2.

144 9 Evaluation

9.2.1 Case Study 1: Cobot-based Product Quality Inspection

The first use case was performed in cooperation with an industrial manufacturing com-
pany. Hereby, a collaborative robot (so-called cobot) was used for autonomous product
assembly. To this extent, the cobot was equipped with a smart gripper module with the
ability to measure gripping forces which in turn allows to evaluate the permissible force
within the spring mechanism of a dedicated part. Sensor measurements of the gripper
module (gripper event stream) as well as the cobot’s internal state machine (state event
stream) are accessed via the Robot Operating System (ROS) for further analyses. While the
former denotes gripping events with essential information on the measured force at a
specific time instant, the latter represents discrete state change events to obtain knowledge
on respective cobot execution steps, e.g., start and end signals for the quality check. Fig-
ure 9.2 illustrates the force events, the active test periods, the specified quality threshold,
and the computed average force during the assembly in a set up, configurable testbed.
The testbed allows for repeatably conducted quality checks on 4 test parts whereby 3
parts are "ok" and 1 part is "not ok" due to a defective spring mechanism.

09:30:13 09:30:58 09:31:43 09:32:28 09:33:13
timestamp (event time)

0

8

16

24

32

40

fo
rc

e
[N

]

10

ΔTqc
1

ok
ΔTqc

2
ok

ΔTqc
3

ok
ΔTqc

4
nok

… ΔTqc
8

nok
… ΔTqc

12
nok

…

force x
average force ̄xforce
threshold T

Figure 9.2 Excerpt of performed cobot-based quality checks. Time series shows force events over
active and inactive test periods. Defined criterion for quality assessment follows a rule-
based approach, i.e., the average force within the test period Δ𝑇 𝑞𝑐 must exceed a threshold
𝑇 set by the quality engineer, s.t. 𝑥̄force > 𝑇 , for 𝑇=10 𝑁 (parts 1, 2, 3, 4). Highlighted
time intervals indicate "not ok" results for defective part 4.

Thus, the goals are as follows:

� Applicational needs—First, the spring mechanism must be quickly assessed during
pick-and-place operation using a rule-based approach. Therefore, both the gripper
and the state event stream are leveraged while results are immediately sent back
to the cobot. Second, relevant key performance indicators must be computed for
monitoring purposes and to identify adjusting levers for process optimization.

� Organizational needs—Allow citizen technologists from the company’s quality de-
partment to flexibly deploy, operate and adapt analytical product quality inspection
pipelines in a geo-distributed fashion to meet business and application requirements
towards low latency, data sovereignty and data locality.

9.2 Case Studies 145

(a) add new node (b) node overview with newly registered node model

Figure 9.3 Setup phase: Adding new cloud node with node tags to extend the fog computing
infrastructure managed by StreamPipes (a). Node overview after registration shows two
nodes with one edge node (Raspberry Pi 4) and one cloud node (VM) including excerpts
of the node model such as node resource properties and node metadata (b).

Setup Phase. One of the first steps was to provision the infrastructure containing
available compute nodes with our node controller in order to exploit their exposed
computational resources for executing potential pipeline elements. In order to provide
sufficient user guidance through the provisioning step of new nodes, the node overview
in the GUI enacts a step-wise procedure to add new nodes. This allows to easily configure
relevant installation settings of the node controller which are translated in a ready-to-
use deployment instruction to start the respective container on the desired destination
node. In view of the task, we provisioned an ARM32-based Raspberry Pi 4 as an edge
node in close proximity to the cobot and a x86-based virtual machine denoting a cloud
node within the company’s own datacenter. While we configured the Raspberry Pi
including relevant node tags2, i.e., "UR", "KA", "LineA", "RaspberryPi", and a RosCon-
nectivityNodeResource to demonstrate relevant steps, the partner was able to perform
necessary configurations and integrate the cloud node as shown in Figure 9.3a. The node
controller constructed and registered the NodeDescription and self-reliantly managed
the pipeline element and node broker container deployments in a platform-agnostic
fashion. Therefore, it leveraged encompassed knowledge in the node description about
the associated resource layer, i.e., edge, fog, or cloud, in addition to the generic Deploy-
mentContainer descriptions for containerized services to decide which services needs
to be started. Figure 9.3b gives an overview of available computational resources of the
fog infrastructure and presents an excerpt of the underlying node model in terms of
NodeResource information for all resource types and additional NodeMetadata.

2Due to confidentiality agreements node tags were altered for this thesis.

146 9 Evaluation

(a) pipeline authoring (b) preference-based configuration

Figure 9.4 Operation phase: Product quality inspection and KPI analytics pipeline 𝒫Q,KPI during
pipeline authoring (a) and when specifying preference-based configurations prior to geo-
distributed pipeline deployment (b).

Operation Phase. In order to realize these goals, the problem description was de-
composed into the respective cobot-based product quality inspection and KPI analytics
pipeline, referred to as 𝒫Q,KPI, and shown in Figure 9.4a. This pipeline implies a set of
eight pipeline elements which we developed and were used by the quality engineer dur-
ing pipeline authoring: 1 a ROS adapter for the gripper event stream, 2 a ROS adapter
for the state event stream, 3 a processor for merging two event streams which provides
an enriched force event stream encompassing knowledge on the current active cobot
execution state, 4 a statistics and quality check processor which buffers the enriched force
time series over the quality check time window. Once the time window ends, descriptive
statistics are computed, chief among the average force 𝑥̄force, to perform the quality check
based on a reconfigurable static threshold property, 5 a KPI processor for computing
relevant quality and process metrics, e.g., scrap rate, first pass yield, average quality check
duration, 6 a ROS sink to send validation results to the cobot, 7 a live dashboard sink to
visualize KPI in real-time and 8 a datalake sink to store analytics results for traceability
purposes.

Prior to the geo-distributed deployment, we instructed the partner to carry out the
preference-based configuration to prepare the deployment and operation options for
𝒫Q,KPI. Figure 9.4b illustrates the chosen "custom" deployment option and related pipeline
element node mappings for processors and sinks while only eligible deployment target
nodes were exposed to the quality engineer. Therefore, employed pipeline element re-
source requirements were validated and compared against the current resource offers.
In view of this use case, hardware resource requirements were satisfiable by both edge
and cloud node. In contrast, connectivity requirements for both ROS adapters and the

9.2 Case Studies 147

ROS sink were only fulfilled by the edge node due to the RosConnectivityNodeResource
which was retrieved from the respective node model. This provided further support to
the quality engineer when selecting deployment target nodes. Regarding the deployment,
it is worthy to note that both ROS adapters were already deployed on the edge node
in a previous connection step within the connect module of StreamPipes (not shown
in the figure). Nevertheless, the logical representation as a registered event streams
could be used by the quality engineer during the pipeline authoring process. Due to the
manual node assignment, it was possible to explicitly adhere to related business and
application requirements to prevent excessive edge-cloud round trips. Hence, apart from
the adapters themselves, all processors including the ROS sink were deployed on the
edge node and thus rely on intra-node event dissemination based on the lightweight
epa:MqttTransportProtocol. Consequently, only pre-computed and aggregated produc-
tion and quality KPIs were forwarded to the epa:KafkaTransportProtocol of the cloud
message broker by means of the EventStreamRelay concept. From here, the dashboard
and datalake sink on the cloud node were able to subscribe the provided results for
central monitoring and long-term storage purposes. Besides, the reconfigurable thresh-
old parameter based on the ReconfigurableStaticProperty concept provided the ability
to update defined tolerable quality specifications at run-time. This was inevitable to
incorporate adaptive behavior on the event processing side to supplement flexibility
demands of cobot-based parts assembly.

9.2.2 Case Study 2: Autonomous Delivery Robot Platform

The second use case was conducted in a consortium of academic and industry partners
as part of a collaborative research project from where we drew the motivating smart
urban logistics scenario presented in Section 3.1.2. In brief, the overall objective was to
investigate issues related to the last-mile delivery problem by using autonomous delivery
robot platforms for package delivery. Thereby, satellite hubs outside of city centers
can be seen as handover points where delivery service provider handover respective
packages to these delivery robot platforms. In turn, delivery robots autonomously execute
delivery tours in urban city areas to deliver packages to available package boxes denoting
end customer pick-up points. Figure 9.5 shows the developed prototypes for both the
autonomous delivery robot platform (mobile edge node) and the package box (regional
fog node). The delivery robot prototype was equipped with various sensor modules
generating different sensor measurements (system event stream) which were provided over
an integrated ROS interface. System events include information on the current battery
state, acceleration, speed, heading, or the current GPS location at a specific time instant.
Further, a dedicated test area situated on the company premises of one of our partners
was set up which provided a real-world test environment for multiple experiments. This
allowed to obtain real-world experience of the proposed models, concepts and methods
along the whole event-driven application life cycle under the influence of mobility aspects
in fog computing.

148 9 Evaluation

(a) delivery robot platform (front), package box (back) (b) delivery robot in action

(c) Reconfigure geofence (d) Offload point-in-polygon processor 𝑝2

Figure 9.5 Delivery robot and package box prototype (a), in action during package pickup and delivery
scenario (b), test area with geofence reconfiguration (c) and point-in-polygon processor
offloading (d). Map data © OpenStreetMap [OpenStreetMap contributors 2021].

Thus, the goals are as follows:

� Applicational needs—First, employ location monitoring of the delivery robot based
on adaptive geofences and notify fleet operators in the event of any abnormal
behavior. Second, temporarily buffer events to succeeding pipeline elements either
at the fog or cloud layer during intermittent network outages and synchronize
upon reestablishing a stable connection. Third, automatically offload processors to
nearby packet boxes (if possible) or to the cloud when overly compute-intensive
edge processing puts too much strain on the compute node in the delivery robot.

� Organizational needs—Enable citizen technologists such as fleet operators to flexibly
integrate new delivery robots (edge nodes) and package boxes (fog nodes) and
allow them to manage geo-distributed remote condition and location monitoring
pipelines from a central control center.

9.2 Case Studies 149

(a) add fog node with geolocation (b) GPS and ROS connectivity node resources

Figure 9.6 Setup phase: Adding new node fog node with geolocation information to extend the fog
computing infrastructure managed by StreamPipes (a). Edge node configuration for the
delivery robot showing connectivity node resources for a local GPS sensor to retrieve live
location updates and local ROS interface (b).

Setup Phase. As part of the research project, a real-world fog computing testbed
was set up which comprises two x86-based industrial edge PC employed within the
delivery robot and the package box prototypes apart from a virtual machine cloud
instance hosted in the bwCloud3 infrastructure. Each node was first provisioned with the
developed node controller using the previously described guided provisioning process
while providing appropriate node tags. However, unlike the previous case study with
stationary edge nodes, the delivery robot is inherently mobile. Therefore, our proposed
node model allows to incorporate the concept of GeoLocation denoting the node’s
physical location in terms of latitude and longitude properties to complement domain-
specific node tags. Figure 9.6 shows the configuration dialog when adding a new fog
node for the package box, including geolocation properties and excerpts properties of
the GpsConnectivityNodeResource and RosConnectivityNodeResource concept for
the edge node. Thereby, provided information on the GPS connectivity node resource
allowed to automatically retrieve live location updates for the delivery robot during the
operation phase in order to continuously update related geolocation properties in its
node description. In addition, the delivery robot was equipped with a LTE modem to
communicate with the cloud node. Further, this allowed the nearby package box to
establish a local wireless connection to directly communicate with the delivery robot.
This provided the ability to exploit computational resources in close proximity and in an
ad-hoc fashion when needed.

3bwCloud is an OpenStack powered flexible Infrastructure-as-a-Service offering optimized for researchers,
lecturers and students in Baden-Wurttemberg (https://www.bw-cloud.org/).

https://www.bw-cloud.org/

150 9 Evaluation

(a) pipeline authoring (b) preference-based configuration

Figure 9.7 Operation phase: Location monitoring pipeline 𝒫𝑙𝑜𝑐 during pipeline authoring (a) and when
specifying preference-based configurations prior to geo-distributed pipeline deployment (b).

Operation Phase. To evaluate the practical applicability of our approach for both ap-
plicational and organizational needs, we leveraged our running example for the location
monitoring pipeline 𝒫𝑙𝑜𝑐 which we introduced in Section 3.1.2 and further used in Chap-
ters 6 to 8 to exemplify our proposed models, concepts and methods. In brief, Figure 9.7a
shows the three pipeline elements used by the fleet operator during pipeline authoring:
1 a ROS adapter for the system event stream encompassing information on the current

geolocation, 2 a point-in-polygon processor to constantly monitor the current location
and compare it to a reconfigurable static geofence property and 3 a notification sink to
inform the fleet operator when the delivery robot unintentionally leaves the valid test
area defined by the geofence.

After completing the pipeline authoring, we instructed the partner responsible for fleet
management tasks to perform the preference-based configuration to prepare the location
monitoring pipeline for the geo-distributed deployment. Figure 9.7b depicts the result of
the "locality-aware" deployment option which was added to demonstrate the extensibility
of the underlying concept. In contrast to the custom deployment option where nodes
are assigned in a manual selection process by citizen technologists, the locality-aware
deployment option uses a rudimentary system-side node mapping strategy where eligible
nodes are automatically assigned. Therefore, starting from the root of the pipeline
topology, namely the adapter and its deployment target node typically in close proximity
to the event source (here the delivery robot), a basic bin packing algorithm was integrated.
This assigns succeeding pipeline elements to the same node as long as stated resource
requirements can be served before randomly assigning them to other nodes. In the given
case, as the connectivity requirement for the ROS adapter (see Section 6.2) was only
fulfilled by the delivery robot, the point-in-polygon processor was also assigned to the

9.2 Case Studies 151

delivery robot. Yet, the notification sink was deliberately mapped to the cloud node as
a requirement by the fleet operator. Again, the ROS adapter was already pre-deployed
on the delivery robot in a previous step within the connect module of StreamPipes (not
shown in the figure). Additionally, global pipeline operation policies were configured
by the partner. The operation policy for relays was set to "buffer" in order to configure
the event stream relay manager of the node controller on the delivery robot to buffer
events when passing through radio holes. Besides, preemption was enabled with a high
priority class. After the deployment of the location monitoring pipeline, the delivery
robot performed an autonomous package pickup and delivery scenario in the test area.
Upon receiving a new order schedule, the delivery robot picked up the package at the
satellite hub and autonomously performed the delivery task to the package box to deposit
the package. During the delivery, the delivery robot covered a driving distance of 232
meters from satellite hub to package box over typical street terrain and performed the
delivery task within roughly 7 minutes including necessary handling steps. The practical
applicability of the run-time reconfiguration and offloading was assessed in this real-
world setting during this pickup and delivery scenario. For the reconfiguration, the
fleet operator was instructed to update the valid test area during the delivery process
(Figure 9.5c). Technically, this was possible by the geofence reconfigurable static property
within the point-in-polygon processor. For the offloading, we registered an offloading
manifest comprising a threshold-based CPU evaluation policy (𝑁𝜗=2, 𝑇𝑐𝑝𝑢=60%) and
a priority selection strategy. To provoke violations in a deterministic manner, a CPU
load generator was implemented and wrapped inside the point-in-polygon processor
which allowed to set the CPU load to a given target value, here 70 %. During another
delivery process, multiple individual threshold violations were detected by the node
controller on the delivery robot. Upon the third violation, an offloading was triggered for
the only actively running processor, namely the point-in-polygon processor (Figure 9.5d).
At the time, the geolocation for the package box fell within the WiFi coverage of the
delivery robot. Thus, a regional offloading to the nearby fog node in the package box
was performed while required event stream relays were updated accordingly.

9.2.3 Discussion

The general goal behind conducting case studies was to obtain real-world insights for
(1) assessing the expressivity of our proposed node model and identify potential short-
comings or missing concepts and (2) evaluate the practical applicability of the methods
and concepts entailed in the system. Yet, as a prerequisite, we need to clarify to what ex-
tent the presented case studies are capable of representing a broad spectrum of potential
scenarios in the domain of IIoT and fog computing. This can be validated by assessing
the case studies with regard to the fundamental fog computing characteristics from
Section 2.3.2 as well as applicational and organizational needs categorized in Section 3.2.
The former denotes dimensions which shape the general fog computing landscape, the

152 9 Evaluation

0

1

2

3

4

Location-
Aware

Geo-
Distribution

Heterogeneity

Interoperability
/Federation

Real-Time
Interaction

Scalability

Wireless

Mobility

Quality Inspection Autonomous Delivery

(a) case studies → fog computing characteristics

0

1

2

3

4

Centralized
Orchestration

Adaptive
Pipelines

Edge
Processing
Pipelines

Condition
Monitoring/
KPI Pipelines

Edge AI
Pipelines

Data
Enrichment
Pipelines

Focus on
Citizen

Technologists

Quality Inspection Autonomous Delivery

(b) case studies → applicational/organizational needs

Figure 9.8 Mapping case studies to fog computing characteristics (a) and applicational and organiza-
tional needs (b) according to the degree of importance for the specific dimension.

latter describes dimensions of concrete demands for geo-distributed event-driven appli-
cations in fog computing entailed in typical directed and sense-process-respond models.
Therefore, we evaluate each dimension with respect to the degree of importance within
the specific case study according to a five point scale: (0) not important, (1) slightly impor-
tant, (2) moderately important, (3) very important, and (4) extremely important. While not all
dimensions need to be at the highest level to answer the question about the suitability
of our case studies, the higher the importance level, the more complexity is generally
attained. In turn, this induces more challenges that need to be covered by our models,
concepts and methods building the foundations of the holistic application management.
Figure 9.8 illustrates the results. As can be seen, both fog computing characteristics as
well as applicational and organizational needs are broadly covered by the discussed
case studies. Only in terms of interoperability and federation aspects both case studies
only indicate a slight importance which is due to the fact that no production-grade fog
service providers are present at the time of writing this thesis. Despite the fact that the
quality inspection case study follows a rule-based approach for decision-making at the
edge, this can be equally seen as a placeholder for more sophisticated machine learning
approaches when the complexity level of the domain problem increases. Hence, we argue
that these case studies are well-capable of covering the application and requirement space
in the given context. This provides an essential indicator to validate whether our holistic
management approach for geo-distributed event-driven applications is suitable to further
excel the democratization movement and to provide support for citizen technologists.

One key to fostering practical applicability in real-word deployments results from the end-
to-end support along the node and the pipeline element life cycle. From the configuration
and registration of new nodes and supported pipeline elements during the setup phase,

9.3 Conceptual Investigation 153

over the pipeline deployment and operation, to pipeline adaptations in the operation
phase. In both case studies, citizen technologists in the role of quality engineers or fleet
operators were able to perform related tasks. The node model not only is a decisive factor
when it comes to uncover heterogeneity dimensions inherent to fog computing. It also
allows to obtain knowledge in a machine-interpretable fashion while extending existing
domain vocabularies. At the same time, citizen technologists are abstracted from any
modeling efforts by the management middleware regardless of the present infrastructure
and node design which lowers technical entry barriers. The model shows its versatility for
two prominent application types, namely in a stationary setting for the quality inspection
case and in a mobile setting for the delivery robot case. Despite relevant geolocation
information in the mobile scenario which are covered by the model, the extensible node
tags concept further allows to introduce domain-specific knowledge, e.g., the cobot type
or line number. In particular these user-defined domain tags are useful to prepare the
deployment. In addition, guidance is provided throughout the setup and operation
phase. First, the connection process to IoT devices for specific adapter and sink types
is simplified by leveraging connectivity information of individual nodes. Second, the
extensible set of preference-based deployment options and operation policies provide
freedom of choice to citizen technologists. This gives them the flexibility to fit deployment
and operation tasks to a wide range of application and business requirements as shown in
the case studies. Third, citizen technologists are enabled to perform pipeline adaptation
actions (when required) with system-side support. Moreover, the architectural design
and the tool support allow to intuitively add new nodes as demands grow which is of
importance for both case studies.

Hence, we are confident that both the expressivity of the node model and the practical
applicability of our holistic application management approach is suitable to target the
emerging needs in a wide variety of fog-related use cases in domains like the IIoT. Yet,
the performed studies may not equally reflect all essential criteria for answering our
principal research question and thus require further investigation. Next, we assess to
which extent the proposed holistic application management approach meets the derived
requirements to further support our first impression.

9.3 Conceptual Investigation

In this section, we evaluate the requirement fulfillment level by means of the concep-
tual investigation method. Therefore, elicited requirements from Chapter 5 entailing
model-specific and architecture-specific as well as system-specific aspects are assessed.
Accordingly, we elaborate how these requirements are addressed by our proposed mod-
els, concepts and methods towards a holistic application management system for geo-
distributed event-driven applications. Figure 9.9 shows our research questions and
elicited requirements.

154 9 Evaluation

System-specific

No-Code Event Processing System

Processing Pipeline

ML-EPA

Application Management Layer

Edge Fog Cloud

Exploit Deploy Adapt

ResultsEvents

Event Sources
(IoT Devices)

Storage,
Visualization,
Monitoring,

Actions

RQ1: Exploit
How can event-driven applications

exploit heterogeneous
computational resources in fog

computing infrastructures?

RQ3: Adapt

How can we reconfigure and
relocate existing event-driven

processing services at run-time?

RQ2: Deploy
How can we deploy and operate
event-driven applications that

span multiple geographically
distributed nodes?

Requirements Elicitation

Model/Architecture-specific

Heterogeneity-aware
(R1, R2)

Extensible & Interoperable
(R3, R4, R5, R6, R7)

Geo-Distributed Architecture
(R8, R9)

Adaptivity
(R18)

Modification Support
(R19)

Fluidity Support
(R20, R21)

System-specific

Geo-Distributed Deployment
(R10, R11, R12, R13, R14)

Geo-Distributed Operation
(R15, R16)

Resiliency
(R17)

Figure 9.9 Mapping of research questions to requirements

9.3.1 Requirements Fulfillment

Following, we first elaborate on derived requirements (R1-R9) which build the foundation
and pose decisive architectural design decisions for a holistic event-driven application
management in fog computing. Table 9.1 summarizes the model and architecture-specific
requirements and their fulfillment degree. After reviewing them, system-specific re-
quirements (R11-R21) are investigated and discussed. In particular, the latter set of
requirements deal with technical challenges and describe what aspects are indispensable
for a holistic application management system for geo-distributed event-driven applica-
tions while aiming at the question how to realize respective functionalities. Table 9.2
summarizes the system-specific requirements and their fulfillment degree.

Model/Architecture-specific Requirements Fulfillment. When it comes to executing
geo-distributed event-driven applications in fog infrastructures, a fundamental ques-
tion that arises is how to tackle the inherent heterogeneity. Consequently, concepts are
required which allow to create transparency and resource-awareness of the discussed

9.3 Conceptual Investigation 155

heterogeneity dimensions. Therefore, the first two requirements (R1, R2) are directly
fulfilled by related concepts implied in the proposed node model from Section 6.4. Not
only do nodes expose their generated node description via web-based standards and
register them at the central application management layer to gain knowledge on hard-
ware, software and connectivity resource dimensions in a machine-interpretable manner,
the model itself is generic. Hence, it does not rely on specific node types, processor
architectures such as x86, ARM32 or ARM64, or concrete implementations. Moreover,
the described NodeResource concept is extensible and provides the ability to either
add new subclasses for individual resource dimensions (if required) or even add new
resource dimensions as a whole (R3). Additionally, the generic NodeTag concept fulfills
the requirement for domain knowledge (R4) by providing the ability to structure and
organize nodes by specifying meaningful domain metadata. This further facilitates the
node selection and deployment process for citizen technologists as it provides additional
knowledge over a potentially large set of geographically dispersed nodes. Besides, both
the stationary scenario and the mobile edge scenario benefit from the node tag concept
as it either allows to express relative location information in the former case, or to enrich
information on the current geolocation in the latter case. The developed node model is
built on well-established concepts in web technologies and is represented in RDF which
fulfills the requirement for interoperability (R5).

The decomposition of complex analytical problems into smaller discrete and reusable
computational building blocks is well-suited to meet the induced IIoT-related application
demands. Moreover, it alleviates the distribution of individual processing parts, namely
pipeline elements, to geo-distributed nodes along the cloud-edge continuum. Therefore,
the interoperability of the proposed node model provides the ability to reuse existing
vocabularies for describing EPN entities and extend them with essential concepts and
properties to enhance the geo-distributed operation. Concretely, extensions to the adapter
and EPA vocabulary (see Section 6.4.1) allow pipeline element developer to express nec-
essary node resource requirements for hardware, software and connectivity resources
as defined in the formal pipeline application model Section 6.2. Still such modeling
efforts can be troublesome and requires advanced knowledge. To this end, foundational
concepts are wrapped and integrated as extensions to the SDK as part of the tool support
in StreamPipes which fulfill related requirements (R6, R7). Architecture-related require-
ments regarding the two-level management approach (R8) are fulfilled by the proposed
geo-distributed master-worker architectural design introduced in Section 6.5. In addition,
the general design is further refined in Sections 7.3 and 8.3 with a central coordinating
application management middleware which is complemented by the local node con-
troller. The seamless interaction between both central and local management enables
the geo-distributed pipeline deployment, operation and adaptation along the node and
pipeline element life cycle. Lastly, resource isolation is ensured by relying on lightweight
containers to provision nodes with essential services (R9). In this matter, the initial
node provisioning in the setup phase is supported by the generic DeploymentContainer
concept from Section 6.4.3. This is incorporated in the tool support and allows pipeline

156 9 Evaluation

N° Description Fulfilled by
R1 Heterogeneity-aware Vocabulary, NodeDescription (Section 6.4)
R2 Platform-agnostic Vocabulary, NodeDescription (Section 6.4)
R3 Extensibility Vocabulary, NodeResource (Section 6.4.1)
R4 Domain Knowledge Vocabulary, NodeTag (Section 6.4.2), tool support
R5 Interoperability Vocabulary, RDF data model (Section 6.4)
R6 Dataflow Composition Vocabulary, pipeline application model (Section 6.2)
R7 Requirement Declaration EPA/Adapter vocabulary extension (Section 6.4.1), SDK
R8 Two-level Management Geo-distributed architecture (Section 6.5)
R9 Isolation Vocabulary, DeploymentContainer (Section 6.4.3)

Table 9.1 Requirements fulfillment: Model and architecture-specific requirements

element developers to declare the respective services in generic, technology-agnostic
deployment manifests which are used by the node controller alongside knowledge on
the present container runtime to perform the provisioning.

System-specific Requirements Fulfillment. In contrast to alternative approaches de-
lineated in Chapter 4, we aim at combining aspects from both the application-centric and
infrastructure-centric world. This is transferred into a holistic application management
approach geared towards the demands of citizen technologists. Thereby, the system
leverages previously elaborated concepts and the derived geo-distributed architecture as
foundational building blocks which shape the subsequent design of related components.
In view of this, both the central pipeline management and the node controller compo-
nent provide end-to-end support for geo-distributing and operating individual pipeline
elements (Section 7.3). Thereby, the employed concepts and methods cover the complete
deployment process. From the eager pipeline element validation (see Section 7.2), over
the coarse to fine-grained node validation (see Section 7.3.2), to event stream relay gener-
ation (see Section 7.3.3) and final geo-distribution (see Section 7.3.4). The node controller
further complements the end-to-end support in terms of node-level management capa-
bilities (Section 7.3.5). Overall, this fulfills related requirements (R10-R13). Moreover,
deployment and operation support are fulfilled by providing preference-based configu-
rations in terms of pipeline deployment options and operation policies from Section 7.3.1.
These allow citizen technologists to customize deployment and operation aspects, such
as selecting deployment target nodes or enabling the preemption mechanism, in a self-
service manner (R14, R15). Further, flexible edge-fog-cloud communication patterns in
view of the event routing requirement (R16) are fulfilled by several concepts and meth-
ods building on top of each other. This includes the foundational EventStreamRelay
concept, LAEDS for intra-node and inter-node event dissemination and the generation
and execution of event stream relays. Besides, resiliency demands (R17) are addressed
at two levels to account for the dynamics in fog computing. First, citizen technologists
can configure an operation policy for relays stating how the node controller should deal

9.3 Conceptual Investigation 157

N° Description Fulfilled by
R10 Geo-Distribution Pipeline/node management, node controller (Section 7.3)
R11 Node Autonomy Node controller (Section 7.3.5)
R12 Abstraction Tool support (Section 7.4)
R13 Matching Validation procedure (Section 7.3.2)
R14 Deployment Support Deployment options (Section 7.3.1)
R15 Operation Support Operation policies (Section 7.3.1)
R16 Event Routing Vocabulary, LAEDS, relay (Section 7.3.3)
R17 Resiliency Relay (Section 7.3.1), node controller (Section 7.3.5)
R18 Adaptivity Pipeline adaptation methodology (Section 8.2)
R19 Reconfiguration Support Vocabulary, adaptation gate/event (Section 8.3.1)
R20 Migration Support Migration scheme (Section 8.3.2)
R21 Context-aware Offloading Offloading scheme/manifest (Section 8.3.3)

Table 9.2 Requirements fulfillment: System-specific requirements

with situations of temporary network outages. As such, events may be buffered at the
source node controller for a configurable length and are send upon reestablishing the
connection to the target as discussed in Section 7.3.5. Second, invoked pipeline elements
and event stream relays are persistently stored at node level which provides the abil-
ity to issue local re-invocation actions in the case of unintentional node restarts. Next,
the proposed pipeline adaptation methodology from Section 8.2 covers both external
and internal decision-making origins to account for user-initiated and system-initiated
adaptation actions at the same time (R18). The methodology facilitates the pipeline
evolution over-time which is expressed in terms of typical adaptation types. On the one
hand, user-initiated run-time reconfiguration actions (see Section 8.3.1) integrate the
ReconfigurableStaticProperty concept alongside two abstractions, namely adaptation
gate and adaption event, to alter design-time decisions of static properties. On the other
hand, user-initiated run-time migration actions are realized on the basis of a step-wise
migration scheme (see Section 8.3.2). Additional system-initiated offloading actions use
the idea of offloading manifests and an offloading scheme to relocate pipeline elements
without human intervention when observed context changes violate stated criteria (see
Section 8.3.3). In summary, this fulfills the related requirements (R19-R21).

9.3.2 Discussion

The conceptual investigation shows that all derived requirements are fulfilled by the
introduced models, concepts and methods in this work. Yet, it further reveals the inter-
correlation among the individual requirements. Thereby, the system leverages concepts
and the outlined architectural design from Chapter 6 as foundational building blocks for
the subsequent component design. This equally applies for components at the central
application management layer and the node level. Moreover, this manifests in employed

158 9 Evaluation

methods for deploying, operating and adapting event-driven applications in fog infras-
tructures as discussed in Chapters 7 and 8. The provided tool support completes the
overall picture. Consequently, this leads to the point where managing geo-distributed
event-driven applications is accessible to citizen technologists which strengthens the
overall degree of fulfillment.

9.4 Performance Tests

In this section, we present results from an extensive set of performance tests regarding
operation and adaptation aspects to evaluate the run-time performance of the developed
system. This allows to draw conclusions on potential limitations of our proposed concepts
and methods as stated in Section 9.1. To obtain insightful results, we set up a configurable
fog computing testbed representing a typical real-world environment. In this regard, we
use computational nodes which are commonly found in literature [Bellavista and Zanni
2017; Yigitoglu et al. 2017; Ahmed and Pierre 2018]. These nodes represent different
system architectures, operating systems and hardware capabilities and are well-suited
for investigating respective fog computing scenarios. Following, we describe the setup of
the fog computing testbed prior to presenting individual performance test scenarios and
discussing the related results.

9.4.1 Setup

The fog computing testbed comprises four nodes: two ARM32-based Raspberry Pi Model
4 (RPi4 1/2) single-board computer serving as edge nodes, one x86-based Intel NUC
Mini PC (NUC) representing a fog node and one x86-based powerful virtual machine
(VM) acting as a cloud node. Table 9.3 summarizes essential node specifications:

Id Type Model OS CPU Memory Network
RPi4 1 EN1 Raspberry Pi 4 Raspbian 10 4× 1.5 GHz 4 GB 1 Gbit
RPi4 2 EN1 Raspberry Pi 4 Raspbian 10 4× 1.5 GHz 4 GB 1 Gbit
NUC FN1 Intel NUC Ubuntu 18.04.6 8× 2.7 GHz 32 GB 1 Gbit
VM CN1 Virtual Machine Ubuntu 16.04.7 16× 2.1 GHz 236 GB 1 Gbit

1 Edge node (EN), fog node (FN), cloud node (CN)

Table 9.3 Fog computing testbed: Node overview

Network. In compliance with our formal fog infrastructure model provided in Sec-
tion 6.3, all participating nodes are capable of communicating with each other over the
network. As such, all testbed nodes, except the VM, are connected to a Gigabit (Gbit)

9.4 Performance Tests 159

Ethernet network switch with typical low network round-trip latencies for the single-hop
distance with an average around 0.2 𝑚𝑠 over 100 consecutive ping runs. In addition,
the VM resides on a server within the same local area network accessible over a Gbit
network connection and an average latency around 0.5 𝑚𝑠 over 100 consecutive ping
runs. In order to account for this, we create artificial network latencies between every
pair of nodes by leveraging the Linux traffic control (tc) command to emulate wide
area network delays in a configurable fashion. Table 9.4 captures the pairwise network
latencies present during all performance tests. This allows to provide realistic latencies
among the geo-distributed nodes, in particular to reflect larger network distances to
potentially remote cloud nodes residing at dispersed data center locations. Latency
information are obtained from the WonderNetwork4 Global Ping Statistics providing
average city to city ping times, ranging from 7 𝑚𝑠 for Frankfurt–Munich, over 14 𝑚𝑠 for
Frankfurt–Amsterdam, to 40 𝑚𝑠 for Frankfurt–Vienna. Consequently, while edge-cloud
and fog-cloud latencies are set to 25±2 𝑚𝑠 and 20±2 𝑚𝑠 respectively, edge-fog latencies are
set to be in the low milliseconds range at 5± 2 𝑚𝑠. Moreover, edge-edge latencies are kept
at the actual measured latency as previously described. This arguably denotes a typical
setup for geo-distributed fog computing infrastructures assuming no cross-continental
cloud data center connections.

RPi4 1
(edge node)

RPi4 2
(edge node)

NUC
(fog node)

VM
(cloud node)

RPi4 1 0.03 0.21 5± 2 25± 2
RPi4 2 0.21 0.03 5± 2 25± 2
NUC 5± 2 5± 2 0.03 20± 2
VM 25± 2 25± 2 20± 2 0.03

1 Actual avg. latency measured 100 ping runs (edge nodes only)

Table 9.4 Fog computing testbed: Pairwise network latencies (in ms)

Setting. All nodes are provisioned with Docker 20.10.7 as the industry’s de facto con-
tainer runtime and its proven feasibility in the context of fog computing to realize similar
IoT-related scenarios [Ismail et al. 2015; Pahl and Lee 2015; Alam et al. 2018]. To ensure
synchronized clocks within the fog computing testbed for performance measurements,
we set up a local time server on the cloud node (VM) using the Network Time Proto-
col [Mills 1991] and configured all remaining nodes as clients to sync their internal clock
with the local time server. This reduces any clock offsets and drifts to a negligible mini-
mum which is a fundamental prerequisite for accurate measurements. We provisioned
the fog computing testbed with the developed software artifacts integrated as extensions
into the Apache StreamPipes project to employ geo-distributed event-driven application
management capabilities.

4https://wondernetwork.com/

https://wondernetwork.com/

160 9 Evaluation

Table 9.5 provides an overview of the respective containerized components and their
assignment to testbed nodes. In brief, relevant containerized components include:

� performance-test-client—A service wrapping all performance tests allowing to
programmatically interact with the backend to execute individual test runs in a
configurable, reproducible and automated manner.

� streampipes-ui—Graphical user interface to create pipelines for individual evalua-
tion scenarios and to specify necessary deployment options and operation policies.

� streampipes-backend—Core of StreamPipes comprising extensions in terms of
central node and pipeline management functionality in addition to an in-memory
RDF triplestore realized with Eclipse RDF4J (formerly OpenRDF Sesame) containing
the description graphs for pipelines, pipeline elements and nodes.

� Apache Kafka—Central message broker for the cloud node realized using Apache
Kafka. Although developed for large-scale deployments by partitioning and repli-
cating topics in a distributed system, we use Kafka in a single-node broker setup.

� Apache Zookeeper—A distributed coordination service required by Kafka.
� Consul—A service-discovery solution and distributed key-value store for pipeline

element and backend system configurations.
� Apache CouchDB—A NoSQL database to store non-RDF data.
� Apache ActiveMQ—A multi-protocol messaging service generally required for

live data visualization in the UI, here we use it as a central endpoint to collect
distributed performance measurement logs.

� streampipes-node-controller—Node controller management service installed on
all testbed nodes and responsible for all local node and pipeline element manage-
ment tasks along the pipeline element life cycle.

� streampipes-extensions—Run-time wrapper for Java pipeline elements (adapters,
processors, sinks) including custom ones developed for the sake of the evaluation
such as a CPU load generator processor to generate a reconfigurable target CPU
load and a latency measurement and event logging sink.

� Eclipse Mosquitto—Local message broker for all edge and fog nodes realized using
Eclipse Mosquitto which implements the lightweight MQTT protocol and used to
demonstrate cross-transport protocol capability of event stream relays.

Moreover, we developed and integrated a custom logging module to collect run-time logs
of the developed system during the performance tests. Thereby, arbitrary logging events,
e.g., current resource usage metrics on container level and scenario-specific point-in-time
control logs, are published to ActiveMQ from where they are subscribed, stored and
analyzed. Resource metrics on container level provide a good estimate to gain insights
about the impact and resource overhead a certain containerized component such as the
node controller introduces. Therefore, we implemented a specific container runtime
interface for Docker within the container manager component of the node controller (see
Section 7.3.5) which allows to periodically collect and publish resource usage metrics for
all running container instances on the present node.

9.4 Performance Tests 161

N° Component Version RPi4 1
(EN)1

RPi4 2
(EN)1

NUC
(FN)1

VM
(CN)1

1 performance-test-client2,3 0.68.0-SNAPSHOT m m m l
2 streampipes-ui 0.68.0-SNAPSHOT m m m l
3 streampipes-backend3 0.68.0-SNAPSHOT m m m l
4 Apache Kafka 2.2.0 m m m l
5 Apache Zookeeper 3.4.13 m m m l
6 Consul 1.7.1 m m m l
7 Apache CouchDB 2.3.1 m m m l
8 Apache ActiveMQ 5.15.9 m m m l
9 streampipes-node-controller3 0.68.0-SNAPSHOT l l l l
10 streampipes-extensions3 0.68.0-SNAPSHOT l l l l
11 Eclipse Mosquitto 1.6.12 l l l m
1 Edge node (EN), fog node (FN), cloud node (CN)
2 The performance-test-client container only runs for the duration of the executed tests
3 Component extended with the logging module
l/m Component deployed/not deployed on this node

Table 9.5 Fog computing testbed: Assignment of components to nodes

9.4.2 Evaluations and Results

In the following, we briefly give an overview of the conducted performance tests and
state pursued goals to assess the run-time performance of the node controller and our
developed system with regard to operation and adaptation aspects. Afterwards, we provide
an in-depth description for each performance test, elaborate scenario-specific evaluation
details and discuss results.

First, we evaluate the impact of the node controller and quantify the resource overhead due
to extended management capabilities in a real-world IIoT setting for various resource
consumption tests. Second, we investigate end-to-end latencies to examine the performance
of our proposed LAEDS approach for intra-node and inter-node communication in geo-
distributed fog infrastructures for different deployment topologies and pipeline sizes
and compare results against vanilla StreamPipes within defined latency tests. Third,
we demonstrate the feasibility of the context-aware offloading behavior employed in the
node controller for varying offloading manifest configurations in different offloading
tests. Hereby, we analyze the offloading time to complete an offloading action which
marks the time span from the offloading trigger to the final completion of the task. To
this extent, we also quantify the fraction of migration time, as the offloading problem
is translated into a migration problem at the central application management layer. In
addition, we determine the order of magnitude of the downtime that is the time span
when the event stream is temporarily interrupted in the course of the step-wise migration
scheme. Table 9.6 summarizes the individual performance tests.

162 9 Evaluation

N° Test Goal Metric OP1 AP1

1 Resource (R) Node controller overhead CPU, memory usage l m
2 Latency (L) LAEDS latencies Latency measurements l m

3 Offloading (O) Feasibility, duration Offloading measurements m l
1 Operation performance (OP), adaptation performance (AP)
l/m Performance test maps to/does not map to category

Table 9.6 Performance tests: Overview

Node Controller: Resource Consumption and Overhead

In the following, we investigate the overhead of the node controller and its run-time
impact for two node types in our fog computing testbed, namely the resource-constrained
edge node (RPi4 1) and the resource-rich cloud node (VM). To this extent, we use the cobot-
based product quality inspection and KPI analytics pipeline 𝒫Q,KPI (see Figure 9.4 in
Section 9.2.1) as a representative real-world IIoT-scenario for our investigation. Moreover,
we use data from the cobot-based product quality inspection testbed. This allows to
create a dataset of reproducible cobot events during the active and inactive test peri-
ods which embraces real-world shop floor data and is thus well-suited in fulfilling our
requirement.

In brief, this dataset represents recordings of raw cobot events gathered via ROS during
the quality inspection conducted parallel to the pick-and-place operation. On the one
hand, this includes sensor measurements (gripper event stream) from the gripper module,
on the other hand, cobot state machine actions (state event stream) which are both stored
in a so-called bag5. For the sake of the evaluation, we cut out a slice of roughly 27 𝑚𝑖𝑛

of the original bag which contains 100 performed quality checks including gripper and
state events. Table 9.7 gives an overview of the data contained in the ROS bag.

ROS Topic Event Type Event Count Event Rate Event Size
/gripper gripper event 45.458 events 28 events/s 285 Bytes
/state state event 200 events1 every 7s 200 Bytes

1 Translates to 100 quality checks for start/end signals

Table 9.7 Cobot-based product quality inspection: ROS bag overview

The ROS bag is deployed on a RPi Model 3 (not part of the fog computing testbed) in
order to replace the actual cobot during the performance test. We call this the cobot RPi.
The cobot RPi is connected to the Gbit network switch as parts of the fog computing
testbed with no artificial delays employed and solely acts as a data provider within close
network proximity to the edge layer.

5A bag represents an efficient file format for storing ROS message data (see http://wiki.ros.org/Bags).

http://wiki.ros.org/Bags

9.4 Performance Tests 163

Scenario Description. To assess the resource consumption of the node controller and
evaluate its feasibility in resource-constrained environments, we analyze its CPU and
memory usage on the edge node (RPi4 1) and cloud node (VM) over a course of 27 𝑚𝑖𝑛

where cobot data is replayed via the cobot RPi. Therefore, we define three resource
consumption scenarios, namely for executing one 𝒫Q,KPI pipeline instance (RS1), for
executing two 𝒫Q,KPI pipeline instances (RS2) and for executing three 𝒫Q,KPI pipeline
instances (RS3). According to specified deployment target nodes for the pipeline elements
in 𝒫Q,KPI this involves one edge node (RPi4 1) and one cloud node (VM) requiring the edge
node controller to run one, two and three event stream relay instances respectively.

Results. Figure 9.10 shows the results for all three resource consumption scenarios while
illustrating both raw CPU and memory usage for the edge and cloud node controller
containers. Additionally, we show 𝑄1/𝑄2/𝑄3 statistics as well as a 10 𝑠 rolling mean of
the collected resource metrics to smooth out occasional spikes.

For all scenarios (RS1, RS2, RS3), the node controllers on both the edge and the cloud
node remain stable over time with regard to CPU and memory usage with no significant
variance. Despite some regular spikes in CPU usage on the edge node controller peaking
at around 10% due to periodic resource monitoring and health check activities and an
increasing number of event stream relays, the overall introduced footprint remains low
with 1.4%/1.4%/1.3% in 𝑄2 values for RS1/RS2/RS3. Similar observations in CPU usage
can be made for the cloud node controller with periodic spikes at around 2 − 3% and
0.1%/0.2%/0.2% in 𝑄2 values for RS1/RS2/RS3. However, the cloud node controller is
not busy with executing event stream relays resulting in a low additional overhead. This
provides a good estimate in quantifying the base load of the node controller in view
of the monitored metrics. Regarding the memory usage, differences in management
duties between edge and cloud node controller are observable for all scenarios. While
the memory usage of the edge node controller slightly increases with 195.5/196.2/197.2
Mebibyte (MiB) in 𝑄2 values for RS1/RS2/RS3 due to a growing number of executed
event stream relays, the memory usage of cloud node controller remains at a steady level
with 182.4/179/179.4 MiB in 𝑄2 values. Still, the memory footprint of the node controller
is noticeable. A basic explanation for this rather high impact on memory results from
the fact that the node controller is implemented in Java and thus requires a Java Virtual
Machine (JVM) for execution. At run-time, the memory footprint is primarily induced by
the JVM itself. Though configurable, we did not fine-tune the JVM memory parameters
and used the default values for the JVM heap size.

We conclude that the overall resource consumption and impact of node controller is
almost negligible in terms of CPU usage. Furthermore, the slight growth in memory
usage for an increasing number of event stream relays is tolerable in comparison to
the absolute memory footprint predominantly resulting from the JVM which requires
additional investigation.

164 9 Evaluation

400 800 1200 1600
0

3

6

9

12

C
P

U
us

ag
e

[%
]

RS1: Num. pipelines = 1 × PQ,KPI

edge node controller (RPi4 1)

Q1/Q2/Q3 (1.0/1.4/2.1)

400 800 1200 1600

Time [s]

195

196

197

198

199

200

M
em

or
y

us
ag

e
[M

iB
]

Q1/Q2/Q3 (195.4/195.5/195.6)

0 400 800 1200 1600
0

1

2

3

4

5

C
P

U
us

ag
e

[%
]

RS1: Num. pipelines = 1 × PQ,KPI

cloud node controller (VM)

Q1/Q2/Q3 (0.0/0.1/0.2)

0 400 800 1200 1600

Time [s]

178

180

182

184

186

188

M
em

or
y

us
ag

e
[M

iB
]

Q1/Q2/Q3 (178.6/182.4/182.4)

400 800 1200 1600
0

3

6

9

12

C
P

U
us

ag
e

[%
]

RS2: Num. pipelines = 2 × PQ,KPI

edge node controller (RPi4 1)

Q1/Q2/Q3 (1.0/1.4/2.0)

400 800 1200 1600

Time [s]

195

196

197

198

199

200
M

em
or

y
us

ag
e

[M
iB

]
Q1/Q2/Q3 (196.1/196.2/196.2)

0 400 800 1200 1600
0

1

2

3

4

5

C
P

U
us

ag
e

[%
]

RS2: Num. pipelines = 2 × PQ,KPI

cloud node controller (VM)

Q1/Q2/Q3 (0.0/0.2/0.4)

0 400 800 1200 1600

Time [s]

178

180

182

184

186

188

M
em

or
y

us
ag

e
[M

iB
]

Q1/Q2/Q3 (178.9/179.0/182.9)

400 800 1200 1600
0

3

6

9

12

C
P

U
us

ag
e

[%
]

RS3: Num. pipelines = 3 × PQ,KPI

edge node controller (RPi4 1)

Q1/Q2/Q3 (0.8/1.3/1.9)

400 800 1200 1600

Time [s]

195

196

197

198

199

200

M
em

or
y

us
ag

e
[M

iB
]

Q1/Q2/Q3 (197.2/197.2/197.3)

0 400 800 1200 1600
0

1

2

3

4

5

C
P

U
us

ag
e

[%
]

RS3: Num. pipelines = 3 × PQ,KPI

cloud node controller (VM)

Q1/Q2/Q3 (0.0/0.2/0.4)

0 400 800 1200 1600

Time [s]

178

180

182

184

186

188

M
em

or
y

us
ag

e
[M

iB
]

Q1/Q2/Q3 (179.1/179.4/179.5)

Legend:

CPU/memory usage (node controller) 10 s rolling mean Median (Q2)

Figure 9.10 Performance evaluation: Resource consumption scenarios. CPU and memory usage by
the node controller containers of the edge node (RPi4 1) and the cloud node (VM) at
run-time for one 𝒫Q,KPI pipeline instance (RS1), two 𝒫Q,KPI pipeline instances (RS2)
and three 𝒫Q,KPI pipeline instances (RS3).

9.4 Performance Tests 165

LAEDS: End-to-End Latencies

Following, we evaluate the proposed locality-aware event dissemination strategy (LAEDS)
for intra-node and inter-node communication between adjacent pipeline elements. The
goal is to evaluate end-to-end latencies of LAEDS in latency and reliability-sensitive use
cases. This implies both use cases related to the sense-process-respond (SPR) model and
use cases related to the directed model. In this regard, we understand end-to-end latency
as the time it takes for an event to travel through the processing pipeline from its source
(adapter) over intermittent steps (processor) to its destination (sink). That means, we
limit our scope to the system boundary knowingly ignoring additional external I/O
connections.

For this performance test, we use a single-connected6 latency measurement pipeline 𝒫lat
which comprises the following pipeline element types:

1. A random event generator adapter which produces random events at 100 events
per second and 300 Bytes per event entailing a timestamp of the event generation.

2. A projection processor which solely forwards received events without applying
any additional event processing logic to keep processing latency at a minimum.

3. A latency logger sink which first calculates the end-to-end latency for a received
event as the time delta between the event generation and the event receiving time
and then publishes the result to the logging broker for analyses.

Due to highly synchronized wall clocks in our fog computing testbed, the effect of clock
offset, i.e., the time difference between individual nodes, is negligible.

Scenario Description. We define four different latency scenarios evolving around the
SPR model (LS1, LS2) and the directed model (LS3, LS4) with different processor and
sink deployment locations (edge, fog, or cloud node) in addition to varying 𝒫lat pipeline
sizes (3, 4 and 5 pipeline elements). Here, we assume a minimum pipeline size of 3 as
there exists exactly one pipeline element per type, i.e., adapter, processor, sink. For the
remaining pipeline sizes, we increase the number of projection processors connected in a
serial manner—two processors for a pipeline size of 4, three processors for a pipeline
sizes 5. Each scenario for each pipeline size is performed over a duration of 10 𝑚𝑖𝑛

which lead to 60.000 generated events. Furthermore, we compare the results of LAEDS
against the results of the latest version of vanilla StreamPipes in order to show potential
performance gains and assess the limitations of our approach. Yet, it is noteworthy that
vanilla StreamPipes relies on a single centralized message broker (Apache Kafka) which
obviously limits its applicability in geo-distributed edge and fog scenarios and has to be
considered. When discussing the results, we refer to the extended version of StreamPipes
with LAEDS as SP+, while using SP𝑣 to indicate the latest version of vanilla StreamPipes
without LAEDS.

6A single-connected pipeline is a pipeline with no branches.

166 9 Evaluation

0 50 100 150 200 250

Latency [ms]

0.00

0.25

0.50

0.75

0.95
1.00

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

LS1: SPR model
edge (adapter, processors, sink)

0 50 100 150 200 250

Latency [ms]

0.00

0.25

0.50

0.75

0.95
1.00

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

LS2: SPR model
edge (adapter) → fog (processors) → edge (sink)

0 50 100 150 200 250

Latency [ms]

0.00

0.25

0.50

0.75

0.95
1.00

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

LS3: Directed model
edge (adapter) → fog (processors) → cloud (sink)

0 50 100 150 200 250

Latency [ms]

0.00

0.25

0.50

0.75

0.95
1.00

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n

LS4: Directed model
edge (adapter) → cloud (processors, sink)

Plat pipeline size (num. pipeline elements)

SP+ with LAEDS:

SPv without LAEDS:

3

3

4

4

5

5

Figure 9.11 Performance evaluation: Latency scenarios. Cumulative distributions of latency mea-
surements for SP+ with LAEDS () and SP𝑣 without LAEDS () over four latency
scenarios reflecting the SPR model (LS1, LS2) as well as the directed model (LS3, LS4)
for different processor and sink deployment locations, i.e., edge (RPi4 1), fog (NUC) and
cloud (VM), and varying 𝒫lat pipeline sizes (3, 4 and 5).

Results. Figure 9.11 depicts the cumulative distributions of latency measurements for
SP+ with LAEDS and SP𝑣 without LAEDS over the four latency scenarios. Further,
Table 9.8 shows 25𝑡ℎ/50𝑡ℎ/75𝑡ℎ/95𝑡ℎ percentiles in addition to derived performance im-
provements on median values for SP+ and SPv.

Unsurprisingly, SP+ with LAEDS clearly outperforms SPv in three out of four scenarios,
namely for LS1, LS2 and LS3. In the case of LS1, SP+ performs best with little overall
variability for an increasing pipeline size. This is due to the ability of LAEDS to apply
intra-node communication over the local message broker between adjacent and colocated
pipeline elements as it is the case in this edge only scenario. When looking at 50𝑡ℎ

percentile in LS1 (also referred to as median which we use hereafter), this results in
latencies of 5/6/8 𝑚𝑠 for pipeline sizes of 3/4/5. Moreover, for the 95𝑡ℎ percentile in

9.4 Performance Tests 167

N° PS1 Median latency (25𝑡ℎ/75𝑡ℎ/95𝑡ℎ percentile) Median latency PI1

SPv without LAEDS SP+ with LAEDS SP+ over SPv

LS1
3 102 (98/105/109) 5 (4/5/6) +95%
4 151 (148/155/160) 6 (5/6/7) +96%
5 200 (196/205/211) 8 (7/9/12) +96%

LS2
3 98 (94/102/108) 26 (24/29/33) +73%
4 139 (135/143/148) 28 (26/31/37) +80%
5 183 (178/187/193) 30 (27/34/48) +84%

LS3
3 82 (79/86/92) 67 (63/74/90) +18%
4 124 (120/127/132) 70 (66/75/88) +43%
5 168 (163/172/177) 73 (68/81/95) +56%

LS4
3 58 (56/60/63) 85 (82/88/92) −47%
4 80 (78/82/85) 108 (105/111/116) −34%
5 102 (100/104/107) 132 (129/135/139) −29%

1 Pipeline size (PS), performance improvement (PI)

Table 9.8 Performance tests: Latency statistics (in ms) and performance improvements

LS1, we still achieve latencies in low milliseconds range between 6/7/12 𝑚𝑠 for pipeline
sizes of 3/4/5, i.e., 95% of all measured end-to-end event latencies are equal or below
the stated values. In contrast, SPv shows significant growth of median latencies in LS1,
with values of 102/151/200 𝑚𝑠 in addition to 109/160/211 𝑚𝑠 for the 95𝑡ℎ percentile,
for the pipeline sizes 3/4/5. This behavior is systematic and also visible in LS2 and
LS3 and is explained by the excessive network round trips to exchange events between
adjacent pipeline elements to and from the central message broker deployed on the
cloud node. Consequently, the specified pairwise network latencies of the underlying
fog computing testbed presented in Table 9.4 provide a rough estimate of the minimum
achievable latency in a given configuration. Network latencies are further supplemented
by some minor processing latency overhead. For instance in LS1 at pipeline size 3, with
all pipeline elements of 𝒫lat being deployed on the edge node, the median of 102 𝑚𝑠

latency in SPv is the result of four individual network trips from the edge node (RPi4 1) to
the cloud node (VM) and back with a one-way latency of 25± 2 𝑚𝑠 between these nodes.
This is due to the fact that a single cloud transport protocol is used among all pipeline
elements. Noticeably, LS2 and LS3 with processors outsourced to the fog node show an
increase in overall end-to-end latencies for SP+ in contrast to the local communication
in LS1. Yet, this is still not overly impacted by the additional network communication
and the increasing pipeline size. Similar to the edge node, LAEDS also implies local
event exchange for adjacent and colocated pipeline elements on fog nodes to achieve
better performance leading to median latencies of 26/28/30 𝑚𝑠 and 33/37/48 𝑚𝑠 for
the 95𝑡ℎ percentile. This also includes two additional event stream relays, namely an
edge-fog and a fog-edge relay for inter-node communication. In the case of LS3, despite still
outperforming SPv in all cases, SP+ with LAEDS is affected by the additional network
latency from the fog node to the cloud resulting in median latencies of 67/70/73 𝑚𝑠 and

168 9 Evaluation

90/88/95 𝑚𝑠 for the 95𝑡ℎ percentile. Only in LS4, we observe SPv outperforming SP+

in terms of end-to-end latencies. When looking at the involved deployment locations
for executing individual pipeline elements employed in 𝒫lat, namely the edge node for
running the adapter and the cloud node for remaining processors and sinks, we see that
LS4 resembles the traditional cloud computing approach. Consequently, events from
remote locations (here, the edge node) are sent unchanged to the central cloud layer where
the typical processing takes place. Hence, SPv performs better as the effect of excessive
network round trips to and from the central message broker between geo-distributed
pipeline elements is reduced to a single transfer. More interestingly, two key observations
can be made in LS4: (1) differences in cumulative latency distributions between SP+ and
SPv are roughly off by one pipeline element and (2) the offset remains in the same order
of magnitude. For a pipeline size of 4, SPv achieves a median latency of 80 𝑚𝑠 which is in
the same order of magnitude accomplished by SP+ for a pipeline size of 3, namely 85 𝑚𝑠.
This demonstrates the impact of LAEDS which requires to instantiate an event stream
relay for inter-node communication. Hence, a relay can be understood as an additional,
system-internal routing pipeline element which adds auxiliary processing latency.

Table 9.8 reveals that SP+ with LAEDS clearly outperforms the centralized message
broker approach of SPv with maximum achievable median performance improvements
of +96%/ + 84%/ + 56% for LS1, LS2 and LS3 for a pipeline size of 5. Yet in the case of
LS4, we also see that LAEDS performs worse, at most −47%, due to the added overhead
of the event stream relay. However, this is put into perspective as LS4 represents the
traditional centralized cloud computing model with its known limitations in the context
of IIoT-related scenarios. Still, LAEDS demonstrates its overall feasibility and provide
low latency results in view of typical SPR and directed models for geo-distributed event
driven applications.

Context-aware Offloading: Offloading Time, Migration Time, Downtime

The following performance test allows to evaluate multiple adaptation aspects at once.
Thereby, the proposed offloading steps not only describe the ability of a node controller to
perform offloading decisions in a reactive fashion, but also involve centrally coordinated
migration activities to dynamically readjust previous pipeline deployment topologies.
Hence, we begin the tests by investigating the node controller’s ability to react to context
changes according to registered offloading manifests. After evaluating the general feasi-
bility of this policy-driven approach, we analyze the total incurred offloading time. Here,
the offloading time is the time it takes for the offloading manager to issue an offloading
action encompassing an offloading candidate until the centrally coordinated migration
action is completed. Consequently, another part of this assessment is to analyze the
fraction of the offloading time spend on the migration from one node to another, called
migration time. As the migration implies temporal interrupts, it is important to determine
the cost of a migration in terms of the downtime and quantify its order of magnitude.

9.4 Performance Tests 169

For the sake of this performance test, we use the following offloading manifest configu-
rations which are implemented and integrated in the offloading manager of the node
controller:

� Resource property—CPU usage in percent as an indicator for the degree of utilization
� Evaluation policy—Threshold-based CPU evaluation policy
� Selection strategy—Random selection strategy, priority selection strategy

We use a single-connected offloading pipeline 𝒫off comprising three pipeline elements:

1. A random event generator adapter which produces random events at 10 events
per second and 300 Bytes per event.

2. A CPU load generator processor which allows to generate an arbitrary and recon-
figurable target CPU load on the underlying node.

3. A logger sink which publishes the received events to the logging broker.

As such, the most crucial pipeline element within𝒫off is the CPU load generator processor
which allows to configure the following three parameters: (1) a ramp up duration, (2) a
ramp up delay and (3) a target CPU load. The former two parameters are statically
provided during the initial pipeline element configuration. As such, ramp up duration
refers to the time it takes to reach the specified target load while the ramp up delay
refers to an initial temporal lag until the load generation begins. We keep these two
parameters constant throughout the offloading scenarios with a ramp up duration of 30 𝑠

and no ramp up delay. Lastly, the target CPU load configuration is implemented using
the proposed ReconfigurableStaticProperty concept and extensions provided for the
run-time wrappers in StreamPipes to facilitate run-time reconfigurations. This allows
to dynamically set new target load values in order to generate defined load profiles. In
addition, it guarantees a predictable and reproducible behavior in the course of our
evaluations.

Scenario Description. We define four offloading scenarios that broadly differentiate in
horizontal offloading with multiple, consecutively performed offloading actions (OS1,
OS2), i.e., edge-edge offloading and re-offloading (onloading) between two edge nodes
(RPi4 1, RPi4 2), and vertical offloading with a single offloading action (OS3, OS4), i.e.,
edge-fog offloading between an edge node (RPi4 1) and a fog node (NUC). We investigate
different combinations in CPU threshold values, maximum number of permissible viola-
tions and varying selection strategies. For the random selection strategy, we configure
one instance of 𝒫off with preemption enabled. For the priority selection strategy, we
duplicate 𝒫off with preemption enabled for both instances. Additionally, the priority class
for one instance is set to "high" while the priority class for the other one is set to "low".
Moreover, we vary the evaluation interval 𝜏eval which specifies the time period between
two evaluation policy checks. Each scenario is performed over a duration of 1800 𝑠 (or
30 𝑚𝑖𝑛) while externally providing target CPU load values through our performance test
client to achieve a characteristic load profile.

170 9 Evaluation

Moreover, we divide each offloading scenario into three time intervals:

1. The ramp up interval (0−600 𝑠). Here, we provoke a step-wise increase in CPU load
from an initial base load to a subsequent moderate load by issuing a reconfiguration
at 300 𝑠. This interval ends with another reconfiguration to further raise the load to
a defined maximum knowingly above the evaluation threshold.

2. The offloading interval (600 − 1500 𝑠). In this interval, the processor offloading
actions are performed according to the scenario-specific configurations. The interval
ends with a final reconfiguration to decrease the CPU load.

3. The fade out interval (1500− 1800 𝑠). Lastly, the target CPU load remains steady
at the level of the initial base load for the remainder of the time.

For each scenario, all 𝒫off pipeline elements are initially deployed on the edge node (RPi4
1) while the corresponding partner nodes, either the edge node (RPi4 2) or the fog node
(NUC), do not execute any pipeline elements in the beginning of the ramp up interval.

Results. Figure 9.12 illustrates the results for all four offloading scenarios including the
scenario-specific configurations. In the following, we elaborate individual offloading
characteristics along the individual time intervals in chronological order.

During ramp up interval, we clearly see the characteristic step-wise increase in CPU
usage on the origin edge node (RPi4 1). This is provoked by the CPU load generator
processor of 𝒫off whereby the ramp up delay of 30 𝑠 constitutes to the steepness of the
CPU usage slope in all four scenarios. In addition, the respective offloading partner node,
namely edge node (RPi4 2) and fog node (NUC), remains at a low and stable base load.
As previously shown, especially the run-time base load overhead of the node controller
in terms of CPU usage is negligible (see Figure 9.10). In the case of the vertical offloading
scenarios (OS3, OS4), we further segment the artificial load profile in the fraction induced
by the CPU load generator processor of the "high" priority 𝒫off and the fraction caused
by the "low" priority 𝒫off. With the start of the offloading interval, there is a noticeable
increase in CPU load provoked by the executed reconfiguration action on the CPU load
generator processor which further occupies resources and leads to a CPU usage well
above 80% (OS1, OS2, OS3, OS4). This allows to investigate subsequenet offloading
actions in a predictable manner. Overall, the anticipated run-time behavior of offloading
actions performed by the node controller is confirmed. Within the horizontal offloading
scenarios, multiple consecutive offloading and re-offloading actions are performed: a
total of 7 for OS1, and 3 for OS2. The results show the typical alternating no-load, high-
load pattern in the load profile. Thereby, the values range from a low base load to well
above 80% on both the origin edge node (RPi4 1) and the partner edge node (RPi4 2) after
the CPU load generator processor is selected as the offloading candidate by the random
selection strategy and subsequently migrated. The number of offloading actions vary due
to scenario-specific configurations. Concretely, decisive factors are the maximum number
of permissible CPU threshold violations N𝜗 in addition to the evaluation interval 𝜏eval

9.4 Performance Tests 171

0 300 600 900 1200 1500 1800
0

20

40

60

80

100

C
P

U
us

ag
e

[%
]

OS1: Horizontal offloading (edge ↔ edge)
(num. pipelines = 1, Tcpu = 80%, τeval = 60s, Nϑ = 1, κrnd)

v1v2 v1v2 v1v2 v1v2

edge node (RPi4 1)

0 300 600 900 1200 1500 1800

Time [s]

0

20

40

60

80

100

C
P

U
us

ag
e

[%
]

v1v2 v1v2 v1v2

edge node (RPi4 2)

0 300 600 900 1200 1500 1800
0

20

40

60

80

100

C
P

U
us

ag
e

[%
]

OS2: Horizontal offloading (edge ↔ edge)
(num. pipelines = 1, Tcpu = 80%, τeval = 60s, Nϑ = 3, κrnd)

v1v2v3v4 v1v2v3v4

edge node (RPi4 1)

0 300 600 900 1200 1500 1800

Time [s]

0

20

40

60

80

100

C
P

U
us

ag
e

[%
]

v1v2v3v4 v1v2

edge node (RPi4 2)

0 300 600 900 1200 1500 1800
0

20

40

60

80

100

C
P

U
us

ag
e

[%
]

OS3: Vertical offloading (edge → fog)
(num. pipelines = 2, Tcpu = 60%, τeval = 120s, Nϑ = 1, κprio)

v1 v2

edge node (RPi4 1)

Poff high

Poff low

0 300 600 900 1200 1500 1800

Time [s]

0

20

40

60

80

100

C
P

U
us

ag
e

[%
] fog node (NUC)

0 300 600 900 1200 1500 1800
0

20

40

60

80

100

C
P

U
us

ag
e

[%
]

OS4: Vertical offloading (edge → fog)
(num. pipelines = 2, Tcpu = 60%, τeval = 120s, Nϑ = 3, κprio)

v1 v2 v3 v4

edge node (RPi4 1)

Poff high

Poff low

0 300 600 900 1200 1500 1800

Time [s]

0

20

40

60

80

100

C
P

U
us

ag
e

[%
] fog node (NUC)

Figure 9.12 Performance evaluation: Offloading scenarios. Horizontal offloading scenarios (OS1,
OS2) and vertical offloading scenarios (OS3, OS4) using 1 or 2 deployed 𝒫off pipeline
instances with different offloading manifest configurations: CPU threshold value 𝑇𝑐𝑝𝑢

(60%, 80%), maximum number of permissible violations N𝜗 (1, 3), random and priority
selection strategies (𝜅rnd, 𝜅prio), evaluation interval 𝜏eval (60 𝑠, 120 𝑠). Horizontal line
depicts CPU threshold () while vertical lines indicate violation counts () due to
active evaluation policy with subsequent processor offloading for values exceeding N𝜗.

which allow to control the sensitivity of the offloading approach. In view of OS1 and OS2
the evaluation interval was configured with 60 𝑠. Within the vertical offloading scenarios,
single offloading actions are performed at run-time for a modified set of configurations
in the offloading manifest, including a lowered threshold for CPU violations (𝑇𝑐𝑝𝑢 = 60%)
and the priority selection strategy for candidate selection. Apart from that, the offloading
manager is configured with a larger evaluation interval (𝜏eval = 120 𝑠). For both cases
OS3 and OS4, the foreseen offloading behavior is also confirmed. With two differently
prioritized 𝒫off pipeline instances deployed on the edge node (RPi4 1), upon exceeding
the maximum number of permissible violations, the low-prioritized CPU load generator
processor is selected as an offloading candidate and subsequently relocated to the fog
node (NUC). Thereby, the occupied CPU resources on the edge node are instantaneously
released when the processor is stopped as a result of the step-wise migration scheme.

172 9 Evaluation

0 20 40 60 80 100

Num. Offloadings

0.0

0.5

1.0

1.5

2.0

T
im

e
[s

]

OA1: Offloading action: edge (RPi4 1) → edge (RPi4 2)
Offloading times for Poff (sum of all time shares)

Offloading Time
(OT)

Migration Time
(MT)

Downtime
(DT)

0.0

0.5

1.0

1.5

2.0

T
im

e
[s

]

OT: Q1/Q2/Q3 (1.54/1.6/1.65)

MT: Q1/Q2/Q3 (0.6/0.63/0.65)

DT: Q1/Q2/Q3 (0.1/0.11/0.12)

0 20 40 60 80 100

Num. Offloadings

0.0

0.5

1.0

1.5

2.0

T
im

e
[s

]

OA2: Offloading action: edge (RPi4 2) → edge (RPi4 1)
Offloading times for Poff (sum of all time shares)

Offloading Time
(OT)

Migration Time
(MT)

Downtime
(DT)

0.0

0.5

1.0

1.5

2.0

T
im

e
[s

]

OT: Q1/Q2/Q3 (1.39/1.43/1.49)

MT: Q1/Q2/Q3 (0.52/0.55/0.57)

DT: Q1/Q2/Q3 (0.06/0.06/0.07)

Legend (offloading/migration time and time shares):

Offloading (total) Migration (total) Coordination Migration steps Downtime

Figure 9.13 Performance evaluation: Offloading time, migration time, downtime. Extended horizontal
offloading actions (OA1, OA1) on the basis of the offloading scenario (OS1) show
offloading time (), migration time () entailed downtime time share () of 100
consecutive offloading and re-offloading actions per direction, either from edge node
(RPi4 1) to edge node (RPi4 2) or vice versa.

This leads to a relaxation of the induced load to around 40% constituted by the CPU load
generator processor in the high-prioritized pipeline until the end of the offloading interval.
On the partner fog node (NUC), the CPU load generator processor of the low-prioritized
𝒫off pipeline instance starts to occupy resources, yet not violating the threshold. In the
fade out interval, the artificial load is reduced by reconfiguring the target CPU load of
the designated CPU load generator processor. Therefore, a reconfiguration action is sent
to the specific node controller instance where the processor is executed at that given
point in time and resets potential violation counters as is the case in OS2. Analogously in
case of OS3 and OS4, both node controllers are informed to reconfigure the CPU load
processors to their original base load.

Next, we discuss results with regard to the offloading time, migration time and the incurred
temporary downtime as depicted in Figure 9.13. Therefore, we apply the parameters of
OS1 and perform 100 consecutive horizontal offloading actions per direction, i.e., from
edge node (RPi4 1) to the edge node (RPi4 2) and vice versa to obtain representative
results (OA1, OA2). In general, we broadly categorize respective time shares constituting
to the overall offloading duration into: (1) coordination and (2) migration. The former
describes all relevant preparation and coordination tasks from initiating the offloading

9.4 Performance Tests 173

actions over all required preparation steps prior to the migration to receiving the final
offloading confirmation. The latter contains all operations as required by the step-wise
migration scheme (see Section 8.3.2). This also implies temporary downtime which we
measure and plot separately.

Over the course of the executed offloading actions, no significant and noticeable changes
for all individual time shares are observed in both cases (OA1, OA2). Hereby, the coordina-
tion activities constitute the most to the overall offloading time with an average of roughly
60% in both cases (OA1, OA2), such that migration related tasks are accountable for the
remaining 40%. The coordination cannot only be attributed to network communication
from geo-distributed edge nodes to the central application management layer, but also
contains the sum of various operations (see Algorithm 10 in Section 8.3.3). This includes
finding and retrieving the current pipeline description associated with the offloading
candidate, validating and selecting a new eligible deployment target node and generating
a newly configured pipeline with updated deployment targets. Given the setup of the
fog computing testbed, the order of magnitude for total offloading durations is in the
low seconds range with median values at 1.6 𝑠 (OA1) and 1.43 𝑠 (OA2) and also remains
stable over time resulting in low variability in the measurements. Similar observations
can be made regarding the migration time with overall median values at roughly half a
second, 0.63 𝑠 in OA1 and 0.55 𝑠 in OA2. Looking at the step-wise migration procedures
(see Section 8.3.2), the analyses reveals the order of magnitude for the downtime is on
average around 0.09 𝑠. Here, it highly depends on the actual applicational use case and
business requirements whether or not such a downtime is tolerable. In addition, small
but noticeable differences exist in absolute downtime values between the two investigated
offloading directions, analogously for the migration and offloading time as a result. This
can be explained by the fact that all pipeline elements of 𝒫off are deployed on the edge
node (RPi4 1) with only local communication given the initial deployment setting in
OA1. When relocating the CPU load generator processor from this initial deployment
state to a new destination, here from edge node (RPi4 1) to edge node (RPi4 2), new
event stream relays need to be instantiated according to the step-wise migration scheme.
Now, when restoring the initial deployment situation in the course of OA2, these relays
are obsolete as the communication model falls back to the intra-node one according to
LAEDS. Hereby, removing relays are less expensive than their instantiation.

In summary, offloading involves coordination, but the two-staged coordination approach
with local and global decision-making ability does not affect the running application
until migrations are triggered. In contrast to the overall offloading time, the migration
portion plays a more critical role. Yet, the order of magnitude for the induced downtime is
tolerable for most real-world IoT applications where approximate instead of exact results
are sufficient [Wen et al. 2018]. To this extent, the processor migration time and thus the
downtime depends on the logical pipeline model in combination with its deployment
topology with respect to the execution location of adjacent pipeline elements in the
moment of migration.

174 9 Evaluation

9.4.3 Discussion

The conducted performance tests show that the operational overhead and impact of the
node controller is minimal making it suitable to also run on resource-constrained edge
including single-board computers such as Raspberry Pi even when managing multiple
pipeline instances. The predominant factor in question is the overall memory footprint
which is the result of the chosen implementation in Java and the default JVM settings.
Yet, as we expect to see more powerful small-scale industrial edge PCs in the future
due to the ongoing hardware specialization mainly driven by emerging applicational
requirements in the area of AI and IoT, the overhead is acceptable. In addition, the
performance of LAEDS demonstrates its feasibility for a manifold of application models
and deployment situations for geo-distributed event-driven applications with latencies
in the low milliseconds. Still, in the typical case of geo-distributed pipeline elements
over multiple nodes, using event stream relays for inter-node communication resemble
intermediary virtual routing pipeline elements which impact the achievable end-to-end
latencies as they introduce additional processing latency. However, the overall impact
is negligible for the most common SPR and directed application models apart from
the traditional cloud processing one. Moreover, this design decision presents a well-
balanced trade-off between performance and flexibility with respect to mediating event
streams between potential heterogeneous broker technologies. Further, it is shown that
the node controller is capable of detecting contextual changes in its operational context
in a reactive manner. Thereby, the configurable detection interval characterizes how
sensitive the node controller is with respect to potential contextual changes leading
to violations of stated criteria. This detection interval is determined by the evaluation
interval and the maximum number of permissible violations. The shorter the detection
interval is, the faster the node controller reacts to changes. Yet, this comes at the cost of
additional load on the underlying system due to excessive metrics collection and policy
evaluation operations. Apart from that, this also gives room for potential false-positive
offloading actions in the case of rapidly changing and fluctuating metrics which presents
clear limitations of the exemplified threshold-based approach. Yet, all components
in the offloading manifest are generic and can be enhanced depending on the actual
requirements evolving around the operational goals of the respective use case. Lastly,
the demonstrated offloading time and its comprised migration related aspects show
an overall small, but measurable, impact on the running pipeline in particular in the
matter of the incurred downtime which has to be considered. In practice, losing a small
fraction of potentially high-frequent IoT event streams has limited effect on the conveyed
information and can also be compensated by message broker technologies, where events
are not transient but can be temporarily buffered. Though out of scope of this thesis,
one limitation of the current migration approach stems from the fact that only stateless
pipeline element migrations are considered. State management concepts [To et al. 2018]
can be added to extend the step-wise migration scheme which we leave for future work.

10
Conclusion

In the context of this thesis, models, concepts and methods were introduced which form
the basis for the realization of a holistic application management for geo-distributed
event-driven applications in heterogeneous fog infrastructures, in which application-
centric and infrastructure-centric realms converge. A reference implementation of the
application management approach has been developed as an extension for the Apache
StreamPipes project to demonstrate its practical applicability and evaluate its perfor-
mance. This thesis is concluded with a summary of the main contributions alongside the
stated research questions in Section 10.1. Afterwards, the significance of our results are
discussed in view of newly emerging geo-distributed application scenarios in Section 10.2.
Finally, Section 10.3 elaborates on future work to further improve the support of citizen
technologists in managing geo-distributed event-driven applications.

10.1 Summary

With the proliferation of the IoT and digitalization initiatives evolving around the Industry
4.0 and the IIoT in industrial settings, a massive amount of real-time data is generated at
unprecedented pace. The promise to realize data-driven decision-making by harvesting
this data and turning it into useful insights has led to an ever increasing willingness to
invest across many industries. Thereby, fog computing acts as an enabler to extend the
capabilities of the traditional cloud model and to facilitate reliable and low latency event
processing at the the edge of the network. The rapid changes in digital transformation
are accommodated by the convergence of previously separate business and IT worlds
as a new class of individuals rise in today’s enterprises. These citizen technologists
play a critical role in acquiring a data-driven culture, yet with the need to be provided
with essential tool support which allows them to create and manage geo-distributed
event-driven applications.

Therefore, this thesis investigated the following principle research question:

How can citizen technologists be enabled to manage event-driven applications in
geographically distributed fog computing infrastructures?

176 10 Conclusion

Derived from the principal research question, the following three research questions
were identified which we briefly recapitulate while summarizing the main contributions
together with the results to answer them.

Research Question 1 (Exploit). How can event-driven applications exploit heterogeneous
computational resources in fog computing infrastructures?

The first research question concerned with resource management matters of event-driven
applications in heterogeneous fog infrastructures is answered in Chapter 6. Building the
fundament of this thesis, a primary step is related to the creation of understanding of the
heterogeneity in fog infrastructures. The first contribution is a generic and extensible
node model on the basis of identified heterogeneity dimensions. On the one hand, this
allows to semantically describe node characteristics in terms of node resources besides
node-specific metadata including domain-relevant information. On the other hand,
it covers concepts for describing event-driven applications and their management by
re-using and extending existing state-of-the-art vocabularies in view of platform and
technology-agnostic deployment, operation and adaptation. The main advantage results
from the symbiosis of infrastructure-centric and application-centric realms. The second
contribution is a geo-distributed architecture manifested in a two-level management
approach with a central node management and a local node controller. This facilitates the
deployment of event-driven applications over heterogeneous computational resources. A
reference implementation of the stated concepts is integrated into the Apache StreamPipes
project in order to provide necessary tool support for citizen technologists. The evaluation
of our node model is based on two case studies resulting from real-world deployments to
demonstrate the practical applicability and expressivity. In addition, derived model and
architecture-specific requirements are assessed as part of the conceptual investigation.

Research Question 2 (Deploy). How can we deploy and operate event-driven applications that
span multiple geographically distributed nodes?

The second research question covers aspects related to geo-distributed deployment and
operation of event-driven applications and is answered in Chapter 7. As a first contribu-
tion, concepts for geo-distributed pipeline management are introduced and added to the
geo-distributed system architecture with the goal to provide assistance to citizen technol-
ogists when preparing pipelines for their deployment in the beginning of the operation
phase. On the basis of publish/subscribe, a second contribution is related to a generic
approach for geo-distributed event stream management in order to account for arbitrary
pipeline deployment topologies. The suggested locality-aware event dissemination strat-
egy uses the notion of location to decide the respective event dissemination channel
between logically adjacent pipeline elements regardless of their physical execution loca-
tion. On the technical side, event stream relays are presented as a solution for a flexible
inter-node communication mechanism providing publish/subscribe-based event dissem-
ination in a technology-agnostic manner. Lastly, the third contribution is a node local

10.1 Summary 177

management entity referred to as node controller. This is a system-inherent management
service deployed on each node along the cloud-edge continuum which ensures to execute
and reliably manage pipeline elements and event stream relays along the application life
cycle. The introduced concepts for geo-distributed pipeline deployment and operation
including the locality-aware event dissemination strategy are integrated into Apache
StreamPipes enhancing the pipeline management capabilities at a central level which
are complemented by a newly developed standalone node controller service at the node
level. In an extension to the web interface, citizen technologists prepare modeled pipe-
lines for geo-distributed deployment and operation while the system provides necessary
support. The approach is evaluated by conceptually investigating related system-specific
requirements. Moreover, operation aspects, specifically the node controller overhead and
the end-to-end pipeline latencies, are evaluated on the basis of performance tests.

Research Question 3 (Adapt). How can we reconfigure and relocate existing event-driven
processing services at run-time?

The third research question focuses on aspects of run-time evolution in terms of reconfig-
uration and relocation of running event-driven processing services which is answered in
Chapter 8. The main contribution is an adaptation methodology for event-driven applica-
tions which attaches to the sense-process-respond principles of event-driven architectures.
The methodology centers around the idea of continuously refining processing results by
performing specific adaptations. On the one hand, this implies adaptations triggered
by citizen technologists on the basis of their domain expert knowledge, and, on the
other hand, adaptations triggered by the system using context knowledge. In this matter,
two fundamental abstractions are suggested, namely adaptation gates and adaptation
events. Moreover, three adaptation types for event-driven applications are presented and
discussed. User-initiated reconfiguration actions allow citizen technologists to modify
pipeline element configurations based on the concept of reconfigurable static properties.
User-initiated migration actions provide citizen technologists with the ability to relocate
certain pipeline elements from their original node to another node which is realized by
a step-wise migration scheme. As this effectively changes the pipeline execution topol-
ogy, the system automatically restores respective event stream edges among logically
adjacent pipeline elements. Lastly, system-initiated offloading actions use an offload-
ing scheme to employ decision-making ability within the node controller based on the
MAPE-K pattern. The initial decentralized approach is then combined with a central
coordination to complete the relocation task by transforming the offloading problem into
a migration problem. All adaptation types are integrated into Apache StreamPipes as
extensions to both the central pipeline management and the node controller. The adapta-
tion methodology and related adaptation types including reconfiguration, migration and
offloading are evaluated by conceptually investigating corresponding system-specific
requirements. Moreover, adaptation aspects, specifically the offloading time, migration
time and downtime, is evaluated on the basis performance tests.

178 10 Conclusion

10.2 Significance

Our holistic management approach simplifies and improves the deployment and oper-
ation aspects of geo-distributed event-driven applications in heterogeneous fog infras-
tructures. The proposed models not only aid in creating understanding on available
resources but allow to link related application-side requirements beyond typical hard-
ware characteristics to provide better support throughout the application life cycle. In
many application areas and industries, data-driven decision-making is increasingly de-
mocratized and non-technical experts are empowered to solve emerging application
and business problems on their own. Especially the IoT and its industrial adoption in
the IIoT pose new requirements to flexibly orchestrate event-driven applications in a
geo-distributed manner in order to bring event processing capability to the edge of the
network. From a technical point of view, our approach allows nodes to expose a node
description which is leveraged for enhanced resource and application management. In
addition, as node descriptions are extensible and configurable, e.g., in terms of generic
domain-specific node tags, this allows to quickly adjust to new situations. From an appli-
cation point of view, our holistic management approach is well suited for realizing a wide
range of application models in fog computing from edge-based preprocessing to novel
edge artificial intelligence applications. Our proposed preference-based deployment
options and operation policies offer citizen technologists generic configuration options
to self-reliantly configure and deploy processing pipelines that span the cloud-edge
continuum to best account for application-specific needs. At the same time, the ability
for pipeline adaptations at run-time ensures business continuity and allows for the event-
driven application to evolve over time in view of occurring changes. Technical details on
the geo-distribution, operation, adaptation and run-time management are completely
hidden in the underlying managing middleware which facilitates to further drive the
democratization movement.

10.3 Outlook

This thesis lays the foundations towards establishing a holistic application management
for geo-distributed event-driven applications in heterogeneous fog infrastructures. Our in-
troduced models, concepts and methods simplify and improve aspects of geo-distributed
deployment, operation and adaptation for event-driven applications created by non-
technical citizen technologists. Potential future research to bring further improvements
are as follows:

Elastic Fog Pipelines. Once a pipeline is configured, i.e., individual pipeline elements
are assigned to nodes, the pipeline graph and its respective elements alongside potential
event stream relays are distributed in the fog infrastructure. In our current execution

10.3 Outlook 179

model, every user-modeled pipeline element within a processing pipeline on the logical
level is represented by exactly one run-time instance on the physical level. This can lead
to situations where congested or slow operating run-time instances turn into bottlenecks
which in turn slow down or even compromise the whole event-driven application. To
mitigate such circumstances, concepts evolving around resource elasticity in resource-
constrained fog environments need to be investigated. Thereby, elastic run-time instances
that allow to grow or shrink in a load-dependent manner can be realized by means of
instance replication or by allocating more node resources if feasible, e.g., by evicting
other lower-prioritized run-time instances. Yet, unlike the cloud, the fog and edge
layer mostly comprise physical nodes where dynamic provisioning and releasing of
additional resources is time-consuming, inefficient and costly. Therefore, elastic event-
driven applications in federated fog architectures present a promising research area that
needs to be explored from various viewpoints.

Autonomic Self-Management. Our current application management approach follows
a two-level design with a global, centralized coordinator and local, decentralized node
controller. While it is arguably not feasible to completely decentralize all coordination
and management activities, especially in view of the centralized pipeline modeling and
orchestration by citizen technologists, specific activities can be outsourced and delegated
to respective node controllers. Our provided offloading approach has shown the potential
of node-local decision-making in the event of context changes without the need for human
interaction. Yet, this requires further investigation. One idea is to extend node controllers
with the ability to coordinate, observe and manage themselves in clusters of neighboring
nodes by using decentralized gossip-based membership approaches in combination with
network coordinates for proximity estimation. Individual clusters can elect leader node
controllers serving the purpose of the central coordinator at a smaller scale in order
to improve the coordination and run-time management aspects of pipeline elements,
including autonomic reconfiguration or element handover in mobile scenarios. Therefore,
more research is needed that centers around autonomic self-management concepts for
event-driven applications in fog infrastructures.

Bibliography

Abadi, Daniel J.; Ahmad, Yanif; Balazinska, Magdalena; Cherniack, Mitch; Hwang, Jeong-
hyon; Lindner, Wolfgang; Maskey, Anurag S.; Rasin, Er; Ryvkina, Esther; Tatbul, Nesime;
Xing, Ying; Zdonik, Stan (2005). ‘The Design of the Borealis Stream Processing Engine’.
In: In CIDR, pp. 277–289.

Abadi, Daniel J.; Carney, Don; Çetintemel, Ugur; Cherniack, Mitch; Convey, Christian;
Lee, Sangdon; Stonebraker, Michael; Tatbul, Nesime; Zdonik, Stan (2003). ‘Aurora: A
New Model and Architecture for Data Stream Management’. In: The VLDB Journal —
The International Journal on Very Large Data Bases 12 (2), pp. 120–139. doi: 10.1007/s00778-
003-0095-z.

Ahmed, Arif; Pierre, Guillaume (2018). ‘Docker Container Deployment in Fog Computing
Infrastructures’. In: 2018 IEEE International Conference on Edge Computing (EDGE), pp. 1–
8. doi: 10.1109/EDGE.2018.00008.

Alam, Muhammad; Rufino, Joao; Ferreira, Joaquim; Ahmed, Syed Hassan; Shah, Nadir;
Chen, Yuanfang (2018). ‘Orchestration of Microservices for IoT Using Docker and
Edge Computing’. In: IEEE Communications Magazine 56 (9), pp. 118–123. doi: 10.1109/
MCOM.2018.1701233.

Alcaraz, Cristina (2019). ‘Secure Interconnection of IT-OT Networks in Industry 4.0’. In:
Critical Infrastructure Security and Resilience: Theories, Methods, Tools and Technologies.
Ed. by Dimitris Gritzalis; Marianthi Theocharidou; George Stergiopoulos. Advanced
Sciences and Technologies for Security Applications. Cham: Springer International
Publishing, pp. 201–217. isbn: 978-3-030-00024-0. doi: 10.1007/978-3-030-00024-0_11.

Alexander, Christopher (1979). The Timeless Way of Building. New York: Oxford University
Press. isbn: 0-19-502402-8.

Alexander, Christopher; Ishikawa, Sara; Silverstein, Murray (1977). A Pattern Language:
Towns, Buildings, Construction. New York: Oxford University Press. isbn: 0-19-501919-9.

Alshuqayran, N.; Ali, N.; Evans, R. (2016). ‘A Systematic Mapping Study in Microservice
Architecture’. In: 2016 IEEE 9th International Conference on Service-Oriented Computing
and Applications (SOCA), pp. 44–51. doi: 10.1109/SOCA.2016.15.

An, Kyoungho; Khare, Shweta; Gokhale, Aniruddha; Hakiri, Akram (2017). ‘An Au-
tonomous and Dynamic Coordination and Discovery Service for Wide-Area Peer-to-
Peer Publish/Subscribe: Experience Paper’. In: Proceedings of the 11th ACM International
Conference on Distributed and Event-Based Systems. DEBS ’17. New York, NY, USA: Asso-
ciation for Computing Machinery, pp. 239–248. doi: 10.1145/3093742.3093910.

Andrade, Henrique C. M.; Gedik, Bugra; Turaga, Deepak S. (2014). Fundamentals of Stream
Processing: Application Design, Systems, and Analytics. 1st. USA: Cambridge University
Press. isbn: 978-1-107-01554-8.

Arasu, Arvind; Babu, Shivnath; Widom, Jennifer (2006). ‘The CQL Continuous Query
Language: Semantic Foundations and Query Execution’. In: The VLDB Journal — The

https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1109/EDGE.2018.00008
https://doi.org/10.1109/MCOM.2018.1701233
https://doi.org/10.1109/MCOM.2018.1701233
https://doi.org/10.1007/978-3-030-00024-0_11
https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.1145/3093742.3093910

182 Bibliography

International Journal on Very Large Data Bases 15 (2), pp. 121–142. doi: 10.1007/s00778-
004-0147-z.

Armbrust, Michael; Xin, Reynold S.; Lian, Cheng; Huai, Yin; Liu, Davies; Bradley, Joseph
K.; Meng, Xiangrui; Kaftan, Tomer; Franklin, Michael J.; Ghodsi, Ali; Zaharia, Matei
(2015). ‘Spark SQL: Relational Data Processing in Spark’. In: Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. SIGMOD ’15. New York,
NY, USA: Association for Computing Machinery, pp. 1383–1394. doi: 10.1145/2723372.
2742797.

Babcock, Brian; Babu, Shivnath; Datar, Mayur; Motwani, Rajeev; Widom, Jennifer (2002).
‘Models and Issues in Data Stream Systems’. In: Proceedings of the Twenty-First ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems. PODS ’02. New
York, NY, USA: Association for Computing Machinery, pp. 1–16. doi: 10.1145/543613.
543615.

Babu, Shivnath; Widom, Jennifer (2001). ‘Continuous Queries over Data Streams’. In:
ACM SIGMOD Record 30 (3), pp. 109–120. doi: 10.1145/603867.603884.

Bahreini, Tayebeh; Grosu, Daniel (2017). ‘Efficient Placement of Multi-Component Appli-
cations in Edge Computing Systems’. In: Proceedings of the Second ACM/IEEE Symposium
on Edge Computing. SEC ’17. San Jose, California: Association for Computing Machinery,
pp. 1–11. doi: 10.1145/3132211.3134454.

Balan, Rajesh; Flinn, Jason; Satyanarayanan, M.; Sinnamohideen, Shafeeq; Yang, Hen-I
(2002). ‘The Case for Cyber Foraging’. In: Proceedings of the 10th Workshop on ACM
SIGOPS European Workshop. EW 10. New York, NY, USA: Association for Computing
Machinery, pp. 87–92. doi: 10.1145/1133373.1133390.

Baldini, Ioana; Castro, Paul; Chang, Kerry; Cheng, Perry; Fink, Stephen; Ishakian, Vatche;
Mitchell, Nick; Muthusamy, Vinod; Rabbah, Rodric; Slominski, Aleksander; Suter,
Philippe (2017). ‘Serverless Computing: Current Trends and Open Problems’. In: Re-
search Advances in Cloud Computing. Ed. by Sanjay Chaudhary; Gaurav Somani; Rajku-
mar Buyya. Singapore: Springer, pp. 1–20. isbn: 978-981-10-5026-8. doi: 10.1007/978-
981-10-5026-8_1.

Barr, Jeff (2006). Amazon EC2 Beta. https://aws.amazon.com/blogs/aws/amazon_ec2_
beta/. (Online: accessed 2021-03-01).

Bates, John; Bacon, Jean; Moody, Ken; Spiteri, Mark (1998). ‘Using Events for the Scalable
Federation of Heterogeneous Components’. In: Proceedings of the 8th ACM SIGOPS
European Workshop on Support for Composing Distributed Applications. EW 8. New York, NY,
USA: Association for Computing Machinery, pp. 58–65. doi: 10.1145/319195.319205.

Baun, Christian; Kunze, Marcel; Nimis, Jens; Tai, Stefan (2011). Cloud Computing: Web-
Based Dynamic IT Services. Springer Verlag. isbn: 978-3-642-20916-1. doi: 10.1007/978-3-
642-20917-8.

Begoli, Edmon; Akidau, Tyler; Hueske, Fabian; Hyde, Julian; Knight, Kathryn; Knowles,
Kenneth (2019). ‘One SQL to Rule Them All - an Efficient and Syntactically Idiomatic
Approach to Management of Streams and Tables’. In: Proceedings of the 2019 International

https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1007/s00778-004-0147-z
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1145/543613.543615
https://doi.org/10.1145/543613.543615
https://doi.org/10.1145/603867.603884
https://doi.org/10.1145/3132211.3134454
https://doi.org/10.1145/1133373.1133390
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://aws.amazon.com/blogs/aws/amazon_ec2_beta/
https://aws.amazon.com/blogs/aws/amazon_ec2_beta/
https://doi.org/10.1145/319195.319205
https://doi.org/10.1007/978-3-642-20917-8
https://doi.org/10.1007/978-3-642-20917-8

183

Conference on Management of Data. SIGMOD ’19. New York, NY, USA: Association for
Computing Machinery, pp. 1757–1772. doi: 10.1145/3299869.3314040.

Bellavista, Paolo; Zanni, Alessandro (2017). ‘Feasibility of Fog Computing Deployment
Based on Docker Containerization over RaspberryPi’. In: Proceedings of the 18th Interna-
tional Conference on Distributed Computing and Networking - ICDCN ’17, pp. 1–10. doi:
10.1145/3007748.3007777.

Bergmayr, Alexander; Breitenbücher, Uwe; Ferry, Nicolas; Rossini, Alessandro; Solberg,
Arnor; Wimmer, Manuel; Kappel, Gerti; Leymann, Frank (2018). ‘A Systematic Review
of Cloud Modeling Languages’. In: ACM Computing Surveys 51 (1), 22:1–22:38. doi:
10.1145/3150227.

Bermbach, David; Pallas, Frank; Pérez, David García; Plebani, Pierluigi; Anderson, Maya;
Kat, Ronen; Tai, Stefan (2018). ‘A Research Perspective on Fog Computing’. In: Service-
Oriented Computing – ICSOC 2017 Workshops. Ed. by Lars Braubach; Juan M. Murillo;
Nima Kaviani; Manuel Lama; Loli Burgueño; Naouel Moha; Marc Oriol. Lecture Notes
in Computer Science. Cham: Springer International Publishing, pp. 198–210. doi: 10.
1007/978-3-319-91764-1_16.

Bernstein, D. (2014). ‘Containers and Cloud: From LXC to Docker to Kubernetes’. In: IEEE
Cloud Computing 1 (3), pp. 81–84. doi: 10.1109/MCC.2014.51.

Bhattacharjee, S. (2018). Practical Industrial Internet of Things Security: A Practitioner’s Guide
to Securing Connected Industries. Packt Publishing. isbn: 978-1-78883-085-0.

Binz, Tobias; Breitenbücher, Uwe; Haupt, Florian; Kopp, Oliver; Leymann, Frank; Nowak,
Alexander; Wagner, Sebastian (2013). ‘OpenTOSCA – A Runtime for TOSCA-Based
Cloud Applications’. In: Service-Oriented Computing. Ed. by Samik Basu; Cesare Pau-
tasso; Liang Zhang; Xiang Fu. Lecture Notes in Computer Science. Berlin, Heidelberg:
Springer, pp. 692–695. doi: 10.1007/978-3-642-45005-1_62.

Birman, K.; Joseph, T. (1987). ‘Exploiting Virtual Synchrony in Distributed Systems’. In:
ACM SIGOPS Operating Systems Review 21 (5), pp. 123–138. doi: 10.1145/37499.37515.

Birman, Kenneth P. (1993). ‘The Process Group Approach to Reliable Distributed Com-
puting’. In: Communications of the ACM 36 (12), pp. 37–53. doi: 10.1145/163298.163303.

Bittencourt, L. F.; Lopes, M. M.; Petri, I.; Rana, O. F. (2015). ‘Towards Virtual Machine
Migration in Fog Computing’. In: 2015 10th International Conference on P2P, Parallel,
Grid, Cloud and Internet Computing (3PGCIC), pp. 1–8. doi: 10.1109/3PGCIC.2015.85.

Blackstock, Michael; Lea, Rodger (2014). ‘Toward a Distributed Data Flow Platform for the
Web of Things (Distributed Node-RED)’. In: Proceedings of the 5th International Workshop
on Web of Things. WoT ’14. New York, NY, USA: Association for Computing Machinery,
pp. 34–39. doi: 10.1145/2684432.2684439.

Bonomi, Flavio; Milito, Rodolfo; Natarajan, Preethi; Zhu, Jiang (2014). ‘Fog Computing: A
Platform for Internet of Things and Analytics’. In: Studies in Computational Intelligence
546, pp. 169–186. doi: 10.1007/978-3-319-05029-4_7.

Bonomi, Flavio; Milito, Rodolfo; Zhu, Jiang; Addepalli, Sateesh (2012). ‘Fog Computing
and Its Role in the Internet of Things’. In: Proceedings of the first edition of the MCC

https://doi.org/10.1145/3299869.3314040
https://doi.org/10.1145/3007748.3007777
https://doi.org/10.1145/3150227
https://doi.org/10.1007/978-3-319-91764-1_16
https://doi.org/10.1007/978-3-319-91764-1_16
https://doi.org/10.1109/MCC.2014.51
https://doi.org/10.1007/978-3-642-45005-1_62
https://doi.org/10.1145/37499.37515
https://doi.org/10.1145/163298.163303
https://doi.org/10.1109/3PGCIC.2015.85
https://doi.org/10.1145/2684432.2684439
https://doi.org/10.1007/978-3-319-05029-4_7

184 Bibliography

workshop on Mobile cloud computing, pp. 13–16. doi: 10.1145/2342509.2342513. arXiv:
1502.01815v3.

Brinker, Scott (2018). Democratizing Martech: Distributing Power from IT to Marketing Tech-
nologists to Everyone. https://chiefmartec.com/2018/05/democratizing-martech-
marketing-technologists/. (Online: accessed 2021-03-19).

Brogi, Antonio; Mencagli, Gabriele; Neri, Davide; Soldani, Jacopo; Torquati, Massimo
(2018). ‘Container-Based Support for Autonomic Data Stream Processing Through the
Fog’. In: Euro-Par 2017: Parallel Processing Workshops, pp. 17–28. doi: 10.1007/978-3-319-
75178-8_2.

Brun, Yuriy; Di Marzo Serugendo, Giovanna; Gacek, Cristina; Giese, Holger; Kienle, Hol-
ger; Litoiu, Marin; Müller, Hausi; Pezzè, Mauro; Shaw, Mary (2009). ‘Engineering Self-
Adaptive Systems through Feedback Loops’. In: Software Engineering for Self-Adaptive
Systems. Ed. by Betty H. C. Cheng; Rogério de Lemos; Holger Giese; Paola Inverardi;
Jeff Magee. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, pp. 48–70.
isbn: 978-3-642-02161-9. doi: 10.1007/978-3-642-02161-9_3.

Bruns, Ralf; Dunkel, Jürgen (2010). Event-Driven Architecture: Softwarearchitektur für ereignis-
gesteuerte Geschäftsprozesse. Xpert.press. Berlin Heidelberg: Springer-Verlag. isbn: 978-3-
642-02438-2. doi: 10.1007/978-3-642-02439-9.

Buchmann, Alejandro; Koldehofe, Boris (2009). ‘Complex Event Processing’. In: it - Infor-
mation Technology 51 (5), pp. 241–242. doi: 10.1524/itit.2009.9058.

Burns, Brendan; Grant, Brian; Oppenheimer, David; Brewer, Eric; Wilkes, John (2016).
‘Borg, Omega, and Kubernetes: Lessons Learned from Three Container-Management
Systems over a Decade’. In: Queue 14 (1), pp. 70–93. doi: 10.1145/2898442.2898444.

Buschmann, Frank; Meunier, Regine; Rohnert, Hans; Sommerlad, Peter; Stal, Michael
(1996). Pattern-Oriented Software Architecture - Volume 1: A System of Patterns. Wiley
Publishing. isbn: 0-471-95869-7.

Byers, C. C. (2017). ‘Architectural Imperatives for Fog Computing: Use Cases, Require-
ments, and Architectural Techniques for Fog-Enabled IoT Networks’. In: IEEE Commu-
nications Magazine 55 (8), pp. 14–20. doi: 10.1109/MCOM.2017.1600885.

Cardellini, Valeria; Lo Presti, Francesco; Nardelli, Matteo; Russo Russo, Gabriele (2018).
‘Decentralized Self-Adaptation for Elastic Data Stream Processing’. In: Future Generation
Computer Systems 87, pp. 171–185. doi: 10.1016/J.FUTURE.2018.05.025.

Carney, Don; Çetintemel, Uǧur; Cherniack, Mitch; Convey, Christian; Lee, Sangdon;
Seidman, Greg; Stonebraker, Michael; Tatbul, Nesime; Zdonik, Stan (2002). ‘Monitoring
Streams: A New Class of Data Management Applications’. In: Proceedings of the 28th
International Conference on Very Large Data Bases. VLDB ’02. Hong Kong, China: VLDB
Endowment, pp. 215–226.

Carzaniga, Antonio; Di Nitto, Elisabetta; Rosenblum, David S.; Wolf, Alexander L. (1998).
‘Issues in Supporting Event-Based Architectural Styles’. In: Proceedings of the Third Inter-
national Workshop on Software Architecture. ISAW ’98. New York, NY, USA: Association
for Computing Machinery, pp. 17–20. doi: 10.1145/288408.288413.

https://doi.org/10.1145/2342509.2342513
https://arxiv.org/abs/1502.01815v3
https://chiefmartec.com/2018/05/democratizing-martech-marketing-technologists/
https://chiefmartec.com/2018/05/democratizing-martech-marketing-technologists/
https://doi.org/10.1007/978-3-319-75178-8_2
https://doi.org/10.1007/978-3-319-75178-8_2
https://doi.org/10.1007/978-3-642-02161-9_3
https://doi.org/10.1007/978-3-642-02439-9
https://doi.org/10.1524/itit.2009.9058
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1109/MCOM.2017.1600885
https://doi.org/10.1016/J.FUTURE.2018.05.025
https://doi.org/10.1145/288408.288413

185

Casale, G.; Artač, M.; van den Heuvel, W.-J.; van Hoorn, A.; Jakovits, P.; Leymann, F.;
Long, M.; Papanikolaou, V.; Presenza, D.; Russo, A.; Srirama, S. N.; Tamburri, D. A.;
Wurster, M.; Zhu, L. (2020). ‘RADON: Rational Decomposition and Orchestration for
Serverless Computing’. In: SICS Software-Intensive Cyber-Physical Systems 35 (1), pp. 77–
87. doi: 10.1007/s00450-019-00413-w.

Challita, Stéphanie; Korte, Fabian; Erbel, Johannes; Zalila, Faiez; Grabowski, Jens; Merle,
Philippe (2021). ‘Model-Based Cloud Resource Management with TOSCA and OCCI’.
In: Software and Systems Modeling. doi: 10.1007/s10270-021-00869-y.

Chandrasekaran, Sirish; Cooper, Owen; Deshpande, Amol; Franklin, Michael J.; Heller-
stein, Joseph M.; Hong, Wei; Krishnamurthy, Sailesh; Madden, Samuel R.; Reiss, Fred;
Shah, Mehul A. (2003). ‘TelegraphCQ: Continuous Dataflow Processing’. In: Proceed-
ings of the 2003 ACM SIGMOD International Conference on Management of Data. SIG-
MOD ’03. New York, NY, USA: Association for Computing Machinery, p. 668. doi:
10.1145/872757.872857.

Chandy, K.; Schulte, W. (2009). Event Processing: Designing IT Systems for Agile Companies.
First. USA: McGraw-Hill, Inc. isbn: 978-0-07-163350-5.

Chandy, Mani K.; Schulte, Roy (2007). What Is Event Driven Architecture (EDA) and Why
Does It Matter? https://complexevents.com/2007/07/17/what- is-event-driven-
architecture-eda-and-why-does-it-matter/. (Online: accessed 2021-01-30).

Chang, Chii; Srirama, Satish Narayana; Buyya, Rajkumar (2017). ‘Indie Fog: An Efficient
Fog-Computing Infrastructure for the Internet of Things’. In: Computer 50 (9), pp. 92–98.
doi: 10.1109/MC.2017.3571049.

Chen, B.; Wan, J.; Celesti, A.; Li, D.; Abbas, H.; Zhang, Q. (2018). ‘Edge Computing in
IoT-Based Manufacturing’. In: IEEE Communications Magazine 56 (9), pp. 103–109. doi:
10.1109/MCOM.2018.1701231.

Cheng, B.; Papageorgiou, A.; Cirillo, F.; Kovacs, E. (2015). ‘GeeLytics: Geo-Distributed
Edge Analytics for Large Scale IoT Systems Based on Dynamic Topology’. In: 2015
IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 565–570. doi: 10.1109/WF-
IoT.2015.7389116.

Cheng, Bin; Solmaz, Gürkan; Cirillo, Flavio; Kovacs, Ernö; Terasawa, Kazuyuki; Kitazawa,
Atsushi (2018). ‘FogFlow: Easy Programming of IoT Services Over Cloud and Edges
for Smart Cities’. In: IEEE Internet of Things Journal 5 (2), pp. 696–707. doi: 10.1109/JIOT.
2017.2747214.

Chiang, M.; Ha, S.; Risso, F.; Zhang, T.; Chih-Lin, I. (2017). ‘Clarifying Fog Computing
and Networking: 10 Questions and Answers’. In: IEEE Communications Magazine 55 (4),
pp. 18–20. doi: 10.1109/MCOM.2017.7901470.

Costa, P.; Picco, G. P.; Rossetto, S. (2005). ‘Publish-Subscribe on Sensor Networks: A Semi-
Probabilistic Approach’. In: IEEE International Conference on Mobile Adhoc and Sensor
Systems Conference, 2005. 10 pp.-332. doi: 10.1109/MAHSS.2005.1542816.

Cristian, Flavin (1991). ‘Understanding Fault-Tolerant Distributed Systems’. In: Communi-
cations of the ACM 34 (2), pp. 56–78. doi: 10.1145/102792.102801.

https://doi.org/10.1007/s00450-019-00413-w
https://doi.org/10.1007/s10270-021-00869-y
https://doi.org/10.1145/872757.872857
https://complexevents.com/2007/07/17/what-is-event-driven-architecture-eda-and-why-does-it-matter/
https://complexevents.com/2007/07/17/what-is-event-driven-architecture-eda-and-why-does-it-matter/
https://doi.org/10.1109/MC.2017.3571049
https://doi.org/10.1109/MCOM.2018.1701231
https://doi.org/10.1109/WF-IoT.2015.7389116
https://doi.org/10.1109/WF-IoT.2015.7389116
https://doi.org/10.1109/JIOT.2017.2747214
https://doi.org/10.1109/JIOT.2017.2747214
https://doi.org/10.1109/MCOM.2017.7901470
https://doi.org/10.1109/MAHSS.2005.1542816
https://doi.org/10.1145/102792.102801

186 Bibliography

Cugola, Gianpaolo; Margara, Alessandro (2012). ‘Processing Flows of Information: From
Data Stream to Complex Event Processing’. In: ACM Computing Surveys 44 (3), 15:1–
15:62. doi: 10.1145/2187671.2187677.

Dabek, Frank; Cox, Russ; Kaashoek, Frans; Morris, Robert (2004). ‘Vivaldi: A Decentralized
Network Coordinate System’. In: ACM SIGCOMM Computer Communication Review
34 (4), pp. 15–26. doi: 10.1145/1030194.1015471.

Dasher, Richard B. (2019). The Present and Future of Edge Computing from an International
Perspective. https://asia.stanford.edu/wp-content/uploads/190926-RBD-402a-
slides.pdf. (Online: accessed 2021-11-11).

Dastjerdi, Amir Vahid; Gupta, Harshit; Calheiros, Rodrigo N.; Ghosh, Soumya K.; Buyya,
Rajkumar (2016). ‘Fog Computing: Principles, Architectures, and Applications’. In:
Internet of Things. Ed. by Rajkumar Buyya; Amir Vahid Dastjerdi. Morgan Kaufmann,
pp. 61–75. isbn: 978-0-12-805395-9. doi: 10.1016/B978-0-12-805395-9.00004-6.

Dautov, R.; Distefano, S.; Bruneo, D.; Longo, F.; Merlino, G.; Puliafito, A. (2018). ‘Data
Processing in Cyber-Physical-Social Systems Through Edge Computing’. In: IEEE
Access 6, pp. 29822–29835. doi: 10.1109/ACCESS.2018.2839915.

Dayal, Umeshwar; Buchmann, Alejandro P.; McCarthy, Dennis R. (1988). ‘Rules Are
Objects Too: A Knowledge Model for an Active, Object-Oriented Database System’. In:
Advances in Object-Oriented Database Systems. Ed. by Klaus R. Dittrich. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer, pp. 129–143. doi: 10.1007/3-540-
50345-5_9.

Dayarathna, Miyuru; Perera, Srinath (2018). ‘Recent Advancements in Event Processing’.
In: ACM Computing Surveys 51 (2), 33:1–33:36. doi: 10.1145/3170432.

Dean, Jeffrey; Ghemawat, Sanjay (2004). ‘MapReduce: Simplified Data Processing on Large
Clusters’. In: Proc. of the OSDI - Symp. on Operating Systems Design and Implementation.
USENIX, pp. 137–149.

Dennis, Jack B.; Misunas, David P. (1974). ‘A Preliminary Architecture for a Basic Data-
Flow Processor’. In: ACM SIGARCH Computer Architecture News 3 (4), pp. 126–132. doi:
10.1145/641675.642111.

Dias de Assunção, Marcos; da Silva Veith, Alexandre; Buyya, Rajkumar (2018). ‘Distri-
buted Data Stream Processing and Edge Computing: A Survey on Resource Elasticity
and Future Directions’. In: Journal of Network and Computer Applications 103, pp. 1–17.
doi: 10.1016/j.jnca.2017.12.001.

Díaz-de-Arcaya, Josu; Miñón, Raúl; Torre-Bastida, Ana I.; Del Ser, Javier; Almeida, Aitor
(2020). ‘PADL: A Modeling and Deployment Language for Advanced Analytical Ser-
vices’. In: Sensors 20 (23), p. 6712. doi: 10.3390/s20236712.

Dilley, John; Maggs, Bruce; Parikh, Jay; Prokop, Harald; Sitaraman, Ramesh; Weihl, Bill
(2002). ‘Globally Distributed Content Delivery’. In: IEEE Internet Computing 6 (5), pp. 50–
58. doi: 10.1109/MIC.2002.1036038.

Dupont, Corentin; Giaffreda, Raffaele; Capra, Luca (2017). ‘Edge Computing in IoT Con-
text: Horizontal and Vertical Linux Container Migration’. In: GIoTS 2017 - Global Internet
of Things Summit, Proceedings. doi: 10.1109/GIOTS.2017.8016218.

https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/1030194.1015471
https://asia.stanford.edu/wp-content/uploads/190926-RBD-402a-slides.pdf
https://asia.stanford.edu/wp-content/uploads/190926-RBD-402a-slides.pdf
https://doi.org/10.1016/B978-0-12-805395-9.00004-6
https://doi.org/10.1109/ACCESS.2018.2839915
https://doi.org/10.1007/3-540-50345-5_9
https://doi.org/10.1007/3-540-50345-5_9
https://doi.org/10.1145/3170432
https://doi.org/10.1145/641675.642111
https://doi.org/10.1016/j.jnca.2017.12.001
https://doi.org/10.3390/s20236712
https://doi.org/10.1109/MIC.2002.1036038
https://doi.org/10.1109/GIOTS.2017.8016218

187

ElMaraghy, Hoda; Wiendahl, Hans-Peter (2014). ‘Changeable Manufacturing’. In: CIRP
Encyclopedia of Production Engineering. Ed. by Luc Laperrière; Gunther Reinhart. Berlin,
Heidelberg: Springer, pp. 157–163. isbn: 978-3-642-20617-7. doi: 10.1007/978-3-642-
20617-7_6674.

Endres, Christian; Breitenbücher, Uwe; Falkenthal, Michael; Kopp, Oliver; Leymann,
Frank; Wettinger, Johannes (2017). ‘Declarative vs. Imperative: Two Modeling Patterns
for the Automated Deployment of Applications’. In: Proceedings of the 9th International
Conference on Pervasive Patterns and Applications. Xpert Publishing Services (XPS), pp. 22–
27.

Etzion, Opher; Niblett, Peter (2010). Event Processing in Action. Manning Publications Co.
isbn: 978-1-935182-21-4.

Eugster, Patrick Th.; Felber, Pascal A.; Guerraoui, Rachid; Kermarrec, Anne-Marie (2003).
‘The Many Faces of Publish/Subscribe’. In: ACM Computing Surveys 35 (2), pp. 114–131.
doi: 10.1145/857076.857078.

Fiege, Ludger; Mühl, Gero; Gärtner, Felix C. (2002). ‘Modular Event-Based Systems’. In:
The Knowledge Engineering Review 17 (4), pp. 359–388. doi: 10.1017/S0269888903000559.

Fischer, G.; Nakakoji, K.; Ye, Y. (2009). ‘Metadesign: Guidelines for Supporting Domain
Experts in Software Development’. In: IEEE Software 26 (5), pp. 37–44. doi: 10.1109/
MS.2009.134.

Flinn, Jason; Satyanarayanan, M. (1999). ‘Energy-Aware Adaptation for Mobile Applica-
tions’. In: Proceedings of the Seventeenth ACM Symposium on Operating Systems Principles.
SOSP ’99. New York, NY, USA: Association for Computing Machinery, pp. 48–63. doi:
10.1145/319151.319155.

Franklin, Michael; Zdonik, Stan (1998). ‘"Data in Your Face": Push Technology in Perspec-
tive’. In: ACM SIGMOD Record 27 (2), pp. 516–519. doi: 10.1145/276305.276360.

Franklin, Michael; Zdonik, Stanley (1997). ‘A Framework for Scalable Dissemination-
Based Systems’. In: Proceedings of the 12th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. OOPSLA ’97. New York, NY, USA:
Association for Computing Machinery, pp. 94–105. doi: 10.1145/263698.263725.

Al-Fuqaha, A.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. (Fourthquar-
ter 2015). ‘Internet of Things: A Survey on Enabling Technologies, Protocols, and
Applications’. In: IEEE Communications Surveys Tutorials 17 (4), pp. 2347–2376. doi:
10.1109/COMST.2015.2444095.

Gamma, Erich; Helm, Richard; Johnson, Ralph E.; Vlissides, John M. (1993). ‘Design
Patterns: Abstraction and Reuse of Object-Oriented Design’. In: Proceedings of the 7th
European Conference on Object-Oriented Programming. ECOOP ’93. Berlin, Heidelberg:
Springer-Verlag, pp. 406–431. isbn: 978-3-540-57120-9.

Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John M. (1994). Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional. isbn: 0-201-
63361-2.

Garcia Lopez, Pedro; Montresor, Alberto; Epema, Dick; Datta, Anwitaman; Higashino,
Teruo; Iamnitchi, Adriana; Barcellos, Marinho; Felber, Pascal; Riviere, Etienne (2015).

https://doi.org/10.1007/978-3-642-20617-7_6674
https://doi.org/10.1007/978-3-642-20617-7_6674
https://doi.org/10.1145/857076.857078
https://doi.org/10.1017/S0269888903000559
https://doi.org/10.1109/MS.2009.134
https://doi.org/10.1109/MS.2009.134
https://doi.org/10.1145/319151.319155
https://doi.org/10.1145/276305.276360
https://doi.org/10.1145/263698.263725
https://doi.org/10.1109/COMST.2015.2444095

188 Bibliography

‘Edge-Centric Computing: Vision and Challenges’. In: ACM SIGCOMM Computer Com-
munication Review 45 (5), pp. 37–42. doi: 10.1145/2831347.2831354.

Giang, Nam Ky (2019). ‘Context-Dependent Exogenous Coordination for Building Large
Scale, Dynamic Fog Computing Applications’. PhD thesis. University of British Columbia.
doi: 10.14288/1.0383394.

Giang, Nam Ky; Blackstock, Michael; Lea, Rodger; Leung, Victor C.M. (2015). ‘Developing
IoT Applications in the Fog: A Distributed Dataflow Approach’. In: Proceedings - 2015
5th International Conference on the Internet of Things, IoT 2015. IEEE, pp. 155–162. doi:
10.1109/IOT.2015.7356560.

Greengard, Samuel (2020). ‘AI on Edge’. In: Communications of the ACM 63 (9), pp. 18–20.
doi: 10.1145/3409977.

Gröger, Christoph (2018). ‘Building an Industry 4.0 Analytics Platform’. In: Datenbank-
Spektrum 18 (1), pp. 5–14. doi: 10.1007/s13222-018-0273-1.

Guazzelli, Alex; Zeller, Michael; Lin, Wen-Ching; Williams, Graham (2009). ‘PMML: An
Open Standard for Sharing Models’. In: The R Journal 1 (1), pp. 60–65. doi: 10.32614/RJ-
2009-010.

Hao, Z.; Novak, E.; Yi, S.; Li, Q. (2017). ‘Challenges and Software Architecture for Fog
Computing’. In: IEEE Internet Computing 21 (2), pp. 44–53. doi: 10.1109/MIC.2017.26.

Hasenburg, Jonathan; Bermbach, David (2020). ‘DisGB: Using Geo-Context Informa-
tion for Efficient Routing in Geo-Distributed Pub/Sub Systems’. In: 2020 IEEE/ACM
International Conference on Utility and Cloud Computing. Leicester, United Kingdom:
IEEE.

Heinze, Thomas; Aniello, Leonardo; Querzoni, Leonardo; Jerzak, Zbigniew (2014). ‘Cloud-
Based Data Stream Processing’. In: Proceedings of the 8th ACM International Conference
on Distributed Event-Based Systems. DEBS ’14. New York, NY, USA: Association for
Computing Machinery, pp. 238–245. doi: 10.1145/2611286.2611309.

Henke, Nicolaus; Bughin, Jacques; Chui, Michael; Manyika, James; Saleh, Tamim; Wise-
man, Bill; Sethupathy, Guru (2016). The Age of Analytics: Competing in a Data-Driven
World. Tech. rep. McKinsey Global Institute.

Herle, Stefan; Blankenbach, Jörg (2016). ‘GeoPipes Using GeoMQTT’. In: Geospatial Data in
a Changing World. Ed. by Tapani Sarjakoski; Maribel Yasmina Santos; L. Tiina Sarjakoski.
Lecture Notes in Geoinformation and Cartography. Cham: Springer International
Publishing, pp. 383–398. doi: 10.1007/978-3-319-33783-8_22.

Hevner, Alan R.; March, Salvatore T.; Park, Jinsoo; Ram, Sudha (2004). ‘Design Science
in Information Systems Research’. In: MIS Quarterly 28 (1), pp. 75–105. doi: 10.2307/
25148625.

Hießl, Thomas; Hochreiner, Christoph; Schulte, Stefan (2019). ‘Towards a Framework
for Data Stream Processing in the Fog’. In: Informatik Spektrum 42 (4), pp. 256–265. doi:
10.1007/s00287-019-01192-z.

Hirzel, Martin (2012). ‘Partition and Compose: Parallel Complex Event Processing’. In:
Proceedings of the 6th ACM International Conference on Distributed Event-Based Systems.

https://doi.org/10.1145/2831347.2831354
https://doi.org/10.14288/1.0383394
https://doi.org/10.1109/IOT.2015.7356560
https://doi.org/10.1145/3409977
https://doi.org/10.1007/s13222-018-0273-1
https://doi.org/10.32614/RJ-2009-010
https://doi.org/10.32614/RJ-2009-010
https://doi.org/10.1109/MIC.2017.26
https://doi.org/10.1145/2611286.2611309
https://doi.org/10.1007/978-3-319-33783-8_22
https://doi.org/10.2307/25148625
https://doi.org/10.2307/25148625
https://doi.org/10.1007/s00287-019-01192-z

189

DEBS ’12. New York, NY, USA: Association for Computing Machinery, pp. 191–200.
doi: 10.1145/2335484.2335506.

Hochreiner, C.; Schulte, S.; Dustdar, S.; Lecue, F. (2015). ‘Elastic Stream Processing for
Distributed Environments’. In: IEEE Internet Computing 19 (6), pp. 54–59. doi: 10.1109/
MIC.2015.118.

Hochreiner, Christoph; Vogler, Michael; Schulte, Stefan; Dustdar, Schahram (2016). ‘Elastic
Stream Processing for the Internet of Things’. In: 2016 IEEE 9th International Conference
on Cloud Computing (CLOUD). IEEE, pp. 100–107. doi: 10.1109/CLOUD.2016.0023.

Hong, Cheol-Ho; Varghese, Blesson (2019). ‘Resource Management in Fog/Edge Comput-
ing: A Survey on Architectures, Infrastructure, and Algorithms’. In: ACM Computing
Surveys 52 (5), pp. 1–37. doi: 10.1145/3326066.

Hong, Kirak; Lillethun, David; Ramachandran, Umakishore; Ottenwälder, Beate; Kolde-
hofe, Boris (2013). Mobile Fog: A Programming Model for Large-Scale Applications on the
Internet of Things. isbn: 978-1-4503-2180-8.

Hou, X.; Li, Y.; Chen, M.; Wu, D.; Jin, D.; Chen, S. (2016). ‘Vehicular Fog Computing:
A Viewpoint of Vehicles as the Infrastructures’. In: IEEE Transactions on Vehicular
Technology 65 (6), pp. 3860–3873. doi: 10.1109/TVT.2016.2532863.

Hu, Pengfei; Dhelim, Sahraoui; Ning, Huansheng; Qiu, Tie (2017). ‘Survey on Fog Com-
puting: Architecture, Key Technologies, Applications and Open Issues’. In: Journal of
Network and Computer Applications 98, pp. 27–42. doi: 10.1016/j.jnca.2017.09.002.

Hu, Yun Chao; Patel, Milan; Sabella, Dario; Sprecher, Nurit; Young, Valerie (2015). ‘Mobile
Edge Computing: A Key Technology towards 5G’. In: ETSI White Paper 11 (1).

Huang, Yongqiang; Garcia-Molina, Hector (2004). ‘Publish/Subscribe in a Mobile Envi-
ronment’. In: Wireless Networks 10 (6), pp. 643–652. doi: 10.1023/B:WINE.0000044025.
64654.65.

Hueske, F.; Kalavri, V. (2019). Stream Processing with Apache Flink: Fundamentals, Imple-
mentation, and Operation of Streaming Applications. O’Reilly Media, Incorporated. isbn:
978-1-4919-7429-2.

Hunkeler, U.; Truong, H. L.; Stanford-Clark, A. (2008). ‘MQTT-S — A Publish/Subscribe
Protocol for Wireless Sensor Networks’. In: 2008 3rd International Conference on Commu-
nication Systems Software and Middleware and Workshops (COMSWARE ’08), pp. 791–798.
doi: 10.1109/COMSWA.2008.4554519.

Hutter, Frank; Kotthoff, Lars; Vanschoren, Joaquin, eds. (2019). Automated Machine Learn-
ing: Methods, Systems, Challenges. The Springer Series on Challenges in Machine Learn-
ing. Springer International Publishing. isbn: 978-3-030-05317-8. doi: 10.1007/978-3-030-
05318-5.

Iorga, Michaela; Feldman, Larry; Barton, Robert; Martin, Michael J; Goren, Ned; Mah-
moudi, Charif (2018). ‘Fog Computing Conceptual Model’. In: NIST Special Publication
500-325. doi: 10.6028/NIST.SP.500-325.

Ismail, Bukhary Ikhwan; Mostajeran Goortani, Ehsan; Ab Karim, Mohd Bazli; Ming Tat,
Wong; Setapa, Sharipah; Luke, Jing Yuan; Hong Hoe, Ong (2015). ‘Evaluation of Docker

https://doi.org/10.1145/2335484.2335506
https://doi.org/10.1109/MIC.2015.118
https://doi.org/10.1109/MIC.2015.118
https://doi.org/10.1109/CLOUD.2016.0023
https://doi.org/10.1145/3326066
https://doi.org/10.1109/TVT.2016.2532863
https://doi.org/10.1016/j.jnca.2017.09.002
https://doi.org/10.1023/B:WINE.0000044025.64654.65
https://doi.org/10.1023/B:WINE.0000044025.64654.65
https://doi.org/10.1109/COMSWA.2008.4554519
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-3-030-05318-5
https://doi.org/10.6028/NIST.SP.500-325

190 Bibliography

as Edge Computing Platform’. In: ICOS 2015 - 2015 IEEE Conference on Open Systems.
IEEE, pp. 130–135. doi: 10.1109/ICOS.2015.7377291.

Issarny, Valérie; Bouloukakis, Georgios; Georgantas, Nikolaos; Billet, Benjamin (2016).
‘Revisiting Service-Oriented Architecture for the IoT: A Middleware Perspective’. In:
Service-Oriented Computing. Ed. by Quan Z. Sheng; Eleni Stroulia; Samir Tata; Sami
Bhiri. Lecture Notes in Computer Science. Cham: Springer International Publishing,
pp. 3–17. doi: 10.1007/978-3-319-46295-0_1.

Jeschke, Sabina; Brecher, Christian; Meisen, Tobias; Özdemir, Denis; Eschert, Tim (2017).
‘Industrial Internet of Things and Cyber Manufacturing Systems’. In: Industrial Internet
of Things: Cybermanufacturing Systems. Ed. by Sabina Jeschke; Christian Brecher; Houb-
ing Song; Danda B. Rawat. Springer Series in Wireless Technology. Cham: Springer
International Publishing, pp. 3–19. isbn: 978-3-319-42559-7. doi: 10.1007/978-3-319-
42559-7_1.

Joerss, Martin; Schröder, Jürgen; Neuhaus, Florian; Klink, Christoph; Mann, Florian
(2016). Parcel Delivery: The Future of Last Mile. Tech. rep. McKinsey & Company.

Kai, Kang; Cong, Wang; Tao, Luo (2016). ‘Fog Computing for Vehicular Ad-Hoc Networks:
Paradigms, Scenarios, and Issues’. In: The Journal of China Universities of Posts and
Telecommunications 23 (2), pp. 56–96. doi: 10.1016/S1005-8885(16)60021-3.

Kang, H.; Le, M.; Tao, S. (2016). ‘Container and Microservice Driven Design for Cloud
Infrastructure DevOps’. In: 2016 IEEE International Conference on Cloud Engineering
(IC2E), pp. 202–211. doi: 10.1109/IC2E.2016.26.

Karagiannis, V.; Schulte, S. (2020). ‘Comparison of Alternative Architectures in Fog Com-
puting’. In: 2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC),
pp. 19–28. doi: 10.1109/ICFEC50348.2020.00010.

Karamoozian, Amir; Hafid, Abdelhakim; Aboulhamid, El Mostapha (2019). ‘On the
Fog-Cloud Cooperation: How Fog Computing Can Address Latency Concerns of IoT
Applications’. In: 2019 Fourth International Conference on Fog and Mobile Edge Computing
(FMEC). Rome, Italy: IEEE, pp. 166–172. doi: 10.1109/FMEC.2019.8795320.

Képes, Kálmán; Breitenbücher, Uwe; Leymann, Frank; Saatkamp, Karoline; Weder, Ben-
jamin (2019). ‘Deployment of Distributed Applications Across Public and Private
Networks’. In: 2019 IEEE 23rd International Enterprise Distributed Object Computing
Conference (EDOC), pp. 236–242. doi: 10.1109/EDOC.2019.00036.

Kephart, J. O.; Chess, D. M. (2003). ‘The Vision of Autonomic Computing’. In: Computer
36 (1), pp. 41–50. doi: 10.1109/MC.2003.1160055.

Kleinfeld, Robert; Steglich, Stephan; Radziwonowicz, Lukasz; Doukas, Charalampos
(2014). ‘Glue.Things: A Mashup Platform for Wiring the Internet of Things with the
Internet of Services’. In: Proceedings of the 5th International Workshop on Web of Things.
WoT ’14. New York, NY, USA: Association for Computing Machinery, pp. 16–21. doi:
10.1145/2684432.2684436.

Kruchten, Philippe (1995). ‘Architectural Blueprints–The “4+1” View Model of Software
Architecture’. In: IEEE Software 12 (6), pp. 42–50.

https://doi.org/10.1109/ICOS.2015.7377291
https://doi.org/10.1007/978-3-319-46295-0_1
https://doi.org/10.1007/978-3-319-42559-7_1
https://doi.org/10.1007/978-3-319-42559-7_1
https://doi.org/10.1016/S1005-8885(16)60021-3
https://doi.org/10.1109/IC2E.2016.26
https://doi.org/10.1109/ICFEC50348.2020.00010
https://doi.org/10.1109/FMEC.2019.8795320
https://doi.org/10.1109/EDOC.2019.00036
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1145/2684432.2684436

191

Lee, E. A. (2008). ‘Cyber Physical Systems: Design Challenges’. In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed Computing
(ISORC), pp. 363–369. doi: 10.1109/ISORC.2008.25.

Lewis, James; Fowler, Martin (2014). Microservices: A Definition of This New Architectural
Term. https ://martinfowler.com/articles/microservices .html. (Online: accessed
2021-02-01).

Liang, K.; Zhao, L.; Chu, X.; Chen, H. (2017). ‘An Integrated Architecture for Software
Defined and Virtualized Radio Access Networks with Fog Computing’. In: IEEE Network
31 (1), pp. 80–87. doi: 10.1109/MNET.2017.1600027NM.

Luan, Tom H.; Gao, Longxiang; Li, Zhi; Xiang, Yang; Wei, Guiyi; Sun, Limin (2016). ‘Fog
Computing: Focusing on Mobile Users at the Edge’. In: arXiv:1502.01815 [cs]. arXiv:
1502.01815 [cs].

Luckham, D. C.; Vera, J. (1995). ‘An Event-Based Architecture Definition Language’. In:
IEEE Transactions on Software Engineering 21 (9), pp. 717–734. doi: 10.1109/32.464548.

Luckham, David (2020). What’s the Difference Between ESP and CEP? https://complexevents.
com/2020/06/15/whats-the-difference-between-esp-and-cep-2/. (Online: accessed
2021-01-17).

Luckham, David C. (2002). The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. USA: Addison-Wesley Longman Publishing Co., Inc.
isbn: 978-0-201-72789-0.

Luthra, Manisha; Koldehofe, Boris (2019). ‘ProgCEP: A Programming Model for Com-
plex Event Processing over Fog Infrastructure’. In: Proceedings of the 2nd International
Workshop on Distributed Fog Services Design - DFSD ’19. Davis, CA, USA: ACM Press,
pp. 7–12. doi: 10.1145/3366613.3368121.

Madakam, Somayya; Bhagat, Pratima (2018). ‘Fog Computing in the IoT Environment:
Principles, Features, and Models’. In: Fog Computing: Concepts, Frameworks and Technolo-
gies. Ed. by Zaigham Mahmood. Cham: Springer International Publishing, pp. 23–43.
isbn: 978-3-319-94890-4. doi: 10.1007/978-3-319-94890-4_2.

Mahapatra, Tanmaya (2019). ‘High-Level Graphical Programming for Big Data Applica-
tions’. PhD thesis. München: Technische Universität München.

Mahapatra, Tanmaya; Prehofer, Christian (2019). ‘aFlux: Graphical Flow-Based Data
Analytics’. In: Software Impacts 2, p. 100007. doi: 10.1016/j.simpa.2019.100007.

Mahmood, Zaigham; Ramachandran, Muthu (2018). ‘Fog Computing: Concepts, Princi-
ples and Related Paradigms’. In: Fog Computing: Concepts, Frameworks and Technologies.
Ed. by Zaigham Mahmood. Cham: Springer International Publishing, pp. 3–21. isbn:
978-3-319-94890-4. doi: 10.1007/978-3-319-94890-4_1.

Mahmud, Redowan; Ramamohanarao, Kotagiri; Buyya, Rajkumar (2020). ‘Application
Management in Fog Computing Environments: A Taxonomy, Review and Future
Directions’. In: ACM Computing Surveys 53 (4), 88:1–88:43. doi: 10.1145/3403955.

Masip-Bruin, X.; Marín-Tordera, E.; Tashakor, G.; Jukan, A.; Ren, G. (2016). ‘Foggy Clouds
and Cloudy Fogs: A Real Need for Coordinated Management of Fog-to-Cloud Com-

https://doi.org/10.1109/ISORC.2008.25
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/MNET.2017.1600027NM
https://arxiv.org/abs/1502.01815
https://doi.org/10.1109/32.464548
https://complexevents.com/2020/06/15/whats-the-difference-between-esp-and-cep-2/
https://complexevents.com/2020/06/15/whats-the-difference-between-esp-and-cep-2/
https://doi.org/10.1145/3366613.3368121
https://doi.org/10.1007/978-3-319-94890-4_2
https://doi.org/10.1016/j.simpa.2019.100007
https://doi.org/10.1007/978-3-319-94890-4_1
https://doi.org/10.1145/3403955

192 Bibliography

puting Systems’. In: IEEE Wireless Communications 23 (5), pp. 120–128. doi: 10.1109/
MWC.2016.7721750.

Matheson, Eloise; Minto, Riccardo; Zampieri, Emanuele G. G.; Faccio, Maurizio; Rosati,
Giulio (2019). ‘Human–Robot Collaboration in Manufacturing Applications: A Review’.
In: Robotics 8 (4), p. 100. doi: 10.3390/robotics8040100.

Mayer, Ruben; Gupta, Harshit; Saurez, Enrique; Ramachandran, Umakishore (2017).
‘FogStore: Toward a Distributed Data Store for Fog Computing’. In: 2017 IEEE Fog World
Congress (FWC), pp. 1–6. doi: 10.1109/FWC.2017.8368524.

McCarthy, Dennis; Dayal, Umeshwar (1989). ‘The Architecture of an Active Database
Management System’. In: Proceedings of the 1989 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’89. New York, NY, USA: Association for Computing
Machinery, pp. 215–224. doi: 10.1145/67544.66946.

Mcllroy, Doug (1964). The Origin of Unix Pipes. http://doc.cat-v.org/unix/pipes/.
(Online: accessed 2021-02-03).

Mills, D.L. (1991). ‘Internet Time Synchronization: The Network Time Protocol’. In: IEEE
Transactions on Communications 39 (10), pp. 1482–1493. doi: 10.1109/26.103043.

Morrison, J.P. (1994). Flow-Based Programming: A New Approach to Application Development.
Computer Science. Van Nostrand Reinhold. isbn: 978-0-442-01771-2.

Mouradian, C.; Naboulsi, D.; Yangui, S.; Glitho, R. H.; Morrow, M. J.; Polakos, P. A.
(2018). ‘A Comprehensive Survey on Fog Computing: State-of-the-Art and Research
Challenges’. In: IEEE Communications Surveys Tutorials 20 (1), pp. 416–464. doi: 10.1109/
COMST.2017.2771153.

Mozzaquatro, Bruno A.; Jardim-Goncalves, Ricardo; Agostinho, Carlos (2017). ‘Situation
Awareness in the Internet of Things’. In: 2017 International Conference on Engineering,
Technology and Innovation (ICE/ITMC), pp. 982–990. doi: 10.1109/ICE.2017.8279988.

Mühl, Gero (2001). ‘Generic Constraints for Content-Based Publish/Subscribe’. In: Co-
operative Information Systems. Ed. by Carlo Batini; Fausto Giunchiglia; Paolo Giorgini;
Massimo Mecella. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
pp. 211–225. doi: 10.1007/3-540-44751-2_17.

Mühl, Gero; Fiege, Ludger; Pietzuch, Peter (2006). Distributed Event-Based Systems. Berlin
Heidelberg: Springer-Verlag. isbn: 978-3-540-32651-9. doi: 10.1007/3-540-32653-7.

Noble, Brian D.; Satyanarayanan, M.; Narayanan, Dushyanth; Tilton, James Eric; Flinn,
Jason; Walker, Kevin R. (1997). ‘Agile Application-Aware Adaptation for Mobility’. In:
ACM SIGOPS Operating Systems Review 31 (5), pp. 276–287. doi: 10.1145/269005.266708.

Noor, Joseph; Tseng, Hsiao-Yun; Garcia, Luis; Srivastava, Mani (2019). ‘DDFlow: Visu-
alized Declarative Programming for Heterogeneous IoT Networks’. In: Proceedings
of the International Conference on Internet of Things Design and Implementation. IoTDI
’19. New York, NY, USA: Association for Computing Machinery, pp. 172–177. doi:
10.1145/3302505.3310079.

Oki, Brian; Pfluegl, Manfred; Siegel, Alex; Skeen, Dale (1993). ‘The Information Bus: An
Architecture for Extensible Distributed Systems’. In: ACM SIGOPS Operating Systems
Review 27 (5), pp. 58–68. doi: 10.1145/173668.168624.

https://doi.org/10.1109/MWC.2016.7721750
https://doi.org/10.1109/MWC.2016.7721750
https://doi.org/10.3390/robotics8040100
https://doi.org/10.1109/FWC.2017.8368524
https://doi.org/10.1145/67544.66946
http://doc.cat-v.org/unix/pipes/
https://doi.org/10.1109/26.103043
https://doi.org/10.1109/COMST.2017.2771153
https://doi.org/10.1109/COMST.2017.2771153
https://doi.org/10.1109/ICE.2017.8279988
https://doi.org/10.1007/3-540-44751-2_17
https://doi.org/10.1007/3-540-32653-7
https://doi.org/10.1145/269005.266708
https://doi.org/10.1145/3302505.3310079
https://doi.org/10.1145/173668.168624

193

OpenStreetMap contributors (2021). Planet Dump (Data File from 10 September 2021 of
Database Geofabrik). Distributed under the Open Data Commons Open Database License
(ODbL). Retrieved from https://planet.osm.org.

Pahl, C.; Lee, B. (2015). ‘Containers and Clusters for Edge Cloud Architectures – A
Technology Review’. In: 2015 3rd International Conference on Future Internet of Things and
Cloud, pp. 379–386. doi: 10.1109/FiCloud.2015.35.

Pahl, Claus; Jamshidi, Pooyan; Zimmermann, Olaf (2020). Microservices and Containers.
Gesellschaft für Informatik e.V. isbn: 978-3-88579-694-7. doi: 10.18420/SE2020_34.

Perrochon, Louis; Mann, Walter; Kasriel, Stephane; Luckham, David C. (1999). ‘Event
Mining with Event Processing Networks’. In: Methodologies for Knowledge Discovery and
Data Mining. Ed. by Ning Zhong; Lizhu Zhou. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer, pp. 474–478. doi: 10.1007/3-540-48912-6_63.

Pietzuch, P. R.; Bacon, J. M. (2002). ‘Hermes: A Distributed Event-Based Middleware
Architecture’. In: Proceedings 22nd International Conference on Distributed Computing
Systems Workshops, pp. 611–618. doi: 10.1109/ICDCSW.2002.1030837.

Pinto, H Sofia; Martins, JP (2000). ‘Reusing Ontologies’. In: AAAI 2000 Spring Symposium
on Bringing Knowledge to Business Processes. Vol. 2. Karlsruhe, Germany: AAAI, p. 7.

Pivarski, Jim; Bennett, Collin; Grossman, Robert L. (2016). ‘Deploying Analytics with
the Portable Format for Analytics (PFA)’. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. KDD ’16. New York,
NY, USA: Association for Computing Machinery, pp. 579–588. doi: 10.1145/2939672.
2939731.

Pop, Paul; Zarrin, Bahram; Barzegaran, Mohammadreza; Schulte, Stefan; Punnekkat,
Sasikumar; Ruh, Jan; Steiner, Wilfried (2021). ‘The FORA Fog Computing Platform for
Industrial IoT’. In: Information Systems 98, p. 101727. doi: 10.1016/j.is.2021.101727.

Powell, David (1996). ‘Group Communication’. In: Communications of the ACM 39 (4),
pp. 50–53. doi: 10.1145/227210.227225.

Preden, J. S.; Tammemäe, K.; Jantsch, A.; Leier, M.; Riid, A.; Calis, E. (2015). ‘The Benefits
of Self-Awareness and Attention in Fog and Mist Computing’. In: Computer 48 (7),
pp. 37–45. doi: 10.1109/MC.2015.207.

Puliafito, Carlo; Mingozzi, Enzo; Vallati, Carlo; Longo, Francesco; Merlino, Giovanni
(2018). ‘Companion Fog Computing: Supporting Things Mobility Through Container
Migration at the Edge’. In: 2018 IEEE International Conference on Smart Computing
(SMARTCOMP). Taormina: IEEE, pp. 97–105. doi: 10.1109/SMARTCOMP.2018.00079.

Rausch, T.; Dustdar, S. (2019). ‘Edge Intelligence: The Convergence of Humans, Things,
and AI’. In: 2019 IEEE International Conference on Cloud Engineering (IC2E), pp. 86–96.
doi: 10.1109/IC2E.2019.00022.

Rausch, Thomas; Nastic, Stefan; Dustdar, Schahram (2018). ‘EMMA: Distributed QoS-
Aware MQTT Middleware for Edge Computing Applications’. In: Proceedings - 2018
IEEE International Conference on Cloud Engineering, IC2E 2018. IEEE, pp. 191–197. doi:
10.1109/IC2E.2018.00043.

https://planet.osm.org
https://doi.org/10.1109/FiCloud.2015.35
https://doi.org/10.18420/SE2020_34
https://doi.org/10.1007/3-540-48912-6_63
https://doi.org/10.1109/ICDCSW.2002.1030837
https://doi.org/10.1145/2939672.2939731
https://doi.org/10.1145/2939672.2939731
https://doi.org/10.1016/j.is.2021.101727
https://doi.org/10.1145/227210.227225
https://doi.org/10.1109/MC.2015.207
https://doi.org/10.1109/SMARTCOMP.2018.00079
https://doi.org/10.1109/IC2E.2019.00022
https://doi.org/10.1109/IC2E.2018.00043

194 Bibliography

Ravindra, Pushkara; Khochare, Aakash; Reddy, Siva Prakash; Sharma, Sarthak; Varshney,
Prateeksha; Simmhan, Yogesh (2017). ‘ECHO: An Adaptive Orchestration Platform
for Hybrid Dataflows across Cloud and Edge’. In: Service-Oriented Computing. Ed. by
Michael Maximilien; Antonio Vallecillo; Jianmin Wang; Marc Oriol. Lecture Notes in
Computer Science. Cham: Springer International Publishing, pp. 395–410. doi: 10.1007/
978-3-319-69035-3_28.

Reclus, Fabrice; Drouard, Kristen (2009). ‘Geofencing for Fleet & Freight Management’.
In: 2009 9th International Conference on Intelligent Transport Systems Telecommunications,
(ITST), pp. 353–356. doi: 10.1109/ITST.2009.5399328.

Rehman, Muhammad Habib; Yaqoob, Ibrar; Salah, Khaled; Imran, Muhammad; Jayara-
man, Prem Prakash; Perera, Charith (2019). ‘The Role of Big Data Analytics in Indus-
trial Internet of Things’. In: Future Generation Computer Systems 99, pp. 247–259. doi:
10.1016/j.future.2019.04.020.

Renart, Eduard Gibert; Diaz-Montes, Javier; Parashar, Manish (2017). ‘Data-Driven Stream
Processing at the Edge’. In: 2017 IEEE 1st International Conference on Fog and Edge
Computing (ICFEC). Madrid, Spain: IEEE, pp. 31–40. doi: 10.1109/ICFEC.2017.18.

Riemer, Dominik (2016). ‘Methods and Tools for Management of Distributed Event
Processing Applications’. PhD thesis. Karlsruher Institut für Technologie (KIT). doi:
10.5445/IR/1000070005.

Riemer, Dominik; Kaulfersch, Florian; Hutmacher, Robin; Stojanovic, Ljiljana (2015).
‘StreamPipes: Solving the Challenge with Semantic Stream Processing Pipelines’. In:
Proceedings of the 9th ACM International Conference on Distributed Event-Based Systems.
DEBS ’15. New York, NY, USA: Association for Computing Machinery, pp. 330–331.
doi: 10.1145/2675743.2776765.

Riemer, Dominik; Ljiljana, Stojanovic; Nenad, Stojanovic; Zehnder, Philipp; Wiener,
Patrick (2019). ‘Fog for Everyone: Modeling of Distributed Data Processing Pipelines
for the Industrial Internet of Things’. In: 19th Annual IEEE/ACM International Symposium
in Cluster, Cloud, and Grid Computing. CCGrid. Larnaca, Cyprus.

Riemer, Dominik; Stojanovic, Ljiljana; Stojanovic, Nenad (2014). ‘SEPP: Semantics-Based
Management of Fast Data Streams’. In: Proceedings - IEEE 7th International Conference
on Service-Oriented Computing and Applications, SOCA 2014. IEEE, pp. 113–118. doi:
10.1109/SOCA.2014.52.

Rosenblum, David S.; Wolf, Alexander L. (1997). ‘A Design Framework for Internet-Scale
Event Observation and Notification’. In: ACM SIGSOFT Software Engineering Notes
22 (6), pp. 344–360. doi: 10.1145/267896.267920.

Sajjad, H. P.; Danniswara, K.; Al-Shishtawy, A.; Vlassov, V. (2016). ‘SpanEdge: Towards
Unifying Stream Processing over Central and Near-the-Edge Data Centers’. In: 2016
IEEE/ACM Symposium on Edge Computing (SEC), pp. 168–178. doi: 10.1109/SEC.2016.17.

Santoro, Daniele; Zozin, Daniel; Pizzolli, Daniele; De Pellegrini, Francesco; Cretti, Silvio
(2017). ‘Foggy: A Platform for Workload Orchestration in a Fog Computing Environ-
ment’. In: 2017 IEEE International Conference on Cloud Computing Technology and Science
(CloudCom), pp. 231–234. doi: 10.1109/CloudCom.2017.62.

https://doi.org/10.1007/978-3-319-69035-3_28
https://doi.org/10.1007/978-3-319-69035-3_28
https://doi.org/10.1109/ITST.2009.5399328
https://doi.org/10.1016/j.future.2019.04.020
https://doi.org/10.1109/ICFEC.2017.18
https://doi.org/10.5445/IR/1000070005
https://doi.org/10.1145/2675743.2776765
https://doi.org/10.1109/SOCA.2014.52
https://doi.org/10.1145/267896.267920
https://doi.org/10.1109/SEC.2016.17
https://doi.org/10.1109/CloudCom.2017.62

195

Satyanarayanan, M. (2001). ‘Pervasive Computing: Vision and Challenges’. In: IEEE
Personal Communications 8 (4), pp. 10–17. doi: 10.1109/98.943998.

Satyanarayanan, M. (2017). ‘The Emergence of Edge Computing’. In: Computer 50 (1),
pp. 30–39. doi: 10.1109/MC.2017.9.

Satyanarayanan, M.; Bahl, P.; Caceres, R.; Davies, N. (2009). ‘The Case for VM-Based
Cloudlets in Mobile Computing’. In: IEEE Pervasive Computing 8 (4), pp. 14–23. doi:
10.1109/MPRV.2009.82.

Satyanarayanan, M.; Simoens, P.; Xiao, Y.; Pillai, P.; Chen, Z.; Ha, K.; Hu, W.; Amos, B.
(2015). ‘Edge Analytics in the Internet of Things’. In: IEEE Pervasive Computing 14 (2),
pp. 24–31. doi: 10.1109/MPRV.2015.32.

Saurez, Enrique; Hong, Kirak; Lillethun, Dave; Ramachandran, Umakishore; Ottenwälder,
Beate (2016). ‘Incremental Deployment and Migration of Geo-Distributed Situation
Awareness Applications in the Fog’. In: Proceedings of the 10th ACM International Con-
ference on Distributed and Event-Based Systems - DEBS ’16. New York, New York, USA:
ACM Press, pp. 258–269. doi: 10.1145/2933267.2933317.

Schiefer, Josef; Rozsnyai, Szabolcs; Rauscher, Christian; Saurer, Gerd (2007). ‘Event-Driven
Rules for Sensing and Responding to Business Situations’. In: Proceedings of the 2007
Inaugural International Conference on Distributed Event-Based Systems. DEBS ’07. New
York, NY, USA: Association for Computing Machinery, pp. 198–205. doi: 10.1145/
1266894.1266934.

Schilit, B.; Adams, N.; Want, R. (1994). ‘Context-Aware Computing Applications’. In:
1994 First Workshop on Mobile Computing Systems and Applications. IEEE, pp. 85–90. doi:
10.1109/WMCSA.1994.16.

Schilling, Björn; Koldehofe, Boris; Pletat, Udo; Rothermel, Kurt (2010). ‘Distributed Het-
erogeneous Event Processing: Enhancing Scalability and Interoperability of CEP in an
Industrial Context’. In: Proceedings of the Fourth ACM International Conference on Distri-
buted Event-Based Systems. DEBS ’10. New York, NY, USA: Association for Computing
Machinery, pp. 150–159. doi: 10.1145/1827418.1827453.

Schwab, Klaus (2016). The Fourth Industrial Revolution. World Economic Forum.
Schwarzkopf, Malte; Konwinski, Andy; Abd-El-Malek, Michael; Wilkes, John (2013).

‘Omega: Flexible, Scalable Schedulers for Large Compute Clusters’. In: Proceedings of
the 8th ACM European Conference on Computer Systems. EuroSys ’13. New York, NY, USA:
Association for Computing Machinery, pp. 351–364. doi: 10.1145/2465351.2465386.

Segall, Bill; Arnold, David (1997). ‘Elvin Has Left the Building: A Publish/Subscribe
Notification Service with Quenching’. In: Proceedings of the 1997 Australian UNIX Users
Group Technical Conference, pp. 243–255.

Sharon, Guy; Etzion, Opher (2007). Event Processing Network - A Conceptual Model. Technion-
Israel Institute of Technology, Faculty of Industrial and Management Engineering.

Shi, Cong; Lakafosis, Vasileios; Ammar, Mostafa H.; Zegura, Ellen W. (2012). ‘Serendipity:
Enabling Remote Computing among Intermittently Connected Mobile Devices’. In:
Proceedings of the Thirteenth ACM International Symposium on Mobile Ad Hoc Network-

https://doi.org/10.1109/98.943998
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1109/MPRV.2015.32
https://doi.org/10.1145/2933267.2933317
https://doi.org/10.1145/1266894.1266934
https://doi.org/10.1145/1266894.1266934
https://doi.org/10.1109/WMCSA.1994.16
https://doi.org/10.1145/1827418.1827453
https://doi.org/10.1145/2465351.2465386

196 Bibliography

ing and Computing. MobiHoc ’12. New York, NY, USA: Association for Computing
Machinery, pp. 145–154. doi: 10.1145/2248371.2248394.

Shi, Ke; Deng, Zhancheng; Qin, Xuan (2011). ‘TinyMQ: A Content-Based Publish/Sub-
scribe Middleware for Wireless Sensor Networks’. In: SENSORCOMM 2011, The Fifth
International Conference on Sensor Technologies and Applications, pp. 12–17. isbn: 978-1-
61208-144-1.

Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. (2016). ‘Edge Computing: Vision and Challenges’.
In: IEEE Internet of Things Journal 3 (5), pp. 637–646. doi: 10.1109/JIOT.2016.2579198.

Shi, W.; Dustdar, S. (2016). ‘The Promise of Edge Computing’. In: Computer 49 (5), pp. 78–
81. doi: 10.1109/MC.2016.145.

Shimrat, M. (1962). ‘Algorithm 112: Position of Point Relative to Polygon’. In: Communica-
tions of the ACM 5 (8), p. 434. doi: 10.1145/368637.368653.

Shin, K. G.; Chang, Y.- (1989). ‘Load Sharing in Distributed Real-Time Systems with
State-Change Broadcasts’. In: IEEE Transactions on Computers 38 (8), pp. 1124–1142. doi:
10.1109/12.30867.

Skarlat, Olena; Karagiannis, Vasileios; Rausch, Thomas; Bachmann, Kevin; Schulte, Stefan
(2018). ‘A Framework for Optimization, Service Placement, and Runtime Operation in
the Fog’. In: 2018 IEEE/ACM 11th International Conference on Utility and Cloud Computing
(UCC). IEEE, pp. 164–173. doi: 10.1109/UCC.2018.00025.

Skarlat, Olena; Schulte, Stefan; Borkowski, Michael; Leitner, Philipp (2016). ‘Resource
Provisioning for IoT Services in the Fog’. In: Proceedings - 2016 IEEE 9th International
Conference on Service-Oriented Computing and Applications, SOCA 2016, pp. 32–39. doi:
10.1109/SOCA.2016.10.

Steiner, Wilfried; Poledna, Stefan (2016). ‘Fog Computing as Enabler for the Industrial
Internet of Things’. In: e & i Elektrotechnik und Informationstechnik 133 (7), pp. 310–314.
doi: 10.1007/s00502-016-0438-2.

Stojmenovic, I.; Wen, S. (2014). ‘The Fog Computing Paradigm: Scenarios and Security
Issues’. In: 2014 Federated Conference on Computer Science and Information Systems, pp. 1–8.
doi: 10.15439/2014F503.

Stonebraker, Michael; Çetintemel, Uǧur; Zdonik, Stan (2005). ‘The 8 Requirements of
Real-Time Stream Processing’. In: ACM SIGMOD Record 34 (4), pp. 42–47. doi: 10.1145/
1107499.1107504.

Sullivan, Kevin; Notkin, David (1990). ‘Reconciling Environment Integration and Compo-
nent Independence’. In: Proceedings of the Fourth ACM SIGSOFT Symposium on Software
Development Environments. SDE 4. New York, NY, USA: Association for Computing
Machinery, pp. 22–33. doi: 10.1145/99277.99281.

Sunyaev, Ali (2020). Internet Computing: Principles of Distributed Systems and Emerging
Internet-Based Technologies. Springer International Publishing. isbn: 978-3-030-34956-1.
doi: 10.1007/978-3-030-34957-8.

Taherizadeh, Salman; Stankovski, Vlado; Grobelnik, Marko (2018). ‘A Capillary Com-
puting Architecture for Dynamic Internet of Things: Orchestration of Microservices

https://doi.org/10.1145/2248371.2248394
https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/MC.2016.145
https://doi.org/10.1145/368637.368653
https://doi.org/10.1109/12.30867
https://doi.org/10.1109/UCC.2018.00025
https://doi.org/10.1109/SOCA.2016.10
https://doi.org/10.1007/s00502-016-0438-2
https://doi.org/10.15439/2014F503
https://doi.org/10.1145/1107499.1107504
https://doi.org/10.1145/1107499.1107504
https://doi.org/10.1145/99277.99281
https://doi.org/10.1007/978-3-030-34957-8

197

from Edge Devices to Fog and Cloud Providers’. In: Sensors (Switzerland) 18 (9). doi:
10.3390/s18092938.

Tai, Stefan; Nimis, Jens; Lenk, Alexander; Klems, Markus (2010). ‘Cloud Service Engineer-
ing’. In: 2010 ACM/IEEE 32nd International Conference on Software Engineering. Vol. 2,
pp. 475–476. doi: 10.1145/1810295.1810437.

Tammemäe, Kalle; Jantsch, Axel; Kuusik, Alar; Preden, Jürgo-Sören; Õunapuu, Enn
(2018). ‘Self-Aware Fog Computing in Private and Secure Spheres’. In: Fog Computing
in the Internet of Things: Intelligence at the Edge. Ed. by Amir M. Rahmani; Pasi Liljeberg;
Jürgo-Sören Preden; Axel Jantsch. Cham: Springer International Publishing, pp. 71–99.
isbn: 978-3-319-57639-8. doi: 10.1007/978-3-319-57639-8_5.

Tapadinhas, Joao; Idoine, Carlie (2016). Citizen Data Science Augments Data Discovery and
Simplifies Data Science. Gartner Research G00314599.

Terry, Douglas; Goldberg, David; Nichols, David; Oki, Brian (1992). ‘Continuous Queries
over Append-Only Databases’. In: ACM SIGMOD Record 21 (2), pp. 321–330. doi:
10.1145/141484.130333.

Terzo, Olivier; Djemame, Karim; Scionti, Alberto; Pezuela, Clara (2019). Heterogeneous
Computing Architectures: Challenges and Vision. CRC Press. isbn: 978-0-429-68004-5.

Thornton, Chris; Hutter, Frank; Hoos, Holger H.; Leyton-Brown, Kevin (2013). ‘Auto-
WEKA: Combined Selection and Hyperparameter Optimization of Classification Algo-
rithms’. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. KDD ’13. New York, NY, USA: Association for Computing
Machinery, pp. 847–855. doi: 10.1145/2487575.2487629.

TIBCO (1999). TIB/Rendezvous. White Paper. TIBCO, Palo Alto, CA.
To, Quoc-Cuong; Soto, Juan; Markl, Volker (2018). ‘A Survey of State Management in

Big Data Processing Systems’. In: The VLDB Journal — The International Journal on Very
Large Data Bases 27 (6), pp. 847–872. doi: 10.1007/s00778-018-0514-9.

Tsagkaropoulos, Andreas; Verginadis, Yiannis; Compastié, Maxime; Apostolou, Dimitris;
Mentzas, Gregoris (2021). ‘Extending TOSCA for Edge and Fog Deployment Support’.
In: Electronics 10 (6), p. 737. doi: 10.3390/electronics10060737.

Tziouvaras, Athanasios; Foukalas, Fotis (2020). ‘Edge AI for Industry 4.0: An Internet of
Things Approach’. In: 24th Pan-Hellenic Conference on Informatics. PCI 2020. New York,
NY, USA: Association for Computing Machinery, pp. 121–126. doi: 10.1145/3437120.
3437289.

Vaquero, Luis M.; Rodero-Merino, Luis (2014). ‘Finding Your Way in the Fog: Towards a
Comprehensive Definition of Fog Computing’. In: ACM SIGCOMM Computer Commu-
nication Review 44 (5), pp. 27–32. doi: 10.1145/2677046.2677052.

Varghese, Blesson; Buyya, Rajkumar (2018). ‘Next Generation Cloud Computing: New
Trends and Research Directions’. In: Future Generation Computer Systems 79, pp. 849–861.
doi: 10.1016/j.future.2017.09.020.

Varshney, Prateeksha; Simmhan, Yogesh (2017). ‘Demystifying Fog Computing: Charac-
terizing Architectures, Applications and Abstractions’. In: 2017 IEEE 1st International
Conference on Fog and Edge Computing (ICFEC), pp. 115–124. doi: 10.1109/ICFEC.2017.20.

https://doi.org/10.3390/s18092938
https://doi.org/10.1145/1810295.1810437
https://doi.org/10.1007/978-3-319-57639-8_5
https://doi.org/10.1145/141484.130333
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.1007/s00778-018-0514-9
https://doi.org/10.3390/electronics10060737
https://doi.org/10.1145/3437120.3437289
https://doi.org/10.1145/3437120.3437289
https://doi.org/10.1145/2677046.2677052
https://doi.org/10.1016/j.future.2017.09.020
https://doi.org/10.1109/ICFEC.2017.20

198 Bibliography

Verginadis, Yiannis; Alshabani, Iyad; Mentzas, Gregoris; Stojanovic, Nenad (2017). ‘PrEsto-
Cloud: Proactive Cloud Resources Management at the Edge for Efficient Real-Time Big
Data Processing’. In: Proceedings of the 7th International Conference on Cloud Computing
and Services Science. CLOSER 2017. Setubal, PRT: SCITEPRESS - Science and Technology
Publications, Lda, pp. 611–617. doi: 10.5220/0006359106110617.

Verma, Abhishek; Pedrosa, Luis; Korupolu, Madhukar; Oppenheimer, David; Tune, Eric;
Wilkes, John (2015). ‘Large-Scale Cluster Management at Google with Borg’. In: Proceed-
ings of the Tenth European Conference on Computer Systems. EuroSys ’15. New York, NY,
USA: Association for Computing Machinery, pp. 1–17. doi: 10.1145/2741948.2741964.

Villari, Massimo; Fazio, Maria; Dustdar, Schahram; Rana, Omer; Ranjan, Rajiv (2016).
‘Osmotic Computing: A New Paradigm for Edge/Cloud Integration’. In: IEEE Cloud
Computing 3 (6), pp. 76–83. doi: 10.1109/MCC.2016.124.

Vögler, M.; Schleicher, J.; Inzinger, C.; Nastic, S.; Sehic, S.; Dustdar, S. (2015). ‘LEONORE
– Large-Scale Provisioning of Resource-Constrained IoT Deployments’. In: 2015 IEEE
Symposium on Service-Oriented System Engineering, pp. 78–87. doi: 10.1109/SOSE.2015.23.

Wang, Shiqiang; Zafer, Murtaza; Leung, Kin K. (2017). ‘Online Placement of Multi-
Component Applications in Edge Computing Environments’. In: IEEE Access 5, pp. 2514–
2533. doi: 10.1109/ACCESS.2017.2665971.

Weisenburger, P.; Luthra, M.; Koldehofe, B.; Salvaneschi, G. (2017). ‘Quality-Aware Run-
time Adaptation in Complex Event Processing’. In: 2017 IEEE/ACM 12th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS),
pp. 140–151. doi: 10.1109/SEAMS.2017.10.

Wen, Zhenyu; Quoc, Do Le; Bhatotia, Pramod; Chen, Ruichuan; Lee, Myungjin (2018).
‘Approximate Edge Analytics for the IoT Ecosystem’. In: arXiv: 1805.05674.

Wiener, Patrick (2018). ‘Dynamic Management of Distributed Stream Processing Pipelines
in Fog Computing Infrastructures’. In: Doctoral Symposium of the 19th International
Middleware Conference. Middleware. Rennes, Britanny, France.

Wiener, Patrick; Simko, Viliam; Nimis, Jens (2017). ‘Taming the Evolution of Big Data
and Its Technologies in BigGIS - A Conceptual Architectural Framework for Spatio-
Temporal Analytics at Scale’. In: Proceedings of the 3rd International Conference on Ge-
ographical Information Systems Theory, Applications and Management. Vol. 1. GISTAM.
Porto, Portugal, pp. 90–101. doi: 10.5220/0006334200900101.

Wiener, Patrick; Stein, Manuel; Seebacher, Daniel; Bruns, Julian; Frank, Matthias; Simko,
Viliam; Zander, Stefan; Nimis, Jens (2016). ‘BigGIS: A Continuous Refinement Approach
to Master Heterogeneity and Uncertainty in Spatio-Temporal Big Data (Vision Paper)’.
In: Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. SIGSPACIAL ’16. New York, NY, USA: Association for
Computing Machinery, pp. 1–4. doi: 10.1145/2996913.2996931.

Wiener, Patrick; Zehnder, Philipp; Heyden, Marco; Philipp, Patrick; Riemer, Dominik
(2020a). ‘Fogsy: Towards Holistic Industrial AI Management in Fog and Edge Envi-
ronments’. In: KuVS-Fachgespräch Fog Computing. KuVS. Wien, Essen, pp. 16–19. doi:
10.34726/kuvs2020.

https://doi.org/10.5220/0006359106110617
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1109/MCC.2016.124
https://doi.org/10.1109/SOSE.2015.23
https://doi.org/10.1109/ACCESS.2017.2665971
https://doi.org/10.1109/SEAMS.2017.10
https://arxiv.org/abs/1805.05674
https://doi.org/10.5220/0006334200900101
https://doi.org/10.1145/2996913.2996931
https://doi.org/10.34726/kuvs2020

199

Wiener, Patrick; Zehnder, Philipp; Riemer, Dominik (2019). ‘Towards Context-Aware and
Dynamic Management of Stream Processing Pipelines for Fog Computing’. In: 2019
IEEE 3rd International Conference on Fog and Edge Computing. ICFEC. Larnaca, Cyprus,
pp. 1–6. doi: 10.1109/CFEC.2019.8733145.

Wiener, Patrick; Zehnder, Philipp; Riemer, Dominik (2020b). ‘Managing Geo-Distributed
Stream Processing Pipelines for the IIoT with StreamPipes Edge Extensions’. In: Pro-
ceedings of the 14th ACM International Conference on Distributed and Event-Based Systems.
DEBS. New York, NY, USA: Association for Computing Machinery, pp. 165–176. doi:
10.1145/3401025.3401764.

Wöbker, Cecil; Seitz, Andreas; Mueller, Harald; Bruegge, Bernd (2018). ‘Fogernetes:
Deployment and Management of Fog Computing Applications’. In: IEEE/IFIP Network
Operations and Management Symposium: Cognitive Management in a Cyber World, NOMS
2018. IEEE, pp. 1–7. doi: 10.1109/NOMS.2018.8406321.

Wong, Jason; West, Mike; Howard, Chris; Driver, Mark (2015). Citizen Development Is
Fundamental to the Digital Workplace. Gartner Research G00278137.

Wurster, Michael; Breitenbücher, Uwe; Falkenthal, Michael; Krieger, Christoph; Ley-
mann, Frank; Saatkamp, Karoline; Soldani, Jacopo (2020). ‘The Essential Deployment
Metamodel: A Systematic Review of Deployment Automation Technologies’. In: SICS
Software-Intensive Cyber-Physical Systems 35 (1), pp. 63–75. doi: 10.1007/s00450-019-
00412-x.

Yigitoglu, Emre; Mohamed, Mohamed; Liu, Ling; Ludwig, Heiko (2017). ‘Foggy: A Frame-
work for Continuous Automated IoT Application Deployment in Fog Computing’. In:
Proceedings - 2017 IEEE 6th International Conference on AI and Mobile Services, AIMS 2017,
pp. 38–45. doi: 10.1109/AIMS.2017.14.

Yousefpour, A.; Ishigaki, G.; Gour, R.; Jue, J. P. (2018). ‘On Reducing IoT Service Delay via
Fog Offloading’. In: IEEE Internet of Things Journal 5 (2), pp. 998–1010. doi: 10.1109/
JIOT.2017.2788802.

Yousefpour, Ashkan; Fung, Caleb; Nguyen, Tam; Kadiyala, Krishna; Jalali, Fatemeh;
Niakanlahiji, Amirreza; Kong, Jian; Jue, Jason P. (2019). ‘All One Needs to Know about
Fog Computing and Related Edge Computing Paradigms: A Complete Survey’. In:
Journal of Systems Architecture 98, pp. 289–330. doi: 10.1016/j.sysarc.2019.02.009.

Zehnder, Philipp; Wiener, Patrick; Riemer, Dominik (2019). ‘Using Virtual Events for
Edge-Based Data Stream Reduction in Distributed Publish/Subscribe Systems’. In:
2019 IEEE 3rd International Conference on Fog and Edge Computing (ICFEC). ICFEC ’19.
Larnaca, Cyprus, pp. 1–10. doi: 10.1109/CFEC.2019.8733146.

Zehnder, Philipp; Wiener, Patrick; Straub, Tim; Riemer, Dominik (2020). ‘StreamPipes
Connect: Semantics-Based Edge Adapters for the IIoT’. In: The Semantic Web. Ed. by
Andreas Harth; Sabrina Kirrane; Axel-Cyrille Ngonga Ngomo; Heiko Paulheim; Anisa
Rula; Anna Lisa Gentile; Peter Haase; Michael Cochez. Lecture Notes in Computer
Science. Cham: Springer International Publishing, pp. 665–680. doi: 10.1007/978-3-
030-49461-2_39.

https://doi.org/10.1109/CFEC.2019.8733145
https://doi.org/10.1145/3401025.3401764
https://doi.org/10.1109/NOMS.2018.8406321
https://doi.org/10.1007/s00450-019-00412-x
https://doi.org/10.1007/s00450-019-00412-x
https://doi.org/10.1109/AIMS.2017.14
https://doi.org/10.1109/JIOT.2017.2788802
https://doi.org/10.1109/JIOT.2017.2788802
https://doi.org/10.1016/j.sysarc.2019.02.009
https://doi.org/10.1109/CFEC.2019.8733146
https://doi.org/10.1007/978-3-030-49461-2_39
https://doi.org/10.1007/978-3-030-49461-2_39

200 Bibliography

Zhou, Jun; Cao, Zhenfu; Dong, Xiaolei; Vasilakos, Athanasios V. (2017). ‘Security and
Privacy for Cloud-Based IoT: Challenges’. In: IEEE Communications Magazine 55 (1),
pp. 26–33. doi: 10.1109/MCOM.2017.1600363CM.

Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. (2019). ‘Edge Intelligence: Paving
the Last Mile of Artificial Intelligence With Edge Computing’. In: Proceedings of the
IEEE 107 (8), pp. 1738–1762. doi: 10.1109/JPROC.2019.2918951.

Zowghi, Didar; Coulin, Chad (2005). ‘Requirements Elicitation: A Survey of Techniques,
Approaches, and Tools’. In: Engineering and Managing Software Requirements. Ed. by
Aybüke Aurum; Claes Wohlin. Berlin, Heidelberg: Springer, pp. 19–46. isbn: 978-3-540-
28244-0. doi: 10.1007/3-540-28244-0_2.

https://doi.org/10.1109/MCOM.2017.1600363CM
https://doi.org/10.1109/JPROC.2019.2918951
https://doi.org/10.1007/3-540-28244-0_2

	Figures
	Tables
	Listings
	Abbreviations
	I Introduction
	1 Introduction
	1.1 Research Questions
	1.2 Research Methodology
	1.3 Contributions and Impact
	1.4 Guide to the Reader

	II Preliminaries
	2 Foundations
	2.1 Event Processing
	2.1.1 Background
	2.1.2 Events
	2.1.3 Event Streams
	2.1.4 Event Processing Networks

	2.2 Distributed Event-Based Systems
	2.2.1 Event-Driven Architecture
	2.2.2 Publish/Subscribe
	2.2.3 Processing Pipelines

	2.3 Decentralized Computing
	2.3.1 Background
	2.3.2 Fog Computing
	2.3.3 Fog Computing Architecture

	3 Motivation
	3.1 Democratizing Application Management in Fog Computing
	3.1.1 Factory 4.0
	3.1.2 Smart Urban Logistics

	3.2 Needs
	3.3 Problem Statement
	3.3.1 Graphical Flow-based Systems
	3.3.2 Managing Geo-Distributed Processing Pipelines

	3.4 Conclusion

	4 Related Work
	4.1 Related Work on Distributed Event-Based Systems
	4.1.1 Geo-Distributed Event Processing
	4.1.2 Geo-Distributed Publish/Subscribe

	4.2 Related Work on Fog Application Management
	4.2.1 Orchestration and Deployment
	4.2.2 Reconfiguration and Migration

	4.3 Conclusion

	III Main Part
	5 Requirements
	5.1 Requirements Elicitation
	5.2 Model/Architecture-specific Requirements
	5.3 System-specific Requirements

	6 Resource Exploitation
	6.1 Heterogeneity Dimensions
	6.2 Pipeline Application Model
	6.3 Fog Infrastructure Model
	6.4 Node Model
	6.4.1 Node Resource
	6.4.2 Node Metadata
	6.4.3 Deployment Container
	6.4.4 Reconfigurable Static Property
	6.4.5 Event Stream Relay

	6.5 Architecture
	6.6 Tools
	6.7 Summary

	7 Pipeline Deployment
	7.1 Walkthrough
	7.2 Life Cycle
	7.3 Geo-Distribution
	7.3.1 Deployment Options and Operation Policies
	7.3.2 Validation and Selection
	7.3.3 Event Stream Management
	7.3.4 Pipeline Element and Relay Distribution
	7.3.5 Node Controller

	7.4 Tools
	7.5 Summary

	8 Pipeline Adaptation
	8.1 Walkthrough
	8.2 Methodology
	8.3 Run-Time Evolution
	8.3.1 Reconfiguration
	8.3.2 Migration
	8.3.3 Offloading

	8.4 Tools
	8.5 Summary

	IV Finale
	9 Evaluation
	9.1 Evaluation Framework
	9.2 Case Studies
	9.2.1 Case Study 1: Cobot-based Product Quality Inspection
	9.2.2 Case Study 2: Autonomous Delivery Robot Platform
	9.2.3 Discussion

	9.3 Conceptual Investigation
	9.3.1 Requirements Fulfillment
	9.3.2 Discussion

	9.4 Performance Tests
	9.4.1 Setup
	9.4.2 Evaluations and Results
	9.4.3 Discussion

	10 Conclusion
	10.1 Summary
	10.2 Significance
	10.3 Outlook

	Bibliography

