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ABSTRACT

Current advanced hyperparameter optimization (HPO) methods, such as Bayesian optimization, have high sampling effi-

ciency and facilitate replicability. Nonetheless, machine learning (ML) practitioners (e.g., engineers, scientists) mostly apply

less advanced HPO methods, which can increase resource consumption during HPO or lead to underoptimized ML models.

Therefore, we suspect that practitioners choose their HPO method to achieve different goals, such as decrease practitioner

effort and target audience compliance. To develop HPO methods that align with such goals, the reasons why practitioners

decide for specific HPO methods must be unveiled and thoroughly understood. Because qualitative research is most suit-

able to uncover such reasons and find potential explanations for them, we conducted semi-structured interviews to explain

why practitioners choose different HPO methods. The interviews revealed six principal practitioner goals (e.g., increasing

model comprehension), and eleven key factors that impact decisions for HPO methods (e.g., available computing resources).

We deepen the understanding about why practitioners decide for different HPO methods and outline recommendations for

improvements of HPO methods by aligning them with practitioner goals.
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1 INTRODUCTION

The performance of machine learning (ML) models strongly

depends on appropriate hyperparameter values [1, 2, 3, 4, 5,

6, 7]. Finding appropriate hyperparameter values is, how-

ever, challenging for ML practitioners (e.g., scientists or en-

gineers from academia or industry), for example, because of

large search spaces and dependencies between hyperparame-

ters values. Such challenges require highly experienced ML

practitioners to carry out extensive searches for appropriate

hyperparameter values.

There are many methods for hyperparameter optimization

(HPO), such as grid search, random search, and Bayesian op-

timization. While all of these can find equivalent hyperpa-

rameter values for ML models, they satisfy different charac-

teristics, such as replicability and sample efficiency, to dif-

ferent degrees. Replicability refers to the deterministic pro-

cessing of inputs by an HPO method that produces identical

outputs and is especially paramount for ML research to guar-

antee comparability of ML models and methods [8, 9]. For

example, grid search can be easily replicated if the search

space and sampling rate are given. In contrast, manual tuning

is hard to replicate because decisions for manual hyperparam-

eter tuning are often influenced by unconscious factors that

can be hard to explicate, e.g., personal experiences [10] and

tacit knowledge [11, 12] as well as intuition [13]. Sampling

efficiency refers to the required number of trials for finding

appropriate hyperparameter values for an ML model. Ex-

tant research shows that the sampling efficiency of Bayesian

optimization is superior to random search [14] and grid

search [15] and random search has better sampling efficiency

than grid search [16]. Despite the superiority of specific

HPO methods over others, ML practitioners tend to apply

HPO methods with lower sampling efficiency or manual tun-

ing [17], where sampling efficiency can hardly be evaluated.

The dominant use of HPO methods that are not replicable

or have low sampling efficiency indicates that practitioners

may aim to achieve goals beyond improving ML model per-

formance and let them perceive different HPO methods as

more or less beneficial to achieve these goals. However, of-

ten these goals remain unclear, which hinders the emergence

of best practices that guide practitioners in their selection for

HPO methods.

Existing research on HPO in ML has taken a foremost tech-

nical stance by presenting HPO methods and related improve-

ments [e.g., 18, 19, 20]. Typical works focus on the perfor-

mance of ML models (e.g., in terms of accuracy, model size,

running time) and mostly show superiority of HPO methods

over others in a quantitative way. Thereby, technical contri-

butions to HPO in ML support the understanding about the

functioning of individual HPO methods and implications on

their performance. Due to the performance-centric research

on HPO, goals of practitioners beyond performance optimiza-

tion, as well as decision factors that cause practitioners to

choose individual HPO methods, remain unclear. The insuf-

ficient understanding about practitioners’ reasons for using

specific HPO methods hinders the consideration of practi-

tioner goals in the development of HPO methods and respec-

tive software libraries. To support the reasonable selection
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of HPO methods and to aid the practitioner-centric advance-

ment of HPO methods, we answer the following research

question: Why do ML practitioners choose HPO methods

with different characteristics?

To answer this question, we carried out semi-structured in-

terviews with ten ML experts following methodological rec-

ommendations from prior research [21, 22, 23]. Two scien-

tists independently analyzed the transcripts of the interviews

using thematic analysis [24, 25] to unveil goals targeted by

practitioners in HPO, HPO methods applied to reach these

goals, and decision factors that cause practitioners to perceive

these methods as suitable to reach their goals. Our contribu-

tions are three-fold:

• We identified six principal goals sought by practitioners

in HPO for ML.

• We deepen the understanding about why practitioners

use different HPO methods to reach their goals and how

eleven key decision factors can influence practitioners

in their decisions for HPO methods.

• We support research on more practitioner-centric HPO

methods by collating perceived benefits and drawbacks

of HPO methods and presenting recommendations for

the advancement of HPO methods.

2 METHODS

Qualitative research is suitable to make observations and gen-

erate potential explanations for these observations by explain-

ing their occurrence [26]. Hence, we chose an explorative,

qualitative research approach and conducted semi-structured

expert interviews to identify principal goals of practitioners

in applying HPO and understand why practitioners decide for

specific HPO methods to achieve these goals. We carried out

the interviews under consideration of methodological recom-

mendations from prior research [21, 22, 23], for example,

to be open-minded and not to bias interviewees in their re-

sponses.

We individually emailed 80 potential interviewees, who

we considered to be ML experts with sufficient experience.

We carefully selected these interviewees among contacts

from ongoing research projects, authors of scientific studies

for which an ML model has been implemented, and company

contacts. Among the 80 contacted ML experts, ten agreed

to be interviewed. These ML experts came from six orga-

nizations, situated in five sectors, and had an average work

experience in ML of about five years. For more detailed in-

formation about the interviewees, please see Appendix A.

In preparation for the interviews, we created an interview

guide, including a motivation for our study, an introduction

to HPO, and questions to be answered during the interview.

We sent this guide to each interviewee prior to their interview

and also asked the interviewees to choose an ML project they

were familiar with. The selection of familiar ML projects

was important to us in order to contextualize the interviewees’

statements and, in case of ambiguity, to understand their ac-

tual meaning.

The interviews took between 22 and 61 minutes, with an

average time of 35 minutes. In the interviews, we asked

the ML experts how they selected hyperparameters for op-

timization and how they tuned these hyperparameters. Fur-

thermore, we asked about decision factors that impacted their

selections of HPO methods. We recorded each interview and

took notes on statements that seemed particularly important

to our study. We carefully transcribed each interview by hand

to ensure high quality of the transcripts. Each transcript was

prove-read by another co-author, who again listened to the re-

spective recording of the interview and also considered notes

taken during the interview. The final transcripts comprised a

total count of 40,509 words.

Two co-authors independently analyzed the transcripts us-

ing thematic analysis [25, 24] to identify HPO methods used

by the interviewees, their goals targeted through HPO, and

decision factors that form a basis for decisions for specific

HPO methods. Thematic analysis comprises six phases: (1)

familiarize yourself with the data, (2) generate initial codes,

(3) search for themes, (4) review themes, (5) define and name

themes, and (6) produce the report. After familiarizing our-

selves with our transcripts and notes (1), we coded the tran-

scripts (2) to identify HPO methods applied by practitioners,

to extract practitioners goals targeted in HPO (e.g., ensure

comparability, increase model performance), and decision

factors that impacted the interviewees’ decisions for HPO

methods. We incorporated decision factors to better under-

stand contextual factors that influenced practitioner decisions

for HPO methods in the sense of Gigerenzer and Brighton

[27].

Two authors independently read the transcripts, copied

quotes relevant for our study in individual rows of an Excel

sheet, and labeled the quote with a name, a so-called code,

that expresses a potentially relevant HPO method, goal, or de-

cision factor. After the first coding iteration, we had collated

241 preliminary codes related to HPO methods, goals, and de-

cision factors. We discussed the preliminary codes in a group

of three scientists to clarify the intended meaning of each

code. Based on the agreed understanding about the codes,

we first harmonized the codes so that no different codes had

the same semantics and, second, formulated a detailed de-

scription of each code. Subsequently, we checked the pre-

liminary codes and descriptions for mutual exclusiveness,

merged codes with overlapping meaning but different labels,

and adjusted corresponding descriptions. For example, we

merged the decision factors knowledge about Bayesian opti-

mization and knowledge about grid search into the decision

factor HPO method comprehension. After these refinements,

our set of codes included six goals (e.g., decrease practitioner

effort), four HPO methods (e.g., manual tuning), and eleven

decision factors (e.g., lab routines) that are grouped into three

higher level themes (e.g., social environment).

During the coding of HPO methods, we identified
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Bayesian optimization, grid search, and random search as

HPO methods. In addition, we identified actions applied by

practitioners when tuning hyperparameters without formal-

ized approach, e.g., choose a learning rate on a logarith-

mic scale between 0.001 and 0.1, select Adam optimizer, and

use symmetric encoder decoder architecture. We recognized

that HPO methods incorporating such actions could not be

fully explicated by the interviewees to replicate their meth-

ods. The interviewees explained the difficulties in explicat-

ing these manual HPO methods by various situational factors

and the importance of intuition in decision-making. The in-

terviewees felt that these factors and intuition are hard to ex-

plicate retroactively, which is coherent with research in psy-

chology [13, 10]. Nevertheless, to present our results about

HPO methods that to a large extent rely on intuition, experi-

ence, and unconscious situational cues, we refer to the class

of not (yet) explicated HPO methods as manual tuning. In

summary, we grouped 152 codes into 40 preliminary themes

(e.g., Bayesian optimization, satisfy requirements, cost of

objective function ) that are associated with HPO methods,

goals, and decision factors.

Next, we searched for preliminary themes (3) into which

we grouped the identified codes. To this end, we iteratively

formulated themes based on common characteristics of codes

searched and differences between them. If a code did not

suite an existing theme, we created a new theme. For exam-

ple, we assigned the decision factor available computational

resources to the theme technical environment, while we cre-

ated a new theme own knowledge for the decision factor HPO

method familiarity.

For the review of the developed themes (4), we discussed

the preliminary themes. We identified minor inconsistencies

in the descriptions of the preliminary themes and refined the

descriptions of the preliminary themes to offer a set of dis-

tinct groups associated with HPO methods, goals, and deci-

sion factors. Subsequently, we developed an intuitive name

for each theme and a precise description (5). Finally, we col-

lated the final set of 13 themes into three categories: HPO

methods (four themes), principal goals (six themes), and de-

cision factors (three themes) in this work (6).

3 RESULTS

The interviewees applied four HPO methods (i.e., manual

tuning, grid search, random search, and Bayesian optimiza-

tion; see Appendix B) to achieve six goals under consider-

ation of eleven decision factors. In the following, we first

briefly explain the HPO methods used. Second, we explain

the identified decision factors that influence practitioners in

their choice of HPO methods. Third, considering the deci-

sion factors, we describe the goals (see Table 1) sought by

the practitioners, describe which methods have been used to

reach these goals (see Table 2), and explain why the respon-

dents decided for which HPO methods.

3.1 Used HPO Methods

Manual Tuning Manual tuning refers to a set of HPO meth-

ods, where a practitioner decides hyperparameter configu-

rations based on personal knowledge (i.e., explicit and im-

plicit), and external influences (e.g., results from literature).

The dependence of manual HPO methods on individual prac-

titioner experience and even unconscious rationals for de-

cisions make such methods very individual to practitioners,

make the explication of applied methods difficult, and, thus,

decreases replicability of such methods [8]. Usually, only

intermediate data (e.g., used hyperparameter values) can be

used to replicate manual tuning, while reasons for the selec-

tion of these values remain unclear. Because formalization

of HPO methods within manual tuning is difficult, the num-

ber of HPO methods applied by practitioners is unknown.

In addition, the difficulty in explicating HPO methods used

in manual tuning makes it difficult to evaluate their indi-

vidual sampling efficiency. Therefore, we are not aware of

any hard evidence for manual tuning to outperform even ad-

vanced methods, such as Bayesian optimization. However,

many published accounts show that advanced HPO meth-

ods can outperform methods in manual tuning in certain use

cases [28, 1, 4, 5, 6].

Grid Search Grid search refers to the process of evaluating

the Cartesian product of a finite set of values for each hyper-

parameter to find appropriate values for an ML model. Every

possible combination of hyperparameter values included in

the defined subset of the search space is evaluated [7, 29]. To

use grid search, practitioners need to decide which hyperpa-

rameters to include in the search space, as well as their respec-

tive value ranges. In contrast to manual tuning, grid search al-

lows to replicate an experiment, because a deterministic pro-

cedure selects hyperparameter configurations to be evaluated

in HPO. For replication, the originally applied search space

and sampling rate must be known. The sampling efficiency

of grid search tends to be lower compared to random search

and Bayesian optimization [15, 30, 14].

Random Search Random search refers to the process of

sampling random hyperparameter configurations from a de-

fined search space until a specified budget for the search is

exhausted [16, 7]. In preparation to use random search, prac-

titioners define the search space for the HPO by selecting

hyperparameters to be tuned and corresponding value ranges.

Random search can be replicated if the used search space,

the randomness generator, and the corresponding seed are

known. Random search has been shown to reach better sam-

pling efficiency in high-dimensional search spaces than grid

search if some hyperparameters have a larger influence on the

performance of the ML model than others [16].

Bayesian Optimization Bayesian optimization refers to

the process of using a sequential approach based on a sur-

rogate model to find appropriate hyperparameter values for

an ML model in a defined search space [e.g., 31, 32, 7, 33]

. The surrogate model predicts the performance of different
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Table 1. Principal goals for hyperparameter optimization

Code Description

Decrease Practitioner Effort The state in which a practitioner applies an HPO approach for training an ML model

that requires less resources compared to other HPO approaches (e.g., time for learn-

ing a new HPO method or implementing corresponding software tools).

Decrease Necessary Computations The state where an ML model is trained with an HPO method that requires less

computational resources than other methods but still is sufficiently useful for a given

purposes.

Increase Model Comprehension The state where a practitioner is able to predict changes in an ML model’s behavior

caused by altering hyperparameter values based on an understanding about the inner

workings of the ML model.

Increase Model Performance The state where a refined version of an ML model outperforms its original model in

terms of a specified metric.

Satisfy Requirements The state where the development and training of an ML model fulfills social and

technical constraints imposed by stakeholders and the environment.

Target Audience Compliance The state where the applied HPO and the resulting ML model fulfills the expectations

of addressees.

hyperparameter configurations based on evaluated samples.

To select a hyperparameter configuration to be evaluated in

a subsequent iteration within HPO, an acquisition function

uses these performance predictions to rank hyperparameter

configurations according to their expected utility. To use

Bayesian optimization, practitioners need to select hyperpa-

rameters to be tuned and their respective value ranges. Ad-

ditionally, practitioners need to decide for a surrogate model,

such as a Gaussian process, and an acquisition function, such

as the expected improvement. HPO based on Bayesian opti-

mization can be replicated if the search space, the acquisition

function, and the surrogate model, including its hyperpriors,

are known. Several studies have shown that Bayesian op-

timization can achieve higher sampling efficiency than grid

search and random search [e.g., 15, 34, 14].

3.2 Decision Factors

Own Knowledge Practitioner decisions for HPO methods

depend on their own knowledge, which refers to internal

knowledge of a practitioner about HPO or ML models that

guides the practitioner in HPO. We identified three deci-

sion factors related to own knowledge: personal experiences,

model comprehension, and HPO method comprehension.

Personal experiences refers to the available internal knowl-

edge that has been generated by past activities (e.g., personal

best practices for solving a specific type of problem). Practi-

tioners tend to use HPO methods with which they made pos-

itive experiences.

Model comprehension refers to the ability to predict

changes in an ML model’s behavior caused by altering hy-

perparameter values based on an understanding about the in-

ner workings of the ML model. The perceived level of model

comprehension plays an important role; practitioners that per-

ceive their level of model comprehension as high, stated to

have chosen manual tuning. They claim that based on their

model comprehension, they are able to find appropriate sets

of hyperparameters without the need for an extensive HPO.

The interviewees perceived current HPO methods as not tak-

ing advantage of known effects of hyperparameters:

”Relationships between hyperparameters are often

deducible, but optimizers [here: HPO method libraries]

usually do not support functionalities for this.” (Scientist

#40)

Practitioners, who perceive their own level of model com-

prehension as low, tend to use random search or Bayesian

optimization, because they do not perceive their own knowl-

edge as sufficient to outperform these with manual tuning.

HPO method comprehension refers to the degree to which

practitioners understand HPO methods. Practitioners tend

to neglect HPO methods they do not sufficiently understand.

For example, two interviewees stated to have disregarded

Bayesian optimization because they feel to have not suffi-

ciently understood its inner workings. In addition, another

interviewee perceived random search as uncontrolled, which

caused them to decide against it. Grid search is, however,

perceived as very simple, easy to understand and implement,

which is the reason two interviewees gave for using it.

Social Environment The choice for an HPO method is also

influenced by the social environment of ML practitioners, in-

cluding five decision factors: acceptance of proficient meth-

ods, lab routines, literature, shared opinions, and tension for

resources.

Acceptance of advanced methods refers to the extent to
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Table 2. Overview of HPO methods and their use to reach practitioner goals

Goals Manual tuning Grid search Random search Bayesian optimization

Decrease Practitioner Effort x x

Decrease Necessary Computations x

Increase Model Comprehension x

Increase Model Performance x x x x

Satisfy Requirements x

Target Audience Compliance x x

which advanced HPO methods, such as Bayesian optimiza-

tion, are valued by a target group. A low acceptance of ad-

vanced HPO methods in a community targeted by a practi-

tioner can make them choose manual tuning or avoid exten-

sive HPO entirely.

”I believe it [here: HPO] is just not as valued. I believe

that if you say I spent two weeks doing HPO, you will get

looked at a bit strange.” (Scientist #90)

Lab routines refer to the degree to which members of a lab

always perform HPO in a similar manner because of man-

ifested habits. The interviewees explained to have chosen

HPO methods that are considered as commonly used in their

labs or by their peers. In various laboratories and commu-

nities, different HPO methods are applied so frequently that

their use becomes habitual. For example, manual tuning was

commonly used in one research group, while Bayesian op-

timization was considered the primarily applied method in

another one. The interviewees associated with those com-

munities applied the respectively manifested HPO methods.

This indicates that the immediate social environment has a

noticeable influence on practitioner’s HPO method choices.

Literature refers to the knowledge acquired on the basis

of published text documents (e.g., articles, blog entries, pa-

pers). Practitioners are guided in their choice of HPO meth-

ods by recommendations from or what is considered state

of the art in the literature that pertains to their ML model.

All practitioners that primarily based their decisions on lit-

erature, chose Bayesian optimization, because the literature

attests Bayesian optimization a high sampling efficiency [e.g.

14].

Shared opinions refers to the knowledge acquired on the

basis of advice by peers (e.g., colleagues). For example,

a PhD student stated in the interview that they had used

Bayesian optimization because a peer had told them it was

superior to random search.

Tension for shared resources refers to the degree to which

limited compute resources cause conflicts between practition-

ers. The availability of only shared resources can cause

tensions among colleagues, for example, when practition-

ers need to compete for compute resources to perform HPO.

Such tensions caused one scientist in academia to choose

manual tuning in order to avoid arguing with colleagues over

computing resources.

Technical Environment Decision factors associated with

the technical environment refer to technical boundaries, such

as limited computational resources, that guide a practitioner

in selecting a HPO method. The interviewees stated three

decision factors associated with the technical environment:

available compute resources, cost of the objective function,

and parallization possibilities.

Available compute resources refer to the amount of com-

pute resources available for HPO. Practitioners choose man-

ual tuning when faced with limited available compute re-

sources. They perceive that in combination with a high level

of model comprehension, they can outperform other HPO

methods.

Practitioners choose HPO methods depending on the cost

of the objective function they seek to optimize (i.e., the ac-

tual training of a neural network). The cost of the objec-

tive function refers to the amount of compute resources re-

quired to evaluate a single point within the hyperparameter

space. Similar to limited compute resources, the interviewees

chose manual tuning when faced with expensive objective

functions. If the interviewees perceive their level of model

comprehension as high, they perceive manual tuning as more

efficient in such situations.

Parallization possibilities for HPO methods refer to the de-

gree to which multiple independent ML models can be simul-

taneously evaluated. Limited parallization possibilities can,

for example, be caused by software licence limitations. Two

interviewees chose Bayesian optimization if parallelization

of HPO was not possible. Moreover,a practitioner stated that

they opted to choose Bayesian optimization if their objective

function is expensive and parallization of HPO is not possi-

ble.

3.3 Goals and How Practitioners Reached Them

Decrease Practitioner Effort Practitioner effort is de-

creased when a practitioner applies an HPO method that

comes with a smaller overhead, e.g., in terms of time for

learning a new HPO method or integrating HPO methods

into workflows. To decrease practitioner effort, the intervie-

wees applied grid search and manual tuning in their reference
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projects. One interviewee perceived grid search to be faster

to implement and easier to use compared to Bayesian opti-

mization, because using Bayesian optimization would have

required the interviewee to learn an HPO method they were

not experienced with, which aligns with findings from prior

research [35]. In particular, practitioners stated to have ap-

plied manual tuning on their local machines to avoid efforts

related to the integration of libraries for more advanced HPO

methods into cluster infrastructures.

”HPO is time-consuming sometimes, because it requires

some extra lines of code to wrap all your models with

this HPO method, and then set up the scripts to run them

on the cluster.” (Scientist #83)

Decrease Necessary Computations In HPO, extensive

searches for hyperparameter values in large search spaces can

require a vast amount of compute resources. A decrease in

necessary computation is achieved when an HPO method is

applied that requires less compute resources than other meth-

ods but is still sufficiently useful.

If the compute resources are too limited, the exploration of

a large search space is not possible. To nevertheless perform

HPO, practitioners need to decrease the number of necessary

computations. To decrease the number of necessary function

evaluations, three scientists stated to have used manual tun-

ing. They perceived that with a high level of model compre-

hension, manual tuning is superior to Bayesian optimization

or random search when available compute resources are lim-

ited.

Practitioners also rely on their model comprehension for

defining the search space to decrease the number of neces-

sary computation. For example, when compute resources are

limited, they decide for, or against, the inclusion of hyperpa-

rameters into the search space based on the perceived impor-

tance of the hyperparameter. Additionally, the decision on

which hyperparameters to include in the search space can be

supported by literature. If the literature recommended suit-

able default values for hyperparameters, these hyperparame-

ters are often assigned to those default values and kept con-

stant, while others are tuned in HPO.

Increase Model Comprehension Increase model compre-

hension refers to reaching the state where a practitioner is

able to predict changes in an ML model’s behavior caused

by altering hyperparameter values based on an understand-

ing about the inner workings of the model. To increase their

model comprehension, the interviewees reported to have ap-

plied manual tuning. Their decision for manual tuning was

impacted by their perceived low comprehension about their

ML model. The interviewees claimed that manual tuning fa-

cilitates the improvement of their understanding about hyper-

parameter influences on their ML models, because they could

formulate hypothesis about hyperparameter influences and

evaluate them immediately. Thereby, practitioners are able

to improve their model comprehension iteratively by tuning

hyperparameter values, observe influences of these values on

their ML models, and test their hypotheses.

Increase Model Performance Performance of an ML

model is increased when a refined version of the model out-

performs its original model in terms of a specified metric. To

improve the model performance, practitioners choose differ-

ent HPO methods.

The interviewees chose manual tuning or grid search to

find good hyperparameters, for example when prototyping a

novel model.

Low model comprehension makes it difficult for practition-

ers to predict challenges they will encounter in HPO, espe-

cially in a prototyping setting. To better react to occurrences

of unforeseen challenges, practitioners choose manual tuning.

For example, manual tuning can facilitate spotting and cor-

recting mistakes when errors occur during the development

of a novel model type because feedback loops are faster com-

pared to those of advanced HPO methods:

”Because we altered the standard architecture as a whole,

we were not really sure what problems we will face. So

that was one of the reasons to stick with manual tuning.”

(Scientist #75)

The interviewees reported to have chosen random search

and Bayesian optimization to finalize or maximize the perfor-

mance of ML models.

”If the only concern is to find the best model possible and

no one asks how I got there and I do not have a lot of

time, I probably would use random search.” (Scientist

#87)

Satisfy Requirements The goal to satisfy requirements

refers to the state where the development and training of an

ML model fulfills social and technical constraints imposed

by stakeholders (e.g., business clients, ethics commissions)

and the environment (e.g., compute resources). The intervie-

wees described that their decisions for HPO methods were

influenced by the goal to fulfill such requirements. For exam-

ple, one interviewee reported to prefer manual tuning to meet

hard-to-formalize requirements, such as a smooth behaviour

of the model output. The interviewee felt that it was easier to

react to criticism of stakeholders with manual tuning. In this

sense, manual tuning appears to allow for a higher degree of

agility compared to other HPO methods.

Target Audience Compliance In ML research, different

communities differently value various aspects of the research

project. The interviewees explained to have decided for HPO

methods to comply with expectations of their target audi-

ences regarding applied HPO methods and the resulting ML

model. For example, an academic stated that they perceived

the use of advanced HPO methods and extensive HPO as not
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being valued by their community. According to the intervie-

wee, their community encourages the use of pre-trained ML

models in combination with manual fine-tuning to avoid ex-

tensive HPO. Although the interviewee perceived Bayesian

optimization as more suitable, they felt discouraged by the at-

titude of their community and applied manual tuning instead.

In a similar vein, two academics perceived Bayesian op-

timization as uncommon in their research communities and

felt the need to explain Bayesian optimization in scientific

works on their ML model. However, explaining Bayesian op-

timization would have resulted in exceeding the page limit

for their paper. Therefore, the interviewees explained to have

decided against Bayesian optimization but used grid search

to comply with their target audience. They felt that a detailed

explanation of the grid search was not necessary because it

was sufficiently widespread. This left more space for the ac-

tual content in their paper.

4 DISCUSSION

Our findings show that practitioner decisions for different

HPO methods pertain to six primary goals, while these deci-

sions can vary due to influences of eleven identified decision

factors. While most goals are only addressed by particular

HPO methods, increase model performance is the only goal

that can be reached by all identified HPO methods. Across

all the statements of the interviewees, we observed consen-

sus in two perceptions. First, practitioners perceive manual

tuning as particularly beneficial to simply get an ML model

to fit training data (e.g., in the development of prototypical

ML models). Second, HPO methods with high sampling effi-

ciency (i.e., random search or Bayesian optimization) are per-

ceived suitable to maximize the generalization performance

of ML models. These observations indicate that practitioners

first tend to increase their ML model comprehension. Build-

ing on that comprehension, practitioners subsequently define

search spaces for HPO. To finalize ML models in their per-

formance, practitioners appear to acknowledge that Bayesian

optimization can more reliably optimize hyperparameter val-

ues in large search spaces than themselves, which confirms

recent studies [e.g., 4, 5, 6].

Manual tuning is used by ML practitioners to address all

identified goals (see Table 2). This broad applicability of

manual tuning for reaching manifold goals may be a justifica-

tion for the dominant use of manual tuning [17, 35]. Accord-

ing to the interviewees’ perceptions, for example, the goal

increase model comprehension could only be achieved by

manual tuning. Practitioners preferred manual tuning over

advanced HPO methods because advanced HPO methods

hardly support practitioners in improving their model com-

prehension.

Based on our findings, we derived two possible improve-

ments for advanced HPO methods:

Generation of hyperparameter influence reports In or-

der to aid model comprehension, HPO libraries should gen-

erate reports about the importance of individual hyperparam-

eters after, or even better, during the HPO run. For the gen-

eration of such reports, many methods are already available,

such as functional ANOVA [36], ablation [37], parallel co-

ordinates plots [20], local parameter importance [38], and

partial dependence plots [39]. Including such reports into

HPO libraries can facilitate leveraging the benefits of ad-

vanced HPO methods (e.g., high sampling efficiency), while

still helping practitioners increase model comprehension.

Utilization of human model comprehension To increase

efficiency of HPO methods, HPO methods like Bayesian opti-

mization should allow the incorporation of comprehension of

practitioners about ML models, whose hyperparameter val-

ues are to be optimized. Practitioners should be enabled to

input their knowledge about behaviors of ML models into

HPO libraries prior to HPO on a case-by-case basis. For ex-

ample, practitioners could specify their perceived hyperpa-

rameter importance or influences between hyperparameters.

Furthermore, practitioner knowledge could be directly incor-

porated into the search strategy of advanced HPO methods.

Promising work in this direction includes various methods

for integrating prior knowledge into Bayesian optimization.

This can be achieved by directly specifying priors about the

location of the optimum [40, 41, 42, 43], or structural pri-

ors, e.g., in the form of log-transformations of hyperparame-

ters [44], monotonicity constraints [45], or warping of hyper-

parameters [46].

5 CONCLUSIONS, LIMITATIONS, AND
FUTURE WORK

Conclusions We reported on a qualitative study on the rea-

sons why practitioners prefer different HPO methods. With

this study, we make three key contributions. First, we deep-

ened the understanding about what goals practitioners aim to

achieve by HPO (e.g., ensure comparability, increase model

comprehension; see Table 1). Second, we describe how prac-

titioners decide for HPO methods depending on their targeted

goals and relevant decision factors. These findings can guide

research on the reasonable integration of human decision-

making into AutoML tools in order to increase their spectrum

of functions and efficiency. Third, by collating practitioners’

reasons for using HPO methods, we support research on Au-

toML in developing more practitioner-centric software appli-

cations for HPO. This can increase the adoption of sophisti-

cated HPO methods and improve the quality of ML research

(e.g., by improving the replicability of experiments).

Limitations The results presented in this study can be gen-

eralized at a limited scale. We applied semi-structured in-

terviews as a qualitative and explorative research approach.

Such interviews mainly rely on the interviewees’ experi-

ences, knowledge, perceptions, and capabilities to verbalize

responses to our questions. In this sense, our results may be

biased by the ML experts interviewed in this study despite

our efforts to reduce such biases (e.g., by not asking leading
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questions and asking the interviewees for clarifications of po-

tentially misinterpreted statements). We aimed to reduce bi-

ases in the analysis of the interviews by having two scien-

tists independently code the transcripts of the interviews and,

then, discuss their codes to agree on a shared understanding.

However, despite these efforts we cannot guarantee to have

fully prevented our results from being biased. Moreover, our

results may not be comprehensive due to the small set of ten

ML experts; e.g., additional HPO methods are not considered.

To increase the comprehensiveness of the findings presented

in this work, additional interviews or focus group workshops

should be conducted.

Future Work We deem further investigations of human

decision-making in ML as a promising direction for future

research. The interviewed practitioners reported actions they

applied in HPO, which are agnostic to the choice of HPO

method, such as choosing a set of hyperparameters to tune

and defining corresponding search ranges. The interviewed

practitioners applied very alike actions for choosing HPO

methods, hyperparameters, and hyperparameter values with

similar reasoning and stated to have achieved their goals by

these applied actions. Therefore, we assume the presence of

still unclear best practices for actions applied during HPO.

Since the interviewees mostly stated that they did not con-

sciously compare different HPO methods but achieved suffi-

cient outcomes, we deem the identification of heuristics ap-

plied in their decision-making [27, 10] in HPO as of great

potential to advance AutoML research. By identifying such

heuristics, a better understanding about how practitioners

choose HPO methods can be reached to advance AutoML

software applications by automated selection of best suitable

HPO methods for ML models with individual characteristics,

uses, and other contextual factors (e.g., available computing

power). In future research, we will build on the findings pre-

sented in this work and seek to identify such human heuris-

tics, implement them in algorithms for AutoML, and evalu-

ate these algorithms in comparison to the performance of hu-

man decision-making. We also derived two very promising

paths for future work that would strongly increase the benefit

of current HPO tools to practitioners: (1) to increase model

comprehension, automatically generate hyperparameter influ-

ence reports, and (2) to exploit human model comprehension,

allow the integration of human knowledge into HPO tools.
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of machine-learning experimental methods at

NeurIPS2019 and ICLR2020. Research Report. Inria

Saclay Ile de France, Jan. 2020.

[18] Stefan Falkner, Aaron Klein, and Frank Hutter.

“BOHB: Robust and efficient hyperparameter opti-

mization at scale”. In: International Conference on

Machine Learning. PMLR. 2018, pp. 1437–1446.

[19] Lisha Li et al. “Hyperband: A Novel Bandit-Based

Approach to Hyperparameter Optimization”. In: Jour-

nal of Machine Learning Research 18.1 (Jan. 2017),

pp. 6765–6816. ISSN: 1532-4435.

[20] Daniel Golovin et al. “Google Vizier: A Ser-

vice for Black-Box Optimization”. In: Proceed-

ings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data

Mining. KDD ’17. Halifax, NS, Canada, 2017,

pp. 1487–1495. ISBN: 9781450348874. DOI:

10.1145/3097983.3098043.

[21] Michele J. McIntosh and Janice M. Morse. “Situat-

ing and Constructing Diversity in Semi-Structured In-

terviews”. In: Global Qualitative Nursing Research 2

(Nov. 2015), p. 233339361559767. ISSN: 2333-3936,

2333-3936. DOI: 10.1177/2333393615597674.

[22] K. Louise Barriball and Alison While. “Col-

lecting data using a semi-structured inter-

view: a discussion paper”. In: Journal of Ad-

vanced Nursing 19.2 (Feb. 1994), pp. 328–

335. ISSN: 0309-2402, 1365-2648. DOI:

10.1111/j.1365-2648.1994.tb01088.x.

[23] Raymond L. Gorden. Interviewing: strategy, tech-

niques, and tactics. Rev. ed. The Dorsey series in soci-

ology. 1975. ISBN: 978-0-256-01511-9.

[24] Virginia Braun and Victoria Clarke. “Using thematic

analysis in psychology”. In: Qualitative Research

in Psychology 3.2 (Jan. 2006), pp. 77–101. DOI:

10.1191/1478088706qp063oa.

[25] Virginia Braun and Victoria Clarke. “Thematic

analysis”. In: APA Handbooks in Psychology®.

APA handbook of research methods in psychol-

ogy, Vol 2: Research designs: Quantitative, qualita-

tive, neuropsychological, and biological. American

Psychological Association, 2012, pp. 57–71. DOI:

10.1037/13620-004.

[26] Anselm Strauss and Juliet Corbin. Basics of qualita-

tive research techniques. 1998.

[27] Gerd Gigerenzer and Henry Brighton. “Homo Heuris-

ticus: Why Biased Minds Make Better Inferences”.

In: Topics in Cognitive Science 1.1 (Jan. 2009),

pp. 107–143. ISSN: 17568757, 17568765. DOI:

10.1111/j.1756-8765.2008.01006.x.

[28] Matthias Feurer, Matthias Klein, and

Frank Hutter. Winning the AutoML Chal-

lenge with Auto-sklearn. 2016. URL:

https://www.kdnuggets.com/2016/08/winning-automl-challenge-auto-sklearn.html.

[29] Douglas C Montgomery. Design and analysis of exper-

iments. 2017.

[30] Katharina Eggensperger et al. “Towards an empirical

foundation for assessing bayesian optimization of hy-

perparameters”. In: NIPS workshop on Bayesian Opti-

mization in Theory and Practice. Vol. 10. 3. 2013.

[31] Eric Brochu, Vlad M Cora, and Nando De Freitas. “A

tutorial on Bayesian optimization of expensive cost

functions, with application to active user modeling

and hierarchical reinforcement learning”. In: arXiv

preprint arXiv:1012.2599 (2010).

[32] Bobak Shahriari et al. “Taking the Human Out of the

Loop: A Review of Bayesian Optimization”. In: Pro-

ceedings of the IEEE 104.1 (2016), pp. 148–175. DOI:

10.1109/JPROC.2015.2494218.

[33] Roman Garnett. Bayesian Optimization. in prepara-

tion. Cambridge University Press, 2022.

[34] Aaron Klein et al. “Fast bayesian optimization of

machine learning hyperparameters on large datasets”.

In: Artificial Intelligence and Statistics. PMLR. 2017,

pp. 528–536.

[35] Koen van der Blom et al. “AutoML Adop-

tion in ML Software”. In: July 2021. URL:

https://openreview.net/attachment?id=D5H5LjwvIqtname=crc_pdf.

[36] Frank Hutter, Holger Hoos, and Kevin Leyton-Brown.

“An Efficient Approach for Assessing Hyperparame-

ter Importance”. In: International Conference on Ma-

chine Learning. Jan. 2014, pp. 754–762.

[37] A. Biedenkapp et al. “Efficient Parameter Importance

Analysis via Ablation with Surrogates”. In: Proceed-

ings of the Thirty-First Conference on Artificial In-

telligence. Ed. by S.Singh and S. Markovitch. 2017,

pp. 773–779.
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A OVERVIEW OF INTERVIEWEES

Table 3. Demographic overview of interviewees

Field Highest Degree of Education Years of Experience Focus in AI

Academia Master (7), Bachelor (1) < 2 (1), 2-4 (2), 5-7 (4), 8-10 (1) RL (1), CV (5), NLP (1), Genomics (1)

Engineer Master (1), Bachelor (1) 2-4 (1), 8-10 (1) CV (1), NLP (2)

B HYPERPARAMETER OPTIMIZATION METHODS

Table 4. Identified hyperparameter optimization methods

Code Description

Manual Tuning Select hyperparameter configuration perceived as productive

Grid Search From a defined search space, select equally spaced hyperparameter configuration

Random Search From a defined search space, sample random hyperparameter configuration

Bayesian Optimization From a defined search space, a surrogate model iteratively predicts productive hyperparameter

configuration based on previous observations

C PRINCIPAL DECISION FACTORS

Table 5. Overview of principal decision factors for practitioner decisions for HPO methods

Theme Description

Own Knowledge Internal knowledge of a practitioner about HPO or ML Models that guides a practitioner in HPO

Social Environment Statements and attitudes (e.g., opinions, recommendations) of individuals or social groups

(e.g., labs) that guide a practitioner in HPO

Technical Environment Technical boundaries (e.g., limited computational resources) that guide a practitioner in HPO
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Table 6. Overview of principal decision factors for practitioner decisions for HPO methods

Theme Code Description

Own Knowledge HPO Method Comprehension The self-perceived level of knowledge a practitioner has

about the inner-workings of a HPO method

Own Knowledge Model Comprehension The self-perceived level of understanding about the inner

workings of an ML model with which a practitioner is able

to predict changes in the behavior of the model caused by

altering hyperparameter values

Own Knowledge Personal Experience The available internal knowledge that has been generated

by past activities (e.g., personal best practices for solving a

specific type of problem)

Social Environment Acceptance of Advanced Methods The extent to which advanced HPO methods, such as

Bayesian optimization, are valued by a target group

Social Environment Lab Routines The degree to which members of a lab always perform

HPO in a similar manner because of manifested habits

Social Environment Literature The knowledge acquired on the basis of published text doc-

uments (e.g., articles, blog entries, papers)

Social Environment Shared Opinions The knowledge acquired on the basis of advice by peers

(e.g., colleagues)

Social Environment Tension for Resources The degree to which limited compute resources cause con-

flicts between practitioners

Technical Environment Available Compute Resources The amount of compute resources available for HPO

Technical Environment Cost of Objective Function The amount of compute resources required to evaluate a

single point within the hyperparameter space

Technical Environment Parallization Possibilities The degree to which multiple independent ML models can

be simultaneously evaluated
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