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The cosmic neutrino background (CNB) is a definite prediction of the standard cosmological model and
its direct discovery would represent a milestone in cosmology and neutrino physics. In this work, we
consider the capture of relic neutrinos on a tritium target as a possible way to detect the CNB, as aimed for
by the PTOLEMY project. Crucial parameters for this measurement are the absolute neutrino mass mν and
the local neutrino number density nlocν . Within the ΛCDM model, cosmology provides a stringent upper
limit on the sum of neutrino masses of

P
mν < 0.12 eV, with further improvements expected soon from

galaxy surveys by DESI and EUCLID. This makes the prospects for a CNB detection and a neutrino mass
measurement in the laboratory very difficult. In this context, we consider a set of nonstandard cosmological
models that allow for large neutrino masses (mν ∼ 1 eV), potentially in reach of the KATRIN neutrino mass
experiment or upcoming neutrinoless double-beta decay searches. We show that the CNB detection
prospects could be much higher in some of these models compared to those in ΛCDM, and discuss the
potential for such a detection to discriminate between cosmological scenarios. Moreover, we provide a
simple rule to estimate the required values of energy resolution, exposure, and background rate for a
PTOLEMY-like experiment to cover a certain region in the ðmν; nlocν Þ parameter space. Alongside this
paper, we publicly release a code to calculate the CNB sensitivity in a given cosmological model.

DOI: 10.1103/PhysRevD.105.063501

I. INTRODUCTION

A. The cosmic relic neutrino background

One of the central predictions of the standard cosmo-
logical model is the existence of the cosmic relic neutrino
background (CNB). In the ΛCDM scenario, we expect a
neutrino population with a momentum distribution close to
the thermal Fermi-Dirac distribution [1–4], with a present
day temperature of

TSM
ν;0 ≈ Tγ;0=1.4 ≈ 1.95 K; ð1Þ

and an average number density of about

nSMν;0 ¼ 3

4

ζð3Þ
π2

T3
ν;0 ≈ 56 cm−3; ð2Þ

for each helicity degree of freedom. Its existence has been
established indirectly at very high confidence by the
determination of the effective number of relativistic species
in the early Universe, Neff , both via measurements of the
primordial element abundances as synthesized during big
bang nucleosynthesis (BBN), as well as by observations of
the cosmic microwave background (CMB). A recent global
BBN analysis [5] (see also [6,7]) obtains

Neff ¼ 2.78� 0.28 ð68% C:L:Þ; ð3Þ

when using the latest helium primordial abundance from
[8], the deuterium measurements from [9], and an updated
set of nuclear reaction rates from [10]. From CMB
observations, combined with baryonic acoustic oscillations
(BAO), the Planck Collaboration reports [11]

Neff ¼ 2.99� 0.17 ð68% C:L:Þ: ð4Þ
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Both of these numbers are in remarkable agreement with
each other, as well as with the prediction of the standard
ΛCDMmodel of Neff ¼ 3.044 [12–15]. Moreover, they are
different from zero at very high confidence, implying
an indirect detection of the presence of cosmological
neutrinos.
The direct detection of relic neutrinos by experiments on

Earth, however, is very challenging. This is mainly because
their interaction cross-section is tiny as a result of the very
low neutrino energies, see Eq. (1). A possible method to
overcome the low energy deposition is to use the capture on
a β-unstable nucleus, which is a thresholdless reaction
[16,17]. PTOLEMY [18] is an ambitious project pursuing
this idea using electron neutrino capture on tritium,

νe þ 3H → e− þ 3Heþ: ð5Þ

The signature of the relic neutrino background would be a
peak in the electron energy above the continuous beta-
spectrum endpoint, separated from the endpoint by about
twice the neutrino mass. Experimentally key quantities in
this regard are the amount of available tritium for the target,
very low backgrounds, as well as the excellent energy
resolution of the detector needed to separate the CNB-
induced peak from the β-decay continuum.1 Furthermore,
the detection of the signal becomes exceedingly difficult
the smaller the neutrino mass is, since this controls the
separation of the CNB-induced peak from the β-decay
background. For phenomenological studies and sensitivity
estimates, see e.g., [21–24]. In spite of these challenges, the
detection of the CNB would be an outstanding experi-
mental achievement and provide a window into the very
early stages of the Universe.

B. Neutrino masses: Current status
and future prospects

From the particle physics side, an important open
question in neutrino physics is the absolute mass scale
of neutrinos [25]. The mass-squared differences of the three
neutrino mass states, Δm2

ji ≡m2
j −m2

i (i, j ¼ 1, 2, 3), are
determined by oscillation experiments with few percent
precision [26] (see also [27,28])

Δm2
21 ¼ ð7.42� 0.21Þ × 10−5 eV2; ð6Þ

Δm2
31 ¼ ð2.514� 0.028Þ × 10−3 eV2 or

Δm2
32 ¼ −ð2.497� 0.028Þ × 10−3 eV2; ð7Þ

where the two possible choices for the larger mass-squared
difference correspond to the so-called normal ordering

(NO) and inverted ordering (IO) of the mass states,
respectively. Once the mass-squared differences are fixed,
the absolute mass scale can be parametrized by the mass of
the lightest neutrino, mlightest, where in the standard con-
vention mlightest ¼ m1ðm3Þ for NO (IO).
From the observation of the beta-decay spectrum close to

the endpoint, one can constrain the effective neutrino mass

m2
β ¼

X3
i¼1

m2
i jUeij2; ð8Þ

where Uei are the leptonic mixing matrix elements, whose
moduli are determined with good precision by oscillation
experiments, see e.g., [26]. The current best limit on mβ

comes from the KATRIN experiment and is given by
[29,30]

mβ < 0.8 eV ð90% C:L:Þ; ð9Þ

while the final sensitivity goal of KATRIN is 0.2 eV,
something that will be reached within a few years. For
values of mβ in this regime, neutrinos are quasidegenerate
and mβ ≈mlightest. Besides KATRIN, there are other
projects aiming to measure the neutrino mass, including
Project 8 [31] and ECHo [32].
On the other hand, within the ΛCDM model, cosmology

provides a tight bound on the sum of neutrino masses due
their impact on cosmological structure formation. From
combined CMB and BAO observations, the Planck col-
laboration obtains [11]

X
mν ≡

X3
i¼1

mi < 0.12 eV ð95% C:L:Þ; ð10Þ

which, when taken at face value, implies

mlightest <

�
0.03 eV ðNOÞ
0.016 eV ðIOÞ : ð11Þ

Depending on the precise cosmological data used, in
principle even stronger limits can be obtained, see e.g.,
[33]. Indeed, we can expect that with data from future
large-scale structure surveys by DESI [34] and Euclid [35],
sensitivities to

P
mν of 0.02 eV could be achieved, see e.g.,

[36]. Note that from neutrino oscillation data, a minimal
value of

P
mν ≈ 0.06 eV for NO and 0.1 eV for IO is

predicted for mlightest ¼ 0. Hence, we could expect a
positive detection of a finite neutrino mass from cosmology
in ΛCDM soon.
If neutrinos are Majorana particles, they will induce the

lepton-number violating process neutrinoless double-beta
decay. In the absence of cancellations due to other exotic
physics, the corresponding decay rate can be related to an
effective Majorana mass

1Indeed, there could be even some fundamental physics
limitations to achieve the required resolution [19,20].
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mββ ¼
����X3
i¼1

miU2
ei

����: ð12Þ

Note that this relation depends on unknown complex
phases of Uei, the so-called Majorana phases. Current
strongest constraints come from the KamLAND-Zen
experiment [37], leading to

mββ < 0.061 − 0.165 eV

mlightest < 0.180 − 0.480 eV
ð90% C:L:Þ; ð13Þ

where the indicated range corresponds to the uncertainty
from nuclear matrix elements, and for the limit on mlightest

the least-constraining values of the Majorana phases have
been adopted. For other recent results with comparable
sensitivity, see [38–40]. Furthermore, there is strong
ongoing experimental effort to reach sensitivities in the
range mββ ≈ 0.01 eV–0.02 eV [41].

C. Large neutrino mass cosmologies and the CNB

Comparing the cosmological bound from Eq. (11) with
the KATRIN sensitivity, we see that in the standard
scenario, the neutrino mass should be out of reach for
KATRIN. Moreover, also in view of the cosmological
bound on the neutrino mass, a direct detection of the CNB
with the PTOLEMY project seems improbable, even under
optimistic assumptions [23]. However, the strong link
between the quantities constrained by cosmology and the
terrestrial experiments today relies both on standard cos-
mology and particle physics. As shown in our companion
paper [42], if the neutrino distribution is free, then current
CMBðþBAOÞ data is actually not able to measure neutrino
masses directly, but rather only the nonrelativistic neutrino
energy density

ρNRν;0 ¼
X

mνð2nν;0Þ < 14 eVcm−3; ð14Þ

which is a product of the neutrino mass and number
density. Thus, by sufficiently reducing the number density
of neutrinos, the mass bound may be weakened. Indeed,
several mechanisms are known in the literature which
would relax the cosmological neutrino mass bound and
allow for a neutrino mass that would be observable in
KATRIN as well as in neutrinoless double-beta decay
experiments (in the case of Majorana neutrinos). Such
scenarios are fully consistent with cosmological data and
include neutrino decays [43–48], neutrinos with a time-
varying mass [49–53], neutrinos with a temperature much
lower than the thermal one in Eq. (1) supplemented with
dark radiation [54,55], and neutrinos with a distribution
function that deviates from the Fermi-Dirac one [42,56,57].
In this paper, we aim to we investigate such “large-

neutrino-mass cosmologies” within the context of a CNB
detection. While we will review each of the above

cosmological settings in Sec. V, in this work we will focus
on the detection prospects of the scenarios with nonstand-
ard neutrino populations. Namely, those that have a
temperature Tν < TSM

ν as well as a dark radiation compo-
nent, and those with significant deviations from the usual
Fermi-Dirac distribution. We choose these two in particu-
lar, because the detection prospects of the other scenarios at
PTOLEMY are either null, require extremely optimistic
experimental configurations, or lead to unpredictable rates
at PTOLEMY. For instance, in the presence of neutrino
decays [43–48], one expects no relic active neutrino
background today if the neutrino mass is larger than
mν ≳ 0.1 eV. On the other hand, if the neutrino mass is
small enough, then it is possible that there still exist relic
neutrinos today. However, a CNB detection in this case
would require a highly optimistic configuration of
PTOLEMY.2 Another example comes from scenarios
involving neutrinos with a time-dependent mass. Some
of these setups lead to the absence of any cosmic neutrinos
at the present time, see e.g., [49,50], whilst in other cases,
one does expect a relic population today [53]. In the latter
case, however, the actual number density of neutrinos in the
Milky Way cannot be reliably predicted, as it is subject to a
nonlinear cosmological evolution that is not yet fully
understood [59,60]. Regardless of these challenges, the
interplay of possible effects at PTOLEMY make it a key
experiment potentially capable of differentiating and dis-
tinguishing between the various cosmological settings.

D. Goals and structure of this study

Our aim with this study is to understand the possibilities
of a cosmic neutrino background detection within the
context of large neutrino mass cosmologies at a
PTOLEMY-like experiment. We believe that this is an
interesting topic on its own, as the detection of the CNB
would be a significant milestone for cosmology and particle
physics, but we are also motivated by a number of other
important factors: i) the current experimental efforts to
measure mν and mββ in the laboratory, ii) the very stringent
cosmological constraints on the neutrino mass within
ΛCDM, iii) the prospects to potentially detect the neutrino
mass with ongoing/upcoming galaxy surveys, and iv) the
theoretical landscape of models where neutrinos could have
a large mass.
We then structure this paper as follows: Firstly, in Sec. II

we discuss the main cosmological features controlling the
detection prospects of the CNB. In particular, we discuss
and calculate the allowed ranges for mν and the local
number density of neutrinos within ΛCDM and the two
main nonstandard cosmologies under consideration. Next,
in Sec. III we outline our approach in obtaining the

2If such an optimistic configuration can be achieved, then a
number of interesting conclusions about the neutrino mass and
lifetime could be inferred, see [58].
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sensitivity of a PTOLEMY-like experiment to detect the
CNB. In Sec. IV we present our results for the expected
sensitivity. In particular, we discuss the CNB detection
sensitivity as a function of the various experimental factors,
and examine it within the context of ΛCDM and the two
nonstandard cosmologies. We also consider future exper-
imental situations in light of expected data from KATRIN,
DESI/EUCLID and the next generation of neutrinoless
double-beta decay experiments. In Sec. V we review other
nonstandard cosmological scenarios where neutrinos
can have a large mass and comment on how a CNB
search at PTOLEMY could distinguish between them.
Finally, in Sec. VI we summarize our results and present
our conclusions. Supplementary details regarding the
clustering of neutrinos in the Milky Way are provided in
the Appendix.

II. CNB DETECTION AT PTOLEMY:
COSMOLOGICAL MODELS

The detection prospects of the CNB via inverse β-decay
capture in tritium, νe þ 3H → e− þ 3Heþ, depend upon
several experimental factors which we discuss in detail
below. However, in terms of the cosmological model, there
are only two relevant features that are important: i) the

neutrino mass mν, and ii) the number density of relic
neutrinos on Earth nlocν . The neutrino mass is critical since it
controls the minimum energy resolution that needs to be
achieved for a successful detection of the CNB. This is
because there is a huge continuous β-decay background from
3H → e− þ 3Heþ þ ν̄e decays that is only separated by
ΔEe ∼ 2mν from the small cosmological signal arising from
neutrino capture, see Fig. 1. This means that a CNB detection
requires a very small energy resolution of at least Δ≲mν.
In addition, of course, the number density of relic neutrinos
on Earth is critical for the detection because it essentially
controls the rate at which the νe þ 3H → e− þ 3Heþ process
occurs, given that ΓCNB ∝ nlocν . Clearly, the larger the number
density of neutrinos, the better the sensitivity to detect the
CNB will be, see again Fig. 1.
Now, since the current cosmological neutrino mass

bound from Planck is very stringent within ΛCDM [see
Eq. (10)], and achieving such a correspondingly small
value of Δ is technologically very challenging [18], this
suggests that prospects for detection are likely more
reasonable in nonstandard cosmologies with large neutrino
masses. As mentioned in the introduction, in this regard, it
is worth emphasizing that the CMB is not directly sensitive
to the neutrino mass, but rather to the nonrelativistic
neutrino energy density ρNRν;0 [42]. This is the product of

FIG. 1. Event spectra expected at PTOLEMY within the fiducial scenario considered in this work for the two cases where the energy
resolution is Δ > mlightest (left) and Δ < mlightest (right), see Sec. III for details. Note that the sensitivity of a PTOLEMY-like experiment
to detect the cosmic neutrino background is governed by both a) the separation of the CNB signal from the large β-decay background,
and b) the absolute CNB signal rate, specifically as compared to the background. The former is controlled by the relative sizes of Δ and
mlightest, while the latter is instead specified by the exposure, local number density nlocν , and the background rate Γb.
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the neutrino mass and the cosmological neutrino number
density per species ð2nν;0Þ, and the current Planckþ BAO
bound on this quantity is given in Eq. (14). From this
observation, we can clearly appreciate that a simple way to
substantially relax current cosmological bounds on neu-
trino masses is to reduce the cosmological neutrino number
density. Assuming that nν;0 is the same for each neutrino
mass state, this corresponds to a maximum neutrino
number density per helicity state of

nν;0 < 56 cm−3 0.12 eVP
mν

: ð15Þ

From a phenomenological perspective, we consider two
examples in which the neutrino number density in the early
Universe is reduced, while being in agreement with all
known cosmological measurements:
Low-Tν þ DR: Neutrinos with a temperature Tν < TSM

ν

and dark radiation. The first possibility is that neutrinos
have a temperature smaller than the one expected within the
Standard Model [54,55]. Since nν ∝ T3

ν, this means that
even with a slightly lower temperature than inΛCDM [as in
Eq. (1)], the number density in neutrinos can be substan-
tially smaller. Therefore, the neutrino mass can be larger
while still satisfying Planck CMB constraints. In particular,
the neutrino mass bound can be relaxed as:

X
mν < 0.12 eV

�
TSM
ν

Tν

�
3

: ð16Þ

However, reducing the number density of neutrinos in this
manner will also impact the energy density in ultrarelativ-
istic species, because Nν

eff ∝ T4
ν. Therefore, for this setting

to be fully compatible with CMB data, one needs to
introduce a certain amount of dark radiation to compensate
for the decrease of Nν

eff from neutrinos, such that the total
Neff ¼ Nν

eff þ NDR
eff ∼ 3. Indeed, there already exists a

proposed mechanism that could achieve this, through the
addition of new massless states beyond the Standard Model,
see [54].
High-pν: Neutrinos with an average momentum

hpνi > 3.15TSM
ν . This secondpossibility considers neutrinos

with an average momentum larger than the one in ΛCDM
[42], see also [57]. Since Nν

eff ∝ ρνjpν≫mν
¼ nνhpνi ∼ 3,

then in this scenario no dark radiation needs to be introduced
and the neutrino mass bound can be relaxed as:

X
mν < 0.12 eV

hpνi
3.15TSM

ν
; ð17Þ

where 3.15TSM
ν is the average momentum of neutrinos in

ΛCDM and we have assumed Nν
eff ¼ 3.044. We see that the

larger hpνi is, the more the neutrino mass bound can be
relaxed. It is important to note that so far there is no known
mechanism capable of significantly increasing hpνi [42], but

that there are particle physics scenarios (such as sterile
neutrino decays during the BBN epoch [61]) that could
potentially lead to hpνi≳ 3.15TSM

ν and weaken the neutrino
mass constraint appreciably, see [57].

A. Neutrino number density on Earth

Importantly for CNB detection, the quantity that deter-
mines the rate of neutrino capture events is not the
cosmological number density nν;0, but instead the number
density of relic neutrinos on Earth, nlocν . These two numbers
are expected to be different, essentially because the
Milky Way gravitational potential causes a clustering of
neutrinos in its halo [62], see also [63–65]. The main proxy
to understand how many neutrinos can cluster is their
velocity vν. This is because neutrinos with a velocity larger
than the escape velocity of the Milky Way cannot become
gravitationally bound. In the three cosmological settings
discussed above, and assuming degenerate neutrinos that
are nonrelativistic, we have

vνðzÞ ¼ 4000ð1þ zÞ
�
0.04 eV

mν

�
km s−1 ½ΛCDM�; ð18Þ

vνðzÞ ¼ 4000ð1þ zÞ
�
0.04 eV

mν

�
4=3

kms−1 ½Low-Tν þDR�;

ð19Þ

vνðzÞ ¼ 4000ð1þ zÞ kms−1 ½High-pν�; ð20Þ

where the mean velocity for nonrelativistic particles is
simply given by vν ¼ hpνi=mν. For the ΛCDM case we
have hpνiSM ¼ 3.15TSM

ν . For the Low-Tν þ DR scenario,
the mean momentum is given by hpνi ¼ 3.15Tν, and to find
Eq. (19) we use the Tν that saturates the bound in Eq. (16).
Finally, for the High-pν case, we use the mean neutrino
momentum that saturates the bound in Eq. (17), which
explains the absence of a neutrino mass dependence in
Eq. (20). Note that Eqs. (18)–(20) only hold for redshifts z
where vνðzÞ ≪ c.
The escape velocity of the Milky Way Galaxy is roughly

∼550 km s−1 [66]. Comparing the numbers above with this
one, we can see that in all of these scenarios we do not
expect a substantial gravitational clustering of neutrinos if
their masses are smaller than mν ≲ 0.3 eV. In fact, in the
High-pν cosmological setting, the velocity of neutrinos is
so large that independently of the neutrino mass, the
clustering should be insignificant. On the other hand, in
the Low-Tν þ DR cosmology, one can expect substantial
clustering for large neutrino masses. Note also that in
ΛCDM the sum of neutrino masses is bounded to beP

mν < 0.12 eV, and so there should not be any signifi-
cant clustering for masses that are cosmologically allowed.
In order to accurately model the gravitational clustering

of neutrinos in the Milky Way, one should resort to N-body
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simulations that track the evolution of the distribution
function of neutrinos in the evolving gravitational potential,
as done in [62–65] within ΛCDM. As an approximation,
however, Ref. [62] proposed a method based on linear
perturbation theory that allows one to find an estimate of
the neutrino clustering for any primordial neutrino distri-
bution function. We discuss the approach in the Appendix
and use it to compute the clustering for the two nonstandard
cosmologies we consider. For the ΛCDM cosmology, we
resort to the N-body result of [64]. In short, the clustering
factors read

fc ≃ 77ðmν=eVÞ2.2 ½ΛCDM�; ð21Þ

fc ≃ 96ðmν=eVÞ2.0 ½Low-Tν þ DR�; ð22Þ

fc ≃ 0 ½High − pν�; ð23Þ

where, following [23], we define

nlocν ¼ nν;0ð1þ fcÞ; ð24Þ

with fc evaluated at the radius of the Earth inside the
Milky Way.
From the equations above we can clearly see that, as

expected, the clustering is negligible for the High-pν case,
while it is relevant for the Low-Tν þ DR scenario. We
should emphasize that our approach to obtain fc for the
Low-Tν þ DR cosmology underestimates the actual clus-
tering of neutrinos on Earth. For example, within ΛCDM,
the linear method underestimates the clustering by a factor
of ∼3 formν ∼ 1 eV, and by a factor of ∼2 formν ∼ 0.2 eV.
In this regard, doing an N-body simulation for the
nonstandard cosmologies would be desirable, but lies
beyond the scope of our work and will not affect the
conclusions significantly. Indeed, within the context of
PTOLEMY, our linear approach results in a smaller capture
rate and therefore our predictions for these scenarios should
be regarded as conservative.
To summarize this section, we have discussed how the

stringent neutrino mass bound in ΛCDM can be evaded in
two simple nonstandard settings and estimated the number
density of neutrinos expected on Earth for each of them.
With this aspect of the calculation established, we can now
turn to computing the relevant number of events and
spectral features of the νe þ 3H → e− þ 3Heþ processes
in a PTOLEMY-like experiment.

III. PTOLEMY DESCRIPTION AND
PHENOMENOLOGY

In this section, we will outline our approach in obtaining
the sensitivity of PTOLEMY to the cosmic neutrino
background. As usual with β-decay experiments, there
are three separate contributions to the number of events that
PTOLEMY will register: i) the inverse β-capture of relic

neutrinos, ii) the electrons from the decay of the sample
atoms, and iii) additional background events from other
sources. In this work, we adopt the same approach as in
[23] to describe the contribution of the three processes to
the total number of events. In what follows, we will
highlight some of the calculations that are relevant for
our purpose and refer the reader to [23] for the details.

A. Event rates

The capture rate of relic neutrinos by tritium nuclei in
Eq. (5) can be written as

Γi ¼ NTjUeij2σ̄vνnlocν ; ð25Þ

with i ¼ f1; 2; 3g the index of the ith neutrino mass
eigenstate, jUeij2 the Pontecorvo-Maki-Nakagawa-Sakata
matrix element, NT the number of tritium nuclei in the
sample, and σ̄vν ≈ 3.8 × 10−45 cm2 the interaction cross
section (see, e.g., [22]). The local relic neutrino number
density nlocν is related to the background neutrino number
density nν;0 via the gravitational clustering factor fc, as
shown in Eq. (24). In the mass region of interest for us here,
we can always assume that neutrinos are quasidegenerate
and nonrelativistic today. Under these conditions, all three
mass states will cluster in the same way, such that fc—and
thus nlocν —is independent of the index i. Note that nlocν and
nν;0 are the number densities per helicity state. In the case of
fully nonrelativistic neutrinos, there will be twice as many
left-chiral interacting states available for Majorana neutri-
nos than for Dirac neutrinos [22,24,67]. Summing over the
neutrino mass states, we have the following expression for
the total relic neutrino event rate

ΓCNB ¼ cD=M
X
i

Γi ≈ 4cD=M
nlocν

nSMν;0

�
MT

100 g

�
yr−1; ð26Þ

where cD=M ¼ 1ð2Þ for Dirac (Majorana) neutrinos, and
MT ≡m3HNT denotes the mass of the tritium sample (see
below). This small event rate illustrates one of the main
challenges of this type of measurement.
In order to estimate the sensitivity of the PTOLEMY

experiment, we have to consider the electron energy
spectrum. Assuming nonrelativistic relic neutrinos, kin-
ematics imply that we should expect a monochromatic
signal for each neutrino mass state

dΓi

dEe
¼ Γiδ½Ee − ðEmν¼0

end þmiÞ�; ð27Þ

where Emν¼0
end is the endpoint energy of the electron

spectrum for massless neutrinos

Emν¼0
end ¼

m2
3H þm2

e −m2
3He

2m3H
; ð28Þ
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with m3H ≈ 2808.921 MeV and m3He ≈ 2808.391 MeV the
masses of the tritium and helium nuclei, respectively.
Summing over the neutrino mass states and convolving
with a Gaussian energy resolution of the detector leads to
the total CNB induced rate

dΓ̃CNB

dEe
¼ cD=Mffiffiffiffiffiffi

2π
p ðΔ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 lnð2Þp Þ

×
X
i

Γi exp

�
−
½Ee − ðEmν¼0

end þmiÞ�2
2ðΔ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8 lnð2Þp Þ2
	
; ð29Þ

where Δ is the energy resolution.
The sample atoms can also decay into neutrinos

and electrons, leading to a continuous β-decay background
that completely dominates the total number of events below
the endpoint electron energy Eend ¼ Emν¼0

end −mlightest.
Nonetheless, given that the separation between the energies
of background and signal electrons is roughly twice the
neutrino mass, it could be possible to separate the two
contributions if the energy resolution Δ is small enough
compared to the neutrino mass. Analogously to Eq. (29),
we can define a smoothed differential rate for the β-decay
background as

dΓ̃β

dEe
¼ 1ffiffiffiffiffiffi

2π
p ðΔ= ffiffiffiffiffiffiffiffiffiffiffi

8 ln 2
p Þ

Z
dE0 dΓβ

dE0

× exp

�
−

ðEe − E0Þ2
2ðΔ= ffiffiffiffiffiffiffiffiffiffiffi

8 ln 2
p Þ2

�
; ð30Þ

with

dΓβ

dEe
¼ σ̄

π2
NT

XNν

i¼1

jUeij2HðEe;miÞ; ð31Þ

where HðEe;miÞ describes the continuous β-spectrum and
is given in Eq. (3.9) of [23].
With these definitions, we can now write down the

average number of expected background and signal events
per energy bin k, centered at electron energy Ek during
some exposure time T

Nk
β ¼ T

Z
EkþΔ=2

Ek−Δ=2

dΓ̃β

dEe
dEe; ð32Þ

Nk
CNB ¼ T

Z
EkþΔ=2

Ek−Δ=2

dΓ̃CNB

dEe
dEe; ð33Þ

where we set the size of the energy bins equal to the
detector resolution Δ. Following [23], we consider electron
energies in the range −5 eV ≤ Ee − Emν¼0

end ≤ 10 eV, such
that the number of bins is given by Nbins ¼ 15 eV=Δ. We
have checked that our results for the PTOLEMY sensitivity

change very little when reducing the analysis window to
−1.5 eV ≤ Ee − Emν¼0

end ≤ 1.5 eV, for example.
In addition to Nk

CNB and Nk
β, we take into account

background events from other sources, assuming that they
contribute to an energy-independent rate Γb. In our main
analysis, we follow the approach in [23] and assume a
background rate of 10−5 Hz in the 15 eV analysis window,
corresponding to Γb ¼ 7 × 10−7 Hz=eV. Moreover, we fix
T ¼ 1 yr, Δ ¼ 100 meV and take a sample size of
MT ¼ 100 g. We investigate the dependence of our results
on these experimental parameters in Sec. IVA.

B. Analysis methodology

We will now detail how we compute the sensitivity of
PTOLEMY to the CNB. Firstly, we fix the values of
exposure time T, sample mass MT, energy resolution Δ,
and local neutrino density nlocν . In our main analysis, the
values of the first three quantities are provided at the end of
the previous subsection. Then, we define the total number
of events per energy bin k (our model prediction) as a
function of the parameters θ in our setup as

NkðθÞ ¼ TΔΓb

þ AβNk
βðT;Δ;MT; mlightest; δEendÞ

þ ACNBNk
CNBðT;Δ;MT; nlocν ; mlightest; δEendÞ;

ð34Þ

where θ ¼ fΓb; Aβ; mlightest; ACNB; δEendg and in the first
term we have used that the width of the energy bins is set to
the resolution Δ. Here, Aβ and ACNB represent a normali-
zation factor in the number of background and signal
events, respectively. The variable δEend accounts for
uncertainties in the endpoint energy of electrons Eend.
Next, to define our mock data, we choose fiducial values
for these parameters

θ̂ ¼ fΓ̂b; Âβ ¼ 1; m̂lightest; ÂCNB ¼ 1;cδEend ¼ 0g; ð35Þ

and construct a test statistic based on the Poisson likelihood

λðθ; θ̂Þ ¼ 2 ln
Lðθ̂Þ
LðθÞ

¼ 2
X
k

�
NkðθÞ − Nkðθ̂Þ þ Nkðθ̂Þ lnN

kðθ̂Þ
NkðθÞ

�
; ð36Þ

where we adopt the Asimov data set, given by the event
numbers at the fiducial parameters Nkðθ̂Þ. Hence, the
sensitivity obtained from this test statistic corresponds to
the mean sensitivity over the possible statistical realiza-
tions. In order to test whether it is possible to establish the
presence of the CNB within the chosen setup, we set
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ACNB ¼ 0 in the parameter vector θ, and minimize λðθ; θ̂Þ
with respect to all other parameters in θ. The sensitivity at
68.3%, 95.5%, 99.7% confidence level (corresponding to 1,
2, 3 Gaussian standard deviations) is then obtained by
min ½λðθ; θ̂Þ� ¼ 1, 4, 9, respectively. We have explicitly
checked that our approach is in excellent agreement with
the Bayesian strategy, where a full MCMC analysis is
employed to obtain the sensitivity of PTOLEMY to the
CNB.3 Note that the sensitivity analysis presented by the
PTOLEMY collaboration in Ref. [23] used the Bayesian
method. We find good agreement with their results when
adopting the same assumptions as in this reference. In the
next section, we will use the described test statistic in
Eq. (36) to calculate the sensitivity for CNB detection as a
function of the local neutrino density nlocν , lightest neutrino
mass mlightest, and the experimental parameters T, MT, Δ,
and Γb.

IV. RESULTS

A. PTOLEMY sensitivity

In Fig. 2 we show the parameter region where
PTOLEMY could establish the presence of the CNB at
68%, 95%, and 99.7% C.L. if neutrinos are Dirac (left

panel) or Majorana (right panel) particles. The sensitivity is
shown as a function of the lightest neutrino mass and the
local neutrino density per helicity state for our default
experimental setup assumptions detailed above. The right
axis show the corresponding relic neutrino capture rate per
year, which is related to nlocν via Eq. (26). The factor 2
difference between Dirac and Majorana neutrinos leads to a
corresponding shift between the left and right vertical axes
in the two panels. Note that the values ofmlightest covered by
the sensitivity region are large enough, such that the mass
ordering (normal vs inverted) is not so relevant here.
The shape of the sensitivity region is easily understood:

for small neutrino masses, the sensitivity diminishes
because it becomes impossible to resolve the CNB peak
from the β-decay continuum due to the finite-energy
resolution of the detector, as illustrated in the left panel
of Fig. 1. Hence, the sensitivity limit towards small
neutrino masses is controlled by the energy resolution
Δ; for values of Δ smaller than the Δ ¼ 100 meV assumed
in Fig. 2, the sensitivity region would extend to corre-
spondingly smaller neutrino masses. In Fig. 3, we show
how the sensitivity of PTOLEMY depends on various
experimental parameters. The behavior with respect to the
energy resolution mentioned here is illustrated in the top-
left panel.
For low values of the neutrino number density, the

induced signal becomes too small to be distinguished from
the background events in the signal region. Therefore, the

FIG. 2. Sensitivity of a cosmic neutrino background detection by PTOLEMYat 68%, 95%, and 99.7% C.L. for Dirac neutrinos (left)
and Majorana neutrinos (right) as a function of the lightest neutrino mass mlightest and the local neutrino density per helicity state nlocν .
The right vertical axis shows the CNB capture rate per year per 100 g of tritium sample mass. We assume a 1 yr exposure of 100 g tritium
with an energy resolution of 100 meV and a background level of 7 × 10−7 Hz=eV. The yellow curve shows the ΛCDM prediction
including gravitational clustering in the Milky Way, and the star indicates the current upper bound onmlightest from Planck, see Eq. (11).
The purple curve corresponds to the Low-Tν þ DR cosmology and the blue curve to the High-pν scenario, see Sec. II for details. Here,
the vertically-hatched and horizontally-hatched regions denote exclusion limits from CMBþ BAO data in these cosmologies,
respectively. We show the KATRIN sensitivity by a red arrow [see Eq. (9)]. In the right panel we include the current limit from
neutrinoless double-beta decay experiments, assuming the most conservative nuclear matrix element, see Eq. (13).

3The codes for both our frequentist and Bayesian approach can
be found on the GitHub page [68].
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lower bound of the sensitivity region is set by the exposure
time, sample mass and background rate, cf., right panel of
Fig. 1. This effect is apparent by comparing the Dirac and
Majorana cases in Fig. 2, which differ by a factor two in
ΓCNB for fixed neutrino number density. This can also be
seen by examining the top-right and bottom panels of
Fig. 3, where we highlight the dependence on MT, Γb,
and T.
To good accuracy, the behavior of the flat, bottom part of

the sensitivity region in the regime where Δ ≪ mν depends
on the ratio signal=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
background

p
. We find that the sensi-

tivity at 68.3%, 95.5%, and 99.7% C.L. in this regime can
be written in terms of nlocν in a simple form as a function of
MT, Γb, and T

�
nlocν

56 cm−3

�
>

A
cD=M

�
100 g
MT

��
1 yr
T

�1
2

�
Γb

7 × 10−7 Hz=eV

�1
2

;

A ¼
8<
:

0.380 ð68.3% CLÞ
0.820 ð95.5% CLÞ
1.332 ð99.7% CLÞ

: ð37Þ

The differentMT and T dependencies follow by noting that
both the CNB signal and the background events (as
characterized by Γb) scale linearly with T, see Eqs. (33)
and (34), whereas only the signal count depends on the
sample mass MT. This equation provides a useful and
efficient way to readily obtain a sensitivity estimate (i.e.,

FIG. 3. The dependence of the PTOLEMY sensitivity on the energy resolution (top left), background rate (bottom left), sample size
(top right), and exposure time (bottom right). For comparison, the dotted curves correspond to the PTOLEMY sensitivity using our
default parameters as in the left panel of Fig. 2. Note that, as before, the regions above the purple and blue curves are excluded by
CMBþ BAO data.
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how large nlocν should be to measure the CNB at the given
C.L.) in the regime Δ ≪ mν, without having to run a full
analysis.

B. Possibility of CNB detection within the experimental
landscape

In addition to the PTOLEMY sensitivity, we show in
Figs. 2 and 3 the predictions of the three cosmological
scenarios discussed in Sec. II. The yellow curve corresponds
to the standardΛCDMprediction. For light neutrinomasses,
the curve converges to nlocν ≈ nν;0 ≈ 56 cm−3, whereas for
mlightest ≳ 50 meV the number density increases due to the
gravitational clustering in the Milky Way. The star corre-
sponds to the Planck upper bound onmlightest in Eq. (11), and
the dashed part of the yellow curve is excluded by cosmo-
logical observations within theΛCDM scenario. We see that
under the adopted assumptions, PTOLEMYwill not be able
to observe theCNB in this case, since for the assumed energy
resolution,mlightest ≳ 100 meV is required. In order to reach
the currently allowed masses within ΛCDM, the energy
resolution has to be significantly higher and reach levels of
Δ ∼ 20 meV. If such a good resolution can be achieved, then
only a modest increase of the exposure time beyond 100 gyr
would be sufficient to reach a 3σ CNBdetection in the case of
Dirac neutrinos and under the background assumption of
7 × 10−7 Hz=eV, see top-left panel in Fig. 3. It should be
noted, however, that such a good resolution is likely
extremely challenging to achieve from a technological
viewpoint.
The purple and blue curves correspond to our two

benchmark nonstandard cosmologies, the Low-Tν þ DR
case and the High-pν scenario, respectively (see Sec. II).
They both intersect the ΛCDM curve at the Planck bound
on the sum of neutrino masses, as indicated by the yellow
star. As such, these curves denote realizations of each
model where the current cosmological bound on the non-
relativistic neutrino energy density is saturated [Eq. (14)],
extending out to larger masses than those in ΛCDM. The
regions above the purple and blue curves are excluded by
current cosmological observations. Importantly, whilst the
curves for these two scenarios coincide for small neutrino
masses, they diverge for mlightest ≳ 50 meV where gravi-
tational clustering becomes relevant, particularly in the
Low-Tν þ DR cosmology. This is in line with the dis-
cussion in Sec. II where we argued that the clustering in the
High-pν scenario is negligible.
Focusing on the region mlightest ≳ 200 meV—corre-

sponding to the projected sensitivity of KATRIN—we
see that it will still be very difficult to observe the CNB
with PTOLEMY in the High-pν scenario, which is char-
acterized by a strong suppression of the local relic neutrino
density. However, for the Low-Tν þ DR scenario, CNB
detection prospects are more promising due to significant
clustering: exposures of 200ð100Þ gyr for Dirac (Majorana)

neutrinos would enable a CNB detection at > 3σ for the
energy resolution and background assumptions adopted
in Fig. 2.
Let us now consider possible scenarios that could happen

in the near future, when results from DESI/EUCLID and
next-generation neutrinoless double-beta decay experi-
ments will be available, and KATRIN will have reached
its final sensitivity goal. We illustrate two representative
cases in Fig. 4. In the left panel, we assume that cosmo-
logical observations measure a finite value for the neutrino
mass when interpreted within the ΛCDM framework. As
discussed in Sec. II, such a measurement effectively
determines the product

P
mνð2nν;0Þ. For illustration pur-

poses, we assume a cosmological neutrino energy density
determination of

X
mν

�
nν;0

56 cm−3

�
¼ ð60� 20Þ meV; ð38Þ

corresponding to the minimum allowed value for normal
neutrino mass ordering in the ΛCDM model. This case is
shown as the short, solid, yellow line in Fig. 4. For the
nonstandard scenarios, the purple and blue bands will
remain allowed, opening up the possibility for large values
of the neutrino mass. If KATRIN by then had observed a
finite neutrino mass within the hatched region in Fig. 4,
then the detection prospects of the Low-Tν þ DR cosmol-
ogy at PTOLEMY would be promising, while it would still
be difficult to detect the CNB within the High-pν cosmol-
ogy. If KATRIN would only set an upper limit, however,
then CNB detection would be rather challenging in the two
nonstandard scenarios considered here, and require a
combination of higher energy resolution, larger exposure,
and lower background than assumed in Fig. 4.
In the right panel of Fig. 4, we assume Majorana

neutrinos with an inverted-mass ordering and show a
scenario where cosmology obtains only an upper bound
on the neutrino energy density ofX

mν

�
nν;0

56 cm−3

�
< 20 meV: ð39Þ

Such a bound would be inconsistent with the minimal value
for

P
mν required from oscillation data when interpreted

within ΛCDM (see vertical, black line), since for the
inverted-mass ordering, oscillation data bounds

P
mν≳

100 meV. Therefore, such a result from cosmology would
actually require a nonstandard explanation. Furthermore,
we indicate in the figure bounds from next-generation
neutrinoless double-beta decay experiments, assuming
that they will be consistent with oscillation data in the
inverted-mass ordering [41] and will determine mββ≈
20 meV–40 meV, where we have assumed a factor of 2
uncertainty from nuclear matrix elements. Using Eq. (12)
and marginalizing over Majorana phases, this interval
can be translated into 100 meV≲P

mν ≲ 400 meV, as
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indicated by the vertical band in this panel. We observe that
in such a scenario, KATRIN should obtain a null result and
a CNB detection will require substantial improvements (in
energy resolution, exposure time and background rates)
compared to our default assumptions.
In order to contextualize the implications of the futuristic

scenarios shown in Fig. 4, we believe that a timeline of
expected experimental developments could be useful.
Firstly, in the case of kinematic neutrino mass measure-
ments, it is expected that KATRIN will reach its final
sensitivity goal of mβ ∼ 0.2 eV in 3–4 years from now
[29,30]. On a longer timescale, Project-8 is aiming to reach
mβ ∼ 0.04 eV sensitivity by the end of this decade [31].
Secondly, in terms of cosmological developments, the
DESI experiment is already taking data and EUCLID
should be launched soon. It is expected that the sensitivities
shown in the left panel of Fig. 4 will be reached in
∼4–5 years from now. In addition, complementary cosmo-
logical probes, such as CMB observations by the Simons
Observatory [69], will improve the sensitivity to the energy
density in nonrelativistic neutrinos. Ultimately, this would
simply reduce the size of the DESI/EUCLID contours
shown in the left panel of Fig. 4. Thirdly, the next-
generation of neutrinoless double-beta decay experiments
could be expected to start testing the inverted ordering
scenario in ∼10 years. It would likely take several more
years to fully test the inverted-ordering case, once ton-
scale experiments with very reduced backgrounds are

operational [41]. Finally, and importantly in the context
of our study, one could hope that a PTOLEMY-like
experiment could be developed and functional in 10–
20 years.

V. LANDSCAPE OF COSMOLOGICAL
SCENARIOS

In the previous sections, we have detailed the exper-
imental requirements for a successful detection of the
cosmic neutrino background at a PTOLEMY-like experi-
ment. We have seen that a key parameter controlling the
detection prospects is the neutrino mass, which should be
larger than the energy resolution of the detector, see e.g.,
Fig. 1. In this context, besides the ΛCDM model, we have
considered in detail the CNB detection prospects of two
alternative cosmological models. As discussed in Sec. II, in
these nonstandard cosmologies the cosmological neutrino
number density is smaller than in ΛCDM, which in turn
means that the neutrino mass can be substantially higher
and a CNB detection more achievable. However, as we
have mentioned in the introduction, there exist several other
nonstandard cosmologies that can accommodate neutrinos
with large masses while being in perfect agreement with all
known cosmological data. In this section, we briefly
discuss the reach of PTOLEMY for a number of alternative
nonstandard cosmologies, with the aim of understanding
the cosmological implications of a CNB search at

FIG. 4. Possible future experimental scenarios. In the left panel, we assume Dirac neutrinos with normal-mass ordering and a
cosmological neutrino mass determination of ð60� 20Þ meV when interpreted within ΛCDM, see Eq. (38). In the right panel,
we assume Majorana neutrinos with inverted ordering, an upper bound on the neutrino mass from cosmology corresponding toP

mν < 20 meV in ΛCDM [see Eq. (39)], and a positive detection of mββ ≈ 20 meV–40 meV in neutrinoless double-beta decay
experiments, corresponding to 100 meV ≲P

mν ≲ 400 meV (vertical orange-shaded band). Instead of showing mlightest on the
horizontal axes, we are using

P
mν=3 here. The yellow line corresponds to the ΛCDM case, whilst the purple and blue lines represent

the Low-Tν þ DR and High-pν cosmologies, respectively. In the left panel, the shaded bands correspond to allowed regions, and in the
right panel the hatched regions are excluded. Note that in this figure we have assumed that KATRIN has reached its final sensitivity (the
hatched region to the right of the red, vertical line).
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PTOLEMY. We summarize our main conclusions for these
scenarios in Table I.
Essentially, nonstandard cosmologies that can accom-

modate neutrinos with a large mass reduce, in one way or
another, the energy density in nonrelativistic neutrinos with
respect to ΛCDM. The difference between each of these
cosmologies is the way in which this is achieved.4 For
example, the cosmologies we considered in Sec. II involve
neutrinos that have a distribution function that differs from
the one within the Standard Model, which in turn allows
them to have a smaller number density and therefore a
smaller nonrelativistic energy density. However, there are
other ways to reduce the energy density of nonrelativistic
neutrinos in the Universe:
(a) Decaying neutrinos. Neutrinos could decay on cos-

mological timescales [43–48]. In these scenarios, the
cosmological neutrino mass bound can be relaxed
because the decay product will be lighter than the
neutrino itself. As a consequence, the extent to which
the cosmological neutrino mass bound can be relaxed
depends significantly on the final-state product. It has
been shown that if all neutrinos decay into massless
and inert species beyond the Standard Model
(νi → ν4ϕ) [44], then the cosmological neutrino mass

bound can be relaxed up to
P

mν < 0.42 eV at
95% C.L. for lifetimes τν=tUniverse ∼ 10−4–10−1 [48].
However, if this is the case, then there should be no relic
neutrinos left today, which implies that no CNB
detectionwill be possible in this scenario. Alternatively,
neutrinos could decay into lighter active neutrino states
by emitting a light boson ðνi → νjϕÞ. In this case, there
would still be a cosmic relic neutrino background. On
the other hand, the cosmological neutrino mass bound
would not be substantially relaxed in this case, because
the final-state neutrinos have a mass that is only smaller
by the mass splitting in Eqs. (6) and (7). As such, while
there will be a CNB to detect, the mass bound will
be only moderately weakened,

P
mν ≲ 0.17 eV [44].

In this mass range, the process of neutrino decay could
in turn lead to interesting phenomenology in a
PTOLEMY-like experiment, see e.g., [58]—although
it should be noted that detection would require a
significantly more ambitious experimental configura-
tion than the one assumed in the previous section.

(b) Long-range neutrino interactions. Another way to
reduce the energy density of nonrelativistic neutrinos
in the early Universe involves neutrinos that posses
long-range interactions mediated by a very light scalar
field [53], see also [70–72] and [75,76]. The main idea
here is that, as a result of the long-range interactions,
neutrinos behave as a massless fluid until temperatures
T ≪ mν. In this way, the cosmological impact of their
masses is substantially reduced. In particular, for
scalar fields that do not behave as dark energy (with

TABLE I. Detection prospects of the CNB by a PTOLEMY-like experiment in a number of different cosmologies. Apart from ΛCDM,
these cosmologies can accommodate for large neutrino masses, while still being in agreement with known cosmological data. Note that
in our main analysis we have focused on the first three scenarios in the table.

Cosmological Scenario CNB Detection? Comments

ΛCDM Very challenging, see Figs. 2,3 and 4 Similar considerations apply to cosmologies where
neutrino properties are not drastically altered.

Low-Tν þ DR [54,55] (see Sec. II) Good, see magenta lines in Figs. 2–4 The detection prospects depend upon Tν and mν.

High-pν [42] (see Sec. II) Unlikely, see blue lines in Figs. 2–4 There are very few neutrinos on Earth.

Neutrino Decays, νi → ν4ϕ
[43,44,47,48]

No No relic active neutrino background today.

Neutrino Decays, νi → νjϕ
[44,46,58]

Yes, but only if Δ≲ 50 meVa Only cosmologically viable forP
mν ≲ 0.17 eV [44].

Long range ν interactions [53] Potentially yes, with Δ≲mν The CNB would be made out of dense neutrino nuggets,
but their distribution in the Universe
is unknown [59,60].

Growing Neutrino Quintessence
[70–72]

Potentially yes, with Δ≲mν

Neutrino masses from
the θ term [49,50]

No No relic neutrino background today.

Neutrino masses from a late
PT [51,52]

Yes, provided that Δ≲mν Only cosmologically viable forP
mν < 1.41 eV [52].

aIn this case, both the neutrino mass mν and lifetime τν could potentially be inferred/constrained via a CNB detection, see Ref. [58].

4Note that typical extensions of the ΛCDM model that do not
affect the neutrino sector, such as those featuring a dynamical
dark energy equation of state or a nonstandard primordial
fluctuation spectrum, do not lead to a relevant reduction of theP

mν bound with respect to ΛCDM, see e.g., [73,74].
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a mass 10−25 ≲mϕ ≲ 10−8 eV), it has been shown that
the neutrino mass could be as large as ∼1 eV if long-
range interactions are present [53]. On the other hand,
if the scalar field behaves as dark energy [70,71], then
it appears that CMB data restricts the neutrino mass to
be at most mν ≲ 0.5 eV [72]. Regardless of the role of
the light scalar field, once neutrinos eventually be-
come nonrelativistic (presumably at a rather low
redshift, z≲ 20), the long-range neutrino interactions
are such that neutrinos aggregate in dense nuggets of
size L ∼m−1

ϕ [77]. The study of the formation and
evolution of these nuggets is rather complicated as a
result of nonlinear dynamics [59,60]—for a recent
analytical study see [78]. This prevents one from
making a definite prediction regarding the number
density of neutrinos on Earth (nlocν ), which is clearly a
key element in understanding the detection prospects
of the CNB. Therefore, within the context of the CNB,
it would be interesting to try to understand the neutrino
nugget formation and evolution in depth, so that nlocν

can be robustly predicted in these scenarios.
(c) Late-time phase transitions. Finally, neutrinos could

obtain their masses at very low redshifts due to a late-
time phase transition at T ≪ mν [49–52]. This would
reduce the energy density in nonrelativistic neutrinos
in the early Universe and thus allow for mν as large asP

mν < 1.41 eV at 95% C.L. [52]. In this case, the
composition of the cosmic neutrino background de-
pends significantly upon the details of the late-time
phase transition. For example, in the currently only
known particle physics model capable of realizing this
effect [49,50], one expects that there are no cosmic
neutrinos today as they would have annihilated into
massless and inert beyond-the-Standard-Model bo-
sons. Nevertheless, by invoking additional ingredients
such as neutrino chemical potentials, it may be
possible to circumvent this issue, see [51,52]. As a
final comment on these scenarios, it is worth noting
the neutrino mass can only be relaxed significantly
provided that the phase transition occurs at a rather
low redshift, z≲ 0.5 [52]. This fact could have
important consequences for the determination of
nlocν , as massive neutrinos may not have had time to
cluster in the Milky Way in these setups.

To summarize, there currently exist a number of non-
standard cosmologies where neutrinos could have a mass
substantially larger than the one allowed in ΛCDM. All
these scenarios are in full agreement with cosmological
data, but require important modifications to the neutrino
sector. In this regard, KATRIN is a key experiment, since if
it reported a neutrino mass detection, the attention would
naturally shift towards such alternative scenarios. Our
discussion in this section and the previous one highlights
that a suitably sensitive CNB search could help distinguish

between them at the laboratory, see Table I for a summary.
Importantly, we would like to emphasize that currently
there are only a handful of cosmological models that could
accommodate neutrinos with a mass large enough such that
a PTOLEMY-like experiment could discover the CNB.
In this context, it would be interesting to develop new,
theoretically well-motivated cosmological settings that lead
to a similar phenomenology.

VI. SUMMARY AND CONCLUSIONS

The direct detection of the cosmic neutrino background
would represent an outstanding achievement in cosmology
and particle physics. At present, the best chance to detect
the CNB appears to be via neutrino capture on β-decaying
nuclei in a PTOLEMY-like experiment [18,23]. The pros-
pects of such a process strongly depend upon several
experimental factors and the cosmological model assumed.
In particular, the neutrino mass (mν) and number density on
Earth (nlocν ) play a crucial role. The neutrino mass controls
the minimum energy resolution Δ needed for a successful
CNB detection,Δ≲mν, while nlocν controls the CNB signal
rate, which in turn determines the required minimum
exposure time and maximum background rate.
Within the ΛCDM model, current cosmological obser-

vations constrain the neutrino mass to be very small,P
mν ≲ 0.12 eV, which makes the detection prospects

of the CNB very challenging. However, there are several
nonstandard cosmologies that allow for larger neutrino
masses, while still being in agreement with all known
cosmological data. As such, in this paper we have studied
the CNB detection prospects in the context of cosmologies
with large neutrino masses, as compared to the ΛCDM
limit. For this purpose, in Sec. II, we have discussed in
detail two example cosmologies featuring nonstandard
neutrino populations; one with neutrinos that have a smaller
temperature than in the SM, Tν < TSM

ν , supplemented with
dark radiation, and one where neutrinos have a higher
momentum than in ΛCDM, hpνi > 3.15TSM

ν . In each case,
we have highlighted the cosmologically allowed ranges for
mν and estimated the value of nlocν as a function of the
neutrino mass. In Sec. III we have outlined our calculation
of the CNB sensitivity at a PTOLEMY-like experiment.
In Sec. IV we have presented our results and discussed the
experimental sensitivity that would be required to detect the
CNB in the context of ΛCDM and the other nonstandard
cosmologies. Importantly, we have also contextualized the
CNB detection prospects in light of KATRIN, next-
generation neutrinoless double-beta decay experiments,
and upcoming/future galaxy surveys by facilities such
as DESI and EUCLID. Our main results are shown in
Figs. 2–4. Our main findings and conclusions can be
summarized as follows:
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(a) CNB detection sensitivity: We have computed the
sensitivity of a PTOLEMY-like experiment within the
general parameter space spanned by ðmlightest; nlocν Þ. Our
numerical results can be qualitatively understood by a
simple signal=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
background

p
argument,which allows us

to accurately estimate the sensitivity in terms of the
required energy resolution, exposure, and background
rate. Our results clearly highlight the fact that detection
of the CNB within the context of ΛCDM is extremely
challenging and would require an energy resolution
Δ≲ 20 meV. On the other hand, in some of the large
mass cosmologies considered here, the prospects are
significantly improved for resolutions Δ ∼ 100 meV.

(b) Experimental landscape: There is an exciting current
and future experimental program aimed at measuring
the neutrino mass in the laboratory as well as in
cosmology. From a cosmological point of view, and
within the standard ΛCDM model, upcoming galaxy
surveys by DESI and EUCLID are expected to be
sensitive to the minimal value of neutrino masses
allowed by neutrino oscillation experiments. Concern-
ing laboratory experiments, we have focused on the
kinematic mass determination by KATRIN, as well as
effective Majorana mass searches in neutrinoless
double-beta decay facilities. Indeed, given the strin-
gent upper limits from cosmology within the ΛCDM
scenario, it is unlikely that these experiments will be
able to observe a positive signal. On the other hand,
the situation in nonstandard cosmologies is qualita-
tively different, allowing for large neutrino masses
that are in reach of these laboratory experiments.
Our analysis highlights that a CNB detection by a
PTOLEMY-like experiment could be an important
tool in distinguishing between different cosmological
models, were there to be a positive detection in a
laboratory neutrino mass experiment, or if cosmologi-
cal limits would be seemingly in conflict with oscil-
lation data when interpreted in the ΛCDM model.

(c) Public code: Alongside this paper, we have released a
public code that can compute the CNB detection
prospects of a PTOLEMY-like experiment within a
cosmological scenario, given a specific experimental
setup, neutrino mass mlightest and local number density
nlocν . In addition, the code also provides a linear
estimate of the gravitational clustering factor fc for
an arbitrary neutrino distribution function [see
Eq. (24)], which is crucial in a number of relevant
cosmological scenarios. The code is available at the
following GitHub page [68].

While the phenomenology of large neutrino masses paints
an interesting picture at future facilities, an important part
of the outlook is to understand the experimental challenges
that face proposals such as PTOLEMY. For example, due to
the significant technical challenge of isolating pure atomic
tritium, the PTOLEMY Collaboration suggested the idea to

instead adhere tritium nuclei to graphene sheets [18]. Given
that the position of the tritium is then localized, this has
important implications for the momentum-space behavior
of the final-state electron and helium as a result of the
Heisenberg uncertainty principle [19,20]. Even though
there is currently no established analysis implementing
this, it is likely that the result of this will be a decrease in the
effective energy resolution. Ultimately, more research is
required to understand this issue quantitatively, and it may
lead to an update in the experimental setup, e.g., moving
towards heavier nuclei [79,80].
As far as our analysis in this paper is concerned,

however, we expect that somewhat irrespective of the
setup, the key intuition will stay intact. In particular,
provided that the effective energy resolution of the detector
Δ is suitably small compared to the neutrino mass, the
prospects for CNB detection will be similar to those derived
in this work. Indeed, our semianalytic estimate for the
sensitivity in the large-mass regime will be broadly
unchanged, updated only to account for modifications in,
e.g., the capture cross section. As such, we believe that
regardless of the final design of a PTOLEMY-style detec-
tor, the exciting prospects to learn about neutrino properties
with this proposed experiment will remain.

GitHub: Public code to compute the sensitivity of a
PTOLEMY-like experiment can be found here [68].
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APPENDIX: NEUTRINO NUMBER
DENSITY ON EARTH

The local number density of neutrinos is typically higher
than the cosmological one, because of their gravitational
clustering in the Milky Way halo. In this Appendix, we
briefly describe our approach in obtaining the gravitational
clustering factor fc [which enters the rate in Eq. (25), see
also Eq. (24)] for a given cosmological distribution
function of neutrinos. We closely follow the methods in
[62], where the clustering factor is estimated within linear
theory. In principle, the full enhancement in the number
density of neutrinos ought to be obtained through N-body
simulations that capture the nonlinear dynamics at small
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scales. Recently, there has been significant progress along
these lines, where the effects of e.g., baryonic components
and nearby clusters have been accounted for, see [63–65].
Nevertheless, the linear analysis gives a smaller estimate of
fc compared to the N-body result, which means that our
derived PTOLEMY sensitivities are conservative in this
regard.
A full derivation of the clustering factor can be found in

Sec. 6 of [62]. Here we only summarize the final result of
the computation. The neutrino density contrast δ̂νðk; sÞ is
obtained as a solution of the collisionless Boltzmann
equation and reads

δ̂νðk; sÞ ≃ 4πGρ̄m;0

Z
s

si

ds0aðs0Þδ̂mðk; s0Þðs − s0Þ

× F

�
kðs − s0Þ

mν

�
; ðA1Þ

where ρ̄m;0 is the energy density of matter today, a is the
scale factor (which we obtain from the CLASS code
[81,82]), δ̂m is the matter density contrast, s ¼ R

a−2dt is
a time variable, and F is given by

FðqÞ≡ 1

n̄ν;0

Z
d3pe−ip·qf0ðpÞ: ðA2Þ

Here, f0 is the distribution function of neutrinos, e.g., a
Fermi-Dirac distribution within the ΛCDM model. The
Fourier transform of Eq. (A1) can then be taken to obtain
the real-space neutrino overdensity today at the position of
the Earth inside the Milky Way. In other words, we can
obtain fc ≡ δνðr ¼ 8 kpcÞ evaluated at redshift z ¼ 0.
As far as the halo density contrast δm ¼ ρdm=ρ̄m in

Eq. (A1) is concerned, we follow the approach shared
across Refs. [63–65], which use updated data compared to
the Milky Way density profile given in Appendix A.1 of
[62]. Specifically, we take a general NFW-like profile for
the Milky Way dark-matter halo of the form

ρdmðr; zÞ ¼
N ðzÞ

ðr=rsðzÞÞð1þ r=rsðzÞÞ2
; ðA3Þ

where we have noted explicitly the redshift dependence of
the overall amplitudeN and scale radius rs. The first step is
then to take the z ¼ 0 values given in Table I of Ref. [65] for
the scale radius rsð0Þ ¼ 19.9 kpc and virial mass Mvir ¼
2.03 × 1012 M⊙. Using the known expression for the
density contrast at the virial radius for an NFW halo [65],

ΔvirðzÞ ¼ 18π2 þ 82ΩmðzÞ − 39Ω2
mðzÞ; ðA4Þ

we can compute the virial radius at z ¼ 0 as

rvirð0Þ ¼
�

3Mvir

4πa30Δvirð0Þρcrit;0

�
1=3

: ðA5Þ

Here, a0 ¼ 1 and ρcrit;0 are the scale factor and critical density
today, respectively. This immediately gives the concentration
parameter for the halo at z ¼ 0, cvirð0Þ ¼ rvirð0Þ=rsð0Þ,
which is typically compared to an average value taken from
simulations, cvirðzÞ ¼ βcavgvir ðzÞ, where β is assumed to be a
redshift-independent parameter and

log10 c
avg
vir ðzÞ ¼ aðzÞ þ bðzÞ log10

�
Mvir

1012h−1 M⊙

�
: ðA6Þ

In this expression, aðzÞ ¼ 0.537þ 0.488 expð−0.718z1.08Þ,
bðzÞ ¼ −0.097þ 0.024z, andh ¼ 0.67 is theHubble param-
eter. In practice, this allows us to obtain the concentration
parameter cvirðzÞ ¼ rvirðzÞ=rsðzÞ at any redshift after we
compute β using the z ¼ 0 values for cvirð0Þ and cavgvir ð0Þ.
This is now enough information to compute the evolution of
N ðzÞ and rsðzÞ. We can obtain the latter by first computing

rvirðzÞ ¼
�

3Mvir

4πa3ΔvirðzÞρcritðzÞ
�

1=3
; ðA7Þ

and thus find rsðzÞ ¼ rvirðzÞ=cvirðzÞ. Finally, we calculate the
overall normalization N ðzÞ by choosing it to satisfy

Mvir ¼ 4πa3
Z

rvirðzÞ

0

dr̃r̃2
N ðzÞ

ðr=rsðzÞÞð1þ r=rsðzÞÞ2
: ðA8Þ

A full implementation of this scheme to compute the density
profile and the neutrino density contrast (i.e., the gravitational
clustering factor) for any neutrino distribution function can be
found within the analysis section of the GitHub page.
In order to obtain the clustering factor in the cosmologies

considered in Sec. II, we explicitly used the following
distribution functions for neutrinos:

(a) ΛCDM: A Fermi-Dirac distribution with temperature
TSM
ν .

(b) Low-Tν þ DR: A Fermi-Dirac distribution function
with temperature Tν ¼ TSM

ν ð0.12 eV=
P

mνÞ1=3 that
saturates the bound in Eq. (16).

(c) High-pν: A Gaussian distribution function given by
Eq. (4) in [42], with a mean y� and a width σ� that
saturate the mass bound in Eq. (17), and an amplitude
A such that Neff ¼ NSM

eff . We have explicitly checked
that different combinations of y� and σ�, satisfying the
requirement above, all give fc ≃ 0, as claimed in the
main text.
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O. Mena, C. A. Ternes, M. Tórtola, and J. W. F. Valle, J.
High Energy Phys. 02 (2021) 071.

[28] F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A.
Melchiorri, and A. Palazzo, Phys. Rev. D 104, 083031
(2021).

[29] M. Aker et al. (KATRIN Collaboration), Phys. Rev. Lett.
123, 221802 (2019).

[30] M. Aker et al. (KATRIN Collaboration), arXiv:2105.08533.
[31] A. A. Esfahani et al. (Project 8 Collaboration), J. Phys. G

44, 054004 (2017).

[32] L. Gastaldo et al., Eur. Phys. J. ST 226, 1623 (2017).
[33] E. Di Valentino, S. Gariazzo, and O. Mena, Phys. Rev. D

104, 083504 (2021).
[34] A. Aghamousa et al. (DESI Collaboration), arXiv:1611

.00036.
[35] L. Amendola et al., Living Rev. Relativity 21, 2 (2018).
[36] T. Brinckmann, D. C. Hooper, M. Archidiacono, J.

Lesgourgues, and T. Sprenger, J. Cosmol. Astropart. Phys.
01)2019(059 .

[37] A. Gando et al. (KamLAND-Zen Collaboration), Phys. Rev.
Lett. 117, 082503 (2016); 117, 109903(A) (2016).

[38] M. Agostini et al. (GERDA Collaboration), Phys. Rev. Lett.
125, 252502 (2020).

[39] D. Q. Adams et al. (CUORE Collaboration), arXiv:
2104.06906.

[40] G. Anton et al. (EXO-200 Collaboration), Phys. Rev. Lett.
123, 161802 (2019).

[41] A. Giuliani, J. J. Gomez Cadenas, S. Pascoli, E. Previtali, R.
Saakyan, K. Schäffner, and S. Schönert (APPEC Commit-
tee), arXiv:1910.04688.

[42] J. Alvey, M. Escudero, and N. Sabti, J. Cosmol. Astropart.
Phys. 02 (2022) 037.

[43] Z. Chacko, A. Dev, P. Du, V. Poulin, and Y. Tsai, J. High
Energy Phys. 04 (2020) 020.

[44] M. Escudero, J. Lopez-Pavon, N. Rius, and S. Sandner, J.
High Energy Phys. 12 (2020) 119.

[45] M. Escudero and M. Fairbairn, Phys. Rev. D 100, 103531
(2019).

[46] G. Barenboim, J. Z. Chen, S. Hannestad, I. M. Oldengott, T.
Tram, and Y. Y. Y. Wong, J. Cosmol. Astropart. Phys. 03
(2021) 087.

[47] Z. Chacko, A. Dev, P. Du, V. Poulin, and Y. Tsai, Phys. Rev.
D 103, 043519 (2021).

[48] G. F. Abellán, Z. Chacko, A. Dev, P. Du, V. Poulin, and Y.
Tsai, arXiv:2112.13862.

[49] G. Dvali and L. Funcke, Phys. Rev. D 93, 113002
(2016).

[50] G. Dvali, L. Funcke, and T. Vachaspati, arXiv:2112.02107.
[51] C. S. Lorenz, L. Funcke, E. Calabrese, and S. Hannestad,

Phys. Rev. D 99, 023501 (2019).
[52] C. S. Lorenz, L. Funcke, M. Löffler, and E. Calabrese, Phys.

Rev. D 104, 123518 (2021).
[53] I. Esteban and J. Salvado, J. Cosmol. Astropart. Phys. 05

(2021) 036.
[54] Y. Farzan and S. Hannestad, J. Cosmol. Astropart. Phys. 02

(2016) 058.
[55] J. J. Renk et al. (GAMBIT Cosmology Workgroup), J.

Cosmol. Astropart. Phys. 02 (2021) 022.
[56] A. Cuoco, J. Lesgourgues, G. Mangano, and S. Pastor, Phys.

Rev. D 71, 123501 (2005).
[57] I. M. Oldengott, G. Barenboim, S. Kahlen, J. Salvado, and

D. J. Schwarz, J. Cosmol. Astropart. Phys. 04 (2019) 049.
[58] K. Akita, G. Lambiase, and M. Yamaguchi, arXiv:2109

.02900.
[59] Y. Ayaita, M. Baldi, F. Führer, E. Puchwein, and C.

Wetterich, Phys. Rev. D 93, 063511 (2016).
[60] S. Casas, V. Pettorino, and C. Wetterich, Phys. Rev. D 94,

103518 (2016).
[61] N. Sabti, A. Magalich, and A. Filimonova, J. Cosmol.

Astropart. Phys. 11 (2020) 056.

ALVEY, ESCUDERO, SABTI, and SCHWETZ PHYS. REV. D 105, 063501 (2022)

063501-16

https://doi.org/10.1016/S0550-3213(97)00479-3
https://doi.org/10.1016/S0550-3213(97)00479-3
https://doi.org/10.1016/j.nuclphysb.2005.09.041
https://doi.org/10.1088/1475-7516/2016/07/051
https://doi.org/10.1088/1475-7516/2016/07/051
https://doi.org/10.1088/1475-7516/2019/02/007
https://doi.org/10.1088/1475-7516/2021/04/020
https://doi.org/10.1088/1475-7516/2021/04/020
https://doi.org/10.1016/j.physrep.2018.04.005
https://doi.org/10.1016/j.physrep.2018.04.005
https://doi.org/10.1088/1475-7516/2020/03/010
https://doi.org/10.1088/1475-7516/2020/03/010
https://doi.org/10.1088/1475-7516/2020/11/E02
https://doi.org/10.3847/1538-4357/ab91af
https://doi.org/10.3847/1538-4357/aaab53
https://doi.org/10.3847/1538-4357/aaab53
https://doi.org/10.1038/s41586-020-2878-4
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1088/1475-7516/2020/05/048
https://doi.org/10.1088/1475-7516/2020/05/048
https://doi.org/10.1088/1475-7516/2020/08/012
https://doi.org/10.1088/1475-7516/2020/08/012
https://doi.org/10.1088/1475-7516/2021/04/073
https://doi.org/10.1088/1475-7516/2021/04/073
https://doi.org/10.1088/1475-7516/2020/12/015
https://doi.org/10.1088/1475-7516/2020/12/015
https://doi.org/10.1103/PhysRev.128.1457
https://doi.org/10.1088/1475-7516/2007/06/015
https://doi.org/10.1088/1475-7516/2007/06/015
https://arXiv.org/abs/1808.01892
https://arXiv.org/abs/1808.01892
https://doi.org/10.1103/PhysRevD.104.116004
https://doi.org/10.1103/PhysRevD.104.116004
https://arXiv.org/abs/2108.03695
https://doi.org/10.1103/PhysRevD.77.113014
https://doi.org/10.1088/1475-7516/2014/08/038
https://doi.org/10.1088/1475-7516/2014/08/038
https://doi.org/10.1088/1475-7516/2019/07/047
https://doi.org/10.1088/1475-7516/2019/07/047
https://doi.org/10.1140/epjc/s10052-021-09133-5
https://doi.org/10.1140/epjc/s10052-021-09133-5
https://doi.org/10.1016/j.physrep.2021.02.002
https://doi.org/10.1007/JHEP09(2020)178
https://doi.org/10.1007/JHEP02(2021)071
https://doi.org/10.1007/JHEP02(2021)071
https://doi.org/10.1103/PhysRevD.104.083031
https://doi.org/10.1103/PhysRevD.104.083031
https://doi.org/10.1103/PhysRevLett.123.221802
https://doi.org/10.1103/PhysRevLett.123.221802
https://arXiv.org/abs/2105.08533
https://doi.org/10.1088/1361-6471/aa5b4f
https://doi.org/10.1088/1361-6471/aa5b4f
https://doi.org/10.1140/epjst/e2017-70071-y
https://doi.org/10.1103/PhysRevD.104.083504
https://doi.org/10.1103/PhysRevD.104.083504
https://arXiv.org/abs/1611.00036
https://arXiv.org/abs/1611.00036
https://doi.org/10.1007/s41114-017-0010-3
https://doi.org/10.1088/1475-7516/2019/01/059
https://doi.org/10.1088/1475-7516/2019/01/059
https://doi.org/10.1088/1475-7516/2019/01/059
https://doi.org/10.1088/1475-7516/2019/01/059
https://doi.org/10.1088/1475-7516/2019/01/059
https://doi.org/10.1088/1475-7516/2019/01/059
https://doi.org/10.1088/1475-7516/2019/01/059
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.109903
https://doi.org/10.1103/PhysRevLett.125.252502
https://doi.org/10.1103/PhysRevLett.125.252502
https://arXiv.org/abs/2104.06906
https://arXiv.org/abs/2104.06906
https://doi.org/10.1103/PhysRevLett.123.161802
https://doi.org/10.1103/PhysRevLett.123.161802
https://arXiv.org/abs/1910.04688
https://doi.org/10.1088/1475-7516/2022/02/037
https://doi.org/10.1088/1475-7516/2022/02/037
https://doi.org/10.1007/JHEP04(2020)020
https://doi.org/10.1007/JHEP04(2020)020
https://doi.org/10.1007/JHEP12(2020)119
https://doi.org/10.1007/JHEP12(2020)119
https://doi.org/10.1103/PhysRevD.100.103531
https://doi.org/10.1103/PhysRevD.100.103531
https://doi.org/10.1088/1475-7516/2021/03/087
https://doi.org/10.1088/1475-7516/2021/03/087
https://doi.org/10.1103/PhysRevD.103.043519
https://doi.org/10.1103/PhysRevD.103.043519
https://arXiv.org/abs/2112.13862
https://doi.org/10.1103/PhysRevD.93.113002
https://doi.org/10.1103/PhysRevD.93.113002
https://arXiv.org/abs/2112.02107
https://doi.org/10.1103/PhysRevD.99.023501
https://doi.org/10.1103/PhysRevD.104.123518
https://doi.org/10.1103/PhysRevD.104.123518
https://doi.org/10.1088/1475-7516/2021/05/036
https://doi.org/10.1088/1475-7516/2021/05/036
https://doi.org/10.1088/1475-7516/2016/02/058
https://doi.org/10.1088/1475-7516/2016/02/058
https://doi.org/10.1088/1475-7516/2021/02/022
https://doi.org/10.1088/1475-7516/2021/02/022
https://doi.org/10.1103/PhysRevD.71.123501
https://doi.org/10.1103/PhysRevD.71.123501
https://doi.org/10.1088/1475-7516/2019/04/049
https://arXiv.org/abs/2109.02900
https://arXiv.org/abs/2109.02900
https://doi.org/10.1103/PhysRevD.93.063511
https://doi.org/10.1103/PhysRevD.94.103518
https://doi.org/10.1103/PhysRevD.94.103518
https://doi.org/10.1088/1475-7516/2020/11/056
https://doi.org/10.1088/1475-7516/2020/11/056


[62] A. Ringwald and Y. Y. Y. Wong, J. Cosmol. Astropart. Phys.
12 (2004) 005.

[63] P. F. de Salas, S. Gariazzo, J. Lesgourgues, and S. Pastor, J.
Cosmol. Astropart. Phys. 09 (2017) 034.

[64] J. Zhang and X. Zhang, Nat. Commun. 9, 1833
(2018).

[65] P. Mertsch, G. Parimbelli, P. F. de Salas, S. Gariazzo, J.
Lesgourgues, and S. Pastor, J. Cosmol. Astropart. Phys. 01
(2020) 015.

[66] T. Piffl et al., Astron. Astrophys. 562, A91 (2014).
[67] E. Roulet and F. Vissani, J. Cosmol. Astropart. Phys. 10

(2018) 049.
[68] https://github.com/james-alvey-42/DistNuAndPtolemy
[69] P. Ade et al. (Simons Observatory Collaboration), J.

Cosmol. Astropart. Phys. 02 (2019) 056.
[70] L. Amendola, M. Baldi, and C. Wetterich, Phys. Rev. D 78,

023015 (2008).
[71] C. Wetterich, Phys. Lett. B 655, 201 (2007).

[72] V. Pettorino, N. Wintergerst, L. Amendola, and C.
Wetterich, Phys. Rev. D 82, 123001 (2010).

[73] S. Roy Choudhury and S. Hannestad, J. Cosmol. Astropart.
Phys. 07 (2020) 037.

[74] E. Di Valentino, A. Melchiorri, and J. Silk, J. Cosmol.
Astropart. Phys. 01 (2020) 013.

[75] R. Fardon, A. E. Nelson, and N. Weiner, J. Cosmol.
Astropart. Phys. 10 (2004) 005.

[76] R. D. Peccei, Phys. Rev. D 71, 023527 (2005).
[77] N. Afshordi, M. Zaldarriaga, and K. Kohri, Phys. Rev. D 72,

065024 (2005).
[78] A. Y. Smirnov and X.-J. Xu, arXiv:2201.00939.
[79] O. Mikulenko, Y. Cheipesh, V. Cheianov, and A. Boyarsky,

arXiv:2111.09292.
[80] V. Brdar, R. Plestid, and N. Rocco, arXiv:2201.07251.
[81] J. Lesgourgues, arXiv:1104.2932.
[82] D. Blas, J. Lesgourgues, and T. Tram, J. Cosmol. Astropart.

Phys. 07 (2011) 034.

COSMIC NEUTRINO BACKGROUND DETECTION IN LARGE- … PHYS. REV. D 105, 063501 (2022)

063501-17

https://doi.org/10.1088/1475-7516/2004/12/005
https://doi.org/10.1088/1475-7516/2004/12/005
https://doi.org/10.1088/1475-7516/2017/09/034
https://doi.org/10.1088/1475-7516/2017/09/034
https://doi.org/10.1038/s41467-018-04264-y
https://doi.org/10.1038/s41467-018-04264-y
https://doi.org/10.1088/1475-7516/2020/01/015
https://doi.org/10.1088/1475-7516/2020/01/015
https://doi.org/10.1051/0004-6361/201322531
https://doi.org/10.1088/1475-7516/2018/10/049
https://doi.org/10.1088/1475-7516/2018/10/049
https://github.com/james-alvey-42/DistNuAndPtolemy
https://github.com/james-alvey-42/DistNuAndPtolemy
https://doi.org/10.1088/1475-7516/2019/02/056
https://doi.org/10.1088/1475-7516/2019/02/056
https://doi.org/10.1103/PhysRevD.78.023015
https://doi.org/10.1103/PhysRevD.78.023015
https://doi.org/10.1016/j.physletb.2007.08.060
https://doi.org/10.1103/PhysRevD.82.123001
https://doi.org/10.1088/1475-7516/2020/07/037
https://doi.org/10.1088/1475-7516/2020/07/037
https://doi.org/10.1088/1475-7516/2020/01/013
https://doi.org/10.1088/1475-7516/2020/01/013
https://doi.org/10.1088/1475-7516/2004/10/005
https://doi.org/10.1088/1475-7516/2004/10/005
https://doi.org/10.1103/PhysRevD.71.023527
https://doi.org/10.1103/PhysRevD.72.065024
https://doi.org/10.1103/PhysRevD.72.065024
https://arXiv.org/abs/2201.00939
https://arXiv.org/abs/2111.09292
https://arXiv.org/abs/2201.07251
https://arXiv.org/abs/1104.2932
https://doi.org/10.1088/1475-7516/2011/07/034
https://doi.org/10.1088/1475-7516/2011/07/034

