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Abstract  

Masonry is a construction material commonly adopted to build residential structures worldwide. It is 

characterized by several advantages such as high thermal insulation, fire resistance and cost-effectiveness. 
However, past seismic events like the earthquakes in Kashmir (Pakistan, 2005), Chile (2010), L’Aquila 

(Italy, 2009), Amatrice (Italy, 2016) have shown that existing masonry buildings can suffer extensive 

damage under seismic actions until collapse. This poor structural response is generally caused by several 

factors, such as lack of good connections between the structural elements (e.g. walls, floors) and low 

masonry tensile, shear strength. Therefore, the seismic strengthening of existing structures is fundamental 

to sustain the potential ground motion due to the earthquake. 

In this regard, composite materials are widely used for repairing and reinforcing masonry buildings. A 

common technique consists in the application of high-performance textile strips or fabrics to the masonry 

substrate with organic matrices (fibre-reinforced polymers (FRP)) or open textile meshes applied with 

inorganic matrices (fabric-reinforced cementitious matrix (FRCM) or textile-reinforced mortar (TRM)). 

The most adopted continuous fibres to create the composite materials are alkali-resistant (AR) glass, 

carbon, aramid, basalt, or polyparaphenylene benzobisoxazole (PBO). 

It is important to stress that the FRPs have limitations, like heat sensitivity and problematic application on 

wet substrates. They also need surface preparation, and the impermeability of the polymeric matrix may 

induce bond problems with the masonry substrate. Finally, polymers are considered hazardous materials 

that require special handling processes before, during, and after their use. Therefore, cement- or lime 

mortar-based composites have been developed. The organic matrix of the FRP has been replaced with an 

inorganic one to overcome the mentioned application limits. In this regard, the FRCM/TRM have many 

advantages compared to the FRPs, e.g. physical/chemical compatibility with the masonry substrate, 

vapour permeability, high resistance to elevated temperatures and ultraviolet radiation, possible applica-

tion on irregular or wet substrates with minimal or no surface preparation. 

The FRCM/TRM textile component usually is an open mesh of continuous fibre yarns arranged in two or 

more directions. They can be dry, coated, or preimpregnated. The textile grids are completely embedded 

in the matrix, protecting the fibre yarns and ensuring the stress transfer between masonry substrate and 

textile component. The matrices are generally made of fine-grained mortar with Portland cement and dry 

organic polymers. The latter are usually added to improve the setting time, workability, and bond behav-

iour, but they reduce the fire resistance and vapour permeability at the same time. Therefore, their quanti-

ty is generally lower than 5% by weight. 

The reinforcing system presented in this work is named EQ-GRID. It has been developed at the Karlsruhe 

Institute of Technology in Germany to strengthen and retrofit masonry structures. The textile component 

is a multi-axial hybrid grid made of alkali-resistant glass and polypropylene fibres. The matrix is a natural 

hydraulic lime mortar (NHL) explicitly developed for this system. It can penetrate the mesh openings and 

encapsulate the yarns very well. This property is crucial for the bond at the textile-matrix and matrix-

support interface. 

Since the EQ-GRID system aims to improve masonry structures’ strength and inelastic deformation 

capacity, a broad experimental campaign has been performed at the Karlsruhe Institute of Technology in 

Germany. The results are presented and discussed in this work. The test program included tensile tests on 

bare textile samples and composite specimens for each main direction of the grid (vertical, horizontal and 

diagonal) and compression and bending tests on matrix specimens. In this way, the mechanical properties 
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of the EQ-GRID system have been determined. Furthermore, double- and single-lap shear-bond tests have 

been performed to investigate the bonding behaviour of the system applied to standard masonry support. 

The results have shown no premature debonding from the substrate, although the system was applied 

without any mechanical anchorage. Finally, cyclic lateral shear tests have been performed on masonry 

panels in original conditions and strengthened with EQ-GRID to compare the performance of the rein-

forced structural element with the original one. The results have been depicted in terms of shear-drift 

curves, from which equivalent multilinear curves have been determined. 

Moreover, the in-plane shear strength and failure domains of all the tested masonry panels has been 

analytically determined. The increase of in-plane load-bearing capacity due to the EQ-GRID system is 

considered through the proposed modification of the masonry initial shear strength and brick tensile 

strength as well as after the Italian technical standard CNR-DT 215/2018 “Guide for the Design and 

Construction of Externally Bonded Fibre Reinforced Inorganic Matrix Systems for Strengthening Exist-

ing Structures”.  

Furthermore, the cyclic lateral shear tests have been modelled through the Equivalent frame method 

implemented in the TREMURI program. This modelling technique consists of idealizing the walls in a 

frame. Each load-bearing masonry wall is subdivided into a set of deformable masonry panels where the 

nonlinear behaviour and deformation are concentrated. Then, the structural elements are connected by 

rigid nodes that are parts of the wall not usually subjected to damage. 

All the tested masonry panels have been modelled through the nonlinear beam element with lumped 

inelasticity and piecewise behaviour implemented in the program. During the modelling, the strength 

increase due to the system has been calculated after CNR-DT 215/2018. The formulations proposed by 

this standard are implemented in the program and are compatible with the adopted nonlinear beam ele-

ment. 

Finally, two shaking table tests performed on a masonry building model at the Institute of Earthquake 

Engineering and Engineering Seismology (IZIIS) in Skopje have also been modelled with the Equivalent 

frame method. The aim was to reproduce the observed behaviour of the masonry building in its original 

condition and after the seismic retrofitting with EQ-GRID. Therefore, modal analyses, nonlinear mono-

tonic, cyclic static and time-history analyses have been performed. The numerical results have been 

compared to the experimental ones in terms of structural behaviour, achieved damage level, measured 

displacements and accelerations. The results have confirmed the Equivalent frame method as a modelling 

technique suitable for unreinforced masonry buildings and textile reinforced masonry structures. 
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Kurzfassung  

Mauerwerk wird häufig als Material für den Bau von Wohngebäuden auf der ganzen Welt verwendet. Es 

zeichnet sich durch mehrere Vorteile wie hohe Wärmedämmung, Feuerbeständigkeit und Kosteneffizienz 

aus. Allerdings haben vergangene seismische Ereignisse wie die Erdbeben in Kaschmir (Pakistan, 2005), 

Chile (2010), L’Aquila (Italien, 2009), Amatrice (Italien, 2016) gezeigt, dass bestehende Gebäude aus 

Mauerwerk unter seismischen Einwirkungen erhebliche Schäden bis hin zum Einsturz erleiden können. 

Dieses schlechte strukturelle Verhalten wird im Allgemeinen durch mehrere Faktoren verursacht, wie z. 

B. das Fehlen guter Verbindungen zwischen den tragenden Bauteilen (z. B. Wände, Decken) und eine 

geringe Zug- sowie Scherfestigkeit des Mauerwerks. Daher ist die seismische Verstärkung bestehender 

Tragwerke von grundlegender Bedeutung, um den potenziellen Bodenbewegungen infolge eines Erdbe-

bens standzuhalten. 

In dieser Hinsicht werden Verbundwerkstoffe häufig für die statische Sanierung und Verstärkung von 

Mauerwerksbauten verwendet. Eine gängige Technik besteht in der Aufbringung von hochleistungsfähi-

gen Textilstreifen oder Geweben auf das Mauerwerkssubstrat mit organischen Matrizen (faserverstärkte 

Polymere (FRP)) oder offenen Textilgeweben, die mit anorganischen Matrizen (gewebeverstärkte zemen-

täre Matrix (FRCM) oder textilverstärkter Mörtel (TRM)) aufgebracht werden. Die am häufigsten ver-

wendeten Fasermaterialien zur Herstellung der Verbundwerkstoffe sind alkalibeständiges (AR) Glas, 

Kohlenstoff, Aramid, Basalt oder Polyparaphenylenbenzobisoxazol (PBO). 

Allerdings haben die FRPs einige Einschränkungen, wie z.B. Hitzeempfindlichkeit, problematische 

Anwendung auf nassen Substraten. Außerdem benötigen sie eine Oberflächenvorbereitung und die 

Undurchlässigkeit der Polymermatrix kann zu Haftungsproblemen mit dem Mauersubstrat führen. 

Schließlich gelten Polymere als Gefahrstoffe, die vor, während und nach ihrer Verwendung besondere 

Handhabungsprozesse erfordern. Daher wurden Verbundwerkstoffe auf Zement- oder Kalkmörtelbasis 

entwickelt. Um die genannten Anwendungsgrenzen zu überwinden, wurde die organische Matrix des FRP 

durch eine anorganische ersetzt. In dieser Hinsicht haben die FRCM/TRM viele Vorteile gegenüber den 

FRPs, z. B. physikalische/chemische Kompatibilität mit dem Mauerwerkssubstrat, Dampfdurchlässigkeit, 

hohe Beständigkeit gegenüber erhöhten Temperaturen und Ultraviolettstrahlung, mögliche Anwendung 

auf unregelmäßigen oder nassen Substraten mit minimaler oder keiner Oberflächenvorbereitung. 

Die FRCM/TRM-Textilkomponente ist in der Regel ein offenes Gewebe aus Fasergarnen, die in zwei 

oder mehr Richtungen angeordnet sind. Sie können trocken, beschichtet oder vorimprägniert sein. Die 

Textilgitter werden vollständig in die Matrix eingebettet, wodurch die Fasergarne geschützt werden 

können und die Spannungsübertragung zwischen Substrat und Textilkomponente gewährleistet ist. Die 

Matrizen bestehen in der Regel aus feinkörnigem Mörtel mit Portlandzement und trockenen organischen 

Polymeren. Letztere werden in der Regel zugesetzt, um die Abbindezeit, die Verarbeitbarkeit und das 

Verbundverhalten zu verbessern, aber sie reduzieren gleichzeitig den Feuerwiderstand und die 

Dampfdurchlässigkeit. Daher ist im Allgemeinen ihre Menge geringer als 5% im Gewicht. 

Das in dieser Arbeit vorgestellte Verstärkungssystem heißt EQ-GRID. Es wurde am Karlsruher Institut 

für Technologie in Deutschland zur seismischen Verstärkung und Retrofitting von Mauerwerksbauten 

entwickelt. Die Textilkomponente ist ein multiaxiales Hybridgitter aus alkalibeständigen Glas- und 

Polypropylenfasern. Die Matrix ist ein speziell für dieses System entwickelter natürlicher hydraulischer 

Kalkmörtel (NHL). Sie kann die Maschenöffnungen des Gitters durchdringen und die Garne sehr gut 

einkapseln. Diese Eigenschaft ist entscheidend für den Verbund an der Schnittstelle Textil-Matrix und 

Matrix-Substrat. 
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Da das EQ-GRID-System darauf abzielt, die Festigkeit und das unelastische Verformungsvermögen von 

Mauerwerkskonstruktionen zu verbessern, wurde am Karlsruher Institut für Technologie in Deutschland 

eine umfangreiche Versuchskampagne durchgeführt. Die Ergebnisse werden in dieser Arbeit vorgestellt 

und diskutiert. Das Versuchsprogramm umfasste Zugversuche an Textilproben und Verbundwerkstoff-

proben für jede Hauptrichtung des Gitters (vertikal, horizontal und diagonal) sowie Druck- und Biegever-

suche an Matrixproben. Daher wurden die mechanischen Eigenschaften des EQ-GRID Systems bestimmt. 

Darüber hinaus wurden doppel- und einlagige Scherverbundversuche durchgeführt, um das Verbundver-

halten des Systems auf Standardmauerwerksziegel zu untersuchen. Die Ergebnisse haben keine vorzeitige 

Ablösung vom Untergrund gezeigt, obwohl das System ohne mechanische Verankerung aufgebracht 

wurde. Schließlich wurden zyklische Schubversuche an Mauerwerkswände im Originalzustand und mit 

EQ-GRID verstärkt durchgeführt, um die Leistungsfähigkeit des verstärkten Bauteils mit dem Original zu 

vergleichen. Die Ergebnisse wurden in Form von Schub-Drift-Kurven dargestellt, aus denen äquivalente 

multilineare Kurven ermittelt wurden. 

Außerdem wurden der Schubwiderstand und die Tragfähigkeitsdiagramme aller getesteten Mauerwerks-

wände analytisch bestimmt. Die durch das EQ-GRID System Erhöhung der Tragfähigkeit wird durch die 

vorgeschlagene Modifikation der Anfangsscherfestigkeit des Mauerwerks und der Steinzugfestigkeit 

sowie nach der italienischen technischen Norm CNR-DT 215/2018 “Guide for the Design and Construc-

tion of Externally Bonded Fibre Reinforced Inorganic Matrix Systems for Strengthening Existing Struc-

tures” berechnet.  

Darüber hinaus wurden die zyklischen Schubversuche durch die im Programm TREMURI implementierte 

“Equivalent Frame” Methode modelliert. Diese Modellierungstechnik besteht darin, die Wände in einem 

Rahmen zu idealisieren. Jede tragende Mauerwerkswand wird in verformbaren Mauerwerkselementen 

unterteilt, in denen das nichtlineare Verhalten und die Verformung konzentriert sind. Dann werden die 

Mauerwerkselemente durch starre Knoten verbunden, die Teile der Wand sind, die normalerweise nicht 

beschädigt werden. 

Alle untersuchten Mauerwerkswände wurden durch das im Programm implementierte nichtlineare Bal-

kenelement mit konzentrierter Unelastizität und multilinearem Verhalten modelliert. Die durch das 

System erhörte Tragfähigkeit wurde nach CNR-DT 215/2018 berechnet. Die von dieser Norm vorge-

schlagenen Formeln sind im Programm implementiert und sind mit dem angewendeten nichtlinearen 

Balkenelement kompatibel. 

Schließlich wurden zwei Rütteltischversuche, die an einem Gebäudemodell aus Mauerwerk am Institut 

für Erdbebeningenieurwesen und Ingenieurseismologie (IZIIS) in Skopje durchgeführt wurden, ebenfalls 

mit der “Equivalent Frame” Methode modelliert. Ziel war es, das beobachtete Verhalten des Gebäudemo-

dells im Originalzustand und nach der seismischen Ertüchtigung mit EQ-GRID numerisch zu reproduzie-

ren. Dazu wurden Modalanalysen, nichtlineare monotone, zyklische statische und dynamische Analysen 

durchgeführt. Die numerischen Ergebnisse wurden mit den Experimentellen hinsichtlich des Strukturver-

haltens, des erreichten Schadensniveaus und der gemessenen Verschiebungen und Beschleunigungen 

verglichen. Die Ergebnisse konnten bestätigen, dass die “Equivalent Frame” Methode eine geeignete 

Modellierungstechnik für unbewehrte sowie textilbewehrte Mauerwerksbauten ist. 
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Notation and list of abbreviations 

Capital Latin letters 

A cross-sectional area of the masonry panel 

AAR equivalent cross-sectional area of the EQ-GRID AR glass yarns 

Aenv.3 area below the experimental in-plane shear force-horizontal displacement curve until DL3 

Aenv.4 area below the experimental in-plane shear force-horizontal displacement curve between 

DL3 and DL4 

 Aenv.5 area below the experimental in-plane shear force-horizontal displacement curve between 

DL4 and DL5 

Aeq equivalent cross-sectional area of EQ-GRID homogenized to the glass fibre 

Af equivalent cross-sectional area of the FRCM mesh reinforcement 

Afloor,1 area of the 1st floor of the masonry building model tested on the shaking table in Skopje 

Afloor,2 area of the 2nd floor of the masonry building model tested on the shaking table in Skopje 

Amult.3 area below the equivalent multilinear curve until DL3 

Amult.4 area below the equivalent multilinear curve between DL3 and DL4 

Amult.5 area below the equivalent multilinear curve between DL4 and DL5 

APP equivalent cross-sectional area of the EQ-GRID polypropylene yarns 

At area of the three-nodes orthotropic membrane element implemented in TREMURI 

[Bi] shape matrix defined in node i of the three-nodes orthotropic membrane element imple-

mented in TREMURI 

[Bj] shape matrix defined in node j of the three-nodes orthotropic membrane element imple-

mented in TREMURI 

[ D


] deformability matrix of the three-nodes orthotropic membrane element implemented in 

TREMURI 

[D] deformability matrix of the three-nodes orthotropic membrane element in the rotated 

configuration to take into account the actual orientation of the diaphragm 

[De] rigid end matrix of the masonry element implemented in TREMURI 

E Young’s modulus perpendicular to the bed joints of the masonry element implemented in 

TREMURI 

EAR elastic tensile modulus of AR glass fibre yarns of the EQ-GRID mesh (avg.) 

Ecraked tensile modulus of elasticity of the cracked FRCM (avg.) 

Ef tensile elastic modulus of the FRCM mesh (avg.) 

Ef,d secant tensile elastic modulus of the EQ-GRID mesh in the diagonal direction (avg.) 
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Ef,h secant tensile elastic modulus of the EQ-GRID mesh in the horizontal direction (avg.) 

Ef,v secant tensile elastic modulus of the EQ-GRID mesh in the vertical direction (avg.) 

EKS Young’s modulus perpendicular to the bed joints of the tested calcium-silicate brick mason-

ry panels (avg.) 

EM compressive elastic modulus of the EQ-GRID mortar matrix (avg.) 

EPP elastic tensile modulus of polypropylene fibre yarns of the EQ-GRID mesh (avg.) 

Esec secant Young’s modulus of the tested masory panels  

Euncracked tensile modulus of elasticity of uncracked FRCM (avg.) 

EWZI Young’s modulus perpendicular to the bed joints of the tested hollow clay brick masonry 

panels (avg.) 

E1 Young’s modulus of the horizontal diaphragms in the floor spanning orientation in TREM-

URI 

E2 Young’s modulus of the horizontal diaphragms perpendicular to the floor spanning orienta-

tion in TREMURI 

E// Young’s modulus parallel to the bed joints of the masonry element implemented in 

TREMURI 

F axial tensile force 

FAR axial tensile force in the AR glass fibre yarns of EQ-GRID 

Fcr,m first cracking tensile load of the EQ-GRID composite specimens (avg.) 

F1
h reactive force in the x-direction acting on the 2D fictitious node of the wall 1 in TREMURI  

F2
h reactive force in the x-direction acting on the 2D fictitious node of the wall 2 in TREMURI 

Fm resultant compressive load during the in-plane bending failure of an FRCM strengthened 

panel 

Fm
* resultant compressive load when both masonry and FRCM attain their ultimate tensile 

strain during the in-plane bending failure of an FRCM strengthened panel 

Fm,u,0…4 resultant compressive load at the in-plane bending failure modes 0, 1, 2, 3, 4 of a masonry 

panel strengthened with EQ-GRID 

FPP axial tensile force in the polypropylene fibre yarns of EQ-GRID 

Ft resultant tensile load during the in-plane bending failure of an FRCM strengthened panel 

Ft
* resultant tensile load when both masonry and FRCM attain their ultimate tensile strain 

during the in-plane bending failure of an FRCM strengthened panel 

Ft,u,0…4 resultant tensile load at the in-plane bending failure modes 0, 1, 2, 3, 4 of a masonry panel 

strengthened with EQ-GRID 

Fu ultimate axial tensile force 

F1
v reactive force in the z-direction acting on the 2D fictitious node of the wall 1 in TREMURI  

F2
v reactive force in the z-direction acting on the 2D fictitious node of the wall 2 in TREMURI 

Fx reactive force in the global X-direction transmitted by the masonry element to the 2D 

fictitious node in TREMURI 
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Fy reactive force in the global Y-direction transmitted by the masonry element to the 2D 

fictitious node in TREMURI  

Fz reactive force in the global Z-direction transmitted by the masonry element to the 2D 

fictitious node in TREMURI  

G elastic shear modulus 

GKS elastic shear modulus of the tested calcium-silicate brick masonry panels (avg.) 

GWZI elastic shear modulus of the tested hollow clay brick masonry panels (avg.) 

Gw  masonry panel’s self-weight 

G12 elastic shear modulus of the horizontal diaphragms in TREMURI 

H limit dimension of the design length lf (CNR-DT 215/2018) 

Hp minimum between the tensile resistance of the stretched interposed element inside the 

spandrel and 
,0.4 mh uf h t    

[Ke] elastic stiffness matrix of the masonry element implemented in TREMURI 

[Ke] elastic stiffness matrix of the three-nodes orthotropic membrane element implemented in 

TREMURI 

[Kij
e] component ij of the elastic stiffness matrix [Ke] 

I moment of inertia of the masonry panel 

L length of the masonry wall 

M in-plane bending moment 

Mf contribution of the FRCM system to nominal flexural strength of the panel according to 

ACI 459.4R-13 

Mi bending moment acting in node i of the masonry element implemented in TREMURI 

MI
 X mass component in the global X-direction of the 3D rigid node I of the Equivalent frame in 

TREMURI 

MI
 Y mass component in the global Y-direction of the 3D rigid node I of the Equivalent frame in 

TREMURI 

Mj bending moment acting in node j of the masonry element implemented in TREMURI 

Mn nominal flexural strength of the FRCM reinforced masonry panel according to ACI 

459.4R-13 

Mx reactive moment about the global X-direction transmitted by the masonry element to the 2D 

fictitious node in TREMURI 

My reactive moment about the global Y-direction transmitted by the masonry element to the 2D 

fictitious node in TREMURI 

MRd ultimate in-plane bending moment of a URM panel 

MRd,s ultimate in-plane bending moment of a masonry panel strengthened with FRCM according 

to CNR DT-215/2018 
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MRd,s,0…4 ultimate in-plane bending moment of a masonry panel strengthened with EQ-GRID at the 

flexural failure modes 0, 1, 2, 3, 4 

M1 reactive moment acting on the 2D fictitious node of wall 1 in TREMURI  

M2 reactive moment acting on the 2D fictitious node of wall 2 in TREMURI 

N normal force 

Ni normal force acting in node i of the masonry element implemented in TREMURI 

Nj normal force acting in node j of the masonry element implemented in TREMURI 

NRd,s ultimate normal force of a masonry panel strengthened with FRCM under flexural failure 

NRd,s,0...4 ultimate normal force of a masonry panel strengthened with EQ-GRID at the flexural 

failure modes 0, 1, 2, 3, 4 

Nv normal force applied by the vertical actuator during the cyclic lateral shear tests 

Nv1 vertical force developed in one threaded bar positioned on the left of the specimen during 

the cyclic lateral shear tests 

Nv2 vertical force developed in one threaded bars positioned on the rigth of the specimen during 

the cyclic lateral shear tests 

[R] rotation matrix 

T period 

Tx Tex, yarn count expressed in [g/km] 

T1 first period of the masonry building model tested on the shaking table in Skopje measured 

before testing 

T1
* first period of the masonry building model tested on the shaking table in Skopje measured 

after testing 

T4 fourth period of the masonry building model tested on the shaking table in Skopje 

V in-plane shear force  

VBase shear force at the base of the masonry building model in TREMURI 

VDL3 experimental residual lateral strength of the tested masonry panels at the achievement of 

DL3 

VDL4 experimental residual lateral strength of the tested masonry panels at the achievement of 

DL4 

VDL5 experimental residual lateral strength of the tested masonry panels at the achievement of 

DL5 

VEd experimental values of the in-plane shear force recorded during the cyclic lateral shear tests 

Vf contribution of FRCM to nominal shear strength according to ACI 459.4R-13 

Vm contribution of the unreinforced masonry to the nominal shear strength according to ACI 

459.4R-13 
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Vmax experimental maximum in-plane shear force achieved by the tested “WZI” and “KS” 

masonry panels 

Vi in-plane shear force acting in node i of the masonry element implemented in TREMURI 

Vj in-plane shear force acting in node j of the masonry element implemented in TREMURI 

Vj,max maximum value of the in-plane shear force acting in node j of the masonry element imple-

mented in TREMURI 

Vn nominal shear strength after ACI 459.4R-13 

VF
n in-plane ultimate shear force of an FRCM strengthened panel under bending failure (ACI 

459.4R-13) 

Vt in-plane shear strength of the unreinforced masonry panel (diagonal cracking) 

Vt,f increase of the in-plane shear strength of a masonry panel due to the FRCM after CNR-DT 

215/2018 

Vt,lim upper limit of the in-plane shear strength of the unreinforced masonry panel  (diagonal 

cracking) 

Vt,lim,mod modified upper limit of the in-plane shear strength of a masonry panel strengthened with 

EQ-GRID  (diagonal cracking) 

Vt,mod modified in-plane shear strength of a masonry panel strengthened with EQ-GRID (diagonal 

cracking) 

VRd in-plane ultimate shear strength of a URM panel 

VF
Rd in-plane ultimate shear force of a URM panel under bending failure 

VRd,mod modified in-plane ultimate shear strength of a masory panel strengthened with EQ-GRID 

VRd,s in-plane ultimate shear strength of the FRCM reinforced masonry panel according to CNR-

DT 215/2018 

VF
Rd,s in-plane ultimate shear force of an FRCM strengthened panel under bending failure (CNR-

DT 215/2018) 

Vres,i residual lateral strength in the multilinear constitutive law of the ML-BEAM element at the 

achievement of the ith DL 

Vres,3 residual lateral strength in the multilinear constitutive law of the ML-BEAM element at the 

achievement of DL3 

Vres,4 residual lateral strength in the multilinear constitutive law of the ML-BEAM element at the 

achievement of DL4 

Vt,c in-plane masonry crushing capacity of a textile-reinforced panel after CNR-DT 215/2018 

Vu in-plane ultimate shear force of the equivalent bilinear curve 

Vu,3 in-plane ultimate shear force of the equivalent multilinear curve (DL2-DL3) 

Vu,4 in-plane ultimate shear force of the equivalent multilinear curve (DL3-DL4) 

Vu,5 in-plane ultimate shear force of the equivalent multilinear curve (DL4-DL5) 

VURM in-plane ultimate shear strength of a URM masonry panel under diagonal cracking (CNR-

DT 215/2018) 
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Vwalls,x volume of the masonry walls positioned in the x-direction of the building model tested on 

the shaking table in Skopje 

Vwalls,y  volume of the masonry walls positioned in the y-direction of the building model tested on 

the shaking table in Skopje 

V1 in-plane shear force equal to 0.7Vmax 

 

Lower-case Latin letters 

a distance between the threaded bars and the centre of the masonry panels in the cyclic lateral 

shear tests 

ainput maximum absolute value of the earthquake acceleration applied at the base of the masonry 

building model tested on the shaking table in Skopje 

a1 first factor that defines the admissible range in the V – N domain of a masonry panel, in 

which the hybrid failure mode is possible 

a2 second factor that defines the admissible range in the V – N domain of a masonry panel, in 

which the hybrid failure mode is possible 

b shear stress distribution factor at the centre of a masonry panel 

bf width of the textile grid 

c mortar joints’ cohesion  

c1 coefficient that aims to degrade the stiffness kU
+ of the the ML-BEAM element with respect 

to the secant one ksec  

c2 coefficient that can further degrade the stiffness kU
+ through the progressive strength decay 

βE,i reached by the ML-BEAM element 

c3 coefficient that fixes the point B+ of the horizontal branch in the unloading curve of the 

ML-BEAM element 

c4 coefficient that defines the extension of point B+ - C+ branch in the unloading curve of the 

ML-BEAM element 

d drift value 

df distance between the compressed edge of the masonry panel and the fibre of the reinforce-

ment that attains the highest tensile strain 

di drift value of a masonry panel at the attainment of the ith DL 

d2 drift value of the tested masonry panels at the achievement of the DL2 

d2,S drift value of the masonry elements in TREMURI at the achievement of DL2 (shear failure) 

d2,F drift value of the masonry elements in TREMURI at the achievement of DL2 (flexural 

failure) 

d3 drift value of the tested masonry panels at the achievement of the DL3 

d3,S drift value of the masonry elements in TREMURI at the achievement of DL3 (shear failure) 

d3,F drift value of the masonry elements in TREMURI at the achievement of DL3 (flexural 

failure) 
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d4 drift value of the tested masonry panels at the achievement of the DL4 

d4,S drift value of the masonry elements in TREMURI at the achievement of DL4 (shear failure) 

d4,F drift value of the masonry elements in TREMURI at the achievement of DL4 (flexural 

failure) 

d5 drift value of the tested masonry panels at the achievement of the DL5 

d5,S drift value of the masonry elements in TREMURI at the achievement of DL5 (shear failure) 

d5,F drift value of the masonry elements in TREMURI at the achievement of DL5 (flexural 

failure) 

e load eccentricity 

ebottom eccentricity of the normal force acting at the bottom toe of a masonry pier 

{e}T transpose of the strain vector of the three-nodes orthotropic membrane element implement-

ed in TREMURI 

f frequency 

fb brick compressive strength (avg.) 

fb,KS calcium-silicate brick compressive strength 

fbond,double,max maximum shear-bond stress obtained from each double-lap shear-bond test 

fbond,single,m maximum shear-bond stress obtained from the single-lap shear-bond test (avg.) 

fb,WZI hollow clay brick compressive strength 

fbt brick tensile strength (avg.) 

fbt,cal brick tensile strength according to DIN EN 1996-1-1/NA (char.) 

fbt,KS calcium-silicate brick tensile strength 

fbt,KS,s1 calcium-silicate brick tensile strength modified through the EQ-GRID system’s tensile 

strength in the case of one side application (avg.) 

fbt,KS,s2 calcium-silicate brick tensile strength modified through the EQ-GRID system’s tensile 

strength in the case of two sides application (avg.) 

fbt,s brick tensile strength modified through the EQ-GRID system’s tensile strength (avg.) 

fbt,WZI hollow clay brick tensile strength 

fbt,WZI,s1 hollow clay brick tensile strength modified through the EQ-GRID system’s tensile strength 

in the case of one side application (avg.) 

fbt,WZI,s2 hollow clay brick tensile strength modified through the EQ-GRID system’s tensile strength 

in the case of two sides application (avg.) 

fclamping,cr first cracking tensile stress of the EQ-GRID composite specimens tested with clamping 

grips (avg.)  

fclamping,u ultimate tensile strength of the EQ-GRID composite specimens tested with clamping grips 

(avg.)  

fclevis,cr first cracking tensile stress of the EQ-GRID composite specimens tested with clevis-type 

grips (avg.)  
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fclevis,u ultimate tensile strength of the EQ-GRID composite specimens tested with clevis-type grips 

(avg.)  

fc,M EQ-GRID matrix compressive strength after 28 days (avg.) 

fcr cracking tensile stress in the equivalent bilinear diagram of an FRCM system after ACI 

459.4R-13 

fcr,M first cracking tensile stress of the EQ-GRID matrix (avg.) 

fd design tensile strength of the FRCM 

fe design tensile strength of the FRCM reinforcement after ACI 459.4R-13 (flexural failure) 

ffv design tensile strength of the FRCM reinforcement after ACI 459.4R-13 (shear failure) 

fM mortar compressive strength (avg.) 

fM,t mortar flexural tensile strength (avg.) 

fmh,u masonry ultimate compressive strength in the direction parallel to the bed joints 

fm,k,KS ultimate compressive strength in the direction normal to the bed joints of the tested calci-

um-silicate brick masonry panels (char.) 

fm,k,WZI ultimate compressive strength in the direction normal to the bed joints of the tested hollow 

clay brick masonry panels (char.) 

fm,t masonry referential (diagonal) tensile strength 

fmt,u ultimate equivalent tensile strength of a URM spandrel  

fmt,u1 equivalent tensile strength of a URM spandrel associated with the block’s tensile strength 

fmt,u2 equivalent tensile strength of a URM spandrel associated with the mortar joints’ failure 

fm,u masonry ultimate compressive strength in the direction normal to the bed joints 

fm,u,KS ultimate compressive strength in the direction normal to the bed joints of the tested calci-

um-silicate brick masonry panels (avg.) 

fm,u,WZI ultimate compressive strength in the direction normal to the bed joints of the tested hollow 

clay brick masonry panels (avg.) 

fp EQ-GRID matrix pull-off strength 

ft conventional tensile strength of the EQ-GRID system in the case of flexural failure of a 

masonry pier 

ft,M EQ-GRID matrix tensile bending strength stress after 28 days (avg.) 

ft,u conventional tensile strength limit of the EQ-GRID system in the case of flexural failure of 

a masonry pier 

fu ultimate tensile strength of an FRCM obtained from the direct tensile tests with clevis-type 

grips (ACI 459.4R-13) 

fv masonry shear strength  

fv0 masonry initial shear strength 

fv0,red reduced masonry initial shear strength 

fvlt1 masonry shear strength (mortar joints’ failure) according to DIN EN 1996-1-1/NA (char.) 
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fvlt2 masonry shear strength (brick’s tensile failure) according to DIN EN 1996-1-1/NA (char.) 

fvlt ultimate masonry shear strength according to DIN EN 1996-1-1/NA (char.) 

fvm0 masonry initial shear strength (avg.) 

fvm0,KS initial shear strength of the calcium-silicate brick masonry (avg.) 

fvm0,KS,s1 initial shear strength of the calcium silicate brick masonry modified through the tensile 

strength of the EQ-GRID system in the case of one side application (avg.) 

fvm0,KS,s2 initial shear strength of the calcium silicate brick masonry modified through the tensile 

strength of the EQ-GRID system in the case of two sides application (avg.) 

fvm0,red,KS reduced initial shear strength of the calcium-silicate brick masonry (avg.) 

fvm0,red,WZI reduced initial shear strength of the hollow clay brick masonry (avg.) 

fvm0,s masonry initial shear strength modified through the tensile strength of the EQ-GRID system 

(avg.) 

fvm0,WZI initial shear strength of the hollow clay brick masonry (avg.) 

fvm0,WZI,s1 initial shear strength of the hollow clay brick masonry modified through the tensile strength 

of the EQ-GRID system in the case of one side application (avg.) 

fvm0,WZI,s2 initial shear strength of the hollow clay brick masonry modified through the tensile strength 

of the EQ-GRID system in the case of two sides application (avg.) 

g mortar joint thickness 

h height of the masonry panel 

h’ shear length defined as the distance between the masonry panel’s end section and that with 

zero moment 

hfloor,1 thickness of the 1st floor of the masonry building model tested on the shaking table in 

Skopje 

hfloor,2 thickness of the 2nd floor of the masonry building model tested on the shaking table in 

Skopje 

hs total thickness of the EQ-GRID composite specimens  

h1 heigth of the 1st floor of the masonry building model tested on the shaking table in Skopje 

h2 height of the 2nd floor of the masonry building model tested on the shaking table in Skopje 

k coefficient that accounts for the boundary condition of a masonry panel 

kel elastic stiffness of the ML-BEAM element implemented in TREMURI 

kL stiffness of the ML-BEAM element between the unloading and loading phases (from C+ to 

A-) 

kn factor recommended by Annex D of Eurocode 0 to calculate the characteristic values of 

mechanical properties  

ksec elastic secant stiffness 

kU
+ ML-BEAM element’s stiffness in the unloading phase (positive quadrant from A+ to C+) 

kU- ML-BEAM element’s stiffness in the unloading phase (negative quadrant from A- to C-) 
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k0 ratio between the shear force at the end of the initial elastic phase and the shear strength VRd 

(VRd,s) of the ML-BEAM element implemented in TREMURI 

i node of the masonry element implemented in TREMURI  

j node of the masonry element implemented in TREMURI 

l length of the masonry panel 

lc uncracked section length of the masonry panel 

lf design length of the applied FRCM effective in shear after CNR-DT 215/2018 

lI distance between the 2D node with mass m and the 3D node I of the Equivalent frame in 

TREMURI 

m mass of the 2D node belonging to the Equivalent frame in TREMURI 

mfloor,1 mass of the 1st floor of the masonry building model tested on the shaking table in Skopje 

mfloor,2 mass of the 2nd floor of the masonry building model tested on the shaking table in Skopje 

mtot total mass of the masonry building model tested on the shaking table in Skopje 

mwalls,x mass of the masonry walls positioned in the x-direction of the building model tested on the 

shaking table in Skopje 

mwalls,y  mass of the masonry walls positioned in the y-direction of the building model tested on the 

shaking table in Skopje 

mx modal mass in the x-direction 

my modal mass in the y-direction 

mo seismic mass at the base of the masonry building model tested on the shaking table in 

Skopje 

m1 seismic mass at the 1st floor of the masonry building model tested on the shaking table in 

Skopje 

m2 seismic mass at the 2nd floor of the masonry building model tested on the shaking table in 

Skopje 

m12 ratio between E1 and E2 

n homogenization coefficient defined as the ratio between the elastic modulus of the polypro-

pylene EPP and that of the AR glass EAR 

nd homogenization coefficient for the diagonal direction of the EQ-GRID system 

nf number of layers of mesh reinforcement 

nh homogenization coefficient for the horizontal direction of the EQ-GRID system 

nspecimen number of tested specimens 

nv homogenization coefficient for the vertical direction of the EQ-GRID system 

ny number of yarns per unit width expressed in [n°/cm] 

{q} vector of the nodal actions 

s equivalent thickness assumed for the three-nodes orthotropic membrane element imple-

mented in TREMURI 
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{s}T transpose of the stress vector of the three-nodes orthotropic membrane element implement-

ed in TREMURI 

t thickness of a masonry panel 

teq equivalent thickness of EQ-GRID homogenized to the glass fibre 

teq,d equivalent thickness in the diagonal direction of EQ-GRID homogenized to the glass fibre  

teq,h equivalent thickness in the horizontal direction of EQ-GRID homogenized to the glass fibre  

teq,v equivalent thickness in the vertical direction of EQ-GRID homogenized to the glass fibre  

tf equivalent thickness of the FRCM mesh reinforcement 

tf,b equivalent thickness of one textile layer with fibres arranged parallel to panel’s axis, which 

is effective during the in-plane bending failure  

tf,s equivalent thickness of one textile layer with fibres arranged parallel to the shear force 

(CNR-DT 215/2018  

tM thickness of the vertical and horizontal mortar joints 

vmax maximum vertical displacement recorded during the double-lap shear-bond tests 

u horizontal displacement of the fictitious 2D node belonging to the generic wall in the 

Equivalent frame method implemented in TREMURI 

uel,1 experimental horizontal displacement at V1, measured at the top of the tested masonry 

panels 

uel,2 elastic limit of the horizontal displacement in the equivalent bilinear or multilinear curve 

ui horizontal displacement of node i of the masonry element implemented in TREMURI 

uj horizontal displacement of node j of the masonry element implemented in TREMURI 

uj,e elastic horizontal displacement of node j of the masonry element implemented in TREMU-

RI 

uj,e,F elastic horizontal displacement of node j of the masonry element implemented in TREMU-

RI considering the flexural stiffness 

uj,e,S elastic horizontal displacement of node j of the masonry element implemented in TREMU-

RI considering the shear stiffness 

uu ultimate horizontal displacement in the equivalent bilinear curve 

ux displacement in the x-direction 

uy displacement in the y-direction 

uz displacement in the z-direction 

u1 horizontal displacement of the barycenter of the rigid node 1 in the equivalent frame sche-

matization in TREMURI 

u2 horizontal displacement of the barycenter of the rigid node 2 in the equivalent frame sche-

matization in TREMURI 

u3 horizontal displacement at the achievement of DL3 in the equivalent multilinear curve 
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u4 horizontal displacement at the achievement of DL4 in the equivalent multilinear curve 
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1 Structural behaviour and 
modelling of unreinforced 
masonry buildings under seismic 
actions 

1.1 Behaviour of masonry structures under seismic 
actions 

A significant portion of the residential structures in Europe and large areas of Asia and South America 

consists of masonry buildings. Today, it is common to construct residential buildings composed of load-

bearing masonry brick walls. However, many masonry structures are built in the past and often in high 

seismic hazard areas. Despite the different technological aspects, such as materials and geometric propor-

tions, which depend on the construction place, historical period, and intended original use, defining a 

common structural behaviour is possible. Therefore, the fundamental step to perform the modelling of a 

masonry structure as close as possible to reality and effective for seismic verification is to identify the 

main characteristics of the masonry buildings’ seismic response. From observing the damage, it is possi-

ble to understand how the behaviour under seismic actions strongly depends on different typological-

constructive aspects. 

The damage mechanisms observed in buildings can be essentially divided into two categories depending 

on the response of the walls (Figure 1.1): 

• Mode I; 

• Mode II [1]. 

 

Figure 1.1: Damage modes of masonry walls [2] 
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Mode I concerns all the failure kinematics connected to a masonry wall’s behaviour perpendicular to its 

plane (flexural and overturning behaviour). On the contrary, Mode II regards the wall’s response in its 

plane with damage typically due to shear and bending (rocking) failure. 

The activation of these collapse modes strongly depends on the building’s global behaviour, which is a 

function of its typological and technological characteristics. Therefore, identifying the main structural 

elements resistant to seismic actions is important to investigate their influence on global behaviour. 

Several load-bearing structural elements are common in masonry construction: walls, floors, vaults and 

roofs. It is important to stress that almost all the existing masonry buildings are designed to resist in an 

optimal way to the vertical actions. However, a seismic event generates horizontal forces that cause 

bending stresses in the walls, arches and vaults, which work mainly in compression. If no suitable ele-

ments are present to withstand these actions, serious damages may occur in the whole building or only in 

a part of it (local collapses). 

Moreover, the global seismic behaviour of a building is strongly influenced by each structural elements’ 

mechanical properties and the degree of connection between them. An earthquake generates complex 

dynamic actions due to the ground’s motion and the structure’s response during the seismic event. Under 

the same acceleration measured at the basis, very different stress levels can occur in the structural ele-

ments based on the building’s characteristics (stiffness, damping, strength). It is important to specify that 

these properties can also change during the seismic event due to the cracking and partialization phenome-

na of the resistant sections. 

Moreover, low values of the fundamental period and damping generally lead to a strong amplification of 

the ground’s accelerations. Since the masonry buildings are usually squat and have high translational 

stiffness, they can show very low values of the fundamental period, causing an amplification of the input 

accelerations and the inertia forces that stress the structure. However, the building inevitably cracks 

during a seismic event, increasing its deformability. In this case, the period shifts towards higher values 

attenuating the initial amplification. Moreover, the development of the crack pattern generally contributes 

to raising the damping levels. Despite the masonry elements’ limited ductility, the structure can progres-

sively adapt to the stresses induced from the seismic input accompanying the ground’s motion and limit-

ing its catastrophic effects. Therefore, if the masonry building’s design is carried out by considering this 

adaptability, the structure’s reliability in resisting seismic actions can be improved. 

Furthermore, the concept of box-like behaviour is the basis of a correct structural design of masonry 

buildings. The vertical resistant elements, i.e. the walls, must be effectively connected by the horizontal 

components, i.e. the floors, to guarantee a box-like behaviour. The good performance shown by the 

masonry buildings properly constructed confirms that this design concept allows reaching an excellent 

global resistance. The structure can resist the actions coming from any direction. 

Moreover, observing the damage suffered by masonry constructions during seismic events, it is possible 

to conclude that an earthquake does not randomly damage a building. It rather selects the weakest struc-

tural elements, causing their cracking or collapse. For example, a bad connection between the parts that 

constitute the whole structure can cause a low global stiffness that prevents withstanding the seismic 

actions correctly. Furthermore, flexible floors not properly connected to the walls and inadequate connec-

tions between the vertical walls make it impossible or insufficient to distribute the forces acting on the 

building. Thus, local actions are generated on the walls, making those arranged orthogonally to the 

earthquake’s direction more vulnerable and, if they are not properly connected to the adjacent ones, they 

can risk overturning. In this regard, Figure 1.2 shows the variation of the structural behaviour induced by 

different degrees of connection between the structural parts and floors’ stiffness.  
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Figure 1.2: Influence of the constraint degree between the walls on the seismic response: (a) unconstrained; (b) constrained with 

flexible horizontal diaphragm; (c) constrained with stiff horizontal diaphragm [3] 

It is important to highlight that the whole structure, the elements’ size and shape can be decisive in 

activating the global and local failure mechanisms. The presence of altimetric and planimetric irregulari-

ties is an aspect that must be taken into account.  

Moreover, the occurrence of the out-of-plane overturning mechanism is strongly reduced in case of good 

constraint conditions, and it can be further reduced in case of a good connection with the floors. For 

example,  Figure 1.3 and Figure 1.4 show how it is possible to limit the occurrence of mode I mechanisms 

even with local interventions, such as the placement of steel tie-rods. In this case, the vulnerability is 

reduced by transferring the façade’s out-of-plane response to the spine walls’ in-plane response. 

 

Figure 1.3: Façade’s out-of-plane overturning mechanisms: (1) without any connection with the spine wall, (2) connection with 

the spine wall, (3) presence of a steel tie-rod [1] 

 

Figure 1.4: Changing of the failure mechanism without and with steel tie-rods (from Mode I to Mode II), [1] 
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The box-like behaviour allows defining a building’s global vulnerability, depending on the entire struc-

tural seismic response. The latter is governed by the walls’ in-plane response, connection degree, and 

floors’ stiffness. Therefore, it is important to analyze the walls’ in-plane response, examine the possible 

failure mechanisms, and use adequate calculation tools to investigate the building’s three-dimensional 

behaviour. 

Concerning the horizontal actions, it is possible to consider the masonry wall as an assembly of panels. 

Observing the damage induced by real earthquakes and analysing experimental data have shown that the 

damage is typically concentrated in well-defined portions of a wall: the vertical panels (masonry piers) 

and the coupling masonry beams (spandrels). On the other hand, the connection areas between the piers 

and spandrels are generally not cracked (Figure 1.5). 

 

Figure 1.5: Examples of in-plane failure mechanisms of masonry walls [3] 

These observations allow introducing the so-called equivalent frame modelling for masonry buildings, 

discussed in detail in § 1.5. Finally, any possible local failure related to the Mode I mechanism should be 

considered even in the case of box-like behaviour, as some local failures can occur in unconstrained 

portions of walls or if the in-plane local ductility demands exceed those available [4]. 

1.2 Modelling strategies of masonry structures 

Several modelling strategies for the masonry structures are available in the literature depending on the 

model’s scale. In this context, a distinction can be made between the finite element method (f.e.m.) and 

the macro-modelling. In the first category, the masonry behaviour is reproduced by adopting appropriate 

nonlinear constitutive material laws, and two different finite element modelling approaches are possible: 

discrete and continuous (Figure 1.6). 

The discrete approach consists of the micro-modelling of masonry. The mortar joints and blocks are 

considered distinct units, in which their interface can be modelled through discontinuous elements or 

condensed into a single interface element. However, this type of modelling requires a broad knowledge of 

the individual components’ mechanical properties, and a considerable computational effort is necessary. 

Therefore, the micro-modelling is suitable only for small structures subjected to heterogeneous stress and 

deformation states. 
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Figure 1.6: Different modelling approaches of masonry structures 

On the contrary, the continuous approach considers masonry a continuous material whose mechanical 

behaviour is defined through phenomenological observations or homogenisation procedures. The contin-

uum’s behaviour is modelled by adopting macroscopic quantities obtained from its components’ mechan-

ical and geometrical properties. Compared to the micro-modelling, this approach reduces the computa-

tional effort and aims to analyze even large complex structures where the local stress states can be 

considered almost homogeneous. 

It is worth noting that, due to the high degree of accuracy, both modelling techniques are commonly 

adopted in the research. However, the particularly high computational burden limits its application in the 

three-dimensional analysis of entire buildings. Moreover, the results’ processing according to the most 

common design formulations is also rather onerous and, in many cases, problematic (e.g. the definition of 

collapse conditions). 

Therefore, the macro-modelling technique is particularly interesting, as it allows reproducing the behav-

iour of simple macro-elements (panels) and the global response of complex structures with sufficient 

accuracy at the same time.  

The first macro-modelling approaches were based on the principles of the limit analysis. It was assumed 

that the masonry had an infinite compressive strength, and its tensile strength was neglected. Thanks to 

this hypothesis, reducing the masonry wall to a kinematic chain of rigid bodies is possible (Figure 1.7). 

The configuration of the system is a function only of the displacement of a point. The static horizontal 

collapse load multiplier is calculated according to the assumed kinematic motion [5], [6]. 

 

Figure 1.7: In-plane failure kinematic mechanisms of masonry piers [7] 

This method leads to a good assessment of the structural vulnerability in the case of failure mode I [1], 

particularly after some structural improvement works, such as the placement of steel tie-rods or FRP 
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(fibre reinforced polymer) strips. On the contrary, it is excessively cautious in the case of mode II [5], [6], 

as it allows calculating only the lower limit of residual resistance of the wall associated with the overturn-

ing mechanism.  

An alternative to this calculation method is the approach that considers the masonry’s elastic defor-

mations eventually followed by inelastic deformations. Within this range of models, two main groups can 

be identified. The first one provides for the use of one-dimensional elements, commonly based on a strut 

idealization. In [8], [9], it is proposed to model the reacting portion of a masonry panel through a com-

pressed strut, whose inclination and stiffness reproduce the panel’s behaviour (Figure 1.8). When the 

partialization increases, the equivalent strut’s geometric properties, i.e. inclination, and dimensions of the 

section, change consequently. Therefore, this approach may also be classified as a “method with variable 

geometry”. Each panel’s failure occurs by reaching an equilibrium limit configuration or the diagonal 

strut’s compressive failure. 

 

Figure 1.8: Modelling of masonry walls through equivalent struts: identification of the compressed strut [8], [9] 

The second group of models schematizes the structure as an assembly of deformable shear beams. In this 

regard, different one-dimensional elements have been proposed in the literature. The first ones are charac-

terized by a variable stiffness based on the partialized section calculation [10]. The second ones are 

elements characterized by an elastic phase with constant stiffness and a plastic phase. The nonlinear 

behaviour is activated by achieving a limit strength condition [11]–[13]. It is worth specifying that most 

of the methods based on the “weak floor mechanism” (including the so-called POR method) adopt this 

type of element. An important distinction between these latter approaches consists of the number of 

possible mechanisms during the inelastic phase, particularly the failure mechanisms of the panel and the 

complete wall. 

It is important to stress that the POR method [11] was largely adopted in Italy after the 1980 Irpinia 

earthquake [14]. It considered the masonry piers the only site of deformations and failures, without 

evaluating whether other elements, such as the spandrels, could participate. This assumption corresponds 

to the idealization of a “strong spandrels-weak piers” (SSWP) model (Figure 1.9), in which the piers 

crack first and prevent, in this way, the spandrels’ failure. Therefore, the latter may be assumed as infi-

nitely stiff portions that ensure a perfect coupling between the piers. After this assumption, the pier 

extremities cannot rotate, and only a “storey mechanism” can be activated.  

Furthermore, in the first version of the method, the only possible collapse mechanism of a masonry wall 

was the piers’ diagonal cracking. Other failures modes, e.g. rocking or shear-sliding, were neglected. 
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Figure 1.9: Modelling of a masonry wall through the POR method: identification of the piers and rigid portions  

Therefore, additional strength criteria were introduced [12], [13], improving the method and taking into 

account other possible failure modes for piers. However, it has been impossible to overcome the intrinsic 

limit of the method, i.e. considering only the in-plane collapse. The model was based on this hypothesis 

and consisted of performing a nonlinear shear-displacement analysis separately for each interstorey 

(Figure 1.10). This approach greatly simplified the calculations, but it could not consider the determina-

tion of the internal forces and moments of the spandrels. Moreover, the interstorey shear-displacement 

analysis requires assumptions on the degree of constraint at each end of the piers, which depends on the 

stiffness and resistance of the horizontal coupling elements (i.e. masonry spandrels). 

 

Figure 1.10: Capacity curve of a masonry building obtained with the POR method as the sum of that of each wall [15] 

Moreover, the spandrels can be increasingly stressed if the horizontal seismic forces increase, and they 

could crack or even break. Therefore, the only possibility of accurately considering these phenomena is 

the global analysis of the multistorey wall or building. The latter is also the only way to calculate the local 

and global equilibriums correctly. In this regard, the interstorey analysis cannot account for the variations 

of normal force acting in masonry walls when the seismic forces increase, affecting their stiffness and 

resistance [4]. 
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Another simplified modelling approach is the so-called “weak spandrels-strong piers” (WSSP in Figure 

1.11), in which the piers are assumed uncoupled (cantilever idealization), and the spandrels have both null 

strength and null stiffness. However, it is important to stress that, in most cases, it is correct to consider 

the horizontal displacement of the vertical structural elements, at least coupled at the floor levels by the 

horizontal diaphragms. Thus, the definition of the piers’ effective height and boundary conditions is 

fundamental to assess the overall capacity of the wall since only pier elements are modelled. Furthermore, 

preliminary evaluations of spandrels’ effectiveness are necessary to orientate the choice between these 

two extreme schematizations correctly. FEMA guidelines expressly suggest both SSWP and WSSP 

models. On the contrary, the SSWP hypothesis (POR method) is no more allowed in the Italian Building 

Code [16] to assess multistorey masonry buildings. 

 

Figure 1.11: Modelling of a masonry wall through WSSP (weak spandrels-strong piers) simplification 

It is important to specify these simplified models are inappropriate for the walls that may show both types 

of response in different regions or another behaviour during the nonlinear response. Moreover, the struc-

tural damages observed after past earthquakes have demonstrated that the masonry buildings’ global 

seismic behaviour first depends on some constructional details that can prevent local failure mechanisms, 

e.g. good connections between walls, bond-beams, etc. In this case, the seismic structural behaviour can 

mainly depend on the in-plane strength of the load-bearing walls positioned in the same direction of the 

horizontal action. 

Since the in-plane seismic damage of a wall is generally concentrated in masonry portions between the 

openings, the following types of macroelements may be defined: 

• Piers: main vertical structural elements that can carry both vertical and horizontal loads; 

• Spandrels: secondary horizontal elements with the principal function to transfer the loads from the 

floor slabs to the piers; 

• Nodes: masonry portions assumed rigid since the damage induced from an earthquake is generally 

localized in the piers and spandrels. They mainly have the function to connect these latter. 

According to this type of discretization, each load-bearing wall can be considered an idealized frame, in 

which the structural elements, i.e. piers and spandrels, have only one node at each end (Figure 1.12). 
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Figure 1.12: Modelling of a masonry wall through the Equivalent frame method 

This modelling strategy is also called the “Equivalent frame method”. It allows creating numerical models 

with much lower d.o.f than those obtained with finite element modelling. Therefore, a lower computa-

tional burden is provided, and the seismic response of masonry buildings can be predicted in a very 

realistic way at the same time. Moreover, it is also possible to model other structural elements with the 

masonry ones, such as reinforced concrete beams or columns, which are quite common in existing build-

ings. For this reason, technical standards, such as Eurocode 8 [17], Italian Building Code NTC 2018 [16], 

refer to macroelement-based models.  

In this work, the equivalent frame model implemented in the TREMURI computer program has been 

adopted. A detailed description of the method is given in § 1.5. 

1.3 In-plane strength of masonry piers 

The damage observed on complex masonry walls after an earthquake and the experimental results of 

several laboratory tests [18] have shown that masonry piers subjected to in-plane loading may present a 

shear, flexural or mixed behaviour. 

The first one is associated with the sliding shear and diagonal cracking failure. If the mortar joints’ 

quality is poor and the vertical compressive stresses are low, the seismic forces may cause the sliding of a 

part of the panel along one of the bed joints (Figure 1.13a). This type of failure usually occurs in the 

upper storeys of a masonry building below a stiff roof structure, where the compressive stresses are low 

and the seismic accelerations are high. 

On the contrary, this phenomenon rarely happens in the buildings’ bottom storeys. The piers usually 

develop diagonally oriented cracks, which may follow the bed- and head-joints, pass through the units or 

partially follow the joints and partially pass through the bricks (Figure 1.13b). This type of failure is also 

called diagonal tension shear failure because of the cracks’ orientation.  
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Figure 1.13: Scheme of shear failure mechanisms in masonry piers: a) sliding on a bed joint, b) diagonal cracking 

Examples of diagonal shear cracking in load-bearing walls after an earthquake are depicted in Figure 

1.14. 

 

Figure 1.14: Diagonal shear cracking in brick masonry piers of a three-storey building (on the left), in stone-masonry piers of a 

historic building (on the right) after an earthquake [19] 

It is important to stress that masonry heterogeneity plays a dominant role in diagonal cracking. The failure 

generally results from some interacting factors, such as the quality of mortar and bricks. In this respect, 

two main types of simplified approaches are often used to predict the shear strength associated with 

diagonal cracking. The first one has been developed based on experimental tests performed on URM piers 

with doubly fixed boundary conditions in Ljubljana (Slovenia). It assumes that the masonry panel’s 

behaviour is ideal elastic, homogeneous and isotropic up to the failure. The diagonal cracking starts at the 

centre of the pier and propagates afterwards to the corners. It occurs when the principal stress at the 

panel’s centre σξ reaches the masonry reference tensile strength fm,t (Figure 1.15). The equation for calcu-

lating the shear resistance Vt is derived based on the elasticity theory [20].   
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Figure 1.15: Diagonal shear cracking of a masonry pier: Mohr’s circle and principal stresses 

Thus, if the panel is sufficiently slender, it is possible to apply the Jourawski shear theory. In the generic 

cross-section, the shear stress varies with a parabolic law that assumes zero value at the edges and maxi-

mum value at the centre of gravity. On the contrary, if the panel is squat, the shear stress distribution is 

almost constant with a value equal to the average. Therefore, the maximum shear stress τmax can be 

expressed as follows: 

max

V
b b

l t
 =  = 


 (1.1) 

 

Where b is a factor that considers the shear stress distribution at the centre of the pier, τ is the mean shear 

stress acting in the horizontal middle section due to the shear force V, l and t are the length and thickness 

of the pier. The b factor depends on the panel’s dimensions, and the values proposed in [21] are common-

ly adopted (Eq. (1.2)): 
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Therefore, the principal compressive and tensile stresses that develop in the middle section of the pier due 

to the vertical and shear load are equal to:  

( )
2

2

,
2 2

v v b 

 
 

 
=  + +  

 
 (1.3) 

 

Where σv is the average compressive stress in the horizontal cross-section at the centre of the panel A due 

to constant vertical load N (σv = N/A). 

The diagonal cracks occur when the principal tensile stress σξ attains the masonry referential tensile 

strength fm,t: 
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2
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,
2 2

v v

m tf b

 
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 (1.4) 



1 Structural behaviour and modelling of unreinforced masonry buildings under seismic actions 

12 

 

Thus, the shear resistance Vt can be obtained by rearranging Eq. (1.4),: 

,

,

1 v

t m t

m t

l t
V f

b f


=   +  (1.5) 

 

It is worth noting that this formulation is implemented in the explanatory Circular of the Italian Building 

Code NTC 2018 [22] to assess existing masonry panels with irregular patterns and in the seismic stand-

ards of other countries, such as the former Yugoslavia [19]. 

The second shear strength criterion is formulated according to the Mohr-Coulomb theory, which may be 

physically associated with the diagonal cracking through the mortar bed and head joints. Therefore, it is 

suitable to predict the shear strength of masonry panels with a regular pattern, and it is usually so formu-

lated: 

vc  = +   (1.6) 

 

Where τ is the failure shear stress, c and μ are the mortar joints’ cohesion and friction coefficient, σv is the 

average vertical stress acting on the bed joints. 

By adopting Eq. (1.6), different ways are possible to evaluate the ultimate shear force Vt of a URM panel 

depending on the verification section’s position.  

The first approach is to consider the horizontal section at the top or bottom of the wall, taking into ac-

count also the flexural cracking. In this case, the average failure shear stress τ is referred to the uncracked 

section length lc. 

( )t c v c c

c

N
V l t c l t c l t

l t
   

 
=   = +    = +    

 

 (1.7) 

 

It is worth noting that Eq. (1.7) seems more suitable for describing the shear sliding rather than the 

diagonal cracking since it provides for the failure in the more partialized sections. Moreover, the quanti-

ties c and μ are assumed uniform along with the compressed length lc. Thus, they should be considered 

“local” parameters that characterize the joint. 

The effective uncracked section’s length is generally calculated assuming a simplified distribution of 

compression stresses (constant or linear) and neglecting the masonry’s tensile strength. If a linear distri-

bution is adopted and the eccentricity e of the axial load N exceeds 1/6 of the panel’s length, lc can be 

calculated as: 

3
2

c

l
l e

 
=  − 

 
 (1.8) 

 

It is worth pointing out that Eurocode 8 adopts this approach to assess and retrofit masonry buildings. The 

expressions suggested by Annex C of DIN-EN-1998-3 [17] are the following: 
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Where fvm0 and fm,u are the average values of the masonry initial shear strength and compressive strength, 

CF and γm are the confidence and partial safety factors, respectively. Moreover, the upper limit of the 

shear strength in Eq. (1.10) considers the diagonal cracking failure with cracks passing through the bricks 

in a simplified way. Therefore, since the vertical and seismic loads should be known to calculate the 

compressed part of the wall’s length, this approach is only useful in traditional safety verifications, where 

each structural element’s resistance capacity is compared with the design action. Concerning the nonline-

ar pushover analyses, iterations would be required due to the changes in lateral load distribution in the 

nonlinear range [19]. 

Furthermore, the second possible approach to calculate the shear resistance of a URM panel is to consider 

the horizontal section at the centre of the pier, in which the average vertical stress σv is uniform: 

( )t v

N
V l t c l t c l t

l t
   

 
=   = +    = +    

 
 (1.11) 

 

In this case, the strength parameters c and μ are intended as global material properties. They cannot be 

related to the bed joints’ local cohesion and friction coefficient since the real normal stress distribution is 

non-uniform. Compared to Eq. (1.7), this approach can better interpret the failure mechanism that in-

volves the mortar joints but with diagonal cracks. The results of various experimental campaigns and the 

seismic damage observed on the structures have shown the prevalence of diagonal cracking in most cases. 

On the contrary, the sliding along the horizontal base joint is confined to a limited number of cases. It can 

generally occur in rather squat panels subjected to low values of the normal compression. 

Thus, the second approach should be more representative of a “stepped-stairs” failure, where the τ pro-

vided by Eq. (1.11) is assumed as the average shear stress of the panel’s cross-section. Therefore, the 

resistance Vt must be obtained by multiplying this value by the entire cross-section. 

Moreover, it is important to highlight that the masonry pattern plays a fundamental role in defining the 

inclined sliding plane of the diagonal cracking failure. In this respect, the approach proposed by Mann 

and Müller [23], which is aimed to determine the failure shear stress τ, is illustrated below, and it is based 

on the following hypotheses: 

• The units are much stiffer than the mortar joints, 

• The mechanical properties of head joints are negligible. 

The second assumption is reasonable since several factors cannot guarantee the transmission of shear 

stresses, such as the bricks’ smooth header faces and the usually poor mortar’s quality of the head joints.  
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Figure 1.16: a) URM pier under in-plane shear masonry wall, b) single block 

Therefore, considering a single masonry block (Figure 1.16 (b)), the shear stresses τ acting in the upper 

and lower mortar joint generate a torsional moment. The latter can only be equilibrated by an opposing 

and equally large torsional moment due to the normal stresses. As shown in Figure 1.16 (b), the caused 

additional stress Δσ is added or subtracted to the ones generated from the dead and accidental loads, σv, 

increasing, in this way, the vertical stresses in one half of the block and reducing these in the other half. 

Therefore, an approximately stepped normal distribution is created, and the single brick’s equilibrium is 

only guaranteed if the vertical loads are present. Otherwise, the shear stresses must consequently be 

transferred through the head joints, as no tensile stresses can be carried by to the bed joints. 

The rotational equilibrium of the single block illustrated in Figure 1.16 (b) leads to Eq. (1.12): 
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Since the Mohr-Coulomb criterion well interprets the shear failure along mortar joints, the shear stress τ 

can be calculated in the less compressed mortar joint part as follows: 
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Thus, the reduced initial shear strength fv0,red and friction coefficient μred can be defined based on Eq. 

(1.13): 
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The product 2·Δy/Δx corresponds to the interlocking parameter ϕ of a regular masonry pattern with 

blocks’ overlap length of two successive courses equal to Δx/2 and represents the tangent of the average 

inclination angle of the diagonal “stepped-stair” cracks. For example, common values of the ratio Δy/Δx 

and friction coefficient μ for regular brick masonry are 0.5 and 0.577. In this case, the reduction factor 

1/(1+μ·2·Δy/Δx) is equal to 0.634. Thus, thanks to the reduced cohesion and friction coefficient, the 

masonry shear strength can be calculated assuming a uniform distribution of normal stresses σv without 

considering any reduction or increase. 

However, under high values of vertical loads, the mortar joint’s frictional resistance can become so great 

that it is not reached, and the block cracks by attaining the main tensile stress. In this case, the masonry 

panel can be considered a homogeneous shell loaded with shear and normal stresses.  

 

Figure 1.17: Tensile shear failure of masonry units 

As shown in Figure 1.17, the masonry unit must absorb the shear stresses of two courses since the head 

joints’ load-bearing capacity is neglected. For simplicity, only the normal stress acting in the vertical 

direction σv is taken into account (σx = 0). In this case, the stepped normal stress distribution causes an 

increased moment and shear load in the single block so that the shear stress in the brick is about 2.3 times 

higher [24]. Therefore, the principal tensile stress σξ can be written as follows: 

( )
2

2
2.3

2 2

v v



 
 

 
= − + + 

 
 (1.16) 

 

The masonry unit cracks when its tensile strength fbt is attained. Thus, assuming σξ equal to fbt, the failure 

shear stress τ can be obtained by rearranging Eq. (1.16): 
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The Italian Building Code’s explanatory circular [22] and the technical standard CNR-DT 212/2013 

“Guide for the Probabilistic Assessment of the Seismic Safety of Existing Buildings” [25] adopt this 

approach to assess the in-plane load-bearing capacity of existing masonry panels with regular patterns. 

The following formulations are suggested, where Vt and Vt,lim are the ultimate shear resistance of a URM 

panel with diagonal cracks passing through the mortar joints or masonry units: 
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It is worth noting that Eqs. (1.18) and (1.19) are obtained by multiplying the failure shear stress τ in Eqs. 

(1.13) and (1.17) with the entire panel’s cross-section (l·t). Then, the b factor is introduced to consider the 

parabolic shear stress distribution related to the panel’s slenderness. In this way, the maximum value of 

shear stress τmax can be correlated to the average one τ. The b factor assumes values from 1.0 to 1.5 

(Eq.(1.2)), and several authors proposed the use of this coefficient [26], [27]. Furthermore, numerical 

analyses confirmed that the diagonal cracking failure occurs starting from the centre of the panel [15].  

The German National Annex of Eurocode 6 [28] also adopt the approach proposed by Mann and Müller 

[23], but the effective uncracked section’s length lc is considered (Eq. (1.20)). Therefore, the characteris-

tic values of initial shear strength fvk0 and friction coefficient (assumed 0.4) are not reduced through the 

interlocking parameter.  
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The brick’s tensile failure is taken into account through Eq. (1.21), which is similar to Eq. (1.17): 
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Where fbt,cal is the characteristic value of the brick’s tensile strength. 

Thus, the German National Annex of Eurocode 6 [28] proposes to calculate the ultimate shear stress fvlt as 

follows: 

( ),1 ,2min ;vlt vlt vltf f f=  (1.22) 

 

Furthermore, other possible in-plane failure modes of a URM pier are flexural rocking and crushing. In 

the first case, the panel behaves as a nearly rigid body and rotates about the toe (Figure 1.18). In the 

second one, it crushes with sub-vertical cracks oriented towards the compressed corners. The rocking 

phenomenon can occur in slender piers with low vertical stresses. In contrast, the crushing generally 

occurs under very high normal stress values when the masonry attains its compressive strength. Regard-

ing the rocking behaviour, it is possible to calculate the ultimate bending moment MRd of a URM pier by 
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neglecting the masonry tensile strength and assuming an appropriate nonlinear distribution of the com-

pressive stresses at one end section. 

 

Figure 1.18: In-plane flexural failure (rocking) of a URM pier 

Therefore, considering the boundary conditions of Figure 1.19, in which the eccentricity of the normal 

force at the base section of the pier ebottom is higher or equal to etop, the ultimate bending moment is de-

fined by the crushing failure at the compressed toe of the panel (the self-weight of the pier is neglected). 

 

Figure 1.19: Stress distribution at the compressed toe of a URM pier under in-plane flexural failure  

Adopting the stress-block formulation, in which the coefficients α and β may be assumed equal to 0.80 

and 0.85, the translational and rotational equilibrium equations can be written as follows: 
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Defining σv as the average vertical compressive stress referred to the total area of the section, σv = N/l·t, 

Eq. (1.25) can be obtained: 
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Where l and t are the length and thickness of the pier, fm,u is the masonry ultimate compressive strength 

perpendicular to the bed joints. 

Therefore, the shear force under bending failure can be calculated through the introduction of the shear 

length h’, which is the distance between the end section and that with zero moment (Figure 1.19): 

'

F Rd
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M
V

h
=  (1.26) 

 

The shear length h’ depends on the boundary conditions at the bottom and the top of the pier. It is usually 

assumed α·h, where α is equal to 1.0 in the case of a cantilever and 0.5 in a fixed-ended panel. 

Finally, it is worth noting that several technical standards, such as Eurocode 8 [17], Italian Building Code 

NTC 2018 [16] and CNR-DT 212/2013 [25], adopt this calculation approach. 

1.4 In-plane strength of masonry spandrels 

The past strong earthquakes have shown that URM buildings can suffer severe damage to spandrels, 

especially if local out-of-plane mechanisms do not occur and the walls are mainly subjected to in-plane 

seismic forces [29]. Furthermore, they are often the first elements to crack or fail. For example, Figure 

1.20 shows a URM building in L’Aquila (Italy) after the earthquake on 6 April 2009 (Mw = 6.3). 

 

Figure 1.20: Shear failure of spandrels supported by shallow masonry arches in an old URM building after the earthquake on 6 

April 2009 in L’Aquila (Italy): (a) Entire building, (b) detail of a spandrel [30] 
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All the spandrels between the window openings have failed with diagonal shear cracks. They were 

restrained by relatively wide piers and horizontal steel tie bars positioned along the facade and embedded 

in the masonry [30]. 

Furthermore, Figure 1.21 also shows a URM building located in L’Aquila (Italy). In this case, the steel tie 

bars were not present, and the piers were very slender. Therefore, they could provide a minor restraint to 

the axial elongation of the spandrels, which failed with wide flexural vertical cracks at both ends. As 

illustrated in Figure 1.21 (b), one spandrel completely collapsed because of the out-of-plane accelerations. 

This building was pulled down shortly after the earthquake. [30] 

 

Figure 1.21: Flexural failure of spandrels in an old URM building after the earthquake on 6 April 2009 in L’Aquila (Italy): (a) 

Entire structure, (b) detail of a spandrel [30] 

Therefore, both observations of the seismic damage to complex masonry walls and experimental laborato-

ry tests have shown that the main failure modes of spandrels are the flexural and diagonal cracking ones 

[29]–[31]. In this regard, Benedetti et al. carried out a broad research program in which 24 half-scale 

building models were tested on the shaking table [32]. Some models were made of brick masonry with 

spandrels supported by wooden lintels, while other models were made of stone masonry with regular 

arches above openings. The experimental results showed that the energy dissipation of URM buildings 

can be maximized if the damage develops within spandrels rather than piers. Furthermore, Bothara et al. 

carried out a shaking table test on a half-scale URM building model with wooden lintels and flat masonry 

arches [33]. The test confirmed that spandrels can fail, not only showing diagonal shear cracking but also 

vertical flexural cracks that develop at the end sections of the element. 

Moreover, since the spandrels are generally characterized by low axial load values, the crushing failure, 

represented by widespread sub-vertical cracks, is a very rare instance. The sliding shear can also not 

occur because of the interlocking phenomena that can develop at the interface between the element’s end 

sections and the contiguous masonry [34]. 

Different types of spandrels can be identified in existing URM buildings. The lintel above the opening 

and the presence or absence of tensile resistant elements, such as steel tie bar or concrete beam, define the 

spandrel type. In ancient URM buildings, the spandrels are not designed for earthquake actions and have 

generally stone, masonry, wooden, or steel lintels above the openings. These elements only allow trans-

ferring the gravity loads to the adjacent piers. Furthermore, the steel lintels were usually realized with two 

I-beams transversely connected by steel ties (Figure 1.22) to avoid potential torsional-flexural buckling. 

The lateral external space along the beams was filled with mortar to provide flat surfaces [29]. The 

spandrels of historical URM buildings are generally supported by regular or flat arches (Figure 1.22). 
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Figure 1.22: Typical masonry spandrels in existing old URM building [29] 

On the contrary, the modern existing URM buildings, typical in Germany and Switzerland, are usually 

characterized by reinforced concrete lintels and flat slabs. In other countries, such as Italy, the r.c. ring 

beams are quite common. Therefore, three different types of modern spandrels may be distinguished. As 

shown in Figure 1.23, the first one is supported by an r.c. lintel (a). This type belongs to older buildings, 

while the most recent constructions usually have large window openings. In the latter case, no lintel 

(Figure 1.23 (b)) or even no masonry spandrel above the slab (Figure 1.23 (c)) can be provided. The 

opening reaches over the entire storey height, and the coupling of the masonry piers results only from the 

r.c. slab. 

 

Figure 1.23: Typical masonry walls of modern URM buildings [35] 

As widely illustrated in the literature, e.g. [15], [36], [37], the role of the spandrels cannot be neglected 

since they can act as coupling elements between the masonry piers. They can considerably influence the 

distribution of internal forces, moments to the piers and the failure mechanisms that may be activated. 

In this respect, Figure 1.24 illustrates the behaviour of a multistorey masonry wall subjected to horizontal 

seismic forces. Cases a) and c) represent the extreme cases in which the spandrel elements are idealized 

as infinitely flexible or stiff. The depicted diagrams of internal shear forces and moments in the piers refer 

to the static scheme of a cantilever (case a)) or a shear-type frame (case c)). It is worth noting that the 

most realistic situation is represented by the intermediate configuration b). Regarding the failure modes, 

case a) is the worst, as the slenderness of the completely decoupled masonry piers accentuates the for-

mation of an in-plane overturning mechanism.  
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Figure 1.24: Examples of deformation, internal forces and moments in masonry piers with different degrees of coupling provided 

by the spandrel elements [15] 

The coupling effect provided by the spandrels is a function of their stiffness and degree of compression in 

the horizontal direction. In this context, the presence of tensile resistant elements such as steel tie-rods or 

reinforced concrete beams induces the activation of a strut mechanism that opposes the global defor-

mation of the wall in the horizontal direction (Figure 1.25). In this case, the spandrel can contribute to the 

wall’s global response by providing flexural resistance against the overturning mechanism (Figure 1.25 

(b)). 

 

Figure 1.25: Behaviour of masonry spandrels under seismic actions without any tensile resistant element (a) and coupled with steel 

tie-rods [37] 

Reinforced concrete slabs and ring beams can also act as horizontal coupling elements between the 

masonry piers, increasing the buildings’ load-bearing capacity by transforming a cantilever wall system 

into a frame system. As shown in Figure 1.23, the openings of very modern masonry buildings may span 
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the entire story height (typical in Germany or Switzerland). In this case, the slab may be treated as a 

coupling beam with an effective width [38]. 

Concerning the strength verification of the spandrel, a common practice is to adapt the formulations 

proposed for the piers to these elements. For example, suppose the axial force N acting in the spandrel 

(i.e. in the direction parallel to the bed joints) is known from the analysis. In that case, the element’s 

behaviour is assumed as a pier rotated to 90°.  Moreover, if the masonry is characterized by a regular 

pattern, the diagonal cracking may be “stepped” through the mortar joints or masonry units. Therefore, 

the criterion proposed by Mann and Muller [23] can be adopted as follows: 
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Where h and t are the spandrel’s height and thickness, σ0 is the normal stress. If the axial force N is 

reliably known from the analysis, σ0 can be assumed as the greater between the horizontal and vertical 

stress. The latter can be eventually evaluated from the loads transmitted by the floors and from the verti-

cal stresses in the adjacent piers. 

It is worth noting that the shear strength is mainly a function of the compression normal to the bed joints 

and, in a lesser degree, of the compression in the direction parallel to the bed joints. Since the first one is 

essentially negligible between the openings, the shear strength may be very low. Therefore, neglecting the 

normal stress σ0, only the contributions of the mortar joint’s cohesion and the brick tensile strength are 

considered: 
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On the other hand, if the masonry is irregular and not well organised, the mechanical behaviour is almost 

isotropic. In this case, it is reasonable to adopt the model of Turnšek and Čačovič (Eq. (1.31)), which 

assumes masonry as an equivalent isotropic material and considers the cracking development along the 

principal stress direction. 
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The average compressive stress σ0 in Eq. (1.31) can eventually be neglected for the same reasons men-

tioned above.  

Concerning the spandrels’ flexural failure, the most common practice is to adopt the same model devel-

oped for piers if the acting axial load N is known from the analysis. In this case, the spandrel is assumed 

as a pier rotated to 90°, and the rocking failure occurs when the masonry attains its compression strength 

at the compressed toe. The ultimate bending moment MRd is usually calculated after the beam theory, 

neglecting the tensile strength of the masonry and assuming an appropriate normal stress distribution at 

the compressed corner (Eq. (1.32)). 
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Where σn is the horizontal stress acting in the spandrel and fm,u is the masonry ultimate compressive 

strength perpendicular to the bed joints. 

It is worth noting that Eq. (1.32) leads to very precautionary predictions of the flexural resistance since 

moderate values of the axial load generally characterize the spandrels. As a result, the rocking failure 

tends to prevail over the diagonal cracking much more frequently than observed in experimental cam-

paigns or existing buildings after an earthquake. 

Moreover, it is important to specify that the flexure due to seismic actions causes tensile stresses normal 

to the horizontal mortar joints in the piers and tensile stresses normal to the vertical mortar joints in the 

spandrels. Since masonry is an anisotropic material, the response of these structural elements is not the 

same. Moreover, the spandrels may be moderately confined by the floors and the deformation of the 

contiguous masonry regions (rigid nodes in the “equivalent frame” idealisation). 

Therefore, the authors Cattari and Lagomarsino [34] propose a formulation based on the assumption that 

the spandrel’s response may occur as an “equivalent strut” because of the interlocking phenomena that 

develop at the interface between the spandrel’s end sections and the contiguous masonry. Thus, an 

“equivalent” tensile strength ftu, which properly characterizes the element and not the masonry material, 

can be defined. 

The formulation proposed by Cattari and Lagomarsino [34] is based on the following hypotheses: 

• Uniform distribution of the tensile stresses perpendicular to vertical mortar joints; 

• Uniform shear stresses along the horizontal mortar joint; 

• Negligible mechanical properties of the vertical joints. 

The hypothesis of neglecting the vertical joints is reasonable since their cohesive contribution is modest 

compared to the other factors. Moreover, it may also not exist because of the cracking phenomena. 

Therefore, a reference volume is considered at the end sections of a spandrel (Figure 1.26). It is identified 

by the height 2(Δy+g) and width (Δx+g), where Δy, Δx are the height and width of the block, g is the 

mortar joint thickness.  

Two main failure mechanisms are possible: 

1. Tensile failure of the block; 

2. Shear failure of the horizontal mortar joints. 
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Figure 1.26: Masonry spandrel and Reference volume [34] 

In the case of tensile failure of the block, the masonry unit’s tensile strength fbt is attained. As shown in  

Figure 1.27, the horizontal equilibrium leads to: 

 

Figure 1.27: Reference volume and scheme of the tensile failure of the block [15] 

( )2 2x y y btg f   + =    (1.33) 
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In which the mortar joint thickness g is neglected since it is sufficiently smaller than the block dimen-

sions. 

Then, in the case of shear failure, the equilibrium is only guaranteed by the shear stresses that can develop 

on the horizontal mortar joints, as no stresses can be transferred through the vertical ones. 
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Figure 1.28: Reference volume and scheme of the shear failure of the horizontal mortar joints [15] 

If the Mohr-Coulomb type criterion is adopted and the cohesive contribution of the vertical mortar joints 

is neglected, the shear stresses τ only depend on the stress σy normal to the bed joint (Figure 1.28). There-

fore the equivalent tensile strength fmt,u2 associated with this failure mechanism may be expressed as 

follows: 
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Where μ is the friction coefficient, and the ratio Δx/2Δy corresponds to the interlocking parameter ϕ. 

Therefore, the spandrel equivalent tensile strength fmt,u is equal to the minimum value obtained between 

fmt,u1 and fmt,u2. It is worth noting that the block’s tensile failure is brittle, and it usually occurs in masonry 

characterized by very weak bricks. On the contrary, the shear failure may be classified as ductile. In this 

case, the entity of the compressive stress σy, acting at the spandrel’s end sections, assumes a decisive role. 

For this reason, a masonry spandrel located at mid-storeys and characterized by a regular pattern can 

show a more significant strength from this failure mechanism [34]. 

Moreover, the determination of the compressive stress σy in the modelling with the equivalent frame 

approach needs some specifications. Approximate criteria based on the vertical load acting in the adjacent 

piers may be adopted to consider the stress distribution that develops at the end sections interface. In this 

regard, it is worth noting that the normal stress due to the seismic actions is variable in the piers. There-

fore, Cattari and Lagomarsino [34] performed several non-linear analyses with the finite element method 

and the non-linear constitutive model proposed by Calderini and Lagomarsino [39]. It was based on the 

micromechanical analysis of the composite continuum with both friction and cohesive resistant masonry 

mechanisms. The presence of a wood lintel was also modelled. The non-linear analyses were performed 

considering different spandrel slenderness (λ = 1.35 - 2), interlocking degrees of the masonry pattern 

(Δx/Δy = 2 - 4) and axial load values applied to the spandrel (0 ÷ 100 kN) and the adjacent piers (37.5 ÷ 

225 kN), [34]. 

The analysis of the σy stress component at the spandrel’s interface end-sections showed that it is approxi-

mately equal to 65% of the mean compressive stresses acting on the piers in the first response phase (the 

elastic one). Therefore, this factor was assumed in Eq. (1.36) for computing fmt,u2, and the inelastic re-

sponse was analyzed. The results showed only an increase of the σx stress component at the tensioned toe 

of the spandrel’s section until the attainment of the peak shear force. It is important to specify that the 
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maximum value of σx was only 15-20% greater than the analytical one deduced from Eq. (1.35). Thus, the 

authors could conclude that, even if the σy stress distribution varies, a precautionary evaluation of ftu can 

be obtained based on the axial load acting on piers in static conditions [34]. 

Moreover, assuming the behaviour of the masonry spandrel elastic-perfectly plastic with limited ductility 

in tension μt and compression μc (Figure 1.29 (a)), the spandrel’s failure domain can be determined 

(Figure 1.30).  

 

Figure 1.29: Masonry spandrel constitutive law (a) and strain fields (b) [15] 

Thus, the ultimate bending moment MRd = f(N, fmh,u, fmt,u, μc, μt) 1 can be obtained by idealizing the mason-

ry as a homogenous continuum, assuming that the section remains plane, and solving a system of transla-

tion and rotation equilibrium equations [15].  

 

Figure 1.30: Masonry spandrel flexural strength domain and strain fields [15] 

 
1 fmh,u is the masonry compressive strength in the horizontal direction. 
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To this aim, six strain fields can be identified. They start from the uniform compression of the spandrel’s 

cross-section (field (0)) and finish with the constant tension (field (5)). Figure 1.29 (b) shows the strain 

fields from (1) to (4), in which the cross-section is partialized. 

Furthermore, Figure 1.31 illustrates the strength domain for different ratios between fmt,u and fmh,u (indicat-

ed as η). Cattari and Lagomarsino [34] have observed that for rather low values of assigned ductility in 

tension μt, the resulting domain differs not significantly from the case of infinite ductility. Since the shear 

failure along the horizontal mortar joints is a ductile mechanism, the latter assumption is also considered 

reasonable. Moreover, compared to the flexural resistance obtained with Eq. (1.32), where the spandrel is 

treated like a pier rotated of 90°, the bending capacity obtained with this approach can be truly increased, 

in particular for low values of N, which usually characterize these elements. As shown in Figure 1.31, this 

effect is beneficial even for very moderate values of η (for example, 0.01). 

 

Figure 1.31: Failure domain of a masonry spandrel for different values of η ( μc = 1.25, μt = at infinite), from [34] 

Finally, if the spandrel is coupled to a tensile resistant element, such as steel tie-rods, concrete slabs, ring 

beams, and the axial force is unknown from the analysis, formulations based on the equivalent strut 

model can also be adopted. In this regard, Figure 1.32 illustrates a masonry portion between two openings 

supported by a concrete slab. In this case, the spandrel can act as a compression strut.  

 

Figure 1.32: Masonry spandrel supported by a concrete slab [38] 

A bending moment close to zero results at the bottom right side of the element, while a maximum bend-

ing moment results at the left side. The moment can be approximately calculated as the tensile force 
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developed in the tensioned element multiplied by the lever arm, equal to the depth of the spandrel minus 

one half of the compression depth. The so calculated bending moment is limited by the masonry compres-

sive strength in the horizontal direction, which can be significantly lower than the vertical one, and by the 

maximum tensile strength that can develop in the slab.  

In this context, the Italian Building Code NTC 2018 [16] proposes this approach to evaluate the ultimate 

bending moment of a spandrel with a tensile resistant element if the normal force N is unknown (which is 

the case of floors assumed as infinitely stiff). Thus, Eq. (1.37) is suggested, which is consistent with the 

compression strut model shown in Figure 1.32: 
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Hp is the minimum between the tensile resistance of the stretched interposed element inside the spandrel 

and 
,0.4 mh uf h t   , where fmh,u is the masonry compressive strength in the horizontal direction, h and t are 

the height and thickness of the spandrel. 

1.5 Equivalent frame method 

The analysis of the modelling strategies available for masonry structures presented in § 1.2 has shown 

that only a few fundamental aspects of the seismic response can be reproduced through simplified ap-

proaches. On the contrary, the equivalent frame modelling can reproduce the three-dimensional behaviour 

of masonry buildings, taking into account the interaction of the various parts and their non-linearities. In 

this work, the method implemented in the TREMURI computer program has been adopted. The software 

was originally developed in 2001, gradually improved at the University of Genoa (Italy), and also imple-

mented in the commercial version 3Muri [14]. 

The equivalent frame modelling is based on the assumption that the masonry wall can be considered a set 

of vertical piers and horizontal spandrels. This simplification is justified by observing that the seismic 

damage is usually concentrated only in these parts while the connection areas remain undamaged. In this 

regard, it is reasonable to suppose that the deformation state of the connection areas always remains 

within the elastic limits. Therefore, it can be neglected in evaluating the wall’s behaviour, as the latter is 

limited by the non-linear strains of its structural elements. 

The masonry piers and spandrels can be represented by a single finite element identified by a limited 

number of degrees of freedom. On this basis, the entire wall can be modelled by assembling non-linear 

elements mutually connected by rigid parts. In this way, the models have a limited number of degrees of 

freedom. The response of a wall subject to static (monotonous or cyclic) and dynamic actions can be 

represented with a modest computational burden. It is important to stress that the reliability of this model-

ling approach is linked to the ability to describe the damage phenomena that occur in the masonry. There-

fore, the single nonlinear finite element must correctly reproduce the main in-plane failure modes of the 

masonry, i.e. shear and bending (rocking) failure, and must also capture the strength degradation in the 

nonlinear phase. 

Furthermore, the possibility of nonlinear modelling of other structural elements, such as reinforced 

concrete (r.c.), steel or wooden beams, is very useful for analysing new and existing buildings. It is worth 

noting that many mixed masonry r.c. structures have been built from the beginning of the twentieth 
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century because of the spreading of r.c. technology (e.g. buildings with internal r.c. frames and outer 

masonry walls). 

Moreover, structural interventions carried out on existing masonry structures have caused the birth of 

mixed buildings (e.g. additional r.c. storeys, replacement of internal masonry walls by r.c. frames or r.c. 

walls inserted to support lifts and staircases). Since these structural modifications may increase the 

existing structure’s seismic vulnerability, it is important to consider them in the modelling. 

Therefore, the strategies to idealize the masonry wall in an equivalent frame, the nonlinear beam element 

with lumped inelasticity and piecewise behaviour implemented in the TREMURI program are illustrated 

in § 1.5.1 and § 1.5.2. Finally, the assembling method of three-dimensional models is presented in § 1.5.3. 

1.5.1 Modelling of the wall: definition of piers and spandrels 

The masonry wall’s modelling as an equivalent frame requires identifying its main structural components: 

piers and spandrels. Conventional criteria based on the damage observed after earthquakes and experi-

mental campaigns are often assumed in the literature since rigorous formulations are not defined. Moreo-

ver, a systematic parametrical analysis, either numerical or experimental, has never been performed [14]. 

The height of the masonry piers is usually defined as a function of adjacent openings’ height. A common 

criterion is to assume a maximum inclination of the cracks starting from the opening corners equal to 30°. 

This assumption is the same initial hypothesis proposed in [40] to define the masonry panels’ equivalent 

height. It was based on the storey mechanism and provided an increased height for the external piers. In 

[41], it is defined as the height over which a compression strut is likely to develop at the steepest possible 

angle. Under this assumption, the cracks can develop either horizontally or at 45°.  

In this context, Figure 1.33 shows an example of the frame idealization procedure implemented in the 

TREMURI software in the case of a regularly perforated masonry wall. The spandrel elements are identi-

fied based on the vertical alignment and overlap of openings. In the case of full alignment, the spandrel’s 

length and height are assumed equal to the distance and width of the adjacent openings.  

 

Figure 1.33: Example of equivalent frame idealization in TREMURI for a perforated wall with regularly distributed openings [14] 

Then, the pier elements are defined starting from the height of adjacent openings. The height of the 

internal piers is assumed equal to that of openings when these latter are perfectly aligned. Concerning the 

external piers’ height, the possible development of inclined cracks from the opening corners and/or from 

the lintel edges must be considered. An approximate way is to define the pier’s height as the average of 

the adjacent opening’s and interstorey height. Finally, the rigid nodes are directly obtained from the 

previously defined elements connected to them. 
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This calculation is done separately for each storey and wall to obtain the complete frame idealization. It is 

important to stress that if the cone diffusion angle is not limited, the effective in-plane aspect ratio of the 

external piers may be significantly overestimated if adjacent openings with a limited height and close to 

the wall edge are present. 

Although the masonry piers and spandrels’ identification may result rather easily in walls with regularly 

distributed openings, it can become more difficult when they are irregularly arranged. In this case, a 

possible solution is to assume the spandrel’ height conventionally as a mean value based on the overlap-

ping part between the openings at the two levels (Figure 1.34). If no overlap is present or the opening 

lacks, it seems more appropriate to assume the masonry portion as a rigid part [14]. 

 

Figure 1.34: Equivalent frame idealization of a masonry wall with irregularly distributed openings in TREMURI [14] 

 

Figure 1.35: Idealisation of the masonry wall as an equivalent frame in TREMURI [15] 

Furthermore, as shown in Figure 1.35, the barycentric axes of the deformable elements may not coincide 

with the model’s nodes. Thus, an eccentricity is caused, which may be considered by applying a rigid end 

matrix to the stiffness matrix of the element itself. In this regard, Figure 1.36 illustrates the masonry 

element with two nodes, i and j, one for each extremity. The degrees of freedom at each node, (ui, wi, φi) 

and (uj, wj, φj), are the displacements in x-, y-direction and the rotation about the z-axis, positive if anti-

clockwise. Therefore, considering that the barycenters of the rigid nodes 1 and 2 have eccentricities with 

respect to the nodes i and j (Figure 1.36), the following kinematic relations can be written under the 

hypothesis of small displacements: 
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Figure 1.36: Rigid ends of the masonry element with an example of their possible eccentricity 
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(1.38) 

Thus, the rigid end matrix [De] can be written as follows: 
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In this way, the elastic stiffness matrix of the element [Ke] and the vector of nodal actions {q} are modi-

fied through the rigid end matrix [15]. 

Furthermore, the modelling of the spandrels requires the rotation of the element, which is performed 

through the rotation matrix [R]: 
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It is worth noting that two conditions are sufficient for the piers and spandrels, i.e. vertical (α’ = 90°) and 

horizontal (α’ = 0°). However, it is often necessary to model also beams or tie-rods, which can have a 

generic orientation. They are identified in the wall’s plane by the position of the two end nodes. 

Finally, once the system and the degrees of freedom have been univocally numbered, the stiffness matrix-

es of the structural elements (masonry piers/spandrel, beams, tie-rods, etc.) are assembled into a global 

matrix that describes the entire wall’s stiffness [4]. 

1.5.2 Modelling of the masonry structural elements 

After the frame idealization of a masonry wall, it is important to interpret its structural elements’ seismic 

response correctly. Only in this way, a reliable prediction of the wall’s overall behaviour can be obtained. 

Several formulations are proposed in the literature to calculate the in-plane lateral strength of masonry 

panels (§ 1.3 and § 1.4). They may be used for the EF modelling adopting a nonlinear beam element with 

lumped inelasticity as finite element. The mechanical behaviour may be described in terms of global 

stiffness, strength, and ultimate displacement capacity by assuming a proper force-displacement piece-

wise-linear relationship and defining appropriate drift limits. This type of 2D element is implemented in 

the TREMURI program [42], and it is indicated in the following as ML-BEAM. It allows describing the 

nonlinear response of a masonry panel until very severe damage levels (from DL1 from DL5) by assign-

ing progressive strength degradations at defined values of drift. The kinematic variables and generalized 

forces aimed to describe the element are indicated in Figure 1.37. It is worth pointing out that loads are 

applied only on nodes and not along with the element. 

 

Figure 1.37: Idealization of the single panel in TREMURI [14] 

Two sets of parameters can be identified to describe the backbone and the ML-BEAM element’s hysteret-

ic response. The first one includes parameters necessary to define the initial stiffness kel and its progres-

sive degradation, the maximum strength VRd, and the nonlinear response of the panel for increasing 

damage levels (di, drift value at the attainment of the ith DL, βE,i, residual shear strength with respect to 

VRd).  

Figure 1.41 shows the shear-drift relationship of the element. According to the beam theory, the elastic 

phase can be defined by assigning the Young’s and shear moduli, E and G. Thus, the stiffness matrix is 

computed on the base of the mechanical and geometrical characteristics of the panel, as follows: 
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Where: 

• ψ is a coefficient equal to 
2

2

1.2EI

Gh
; 

• E and G are the Young’s and shear moduli; 

• A and I are respectively the cross-section and the moment of inertia of the panel; 

• l and h are the length and height of the panel. 

Moreover, it is possible to consider the progressive stiffness degradation in the elastic phase by assigning 

two proper ratios. The first one is between the initial secant stiffness, kel and ksec. The second one is 

between the shear at the end of the initial elastic phase and the shear strength VRd (k0 in Figure 1.41). 

Furthermore, rigid end offsets are adopted to transfer static and kinematic variables between element ends 

and nodes. 

The maximum strength of a masonry pier or spandrel, VRd, is computed according to the criteria illustrat-

ed in § 1.3 and § 1.4, consistent with the most common formulations proposed in the literature and 

building codes. The formulation proposed by Cattari and Lagomarsino [34] is also implemented for the 

spandrels’ flexural failure mode. This criterion provides more realistic results than the assumption of a 

strength model analogous to that of piers, in particular for the existing and historical buildings where 

spandrels are often “weak” and are not coupled to other tensile resistant elements [14]. As discussed in 

[43], the comparison with experimental results have also confirmed that the adoption of this strength 

criterion can provide more reliable results. 

The hysteretic response is formulated through a phenomenological approach, which is able to reproduce 

the different behaviours of piers and spandrels and the various possible failure modes (flexural, shear or 

even mixed type). The maximum strength of the panel, VRd, is equal to the minimum obtained from the 

failure criteria defined for the element and considering the current axial force acting at each step. Then, a 

procedure of nonlinear correction of the elastic strength prediction is carried out based on the comparison 

with the calculated limit resistance of the element. The redistribution of the internal forces is performed to 

ensure the element’s equilibrium.  
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Figure 1.38: Qualitative force-displacement curves of masonry piers under cyclic shear load, from [44] 

Different values of di and βE,i may be defined to describe the panel’s flexural and shear response. In this 

respect, qualitative force-displacement curves of masonry piers under cyclic lateral shear load are illus-

trated in Figure 1.38.  

Case a shows the diagonal cracking developing by sliding along the mortar joints. In this case, the energy 

is dissipated by friction, and the hysteresis curves are full. The post-peak behaviour can be described as 

ductile and corresponds approximately to an elastoplastic material behaviour. On the contrary, the block 

tensile failure is brittle (case b). It is evident from the less full hysteresis loops together with the stiffness 

and load-bearing capacity decrease in each cycle after the peak. 

Furthermore, flexural failure (case c in Figure 1.38) is more prevalent in slender masonry panels. The 

cyclic loads lead to a rocking movement that induces tensile and compressive stresses in the corner areas 

alternately. The deformations are large compared to the load that can be absorbed. The hysteresis curves 

are characterized by S-shaped loops with low dissipation of energy, where the slope of the curves de-

creases only very slightly. It is worth noting that the S-shaped loops do not mainly result from the materi-

al degradation but the reduction of the cross-section’s compressed part with increasing deformation. 

Concerning the masonry spandrel’s cyclic behaviour, recent experimental campaigns, i.e. [29], [35], [45], 

have shown that there are some significant differences between piers and spandrels. In masonry piers, the 

cyclic response mainly depends on their mechanical properties, geometry and boundary conditions. On 

the contrary, the force-displacement response of the spandrels is influenced by the following aspects:  

• type of lintels, if present (masonry arches or lintels in stone, timber, steel or reinforced concrete); 
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• interlocking phenomenon of the bricks at end-sections of the spandrel with the contiguous mason-

ry portions; 

• axial restraint provided by other structural elements such as reinforced concrete beams, steel tie-

rods or adjacent piers [43]. 

In this regard, Figure 1.39 shows some experimental results of two full-scale spandrel elements with 

different configurations.  

 

Figure 1.39: Experimental results of two full-scale masonry spandrels with different configurations [35] 

The first is a solid clay brick masonry spandrel supported by a masonry arch, typical in older buildings. 

The second is a hollow clay brick masonry spandrel supported by reinforced concrete, typical in newer 

masonry buildings with r.c. slabs or r.c. ring beams. Both samples were tested under cyclic loading at the 

Institute of Structural Engineering of the Swiss Federal Institute of Technology in Zurich [35]. As depict-

ed in Figure 1.39, the specimens failed by diagonal cracking but with different experimental force-

displacement curves. In the first sample, after the linear elastic phase, the attainment of the maximum 

shear force is followed by a significant strength drop. On the contrary, the second specimen has shown 

only a minimum decrease in strength in the post-peak phase. 

Therefore, it is important to consider the different types of piers’ and spandrels’ behaviour in the EF 

modelling and the various in-plane response of the masonry spandrels based on their configuration. To 

this aim, different values of di and βE,i to describe the panel’s flexural and shear response can be assigned. 

They can be differentiated in the case of spandrel and pier elements as well. 

Moreover, it happens frequently that the failure of a masonry panel is a combination of the shear and 

flexural one. In this case, the mixed failure mode is considered by the program calculating average values 

of di and βE,i, starting from those assigned for the shear and flexural behaviour. Furthermore, the hybrid 

failure can occur by defining in the input an admissible range in the panel’s V – N domain close to the 

points in which the flexural and shear domains intersect. Figure 1.40 illustrates the criterion for the 

occurrence of a mixed failure mode. 
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Figure 1.40: Criteria assumed to define the occurrence of a mixed failure in TREMURI [42] 

The complete hysteretic response of the ML-BEAM element is shown in Figure 1.41. The slope of the 

unloading branch in the positive quadrant is defined by the stiffness Uk +
 (from A+ to C+). It is calculated 

through the reached ductility μ+ and strength decay βE,i, as follows: 

( ) ( )
1

sec 2 ,1 1
c

U E ik k c 
−

+ +  =   −  − 
 (1.42) 

 

where: 

• μ+ is the value of ductility attained from the backbone curve in the positive quadrant; 

• c1 aims to degrade the stiffness Uk +
 with respect to the secant one ksec. It may assume values from 0 

(elastoplastic law) to 1 (secant stiffness); 

• c2 is a parameter that can further degrade the value of Uk +
 through the progressive strength decay βE,i 

reached on the backbone. It may assume values from 0 to 1. 

In the same way, the expression of Uk −
 for the negative quadrant is defined: 

( ) ( )
1

sec 2 ,1 1
c

U E ik k c 
−

− −  =   −  − 
 (1.43) 

 

As shown in Figure 1.41, the unloading curve may also present a horizontal branch, which is typical of 

bending failure. In that case: 

• the coefficient c3 fixes the point B+. It can vary from 0 (A+ - B+ branch until the abscissa axis) to 1 

(non-linear elastic condition); 

• the coefficient c4 defines the extension of the B+ - C+ branch.  The suggested range of values is 0 -

1 [42]. 
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Then, the loading branch from C+ to A- is ruled by the stiffness kL. It is computed considering the stiffness 

Uk +
 and the ductility value reached in both positive and negative quadrants (μ+, μ-). 

 

Figure 1.41: Multilinear constitutive law and hysteretic response of the ML-BEAM element implemented in TREMURI [46] 

Finally, numerical validations of the EF modelling with the described ML-BEAM element are shown in 

various scientific works, e.g. [43], [47], [48], and in the Italian technical standard CNR-DT 212/2013 

“Guide for the Probabilistic Assessment of the Seismic Safety of Existing Buildings” [25]. The validation 

has been performed through experimental results obtained from shaking tables, cyclic lateral shear tests 

on single spandrels or with the actual response of URM buildings damaged by seismic events. 

1.5.3 The three-dimensional model 

The three-dimensional equivalent frame modelling of whole URM buildings is based on the following 

hypotheses: 

• The load-bearing structure, referred to the vertical and horizontal actions, is identified with walls 

and horizontal diaphragms (i.e. roofs, floors or vaults); 

• The walls are bearing elements, and the diaphragms have the function to share the horizontal ac-

tions among the walls; 

• The diaphragms’ flexural behaviour and the wall out-of-plane response are neglected, as their in-

plane behaviour mainly governs the global structural response. 

It is worth noting that the global seismic behaviour is possible only if vertical and horizontal elements are 

properly connected. If necessary, “local” out-of-plane mechanisms may be verified separately through 

suitable analytical methods [14]. 

Therefore, the first step to assemble the 3D model is to define a global Cartesian coordinate system (X, Y, 

Z). Then, the coordinates of one point and the angle θ formed with the global X-axis identify the vertical 

wall planes (Figure 1.42). 
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Figure 1.42: Three-dimensional assembling of masonry walls in TREMURI: classification of 3D and 2D rigid nodes and mass 

sharing [14] 

Thus, each wall can be modelled as a plane frame in the local coordinate system. The internal nodes are 

two-dimensional nodes with three degrees of freedom (d.o.f.). The nodes at corners and intersections of 

two or more walls are three-dimensional nodes characterized by five d.o.f. in the global coordinate system 

(ux, uy, uz, φx, φy). It is worth noting that the rotational d.o.f. around the vertical Z-axis can be neglected, 

as the membrane behaviour is adopted for walls and floors. 

Furthermore, the three-dimensional nodes can be obtained by assembling 2D virtual rigid nodes acting in 

each wall plane and projecting the local d.o.f. along global axes (Figure 1.43). Therefore, assuming the 

full coupling among the connected walls, the assemblage is performed by condensing the d.o.f. of two 2-

dimensional nodes. 

 

Figure 1.43: D.o.f. of the three-dimensional node [15] 



1.5 Equivalent frame method 

39 

This procedure allows to reduce the total number of d.o.f. and perform nonlinear analyses with a reasona-

ble computational effort in large and complex building models [14]. The relationships between the five 

displacement components of the 3D node and the three of the fictitious 2D node belonging to the single 

wall are given by Eq. (1.44): 
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Where u, w and φ are the three displacement components according to the d.o.f. of the fictitious node 

belonging to the generic wall, whose plane is identified by the angle θ formed with the global X-axis 

(Figure 1.43). 

Consequently, the reactive forces transmitted by the masonry elements belonging to the single walls to 

the two-dimensional fictitious nodes can be referred to the global coordinate system: 
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(1.45) 

 

As shown in Figure 1.44, the terms with superscripts 1 and 2 correspond to the forces and moments acting 

on the virtual nodes in walls 1 and 2, to which the three-dimensional node belongs. 

 

Figure 1.44: Forces acting on the node with five d.o.f. and on the corresponding virtual nodes with three d.o.f. [15] 

In this way, the wall’s in-plane modelling can be performed, and the nodes belonging to a single wall 

remain two-dimensional with only three d.o.f. instead of five. 

Moreover, the vertical loads’ contribution is computed as nodal mass added to all nodes based on the 

areas of influence of each node and considering the floor’s spanning direction. In this regard, the 2D 

nodes have no d.o.f. in the direction perpendicular to the wall plane. Therefore, the nodal mass compo-

nent related to the out-of-plane d.o.f is shared to the corresponding d.o.f. of the two nearest 3D nodes of 

the same wall and storey after the following relations [14]: 
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Figure 1.42 shows the terms of Eq. (1.46). 

Furthermore, it is important to highlight that a proper assumption on the diaphragm stiffness may signifi-

cantly influence the global response. If the floors are modelled as “infinitely” flexible, they cannot trans-

fer the seismic action from heavily damaged walls to the still efficient ones. On the contrary, if the dia-

phragms are considered “infinitely” stiff, their contribution could be overestimated. Despite this, the floor 

behaviour in the 3D modelling is frequently assumed completely rigid. It is worth noting that this consid-

eration may also be unrealistic in historic masonry buildings, where ancient constructive technologies, 

such as timber floors/roofs, structural brick or stone vaults, were commonly adopted. 

Therefore, specific floor elements are used in the TREMURI also to simulate the presence of flexible 

diaphragms. They are characterized by the Young’s modulus E1 in the principal direction (i.e. the floor 

spanning orientation), the Young’s modulus E2 along the perpendicular direction, the Poisson ratio ν and 

the shear modulus G12. It is worth noting that both moduli of elasticity, E1 and E2, provide for the connec-

tion’s degree between walls and horizontal diaphragm. They allow the formation of a link between the in-

plane horizontal displacements of the nodes belonging to the same wall-to-floor intersection, influencing 

in this way the axial force computed in the spandrels. Furthermore, the shear modulus G12 affects the 

diaphragm’s tangential stiffness and the horizontal force transfer among the walls in the linear and non-

linear phases [14]. The reference finite element is a three-node orthotropic membrane element (plane 

stress) with two d.o.f. at each node (ux, uy) in the global coordinate system (Figure 1.45). 

 

Figure 1.45: The three-node element [4] 

Therefore, in the case of orthotropy and plane stress state, the relation between stresses and deformations 

is given from Eq. (1.47): 
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Where ν is the Poisson ratio, and m12 is equal to the ratio E2/E1. 
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Assuming α* as the angle formed by the main load-bearing direction of the floor with the global X-axis, it 

is possible to rewrite the matrix [ D


] in the rotated configuration to take into account the actual orienta-

tion of the diaphragm:  

     
T

D R D R
 

=   
 (1.48) 

 

Where [R] is the rotation matrix defined as follows: 
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Then, the matrix [Bi] can be defined for each node i of the three-node element adopting linear shape 

functions: 
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Where xj, yj and xk, yk are the coordinates of the nodes j and k, while At is the triangle area. 

Therefore, starting from the definition of the matrices [Bi] and [D], the stiffness matrix of the 3-nodes 

membrane element [Ke] can be assembled: 
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with 

   
Te

ij i j tk B D B A s   =        (1.52) 

 

Where s is the equivalent thickness assumed for the membrane element. 

Finally, in the case of 4-nodes elements (Figure 1.46), the average contribution of the two possible mesh-

es of 3-node elements is computed to obtain the stiffness matrix. In this way, an irregular quadrilateral 

floor area can be modelled with a single element. 

 

Figure 1.46: The four-node element [4]
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2 Strengthening of masonry 
structures with externally bonded 
textile reinforced mortar 

Externally bonded textile reinforced mortar is a recently emerged technology for repairing and strength-

ening masonry structures (Figure 2.1). It consists mainly of two components, i.e. matrix and grid. The 

former has the function to cover and protect the fibre reinforcement that is embedded inside, ensuring, at 

the same time, the stress transfer between the masonry substrate and the textile component. It is generally 

made of fine-grained mortar with Portland cement (cement-based) or natural hydraulic lime (lime-based). 

Furthermore, dry organic polymers may also be added to improve the workability, setting time and bond, 

but less than 5% by weight since they decrease the matrix’s vapour permeability and fire resistance.  

 

Figure 2.1: Strengthening of a masonry chimney with externally bonded textile reinforced mortar: a) original surface, b) applica-

tion of the reinforcing system [49] 

The textile component usually consists of an open mesh of yarns in alkali-resistant (AR) glass, carbon, 

aramid, basalt, or polyparaphenylene benzobisoxazole (PBO) continuous fibres. They can be either dry, 

coated, or preimpregnated and are generally arranged in two or more directions. Examples of textiles’ 

types are shown in Figure 2.2.  

Different terminologies are diffused for this new class of composites, such as textile-reinforced mortar 

(TRM) or fabric-reinforced cementitious matrix (FRCM). For the sake of simplicity, they are named only 

FRCM in this work. 

It is worth noting that the composite system’s mechanical effectiveness strongly depends on the matrix’s 

ability to saturate the fibre threads. The spacing of the yarns should allow the inorganic matrix to pene-

trate the mesh openings. For this reason, it shouldn’t be a generic mortar. It should be specifically formu-

lated to be coupled with the textile component and the masonry substrate. 
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Figure 2.2: Four examples of textile grids: a) AR-glass; b) basalt; c) carbon; d) multi-axial hybrid AR-glass and polypropylene 

(courtesy of Dr Günther Kast GmbH & Co.) 

Furthermore, these systems offer important advantages in thickness, weight, tensile strength, and no 

concrete cover against corrosion is required. They can improve the structural members’ ultimate capacity 

with negligible mass increase thanks to their high strength-to-weight ratio. It is important to stress that 

this aspect is very important since the seismic actions are proportional to the mass. 

Moreover, they are usually applied to the outer surface of structural members. Thus, the application can 

fit the contour of the strengthened element, making, in this way, the installation process fast and versatile. 

In this respect, the intervention’s reversibility is generally possible for the lime-based mortars, making the 

FRCM also suitable for repairing historic architectural heritage. Therefore, compared to conventional 

techniques, e.g. section enlargement, steel tie rods, reinforced concrete overlays, the FRCM is a competi-

tive technology for repair, seismic retrofit, and rehabilitation of existing masonry structures.  

2.1 Historical background 

The first structural cement-based textile composite was the ferrocement patented in 1855 by Lambot in 

France [50]. It consisted of a steel reinforcement grid embedded in a cementitious matrix of about 50 mm 

in thickness. It is worth remembering that ferrocement technology was almost absent in the construction 

industry until the 1960s. In those years, this technique was mainly used to build slender shell structures 

such as water tanks or roofs and, only in the 1990s it was also adopted as a repair solution. In this context, 

ferrocement laminates were used to repair damaged reinforced concrete elements. Although various 

research studies confirmed the increase in the ultimate capacity of strengthened reinforced concrete 

beams and columns, this technique was mainly used in new construction. Therefore, the application of the 

ferrocement as a repair technology remained limited [50]. 

Then, the composite materials based on the polymeric matrix were developed in the 1960s and 1970s. 

They consisted of one or more layers of high-strength fibre sheets made of carbon, glass, basalt, or aramid 

embedded in a polymer-based matrix. Widely known as fibre-reinforced polymers (FRP), this technolo-

gy’s application was initially limited to the aerospace and defence industries. Only in the early 1990s it 

was also available for the construction industry, as FRP manufacturing cost was reduced. The main 

application fields of the FRPs in the construction sector were repairing or strengthening concrete and 

masonry structures. Furthermore, various studies confirmed the effectiveness of externally bonded FRP 

systems in improving the axial, shear, and flexural resistance of structural elements [50]. However, 

despite these advantages, the FRP composites are characterized by some limitations, such as: 

• Heat sensitivity of the organic matrix; 

• Problematic application on wet surfaces; 
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• Impermeability of the polymeric matrix: it can trap moisture within the masonry, leading to the 

loss of bond with the substrate; 

• Surface preparation necessary for the application of FRP laminates on uneven or jagged surfaces;  

• Hazardous materials: the polymers need special handling processes before, during, and after their 

use. 

Therefore, mortar-based composites have been developed to overcome all these problems. The organic 

matrix of the FRP has been replaced with an inorganic one generally based on cement or lime mortar. 

Thus, compared to the FRPs, the FRCM systems have the following advantages: 

• Resistance of the inorganic matrix to elevated temperatures and ultraviolet radiation; 

• Application on irregular or wet substrates with minimal or no surface preparation; 

• Vapour permeability, physical/chemical compatibility of the lime-based mortars with masonry 

substrates: this aspect is fundamental for applications to historic structures. 

Finally, it is worth noting that the FRCM composites also present many analogies with the textile-

reinforced concrete (TRC). The latter is a thin precast structural element made of alkali-resistant glass or 

carbon fabrics embedded in high performance finely grained cement concrete [51], which is commonly 

adopted as a stand-alone load-bearing element for new constructions. On the contrary, the FRCM is 

specifically designed for the external strengthening of existing structures. 

2.2 Characterization methods of the textile reinforced 
mortar systems (FRCM) 

Two different test methods have been recently proposed in the scientific literature about the mechanical 

characterization of the FRCM composites. The first one combines the results of direct tensile tests on bare 

textile specimens with those obtained from single-lap shear bond tests. This procedure has been devel-

oped within the RILEM Technical Committee (TC) 250-CSM, “Composites for the Sustainable Strength-

ening of Masonry”. It is also adopted by the Italian technical standard CNR-DT 215/2018 “Guide for the 

Design and Construction of Externally Bonded Fibre Reinforced Inorganic Matrix Systems for Strength-

ening Existing Structures” [52]. 

The second characterization method is based on performing direct tensile tests on composite specimens. 

In this case, the samples are clamped between the wedges of a universal testing machine without applying 

any lateral pressure through clevis-type grips. This test procedure is defined in the acceptance criteria 

AC434 of the International Code Council–Evaluation Service in the US [53]. It is adopted by the Ameri-

can technical standard ACI 549.4R-13 “Guide to Design and Construction of Externally Bonded Fabric-

Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry 

Structures” [54]. Finally, the test method parameters have also been validated by Arboleda, who conduct-

ed an extensive study on testing FRCM composites with clevis grips [55].  
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2.2.1 Characterization method of FRCM composite tested with 
clamping grips 

The characterization method presented in this paragraph combines the results of tensile tests performed 

with clamping grips on bare textile samples and single-lap shear bond tests. The latter is commonly 

carried out to investigate the load transfer capacity between the externally bonded strengthening system 

and the structural member, i.e. the substrate. It is important to stress that in many structural applications, 

such as strengthening masonry walls, arches or vaults, the performance of the FRCM usually depends on 

the bond behaviour. Therefore, it needs to be experimentally investigated for the design and assessment of 

the reinforced structural element. Furthermore, recent experimental studies, e.g. [56]–[59], have demon-

strated that the shear bond failure may occur not only within the substrate but also within the thickness of 

the system (differently from FRPs). In this regard, the grid-to-matrix adhesion or interlocking, the fibre-

to-fibre and matrix to substrate bond are factors that may influence the load transfer mechanism. In more 

detail, the following aspects generally affect the load transfer capacity between substrate and system:  

• textile architecture; 

• coating or pre-impregnation of the fibre; 

• thickness of the matrix, 

• characteristics and mechanical properties of the substrate (roughness, moisture content, strength 

and Young’s modulus) 

• quality of the application and curing conditions. 

It is worth noting that no norm exists on the single-lap shear-bond tests. Only a recommendation of the 

RILEM Technical Committee (TC) 250-CSM [60] has been recently published. Figure 2.3 illustrates the 

test setup proposed in [60], where the specimen consists of an FRCM strip applied onto a substrate prism. 

 

Figure 2.3: Test setup for the single-lap shear bond tests proposed in [60] 
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The unbonded textile end of the sample is clamped in the wedges of the testing machine, and it is subject-

ed to a tensile load parallel to the composite-to-substrate interface. In this way, the load transfer capacity 

between the externally bonded strengthening system and the structural member (i.e. the substrate) can be 

evaluated, and the following possible failure modes can occur: 

• Mode A: complete debonding of the system from the masonry support (cohesive failure); 

• Mode B: debonding of the system at the matrix-to-substrate interface (adhesive failure); 

• Mode C: debonding of the system at the matrix-to-textile interface; 

• Mode D: slippage of the textile within the matrix; 

• Mode E: tensile break of the textile fibres in the unbonded part; 

• Mode F: tensile rupture of the textile fibres within the mortar matrix [61]. 

 

Figure 2.4: Possible shear bond failure modes of the FRCM systems when applied to the masonry substrate [61] 

The experimental results are usually expressed in terms of axial stress-slip relationship. The stresses σ are 

conventionally referred to the equivalent cross-sectional area of the dry textile Af, as follows: 
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Where F is the axial force recorded during the tests, and Af [mm²] is calculated with Eq. (2.2): 
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Tx is the yarn count expressed in Tex [g/km], ny is the number of yarns per unit width expressed in 

[n°/cm], ρfib is the fibre density [g/cm2], bf is the width of the textile [mm]. 

In this way, any possible variation of mortar thickness cannot influence the equivalent cross-sectional 

area of the FRCM. Furthermore, the equivalent fibre thickness [mm] of the dry textile can be defined 

from Af as follows:  
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It is important to stress that if the textile mesh consists of the same type and number of yarns in its main 

directions, the equivalent cross-sectional area and thickness is the same. Otherwise, they depend on the 

considered direction, i.e. vertical, horizontal and eventually diagonal, if present. 

Furthermore, the typical force-slip curves that may result from single-lap shear-bond tests are depicted in 

Figure 2.5. The failure modes A, B, and C are quite brittle. The curve generally shows a nearly flat branch 

until the debonding of the system occurs. On the contrary, mode D displays a diagram with a soft load 

decrease after the peak due to the progressive slippage of the textile mesh within the mortar. Moreover, 

the response curve of the failure mode E is characterized by a sudden strength reduction due to the tensile 

breaking of the fibre threads. In this case, the curve’s flat branch is commonly not reached. Finally, mode 

F shows a strength drop at the telescopic failure of the fibre wires embedded in the matrix. Then, a further 

load decrease usually occurs since the first portion of the textile out of the mortar can slip [61]. 

 

Figure 2.5: Typical axial force-slip curves obtained from the single-lap shear bond tests [61] 

It is worth noting that initially, it was proposed to combine the results of clamping-grip tensile tests on 

FRCM coupons with those of the single-lap shear bond tests [61]. In this context, the test protocol devel-

oped by RILEM Technical Committee 232-TDT for TRC materials and later specialized for FRCM 

systems was adopted [62]. Then, the round-robin test performed within RILEM TC 250-CSM has shown 

that the brittle matrix’s nature, the manufacturing and curing process, preexisting damages, and setup 

details might influence the tensile tests’ results of the coupons. In particular, the stress drops that general-

ly occur at each crack formation and the cracking pattern may widely vary from specimen to specimen 

and from laboratory to laboratory. Preexisting damage may lead to underestimating the stress and strain at 

the first crack and the uncracked elastic modulus, consequently. Moreover, the gripping areas’ pressure 

may influence the ultimate tensile stress, strain values and the cracked tensile modulus of elasticity [50]. 

Furthermore, the boundary conditions, the stress state and the cracking pattern of the applied FRCM 

system may differ from those reproduced through the tensile tests on FRCM coupons with clamping 

grips. Finally, some doubts about the repeatability of the tests and the method’s robustness have been 

raised, especially for the FRCM systems, whose conventional stress falls in the uncracked or crack 

development phases of the tensile response. Therefore, the acceptance criteria proposed by Ascione in 

[61] may be particularly sensitive to these aspects. The acceptance strain and tensile modulus of elasticity 
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can be derived from direct tensile tests on bare textile samples and not on FRCM specimens. The latter 

are performed by clamping grid strips in the testing machine’s wedges with sufficient lateral pressure. 

Only in this way can the slippage of the textile strip in the load introduction areas be avoided, and the 

tensile break of the fibres can be achieved. 

This choice was also taken from the Italian standardization board set within the National Research Coun-

cil (CNR) to develop qualification guidelines for FRCM composites [50]. In this regard, the Italian 

technical standard CNR-DT 215/2018 defines the limit conventional FRCM tensile strength σlim,conv for 

design and assessment purposes. As shown in Figure 2.6, it is equal to the characteristic value of the 

maximum axial force obtained from the single-lap shear-bond tests divided by the equivalent cross-

sectional area Af. Then, the corresponding modulus of elasticity Ef and ultimate strain εlim,conv are derived 

from the clamping-grip tensile tests on bare textile specimens. It is worth noting that if the grid doesn’t 

consist of the same type and number of yarns in its main directions, the tensile properties of the FRCM 

system depend on the considered direction. Otherwise, they are the same. Finally, the single-lap shear-

bond test results should be valid only for the tested FRCM system and substrate. They cannot be directly 

extended or extrapolated to different composites or substrate materials [60]. 

 

Figure 2.6: Determination of σlim,conv and εlim,conv  [52] 

2.2.2 Characterization method of FRCM composites tested with clevis-
type grips 

The second characterization method of an FRCM system is based on direct tensile tests on composite 

coupons (Figure 2.7). Adopting the test method suggested by the AC434 guidelines, the axial load is 

transferred from the frame of a universal testing machine to the composite specimen through clevis-type 

grips. Two metal tabs, preferably aluminium, are glued at each end of the sample. In this way, the compo-

site coupon is connected to the gripping mechanism. 
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Figure 2.7: Uniaxial tensile tests with clevis-type grips on FRCM composite specimens [54] 

This test setup allows reproducing the application case where the composite is not mechanically an-

chored. Thus, the system’s tensile response depends mainly on the grid-matrix interface bond. The break 

of the textile fibres or the grid’s slippage within the matrix are possible failures. It is worth specifying that 

the other shear bond failure modes illustrated in Figure 2.4 are not considered from this test setup. The 

reason for this different acceptance method is to be found in the main foreseen applications. In particular, 

the American approach has been developed considering the application of FRCM systems on concrete 

structures or masonry with concrete units. On the contrary, the method developed within RILEM and 

adopted by CNR DT-215/2018 is mainly based on their application on clay brick or stone masonry [50].  

Figure 2.8 shows the typical stress-strain diagram of an FRCM system obtained from uniaxial tensile tests 

with clevis-type grips.  

 

Figure 2.8: Example of uniaxial tensile stress-strain diagram of FRCM composite specimens obtained from direct tensile tests 

with clevis-type grips 
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Three consecutive branches can be usually identified: 

• Stage A: uncracked phase  

• Stage B: crack development 

• Stage C: fully cracked phase. 

It is worth noting that the width of these stages generally depends on several factors, such as mechanical 

properties and nature of the matrix (cementitious or hydraulic lime), layers’ thickness and interlocking 

between grid and mortar. 

For design purposes, the ACI 549.4R proposes the determination of an equivalent bilinear curve (Figure 

2.9) characterized by the following parameters: 

• ultimate tensile strength fu; 

• tensile modulus of elasticity of the cracked specimen Ecracked, calculated with Eq. (2.4): 
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Where ε@0.9fu and ε@0.6fu are the strains at 0.9fu and 0.6fu; 

• ultimate tensile strain εu calculated with Eq. (2.5): 
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• stress and strain of the transition point between the uncracked and cracked phases; 

• tensile elastic modulus of the uncracked specimen. It is defined on the initial linear segment of the 

response bilinear. Two points that connect the results in a line close to the trend and slope of the 

response curve identify the initial line.  

Also in this case, the stresses are conventionally referred to the equivalent cross-sectional area of the dry 

textile Af (Eqs. (2.1) and (2.2)) to avoid the influence of any possible variation of mortar thickness.  

Then, the FRCM characteristic ultimate strength and strain are calculated as the average experimental 

ones minus one standard deviation. The tensile elastic modulus is equal to the mean value of the test 

results.  
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Figure 2.9: Equivalent bilinear curve of uniaxial tensile stress-strain diagrams of FRCM composite specimens 

Finally, the initial uncracked phase is usually neglected for design purposes. After ACI 549.4R-2013, the 

FRCM system behaves linear elastic up to failure. The design tensile strength is determined through the 

mean tensile elastic modulus of the cracked FRCM and the design value of εu, on which further limita-

tions are set based on the type of application (shear or flexural).  

2.3 In-plane strength of textile reinforced masonry 
panels 

Several experimental studies performed in the last years have confirmed the effectiveness of FRCM 

composites in strengthening masonry structures. Tests conducted on textile-reinforced masonry panels 

have shown that the FRCM systems can effectively improve their in-plane shear resistance and ductility, 

making them suitable for seismic retrofitting and post-earthquake repair, e.g. [63]–[70]. 

A common approach to calculate the in-plane shear strength of a textile-reinforced panel is to add the 

increase of resistance due to the FRCM system to the shear strength of the URM panel. In this context, 

both technical standards CNR-DT 215/2018 and ACI 549.4R-13 propose design formulations. 

Therefore, starting from the calculation method of CNR-DT 215/2018, the in-plane shear resistance of a 

strengthened masonry panel, VRd,s, can be determined as follows: 

, ,Rd s URM t fV V V= +  (2.6) 

 

VURM is the shear resistance of the URM panel under diagonal cracking, and Vt,f is the increase of strength 

due to the reinforcing system calculated through Eq. (2.7). 

, ,
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t f f f s f t fd f
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Where: 
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• γRd is a model safety factor equal to 2, according to current knowledge on the FRCM systems; 

• nf is the total number of applied textile layers; 

• tf,s is the equivalent thickness of one textile layer with fibres arranged parallel to the shear force;  

• lf is the design length of the applied reinforcement. It is measured orthogonally to the shear force, 

and in any case, it cannot be assumed to be greater than the dimension H of the panel (Figure 

2.10). The limitation lf ≤ H is introduced, since the product nf · tf,s · lf represents the equivalent 

cross-section area of reinforcement effective in shear, which intersects a diagonal crack inclined 

at 45°; 

• αt is a coefficient that considers the reduced tensile strength of the fibres under shear actions. It 

may be assumed equal to 0.8 in the case of no experimental testing. 

• εfd is the design strain of the yarns arranged parallel to the shear force. It is derived from the con-

ventional strain limit εlim,conv using the partial safety factors indicated for design situations; 

• Ef is the average Young’s modulus of the bare textile. 

 

Figure 2.10: In-plane FRCM reinforcement of a masonry pier: definitions after CNR-DT 215/2018 [52] 

Moreover, CNR-DT 215/2018 limits the in-plane shear strength of the textile-reinforced panel by the 

masonry crushing capacity, Vt,c. In this case, the shear force VEd must not exceed the diagonal crushing 

resistance defined by Eq. (2.8): 

, ,0.25t c m u fV f t d=     (2.8) 

  

Where: 

• fm,u is the ultimate masonry compressive strength; 

• t is the thickness of the panel; 
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• df is the distance between the compressed edge of the panel and the fibre of the reinforcement that 

attains the highest tensile strain (Figure 2.10). 

Concerning the American design approach, it is important to stress that the limit-state design principles 

adopted by ACI are different from the European ones. For this reason, the design formulations proposed 

by ACI 549.4R-13 vary from those suggested by CNR-DT 215/2018, although both standards have a 

similar calculation method. 

Therefore, the shear strength of a masonry panel reinforced with FRCM can be determined after ACI 

549.4R-13 as follows: 

( )v n v m fV V V = +  (2.9) 

 

Where φv is the shear strength reduction factor equal to 0.75, and Vn is the nominal shear strength. Vm and 

Vf are the masonry and FRCM strength contribution, respectively. Vm is calculated according to the 

Building Code Requirements and Specification for Masonry Structures [71], while Vf is defined in Eq. 

(2.10): 

2f f f fvV n A l f=     (2.10) 

 

Where nf is the number of applied reinforcement layers; Af is the equivalent cross-sectional area of the 

grid by unit width effective in shear; l is the wall’s length in the direction parallel to the shear force. It is 

worth noting that ACI 549.4R-13 doesn’t explain the reason for factor 2 in Eq. (2.10). It only suggests 

applying the composite system preferably on both sides of the wall for symmetry and effectiveness. 

Furthermore, no indications are given for the one side application. Factor 2 is probably introduced to 

consider only the double-sided FRCM application. Thus, nf should indicate the number of reinforcement 

plies per side and not the total number of applied layers.  

Regarding the design tensile strength of the FRCM reinforcement, ffv, it is calculated through Eq. (2.11): 

fv cracked fvf E =   (2.11) 

 

In which Ecracked is the tensile modulus of elasticity of the cracked FRCM and εfv is the tensile design 

strain in the FRCM shear reinforcement, defined as follows: 

( )min ;0.004fv u =  (2.12) 

 

Furthermore, limitations on the total force per unit width transferred to the masonry are given in the ACI 

549.4R-13. The increment in shear strength provided by the FRCM system, Vf, should not exceed 50 per 

cent of the load-bearing capacity of the unstrengthened structural element, Vm. Moreover, the summation 

of the URM and FRCM shear contributions (without the strength reduction factor, φv) should be checked 

against the toe crushing capacity according to the provisions of ASCE 41, since the masonry panel attains 

its maximum lateral strength with this type of failure. Finally, the application of the strengthening system 

is limited to a maximum wall thickness of 305 mm. 

Furthermore, if the FRCM system has fibre yarns applied along the direction of the axis of the structural 

element, the in-plane flexural capacity of the textile-reinforced panel can be increased. In this context, 

both CNR-DT 215/2018 and ACI 549.4R-13 consider the FRCM contribution to carry the tensile stresses 

due to the bending-rocking behaviour of the element. The tensile strength of the masonry is commonly 

neglected because it is generally very low compared to the compressive strength. 



2.3 In-plane strength of textile reinforced masonry panels 

55 

Therefore, the following hypotheses are adopted for the calculation of the design bending moment: 

• Plane sections remain plane; 

• Perfect bonding between FRCM and masonry support. 

The uniaxial masonry constitutive law can be assumed linear elastic up to the design strength fm,u and then 

perfectly plastic up to the ultimate strain εm,u. As an alternative, the equivalent stress-block diagram can 

be adopted. In this case, the masonry compressive stress diagram is assumed to be rectangular with a 

uniform compressive strength αfm,u distributed over an equivalent compressive length βyn, where yn is the 

distance between the outermost fibre in compression and the neutral axis. Common values of the coeffi-

cients α and β are 0.85 and 0.8, respectively. If experimental data are unavailable, the masonry ultimate 

design strain can be assumed equal to 3.5‰, as suggested by CNR DT 215/2018. The strengthening 

constitutive law of the FRCM is linear elastic up to the design limit strain. In this regard, CNR-DT 

215/2018 defines the conventional strain limit, εlim,conv, based on the tensile strength obtained from single-

lap shear bond tests: 

lim, lim,conv f convE =   (2.13) 

 

Where Ef is the tensile elastic modulus of the bare textile. 

On the contrary, ACI 549.4R-13 assumes that the effective tensile failure strain of the FRCM composite 

material, εe, is limited by the ultimate tensile strain of the FRCM system εu ≤ 1.2%. Then, the effective 

tensile stress level in the FRCM reinforcement attained at failure, fe, is calculated through Eq. (2.14): 

( )   with   min ;1.2%e cracked e e uf E   =  =  (2.14) 

 

Where Ecracked is the tensile modulus of elasticity of the cracked FRCM composite material. 

 

Figure 2.11: Uniaxial constitutive laws for masonry and FRCM system 

It is worth noting that if the neutral axis yn intersects the reinforcing system, the compressed part of the 

FRCM is considered non-reactive. Only the masonry can carry compressive stresses since both standards 

assume that the FRCM system does not exhibit any stiffness or compressive strength. In this context, 

Figure 2.12 shows the flexural failure of a masonry pier strengthened with an FRCM applied on the entire 

surface of the element (df = l) and both sides. It is important to stress that, in this case, only the direction 

of the system parallel to the panel’s axis can contribute to the in-plane flexural resistance, as shown by the 

induced strain and stress distributions in the cross-section. 



2 Strengthening of masonry structures with externally bonded textile reinforced mortar 

56 

Therefore, the following failure modes are possible: 

• Masonry crushing; 

• Tensile Failure of the FRCM system. 

 

Figure 2.12: In-plane flexural failure of an FRCM strengthened masonry pier and strain-stress distributions 

The dominant failure mode can be identified by assuming that both the masonry and FRCM attain their 

ultimate strain (εm = εmu and εv = εlim,conv or εe). In this case, the neutral axis depth yn
* and the resultant 

compressive and tensile loads, Fm
* and Ft

*, can be calculated through Eqs. (2.15) - (2.18): 
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( )* *

, lim,0.5       (CNR-DT 215/2018)t f n f b f convF n l y t E =   −     (2.17) 

( )* *

,0.5        (ACI 549.4R-13)t f n f b cracked eF n l y t E =   −     (2.18) 

 

Where tf,b is the equivalent fibre thickness of one textile layer in the direction parallel to the panel’s axis, 

which is effective during the in-plane bending failure. 

Thus, comparing the acting normal force N with the difference (Fm
* - Ft

*), the actual failure mode can be 

identified. In more detail, if N > (Fm
* - Ft

*), masonry crushes by achieving the ultimate compressive strain 

εmu while the effective tensile strain in the FRCM is εv = εmu·(l - yn)/yn. 

On the contrary, if N < (Fm
* - Ft

*), the FRCM attains the ultimate tensile strain and εm < εmu. In this case, 

it is worth noting that the masonry could be in the elastic range, and the hypothesis of a stress block 

distribution could be violated. However, this assumption appears reasonable since it only modifies the 

neutral axis depth yn. The difference in the design flexural strength is negligible.  

Therefore, once the failure mode is identified, yn can be calculated by solving Eq. (2.19): 
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m tF F N− =  (2.19) 

 

Then, the flexural capacity of the strengthened panel can be evaluated according to CNR-DT 215/2018 

and ACI 549.4R-13 as follows: 
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Where ϕm is the strength reduction factor for flexure equal to 0.6. 

Moreover, the design lateral strength associated with the flexure-controlled failure mode can be deter-

mined through Eqs. (2.22) and (2.23): 
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Where k is a coefficient that accounts for the boundary condition of the panel, equal to 0.5 for a fixed-

fixed wall and 1 for a fixed-free wall, h is the height of the panel. 

Finally, only CNR DT 215/2018 gives indications to verify the strength of the masonry spandrels rein-

forced with FRCM. As shown in Figure 2.13, the element’s behaviour is assumed as a pier rotated to 90°, 

and the axial force N in the direction parallel to the bed joints is neglected. 

 

Figure 2.13: FRCM in-plane strengthening of a masonry spandrel: definitions after CNR-DT 215/2018 [52] 
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Therefore, the shear strength VRd,s can be still calculated through Eqs. (2.6), (2.7) and (2.8), but the contri-

bution of the normal force in the in-plane resistance of the URM panel under diagonal cracking should be 

not considered. Then, the cross-sectional analysis necessary to determine the improved flexural capacity 

should also be performed neglecting N. 

2.4 Modelling of textile reinforced masonry structures 
with the Equivalent frame method 

The Equivalent frame method described in § 1.5 is a modelling technique originally developed for URM 

buildings, which is also suitable for modelling textile-reinforced masonry structures. It assumes that a 

masonry wall can be schematized as a set of vertical piers and horizontal spandrels. Since the seismic 

damage is usually concentrated only in these parts, the connection areas generally remain undamaged. 

Recent shaking table tests performed on masonry buildings retrofitted with FRCM, e.g. [72], [73], have 

shown that this phenomenon also occurs in the case of textile reinforced masonry structures. Thus, it can 

be assumed that the deformation state of connection areas always remains within the elastic limits. It is 

worth remembering that this assumption allows neglecting these parts in the evaluation of the wall behav-

iour. The latter is usually limited by the non-linear strains of its structural elements. 

Therefore, the textile-reinforced masonry piers and spandrels can be still modelled through a single finite 

element with a limited number of degrees of freedom. The entire wall is obtained by assembling non-

linear elements mutually connected by rigid parts. The numerical models are characterized by a limited 

number of degrees of freedom. Thus, the response of a wall subject to static (monotonous or cyclic) and 

dynamic actions can be represented with a modest computational burden. 

Furthermore, recent experimental studies, e.g. [69], [74]–[76], have confirmed that the FRCM systems 

can increase the in-plane lateral strength and displacement capacity of masonry panels. Therefore, the 

ML-BEAM element implemented in the TREMURI software, described in § 1.5.2, can be suitable to 

reproduce the in-plane response of a textile strengthened masonry panel until very severe damage levels.  

 

Figure 2.14: Idealization of the single panel and monotonic multilinear constitutive law of the ML-BEAM element strengthened 

with FRCM implemented in TREMURI 
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Moreover, as shown in § 2.2.2, the in-plane shear resistance of a textile reinforced masonry panel can be 

calculated as the sum of the shear strength of the URM panel and the increase of resistance due to the 

reinforcing system. It is worth remembering that the strength of the unreinforced ML-BEAM element 

implemented in TREMURI is computed according to the criteria illustrated in § 1.3 and § 1.4, consistent 

with the most common formulations proposed in the literature and building codes. 

Therefore, the increase of in-plane load-bearing capacity can be obtained using the formulations de-

scribed in § 2.2.2. In this way, no additional nodes or degrees of freedom are required to model the 

FRCM system, and a lower computational burden is still provided. 

The kinematic variables and generalized forces of the strengthened ML-BEAM element are shown in 

Figure 2.14, which also depicts its monotonic behaviour. It is worth pointing out that if the strengthening 

system improves the panel’s stiffness, the reinforced element’s elastic properties can be defined in the 

input phase by assigning improved elastic and shear moduli (E and G in Eq. (1.41)). Moreover, the 

progressive stiffness degradation in the elastic phase can also be modelled by assigning two proper ratios, 

as described in § 1.5.2. 

Then, the maximum strength of the panel, VRd,s, is computed as the minimum shear resistance obtained 

from the defined shear and flexural failure criteria, considering the current axial force acting at each 

analysis step. The TREMURI program calculates the increase of resistance due to the reinforcing system 

through the formulations proposed by the Italian technical standard CNR-DT 215/2018. A nonlinear 

correction of the elastic strength prediction is performed, comparing the latter with the element’s limit 

resistance. Thus, the redistribution of the internal forces is carried out to ensure the element’s equilibrium. 

The modelling of the hysteretic behaviour is still based on a phenomenological approach, as for the 

unstrengthened element. It allows reproducing the possible failure modes of piers and spandrels rein-

forced with FRCM (flexural, shear and mixed type). As shown in Figure 2.15, the nonlinear response of 

the strengthened panel can be modelled until very severe damage levels by assigning progressive strength 

degradations βE,i at defined drift values di. Different values of βE,i and di can be set to describe the panel’s 

flexural and shear behaviour. They can also be differentiated for spandrels, piers and unstrengthened 

structural elements if they are present. 

 

Figure 2.15: Multilinear constitutive law and hysteretic response of the ML-BEAM element strengthened with FRCM implemented 

in TREMURI 
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Furthermore, the hybrid failure is possible in a range of the panel’s V – N domain close to the points in 

which the flexural and shear domains intersect by assigning in the input phase two factors, a1 and a2 

(Figure 1.40). In this case, the program calculates average values of di and βE,i from those assigned for the 

shear and flexural behaviour. 

Therefore, the complete hysteretic response of the FRCM reinforced ML-BEAM element is shown in 

Figure 2.15. As described in § 1.5.2, the slope of the unloading branch in the positive and negative 

quadrants is defined by the stiffness 
Uk +

 from A+ to C+ (Eq. (1.41)), 
Uk −

 (Eq. (1.42)), and kL from C+ to A-. 

The latter is computed by considering 
Uk +

 and the ductility value reached in both positive and negative 

quadrants (μ+, μ-). 

Finally, concerning the strategies to idealize the masonry wall in an equivalent frame and the assembling 

procedure of three-dimensional models illustrated in § 1.5.1 and § 1.5.3, they are still applicable to the 

masonry structures strengthened with FRCM. Therefore, they are not further discussed. 

2.5 The EQ-GRID strengthening system 

EQ-GRID is an FRCM system developed at the Karlsruhe Institute of Technology in Germany for seis-

mic retrofitting and strengthening masonry structures. The textile component is a multi-axial hybrid grid 

composed of alkali-resistant glass and polypropylene fibres (Figure 2.16). The matrix is a natural hydrau-

lic lime mortar (NHL) explicitly developed for this system. It can penetrate the mesh openings and 

encapsulate the fibre yarns very well. This property is fundamental since the bond at the textile-matrix 

and matrix-support interface strongly influences the system’s performance. 

Furthermore, EQ-GRID can be applied on one or both sides of masonry walls. It is suitable for indoor and 

outdoor applications. The mortar is non-shrinkable, workable and quite viscous to be applied on vertical 

surfaces. It is very compatible with the masonry support since it is characterized by porosity and vapour 

permeability. Thus, the moisture cannot remain trapped within the wall. The humidity can migrate 

through the thickness, and no thermo-hygrometric barrier can occur.  

 

Figure 2.16: The EQ-GRID strengthening system (courtesy of Dr Günther Kast GmbH & Co.) 

Moreover, the grid’s density is about 330 g/m2, and the dry bulk density of the mortar is equal to about 

1.42 kg/m3. Since the total thickness of the applied system is only 8 mm, the mass addition to the original 

structure is negligible. Therefore, no increase in seismic action can be caused. 
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Furthermore, a broad experimental campaign was performed at the Karlsruhe Institute of Technology in 

Germany to identify the mechanical properties of the system and investigate the in-plane behaviour of 

masonry panels strengthened with EQ-GRID. The test results are presented and discussed in § 3. 

The experimental campaign has shown that the system can increase the in-plane resistance of masonry 

panels, especially for relatively poor masonry quality. The structural element reinforced with EQ-GRID is 

characterized by an improved performance in terms of strength and deformation thanks to the system’s 

capacity to bear the tensile stresses induced by horizontal shear actions. This aspect is very important in 

the case of earthquake excitation and makes EQ-GRID suitable for repair, seismic retrofit, and rehabilita-

tion of existing masonry structures. 
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3 Experimental characterization of 
the EQ-GRID strengthening system 

The test results presented in this chapter are obtained from a wide experimental campaign performed at 

the Karlsruhe Institute of Technology in Germany for the European research project “MULTITEXCO - 

High Performance Smart Multifunctional Technical Textiles for the Construction Sector”. The main goal 

of the experimental testing was to characterize the EQ-GRID system by determining its mechanical 

properties and investigating the in-plane performance of strengthened masonry panels. 

Therefore, several tensile tests were performed on bare grid samples and composite specimens for each 

main direction of the textile (vertical, horizontal and diagonal). Moreover, compression and bending tests 

were carried out to define the mechanical properties of the matrix. Then, the bonding behaviour of the 

system applied to standard support was investigated through double- and single-lap shear-bond tests. 

Finally, cyclic lateral shear tests were performed on masonry panels reinforced with EQ-GRID to evalu-

ate the effectiveness of the strengthening system. The test results are depicted in terms of shear-drift 

curves, in which the increase of strength and displacement capacity is shown. 

3.1 Tensile properties of the textile component of the 
EQ-GRID system 

The EQ-GRID system’s textile component is a hybrid multi-axial grid composed of AR glass and poly-

propylene wires. Since these two materials have very different mechanical properties, several tensile tests 

were carried out on textile strips and single yarns for each system’s principal direction (vertical, horizon-

tal, and diagonal). Thus, twenty-five grid specimens, eighteen AR glass yarns and ten polypropylene 

wires were tested after DIN EN 13473-2, which refers to the DIN EN ISO 527-4 about determining the 

tensile properties. 

The dimensions of the textile strips were 50x440 mm for the vertical and horizontal direction and 85x440 

mm for the diagonal one. In the adopted test setup, the specimens were clamped between wedge grips of 

the testing machine (Figure 3.1). Therefore, aluminium-sanded tabs were glued at each end with epoxy 

resin, and the samples were left at ambient laboratory conditions for the necessary curing time (two days). 

The distance between the tabs, i.e., the free length of the textile, was 200 mm. 

Moreover, aluminium was used instead of steel because of the significantly lower Young’s modulus. In 

this way, the overstress near the gripping area was reduced, and local failures could be avoided. The 

samples were tested under displacement control with a constant rate of 5 mm/min through an MTS 

electro-hydraulic universal testing machine equipped with a 100 kN load cell. The tensile load and the 

vertical displacement were recorded. The results are expressed in terms of stress-strain diagrams. 
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Figure 3.1: Direct tensile tests with clamping grips on bare EQ-GRID textile specimens 

It is worth noting that, since the grid is hybrid and the textile strips were tested under displacement 

control, the AR glass and polypropylene wires were subjected to the same strain during the test, but not to 

the same stress because of the different elastic moduli that these materials have. Furthermore, the AR 

glass fibre has a linear elastic behaviour until failure. On the contrary, the polypropylene fibre exhibits a 

nonlinear behaviour before reaching the maximum tensile stress and can attain a very high ultimate strain 

(> 20%). However, its response can be assumed linear elastic in the strain range equal to that achieved by 

the glass fibre wires (Figure 3.2). 

 

Figure 3.2: σ-ε diagram of one AR glass and one polypropylene wire 

Under these assumptions, the homogenization coefficient n can be defined as the ratio between the elastic 

modulus of the polypropylene EPP and the one of the AR glass EAR: 

AR PP PP
AR PP PP AR AR

AR PP AR

E
n

E E E

 
    =  =  =  =   (3.1) 
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Where εAR, σAR and εPP, σPP are respectively the strain and stress in the AR glass and polypropylene fibres. 

Therefore, the measured tensile force F is equal to the sum of the forces occurring in the AR glass and 

polypropylene wires, FAR and FPP: 

AR PP AR AR PP PPF F F A A = + =  +   (3.2) 

 

AAR and APP are the equivalent cross-sectional areas of the AR glass and polypropylene wires, respective-

ly. 

Then, since σPP is equal to n · σAR, the stress in the AR glass wires can be obtained from the total force F: 

( )
( )

AR AR AR PP AR PP AR AR

AR PP

F
F A n A A n A

A n A
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Therefore, the total stress σ is equal to: 
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Where Aeq is the equivalent cross-sectional area of the dry textile [mm²] homogenized to the glass fibre: 
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+
 

(3.5) 

 

Thus, the homogenized equivalent thickness teq [mm] can be defined as follows: 

eq

eq

f

A
t

b
=  (3.6) 

 

Where bf is the width of the grid [mm]. 

It is worth specifying that the coefficient n is defined for each direction of the system. Therefore, Table 1 

shows three homogenization coefficients, nv, nh, nd, determined through the elastic moduli of the tested 

AR glass and polypropylene wires. 

Table 1: Homogenization coefficients nv, nh and nd of the EQ-GRID equivalent cross-section 

Vertical Horizontal Diagonal 

nv nh nd 

0.047 0.053 0.051 

 

Furthermore, the average Young’s modulus Ef of the grid can be calculated between two assigned strain 

values, εI and εII: 

II I

f

II I

E
 

 

−
=

−
 (3.7) 

 

Where σII and σI are the corresponding stress values. 
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According to DIN EN ISO 527-4, the following strain range should be adopted: 

0.05%                                                                                                                                             

0.25%

I

II





= 


= 

 (3.8) 

 

In this case, the linear approximation of the tensile response leads to an overestimation of the failure 

tensile strength σu in the vertical direction and an underestimation in the other two (Figure 3.3). 

Therefore, the strain range suggested by CNR-DT 215/2018 for the characterization of the FRCM sys-

tems is also considered: 

 at 0.1                                                                                                                                                

 at 0.5

I u
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 (3.9) 

 

As shown in Figure 3.3, the failure strength is overestimated in all three directions by adopting Eq. (3.9) 

values. For this reason, another strain range needs to be chosen. In this context, a better linear approxima-

tion is obtained with the average secant elastic modulus calculated between zero and the maximum tensile 

stress. Figure 3.3 also shows the linear tensile response determined with the secant stiffness. 

 

Figure 3.3: σ-ε diagrams obtained from the tensile tests on EQ-GRID textile strips and linear approximation of the tensile response 

Thus, the mechanical properties of the multi-axial grid are summarized in Table 2. The strength σu,m is 

calculated as the ratio between the average maximum tensile force and the equivalent cross-section Aeq of 

the dry textile homogenized to the glass fibre. The characteristic strength and strain values, σu,k and εu,k, 

are obtained as the average ones minus kn times the standard deviation STD, as recommended by Annex 

D of Eurocode 0. The factor kn is assumed 2.0 since the number of the tested specimens is eight or even 

nine. Furthermore, the mean secant Young’s modulus Ef is also indicated in Table 2.  
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It is worth noting that the coefficient of variation (Co.V.) assumes higher values for the specimens in the 

horizontal direction since the production process influences the tensile response of the horizontal AR 

glass wires. Therefore, both ultimate strength and strain values are lower than those obtained for the 

vertical direction, although the samples had a very similar threads’ arrangement. Finally, the diagonal 

tensile strength is higher than the others. In this regard, it is important to remember that the stresses are 

referred to the homogenized grid’s cross-section, and the specimens have a low glass fibre content in this 

direction. 

Table 2: Mechanical properties of the hybrid multi-axial grid. 

 Vertical  Horizontal  Diagonal  

nspecimen 8 8 9 

σu,m 1387 N/mm2 1046 N/mm² 1458 N/mm² 

Co.V. 13.1 % 20.4 % 5.0 % 

σu,k 1024 N/mm2 620 N/mm² 1311 N/mm² 

εu,m  3.2 % 2.8 % 3.7 % 

Co.V. 9.0 % 15.6 % 10.6 % 

εu,k  2.6 % 1.9 % 2.9 % 

Ef 43269 N/mm² 37516 N/mm² 40067 N/mm² 

Co.V. 5.7 % 21.6 % 9.3 % 

 

3.2 Mechanical properties of the mortar component of 
the EQ-GRID system 

The matrix of the EQ-GRID system is a natural hydraulic lime-based (NHL) mortar whose mechanical 

properties were determined through bending and uniaxial compression tests.  

The bending tests were performed on three specimens with dimensions equal to 40x40x160 mm after 28 

days of maturation. Then, the six halves obtained by the previous samples were subjected to uniaxial 

compression. In this way, six compression tests on mortar prisms with dimensions 40x40x80 mm could 

be carried out. This test method is suggested by the DIN EN 196-1 and allows obtaining the average 

flexural tensile strength ft,M and compressive strength fc,M of the EQ-GRID matrix. The results are summa-

rized in Table 3. 

Table 3: Mechanical properties of the EQ-GRID system’s matrix. 

fc,M (28 days) Co.V. ft,M (28 days) Co.V. EM fp 

14.95 N/mm2 3.6% 5.13 N/mm2  0.9% 7.5 GPa 0.5 N/mm2 

 

Finally, Table 3 also reports the elastic modulus EM and the pull-off strength fp declared by the manufac-

turer [77]. 
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3.3 Tensile properties of the EQ-GRID system 

The mechanical properties of the EQ-GRID system were obtained from direct tensile tests performed on 

composite specimens. Two different test setups were adopted. In the first one, the samples were clamped 

in the wedge grips of the testing machine. A lateral pressure of 5 bar was applied to avoid sliding the 

specimen in the load introduction area (Figure 3.4). On the contrary, the axial load was transferred by 

adhesion using the clevis-type grips (Figure 3.4). In this case, sanded aluminium tabs connected to the 

grips were glued with epoxy resin to the ends of the composite specimens. This gripping mechanism is 

suggested by Annex A of the American standard AC434 [53]. 

Therefore, thirty direct tensile tests were carried out monotonically under displacement control with a 

constant rate of 0.5 mm/min at ambient laboratory conditions. An MTS electro-hydraulic universal testing 

machine equipped with an MTS 100 kN load cell was used. The first fifteen tests were performed adopt-

ing the clamping grips and the second fifteen with the clevis-type. Therefore, ten samples were tested for 

each main direction of the grid (five per test setup). The vertical displacement and the tensile load were 

recorded. 

 

Figure 3.4: Direct tensile tests on composite coupons: scheme of the test setups 

3.3.1 Direct tensile tests with clamping grips 

This test method aims to simulate a strengthening application in which the grid is mechanically anchored 

at its ends. The expected failure is the tensile breaking of the fibres. Some constructive details, such as 

connectors or turning the grid in the corners of the building (Figure 3.5), can reproduce a mechanical 

anchorage. 

The preparation’s stages of the coupons are illustrated in Figure 3.6. The first matrix layer (3 mm thick) 

was rolled out on the wood formwork. Then, grid strips with dimensions 50x440 mm and 85x440 mm 

were embedded in the still fresh mortar for a length of 300 mm, leaving free their ends for 120 mm. The 

application was completed by covering the textile strips with the second layer of matrix (5 mm thick, wet 

on wet application). The total thickness hs of the coupons was 8 mm. 
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Figure 3.5: Examples of construction details for the application of the EQ-GRID system [73]  

Finally, the samples were conditioned for 28 days in the laboratory climate room for the maturation of the 

inorganic matrix (25°C, 55% humidity). Moreover, sanded aluminium tabs were glued on the free ends of 

the samples to ensure homogeneous stress distribution near the gripping area of the testing machine. It is 

worth specifying that only the grid was clamped during the tests, as the ultimate tensile stress and strain 

of the composite specimens may vary, depending on the pressure applied in the gripping areas [50]. 

 

Figure 3.6: Preparation of the composite specimens for the tensile tests with clamping grips 
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Figure 3.7: Direct tensile test on composite specimens with clamping grips 

The test results are depicted in Figure 3.8, in which the response curves are shown for each main direction 

of the grid (vertical, horizontal and diagonal). The stresses are referred to the homogenized cross-section 

area of the bare textile Aeq. In this way, the results are not affected by any possible variations of the 

mortar cross-section. The strain is evaluated based on the global displacement measured between the 

wedge grips of the testing machine since no sliding occurred in the gripping areas. 

 

Figure 3.8: Experimental results of the direct tensile tests on EQ-GRID composite specimens with clamping-grips 

As shown in Figure 3.7, the coupons were initially uncracked until the tensile strength of the mortar was 

reached (stage I). Therefore, the first cracking stress of the matrix fcr,M can be calculated: 
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Where Fcr,m is the first cracking load, ws and hs are respectively the samples’ width and the thickness. 

Table 4 reports the mean matrix cracking stresses fcr,M for the three directions of the grid.  

Table 4: First cracking stress of the matrix with clamping-grips 

 Vertical Horizontal Diagonal 

fcr,M 1.00 N/mm2 1.34 N/mm2 0.96 N/mm2 

Co. V. 15.8% 11.2% 5.7% 

 

During the second test phase, cracks developed (stage II) and became wider. After that, the load was 

carried almost exclusively by the fibre wires up to failure (stage III). Therefore, the whole tensile re-

sponse curve of the EQ-GRID system up to the fibres’ breaking (Figure 3.9) could be obtained through 

the clamping-grip method. 

Table 5: Mechanical properties of the composite specimens tested with clamping grips 

Direction fclamping,cr εclamping,cr fclamping,u εclamping,u 

Vertical 275 N/mm2 0.22% 996 N/mm2 2.0% 

Co. V. 15.8% 22.1% 3.6% 4.5% 

Horizontal 373 N/mm2 0.41% 673 N/mm2 2.3% 

Co. V. 11.2% 12.5% 6.9% 15.4% 

Diagonal 1261 N/mm2 0.37% 1591 N/mm2 2.1% 

Co. V. 5.7% 24.0% 2.5% 27.6% 

 

It is worth noting that, since the grid was embedded in the mortar, it was not free to strain as the bare 

textile. For this reason, the average ultimate stress and strain values, fclamping,u and εclamping,u, of the vertical 

and horizontal direction are lower than the ones of the bare textile (Table 2). On the contrary, the diagonal 

direction reached a tensile strength slightly higher than bare textile because of the horizontal wires’ 

contribution. In this context, the horizontal fibres present in the diagonal composite specimens were also 

stressed for the following reasons: 

• presence of the matrix, which transferred the tensile load to the fibre bundles after cracking; 

• greater width of all the diagonal samples due to the greater aperture size of the grid in this direc-

tion (Figure 3.9); 

• low inclination angle of the horizontal wires to the test direction (30°). 
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Figure 3.9: Direct tensile tests on EQ-GRID composite specimens with clamping-grids 

Finally, the average number of cracks and distance between these were equal to 2 and 10 cm for the 

samples in the vertical direction. The specimens in the horizontal direction developed 3 cracks with an 

average distance of 7.5 cm, and those in diagonal direction showed 2.4 cracks with a mean distance of 8.8 

cm. 

3.3.2 Direct tensile tests with clevis-type grips 

Fifteen tensile tests were carried out on composite specimens with clevis-type grips (Figure 3.11) accord-

ing to Annex A of the American standard AC434. This test method aims to simulate an FRCM applica-

tion in which the grid is not anchored at its ends and whose response mainly depends on the bond be-

tween textile and matrix. Therefore, both tensile fibres’ breaking or their slippage within the matrix are 

possible failures.  

The preparation stages of the samples were the same as the first fifteen coupons, but in this case, the strips 

were completely embedded in the matrix for a length of 460 mm (no free ends of bare textile, Figure 

3.10).  

Therefore, the tensile load, the vertical displacement of the machine and LDTVs have been recorded. The 

results of the performed tensile tests are presented in terms of stress-strain curves in each main direction 

of the textile component (Figure 3.12). 

 

Figure 3.10: Preparation of the EQ-grid composite specimens for the direct tensile tests with clevis-type grips 
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Figure 3.11: Direct tensile tests on EQ-GRID composite specimens with clevis-type grips 

The load was transferred from the testing machine to the specimens by adhesion through the clevis-type 

gripping mechanism. Thus, the obtained tensile response curves are only influenced by the textile-matrix 

bond. 

 

Figure 3.12: Results of the direct tensile tests on EQ-GRID composite specimens with clevis-type grips. 

As shown in Figure 3.12, the first phase of the system’s response is linear elastic (stage I). The tensile 

load was mainly carried by the mortar, which remained uncracked until its tensile strength was reached. 
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The first cracking stress fcr,M of the mortar is calculated with Eq. (3.10), and it is reported in Table 6 for 

each direction of the grid. It is worth pointing out that the values of fcr,M in Table 6 are similar to each 

other and those obtained from direct tensile tests with clamping-grips (Table 4). 

Table 6: First cracking stress of the mortar with clevis-type grips 

 Vertical Horizontal Diagonal 

fcr,M 1.04 N/mm2 0.99 N/mm2 1.12 N/mm2 

Co.V. 41.2% 32.6% 17.7% 

 

After stage I, cracks developed, and the load was gradually transferred from the matrix to the grid. Com-

pared to the tensile tests with clamping grips, the cracking phase (stage II) was distributed over a wider 

strain range and the cracked phase (stage II) over a smaller one. 

The specimens in the vertical direction presented an average number of cracks equal to 2.75. The distance 

between these was about 12.8 cm. Moreover, the samples in the horizontal direction showed 4 cracks with 

an average distance of about 8.2 cm and those in diagonal direction developed 3 cracks with a mean 

distance of 13.6 cm. 

These results show that the horizontal direction has a better textile-matrix bond than the vertical one 

because of the higher number of cracks with lower distances. In this context, the horizontal AR glass 

wires are less smooth since the fibres cannot be uniformly bundled during the production process. Thus, 

the bond is improved, and the breaking of some threads could occur in two samples. As depicted in 

Figure 3.12, two curves of the horizontal direction are characterized by a strength drop after the peak 

stress.  

Therefore, Table 7 reports the average first cracking stress fclevis,cr, maximum strength fclevis,u, and corre-

sponding strains εclevis,cr and εclevis,u.  

Table 7: Mechanical properties of the EQ-GRID system tested with the clevis-type grips 

Direction fclevis,cr εclevis,cr fclevis,u εclevis,u 

Vertical 287.3 N/mm2 0.07% 551.3 N/mm2 1.2% 

Co.V. 41.2% 12.8% 6.3% 20.1% 

Horizontal 276.6 N/mm2 0.06% 665.9 N/mm2 2.4% 

Co.V. 32.6% 26.9% 16.3% 18.5% 

Diagonal 1482.7 N/mm2 0.11% 1843.9 N/mm2 2.5% 

Co.V. 17.7% 18.4% 7.4% 9.3% 

 

Also, in this case, the average diagonal tensile strength is higher than the bare textile since the horizontal 

wires present in the composite specimens were also stressed. The diagonal coupons’ width was greater 

than the other ones (95 mm versus 60 mm), and the horizontal wires’ inclination was only 30° to the test 

direction. Moreover, the grid was not mechanically anchored, and the tensile load was transferred from 

the matrix to the textile component only by adhesion. Therefore, the horizontal glass wires could give a 

contribution even greater than that observed with the clamping grips. In fact, fclevis,u and fclamping,u are 

respectively equal to 1843.9 N/mm² and 1591 N/mm2. 
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3.4 Double-lap shear-bond tests 

Twelve double-lap shear tests were carried out to investigate the EQ-GRID system’s bonding behaviour 

when applied to a masonry unit. The adopted support was the hollow clay brick “WZI Poroton 2 DF 

0,9/12” (240x115x113 mm), which was cut into two equal parts. The strengthening system was applied 

on both sides for a width of 113 mm. As depicted in Figure 3.13, three bonding lengths were investigated 

(4 cm, 8 cm and 12 cm).  

The first matrix layer 3 mm thick was applied to the dry masonry unit. Then, the grid strips were embed-

ded in the still fresh mortar. Finally, the second matrix layer, 5 mm thick, was applied (wet on wet appli-

cation). In this way, the grid was completely covered by the mortar, and the total system’s thickness was 

8 mm. 

 

Figure 3.13: Double-lap shear-bond tests: bonding lengths 

The experimental program included three tests for each main direction of the grid (Table 8). Three further 

tests were performed only for the specimens in the vertical direction, in which the diagonal fibre yarns 

were cut. Thus, their possible influence on the failure mode was also investigated. 

Table 8: Double-lap shear-bond tests: tested specimens 

ID specimen Masonry unit Bonding length Direction of the grid 

V1 

WZI Poroton 2 DF 0,9/12 

4 cm 

Vertical 

V2 8 cm 

V3 12 cm 

V4 4 cm 

V5 8 cm 

V6 12 cm 

H1 

WZI Poroton 2 DF 0,9/12 

4 cm 

Horizontal H2 8 cm 

H3 12 cm 

D1 

WZI Poroton 2 DF 0,9/12 

4 cm 

Diagonal D2 8 cm 

D3 12 cm 

 

The tests were carried out at ambient laboratory conditions with an MTS electro-hydraulic universal 

testing machine equipped with a load cell of 100 kN. They were performed under displacement control 

with a constant rate of 10 mm/min, and the tensile load was applied through steel plates bonded on the 



3 Experimental characterization of the EQ-GRID strengthening system 

76 

perforated surfaces of the masonry units with epoxy resin. The test setup is depicted in Figure 3.14. The 

tensile load and the vertical displacement of the machine were recorded. 

 

Figure 3.14: Double-lap shear-bond tests 

The experimental results are expressed in terms of stress-displacement diagrams for each direction 

(Figure 3.15). The stresses are always referred to the homogenized equivalent cross-section of the bare 

textile. In this way, any possible variation of the matrix could not influence the results. 

  

Figure 3.15: Double-lap shear-bond tests: force-displacement curves of the specimens in the vertical direction 
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Table 9 reports the maximum shear-bond stress fbond,double,max and the corresponding vertical displacement 

vmax achieved by each specimen. 

It is worth noting that the strength attained by the V1, V2, V3 specimens is almost constant, and the post-

peak values improve with increasing bonding length (Figure 3.15). Furthermore, the diagonal wires of the 

V4, V5, and V6 samples were cut, and their possible contribution was excluded. However, only the V4 

specimen reached a lower shear-bond strength. The V5 and V6 samples attained higher values. The 

diagonal fibres could not substantially contribute because of the small samples’ size and their inclination 

to the vertical (60°). All six specimens were characterized by the slippage of the fibres within the mortar, 

confirming the strong influence of the bond at the grid-matrix interface on the system’s strength. 

Furthermore, the specimens in the horizontal direction, H1, H2, H3, reached strength values similar to 

those obtained from the tensile tests with clevis-type grips. In fact, the mean shear bond strength is equal 

to 663 N/mm². The breaking of some glass wires characterized the failure mode. Therefore, compared to 

the vertical direction, the grid-matrix bond is higher in the horizontal one.  

Finally, the samples D1, D2, D3 attained strength values greater than those obtained from the direct 

tensile tests with clevis-type grips. The load was also transferred from the matrix to the grid by adhesion, 

but the specimens’ width was greater than the composite coupons (113 mm versus 95 mm). Therefore, the 

strength contribution of the horizontal yarns was even higher than in the direct tensile tests. Furthermore, 

the stress-displacement curves of the diagonal direction show a sudden strength drop after the peak 

(Figure 3.15), which corresponds to the breaking of some glass wires. Thus, the high bond of the grid 

with the matrix could also be confirmed for the diagonal direction. 

Table 9: Results of the double-lap shear-bond tests 

ID fbond,double,max [N/mm²] vmax [mm] Bonding length 

V1 598.9 1.00  4 cm 

V2 554.4 1.90 8 cm 

V3 518.2 1.78 12 cm 

V4 429.9 0.58 4 cm 

V5 675.6 2.29 8 cm 

V6 719.3 2.06 12 cm 

H1 557.2 1.27 4 cm 

H2 678.5 2.14 8 cm 

H3 753.2 2.42 12 cm 

D1 3529.9 0.93 4 cm 

D2 3207.3 0.82 8 cm 

D3 4060.0 1.50 12 cm 

 

It is important to stress that no debonding at the system-brick interface was observed in all the double-lap 

shear-bond tests. Since the mortar can penetrate the openings of the fibre mesh very well and has a very 

high adhesive resistance, only two failure modes were observed: slippage or partial wires’ breaking. 
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3.5 Single-lap shear-bond tests 

Five single-lap shear-bond tests were carried out for the vertical direction of the EQ-GRID system. As 

depicted in Figure 3.16, the textile strips (50x500 mm) were applied on a clay brick with dimensions of 

240x115x71 mm, and the bonding length was 200 mm.  

 

Figure 3.16: Dimensions of the specimens prepared for the single-lap shear-bond tests 

The application’s phases are illustrated in Figure 3.17. The first matrix layer was applied to the masonry 

unit. Then, the grid strip was embedded with the aid of a steel trowel in this still fresh layer. Finally, the 

application was completed with the second matrix layer. 

 

Figure 3.17: Preparation’s phases of the samples for the single-lap shear-bond tests 

The specimens were left for 28 days at ambient laboratory conditions. Since the free part of the grid strip 

was clamped between wedge grips of the testing machine, aluminium-sanded tabs glued with epoxy resin 

were also adopted. Therefore, the samples were tested under displacement control with a constant rate of 

0.5 mm/min using an MTS electro-hydraulic universal testing machine equipped with a load cell of 100 

kN. In the adopted test setup (Figure 3.18), the masonry unit was restrained between two steel plates 

connected through four steel bars and the bottom plate was gripped to the testing machine. The displace-

ment and the applied load were recorded continuously during the test. One LVDT reacted against a thin 

aluminium plate glued to the bare textile immediately outside the bonded length. 
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Figure 3.18: Single-lap shear bond tests 

The results are expressed in terms of strength-displacement diagrams (Figure 3.19). The stresses are 

calculated considering the homogenized equivalent cross-sectional area of the bare textile. Four samples 

failed by fibre’s breaking. Only the “Shear V2” sample showed the slippage of the grid into the matrix. 

After the peak, the curve of this specimen decreases progressively and doesn’t have any sudden strength 

drop. The diagram depicted in Figure 3.19 confirms this behaviour.  

Moreover, no debonding at the system-brick interface or detachment of the grid from the mortar layers 

was observed. The average maximum shear-bond strength fbond,single,m is equal to 971.2 N/mm² (Co.V. = 

4.1%) at a mean vertical displacement value of 1.86 mm (Co.V. = 18.8%). It is worth noting that the 

average tensile strength obtained from the direct tensile tests on composite specimens with clamping grips 

is equal to 996 N/mm² and the width of the composite part was the same (60 mm). This result confirms 

that the fibre’s breaking was the failure mode that influenced the shear-bond strength in the adopted test 

setup.  

 

Figure 3.19:  Stress-displacement diagrams obtained from the single-lap shear-bond tests 
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3.6 Cyclic lateral shear tests 

The cyclic lateral shear tests allow evaluating the basic parameters of the seismic response of masonry 

panels, such as in-plane strength, displacement capacity and ductility. No technical standard exists for this 

type of test. Only a guideline of the RILEM technical committee gives indications [78]. 

For the foreseen experimental program, twelve masonry specimens (125 x 125 x 24 cm) with ten courses 

of bricks (Figure 3.20) were prepared. 

 

Figure 3.20: Geometry of the tested masonry walls 

Four samples were in the original condition, and eight were reinforced with the application of the EQ-

GRID system. Table 10 summarizes the specimens’ characteristics. Two types of masonry units were 

adopted: calcium-silicate and hollow clay bricks. The first was the “KS Heidelberger 4DF 20/2,0” (24 x 

24 x 11.3 cm) with a 1.4% hole pattern. The second was the “WZI Poroton 3DF 0,9/12” (24 x 17,5 x 11.3 

cm) with 34% rectangular perforation.  

Table 10: Tested masonry specimens 

ID Masonry Unit Mortar EQ-GRID Vertical load 

KS_0_1 
KS Heidelberger 4DF 20/2.0 

 

 

tM = 12 mm 

fM = 1.8 N/mm² 

fM,t = 0.58 N/mm² 

 

- 240 kN 

KS_0_2 - 120 kN 

KS_1_1 On one side 240 kN 

KS_1_2 On one side 120 kN 

KS_2_1 On both sides 120 kN 

KS_2_2 On both sides 120 kN 

WZI_0_1 
WZI Poroton 3DF 0.9/12 

 

 

tM = 12 mm 

fM = 1.8 N/mm² 

fM,t = 0.58 N/mm² 

 

- 240 kN 

WZI_0_2 - 120 kN 

WZI_1_1 On one side 240 kN 

WZI_1_2 On one side 120 kN 

WZI_2_1 On both sides 120 kN 

WZI_2_2 On both sides 120 kN 

 

The mortar mix used to produce the specimens had a weight ratio of hydraulic lime CL 90, sand, cement 

and water equal to 1.1 kg : 1.2 kg : 14.9 kg : 3 kg. The mechanical properties were obtained through 

bending and uniaxial compression tests, according to DIN EN 196-1. Therefore, six mortar prisms 40 x 
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40 x 160 mm were prepared and subjected to bending tests after 28 days of maturation. Then, the two 

halves of each specimen obtained from the bending tests were tested under uniaxial compression, as 

suggested by DIN EN 196-1. This method allowed performing compression tests on twelve mortar cubes 

40 x 40 x 40 mm. Thus, the resulted mean values of the mortar flexural tensile strength fM,t and compres-

sive strength fM are shown in Table 10. 

Finally, the preparation phases of the strengthened panels are illustrated in Figure 3.21. After applying the 

first matrix layer, the grid was embedded in the fresh mortar with the aid of a steel trowel. Then, a second 

layer of the same mixture was applied, covering the grid completely (wet on wet application). The total 

thickness of the finished reinforcement was about 8 mm. 

 

Figure 3.21: Application of the EQ-GRID system on a masonry wall 

3.6.1 Test setup of the cyclic lateral shear tests 

The specimens were tested at the Karlsruhe Institute of Technology within the European research project 

“MULTITEXCO - High Performance Smart Multifunctional Technical Textiles for the Construction 

Sector”. The adopted test setup is shown in Figure 3.22. 

The first step of the testing procedure was to fix the panels to the existing structural floor. Then, a vertical 

hydraulic actuator of 500 kN with a relative load cell of 500 kN applied a constant force equal to 120kN 

or 240kN (Table 10) that was kept constant during the test. These values corresponded to applying a 

uniform compressive stress of 0.4 N/mm2 (120 kN) and 0.8 N/mm² (240kN) at the top of the panels. In 

this respect, a load-distributing plate positioned on the top of the upper steel beam allowed the introduc-

tion of uniform normal stress in the specimens. Then, the cyclic displacements were applied through a 

horizontal hydraulic actuator of 1000 kN with a relative load cell of 1000 kN. The vertical and horizontal 

beam movements were decoupled thanks to a PTFE plate.  

The experimental program provided for the application of alternated lateral displacements with increasing 

amplitude (1mm, 2mm, 4mm, 6mm, 8mm, 10mm, 12mm, 14mm, 16mm, 18mm, etc.) imposed quasi-

statically up to the specimen collapse. The duration of each sinusoidal cycle was 120 seconds.  
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Figure 3.22: Cyclic lateral shear test: test setup 

The displacements were introduced directly in the middle of the upper beam through a steel bolt. In this 

way, a symmetrical behaviour in compression as in the tensile was allowed. Furthermore, no mechanical 

fixing to the head beam was needed [79], and the deformation was transferred in the masonry specimen 

only by friction. Moreover, the panels were instrumented to get the most important experimental data. 

Forces and displacements of the vertical and horizontal cylinders were recorded. Two inductive dis-

placement transducers (± 100 mm) positioned at the top of the specimens also measured the horizontal 

displacements. The free rotation of the head beam was prevented with four vertical threaded bars (two on 

the left and two on the right of the wall). For this reason, two inductive displacement transducers (± 100 

mm) were placed vertically on the upper steel beam to record an eventual rotation during the tests. Each 

bar was pre-tensioned with a normal force of 9 kN, and the internal normal force was recorded with two 

load cells.  

3.6.2 Interpretation of the experimental results of the cyclic shear 
tests 

A common interpretation of the cyclic lateral shear tests’ experimental data is to idealize the envelope of 

the hysteresis loops with a bilinear force-displacement curve, as shown in Figure 3.23.  

 

Figure 3.23: Cyclic envelope and equivalent bilinear curves 
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In this case, the definition of force-displacement relationships is relatively simple since the post-peak area 

is not taken into account completely. The first part of the equivalent response is linear elastic, and the 

secant stiffness ksec can be calculated between zero and 70% of the maximum shear force Vmax (V1 in 

Figure 3.23). In this range of values, the panels are generally not cracked. Therefore, the behaviour can be 

approximated linear elastic [18]. Then, the ultimate displacement uu is found on the cyclic envelope curve 

at a residual lateral strength equal to 80% of the maximum force (0.8Vmax in Figure 3.23). The ultimate 

shear force Vu is obtained through the equivalence of the energies dissipated from the experimental and 

the equivalent curve. It is worth pointing out that this interpretation is too conservative in the case of 

walls reinforced with the EQ-GRID system. During the experimental campaign, it was observed that most 

of the strengthened specimens presented only slight damage at the displacement uu or even no structural 

damage. The bilinear idealisation cannot completely consider the better crack pattern, the higher dis-

placement capacity and residual strength after the peak of the reinforced panels. In this respect, the 

European Macroseismic Scale EMS-98 [80] defines five damage levels for masonry buildings under 

earthquake load, ranging from no structural damage to destruction. Thus, the cyclic envelope curves may 

be idealized through multilinear force-displacement relationships consistent with this phenomenological 

approach. 

Table 11: Classification of damage for the tested masonry panels 

DL1 No damage 

 

DL2 Slight damage 

DL3 Moderate damage 

DL4 Heavy damage 

DL5 Near collapse 

 

As shown in Table 11, five damage levels are identified for the tested masonry panels, and progressive 

strength drops are assigned by achieving the damage degrees DL3, DL4 and DL5. In this way, the post-

peak structural behaviour is completely considered, and a more detailed equivalent response can be 

determined.  

 

Figure 3.24: Cyclic envelope and equivalent multilinear curves 
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Therefore, starting from the linear elastic range of the multilinear curve (Figure 3.24), the secant stiffness 

ksec is calculated between zero and V1 (V1 = 0.7Vmax). Then, the horizontal displacements at DL3, DL4 and 

DL5, i.e. u3, u4, and u5, can be identified at a defined percentage of residual lateral strength. Table 12 

shows the values chosen for the tested “KS” and “WZI” specimens based on the observed damage pat-

tern. 

Table 12: Defined percentages of residual lateral strength VDL at the DLs 3, 4 and 5 

 EQ-GRID VDL3 VDL4 VDL5 

“KS” specimens 

- 0.80Vmax 0.60Vmax 0.40Vmax 

on one side 0.70Vmax 0.50Vmax 0.30Vmax 

on both sides 0.70Vmax 0.50Vmax 0.25Vmax 

“WZI” specimens 

- 0.80Vmax 0.60Vmax 0.40Vmax 

on one side 0.80Vmax 0.60Vmax 0.40Vmax 

on both sides 0.70Vmax 0.50Vmax 0.30Vmax 

 

Furthermore, the ultimate shear forces Vu,3, Vu,4 and Vu,5 are calculated, ensuring the energy equivalence 

between the experimental and equivalent curves. To this aim, the area below the multilinear curve is 

divided into three parts, Amult.3, Amult.4 and Amult.5, (Figure 3.24): 
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Where ksec is the secant elastic stiffness calculated through Eq. (3.14): 
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V1 is the elastic shear force equal to 70% of Vmax and uel,1 is the corresponding experimental displacement 

value (Figure 3.24). 

Thus, the ultimate shear forces Vu,3, Vu,4 and Vu,5 can be obtained through the equivalence of the areas 

below the cyclic envelope and the multilinear curve, as follows:  
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It is important to stress that each applied horizontal displacement was cyclically imposed three times 

during the tests. For this reason, six backbones and six equivalent curves are calculated for each speci-
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men. Since this interpretation aims to identify just one equivalent curve, the average value of the ultimate 

shear forces Vu,3, Vu,4, Vu,5 is considered. On the contrary, the minimum one is chosen for the ultimate 

displacements u3, u4, and u5. 

Therefore, the ductility μ reached at each DL can be determined with Eq. (3.18): 
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Where the elastic limit displacement uel,2 is calculated through Eq. (3.19): 
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Finally, the deformation capacity of the tested panels is expressed in the following in terms of drift. Since 

the rotation of the upper steel beam was negligible, the drift d is defined as the ratio between the horizon-

tal displacement u and the height of the specimen h: 
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3.6.3 Experimental results of the “KS” masonry panels 

3.6.3.1 Unstrengthened “KS” specimens  

The unstrengthened panels in calcium-silicate bricks were the “KS_0_1” and “KS_0_2”. The samples 

were characterized by the same geometrical and mechanical properties. The first one was tested under a 

constant vertical force of 240 kN and the second one under a constant force of 120 kN. The hysteresis and 

the three envelope curves of the first specimen are depicted in Figure 3.25.  

 

Figure 3.25: Hysteresis and backbone curves of the “KS_0_1” specimen 
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Nine displacement steps (from 1 mm to 16 mm) were applied. During the last one, at the end of the 

second cycle, the panel collapsed. The maximum horizontal force Vmax recorded during the test was 250.6 

kN at a horizontal displacement of 7.57 mm. The equivalent multilinear curve is shown in Figure 3.26. 

The displacement values u3, u4, u5 are identified on the backbone curves at a residual lateral strength 

equal to 80%, 60% and 40% of Vmax.  

 

Figure 3.26: Equivalent multilinear curve of the “KS_0_1” specimen 

The “KS_0_1” panel showed a mixed shear failure with diagonal cracks passing through the mortar joints 

and the bricks. Figure 3.27 illustrates the DLs reached by the specimen.  

Furthermore, some parameters of the equivalent multilinear curve, such as the values of drift and residual 

resistance at each DL, are summarized in Table 13, where the ductility μDLi is always calculated with 

reference to the displacement uel,2. 

Table 13: “KS_0_1” specimen: parameters of the equivalent multilinear curve 

“KS_0_1” specimen 

d2 = 0.38% 
Vu,3 = 215 kN μDL3 = 1.6 

d3 = 0.62% 

d4 = 0.75% Vu,4 = 155 kN μDL4 = 2.0 

d5 = 0.93% Vu,5 = 95 kN μDL5 = 2.4 
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Figure 3.27: Damage levels reached by the “KS_0_1” specimen 

The “KS_0_2” specimen also failed by shear with diagonal cracks from corner to corner, but compared to 

the previous sample, they developed mainly through the mortar joints.  

 

Figure 3.28: Hysteresis and envelope curves of the “KS_0_2” specimen 
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Some inclined cracks occurred in the masonry units at the centre and compressed toes of the panel (Figure 

3.30), areas in which a higher concentration of stress was provided. 

The hysteresis and envelope curves are shown in Figure 3.28. Six displacement steps (from 1 mm to 10 

mm) were applied. The maximum horizontal force Vmax was equal to 158.58 kN, and it was recorded at a 

horizontal displacement of 7.44 mm. It is worth noting that, compared to the “KS_0_1” specimen, the 

value of Vmax is about 100 kN lower since the second specimen showed “stepped-stairs” cracks due to the 

lower applied normal stress. On the contrary, the failure mechanism of the “KS_0_1” specimen was 

influenced by the achievement of the brick tensile strength. 

After attaining the maximum shear force, a resistance degradation occurred, and the test was stopped. 

Therefore, there was insufficient experimental data to calculate the equivalent multilinear curve, and only 

the bilinear one is determined (Figure 3.29).  

 

Figure 3.29: Equivalent curve of the “KS_0_2” specimen 

Table 14: “KS_0_2” specimen: parameters of the equivalent bilinear curve 

“KS_0_2” 

d2 = 0.29% 
Vu,3 = 133.30 kN μDL3 = 1.8 

d3 = 0.51% 

 

The final cracking pattern of the “KS_0_2” sample is shown in Figure 3.30, in which the “stepped-stairs” 

cracks are evident. Therefore, the parameters of the equivalent bilinear curve are indicated in Table 14. 

The displacement u3 is identified on the backbone curves at a residual lateral strength equal to 80% of 

Vmax. 
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Figure 3.30: “KS_0_2” specimen: cracking pattern at the end of the test 

3.6.3.2 “KS” specimens strengthened on one side 

The “KS” specimens strengthened on one side were the “KS_1_1” and “KS_1_2”. They had the same 

geometrical and mechanical properties as the URM panels. 

 

Figure 3.31: “KS_1_1” specimen: hysteresis and backbone curves 

The first one was tested under a constant vertical force of 240 kN and the second one under a constant 

value of 120 kN. The hysteresis loops with the three envelope curves of the “KS_1_1” sample are depict-

ed in Figure 3.31. 
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Compared to the URM specimen, the “KS_1_1” panel showed higher lateral strength and displacement 

capacity. Ten displacement steps from 1 mm until 18 mm were applied, and the maximum attained shear 

force was 271.4 kN. This value was recorded at a horizontal displacement equal to 9.85 mm. Moreover, 

the residual strength measured during the third cycle of the last step was about 50 kN. 

Concerning the calculation of the equivalent multilinear curve, the horizontal displacements u3, u4, u5 are 

identified at a residual lateral strength equal to 70%, 50% and 30% of Vmax, since the EQ-GRID system 

improves the cracking pattern of the panel. Compared to the URM sample, the achievement of the DLs 3, 

4 and 5 occurred at greater drift values. 

 

Figure 3.32: “KS_1_1” specimen: equivalent multilinear curve 

Table 15: “KS_1_1” specimen: Values of drift and residual resistance for the different states of damage 

“KS_1_1” specimen 

d2 = 0.46% 
Vu,3 = 230.69 kN μDL3 = 1.8 

d3 = 0.82% 

d4 = 1.00% Vu,4 = 146.35 kN μDL4 = 2.2 

d5 = 1.22% Vu,5 = 94.41 kN μDL5 = 2.6 

 

The panel showed a mixed shear failure with diagonal cracks that developed along the mortar joints and 

the bricks, and no debonding of the EQ-GRID system was observed. The different states of damage are 

depicted in Figure 3.33 
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Figure 3.33: “KS_1_1” specimen: damage levels 

The second “KS” specimen strengthened on one side, i.e. the “KS_1_2”, achieved a lateral shear strength 

equal to 204.36 kN at a horizontal displacement of 7.50 mm. This resistance value is lower than the 

previous sample since the panel was subjected to lower normal stress. In this case, the constant vertical 

load was 120kN. Thus, the displacement capacity of the “KS_1_2” specimen was a little bit higher than 

the one of the “KS_1_1” panel. Eleven displacement steps, from 1 to 20 mm, were applied, and the 

damage mechanism was a little less brittle. 

The final damage pattern is shown in Figure 3.34. It was characterized by a mixed shear failure with 

cracks mainly along the mortar joints. Moreover, some masonry units were cracked in the higher stress 

concentration areas, i.e. the panel’s centre and the compressed toes.  
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Figure 3.34: Final cracking pattern of the “KS_1_2” specimen 

Since the test data in the post-peak phase were not completely reliable, only the first part of the hysteresis 

curve until the maximum shear force achievement is depicted in Figure 3.35. 

 

Figure 3.35:  Hysteresis curve of the “KS_1_2” specimen 

3.6.3.3 “KS” specimens strengthened on both sides 

The calcium-silicate brick masonry specimens strengthened on both sides were the “KS_2_1” and 

“KS_2_2”. They were both tested under a constant vertical load of 120 kN. The hysteresis and the back-

bone curves of the first sample are depicted in Figure 3.36. The maximum shear force reached from this 

specimen is equal to 271.5 kN, and it was recorded at a horizontal displacement of 12.78 mm. 
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Figure 3.36: “KS_2_1” specimen: hysteresis and backbone curves 

It is worth noting that, thanks to the EQ-GRID system, fourteen displacement steps (from 1 mm to 32 

mm) were applied, and the resistance increased by 71% compared to the unreinforced sample “KS_0_2”. 

Moreover, the maximum achieved drift is equal to 2.4%, and it was recorded during the first cycle of the 

last displacement step. 

The equivalent multilinear curve is shown in Figure 3.37. The horizontal displacements u3, u4, u5 are 

defined on the backbones at a residual shear strength equal to 70%, 50% and 25% of Vmax. 

 

Figure 3.37: “KS_2_1” specimen: the equivalent multilinear curve 
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The “KS_2_1” specimen failed with diagonal cracks from corner to corner, and no debonding of the 

strengthening system was observed. Thanks to the high bond properties of EQ-GRID with the masonry 

support, the panel structure was held together by the system. Thus, larger displacements could be applied 

without losing the stability of the panel. Moreover, horizontal cracks occurred in the lower bed joint after 

the drift value of 1.8% (Figure 3.38), and large displacements with a relative constant strength of about 60 

kN were measured. The panel began to show sliding behaviour. Therefore, the residual lateral strength 

was relatively constant in the latest steps. 

 

Figure 3.38: “KS_2_1” specimen: damage levels 

The “KS_2_2” panel also failed with two diagonal cracks from corner to corner. The hysteresis and the 

envelope curves are depicted in Figure 3.39. The maximum shear force recorded during the test is equal 

to 252.5 kN, and it was measured at a horizontal displacement of 9.69 mm. Compared to the URM 

specimen “KS_0_2”, the resistance increased by about 60%. It is worth noting that the hysteresis loops 

appear to be non-symmetrical in the last phase of the test, with positive strength values greater than the 

negative ones. The reason is to be found in the non-symmetrical damage that the specimen showed. As 

illustrated in Figure 3.41, three horizontal cracks developed in the left bottom corner during the latest 

displacement steps, and only one horizontal crack formed in the right bottom corner. Therefore, the panel 

showed a  non-symmetrical sliding behaviour. 
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Figure 3.39: “KS_2_2” specimen: hysteresis and backbone curves 

The equivalent multilinear curve is depicted in Figure 3.40. The horizontal displacements u3, u4, u5 are 

defined on the backbones at a residual strength equal to 70%, 50%, 25% of Vmax. 

 

Figure 3.40: “KS_2_2” specimen: the equivalent multilinear curve 
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Figure 3.41: “KS_2_2” specimen: damage levels 

Finally, Table 16 reports the parameters of the multilinear curves for the “KS_2_1” and “KS_2_2” 

specimens. 

Table 16: Values of drift and residual resistance for the “KS” specimens strengthened on both sides 

“KS_2_1” “KS_2_2” 

d2 = 0.70% 
Vu,3 = 252 kN μDL3 = 1.6 

d2 = 0.53% 
Vu,3 = 231 kN μDL3 = 1.9 

d3 = 1.14% d3 = 0.99% 

d4 = 1.27% Vu,4 = 179 kN μDL4 = 1.8 d4 = 1.14% Vu,4 = 171 kN μDL4 = 2.1 

d5 = 1.37% Vu,5 = 127 kN μDL5 = 2.0 d5 = 1.26% Vu,5 = 120 kN μDL5 = 2.4 

 

It is worth pointing out that both panels reached the DL3 at drift values higher than the “KS_0_1” speci-

men at the DL5 (d5 = 0.93%). Compared to the URM sample, the average values of d3, d4 and d5 in-

creased by 72%, 61%, 41%. 

 



3.6 Cyclic lateral shear tests 

97 

3.6.4 Experimental results of the “WZI” masonry panels 

3.6.4.1 “WZI” unstrengthened specimens  

The “WZI_0_1” and “WZI_0_2” specimens were unstrengthened panels in hollow clay brick character-

ized by the same geometrical and mechanical properties. They were tested under a constant vertical force 

of 240 kN and 120 kN, respectively. Compared to the unreinforced “KS” panels, both “WZI” samples 

showed more brittle behaviour. In this regard, seven displacement steps, from 1 mm to 12 mm, were 

applied to the “WZI_0_1” specimen, which presented a very brittle behaviour with a sudden diagonal 

cracking up to the collapse. The specimen reached the DLs 3, 4 and 5, respectively, during the first, 

second and third cycle of the last displacement step. As shown in Figure 3.43, the panel collapsed com-

pletely, losing its ability to resist any further horizontal action. 

Figure 3.42 illustrates the hysteresis and the backbone curves of this specimen. The maximum attained 

shear force is equal to 218.3 kN, and it was recorded when the first diagonal cracks appeared from the 

centre to the corners, mainly through the bricks. The horizontal displacement value at the peak shear force 

was 8.0 mm.  

 

Figure 3.42: Hysteresis and backbone curves of the “WZI_0_1” specimen 
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Figure 3.43: “WZI_0_1” specimen: damage levels 

The equivalent multilinear curve is shown in Figure 3.44. Table 17 reports the drift and residual re-

sistance values at the different DLs. 

 

Figure 3.44: Equivalent multilinear curve of the “WZI_0_1” specimen 
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Table 17: Values of drift and residual resistance for the “WZI_0_1” specimen 

“WZI_0_1” 

d2 = 0.39% 
Vu,3 = 216 kN μDL3 = 1.5 

d3 = 0.60% 

d4 = 0.65% Vu,4 = 144 kN μDL4 = 1.7 

d5 = 0.71% Vu,5 = 88 kN μDL5 = 1.8 

 

The “WZI_0_2” panel also attained the in-plane lateral resistance with diagonal cracks forming mainly 

through the bricks. The maximum shear force reached by this specimen is equal to 197.5 kN, and it was 

recorded at the horizontal displacement of 7.37 mm. It is worth specifying that the lateral resistance 

achieved from the previous panel was only 20.8 kN higher. Although the applied vertical load was very 

different, both “WZI” panels presented diagonal cracking with tensile failure of the masonry units. For 

this reason, the strength values of these two URM specimens are not so different from each other.  

However, the “WZI_0_2” panel showed a less brittle behaviour because of the lower constant vertical 

force. Eight displacement steps, from 1 mm to 14 mm, were applied. The sample collapsed during the 

first cycle of the last step. The final cracking pattern was characterized by the partial loss of the panel’s 

structure (Figure 3.45), as for the “WZI_0_1” specimen (Figure 3.43) but slightly less severe. 

 

Figure 3.45: Final cracking pattern of the “WZI_0_2” specimen 

Figure 3.46 shows the first part of the hysteresis curve since the experimental data in the post-peak phase 

were not completely reliable. Therefore, the equivalent multilinear curve is not determined in this case.  
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Figure 3.46: Hysteresis curve of the “WZI_0_2” specimen  

3.6.4.2  “WZI” specimens strengthened on one side 

The “WZI” specimens strengthened on one side were the “WZI_1_1” and “WZI_1_2” panels. They had 

the same geometrical and mechanical properties. The first one was tested under a constant vertical load of 

240 kN and the second one under a constant load of 120 kN. The in-plane lateral resistance achieved by 

the “WZI_1_1” specimen was equal to 251.45 kN, and it was recorded at a horizontal displacement value 

of 9.77 mm. The hysteresis and the three envelope curves of the “WZI_1_1” panel are depicted in Figure 

3.47.  

 

Figure 3.47: “WZI_1_1” specimen: hysteresis and backbone curves 
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Nine displacement steps (1 mm to 16 mm) were imposed. During the first cycle of the last step, the 

sample collapsed, losing the capacity to resist further horizontal actions. As illustrated in Figure 3.47, the 

residual strength tends to zero in the last hysteresis loop. However, the curve shows a greater energy 

dissipation than the unreinforced specimen “WZI_0_1” (Figure 3.42). The presence of the system on one 

side allowed reaching higher drift values and a better crack pattern at the same time. In this regard, the 

average maximum drift achieved by the “WZI_0_1” and “WZI_1_1” specimens were 0.81% and 0.96%. 

Moreover, the in-plane strength was also improved by the EQ-GRID system. The “WZI_0_1” sample 

recorded a value of 218.3 kN, while the reinforced specimen “WZI_1_1” attained a lateral resistance of 

251.45 kN. 

 

Figure 3.48: “WZI_1_1” specimen: the equivalent multilinear curve 

Figure 3.48 illustrates the equivalent multilinear curve. The drifts and residual resistances are indicated in 

Table 18. 

Table 18: Values of drift and residual resistance for the “WZI_1_1” specimen 

“WZI_1_1” 

d2 = 0.46% 
Vu,3 = 232 kN μDL3 = 1.7 

d3 = 0.76% 

d4 = 0.86% Vu,4 = 166 kN μDL4 = 1.9 

d5 = 0.95% Vu,5 = 121 kN μDL5 = 2.1 

 

The DLs reached by the “WZI_1_1” sample are shown in Figure 3.49. Like the URM specimens, the 

failure was characterized by diagonal cracks passing mainly through the bricks. The breaking of some 

masonry units at the centre and the bottom corners of the panel was also evident. Therefore, the in-plane 

lateral resistance was influenced by the achievement of the brick tensile strength. 
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Figure 3.49: “WZI_1_1” specimen: damage levels 

The failure of the second specimen strengthened on one side, i.e. the “WZI_1_2”, was less brittle than the 

“WZI_1_1” sample since the applied vertical load was lower (120 kN). Compared to the unreinforced 

panel “WZI_0_2”, the “WZI_1_2” specimen showed similar behaviour in terms of maximum shear force. 

The lateral resistance is equal to 195.7 kN, but the post-peak strength and displacement capacity are 

higher than the “WZI_0_2” panel. No debonding failure of the EQ-GRID system was observed. The 

adhesion of the mortar matrix to the masonry substrate was very strong. The strengthening system kept 

the panel’s structure together, allowing dissipating more energy. Moreover, it improved the final cracking 

pattern since the damage state was less severe (Figure 3.50). 

Compared to the “WZI_0_2” specimen, one more displacement step was applied for a total of eight steps 

(1 mm to 14 mm). The residual lateral strength was about 30 kN in the last cycle, like the URM sample, 

but it was recorded at a higher displacement value.  
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Figure 3.50: “WZI_1_2” specimen: cracking pattern at the end of the test 

Finally, the experimental data were not completely reliable in the post-peak phase. Therefore, only the 

first part of the hysteresis loops is shown in Figure 3.51, and the equivalent multilinear curve is not 

determined in this case. 

 

Figure 3.51: Hysteresis and backbone curves of the “WZI_1_2” specimen 

3.6.4.3  “WZI” specimens strengthened on both sides 

The “WZI” specimens strengthened on two sides were tested under a constant vertical load of 120 kN. 

Compared to the URM panels, the “WZI_2_1” and “WZI_2_2” samples showed higher dissipative 

behaviour. They were subjected to eleven displacement steps (from 1 mm to 24 mm). The last one was 

repeated only two times since the panels collapsed with a residual lateral strength equal to 36 kN and 32.5 

kN, respectively. Moreover, the specimens showed good performance also in terms of load capacity. 

They attained a lateral strength of 280.47 kN and 255.33 kN at a horizontal displacement equal to 15.1 
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mm and 10.2 mm, respectively. Thus, compared to the “WZI_0_2” sample, the average improvement of 

load-bearing capacity is about 40%.  

The hysteresis and the three envelope curves of the “WZI_2_1” panel are depicted in Figure 3.52. The 

maximum drift value achieved during the last hysteresis loop is 1.85%. The equivalent multilinear curve 

is shown in Figure 3.53. The horizontal displacements u3, u4, u5 are defined on the backbones at a residual 

shear strength equal to 70%, 50% and 30% of Vmax. 

  

Figure 3.52: Hysteresis curve of the “WZI_2_1” specimen 

 

Figure 3.53: Equivalent multilinear curve of the “WZI_2_1” specimen   
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Figure 3.54: Damage levels of the “WZI_2_1” specimen   

 

Figure 3.55: Hysteresis curve of the “WZI_2_2” specimen 
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The hysteresis and envelope curves of the “WZI_2_2” panel are depicted in Figure 3.55. The equivalent 

multilinear curve of this specimen is shown in Figure 3.56. As for the previous sample, the horizontal 

displacements u3, u4, u5 are defined on the envelope curves at residual strength values equal to 70%, 50% 

and 30% of Vmax. The achieved DLs are illustrated in Figure 3.57. 

 

Figure 3.56: Equivalent multilinear curve of the “WZI_2_2” specimen 

It is worth pointing out that both specimens presented sub-vertical cracks across the thickness during the 

last phase of the test. Stress concentrations due to the bending moment at the top and bottom of the panel 

caused the achievement of the masonry compressive strength. No delamination of the reinforcing system 

was observed. Only local detachments of the outer mortar layer at the centre of the panels occurred. 

Furthermore, Table 19 summarizes the parameters of the equivalent multilinear curves of the “WZI_2_1” 

and “WZI_2_2” specimens. Both panels attained the DL3 at drifts higher than the “WZI_0_1” specimen 

at the DL5 (d5,WZI_0_1 = 0.73%). Finally, the average values of d3, d4 and d5 increase, respectively, by 76%, 

92% and 99% compared to the non-reinforced sample. 

Table 19: Values of drift and residual resistance for the WZI specimens strengthened on both sides 

“WZI_2_1” “WZI_2_2” 

d2 = 0.60% 
Vu,3 = 253 kN μDL3 = 2.0 

d2 = 0.51% 
Vu,3 = 237 kN μDL3 = 1.7 

d3 = 1.23% d3 = 0.88% 

d4 = 1.57% Vu,4 = 162 kN μDL4 = 2.6 d4 = 0.93% Vu,4 = 169 kN μDL4 = 1.8 

d5 = 1.70% Vu,5 = 108 kN μDL5 = 2.8 d5 = 1.20% Vu,5 = 107 kN μDL5 = 2.4 
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Figure 3.57: Damage levels of the “WZI_2_2” specimen   
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4 In-plane strength of the tested 
“KS” and “WZI” masonry panels 

The in-plane load-bearing capacity of the tested “KS” and “WZI” masonry piers is analytically deter-

mined in this chapter. The shear and flexural strength criteria described in § 1.3 are adopted for the URM 

panels. Furthermore, two different calculation approaches are used to determine the shear resistance of 

the specimens reinforced with EQ-GRID. The cross-sectional analysis is also performed to evaluate their 

flexural bearing capacity. Therefore, the in-plane failure domains are obtained from the envelope of the 

adopted shear and bending strength criteria in the N -V plane. Finally, the analytical results are compared 

to the experimental ones for validation. 

4.1 In-plane failure domains of the unstrengthened 
“KS” and “WZI” masonry panels 

The Mann and Müller theory [23] illustrated in § 1.3 is adopted to calculate the in-plane shear resistance 

of the unstrengthened masonry panels. The following formulations are used: 

( ),limmin ;Rd t tV V V=  (4.1) 
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where: 

• l and t are the length and thickness of the panels, i.e. 1250 mm and 240 mm; 

• b is equal to 1 since the height of the tested panels is 1250 mm; 

Furthermore, the flexural resistance is calculated with Eq. (4.4), obtained neglecting the masonry tensile 

strength and considering a stress-block distribution of the compressive stresses at one end section, as 

described in § 1.3: 
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Thus, the ultimate shear force under bending failure is calculated as follows: 
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Where h is the height of the panels, i.e. 1250 mm. 
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Finally, the average material properties adopted for the URM “KS” and “WZI” specimens are defined in 

§ 4.1.1. 

4.1.1 Experimental validation 

The masonry compressive strength is calculated after Eurocode 6 [81] and the German National Annex 

[28] since no experimental data were available. Therefore, the characteristic values fm,k,KS and fm,k,WZI are 

determined through Eqs. (4.6) and (4.7): 

0.585 0.162 0.585 0.162

, , ,0.95 0.95 25 1.8 6.87 / ²m k KS b KS Mf f f N mm=   =   =  (4.6) 

0.585 0.162 0.585 0.162

, , ,0.69 0.69 15 1.8 3.70 / ²m k WZI b WZI Mf f f N mm=   =   =  (4.7) 

 

Where fb,KS, fb,WZI and fM are the units and mortar compressive strength. 

The average values fm,u,KS and fm,u,WZI are calculated with Eqs. (4.8) and (4.9): 

, ,

, ,
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, ,
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f
f N mm= = =  (4.9) 

 

Moreover, the Young’s modulus E perpendicular to the bed joints and the shear modulus G are obtained 

from the characteristic masonry compressive strength through the formulations provided by Eurocode 6 

([81], [28]): 

, ,950 950 6.87 6522 / ²KS m k KSE f N mm=  =  =  (4.10) 

0.4 0.4 6522 2608.8 / ²KS KSG E N mm=  =  =  (4.11) 

, ,1100 1100 3.70 4068 / ²WZI m k WZIE f N mm=  =  =  (4.12) 

0.4 0.4 4068 1627.2 / ²WZI WZIG E N mm=  =  =  (4.13) 

 

Concerning the initial shear strength fvm0, it is assumed 0.17 N/mm² for the “KS” specimens and 0.30 

N/mm² for the “WZI” panels, as suggested from the German masonry manual “Mauerwerk Kalender” for 

these types of masonry [82]. The interlocking parameters ϕKS and ϕWZI are respectively equal to 0.94 and 

1.29, and they correspond to a “stepped-stair” cracks inclination angle of about 45° and 53° (Figure 4.1).  

 

Figure 4.1: “Stepped-stair” cracks inclination 
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Moreover, since the masonry has a good texture, both local coefficients of friction, µKS and µWZI, are 

assumed to be 0.8, obtaining in this way an equivalent coefficient of friction µeq of about 0.4. Regarding 

the tensile strength of the units, fbt,KS and fbt,WZI, the first one is assumed to be 0.063fb,KS, as suggested from 

the German masonry manual “Mauerwerk Kalender” [82] for the calcium-silicate unit, where fb,KS is the 

compressive strength of the brick. The second one is assumed 0.06fb,WZI. Since the specimen “WZI_0_1” 

attained the shear resistance with the formation of diagonal cracks passing only through the bricks, it has 

been possible to calibrate this value so that the sample’s dominant failure mode was predicted by 

Eq.(4.3). Therefore, Table 20 summarizes the average values of the mechanical properties necessary to 

determine the in-plane strength domains of the tested panels shown in Figure 4.2. 

Table 20: Average values of the mechanical properties of the unstrengthened masonry panels 

“KS” unstrengthened panels 

fm,u,KS fvm0,KS μKS ϕKS fvm0,red,KS μred,KS fbt,KS 

9.81 N/mm² 0.17 N/mm² 0.8 0.94 0.10 N/mm² 0.46 1.58 N/mm² 

“WZI” unstrengthened panels 

fm,u,WZI fvm0,WZI μWZI ϕWZI fvm0,red,WZI μred,WZI fbt,WZI 

5.28 N/mm² 0.30 N/mm² 0.8 1.29 0.15 N/mm² 0.39 0.90 N/mm² 

 

Figure 4.2: In-plane failure domain of the unstrengthened masonry panels 

Finally, the experimental values VEd are compared to the analytical ones for each URM specimen in Table 

21, and they are also depicted in Figure 4.3. 

As illustrated in § 3.6.3.1, the “KS_0_1” panel presented a mixed shear failure with diagonal cracks 

passing through the mortar joints and the bricks. The analytical shear resistance Vt is equal to 208.47 kN, 

and it is lower than the experimental one, VEd, since it corresponds to the diagonal cracking only through 

the mortar joints. 

Table 21: Experimental values and analytical estimation of the shear strength of the unstrengthened masonry panels 

ID specimen  VEd [kN] Vt [kN] Vt,lim  [kN] VRd [kN] 

“KS_0_1” 250.61  208.47 278.06 208.47 

“KS_0_2” 158.58 143.98 254.35 143.98 

“WZI_0_1” 218.29 190.21 180.86 180.86 

“WZI_0_2” 197.49 158.47 169.10 158.47 
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It is worth noting that the limit shear resistance Vt,lim (278.06 kN) is higher than VEd (250.61 kN); thus, the 

mixed failure is validated. 

Furthermore, there is a very good match between the analytical and experimental shear resistances for the 

“KS_0_2” specimen. In fact, the maximum horizontal force recorded during the test was 158.58 kN, 

while the expected value VRd is 143.98 kN. This result confirms the formation of “stepped-stair” cracks. 

Regarding the “WZI” specimens, it is worth pointing out that they showed a more brittle behaviour than 

observed in the “KS” panels. The experimental lateral resistance of the “WZI_0_1” sample was attained 

by achieving the brick tensile strength, as it failed with diagonal cracks only through the masonry units. 

This result is analytically validated since VRd is equal to the limit value Vt,lim (180.86 kN). Finally, the 

“WZI_0_2” panel presented a mixed shear failure with diagonal cracks passing through the mortar joints 

and the bricks. The shear resistance VRd is equal to 158.47 kN, and it is lower than the experimental value 

VEd since it corresponds to the diagonal cracking only through the mortar joints. The mixed failure is also, 

in this case, validated because the limit shear resistance Vt,lim (169.10 kN) is higher than VEd (197.49 kN). 

 

Figure 4.3: Experimental and analytical in-plane shear resistance of the “KS” and “WZI” unstrengthened panels 

4.2 In-plane failure domains of the “KS” and “WZI” 
masonry panels strengthened with EQ-GRID 

As observed in § 3.6, the EQ-GRID system improves the in-plane load-bearing capacity of masonry 

panels. Therefore, the definition of its tensile strength is the first necessary step for determining the in-

plane failure domain of the tested panels. Two different approaches to calculate the shear resistance are 

described in the following paragraphs. Finally, a cross-section analysis is performed to consider the 

increase of in-plane bending resistance due to the system. 

4.2.1 Determination of the EQ-GRID system’s tensile strength 

The average tensile strength of the EQ-GRID system is defined based on the results of the performed 

experimental campaign. The double- and single-lap shear-bond tests have shown that the mortar has a 

very high adhesive strength since no debonding was observed at the system-brick interface. Moreover, 
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two different masonry units were adopted as standard support (hollow and full clay brick), and only the 

fibres breaking, or slippage within the matrix occurred as failure modes. Also, during the cyclic lateral 

shear tests, no debonding of the system from the masonry panels was observed. 

Therefore, the experimental results confirm that the mortar can penetrate very well through the mesh 

openings of the grid. The latter never detached from the matrix layers. For this reason, it may be assumed 

for the tested masonry that the tensile strength of the system is influenced only by the bond at the grid-

matrix interface. To this aim, the stress and strain values obtained from the direct tensile tests with clevis-

type and clamping grips are considered, and two exploitation ratios of the bare textile strength, ηclevis and 

ηclamping, can be defined, as follows: 

,
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clevis

u m
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=  (4.14) 
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Where fclevis,u and fclamping,u are the mean tensile strength of the composite specimens, according to the 

adopted test method, and σu,m is the mean tensile strength of the bare textile. These values are directly 

compared in Table 22. 

It is worth noting that the average tensile strengths of the EQ-GRID system in the horizontal direction, 

fclevis,u and fclamping,u, are both equal to 64% of the bare textile’s one. The corresponding failure strains are 

2.4% and 2.3%, respectively. 

On the contrary, the exploitation ratios for the vertical direction, ηclevis and ηclamping, depend on the adopted 

test method since the failure modes of the composite specimens were different. In the test setup with 

clevis-type grips, the tensile load was transferred from the matrix to the textile strip by adhesion. There-

fore, the wires could slip after reaching the maximum strength. The diagrams of the vertical direction 

depicted in Figure 4.4 (clevis-type grips) confirm this behaviour. The curves have a softening branch after 

the peak and not the sudden strength drop typical by the fibres’ tensile failure (Figure 4.4, clamping 

grips). For this reason, the exploitation ratios, ηclevis and ηclamping, in the vertical direction are equal to 40% 

and 72%. The corresponding ultimate strains also are quite different, 1.2% and 2.0% for the first and 

second test method. 

Table 22: Mechanical properties of the EQ-GRID system from the performed tensile tests. 

Test 

method 

Composite Bare textile 
Exploitation ratios 

Clevis-type grips Clamping grips Clamping grips 

Direction 
fclevis,u 

[N/mm²] 

εclevis,u 

[%] 

fclamping,u 

[N/mm²] 

εclamping,u 

[%] 

σu,m 

[N/mm²] 

εu,m 

[%] 

ηclevis 

[%] 

ηclamping 

[%] 

V 551 1.2 996 2.0 1387 2.8 40 72 

H 666 2.4 673 2.3 1046 3.2 64 64 

D 1844 2.5 1591 2.1 1458 3.7 100 100 
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Figure 4.4: Stress-strain curves of the EQ-GRID system obtained from tensile tests carried out with clevis-type and clamping grips 

Furthermore, it is possible to assume that both exploitation ratios are equal to 100% in the diagonal 

direction since the tensile strengths, fclevis,u and fclamping,u, are higher than the bare textile’s one, σf,u (Table 

22). It is worth specifying that the composite samples’ width was greater (95 mm) in this direction than 

the other composite specimens (60 mm) because of the different wires’ arrangement. Since the axial load 

was transferred only by adhesion in the test setup with the clevis-type grips, the horizontal fibres present 

in the composite specimens were also stressed, as their inclination angle was 30° to the test direction. 

Moreover, Figure 4.4 (clevis-type grips) shows that the cracking phase of the diagonal composite samples 

is distributed over a wider range of deformations than the other two directions. The maximum strength 

values are achieved at the end of the cracking phase; after that, the tensile stresses decrease.  

On the contrary, the diagonal specimens’ tensile strength, fclamping,u, was attained during the cracking 

phase. It is important to highlight that, in this case, the load was directly transmitted from the clamping 

grips to the grid, which in turn transferred it to the matrix. Therefore, the uncracked mortar layers allowed 

the activation of the horizontal fibres present in the samples. In this way, they could contribute to the 

strength of the composite specimens during the cracking phase. It is worth noting that this contribution 

decreases with the formation of cracks and disappears in the samples’ cracked state. Therefore, the strain 

value, εclamping,u, is lower than the bare textile since it corresponds to the strain at the average maximum 

stress attained during the cracking phase and not at the breaking of the glass fibre. The latter happened 

just at the end of the formation of the cracks; after that, only the PP fibres carried the tensile load. The 

complete diagrams of the samples tested with clamping grips in the diagonal direction are depicted in 

Figure 4.5. The tensile strength achieved in the cracked state is not considered since the strain values are 

very high in this phase (until 26%). 

Furthermore, the technical standard CNR-DT 215/2018 defines a conventional stress limit, σlim,conv, for 

design and verification problems. As illustrated in § 2.2.1, it represents the bond strength of the system 

and is obtained from single-lap shear-bond tests. It corresponds to the characteristic value of the maxi-

mum tensile force recorded during the tests divided by the equivalent cross-section area of the bare 

textile. Then, the conventional strain limit is defined as εlim,conv = σlim,conv / Ef, where Ef is the average 

Young’s modulus of the grid. It is worth pointing out that the mean values are considered in this work 

since the aim is to calculate the in-plane lateral resistance of the tested masonry panels.  
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Figure 4.5: Stress-strain curves of the composite specimens in the diagonal direction from the tensile tests with clamping grips 

Furthermore, the single-lap shear-bond tests were carried out only for the vertical direction of the EQ-

GRID system. The average maximum shear-bond strength fbond,single,m is equal to 971.2 N/mm², and it is 

very close to the tensile strength fclamping,u obtained for this direction (996 N/mm²). It is worth noting that 

in both test setups, the free ends of the textile strip were clamped between the wedge grips of the testing 

machine, and the fibre’s breaking was the failure mode. Therefore, these results may be adopted when the 

grid is applied with mechanical connectors or extended up to a significant distance (e.g. at least 20 cm) 

from the cross-section with maximum tensile stress or turned over the corners of the walls.  

Moreover, since the specimens were tested with different bonding lengths (4 cm, 8 cm and 12 cm), it is 

impossible to obtain an average strength from the double-lap shear-bond tests. However, the results have 

shown that only the bond between textile and matrix influences the resistance. Thus, it is reasonable to 

adopt the mean tensile strengths, fclevis,u, as conventional stress limit for calculating the in-plane failure 

domains of the tested “KS” and “WZI” masonry panels. It is worth noting that this assumption is coherent 

since the EQ-GRID system was applied without any mechanical connectors, and it was not anchored to 

the upper or bottom steel beam or turned over the thickness of the specimen (Figure 3.21). 

Therefore, Table 23 shows the average values of σlim,conv, εlim,conv used to determine the in-plane strength 

domains of the tested “KS” and “WZI” masonry panels. It is worth pointing out that the grid’s tensile 

properties are adopted for the diagonal direction since the exploitation ratio ηclevis is 100% and the average 

tensile modulus Ef corresponds to the secant one reported in Table 2. 

Furthermore, the characteristic values of σlim,conv and εlim,conv can be calculated as the average ones minus 

kn times the standard deviation STD, as recommended by Annex D of Eurocode 0. Therefore, Table 24 

shows a proposal since the available experimental data are limited in number. 

Table 23: Average values of σlim,conv, εlim,conv and Ef of the EQ-GRID system adopted for the calculation of the in-plane failure 

domains of the tested “KS” and “WZI” masonry panels 

Direction σlim,conv (avg.) εlim,conv (avg.) Ef 

V  551 N/mm2  1.27 % 43269 N/mm2 

H 666 N/mm2 1.78 % 37516 N/mm2 

D  1458 N/mm2 3.64 % 40067 N/mm2 
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In this respect, two characteristic values of σlim,conv and εlim,conv are given for the vertical direction since the 

tensile response of the system is influenced by the mechanical anchorage of the grid, in this case. The first 

ones are obtained considering the single-lap shear bond tests and the direct tensile tests performed with 

clamping grips, as the experimental results are very close. The second ones are obtained from the tensile 

tests performed with clevis-type grips.  

Regarding the horizontal direction, the characteristic conventional stress and strain limits are calculated, 

considering the direct tensile tests with clevis and clamping type grips. As shown in Figure 4.4, the 

obtained experimental response is very similar; thus, both results are considered. 

Finally, the characteristic values of σlim,conv and εlim,conv for the diagonal direction are obtained from the 

tensile tests performed on the bare textile specimens since the grid’s tensile strength exploitation ratio is 

100%. 

Table 24: Proposal of characteristic values of σlim,conv, εlim,conv of the EQ-GRID system  

Direction σlim,conv (char.) εlim,conv (char.) nspecimens kn 

V 470 N/mm2   1.09 % 5 (clevis) 2.33 

V 869 N/mm2  2.01 % 

10 (clamping + 

single-lap shear 

tests) 

1.92 

H  517 N/mm² 1.38 % 
10 (clevis + 

clamping) 
1.92 

D 1311 N/mm2  3.27 % 8 (grid) 2.00 

 

4.2.2 Proposal of modification of the masonry shear strength with the 
EQ-GRID system 

The cyclic lateral shear tests described in § 3.6 have shown that the EQ-GRID system can improve the in-

plane load-bearing capacity of masonry panels. Therefore, a possible way to consider the presence of the 

textile reinforcement is to increase the masonry material properties, as also suggested by Urban in [83]. In 

this respect, Urban proposed to modify the masonry initial shear strength fvmo through the EQ-GRID 

system’s diagonal tensile resistance. Furthermore, he suggested improving the brick tensile strength fbt 

using the system’s resistance in the three main directions (vertical, horizontal and diagonal). 

The approach presented in this work originates from the formulations proposed in [83], but it is based on 

the experimental observations illustrated in § 3. During the cyclic lateral shear tests, it was evident that 

the system was mainly stressed in the direction parallel to the shear force when diagonal cracks opened. 

Therefore, the proposed approach is based on modifying the initial shear strength fvmo and the brick tensile 

strength fbt through the EQ-GRID system’s resistance in the direction parallel to the acting shear force. 

Figure 4.6 schematically shows the deformation of the horizontal and diagonal fibre yarns when a shear 

crack opens. It is worth noting that, compared to a common biaxial textile mesh, EQ-GRID has the 

advantage that the directions activated during the shear failure are two and not only one. In this regard, 

the diagonal fibre yarns are tilted 30° to the horizontal to maximize the strengthening effect under shear 

failure [83].  

Furthermore, as shown in § 3.6, the EQ-GRID system can also increase the deformation capacity of the 

reinforced structural element. In fact, the polypropylene wires arranged in the diagonal direction have a 
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very high ultimate tensile strain (> 20%) and allow the panel structure to be held together even in the 

advanced cracking stage, improving the element’s stability. 

 

Figure 4.6: Diagonal cracking of a masonry pier strengthened with EQ-GRID 

Therefore, Eqs. (4.16) and (4.17) are proposed to modify the initial shear strength fvmo and the brick 

tensile strength fbt of a masonry pier through the EQ-GRID system’s resistance in the direction parallel to 

the acting shear force: 
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(4.17) 

  

Where: 

• fvmo and fbt are the average initial shear strength and brick tensile strength of the unstrengthened 

masonry; 

• nf is the total number of textile layers. It is equal to 1 when the system is applied only on one side 

and 2 for application on both sides; 

• Ef,h and Ef,d are the average Young’s modulus of the bare textile in the horizontal and diagonal di-

rection (Table 23). 

• εlim,conv,h is the conventional strain limit of the fibres arranged parallel to the shear force. i.e. the 

horizontal direction (§ 4.2.1); 

• teq,h and teq,d are the homogenized equivalent thickness of the textile in the horizontal and diagonal 

direction (Eq. (3.6)); 

• t is the thickness of the panel without strengthening system. 
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Finally, it is important to note that the friction coefficient μ is not modified since it is an intrinsic property 

of the mortar joint, and the presence of the system does not influence it. 

4.2.3 In-plane strength of masonry panels reinforced with the EQ-
GRID system according to CNR-DT 215/2018 

As shown in § 2.2.2, the technical standard CNR-DT 215/2018 proposes to calculate the in-plane shear 

resistance of a strengthened masonry panel, VRd,s, as the sum of the shear resistance of the URM panel 

under diagonal cracking, VURM, and the increase of strength due to the reinforcing system, Vt,f: 

, ,Rd s URM t fV V V= +  (4.18) 

   

Since the shear failure with diagonal cracking stresses the EQ-GRID system mainly parallel to the shear 

force, the formulation of Vt,f (Eq. (2.7)) can be expressed considering the tensile strength of the horizontal 

and diagonal fibres, as follows: 

( ), , lim, , , , lim, , ,

1
t f f f t f h conv h eq h f d conv h eq d

Rd

V n l E t E t  


=       +    (4.19) 

   

Where: 

• Ef,h and Ef,d are the average Young’s modulus of the bare textile in the horizontal and diagonal di-

rection (Table 23); 

• εlim,conv,h is the conventional strain limit of the fibres arranged parallel to the shear force, i.e. the 

horizontal direction (§ 4.2.1);  

• teq,h and teq,d are the homogenized equivalent thickness of the textile in the horizontal and diagonal 

direction (Eq. (3.6)); 

Moreover, CNR-DT 215/2018 suggests reducing the shear contribution Vt,f by at least 30% for application 

of the strengthening system only on one side of the wall, and connectors shall be applied to fix the grid to 

the wall. As shown by the experimental results, the matrix can penetrate very well in the mesh openings 

of EQ-GRID, and it has a very high pull-off strength. Furthermore, no debonding of the system from the 

masonry substrate or detachment of the grid from the matrix layers was observed during the cyclic lateral 

shear tests. Therefore, it is generally applied without transversal connectors, and the reduction of the 

shear contribution Vt,f is not considered in this case. 

Regarding the in-plane flexural strength domain of a masonry pier strengthened with EQ-GRID, it can be 

determined through a cross-sectional analysis performed under the following assumptions: 

• plane sections remain plane after loading; 

• strain compatibility between masonry and strengthening system; 

• contribution of the strengthening system in compression is neglected. 

It is worth noting that the in-plane bending failure of a masonry pier is generally characterized by sub-

vertical cracks at the compressed toe and sub-horizontal cracks at the tensioned part (Figure 4.7). There-

fore, the reinforcing system is mainly stressed in the direction parallel to the axis of the structural ele-

ment, i.e. the vertical direction. As depicted in Figure 4.7, when the cracks appear at the tensioned part, 
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the vertical and diagonal fibres can have the same deformation. Furthermore, the stress-strain diagram of 

EQ-GRID is assumed linear elastic (Figure 4.8), and the ultimate tensile strain is the conventional strain 

limit εlim,conv,v defined in § 4.2.1. Thus, the corresponding conventional strength limit ft,u, takes into ac-

count both strength contributions and is defined as follows:  

, , lim, , , , lim, , ,t u f v conv v eq v f d conv v eq df E t E t =   +    (4.20) 

 

Where: 

• Ef,v and Ef,d are the average elastic modulus of the bare textile in the vertical and diagonal direction 

(Table 23); 

• εlim,conv,v is the mean conventional strain limit for the vertical direction (§ 4.2.1); 

• teq,h and teq,d are the homogenized equivalent thickness of the textile in the horizontal and diagonal 

direction (Eq. (3.6)). 

 

Figure 4.7: Bending failure of a masonry pier strengthened with EQ-GRID 

Moreover, the adopted masonry compressive stress diagram is rectangular with a uniform stress equal to 

αfm,u (Figure 4.8). This latter is distributed over an equivalent compressive zone equal to βyn, where yn is 

the distance from the outermost compressed fibre to the neutral axis. The coefficients α and β are respec-

tively 0.85 and 0.8. The masonry ultimate strain, εm,u, can be assumed 3.5 ‰ unless experimental data are 

available and its tensile strength is neglected. 

Therefore, the in-plane resistance domain of a masonry pier reinforced with the EQ-GRID system can be 

determined in two steps: 

• Identification of the failure mode; 

• Calculation of the normal force NRd,s and bending moment MRd,s with two equations of equilibrium 

of the internal forces. 
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Figure 4.8: Adopted stress-strain diagrams of the masonry and the EQ-GRID system for the bending failure 

As shown in Figure 4.9, the system is applied along the entire length l of the panel. Therefore, the dis-

tance df between the outermost reinforcement fibres that attain the conventional strain limit is equal to l. 

 

Figure 4.9: Possible failure strain distributions of a masonry cross-section reinforced with the EQ-GRID system 

Five failure modes can be identified by the following conditions, in which ε1 and ε2 are respectively the 

tensile and compressive strain attained by the outermost fibres of the panel’s cross-section: 

• Failure mode 0: the cross-section of the panel is uniformly tensioned, ε1 = ε2 = εlim,conv,v;  

• Failure mode 1: the cross-section of the panel fully tensioned, ε1 = εlim,conv,v and ε2 = 0; 

• Failure mode 2: the masonry and the EQ-GRID system achieve their ultimate strains, ε1 = εlim,conv,v 

and ε2 = εm,u;  

• Failure mode 3: the cross-section of the panel is fully compressed, ε1 = 0 and ε2 = εm,u; 

• Failure mode 4: the cross-section of the panel is uniformly compressed, ε1 = ε2 = εm,u. 
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Failure mode 0 is the ideal situation of uniform tension, both stress and strain distributions are constant, 

and the neutral axis yn0 lies outside the section at infinity (Figure 4.10). 

 

Figure 4.10: Stress-strain distributions of failure mode 0 

Therefore, the resultant of the compressive stresses, Fm,u,0, is zero, and that of the tensile stresses, Ft,u,0, is 

calculated as follows: 

( ), ,0 , lim , , , lim , ,t u f v conv v f eq v f d conv v f eq d fF E n t E n t d =    +      (4.21) 

 

Where nf is the total number of textile layers (for one side application is 1, while for both sides applica-

tion is 2). 

To ensure the force and moment equilibrium, the ultimate normal force NRd,0 is equal to Ft,u,0 and the 

bending moment MRd,s,0 is 0 since it is calculated at the cross-section’s centre of gravity, l/2. 

, ,0 , ,0Rd s t uN F=  (4.22) 

, ,0 0Rd sM =  (4.23) 

 

With failure mode 1, the cross-section is still completely tensioned, but the strain and stress distributions 

are linear (Figure 4.11). The system attains its tensile strain limit, εlim,conv,v, and ε2 is 0. Thus, the neutral 

axis depth yn1 is equal to df. 

 

Figure 4.11: Stress-strain distributions of failure mode 1 
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The resultant of the compressive stresses, Fm,u,1 is zero, while Ft,u,1 can be calculated as follows: 

( ), lim , , , lim , ,

, ,1
2

f v conv v f eq v f d conv v f eq d f

t u

E n t E n t d
F

    +    
=  (4.24) 

 

The ultimate normal force NRd,1 and bending moment MRd,s,1 can be easily obtained; the first one is equal 

to Ft,u,1 and the second one is calculated at l/2: 

, ,1 , ,1Rd s t uN F=  (4.25) 

, ,1

, ,1
6

t u f

Rd s

F d
M


=  (4.26) 

 

Failure mode 2 is defined under the assumption that both masonry and system attain their strain limits  

(ε1 = εlim,conv,v and ε2 = εm,u). 

 

Figure 4.12: Stress-strain distribution of failure mode 2 

Therefore, the neutral axis depth yn2 is determined according to the strain distribution shown in Figure 

4.12: 

( )
2

2

1 2

f

n

d
y



 


=

+
 

(4.27) 

 

The resultant of the compressive and tensile stresses, Fm,u,2 and Ft,u,2, are calculated with the following 

equations:  

( ), ,2 , 2m u m u nF f t y =     (4.28) 

( ) ( ), lim , , , lim , , 2

, ,2
2

f v conv v f eq v f d conv v f eq d f n

t u

E n t E n t d y
F

    +     −
=  (4.29) 

 

The ultimate normal force NRd,s,2 and bending moment MRd,s,2 are obtained from the force and moment 

equilibrium equations, as follows: 

, ,2 , ,2 , ,2Rd s m u t uN F F= −  (4.30) 
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( )2

, ,2 , ,2 , ,2 2 2

2

2 2 3 2

f fn

Rd s m u t u n f n

d dy
M F F y d y

   
=  − +  + − −   

   

 (4.31) 

 

Failure mode 3 is characterized only by masonry crushing. As depicted in Figure 4.13, the strain ε2 attains 

its ultimate value εm,u and the system is not subjected to tension (ε1 = 0). Thus, the neutral axis depth yn3 is 

equal to df. 

 

Figure 4.13: Stress-strain distribution of failure mode 3 

The resultant of the tensile stresses Ft,u,3 is zero, while Fm,u,3 can be calculated through Eq. (4.32): 

, ,3 ,m u m u fF f t d =    (4.32) 

 

Therefore, the ultimate normal force NRd,s,3 is equal to Fm,u,3 and the bending moment MRd,s,3 can be 

determined with Eq. (4.34): 

, ,3 , ,3Rd s m uN F=  (4.33) 

, ,3 , ,3
2 2

f f

Rd s m u

d d
M F

 
=  − 

 
 (4.34) 

 

Finally, the cross-section is uniformly compressed with failure mode 4. As a result, both stress and strain 

diagrams are constant (Figure 4.14), and the neutral axis yn4 lies outside the section at infinity. 

 

Figure 4.14: Stress-strain distributions of failure mode 4 



4 In-plane strength of the tested “KS” and “WZI” masonry panels 

124 

The resultant of the tensile stresses, Ft,u,4 is zero, and that of the compressive stresses, Fm,u,4 is calculated 

as follows: 

, ,4 ,m u m u fF f t d=    (4.35) 

 

Thus, the ultimate normal force NRd,s,4 is equal to Fm,u,4 and the bending moment MRd,s,4 is zero: 

, ,4 , ,4Rd s m uN F=  (4.36) 

, ,4 0Rd sM =  (4.37) 

 

Therefore, to obtain the in-plane flexural failure domain, it is necessary to calculate the ultimate shear 

force with Eq. (4.38): 

,

,
'

Rd sF

Rd s

M
V

h
=  (4.38) 

 

Where MRd,s is the ultimate bending moment and h’ is the shear length, defined as the distance between 

the end section of the panel and that with zero moment (i.e., h/2 for elements with double-fixed boundary 

conditions and h for cantilevers). 

Figure 4.15 shows two in-plane flexural strength domains of a masonry pier. The first one is with EQ-

GRID and the second one is without EQ-GRID. It is worth noting that, thanks to the strengthening sys-

tem, the structural element can also be subjected to normal tensile forces, i.e. NRd,s,0 and NRd,s,1. In fact, the 

first part of the domain is shifted towards the negative values of N. Moreover, the contribution of the 

strengthening system to the in-plane flexural resistance of the panel is maximum between failure mode 1 

and 2 since the system attains its limit strain. After that, the resistance improvement decreases since the 

masonry achieves its ultimate strain. In this regard, the strengthening effect of the system becomes small-

er values at higher values of N, as the compressed part of the cross-section increases. Finally, from failure 

mode 3, the masonry is completely compressed, and the system cannot give any strength contribution. 

 

Figure 4.15: In-plane flexural strength domains of a masonry pier with and without the EQ-GRID system 
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4.2.4 Experimental validation 

The in-plane shear strength of the tested “KS” and “WZI” masonry panels is compared to the experi-

mental values for validation. Both calculation approaches discussed in the previous paragraphs, i.e. 

modification of the masonry shear strength and the formulations after the CNR-DT 215/2018, are adopt-

ed. To this aim, the masonry’s average material properties defined in § 4.1 are assumed. The mean con-

ventional strain limit εlim,conv,h and the Young’s secant modulus, Ef,h and Ef,d, of the bare textile reported in 

Table 23 are used for the EQ-GRID system. 

Therefore, the mechanical properties of the masonry are improved with the following formulations: 

, lim, , , , lim, , ,

0, 0

f h conv h eq h f d conv h eq d

vm s vm f

E t E t
f f n

t

   +   
= +   

 

 (4.39) 

, lim, , , , lim, , ,

,

f h conv h eq h f d conv h eq d

bt s bt f

E t E t
f f n

t

   +   
= +   

 
 (4.40) 

 

It is worth noting that the product ( )lim, , , , lim, , , ,conv h f h eq h conv h f d eq dE t E t   +    is equal to 27.74 N/mm, 

which corresponds to the system’s average strength limit under diagonal cracking. Thus, the mean initial 

shear strength fvm0 of the unreinforced “KS” panels improves by 68% and 136% when the EQ-GRID is 

applied on one or two sides of the panel: 

0, , 1

27.74 /
0.17 / ² 1 0.29 / ²

240
vm KS s

N mm
f N mm N mm

mm

 
= +  = 

 
 (4.41) 

0, , 2

27.74 /
0.17 / ² 2 0.40 / ²

240
vm KS s

N mm
f N mm N mm

mm

 
= +  = 

 
 (4.42) 

 

Furthermore, the average initial shear strength fvm0 of the unstrengthened “WZI” panels increases by 39% 

and 77% for one and two sides applications: 

0, , 1

27.74 /
0.30 / ² 1 0.42 / ²

240
vm WZI s

N mm
f N mm N mm

mm

 
= +  = 

 
 (4.43) 

0, , 2

27.74 /
0.30 / ² 2 0.53 / ²

240
vm WZI s

N mm
f N mm N mm

mm

 
= +  = 

 
 (4.44) 

 

Concerning the mean brick tensile strength of the unreinforced “KS” panels, it has an improvement of 7% 

and 15% when the system is applied on one or two sides: 

, , 1

27.74 /
1.575 / ² 1 1.69 / ²

240
bt KS s

N mm
f N mm N mm

mm

 
= +  = 

 
 (4.45) 

, , 2

27.74 /
1.575 / ² 2 1.81 / ²

240
bt KS s

N mm
f N mm N mm

mm

 
= +  = 

 
 (4.46) 

 

Finally, the average brick tensile strength of the unstrengthened “WZI” panels increases by 13% and 26% 

in the case of one and both sides application, respectively: 

, , 1

27.74 /
0.90 / ² 1 1.02 / ²

240
bt WZI s

N mm
f N mm N mm

mm

 
= +  = 

 
 (4.47) 
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, , 2

27.74 /
0.90 / ² 2 1.13 / ²

240
bt WZI s

N mm
f N mm N mm

mm

 
= +  = 

 
 (4.48) 

 

Therefore, Table 25 shows the modified mechanical properties, fvm0,s and fbt,s, obtained with the proposed 

formulations, the friction coefficient μ, the interlocking ϕ, the length l and thickness t of the tested speci-

mens. 

Table 25: Mechanical properties of the panels strengthened with EQ-GRID 

“KS” strengthened panels 

nf fvm0,KS,s μ ϕ fbt,KS,s l t 

1 0.29 N/mm² 0.8 0.94 1.69 N/mm² 1250 mm 240 mm 

2 0.40 N/mm² 0.8 0.94 1.81 N/mm² 1250 mm 240 mm 

“WZI” strengthened panels 

nf fvm0,WZI,s μ ϕ fbt,WZI,s l t 

1 0.42 N/mm² 0.8 1.29 1.02 N/mm² 1250 mm 240 mm 

2 0.53 N/mm² 0.8 1.29 1.13 N/mm² 1250 mm 240 mm 

 

Furthermore, to validate the calculated values, the maximum shear force attained during the laboratory 

tests, VEd, is directly compared with the analytical shear resistance, VRd,mod. To this aim, the Mann and 

Müller formulation is used with the modified material properties, fvm0,s and fbt,s, as follows: 

( ),mod ,mod ,lim,modmin ;Rd t tV V V=  (4.49) 

0,

,mod
1 1

vm s

t v

fl t
V
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


   

 
=  +  

+  +  
 (4.50) 

,

,lim,mod

,

1
2.3

bt s v

t

bt s

fl t
V

b f


=   +  (4.51) 

  

Moreover, the in-plane shear resistance VRd,s is calculated after CNR-DT 215/2018 with Eq. (4.52):  

( ) ( ), ,lim lim, , , , lim, , , ,

1
min ;Rd s t t f f conv h f h eq h conv h f d eq d

Rd

V V V n l E t E t 


= +      +    (4.52) 

 

where: 

• γRd is a model safety factor equal to 2; 

• nf is the total number of applied textile layers; for one side applications is 1 while for both sides 

application is 2; 

• lf is the design length of the applied reinforcement. It is measured orthogonally to the shear force, 

and in any case, it cannot be assumed to be greater than the dimension of the wall H indicated in 

Figure 2.10. For all the tested panels, lf is equal to the height h of the specimens (1.25 m); 

• εlim,conv,h is the conventional strain limit of the fibres arranged parallel to the shear force, i.e. the 

horizontal direction (Table 23); 
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• Ef,h and Ef,d are the average Young’s modulus of the bare textile in the horizontal and diagonal di-

rection (Table 23); 

• teq,h and teq,d are the homogenized equivalent thickness of the system in the horizontal and diagonal 

directions. 

As for the previous method, also, in this case, the product ( )lim, , , , lim, , , ,conv h f h eq h conv h f d eq dE t E t   +   corre-

sponds to the average strength limit of the system under diagonal cracking, and it is equal to 27.74 N/mm. 

Thus, the strength contribution Vt,f is calculated in the case of one and both sides application, as follows: 

,

1
1 1.25 27.74 / 17.3  (one side)

2
t fV m kN m kN=    =  (4.53) 

,

1
2 1.25 27.74 / 34.7  (both sides)

2
t fV m kN m kN=    =  (4.54) 

 

Finally, Table 26 directly compares the experimental and analytical in-plane shear strengths of the tested 

panels. Analyzing the results of the “KS” specimens, it is possible to conclude that the experimental 

values VEd are between the theoretical ones, Vt,mod and Vt,lim,mod, confirming the mixed shear failure shown 

by the specimens. Only for the “KS_1_2” panel, VEd is slightly lower than the theoretical one Vt,mod. 

On the other hand, the shear strength of the “WZI” samples is reached analytically by the tensile failure of 

the masonry units (Vt,lim,mod). Only the theoretical resistance of the “WZI_1_2” panel corresponds to the 

diagonal cracking along the mortar joints (Vt,mod). Thus, the analytical results confirm the experimental 

observations. 

Moreover, a very good match is found between the resistance obtained with the proposed approach 

(VRd,mod) and after the CNR-DT 215/2018 (VRd,s). The maximum percentage difference between VRd,mod 

and VRd,s is +2.1% for the “KS” panels and -1.0% for the “WZI” specimens. 

Table 26: Experimental and analytical shear strengths of the “KS” and “WZI” panels strengthened with EQ-GRID 

ID specimen  VEd [kN] Vt,mod [kN] Vt,lim,mod [kN] VRd,mod [kN] VRd,s [kN] EQ-GRID 

“KS_1_1” 271.40 234.86 296.16 234.86 232.43 
On one side 

“KS_1_2” 204.36 193.73 281.18 193.73 191.29 

“KS_2_1” 271.49 234.46 304.51 234.46 229.58 
On both sides 

“KS_2_2” 252.50 235.97 305.06 235.97 231.09 

“WZI_1_1” 251.45 224.52 203.56 203.56 204.29 
On one side 

“WZI_1_2” 195.68 173.60 184.34 173.60 173.89 

“WZI_2_1” 280.47 224.56 213.54 213.54 215.63 
On both sides 

“WZI_2_2” 255.33 218.11 211.07 211.07 213.30 
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Figure 4.16: Experimental validation of the theoretical in-plane shear strength of the tested panels  

In this regard, Figure 4.16 shows the experimental shear strength VEd versus the theoretical one for one or 

two sides applications of EQ-GRID, in which the values are properly marked to differentiate VRd,mod (red 

points) from VRd,s (light blue squares). This comparison confirms that both calculation methods provide a 

safe estimate of the experimental results. 

Furthermore, the cross-section analysis described in the previous paragraph is also performed. Figure 4.17 

shows the in-plane flexural and shear strength domains of the “KS” and “WZI” panels reinforced with 

EQ-GRID. Since the shear failure domain is calculated with the proposed approach and after CNR-DT 

215/2018, a very good agreement between the calculation methods is evident. 

Finally, the values of the normal forces NRd,s, calculated for each failure mode, are indicated in Table 27. 

Table 27: Normal forces NRd,s calculated at the flexural failure modes from 0 to 4 

ID panel  NRd,s,0 [kN] NRd,s,1 [kN] NRd, s,2 [kN] NRd,s,3 [kN] NRd,s,4 [kN] EQ-GRID 

“KS_1” -28.35 -14.17 420.07 2000.82 2501.03 On one side 

“KS_2” -56.70 -28.35 408.95 2000.82 2501.03 On both sides 

“WZI_1” -28.35 -14.17 221.16 1077.84 1347.30 On one side 

“WZI_2” -56.70 -28.35 210.04 1077.84 1347.30 On both sides 
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Figure 4.17: In-plane failure domains of the tested masonry panels 
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5 Modelling of cyclic lateral shear 
tests with the Equivalent frame 
method 

5.1 Description of the modelling 

The numerical modelling results of the cyclic lateral shear tests illustrated in § 3.6 are presented in this 

chapter. The panels are modelled as masonry piers through the nonlinear ML-BEAM element implement-

ed in the TREMURI software (§ 1.5.2, § 2.4). As shown in Figure 5.1, this element is characterized by 

two nodes, i and j, three kinematic variables (u, v, ) and three generalized forces (V, N, ) at each node. 

The assumed element’s height h, width l and thickness t are equal to the dimensions of the specimens, i.e. 

1250 x 1250 x 240 mm.  

 

Figure 5.1: Idealization of the single panel and monotonic constitutive law of the ML-BEAM element implemented in TREMURI, 

from [14], [46] 

The panels’ elastic behaviour is modelled through the secant stiffness ksec resulting from the experimental 

multilinear curves (Eq. (3.14)). In this regard, the horizontal elastic displacement uj,e of the ML-BEAM 

element is calculated after the beam theory through the shear and flexural stiffness. Thus, Eq. (5.1) is 

obtained when the element’s base is fixed (ui = vi = i = 0) and the upper rotation constrained (uj ≠ 0; vj ≠ 

0; j = 0): 

3

, , , , ,

sec12

j j

j e j e S j e F

V h V h
u u u

GA E I
= + = +  (5.1) 

 

Where: 

• χ is the shear coefficient equal to 1.2 for rectangular cross-sections, 
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• Vj is the shear force, 

• h is the height of the panel, 

• G and Esec are the elastic shear and secant moduli, 

• A and I are the area and moment of inertia of the panel’s cross-section. 

By assigning the unit value to Vj, the elastic secant stiffness ksec of the ML-BEAM element can be deter-

mined as follows: 

sec 3 3

, , , , ,

sec sec sec

1 1 1 1

12 0.4 12
j e j e S j e F

k
h h h hu u u

GA E I E A E I
 

= = = =
+

+ +

 
(5.2) 

 

Since ksec is experimentally determined through Eq. (3.14), the Young’s modulus Esec adopted in the 

modelling is obtained by inverting Eq. (5.2): 

3

sec sec
0.4 12

h h
E k

A I


 
= + 

 
 (5.3) 

 

It is worth noting that the value of Esec is usually lower than the one at the beginning of the elastic phase, 

as it represents the cracked stiffness of the element. 

Furthermore, the panel attains its maximum in-plane resistance at the end of the elastic response (Figure 

5.1). VRd (or VRd,s for the reinforced element) is calculated by the program as the minimum between the 

chosen failure criteria and considering the current axial force acting at each load step. In this respect, the 

Mann and Müller theory [23] is adopted for the shear failure (Eqs. (1.18) - (1.19)), and the increase in 

strength is computed after CNR-DT 215/2018 (§ 4.2.3). Concerning the in-plane flexural failure, the 

resistance of the URM panels is calculated, neglecting the masonry tensile strength and assuming a stress 

block normal distribution at the compressed toe (Eqs. (1.25) - (1.26)). For the specimens reinforced with 

EQ-GRID, the cross-section analysis shown in § 4.2.3 is performed. It is important to note that the ML-

BEAM element can only reproduce the same cyclic behaviour and type of failure as the tested panels if 

the improved in-plane flexural capacity is also taken into account. For this reason, the strengthening effect 

of the EQ-GRID system is computed after CNR-DT 215/2018 and not through the proposed modification 

of the masonry material properties. As shown in § 4.2.4,  the adoption of the modified masonry material 

properties, fvm0,s and fbt,s (Eqs. (4.16), (4.17)), leads to maximum shear resistances very similar to those 

obtained after CNR-DT 215/2018 (Eqs. (4.18), (4.19)). However, some strengthened panels showed a 

hybrid behaviour during the post-peak phase that only with the increased flexural capacity can be repro-

duced. In this respect, the mixed failure mode is possible in the modelling through the parameters a1 and 

a2 illustrated in Figure 1.40. They are assumed 0.95 and 1.25, respectively, and define two areas close to 

the intersection points of the flexural and shear domains in which the hybrid behaviour can occur.  

Furthermore, the nonlinear response of the tested specimens is modelled by assigning progressive 

strength degradations (Vres,3, Vres,4 in Figure 5.1) at defined drift values until very severe damage levels. 

Different values can be assumed through the ratio Vres,i / VRd (VRd,s) to describe the bending and shear 

response of the panels. They are indicated for each specimen in the next paragraphs. Thus, when the 

hybrid failure mode occurs, the average values of Vres,i / VRd (VRd,s) are calculated by the program starting 

from those assigned for the shear and bending failure. 
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Concerning the hysteretic response of the tested panels, the parameters c1, c2, c3 for the shear behaviour 

(Table 28) are calibrated based on the experimental results, as all the samples showed diagonal shear 

cracks. Moreover, since no specimen failed by pure bending, it was impossible to calibrate the parameters 

c1, c2, c3, c4 for the flexural failure. Therefore, the values reported in Table 28 are consistent with those 

adopted in [46] for the non-linear modelling and time-history analyses of masonry Italian code-

conforming buildings.  

Table 28: Parameters adopted for the cyclic response of the ML-BEAM element 

“KS” specimens 

Shear Bending 

c1 = 0.4 c2 = 0.6 c3 = 0 c1 = 0.9 c2 = 0.8 c3 = 0.6 c4 = 0.5 

“WZI” specimens 

Shear Bending 

c1 = 0.6 c2 = 0.8 c3 = 0 c1 = 0.9 c2 = 0.8 c3 = 0.6 c4 = 0.5 

 

Regarding the modelling phases, all the analyses are performed by first applying the panel’s self-weight 

and the constant vertical load Nv, as imposed during the test. Then, the experimental values of the hori-

zontal displacements recorded at the top of the walls, u, are applied to the node j of the element through 

incremental static analyses performed under displacement control. Concerning the boundary conditions, 

the base of the element is considered fixed (ui = vi = i = 0) while the top has only one d.o.f. constrained 

(uj ≠ 0; vj ≠ 0; j = 0). This latter assumption is reasonable since the experimental values of top rotation 

are so small that they may be neglected in the numerical model. As depicted in Figure 5.3, the rotation of 

the steel beam positioned on the top of the panel was limited by four threaded rods with a diameter of 32 

mm (two bars on each side of the sample). For example, Figure 5.2 shows the top rotation - drift diagram 

of the unstrengthened specimen “WZI_0_1”. 

 

Figure 5.2: Specimen “WZI_0_1”: rotation at the top of the panel 

In this case, the rotation values are equal to about ±0.005 rad, and only at the end of the test, when the 

specimen collapsed, the maximum was -0.03 rad. Therefore, it is reasonable to assume that they may be 

neglected for the modelling. 
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Moreover, the axial force developed in the four threaded rods during the tests (Figure 5.3) was recorded 

by two load cells.  

 

Figure 5.3: Scheme of the normal forces acting on the tested masonry panels 

Thus, the total normal force acting on the node j of the element, Nj (Figure 5.3), can be calculated as 

follows: 

1 22 2
2

w
j v v v

G
N N N N

 
= − + + + 

 
 (5.4) 

 

Where: 

• Gw is the panel’s self-weight, 

• Nv is the normal force applied by the vertical actuator, 

• 2Nv1, 2Nv2 are the forces developed in the threaded bars. 

It is worth noting that Nv is a constant value, while Nv1 and Nv2 are variable since the tests were cyclically 

performed. 

Therefore, as the vertical stress influences the load-bearing capacity of a masonry pier, it is important to 

consider this variation during the modelling. To this aim, the normal force Nj defined with Eq. (5.4) is 

also equal to Eq. (5.5). The latter is calculated through the axial stiffness of the ML-BEAM element: 

sec sec

j i j

E A E A
N v v

h h
= − +  (5.5) 

 

Since the experimental values of Nj are known and the node i is constrained (vi = 0), the vertical dis-

placement of the node j under the normal force Nj can be easily obtained by inverting Eq. (5.5): 

sec

j j

h
v N

E A
=  (5.6) 
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In this way, the variation of normal force can be defined in the input by assigning both displacements, uj 

and vj, simultaneously, through incremental static analyses performed under displacement control. It is 

worth noting that the TREMURI program calculates the normal force Nj with Eq. (5.5) at each load step 

and, if necessary, performs a nonlinear correction based on the comparison with the limit resistance NRd,4 

of the element (Table 27). Since NRd,4 is never attained during the modelling, the elastic prediction of Nj 

through Eq. (5.5) leads to results that concur exactly with the experimental ones even when the element is 

in the non-linear phase under shear forces. 

Therefore, the modelling results are presented in the next paragraphs in terms of internal forces’ and 

moments’ diagrams. In this regard, the experimental values of bending moment at the top and base of the 

panel, Mj and Mi, are so calculated: 

( )2 12j v vM N N a= −  (5.7) 

i j jM V h M= −  (5.8) 

 

Where a is the distance between the threaded bars and the centre of the panel (Figure 5.3). 

5.2 Modelling results of the calcium-silicate brick 
masonry panels 

5.2.1 “KS” unstrengthened specimens  

The modelling results of the cyclic lateral shear tests performed on the “KS_0_1” and “KS_0_2” speci-

mens are presented in this paragraph. The secant elastic stiffness of the ML-BEAM element, ksec, is 

experimentally obtained from the equivalent multilinear curves of both samples. The masonry mechanical 

properties are the same as those adopted in § 4.1.1 to calculate the in-plane failure domain of the unrein-

forced “KS” panels.  In this respect, Table 29 reports the average values of masonry compressive 

strength, fm,u,KS, initial shear strength, fvm0,KS, local coefficient of friction, μKS, interlocking parameter, ϕKS 

and tensile strength of the brick, fbt,KS, adopted for the modelling. 

Table 29: Average values of the mechanical properties of the unstrengthened “KS” masonry panels 

“KS” unstrengthened panels 

fm,u,KS fvm0,KS μSK ϕKS fvm0,red,KS μred,KS fbt,KS 

9.81 N/mm² 0.17 N/mm² 0.8 0.94 0.10 N/mm² 0.46 1.58 N/mm² 

 

Since the “KS_0_1” specimen failed with diagonal cracks, the drift and residual resistance values defined 

for the shear failure (Table 30) are obtained from the equivalent multilinear curve determined in § 3.6.3.1. 

Concerning flexural behaviour, the drifts are assumed to be twice those adopted for the shear, as no 

experimental data were available for this type of failure. It is important to stress that this assumption is 

consistent with the indicative values proposed by the Italian technical standard CNR-DT 212/2013 

“Guide for the Probabilistic Assessment of the Seismic Safety of Existing Buildings” [25]. The residual 

resistances for the flexural damage are also coherent with CNR-DT 212/2013. 
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Table 30: “KS_0_1” specimen: values of drift and residual resistance 

 Drift Residual resistance (Vres,i / VRd) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 0.62% d4,S = 0.75% d5,S = 0.93% 0.72 0.44 

Bending d3,B = 1.24% d4,B = 1.5% d5,B = 1.86% 1.0 0.85 

 

The experimental results are compared to the numerical ones in terms of internal forces, Vj, Nj, and 

moments, Mi, Mj. In Figure 5.4 are shown the results of the “KS_0_1” specimen, which was tested under 

the constant vertical load of 240 kN. 

 

Figure 5.4: Specimen “KS_0_1”: internal forces and moments 

It is worth noting that a very good match between the experimental and numerical diagrams is provided. 

The values of normal force Nj concur exactly with those recorded during the test. Moreover, the maxi-

mum shear force Vj,max is 208.62 kN. It is very close to the one calculated in § 4.1.1 (VRd = 208.47), and 

the hysteretic response reliably reproduces the experimental curve. Concerning the bending moments, Mi 

and Mj, the first one is underestimated, while the second is overestimated. This approximation is due to 

the assumption that the rotation at the top of the panel, φj, is constrained. However, it does not influence 

the shear force Vj since the latter is always in equilibrium with the sum of the moments (Eq. (5.9)). 
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Where h is the height of the element. 

The “KS_0_1” panel attains the in-plane strength with shear failure from DL2 to DL5, reproducing 

correctly the cracking pattern observed during the test. The failure domain in Figure 5.5 also confirms this 

result since Nj varies between 243 kN and 393 kN. In this range, no mixed failure can occur. The latter is 

only possible at normal force values between 51 kN and 93 kN and between 1690 kN and 1930 kN. 

 

Figure 5.5: In-plane failure domain of the “KS” unstrengthened panels 

Concerning the masonry properties of the second unstrengthened “KS” specimen, they are the same as 

those adopted for the previous sample. The drifts and residual resistances assumed in the modelling with 

TREMURI are shown in Table 31.  

Table 31: “KS_0_2” specimen: values of drift and residual resistance 

 Drift Residual resistance (Vres,i / VRd) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 0.51% d4,S = 0.75% d5,S = 0.93% 0.72 0.44 

Bending d3,B = 1.0% d4,B = 1.5% d5,B = 1.86% 1.0 0.85 

 

As described in § 3.6.3.1, the “KS_0_2” panel was tested under the constant vertical load of 120 kN, and 

the test was stopped shortly after achieving the maximum horizontal force. Therefore, only the equivalent 

bilinear curve could be determined, from which the drift d3,S was obtained since the specimen failed by 

diagonal cracking (d3,F is assumed to be twice). For this reason, the drifts and residual resistances defined 

for the DLs 4, 5 are the same as those assumed for the previous sample. The in-plane strength domain in 

Figure 5.5 confirms that no hybrid behaviour can occur since the normal force Nj varies between 123 kN 

and 273 kN.  

Furthermore, as shown in Figure 5.6, the numerical results reproduce very well the experimental ones. 

The element achieves the in-plane strength by shear failure. The maximum shear force Vj,max is equal to 

144.09 kN, and it is very close to the expected one (VRd = 143.98). The cyclic behaviour is also very well 

reproduced from DL2 to DL3 (DL4 is not reached). As depicted in Figure 3.30, the panel showed a final 

experimental cracking pattern between DL3 and DL4. Thus, it is possible to conclude that the numerical 
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results find an excellent correspondence with the experimental ones, although the imposed values of drift 

and residual strength at DLs 4, 5 are those of the previous sample. 

 

Figure 5.6: “KS_0_2” specimen: internal forces and moments 

5.2.2 “KS” Specimens strengthened on one side with the EQ-GRID 
system 

The first calcium-silicate brick masonry panel strengthened EQ-GRID and modelled in TREMURI is the 

“KS_1_1” specimen. The adopted masonry mechanical properties are reported in Table 30. The increase 

in shear strength is computed after CNR-DT 215/2018 through Eqs. (4.18) - (4.19), where the total 

number of applied textile layers nf is one since the grid was applied only on one side. In this respect, the 

FRCM design length lf is 1.25 m, and the average strength of the system under diagonal cracking is equal 

to 27.74 kN/m ( )lim, , , , lim, , , ,conv h f h eq h conv h f d eq dE t E t =   +   . 

Moreover, the TREMURI program checks that the shear force calculated at each load step does not 

exceed the diagonal crushing resistance Vt,c, as suggested by CNR-DT 215/2018. For the “KS” masonry, 

Vt,c is equal to: 

, , ,0.25 0.25 9.81 240 1250 735.75t c m u KS fV f t d kN=    =    =  (5.10) 
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Where: 

• fm,u,KS is the average masonry compressive strength (Table 30); 

• t is the thickness of the specimen (240 mm); 

• df is the distance between the compressed edge of the panel and the fibre of the reinforcement that 

attains the highest tensile strain. As the EQ-GRID system is applied on the entire panel’s surface, 

df corresponds to the sample’s length (1250 mm). 

Furthermore, the adopted drifts and residual resistances are shown in Table 33. The values for the shear 

damage are obtained from the equivalent multilinear curve calculated in § 3.6.3.2 since the sample failed 

by diagonal cracking. Then, the drifts chosen for the flexural behaviour are equal to twice those adopted 

for the shear, as observed in § 5.2.1. The assumed residual resistances are consistent with the values 

suggested by CNR-DT 212/2013 [25]. 

Table 32: “KS_1_1” specimen: values of drift and residual resistance 

 Drift Residual resistance (Vres,i / VRd,s) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 0.82% d4,S = 1.0% d5,S = 1.22% 0.63 0.41 

Bending d3,B = 1.64% d4,B = 2.0% d5,B = 2.44% 1.0 0.85 

 

The results of the modelling in TREMURI are presented in Figure 5.8 with the experimental ones. The 

“KS_1_1” specimen was tested under the constant vertical load of 240 kN. The maximum shear force 

Vj,max obtained from the numerical modelling, is equal to 232.53 kN, and it is very close to the expected 

one VRd,s = 232.43 kN. The ML-BEAM element reaches the in-plane resistance with shear failure from 

DL2 until DL5, reproducing, in this way, the cracking pattern observed during the test. The strength 

domain of the panel in Figure 5.7 confirms this type of failure since the normal force Nj varies between 

243 kN and 407 kN (Figure 5.8). In this range of values, no hybrid behaviour can occur. It is only possi-

ble at normal forces between 48 kN - 106 kN and 1636 kN - 1906 kN. 

 

Figure 5.7: In-plane failure domain of the “KS” panels strengthened on one side 
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Furthermore, as shown in Figure 5.8, the bending moments, Mi and Mj, are under- and overestimated, 

respectively. The assumption made on the rotation at the top of the panel (φj = 0) causes the difference 

with the experimental values. However, this approximation does not influence the shear force values 

because the global equilibrium of the element is always correctly ensured. 

 

Figure 5.8: “KS_1_1” specimen: internal forces and moments 

Moreover, as described in § 3.6.3.2,  the experimental data of the second calcium-silicate brick masonry 

panel strengthened with EQ-GRID, i.e. the “KS_1_2” specimen, were not completely reliable in the post-

peak phase of the test. Therefore, only the first part of the hysteresis curve, until achieving the maximum 

shear force, is modelled in TREMURI. The masonry mechanical properties assumed for the“KS_1_2” 

panel are indicated in Table 30. The strengthening effect of the EQ-GRID system is calculated with the 

approach proposed by CNR-DT 215/2018. The adopted values of drift and residual resistances are equal 

to those defined for the “KS_1_1” panel (Table 33) since the equivalent multilinear curve could not be 

determined in this case. 

Therefore, the experimental and numerical results are presented in Figure 5.9, in which it is evident the 

very good correspondence. The maximum shear force Vj,max, reached by the ML-BEAM element, is equal 

to 191.36 kN, and it is very close to the expected one, VRd,s = 191.29 kN (the specimen was tested under 

the vertical load of 120 kN). Finally, the element achieves the in-plane strength with shear failure, but it 

doesn’t reach the DL3, as during the first part of the test. The strength domain of the panel (Figure 5.7) 
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confirms that no mixed failure could occur since the normal force Nj varies between 123 kN and 335 kN 

(Figure 5.9).  

 

Figure 5.9: “KS_1_2” specimen: experimental and numerical values of internal forces and moments 

5.2.3  “KS” specimens strengthened on both sides with the EQ-GRID 
system 

The modelling results of the “KS_2_1” specimen are shown in Figure 5.10 with the experimental ones. 

As for the samples reinforced on one side, the adopted masonry mechanical properties are indicated in 

Table 30. The linear elastic response of the ML-BEAM element is defined through the secant stiffness 

obtained from the equivalent multilinear curve calculated in § 3.6.3.3. The improved shear resistance of 

the panel is taken into account with Eqs. (4.18) - (4.19), where nf is equal to 2 since the grid is applied on 

both sides of the specimen. Furthermore, the shear force calculated by the TREMURI program at each 

load step never exceeds the diagonal crushing resistance Vt,c defined in Eq. (5.10). 

Therefore, the drifts and residual resistances adopted for the shear damage (Table 33) are obtained from 

the equivalent multilinear curve of this specimen. The values chosen for the flexural behaviour are as-

sumed equal to twice those adopted for the shear failure. The residual resistances are consistent with 

CNR-DT 212/2013 [25].  
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Table 33: “KS_2_1” specimen: values of drift and residual resistance 

 Drift Residual resistance (Vres,i / VRd,s) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 1.21% d4,S = 1.32% d5,S = 1.61% 0.63 0.33 

Bending d3,B = 2.42% d4,B = 2.64% d5,B = 3.22% 1.0 0.85 

 

As shown in Figure 5.10, the numerical results have a good match with the experimental ones since the 

ML-BEAM element reaches the in-plane strength with shear failure from DL2 until DL5. The hysteretic 

behaviour is also well reproduced. The maximum shear force Vj,max obtained from the modelling, is equal 

to 229.62 kN, which is very close to the theoretical one (VRd,s = 229.58 kN). Moreover, the strength 

domain depicted in Figure 5.11 shows that the mixed failure is possible at normal force values between 

45 kN - 120 kN and 1590 kN - 1880 kN. Since Nj varies between 123 kN and 363 kN (Figure 5.10), no 

mixed failure occurs. It is important to stress that the cross-section analysis described in § 4.2.3. is also 

performed by the program. In this case, the consideration of the increased in-plane flexural capacity is 

fundamental to reproduce the panel’s experimental behaviour correctly. 

 

Figure 5.10: “KS_2_1” specimen: experimental and numerical values of internal forces and moments 
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Figure 5.11: In-plane failure domain of the “KS” panels strengthened on both sides 

Moreover, the second calcium-silicate brick masonry specimen strengthened on both sides with EQ-

GRID, i.e. the “KS_2_2” panel, is also modelled in TREMURI. The adopted material properties and the 

improved in-plane load-bearing capacity are implemented in the program as for the previous sample. The 

drifts and residual resistances for the shear damage are obtained from the equivalent multilinear curve 

determined in § 3.6.3.3 since the panel failed by diagonal cracking (Table 34).  

 

Figure 5.12: “KS_2_2” specimen: experimental and numerical values of internal forces and moments 
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The drifts for the bending damage are assumed twice those of the shear failure, and the adopted resistanc-

es are coherent with CNR-DT 212/2013 [25]. 

Table 34: “KS_2_2” specimen: values of drift and residual resistance 

 Drift Residual resistance (Vres,i / VRd,s) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 1.07% d4,S = 1.20% d5,S = 1.46% 0.65 0.39 

Bending d3,B = 2.14% d4,B = 2.40% d5,B = 2.92% 1.0 0.85 

 

Therefore, the experimental and numerical results are compared in Figure 5.12. The maximum shear 

force, Vj,max, attained during the analysis is equal to 231.13 kN, and the expected value, VRd,s, is 231.09 kN 

(the “KS_2_2” was tested under the constant vertical load of 120 kN). Moreover, the ML-BEAM element 

achieves the in-plane resistance with shear failure from DL2 until DL5. No mixed failure occurs since the 

absolute values of Nj vary between 123 kN and 367 kN (Figure 5.12). Finally, also in this case, the 

consideration of the improved in-plane flexural capacity is fundamental to reproduce the panel’s hysteret-

ic behaviour correctly. 

5.3 Modelling results of the hollow clay brick masonry 
panels 

5.3.1 “WZI” unstrengthened specimens  

The cyclic lateral shear tests performed on the unreinforced “WZI” specimens are modelled with the 

Equivalent frame method implemented in the TREMURI program. The elastic properties of the ML-

BEAM element are defined through the secant stiffness, ksec, which is obtained from the calculation of the 

equivalent multilinear curve (§ 3.6.4.1). Moreover, Table 35 reports the adopted average values of mason-

ry compressive strength fm,u,WZI, initial shear strength fvm0,WZI, local coefficient of friction μWZI, interlocking 

parameter ϕWZI and tensile strength of the brick fbt,WZI. 

Table 35: Average values of the mechanical properties of the unstrengthened “WZI” masonry panels 

“WZI” unstrengthened panels 

fm,u,WZI fvm0,WZI μWZI ϕWZI fvm0,red,WZI μred,WZI fbt,WZI 

5.28 N/mm² 0.30 N/mm² 0.8 1.29 0.15 N/mm² 0.39 0.90 N/mm² 

 

The modelling results and the experimental values of the “WZI_0_1” panel are shown in Figure 5.13. The 

maximum shear force reached by the ML-BEAM element is equal to 180.86 kN, and it concurs exactly 

with the expected value of resistance, VRd. The assumed drifts and residual resistances are indicated in 

Table 36.  
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Table 36: “WZI_0_1” specimen: values of drift and residual resistance 

 Drift Residual resistance (Vres,i / VRd) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 0.60% d4,S = 0.65% d5,S = 0.73% 0.69 0.47 

Bending d3,B = 1.20% d4,B = 1.30% d5,B = 1.46% 1.0 0.85 

 

Regarding the shear damage, the adopted values are obtained from the equivalent multilinear curve 

determined in § 3.6.4.1 since the panel failed by diagonal cracking. Concerning the flexural behaviour, 

the chosen drifts are equal to twice those assumed for the shear failure. The residual resistances suggested 

by CNR-DT 212/2013 [25] are adopted. 

 

Figure 5.13: “WZI_0_1” specimen: experimental and numerical values of internal forces and moments 

The ML-BEAM element attains the in-plane strength showing shear damage from DL2 to DL5 and 

finding a good match with the cracking pattern observed during the test. The failure domain of the panel 

also confirms this result since the absolute values of Nj vary between 242 kN and 381 kN. As depicted in 

Figure 5.14, no mixed failure can occur in that range. It is only possible at normal force values between 

74 kN - 136 kN and 885 kN - 1025 kN. 
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Figure 5.14: In-plane failure domain of the unstrengthened “WZI” specimens 

Concerning the “WZI_0_2” panel, the diagrams of the internal forces and moments are shown in Figure 

5.15.  

 

Figure 5.15: “WZI_0_2” specimen: experimental and numerical values of internal forces and moments 

It is important to stress that, since the experimental values recorded in the post-peak phase of the test were 

not reliable, the equivalent multilinear curve of the “WZI_0_2” panel could be not determined. Therefore, 
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the modelling is performed using only the available test data, and the values of drift and residual re-

sistances are assumed equal to those defined for the “WZI_0_1” specimen (Table 36).  

 

Figure 5.16: “WZI_0_2” specimen: damage state at the end of the first part of the test (DL3) 

Moreover, as depicted in Figure 5.15, the maximum shear force, Vj,max, attained during the modelling is 

158.56 kN, and it is very close to the expected one (VRd = 158.47 kN). It is worth noting that the absolute 

values of Nj vary between 122 kN and 290 kN (Figure 5.15). Therefore, the ML-BEAM element shows a 

hybrid behaviour in the range 122 kN -136 kN. However, since these values were recorded during the 

transition from positive to negative displacements and vice versa, it is only temporary. In fact, the ML-

BEAM element achieves the in-plane resistance with shear damage until DL3, as during the first part of 

the test (Figure 5.16). 

5.3.2  “WZI” specimens strengthened on one side with the EQ-GRID 
system 

The cyclic lateral shear tests carried out on the “WZI_1_1” and “WZI_1_2” specimens are also modelled 

in TREMURI. As described in § 5.1, the elastic secant stiffness, ksec, is experimentally obtained by 

calculating the equivalent multilinear curve. The masonry mechanical properties are equal to those 

adopted for the unreinforced WZI specimens (Table 35). The improved load-bearing capacity is calculat-

ed with the design approach of the CNR-DT 215/2018, as for the “KS” specimens. Thus, the shear re-

sistance VRd,s is obtained through Eq. (4.19), in which nf is equal to 1 since the grid is applied only on one 

side of the panels. Moreover, the shear force calculated by the program, Vj, is always lower than the 

diagonal crushing resistance Vt,c: 

, , ,0.25 0.25 5.28 240 1250 396t c m u WZI fV f t d kN=    =    =  (5.11) 

 

Where fm,u,WZI is the average masonry compressive strength (Table 35), t is the thickness of the wall (240 

mm), df is the distance between the compressed edge of the panel and the fibre of the reinforcement that 

attains the highest tensile strain. As the EQ-GRID system is applied on the entire surface, df corresponds 

to the length of the specimen (1250 mm). 

The drifts and residual resistances adopted for the modelling of the “WZI_1_1” specimen are summarized 

in Table 37. Since the panel showed diagonal cracks during the test, the values indicated for the shear 
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damage are obtained from the equivalent multilinear curve (§ 3.6.4.2). Concerning the bending failure, 

the chosen drifts are equal to twice the values assumed for the shear damage, and the residual resistances 

are coherent with CNR-DT 212/2013 [25]. 

Table 37: “WZI_1_1” specimen: values of drift and residual resistance 

 Drift Residual resistance (Vres,i / VRd,s) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 0.62% d4,S = 0.75% d5,S = 0.93% 0.72 0.44 

Bending d3,B = 1.24% d4,B = 1.5% d5,B = 1.86% 1.0 0.85 

 

The numerical results of the “WZI_1_1” specimen are directly compared with the experimental diagrams 

of the internal forces and moments, as depicted in Figure 5.17. The sample was tested under the constant 

vertical load of 240 kN, and the normal force Nj varies between 242 kN and 422 kN. As shown by the 

failure domain of the panel (Figure 5.18), no mixed failure can occur in this range. The latter is only 

possible at normal force values between 73 kN - 163 kN and 833 kN - 998 kN. 

 

Figure 5.17: “WZI_1_1” specimen: experimental and numerical values of internal forces and moments 
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Figure 5.18: In-plane failure domain of the “WZI” specimens strengthened on one side 

Therefore, the ML-BEAM element achieves the in-plane strength with shear failure from DL2 to DL5. 

The maximum attained shear force, Vj,max, is equal to 204.23 kN, and it is very close to the expected value 

(VRd,s = 204.29 kN). As depicted in Figure 5.17, the results reproduce the hysteretic response of the panel 

very well and have a good match with the behaviour shown during the test.  

 

Figure 5.19: “WZI_1_2” specimen: experimental and numerical values of internal forces and moments 
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Concerning the “WZI_1_2” panel, the experimental and numerical diagrams are reported in Figure 5.19. 

Since the test data were not completely reliable in the post-peak phase, only the first part of the hysteresis 

curve, until the attainment of the maximum shear force, has been modelled with TREMURI. 

The sample was tested under the constant vertical load of 120 kN, and the absolute values of Nj vary 

between 122 kN and 285 kN. Therefore, during the modelling with TREMURI, the mixed failure occurs 

at normal force values between 122 kN and 163 kN, as shown by the failure domain of the panel (Figure 

5.18). The adopted values of drift and residual resistances are equal to those of the “WZI_1_1” panel 

(Table 37), as the equivalent multilinear curve could not be determined. The maximum shear force Vj,max 

reached by the ML-BEAM element is equal to 173.92 kN, the expected value, VRd,s, is 173.89 kN. Finally, 

the element achieves the in-plane strength with shear failure, but it doesn’t reach the DL3, as during the 

first part of the test. 

5.3.3 “WZI” specimens strengthened on both sides with the EQ-GRID 
system 

The modelling results of the cyclic lateral shear tests performed on the “WZI_2_1” and “WZI_2_2” 

specimens are presented. The elastic properties of the ML-BEAM element are defined through the secant 

stiffness, ksec, obtained from the equivalent multilinear curve determined in § 3.6.4.3. The masonry 

mechanical properties are described in Table 35. The in-plane shear resistance is calculated through Eqs. 

(4.18) and (4.19), in which nf is equal to 2 since the textile is applied on both sides of the panels. Fur-

thermore, the shear force Vj calculated at each load step is always lower than the diagonal crushing 

resistance Vt,c (Eq. (5.11)) for both specimens. The in-plane flexural capacity is calculated through the 

cross-section analysis described in § 4.2.3. 

Therefore, the numerical and experimental results of the “WZI_2_1” panel are firstly presented (Figure 

5.22). The maximum shear force Vj,max attained by the ML-BEAM element, is equal to 215.51 kN, which 

is very close to the expected one calculated in § 4.2.4 (VRd,s = 215.63 kN). 

The drifts and residual resistances adopted for the modelling are summarized in Table 38. 

Table 38: “WZI_2_1” specimen: values of drift and residual resistance 

 Drift Residual resistance (Vres,i / VRd,s) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 1.20% d4,S = 1.40% d5,S = 1.60% 0.55 0.35 

Bending d3,B = 2.40% d4,B = 2.80% d5,B = 3.20% 1.0 0.85 

 

It is worth noting that the “WZI_2_1” sample achieved the in-plane resistance with the formation of 

diagonal cracks from corner to corner, but it also showed sub-vertical cracks across the thickness during 

the post-peak phase. As depicted in Figure 5.20, stress concentrations at the compressed toes caused the 

achievement of the masonry compressive strength. Therefore, the values indicated in Table 38 for the 

shear failure are lower than those obtained from the equivalent multilinear curve calculated in § 3.6.4.3 

(Table 19).   
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Figure 5.20: Sub-vertical cracks in the “WZI” specimens strengthened on both sides 

Moreover, it is important to stress that the experimental behaviour of the panel can be correctly repro-

duced thanks to the cross-section analysis performed by the program to calculate the in-plane flexural 

capacity.  

In this regard, Figure 5.21 shows the in-plane strength domain of the “WZI” panels, in which the orange 

and grey lines represent the bending and shear domain when the reinforcing system is applied on both 

sides of the specimens. The dotted line corresponds to the bending domain of the unreinforced panel. If 

the strengthening effect of the EQ-GRID system on the shear and flexural capacity is considered, the 

mixed failure can occur at normal force values between 75 kN and 205 kN. On the contrary, if the contri-

bution of the EQ-GRID system to the flexural strength of the panel is neglected, the mixed failure can 

occur at normal force values between 143 kN and 375 kN. 

Since the variation range of Nj is 122 kN - 387 kN (Figure 5.22), the ML-BEAM element would present a 

hybrid behaviour in most of the load steps if the improvement of flexural strength is neglected. Further-

more, during the final phase of the modelling, in which the normal force values are lower than 143 kN, 

the element would show only bending failure. 

 

Figure 5.21: In-plane failure domain of the “WZI” specimens strengthened on both sides 
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Therefore, the cyclic response of the sample can be correctly reproduced only by considering the contri-

bution of EQ-GRID in the shear and flexural strength of the panel. In this case, the ML-BEAM element 

can attain the maximum horizontal force showing the shear failure. Then, only in the post-peak phase, 

when the acting normal force is lower than 205 kN, it can present the hybrid behaviour observed during 

the test. 

 

Figure 5.22: “WZI_2_1” specimen: experimental and numerical values of internal forces and moments 

Concerning the “WZI_2_2” panel, the experimental and numerical results are compared in Figure 5.23. 

The maximum shear force achieved during the modelling is equal to 213.19 kN, which is very close to 

that calculated in § 4.2.4 (VRd,s = 213.30 kN). The adopted drifts and residual resistances are summarized 

in Table 39. 

Table 39: “WZI_2_2” specimen: values of drift and residual resistance 

 Drift Residual resistance (Vres,i / VRd,s) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 0.88% d4,S = 0.93% d5,S = 1.20% 0.70 0.45 

Bending d3,B = 1.76% d4,B = 1.86% d5,B = 2.40% 1.0 0.85 
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It is worth pointing out that the “WZI_2_2” specimen reached the in-plane shear resistance with the 

formation of diagonal cracks and presented sub-vertical cracks across the thickness during the post-peak 

phase. Therefore, as for the “WZI_2_1” panel, the experimental behaviour can be numerically reproduced 

only considering the increased shear and flexural strength due to EQ-GRID. In this regard, Figure 5.23 

shows that the absolute values of Nj vary between 122 kN and 363 kN, and the mixed failure is possible 

in the range 122 kN - 205 kN, as during the test.  

 

Figure 5.23: “WZI_2_2” specimen: experimental and numerical values of internal forces and moments 
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6 Modelling of shaking table tests 
with the Equivalent frame method 

The three-dimensional model of a hypothetical prototype masonry structure was tested on the seismic 

shaking table of the Dynamic Testing Laboratory at the Institute of Earthquake Engineering and Engi-

neering Seismology (IZIIS) in Skopje from February to September 2013 [73]. Figure 6.1 shows the 

geometry of the three-dimensional BM model. The experimental campaign was carried out to validate the 

EQ-GRID system as seismic retrofitting technology for traditional historic masonry structures. Therefore, 

a two-story brick masonry building with reinforced concrete floors was chosen as a prototype structure. It 

represented most of the existing residential and public masonry buildings of the second half of the XX 

century in the Republic of Macedonia and on the territory of the Balkan region. 

 

Figure 6.1: BM model: the unstrengthened three-dimensional model [73] 

The geometrical scale of the three-dimensional BM model was 1:2. It was chosen based on the following 

criteria: 

• Dimensions of the shaking table (4.5 m x 4.5 m); 

• Allowed total height and weight on the shaking table (10 m and 400 kN, respectively); 

• Realistic reproduction of the possible failure mechanisms of masonry walls under seismic actions. 

Thus, the total length, width and height of the building were 4.24 m, 3.06 m and 3.30 m, respectively 

(Figure 6.1). The structural system consisted of five bearing walls, four facades and one in the middle 
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(Figure 6.2). The walls were constructed in a running bond with a thickness of 12.5 cm (Figure 6.3). The 

adopted bricks were manufactured with 12.5 x 6 x 3.25 cm dimensions to reproduce the standard brick 

size of 25 x 12 x 6.5 cm. The mortar joints were prepared with a lime/cement/sand ratio equal to 1/1/3, 

river sand with fraction 0‐2 cm as filler, and water. The thickness of the vertical and horizontal mortar 

joints was equal to 0.5 cm [73]. Therefore, the physical, chemical and mechanical masonry properties 

were similar to those of the hypothetical prototype structure. 

 

Figure 6.2: Construction of the BM model [73] 

 

Figure 6.3: Masonry pattern of the BM model [73] 

Table 40 shows the average compressive strength of the adopted solid clay brick and mortar. The values 

were experimentally obtained through compressive tests performed on bricks and mortar prisms. 
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Table 40: Average values of compression strength of the solid bricks and lime-cement mortar of the BM model [73] 

Solid clay brick Mortar (cement: clay: sand = 1 : 1 : 3) 

fb = 20,12 MPa fM = 15,52 MPa (28 days) 

 

Moreover, a reinforced concrete foundation with dimensions of 3.26 x 4.76 x 0.30 m was built to 

transport and anchor the structure on the shaking table (26 anchors were used). After the construction 

phase, the BM model was left to dry for 30 days at the place where it was constructed. Finally, it was 

transported with a 90‐tons auto crane on the shaking table [73]. 

 

Figure 6.4: Foundation plan of the BM model [73] 

The model was dynamically tested by applying two main types of earthquake in its W‐E direction: one 

local (Northridge, 1994) and two distant (El Centro, 1940 and Petrovac N-S, 1979). The time histories 

were scaled in compliance with the principles of modal analysis, and their application was made gradual-

ly, increasing the peak ground acceleration [73]. 

Table 41 shows the selected experimental tests starting from moderate to destructive intensities and the 

reached damage level. 

Since the experimental campaign aimed to investigate the effectiveness of the EQ-GRID strengthening 

system by comparing the behaviour of the retrofitted structure with the original one, the testing program 

provided for the application of earthquake excitations with a gradual increase in intensity. In this way, the 

progressive development of cracks, the modification of the dynamic characteristics, the elasticity limit, 

i.e. occurrence of the first cracks, and the failure mechanisms could be monitored. 
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Table 41: Dynamic input excitation of the BM model [73] 

Earthquake Span [%] ainput [g] Damage BM model 

El Centro 50 0.14 

- 

Petrovac 36 0.16 

Northridge 16 0.18 

El Centro 65 0.18 

Petrovac 40 0.18 

El Centro 75 0.21 

Initial fine cracks Petrovac 45 0.20 

Northridge 20 0.21 

El Centro 80 0.27 Further propagation of 

initial cracks Northridge 25 0.23 

Petrovac 50 0.22 

Damage development Petrovac 70 0.32 

Petrovac 75 0.35 

 

The BM model was tested until observing considerable damages. As depicted in Figure 6.5, the North‐

East corner of the model resulted dislocated at the end of the dynamic tests. Therefore, it was first directly 

stabilized on the shaking table. Then, the structure was transported back to the place where it was con-

structed. The cracks were repaired through injection of lime‐cement based mixtures. Finally, the EQ-

GRID system was applied on the outer side of the walls. 

 

Figure 6.5: Damage to the North‐East corner of the BM model and transportation from the shaking table 

[73] 

As illustrated in Figure 6.6, the grid was applied with 10‐15 cm overlapping in the following order: 

• at the window and door corners (diagonal textile strips), 

• around the floor slabs, 

• around the foundation slab, 

• from the top of the walls to the foundation. 
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Figure 6.6: Retrofitting phases of the BM-SR model [73] 

Moreover, the grid was anchored into the foundation through steel L-profile and bolts at regular distances 

of 15‐20 cm along the perimeter of the facade walls (Figure 6.7).  

 

Figure 6.7: Retrofitting phases of the BM-SR model – anchoring detail [73] 

Finally, the model was left drying for 30 days at the construction place and then positioned on the shaking 

table, where it was appropriately anchored through 26 anchors (Figure 6.8). 
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Figure 6.8: Transportation of the BM-SR model and positioning on the shaking table [73] 

The BM-SR model was subjected to the same dynamic tests’ series of the unstrengthened specimen to 

directly compare the experimental results and evaluate the EQ-GRID system’s performance. Table 42 

shows the list of the scaled earthquakes with the structural damage reached by both structures. Due to the 

presence of the system, the BM-SR model was tested under higher intensities of input excitation. It is 

worth noting that the maximum acceleration applied at the base of the BM-SR model (Petrovac 260) is 

about 3.45 times higher than the last one assigned to the unstrengthened structure (Petrovac 75).  

Table 42: Dynamic input excitation of the BM-SR and BM models [73] 

Earthquake Span [%] ainput [g] 
Damage BM-SR 

model 

Damage BM model 

El Centro 50 0.14 

- - 

Petrovac 36 0.16 

Northridge 16 0.18 

El Centro 65 0.18 

Petrovac 40 0.18 

El Centro 75 0.21 

- Initial fine cracks Petrovac 45 0.20 

Northridge 20 0.21 

El Centro 80 0.27 
- 

Further propagation 

of initial cracks Northridge 25 0.23 

Petrovac 50 0.22 

Initial fine cracks 
Damage development Petrovac 70 0.32 

Petrovac 75 0.35 

Petrovac 100 0.51 

- 

Petrovac 120 0.60 
Further propagation 

of initial cracks 
El Centro 100 0.31 

Petrovac 150 0.82 

Petrovac 180 0.92 

Damage development 
Petrovac 220 1.04 

Petrovac 260 1.22 

Petrovac 250 1.21 
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Therefore, both BM and BM-SR specimens are modelled with the equivalent frame method. The frame-

type representation of the structure is depicted in Figure 6.9, in which piers, spandrels, r. c. beams and 

rigid nodes assemble each wall. The concrete slabs are simulated as rigid diaphragms. It is important to 

stress that the r. c. beams are introduced in the modelling to consider that the masonry spandrels are 

interrupted by the concrete slabs. Therefore, the beams’ dimensions are assumed equal to the wall and 

slab thickness (b x h = 12.5 x 15 cm). 

Concerning the masonry panels, the ML-BEAM element is adopted for both BM and BM-SR models. 

The initial stiffness kel is calibrated through modal analyses since the natural frequencies of the BM and 

BM-SR models were measured before and after testing by ambient vibration and random excitation 

techniques. The progressive stiffness degradation in the elastic phase is considered by assigning two 

proper ratios. The first one is between the initial and secant stiffness, and it is assumed equal to 1.6. The 

second one, k0 (Figure 1.41), is defined between the shear at the end of the initial elastic phase and the 

shear strength attained by the element. It is assumed 0.7 for the piers and 0.5 for spandrels. The experi-

mental evidence presented in [84], [85] and [30] confirms these assumptions. 

The maximum strength of the panels is calculated as the minimum obtained from the chosen failure 

criteria. The Mann and Müller theory [23] is adopted in the case of shear failure. Eqs. (1.18), (1.19) for 

the piers and Eqs. (1.29), (1.30) for the spandrels are implemented in the TREMURI program. The 

increase in strength due to the EQ-GRID system is computed after CNR-DT 215/2018, as shown in § 

4.2.3. 

Moreover, the shear resistance of URM piers associated with the flexural failure mode is calculated, 

neglecting the tensile strength of the masonry and assuming a stress block normal distribution at the 

compressed toe (Eqs. (1.25) and (1.26)). The formulation proposed by Cattari and Lagomarsino, illustrat-

ed in § 1.4,  is adopted for the URM spandrels. Finally, the cross-section analysis discussed in § 4.2.3 is 

performed for the panels strengthened with EQ-GRID. 

It is worth remembering that the hybrid failure mode is possible in two areas close to the intersection 

points of the flexural and shear domains. As depicted in Figure 1.40, they are identified through the 

parameters a1 and a2, which are assumed 0.95 and 1.25, respectively. 

Moreover, the strength values of the masonry elements are defined based on the results of the first part of 

the experimental testing and values typical for solid clay brick masonry. By comparing the damage 

attained during the shaking table tests with the results of nonlinear static (pushover) analyses, it is possi-

ble to confirm the assumed mechanical properties, drift values and residual lateral strengths. 

Furthermore, the parameters necessary to describe the panels’ cyclic shear and flexural response are 

shown in Table 43. As reported in [46], these values are calibrated on experimental results ([30], [86]), 

and they are adopted for the non-linear modelling and time-history analyses of masonry Italian code-

conforming buildings.  

Finally, nonlinear dynamic analyses are performed to compare the experimental values of accelerations 

and displacements with the numerical ones and confirm the results obtained with the static analyses. 
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Figure 6.9: Frame-type representation of the walls of the BM and BM-SR Model in TREMURI 

Table 43: Parameters of the cyclic response of the ML-BEAM element adopted for the BM and BM-SR model 

Piers 

Shear Bending 

c1 = 0.8 c2 = 0.8 c3 = 0 c1 = 0.9 c2 = 0.8 c3 = 0.6 c4 = 0.5 

Spandrels 

Shear Bending 

c1 = 0.2 c2 = 0 c3 = 0.3 c1 = 0.2 c2 = 0 c3 = 0.3 c4 = 0.8 
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6.1 The unstrengthened BM model 

6.1.1 Modal analysis of the BM model 

The modal analysis allows identifying the mode shapes, natural frequencies/periods and modal masses of 

a structure in its original condition. As shown in Figure 6.10, the seismic masses are assumed to be 

lumped at each model’s level. It is worth noting that only the dead loads need to be considered, as no 

accidental loads were present during the test.  

 

Figure 6.10 Scheme of the seismic masses of the BM model 

Therefore, assuming the material density of the reinforced concrete γc equal to 25 kN/m³, the masses of 

the floors, mfloor,1 and mfloor,2, are calculated, as follows: 

( )
3

,1 ,1 ,1

25 10
4.245 3.058 0.25 8269.11

9.81
floor c floor floorm A h kg


=   =    =  (6.1) 

( )
3

,2 ,2 ,2

25 10
4.245 3.058 0.15 4961.26

9.81
floor c floor floorm A h kg


=   =    =  (6.2) 

 

Where Afloor,1 and Afloor,2, hfloor,1 and hfloor,2 are the areas and thicknesses of the first and second floors. It is 

important to stress that an additional RC plate was constructed on the first floor to create an additional 

load, as this was not connected to the walls. For this reason, the thickness of the first slab, hfloor,1, is equal 

to 0.25 m. 

The masses of the walls in x- and y-direction, mwalls,x and mwalls,y, are determined assuming the material 

density of the masonry equal to 1950 kg/m³ [73]. The thickness and the clear interstorey height of each 

wall are equal to 0.125 m and 1.50 m, respectively. 

( )
, , 1950 2 4.245 4 0.75 0.683 0.125 1.50 2605.08walls x masonry walls xm V kg=  =   −     =  (6.3) 

( )( )
, , 1950 3 2.81 1.50 2 0.683 0.75 3 0.725 1.2 0.125 2193.75walls y masonry walls ym V kg=  =    −   +    =  (6.4) 
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Vwalls,x and Vwalls,y are the volumes of the masonry walls placed in x- an y-direction of the model. 

Therefore, assigning the calculated masses to each level (Figure 6.10), the lumped seismic masses, m0, m1 

and m2, are obtained: 

, ,

0

2605.08 2193.75
2399.41

2 2

walls x walls ym m
m kg

+  + 
= = =   
   

 (6.5) 

, ,

1 ,1

2605.08 2193.75
2 8269.11 2 13067.87

2 2

walls x walls y

floor

m m
m m kg

+  + 
= +  = +  =   
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 (6.6) 

, ,

2 ,2

2605.08 2193.75
4961.26 7360.84
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floor

m m
m m kg

+  + 
= + = + =   

   
 (6.7) 

 

Finally, the total mass of the model, mtot, is equal to: 

0 1 2 22828.12totm m m m kg= + + =  (6.8) 

 

Table 44 shows the values calculated by the TREMURI program. They are very close to those determined 

with Eqs. (6.5) - (6.8). 

Table 44: Seismic masses of the BM model calculated by TREMURI 

Level Nodes of the level Mass of the level 

0 19; 22; 1; 4; 7; 10; 13; 16 m0 = 2472.72 kg 

1 20; 23; 2; 5; 8; 11; 14; 17 m1 = 12684.06 kg 

2 21; 24; 3; 6; 9; 12; 15; 18 m2 = 7446.35 kg 

mtot = 22603.13 kg 

 

Therefore, the natural frequencies f, periods T and modal masses mx, my of the first ten mode shapes 

obtained with the TREMURI program, are reported in Table 45. The first vibration mode (Figure 6.11) is 

translational along the East-West direction of the structure (y-direction in TREMURI) with a frequency of 

10.71 Hz and modal mass equal to 79% of the total model’s mass, mtot. On the contrary, the third mode 

shape (Figure 6.11) is translational along the North-South direction (x-direction in TREMURI) with a 

frequency of 14.98 Hz and modal mass equal to 74% of the total model’s mass, mtot. 

Table 45: Natural frequencies f, periods T and modal masses mx, my of the BM model calculated by TREMURI 

Mode shape f [Hz] T [s] mx [kg]  my [kg] 

1 10.71 0.093 0.001 17850.13 

2 13.74 0.073 163.87 0.066 

3 14.98 0.067 16813.18 0 

4 28.10 0.036 0 2263.57 

5 35.72 0.028 6.12 0.012 

6 40.10 0.025 3073.90 0 

7 49.06 0.020 0.005 0.84 

8 50.26 0.020 24.31 0 

9 51.45 0.019 0.002 3.23 

10 52.56 0.019 27.29 0 
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Figure 6.11: First and third mode shape of the BM model calculated by TREMURI 

Since the natural frequencies of the BM model were measured during the first part of the tests by the 

ambient vibration and random excitation techniques, they can be compared with the fundamental fre-

quency calculated by TREMURI. In this way, it is possible to calibrate the elastic properties of the ML-

BEAM element for the masonry piers and spandrels. Table 46 shows the values adopted for the elastic 

moduli perpendicular and parallel to the bed joints adopted. As suggested in the literature and most codes 

for masonry buildings, the shear modulus G is assumed equal to 0.4E. 

Table 46: Natural frequencies of the BM model and assumed elastic moduli 

Experimental (before testing) TREMURI 

Direction f  f  f  E E// G 

E-W 

(y-direction) 

10.95 Hz 

(ambient vibration) 10.57 Hz 

(average) 

10.71 Hz 

(1st mode shape) 

2150 

N/mm² 

1075 

N/mm² 

860 

N/mm² 10.18 Hz 

(random excitation) 

 

6.1.2 Pushover analyses of the BM model 

Four monotonic and two cyclic nonlinear static analyses are carried out in the East-West direction of the 

BM model (y-direction in TREMURI) to compute the response of the tested building under increasing 

lateral loads. 

The pushover procedure implemented in TREMURI transforms the problem of pushing a structure, 

maintaining constant ratios between the applied forces, into an equivalent incremental static analysis with 

displacement control at only one d.o.f. [14]. In this case, the controlled d.o.f. is the horizontal displace-

ment uy of node 18 of the P3 wall since the displacement of the second storey was experimentally meas-

ured through a linear potentiometer named LP06, positioned at that point [73]. Since the values recorded 

by this sensor are absolute displacements and the nodes at the base of the numerical model are fixed, the 

difference (LP06 – LP01) [73] is considered for the modelling 1. 

The nonlinear static analyses can be carried out with different load patterns. The results are generally 

expressed in terms of a base shear versus control node displacement relationship, i.e. the so-called pusho-

 
1 The linear potentiometer LP01 was positioned on the foundation of the BM model to measure its absolute displacement. The 

complete arrangement of the adopted sensors is indicated in [73]. 
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ver curve. The two most commonly adopted force distributions are the uniform and the triangular inverse. 

The first one is proportional to the mass of the levels, while the second one is proportional to the mass 

and height of the levels. Both force distributions may be considered as boundary conditions for seismic 

analyses. The actual dynamic response of the structure can be assumed to be within these two solutions, 

and the real failure mode is generally predicted by one of the two distributions [87]. 

Since the pushover curve may be considered an envelope of the dynamic response of a structure, the 

monotonic pushover analyses’ results are first discussed. In this way, it is possible to individuate the best 

force distribution to interpret the failure mechanism observed during the test and calibrate the material 

properties and drift values of the masonry elements (piers and spandrels).  

Table 47 shows the average mechanical properties suggested by the explanatory Circular of the Italian 

Building Code NTC 2018 [22] for existing solid clay brick masonry and those adopted for the modelling 

with TREMURI. It is important to stress that minimum and maximum average values are given since the 

masonry quality is usually not a constant factor for the existing buildings. 

Table 47: Mechanical properties of the solid clay brick masonry 

Material properties NTC 2018 (explanatory Circular)  TREMURI 

Compressive strength fm,u 
2.6 ÷ 4.3 N/mm² 

(min. and max. values) 
5.0 N/mm² 

Compressive strength fmh,u - 2.5 N/mm² 

Young’s modulus E 
1200 ÷ 1800 N/mm² 

(min. and max. values) 
2150 N/mm² 

Young’s modulus E// - 1075 N/mm² 

Shear modulus G 
400 ÷ 600 N/mm² 

(min. and max. values) 
860 N/mm² 

Initial shear strength fvmo   
0.13 ÷ 0.27 N/mm² 

(min. and max. values) 
0.13 N/mm² 

Friction coefficient μ 0.577 0.577 

Brick tensile strength fbt 0.1fb 0.20 N/mm² 

Interlocking ϕ 
2 y

x



=


 1.18 

 

The average compressive strength perpendicular to the bed joints, fm,u, is obtained from three compressive 

tests carried out on masonry panels during the first part of the experimental characterization [73]. It is 

worth noting that it is 1.2 times higher than the maximum indicated by the Italian Building Code in Table 

47. Moreover, the value assumed for the Young’s modulus perpendicular to the bed joints, E, is also 1.2 

times higher than the maximum one. Since the tests performed on the bricks and mortar prisms in the first 

part of the experimental testing showed that the masonry quality of the BM model is good (Table 40), the 

adopted values are consistent with the type of masonry. 

Finally, the initial shear strength fvmo, the friction coefficient μ and the tensile brick strength fbt are as-

sumed equal to 0.13 N/mm², 0.577 and 0.20 N/mm², as suggested by the Italian Building Code. It is 

important to stress that only the piers of the middle wall under the first floor (elements 55 and 56 of the 

P5 wall in TREMURI) failed with diagonal cracks during the shaking table test. If initial shear strength 

values higher than 0.13 N/mm² are adopted, the bending-rocking behaviour becomes relevant for these 

elements, and the numerical model can’t reproduce the experimental results well. 
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6.1.2.1 Monotonic pushover analyses of the BM model 

The load pattern proportional to the masses allows examining the response of a building under extensive 

damage. Force redistributions among the levels are prevented, and actions at lower storeys cannot shift to 

higher ones [87].  

In the case of the BM model, the seismic masses m1 and m2 are quite different. Therefore, the force 

distribution is not uniform along with the building height and the load multiplier λi assumes unit value at 

the first level. Thus, the vector [λ] is calculated as follows:  
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 (6.9) 

 

With this type of distribution, the final damage observed during the test is well represented by the model-

ling in TREMURI. It is worth pointing out that the comparison between the experimental and numerical 

model is made based on the experimental observations reported in [73] and evaluating the shear-drift 

curve of the masonry elements. In this way, the drifts of the ML-BEAM elements can be well-calibrated, 

and a clear overview of the final state of damage can be obtained. In this regard, Table 48 summarizes the 

values of drift and residual resistance chosen for the masonry piers and spandrels. 

Table 48: Drift values of the masonry piers and spandrels for the BM model 

Masonry piers 

 Drift Residual resistance (Vres,i / VRd) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 0.6% d4,S = 1.1% d5,S = 1.6% 0.7 0.4 

Bending d3,B = 1.2% d4,B = 2.2% d5,B = 3.2% 1.0 0.85 

Masonry spandrels with concrete lintel and tie beam 

 Drift Residual resistance (Vres,i / VRd) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 1.2% d4,S = 2.0% d5,S = 2.6% 1.0 0.8 

Bending d3,B = 1.2% d4,B = 2.0% d5,B = 2.6% 1.0 0.8 

 

It is worth noting that experimental evidence, e.g. [30], [31], [45], has shown that the spandrels generally 

achieve drifts significantly higher than those adopted for piers. In particular, the values indicated in Table 

48 are consistent with those suggested by the Italian technical standard CNR-DT 212/2013 [25] for 

masonry spandrels supported by concrete lintel and tie beam.  

Moreover, Figure 6.12 shows the pushover curves of two monotonic non-linear static analyses with load 

pattern proportional to the masses (one performed in the positive y-direction of the model and the other in 

the negative one). The attained maximum and minimum base shear forces are equal to 51.66 kN and  

-50.95 kN, respectively. 
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Figure 6.12: Monotonic pushover curves of the BM model with load pattern proportional to the masses  

Hereafter, the results of the nonlinear static analysis performed in the +y direction are in detail discussed. 

The horizontal displacement uy of node 18 is chosen as controlled d.o.f., whose limit value is the maxi-

mum relative displacement (LP06 - LP01 = 17.073 mm) measured during the last earthquake applied to 

the BM model (Petrovac 75).  

Moreover, it is important to specify that the P2, P4, P5 walls are stressed in-plane since they are in the 

same direction of the seismic input. On the contrary, the P1, P3 walls are positioned in the x-direction of 

the model and are stressed out-of-plane. 

Therefore, the results of the P2 wall are firstly presented. In this regard, the experimental and numerical 

damage patterns are depicted in Figure 6.13, in which the most damaged elements are the 21 and 22, as 

experimentally for the BM Model. In particular, pier 21 shows a bending behaviour, while pier 22 pre-

sents a mixed shear-flexural failure. Furthermore, pier 23 reaches the bending resistance, but it does not 

exceed the DL3.  

 

Figure 6.13: P2 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover analysis in the +y direc-

tion with load pattern proportional to the masses) 
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The maximum drift value attained by this latter is about 1.0%, and it is lower than the imposed limit of 

1.2%. This result confirms the experimental evidence that pier 23 is less damaged than the 21 and 22. 

Moreover, the upper elements are only slightly stressed, as experimentally observed after the shaking 

table test (no evident cracks were present [73]). 

As shown in Figure 6.14, the maximum drift reached by the elements 24, 25, 26 is equal to 0.36%. 

Therefore, it is possible to assume that the upper piers are not visible cracked, and the damage is concen-

trated in the bottom ones. Finally, the masonry spandrels and the r. c. beams are not damaged except for 

spandrel 18 that achieves the shear strength (spandrels 16 and 17 show only a degradation of the initial 

elastic stiffness kel). 

 

Figure 6.14: BM model: shear-drift diagrams of the masonry piers of the P2 wall (monotonic pushover in the +y direction with load 

pattern proportional to the masses) 

Concerning the masonry elements of the P4 wall, they show the same shear-drift diagrams of the P2 since 

they are identical. Therefore, Figure 6.15 illustrates only the experimental and numerical final damage 

pattern of the P4 wall.  
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Figure 6.15: P4 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover analysis in the +y direc-

tion with load pattern proportional to the masses)  

Moreover, the final failure mechanism showed by the middle wall P5 is reported in Figure 6.16. The 

masonry pier 55 reaches the shear resistance with diagonal cracking, confirming the experimental 

damage, and the maximum drift value is lower than 1.0% (Figure 6.17). Therefore, it has exceeded the 

DL3 since d3,S is equal to 0.6%, but it doesn’t attain the DL4 (d4,S = 1.1%). Moreover, pier 56 achieves 

the bending resistance, and the maximum drift is 1.1%, which means that it is largely in the non-linear 

range but just before the DL3 (d3,B = 1.2%). It is worth noting that this type of damage was 

experimentally observed. As depicted in Figure 6.16, piers 55 and 56 also show horizontal cracks at the 

bottom corners. 

On the contrary, the upper elements 57 and 58 are only slightly stressed. They achieve the bending 

resistance and are far from the DL3 since the maximum drift value is equal to 0.25%, attained by pier 58 

(Figure 6.17). Therefore, it is possible to assume that these elements are not cracked, as observed after the 

shaking table test. Finally, the masonry spandrels 53 and 54 achieve the shear strength, and the reinforced 

concrete beams are not damaged. 

 

Figure 6.16: P5 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover analysis in the +y direc-

tion with load pattern proportional to the masses)  
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Figure 6.17: BM model: shear-drift diagrams of the masonry piers of the P5 wall (monotonic pushover in the +y direction with load 

pattern proportional to the masses) 

Concerning the P1 and P3 walls, they are positioned in the x-direction of the model and, for this reason, 

loaded out-of-plane. Figure 6.18 shows the final DLs obtained with TREMURI. The elements 1, 4, 13 of 

the P1 wall remain linear elastic; the masonry spandrels 2, 3, 5, 6, 7, 8 and piers 12, 14 present only a 

degradation of the initial stiffness kel. Piers 9, 11 attain the bending resistance remaining, however, at the 

beginning of the plastic phase. It is worth noting that pier 10 is subjected to a vertical tensile force since 

the seismic input is applied in the direction perpendicular to the wall, and the building has a stiff floor. In 

this case, the program deactivates the element, as the masonry tensile strength is neglected, and the 

unreinforced pier cannot be subjected to normal tensile forces. Finally, all the elements of the P3 wall 

remain in the linear elastic phase.  

     

Figure 6.18: P1, P3 walls of the BM model: numerical final DLs (monotonic pushover in the +y direction with load pattern 

proportional to the masses) 

Regarding the monotonic pushover analysis performed in the -y direction with load pattern proportional 

to the mass, the results are very similar to those obtained in the positive one. Therefore, they are reported 

in § 8. In this case, the maximum horizontal displacement uy imposed on the control node is -15.467 mm, 

and it is slightly lower than the positive value (17.073 mm).  
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The second load pattern adopted for the non-linear static analyses is the triangular inverse one, where the 

force distribution is practically proportional to the first mode shape. It allows representing the structural 

dynamic amplification by increasing the action on the higher storeys, and the load multiplier vector [λ] is 

proportional to the mass and the height of the levels as follows: 
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Compared to the previous force distribution, the load multiplier λi assumes unit value at the second level 

of the BM model. Thus, the damage is expected to be concentrated in the upper masonry elements. 

The pushover curves obtained by imposing the maximum and minimum relative displacement (LP06 - 

LP01), i.e. 17.073 mm and -15.467 mm, as horizontal displacement limit of the control node, are shown 

in Figure 6.19. The maximum and minimum base shear forces are equal to 49.03 kN and -48.83 kN, 

respectively.  

Moreover, the results of the non-linear static analysis carried out in the positive direction are first dis-

cussed, and the damage state obtained with TREMURI is directly compared with the experimental one. 

 

Figure 6.19: Monotonic pushover curves of the BM model with triangular inverse load pattern 

The final damage showed by the P2 wall is depicted in Figure 6.20, in which the upper masonry piers are 

more damaged than the lower ones. The shear-drift curves of the elements (Figure 6.21) confirm that 

piers 21, 22, 23 attain the bending resistance (DL2) and are far from the DL3; thus, they should not 
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present any visible cracks. On the contrary, the elements 24, 25 exceed the DL3 with a maximum drift 

equal to about 1.3% and 1.5%, respectively. Pier 26 is close to the DL3, with a maximum drift of 1.05%. 

The masonry spandrels and reinforced concrete beams remain linear elastic, except for spandrel 18 that 

achieves the shear strength. As shown in Figure 6.20, elements 16 and 17 present only a degradation of 

the initial elastic stiffness kel. 

 

Figure 6.20: P2 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover in the +y direction with 

triangular inverse load pattern)  

 

Figure 6.21: BM model: shear-drift diagrams of the masonry piers of the P2 wall (monotonic pushover in the +y direction with 

triangular inverse load pattern) 
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The masonry piers of the P4 wall are characterized by the same shear-drift curves depicted in Figure 6.21. 

Thus, only the final damage state is illustrated in Figure 6.22. 

 

Figure 6.22: P4 wall of the BM model: experimental [73] and numerical  final DLs (monotonic pushover in the +y direction with 

triangular inverse load pattern)  

Furthermore, the upper masonry piers of the P5 wall are also more damaged than those of the lower level. 

As shown in Figure 6.24, pier 55 behaves linear elastic with only a degradation of the initial elastic 

stiffness kel. The element 56 attains the bending strength (DL2), and it is very far from the DL3; thus, it is 

reasonable to assume that they are not cracked. The elements 57, 58 achieve the in-plane resistance and 

have a maximum drift equal to 0.96% and 1.05%, respectively. The masonry spandrels reach the shear 

strength, and the reinforced concrete beams are undamaged. 

 

Figure 6.23: P5 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover in the +y direction with 

triangular inverse load pattern)  
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Figure 6.24: BM model: shear-drift diagrams of the masonry piers of the P5 wall (monotonic pushover in the +y direction with 

triangular inverse load pattern) 

Finally, the out-of-plane walls, i.e. the P1 and P3, remain linear elastic. The elements 7, 8, 12, 14 have a 

degradation of the initial elastic stiffness and the piers 10, 13 are subjected to normal tensile forces 

(Figure 6.25). 

    

Figure 6.25: P1, P3 walls of the BM model: numerical final DLs (monotonic pushover in the +y direction with triangular inverse 

load pattern)  

The results of the nonlinear static analysis performed in the -y direction with the triangular inverse force 

distribution are similar to those obtained in the positive one. For this reason, they are reported in § 8. 

Therefore, it is possible to conclude that the results obtained from the monotonic pushover analyses with 

force distribution proportional to the masses reproduce the failure mechanism of the BM model very well. 

The experimental damage is concentrated in the bottom masonry piers. The shear failure is dominant in 

the piers of the middle wall P5 under the first storey, like in the model in TREMURI. Thus, it is reasona-

ble to assume that the adopted values of strength (Table 47), drift, and residual resistance (Table 48) are 

well calibrated. 
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On the contrary, the triangular inverse load distribution increases the action on the upper masonry ele-

ments. Therefore, the results cannot reproduce the same final damage state of the BM model. In this case, 

the upper piers of the model in TREMURI are more damaged than the bottom ones, which are only 

slightly stressed. Since no visible cracks were observed in the upper masonry elements and the bottom 

piers of the P5 wall failed with diagonal shear cracks [73], the final damage state obtained with the 

triangular inverse load pattern doesn’t correspond to the experimental one. 

6.1.2.2 Cyclic pushover analyses of the BM model 

Two cyclic pushover analyses are performed through sequential monotonic pushover analyses to compare 

the damage evolution of the numerical model with the experimental one. The maximum and minimum 

horizontal displacements (LP06 - LP01) recorded during each test are applied as displacement limits uy at 

the control node of the model (i.e. node 18). Table 49 summarizes the sequence of the applied earth-

quakes.  

Table 49: Maximum and minimum displacement (LP06-LP01) measured during the test on the BM model 

Earthquake span [%] Max (LP06-L01) [mm] Min (LP06-L01) [mm] 

El Centro 50 0.769 -0.621 

Petrovac 36 0.979 -0.841 

Northridge 16 0.985 -1.208 

El Centro 65 1.039 -0.821 

Petrovac 40 1.146 -0.884 

El Centro 75 1.542 -1.405 

Petrovac 45 1.298 -1.078 

Northridge 20 1.518 -1.797 

El Centro 80 5.382 -4.433 

Northridge 25 1.910 -2.313 

Petrovac 50 3.929 -3.493 

Petrovac 70 9.887 -11.444 

Petrovac 75 17.073 -15.467 

 

The first adopted load pattern is proportional to the masses. Figure 6.26 shows the obtained cyclic pusho-

ver curve. As reported in [73], the first visible horizontal cracks occurred between the foundation slab and 

the out-of-plane walls (i.e. the P1, P3 walls in TREMURI) during the application of the Petrovac 45 

earthquake while the rest of the masonry was without any visible crack. Therefore, the structure was 

estimated to be in a state of initial non-linearity. 

This experimental observation finds a very good match with the results of the cyclic pushover analysis. 

As shown in Figure 6.26, the model is at the end of the elastic phase of the pushover curve when the load 

step Petrovac 45 is applied. 

Then, the next seismic inputs (i.e. Northridge 20, El Centro 80 and Northridge 25) caused fine diagonal 

cracks in the North and South window corners (P2 and P4 walls) while the existing ones became wider. 

Finally, only the time history of the Petrovac earthquake was applied (Petrovac 50, 70 and 75) up to 

damage the BM model considerably. The experimental failure occurred in the lower zone of the structure 

with crack openings equal to 0.5 ‐ 2.5 cm, and no visible cracks were observed at the upper storey.  The 

mainly damaged elements were the piers under the first storey that were stressed in the same direction of 

the dynamic excitation, i.e. the piers of the P2 (Figure 6.28), P4 (Figure 6.29), and P5 walls (Figure 6.30). 
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On the other hand, the P1 and P3 facades suffered minimal damage, as in the modelling with TREMURI 

(Figure 6.31).  

 

Figure 6.26: BM model: cyclic pushover curve with load pattern proportional to the masses 

Therefore, it is possible to conclude that the seismic response of the BM model is very well represented 

by the cyclic pushover analysis with force distribution proportional to the masses. The curve shows that 

the structure is widely in the plastic range when the inputs Petrovac 70 and 75 are applied (Figure 6.26), 

as during the tests. Moreover, a strength degradation occurs after Petrovac 70, and larger dissipative 

cycles develop due to the attainment of the shear failure DL3 by the piers 55 and 56 (Figure 6.30). 

On the contrary, the bending resistance is dominant in the lower piers of the P2, P4 walls, as experimen-

tally observed (Figure 6.28, Figure 6.29). In this regard, the percentages of the damaged masonry piers 

are also indicated on the pushover curve in Figure 6.27. 

 

Figure 6.27: Cyclic pushover curve of the BM model with load pattern proportional to the masses: DLs of the masonry piers 
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Figure 6.28: Experimental [73] and numerical final damage state of the P2 wall of the BM model (cyclic pushover with load pattern 

proportional to the masses) 

 

Figure 6.29: Experimental [73] and numerical final damage state of the P4 wall of the BM model (cyclic pushover with load pattern 

proportional to the masses) 

 

Figure 6.30: Experimental [73] and numerical final damage state of the P5 wall of the BM model (cyclic pushover with load pattern 

proportional to the masses) 
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Figure 6.31: Numerical final damage state of the P1, P3 walls of the BM model (cyclic pushover with load pattern proportional to 

the masses) 

Moreover, the absolute horizontal displacement of the first storey was experimentally measured through 

the linear potentiometer LP04, whose position corresponds to node 17 of the P3 wall in TREMURI.  

Table 50: Horizontal displacement of the first storey of the BM model in the y-direction (cyclic pushover analysis with load pattern 

proportional to the masses) 

Earthquake span [%] (LP04 - LP01) [mm] TREMURI node 17 uy [mm] 

El Centro 50 0.480 -0.297 0.437 -0.355 

Petrovac 36 0.579 -0.470 0.571 -0.491 

Northridge 16 0.479 -0.674 0.575 -0.709 

El Centro 65 0.545 -0.445 0.603 -0.362 

Petrovac 40 0.720 -0.462 0.641 -0.507 

El Centro 75 0.788 -0.788 0.838 -0.760 

Petrovac 45 0.731 -0.567 0.707 -0.611 

Northridge 20 0.818 -0.932 0.812 -0.989 

El Centro 80 2.772 -2.255 3.542 -2.666 

Northridge 25 0.997 -1.267 0.979 -1.298 

Petrovac 50 2.143 -1.962 2.738 -2.204 

Petrovac 70 6.796 -8.508 6.868 -7.700 

Petrovac 75 14.023 -10.584 14.320 -13.127 

 

Since the floors are modelled as rigid diaphragms, the deformation of the structure can be compared with 

the experimental one checking the displacement of node 17. Therefore, the experimental and numerical 

values are summarized in Table 50, in which it is evident the very good match between the results. 

Concerning the results of the pushover analysis with the triangular inverse force distribution, these are 

shown in Figure 6.32 through the base shear versus horizontal displacement of the control node relation-

ship. It is worth noting that the capacity curve presents narrower dissipative cycles with the typical “flag” 

shape due to the prevailing bending failures of the masonry piers of the walls loaded in-plane. In fact, 

compared to the results obtained with the load pattern proportional to the masses, no diagonal cracking 

occurs in the bottom piers of the middle wall P5. 



6 Modelling of shaking table tests with the Equivalent frame method 

180 

  

Figure 6.32: Cyclic pushover curve of the BM model obtained with the triangular inverse load pattern  

Moreover, in Figure 6.33 are indicated the percentages of the damaged masonry piers on the cyclic 

pushover curve. In this case, only 10% of the piers attain the DL3, i.e. elements 24, 25 of the P2 wall 

(Figure 6.34) and 50, 51 of the P4 wall (Figure 6.35). 

 

Figure 6.33: Cyclic pushover curve of the BM model obtained with the triangular inverse load pattern: DLs of the masonry piers 

The experimental and numerical final damage state of the BM model is reported from Figure 6.34 to 

Figure 6.37. Since the triangular inverse force distribution can represent the structural dynamic amplifica-

tion, the action is generally increased on the higher storey. Therefore, the damage is consequently concen-

trated in the upper piers of the model.  
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Figure 6.34: BM model: experimental [73] and numerical final DLs of the P2 wall (cyclic pushover with triangular inverse load 

pattern) 

 

Figure 6.35: BM model: experimental [73] and numerical final damage state of the P4 wall (cyclic pushover with triangular inverse 

load pattern) 

 

Figure 6.36: BM model: experimental [73] and numerical final damage state of the P5 wall (cyclic pushover with triangular inverse 

load pattern) 
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Figure 6.37: BM model: numerical final damage state the P1, P3 walls (cyclic pushover with triangular inverse load pattern) 

Finally, the horizontal displacement uy of node 17 is also compared to the experimental one (LP04 – 

LP01). The results are shown in Table 51 and confirm that the deformation of the model in TREMURI is 

very different from the experimental one. In particular, during the last sequence of the Petrovac earth-

quakes, the structure is widely in the nonlinear range, but the horizontal displacement uy of the first storey 

is lower than the experimental values since the bottom masonry elements are not plasticized like the 

upper ones. 

Table 51: Horizontal displacement of the first storey of the BM model in the y-direction (cyclic pushover analysis with triangular 

inverse load pattern) 

Earthquake span [%] (LP04 - LP01) [mm] TREMURI node 17 uy [mm] 

El Centro 50 0.480 -0.297 0.347 -0.315 

Petrovac 36 0.579 -0.470 0.433 -0.423 

Northridge 16 0.479 -0.674 0.450 -0.510 

El Centro 65 0.545 -0.445 0.457 -0.411 

Petrovac 40 0.720 -0.462 0.490 -0.422 

El Centro 75 0.788 -0.788 0.602 -0.544 

Petrovac 45 0.731 -0.567 0.512 -0.454 

Northridge 20 0.818 -0.932 0.580 -0.692 

El Centro 80 2.772 -2.255 1.343 -1.351 

Northridge 25 0.997 -1.267 0.628 -0.730 

Petrovac 50 2.143 -1.962 1.288 -1.174 

Petrovac 70 6.796 -8.508 1.326 -1.334 

Petrovac 75 14.023 -10.584 1.347 -1.307 

 

6.1.3 Nonlinear dynamic analyses of the BM model 

Four non-linear dynamic analyses are performed in the y-direction of the BM model by applying the last 

four acceleration-time histories of the experimental test program, i.e. Northridge 25, Petrovac 50, Pe-

trovac 70 and Petrovac 75 (Figure 6.38), to the structure’s base. 

It is important to stress that the material properties of the model and the parameters assumed for the cyclic 

nonlinear behaviour of the ML-BEAM elements (piers and spandrels) are the same as those defined in § 

6.1.1 and § 6.1.2 for the modal and pushover analyses. 
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Furthermore, the Rayleigh viscous damping is adopted by the TREMURI program. Since the latter is 

proportional to the mass and stiffness of the structure through the coefficients α1 and β1, it is necessary to 

assign these two parameters in the input phase of the modelling. Usually, they can be calculated assuming 

that two relevant modes of the structure, ith and jth, have the same damping ratio ξ, as indicated in Eq. 

(6.11): 

1

1

2

2

i j

i j

i j


 

 

 
 


=

+

 =
 +

 (6.11) 

 

It is worth noting that the appropriate selection of two relevant modes is important. A common approach 

is to choose the first mode and the last significant one that allows reaching at least 85% of mass participa-

tion to the structure’s response in the analysis direction [88]. 

 

Figure 6.38: Acceleration-time histories applied to the base of the BM model in TREMURI 

In this case, the mode shapes in the y-direction useful for achieving at least 85% of the total seismic mass 

are the first and the fourth. According to the modal analysis results shown in Table 45, 89% of mass 

participation is reached by considering these two modes. 

Moreover, the elastic damping ratio ξ is assumed equal to 3% to correctly reproduce the structure’s 

inherent damping and energy dissipation [46]. As shown in Figure 6.39,  the elastic damping ratio can be 

assumed nearly constant in the range between the 1st and 4th frequency. 
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Figure 6.39: Rayleigh damping ratio and frequency range that allows reaching at least 85% of the BM model’s mass participation 

It is worth noting that, since the Rayleigh damping is a combination of mass and stiffness proportional 

terms, it may lead to physically not plausible responses under certain conditions. The latter can occur 

during a nonlinear dynamic analysis when the damping force coming from the stiffness-proportional part 

is computed with the initial stiffness. In this case, the damping force can become unrealistically large 

compared to the restoring one calculated in the inelastic response phase, and the results may be non-

conservative [88]. 

Therefore, a possible solution to this problem is to calculate a lower first frequency ω1
* in consideration 

of an expected displacement ductility μ, as proposed by [89]: 





=* 1

1  (6.12) 

 

According to this approach, the potential error induced by an initial overestimation of the elastic damping 

can also be reduced since it usually becomes greater more the structural response is in the inelastic phase.  

Moreover, as reported in [73], the natural frequencies of the BM model were measured before and after 

testing with the ambient vibration technique to check the stiffness degradation of the structure. Since the 

first natural frequency in the East-West direction of the model decreased from 10.95 Hz to 7.6 Hz, it is 

possible to adopt this latter experimental value as first frequency ω1
*.  

Table 52: Natural frequencies and periods of the BM model 

1st mode (before testing) ω1 = 67.31 rad/s T1 = 0.095 s 

1st mode (after testing) ω1
* = 47.75 rad/s T1

* = 0.13 s 

4th mode (modal analysis) ω4 = 176.58 rad/s T4 = 0.036 s 

 

In this way, the expected ductility μ is already taken into account, and the coefficients α1 and β1 can be 

calculated, as follows: 
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It is worth noting that considering ω1
* as 1st frequency means assuming a lower damping ratio ξ* in the 

fundamental mode ω1, as shown by Eq. (6.14) and Figure 6.40. 
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Figure 6.40: Rayleigh damping ratios ξ and ξ* of the BM model 

Therefore, according to the available test data, it is possible to compare the numerical and experimental 

results in terms of displacement and acceleration. The results of the last performed nonlinear dynamic 

analysis Petrovac 75 are depicted in Figure 6.41 (those of the analyses Northridge 25, Petrovac 50, 

Petrovac 70 are reported in § 8, Figure 8.13 - Figure 8.15). 

In detail, Figure 6.41 shows the horizontal relative displacements uy of the second and first storey, (LP06 

– LP01) and (LP04 – LP01), compared with those calculated by the TREMURI program in nodes 18 and 

17. Furthermore, it illustrates the absolute accelerations recorded by the sensors ACC04, ACC05, 

ACC06, ACC072 compared with those calculated by the program in the corresponding nodes of the 

model (i.e. 12, 9, 17, 18, respectively). 

Thus, it is evident the very good agreement between the numerical and experimental results. The nonline-

ar dynamic analyses confirm the material properties of the model and the parameters of the cyclic nonlin-

ear behaviour of the ML-BEAM elements (piers and spandrels) adopted in § 6.1.1 and § 6.1.2 to perform 

modal and pushover analyses. 

 
2 The complete arrangement of the adopted sensors is illustrated in [73]. 
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Moreover, the base shear force-displacement diagram resulting from the dynamic analyses is shown in 

Figure 6.42. The maximum and minimum shear force values are equal to 52,06 kN and -54,92 kN. They 

are achieved during the application of the seismic input Petrovac 70. 

It is worth noting that the curve pattern and the attained strength values are consistent with the cyclic 

pushover curve obtained from the load distribution proportional to the masses of the structure (Figure 

6.26), confirming, in this way, the same structural behaviour.  

 

Figure 6.41: Results of the last nonlinear dynamic analysis Petrovac 75 performed on the BM model with TREMURI 

Finally, the last damage state obtained from the dynamic analyses is compared to the experimental one 

(Figure 6.43 - Figure 6.46). As observed after the shaking table tests, the most damaged piers were the 

lower ones belonging to the P2, P4 and P5 walls, while the upper elements were completely undamaged. 

After the dynamic analyses, the piers 55 and 56 of the P5 wall achieve the DL4 by shear failure. Elements 

21 and 22 (P2 wall), 47 and 48 (P4 wall) attain the flexural strength until DL4 or show a hybrid behav-

iour. Finally, some P1 and P3 wall elements are subjected to traction (Figure 6.45), which is is also 

expected since they are loaded out-of-plane. 

Therefore, according to the obtained results, it is possible to conclude that the structural performance of 

the BM model is very well reproduced by the Equivalent frame method implemented in the TREMURI 
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program. The values of strength (Table 47), drift, and residual resistance (Table 48) adopted for the static 

analyses are confirmed. 

 

Figure 6.42: Base shear force – horizontal displacement curve resulting from the nonlinear dynamic analyses performed on the BM 

model with TREMURI 

 

Figure 6.43: Experimental [73] and numerical final damage state of the P2 wall of the BM model (nonlinear dynamic analysis 

Petrovac 75) 

 

Figure 6.44: Experimental [73] and numerical final damage state of the P4 wall of the BM model (nonlinear dynamic analysis 

Petrovac 75) 
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Figure 6.45: Numerical final damage state of the P1 and P3 walls of the BM model (nonlinear dynamic analysis Petrovac 75) 

 

Figure 6.46: Experimental [73] and numerical final damage state of the P5 wall of the BM model (nonlinear dynamic analysis 

Petrovac 75) 

6.2 The BM-SR model strengthened with the EQ-GRID 
system 

6.2.1 Modal analysis of the BM-SR model 

The natural frequencies of the BM-SR model were experimentally measured with the ambient vibration 

and random excitation techniques before applying the seismic inputs, as for the non-retrofitted specimen. 

Therefore, the modal analysis is performed to identify the mode shapes, frequencies/periods and partici-

pating masses of the BM-SR model. It is important to note that the EQ-GRID system doesn’t increase the 

original model’s mass since the total thickness of the applied system is only 8 mm. Thus, the retrofitted 

specimen is characterized by the same seismic masses calculated in § 6.1.1 for the unstrengthened struc-

ture.  

The modal analysis results are illustrated in Table 53, in which the natural frequencies f, periods T and 

modal masses mx, my of the first ten mode shapes, are reported. 

Furthermore, Table 54 shows the elastic moduli assumed for the masonry elements. The values are 

calibrated comparing the 1st frequency calculated by the program with the experimental average one. 
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Table 53: Natural frequencies f, periods T and modal masses mx, my of the BM-SR model calculated with TREMURI 

Mode shape f [Hz] T [s] mx [kg]  my [kg] 

1 12.77 0.078 0.001 18070.02 

2 16.44 0.061 163.82 0.06 

3 17.95 0.056 17054.78 0 

4 32.73 0.031 0 2043.93 

5 41.65 0.024 8.059 0.012 

6 46.39 0.022 2838.71 0 

7 56.80 0.018 0.004 1.058 

8 58.47 0.017 18.775 0.001 

9 59.43 0.017 0.003 4.387 

10 61.16 0.016 29.07 0 

 

It is worth noting that the strengthening system slightly improved the stiffness of the structure since the 

initial frequency in the E-W direction increased from 10.57 Hz (without the EQ-GRID) to 12.63 Hz (with 

EQ-GRID). Therefore, the values adopted for the elastic and shear moduli are about 30% greater than 

those assumed for the BM model.  

Table 54: Natural frequencies of the BM-SR model and assumed elastic moduli for the modal analysis 

Experimental (before testing) TREMURI 

Direction f  f  f  E E// G 

E-W 

(y-direction) 

13.77 Hz 

(ambient vibration) 12.63 Hz 

(average) 

12.77 Hz 

(1st mode shape) 

2800 

N/mm² 

1400 

N/mm² 

1120 

N/mm² 11.48 Hz 

(random excitation) 

 

Finally, Figure 6.47 illustrates the first and third mode shapes obtained from the modal analysis. The first 

one is translational along the East-West direction of the structure (y-direction in TREMURI) with a 

frequency equal to 12.77 Hz and 80% mass participation. The third one is translational along the North-

South direction (x-direction in TREMURI) and has a frequency equal to 17.95 Hz with 75% mass partici-

pation.  

  

Figure 6.47: First and third mode shape of the BM-SR model obtained from the modal analysis 
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6.2.2 Pushover analyses of the BM-SR model 

Four monotonic and two cyclic nonlinear static analyses are performed in the East-West direction of the 

BM-SR model (y-direction in TREMURI) to compute the response of the retrofitted masonry structure 

under increasing lateral loads. 

As reported in [73], the experimental horizontal displacement of the second storey was measured through 

a linear potentiometer named LP04. Therefore, the controlled d.o.f. assumed for the analyses is the same 

as the unstrengthened model, i.e. the horizontal displacement uy of node 18 of the P3 wall. It is worth 

noting that, since the values recorded by the sensor LP04 are absolute displacements, the difference 

(LP04 - LP01) is considered for the modelling3. 

The average masonry material properties are the same as those adopted for the unstrengthened structure 

(Table 47). The in-plane resistance increase due to the EQ-GRID system is computed after CNR-DT 

215/2018, as shown in § 4.2.3. 

6.2.2.1 Monotonic pushover analyses of the BM-SR model 

The numerical results of the monotonic pushover analyses performed with the load pattern proportional to 

the masses are presented in the following. Since the EQ-GRID system doesn’t increase the original 

model’s mass, the load multipliers λi calculated in Eq. (6.9) for the unreinforced structure are still adopt-

ed. 

Moreover, the values of drift and residual resistance assumed for the strengthened masonry piers and 

spandrels are indicated in Table 55.  

Table 55: Drift values of the masonry piers and spandrels for the BM-SR model 

Strengthened masonry piers 

 Drift Residual resistance (Vres,i / VRd,s) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 1.3% d4,S = 2.3% d5,S = 3.4% 0.7 0.4 

Bending d3,B = 2.6% d4,B = 4.6% d5,B = 6.8% 1.0 0.85 

Strengthened masonry spandrels with concrete lintel and tie beam 

 Drift Residual resistance (Vres,i / VRd,s) 

Damage DL3 DL4 DL5 DL3 → DL4 DL4 → DL5 

Shear d3,S = 2.5% d4,S = 4.2% d5,S = 5.5% 1.0 0.8 

Bending d3,B = 2.5% d4,B = 4.2% d5,B = 5.5% 1.0 0.8 

 

Figure 6.48 shows the pushover curves obtained from two monotonic non-linear static analyses with load 

pattern proportional to the masses (one performed in the positive y-direction of the model and the other in 

the negative one). The analyses are performed applying at the control node the maximum and minimum 

experimental value of the horizontal displacement (LP04 - LP01) measured during the last applied earth-

quake (Petrovac 250), that is 10.54 mm and -28.51 mm. 

As depicted in Figure 6.48,  the attained maximum and minimum base shear forces are equal to 156.0 kN 

and -134.8 kN, respectively. Therefore, thanks to the retrofitting with EQ-GRID, the global resistance of 

 
3 The linear potentiometer LP01 measured the absolute displacement of the BM-SR model’s foundation. The complete description 

of the adopted sensors is given in [73]. 
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the BM-SR model is up to three times higher than the one achieved by the original structure (Figure 

6.12). Moreover, since the positive and negative maximum values of the horizontal displacement (LP04 - 

LP01) are quite different, the nonlinear static analysis results performed in the most stressed direction (-y) 

are discussed in the following. Those obtained in the positive one are reported in § 8. 

 

Figure 6.48: Monotonic pushover curves of the BM-SR model with load pattern proportional to the masses  

Figure 6.49 shows the experimental final damage state of the corner between the P1 and P4 walls, where 

horizontal flexural cracks are evident in the lower piers. The DLs obtained from the pushover analysis are 

also depicted. The numerical results confirm that most of the piers and spandrels of the P4 wall attain the 

bending strength. The shear force-drift diagrams (Figure 6.50) show that the most damaged elements are 

piers 47 and 48, as experimentally observed (Figure 6.51). In particular, pier 48 reaches DL4 with a 

maximum drift of about 2.8%, while pier 47 doesn’t exceed DL3 since its maximum drift value is equal 

to 2.3%.  

 

Figure 6.49: P4 - P1 corner of the BM-SR model: experimental [73] and numerical final DLs (monotonic pushover analysis in the -

y direction with load pattern proportional to the masses)  
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Concerning the upper elements, they are only slightly stressed. As shown in Figure 6.50, the maximum 

drift achieved by elements 51 and 52 is 0.046%, while pier 50 has only a degradation of the initial elastic 

stiffness kel. Moreover, the masonry spandrels and the r. c. beams are not damaged. In this regard, ele-

ments 42, 43, 44 attain the flexural strength, but they are far from the DL3 limit, and spandrels 45, 46 

show only a degradation of the initial elastic stiffness.  

 

Figure 6.50: BM-SR model: shear-drift diagrams of the masonry piers of the P4 wall (monotonic pushover in the -y direction with 

load pattern proportional to the masses) 

 

Figure 6.51: P4 wall of the BM-SR model: experimental [73] and numerical final DLs (monotonic pushover analysis in the -y 

direction with load pattern proportional to the masses)  
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Therefore, it is possible to conclude that the upper elements are not cracked, and the damage is concen-

trated in the bottom ones, as experimentally observed. 

Furthermore, Figure 6.49 illustrates the final damage state of the corner between the P2 and P3 walls and 

the DLs obtained from the pushover analysis. It is worth noting that the numerical failure attained by the 

P2 and P3 walls is identical to the P1 and P4 ones. Since the shear-drift diagrams of the P2 wall are very 

similar to those of the P4, they are not reported.  

 

Figure 6.52: P2 – P3 corner of the BM-SR model: experimental [73] and numerical final DLs (monotonic pushover analysis in the -

y direction with load pattern proportional to the masses) 

Finally, the numerical failure mechanism of the middle wall P5 is depicted in Figure 6.53. The masonry 

pier 56 reaches the shear resistance with diagonal cracking until DL4. In contrast, pier 55 achieves the 

flexural strength and doesn’t exceed DL3. As shown by the shear force-drift of these elements, the 

maximum drifts are equal to 1.9%. On the contrary, the upper piers remain in the initial elastic phase, and 

spandrels 53, 54 attain the bending resistance. However, they stay just at the beginning of the plastic state. 

Concerning the reinforced concrete beams, they are not damaged. Therefore, it is possible to conclude 

that the damage is concentrated only in the lower piers 55 and 56. 

 

Figure 6.53: P5 wall of the BM-SR model: numerical final DLs and shear-drift diagrams of the masonry piers 55 and 56 (monoton-

ic pushover analysis in the -y direction with load pattern proportional to the masses) 

The second load pattern adopted for the non-linear static analyses is the triangular inverse one. It is 

proportional to the first mode shape and represents the structural dynamic amplification by increasing the 

action on the higher storeys. Thus, the load multiplier vector [λ] is proportional to the mass and the height 

of the levels and is the same as that calculated for the BM model with Eq. (6.10). 
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The pushover curves are obtained by imposing the maximum and minimum relative displacement (LP04 - 

LP01), i.e. 10.54 mm and -28.51 mm, to the control node. It is important to stress that the monotonic 

nonlinear static analyses are performed separately and not consequently. As depicted in Figure 6.54, the 

achieved maximum and minimum base shear forces are 153.41 kN and -148.45 kN. Therefore, the global 

resistance of the BM-SR model is also with this type of distribution about three times higher than the one 

reached by the original structure. It is worth noting that the development of the pushover curves in Figure 

6.54 is similar to that obtained with the mass-proportional load distribution (Figure 6.48). However, in 

this case, the slight strength drops are due to the tensile failure of some masonry elements.  

Therefore, the results of the pushover analysis carried out in the negative direction are discussed in the 

following. Those obtained in the positive one are reported in § 8. 

 

Figure 6.54: Monotonic pushover curves of the BM-SR model with triangular inverse load pattern 

Figure 6.55 shows the flexural failure of the corner between the P1 and P4 walls. The damage state 

obtained with TREMURI indicates that the masonry elements, except spandrel 46, achieve the bending 

strength and present the damage state between DL2 and DL3. 

 

Figure 6.55: P4 - P1 corner of the BM-SR model: experimental [73] and numerical final DLs (monotonic pushover in the -y 

direction with triangular inverse load pattern) 
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Figure 6.56: P4 wall of the BM-SR model: experimental [73] and numerical final DLs (monotonic pushover in the -y direction with 

triangular inverse load pattern)  

Therefore, the shear-drift curves of the P4 wall’s piers are also depicted in Figure 6.57. They confirm that 

the most stressed elements are the lower ones, 47, 48, 49, while the upper ones, 50, 51, 52, attain lower 

drift values. However, since they are in the plastic response phase, it is impossible to exclude that they are 

not cracked. 

 

Figure 6.57: BM-SR model: shear-drift diagrams of the masonry piers of the P4 wall (monotonic pushover in the -y direction with 

triangular inverse load pattern) 
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Moreover, the masonry spandrels also achieve the flexural resistance (DL2). However, they remain at the 

beginning of the plasticity with a maximum drift equal to 0.12% for spandrels 42, 43, 44 and 0.05% for 

spandrel 45. On the contrary, all the elements of the P1 wall and the reinforced concrete beams remain in 

the elastic range. 

Furthermore, Figure 6.58 illustrates the experimental damage of the corner between the P2 and P3 walls 

and the final damage state obtained from the pushover analysis. The shear-drift diagrams of the masonry 

elements of the P2 wall are very similar to those of the P4. Therefore, they are not further reported. 

 

Figure 6.58: P2 - P3 corner of the BM-SR model: experimental [73] and numerical final DLs (monotonic pushover in the -y 

direction with triangular inverse load pattern) 

It is worth noting that some masonry elements of the P3 wall attain the bending strength, while piers 35, 

37 and spandrels 27, 30 remain in the elastic phase (Figure 6.58). Moreover, pier 36 fails by tension since 

the normal force acting at its nodes achieves the element’s ultimate tensile value, as confirmed by the in-

plane strength domain (Figure 6.59). 

 

Figure 6.59: Normal force – drift diagram of pier 36 (monotonic pushover in the -y direction with triangular inverse load pattern) 

and in-plane failure domain of the element 

Concerning the spandrels 33 and 34, they reach DL3 showing a mixed shear-flexural failure. It is worth 

pointing out that this type of damage is not coherent with the experimental results since the upper struc-

tural elements were not cracked at the end of the tests. 

Furthermore, Figure 6.60 shows the damage state and the shear force-drift curves obtained from the 

pushover analysis for the P5 wall. The lower masonry piers are more damaged than the upper ones since 

the elements 55, 56 achieve the in-plane shear resistance (DL2) and have a maximum drift equal to 1.21% 
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and 0.92%, respectively. Finally, the masonry spandrels fail by tension, and the reinforced concrete 

beams are undamaged.  

    

Figure 6.60: P5 wall of the BM-SR model: numerical final DLs and shear-drift diagrams of the masonry piers 55, 56, 57 (monoton-

ic pushover in the -y direction with triangular inverse load pattern)  

It is important to note that the adopted force distributions may be considered boundary conditions for 

seismic analyses. The real failure mode is generally predicted by one of the two distributions. As for the 

original model, the results obtained from the monotonic pushover analyses with load pattern proportional 

to the masses better reproduce the failure mechanism of the strengthened structure. The experimental 

damage was concentrated in the bottom masonry piers with a dominant flexural failure, while the upper 

elements were completely undamaged, as for the numerical model. The obtained results confirm that the 

response of the building under extensive damage can be reproduced by adopting the load pattern propor-

tional to the masses since the force redistributions among the levels are prevented. 

Finally, the assumed values of strength (Table 47), drift, and residual resistance (Table 55) may be con-

sidered well calibrated. The calculation of the EQ-GRID system according to CNR-DT 215/2018 enables 

reproducing the observed behaviour of the strengthened masonry elements, particularly for the ones in 

which the flexural damage was evident. 

6.2.2.2 Cyclic pushover analyses of the BM-SR model 

The cyclic pushover analyses are performed through sequential monotonic nonlinear static analyses. The 

maximum and minimum horizontal displacements (LP04 - LP01) measured during each test (Table 56) 

are applied as displacement limits uy at the control node of the model. In this way, the damage evolution 

of the numerical model can be better evaluated and compared with that observed during the dynamic 

tests. 

As reported in [73], the experimental response of the retrofitted model was very different from that of the 

original one. The increased elasticity limit and slight reduction of displacements at the top were distinc-

tive in the first part of the tests. In this regard, the unstrengthened model was estimated to be in a state of 

initial non-linearity during the application of the Petrovac 45 earthquake (ainput = 0.20g). The first visible 
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horizontal cracks occurred between the foundation slab and the out-of-plane walls. On the contrary, no 

damage was present in the retrofitted model at the same excitation level. Therefore, the structure was 

estimated to be still in the elastic phase of the seismic response. 

Table 56: Maximum and minimum displacement (LP04-LP01) measured during the test on the BM-SR model 

Earthquake span [%] Max (LP04-L01) [mm] Min (LP04-L01) [mm] 

El Centro 50 0.588 -0.733 

Petrovac 36 0.961 -1.447 

Northridge 16 0.385 -0.555 

El Centro 65 0.543 -1.016 

Petrovac 40 1.018 -0.642 

El Centro 75 0.677 -1.196 

Petrovac 45 0.830 -0.708 

Northridge 20 0.618 -0.521 

El Centro 80 0.783 -1.213 

Northridge 25 0.771 -0.790 

Petrovac 50 0.940 -0.862 

Petrovac 70 1.300 -2.316 

Petrovac 75 1.520 -1.641 

Petrovac 100 2.431 -2.860 

Petrovac 120 2.937 -2.986 

El Centro 100 1.221 -1.354 

Petrovac 150 4.260 -4.004 

Petrovac 180 5.749 -11.427 

Petrovac 220 7.686 -20.122 

Petrovac 260 10.116 -26.443 

Petrovac 250 10.539 -28.514 

 

Furthermore, the BM model showed considerable nonlinear damage at the application of Petrovac 75 

(ainput = 0.35g), which was considered similar to the ultimate state of load-bearing capacity. In compari-

son, the retrofitted structure was assumed to be just at the end of the elastic phase since the first fine 

horizontal cracks occurred along the bottom of the windows on the first floor (about 60 cm above the 

foundation). Moreover, with Petrovac 100 (ainput = 0.51g), the BM‐SR model was estimated to be at the 

beginning of the nonlinear state. 

As depicted in Figure 6.61, the experimental observations reported in [73] are confirmed by the cyclic 

pushover analysis with the force distribution proportional to the masses. As shown by the pushover curve, 

the numerical model behaves linear elastic during the application of Petrovac 45 and is at the end of this 

phase at the load step Petrovac 75. Moreover, it is at the beginning of the plastic phase with Petrovac 100. 

Furthermore, in [73] is also reported that during the last applied seismic input Petrovac 250 (ainput = 

1.22g), the initial cracks further propagated, and additional ones occurred along the contact line of the 

walls with the foundation. However, the structural stability was still preserved, and the damage was 

considered repairable. Although the stiffness and load-bearing capacity decreased, the BM-SR model 

showed structural integrity at the end of the dynamic tests, and it was far from failure. The last excitation 

level applied to the retrofitted model was about three times higher than the last one adopted for the 
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unstrengthened structure. However, the damage level showed by the retrofitted model was considerably 

smaller. The cyclic pushover analysis also confirms these experimental observations. As depicted in 

Figure 6.61, the structure is in the plastic phase between Petrovac 180 and Petrovac 250. Moreover, the 

curve shows large dissipative cycles in the negative direction due to the dominant shear behaviour of 

piers 55 and 56 (Figure 6.64). Then, the strength drop that occurs during Petrovac 220 corresponds to the 

achievement of the DL3 by 5% of the masonry piers (Figure 6.62). 

 

Figure 6.61: BM-SR model: cyclic pushover curve with load pattern proportional to the masses 

 

Figure 6.62: BM-SR model: cyclic pushover curve with load pattern proportional to the masses: DLs of the masonry piers 
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Furthermore, the flexural behaviour is dominant in the masonry elements of the P2, P4 walls, as experi-

mentally observed (Figure 6.63, Figure 6.64, Figure 6.65). In detail, the most damaged piers are the ones 

under the first storey in the same direction of the dynamic excitation, i.e. elements 47, 48, 49, 21, 22, 23 

and 55, 56, while the two out of plane walls, P1 and P3, behave linear elastic.  

 

Figure 6.63: P4 - P1 corner of the BM-SR model: experimental [73] and numerical final DLs (cyclic pushover with load pattern 

proportional to the masses) 

 

Figure 6.64: P4 and P5 walls of the BM-SR model: experimental [73] and numerical final DLs final damage state (cyclic pushover 

with load pattern proportional to the masses) 

 

Figure 6.65: P2 – P3 corner of the BM-SR model: experimental [73] and numerical final DLs (cyclic pushover with load pattern 

proportional to the masses) 
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Finally, no visible cracks were experimentally observed at the upper storey as in the modelling with 

TREMURI. It is worth noting that, although some masonry elements of the second storey attain the in-

plane strength, they remain at the beginning of the plastic phase since the plastic deformations are con-

centrated in the lower part of the structure. Therefore, it is possible to assume that they are not visible 

cracked. 

Moreover, the absolute horizontal displacement of the first storey was experimentally measured through a 

linear potentiometer (named LP03 in [73]), whose position corresponds to node 17 of the P3 wall in 

TREMURI. Thus, the deformation of the structure can be compared with the experimental one by check-

ing the displacement of node 17. As reported in Table 57, the numerical results show a very good match 

with the experimental ones. 

Table 57: Horizontal displacement of the first storey of the BM-SR model in the y-direction (cyclic pushover analysis with load 

pattern proportional to the masses) 

Earthquake span [%] (LP03 - LP01) [mm] TREMURI node 17 uy [mm] 

El Centro 50 0.423 -0.38 0.33 -0.415 

Petrovac 36 0.438 -0.32 0.541 -0.84 

Northridge 16 0.275 -0.271 0.227 -0.331 

El Centro 65 0.579 -0.562 0.32 -0.604 

Petrovac 40 0.629 -0.306 0.597 -0.385 

El Centro 75 0.801 -0.613 0.397 -0.702 

Petrovac 45 0.65 -0.463 0.488 -0.425 

Northridge 20 0.449 -0.298 0.363 -0.313 

El Centro 80 0.793 -0.679 0.46 -0.711 

Northridge 25 0.556 -0.511 0.454 -0.473 

Petrovac 50 0.751 -0.534 0.552 -0.516 

Petrovac 70 1.22 -0.973 0.774 -1.383 

Petrovac 75 1.113 -1.199 0.883 -0.978 

Petrovac 100 1.981 -1.936 1.421 -1.791 

Petrovac 120 2.378 -2.061 1.743 -1.851 

El Centro 100 1.261 -0.845 0.683 -0.731 

Petrovac 150 3.146 -3.575 2.74 -2.661 

Petrovac 180 4.162 -11.044 3.934 -9.892 

Petrovac 220 5.179 -19.742 5.661 -18.634 

Petrovac 260 6.708 -26.033 8.087 -25.118 

Petrovac 250 7.401 -27.983 8.809 -27.269 

 

Concerning the results of the pushover analysis with the triangular inverse force distribution, they are 

illustrated in Figure 6.66. In this case, the structure is still in the elastic phase of the seismic response 

during the load steps Petrovac 45, 75 and 100. Therefore, compared to the previous results, this behaviour 

doesn’t find such good agreement with the experimental observations reported by [73]. Moreover, the 

capacity curve is characterized by less dissipative cycles with a “flag” shape due to the prevailing flexural 
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behaviour of the masonry piers (Figure 6.68, Figure 6.69, Figure 6.70). In contrast with the previous 

results, the bottom piers of the P5 wall don’t attain the DL3 limit by diagonal cracking (Figure 6.69) since 

the plastic deformations are also present in the masonry elements of the upper storey.  

 

Figure 6.66: BM-SR model: cyclic pushover curve with the triangular inverse load pattern 

 

Figure 6.67: Cyclic pushover curve of the BM-SR model with the triangular inverse load pattern: DLs of the masonry piers 

In this regard, Figure 6.67 shows the percentages of the damaged masonry piers on the cyclic pushover 

curve. During the application of Petrovac 220, 55% of the piers have achieved the DL2. Even during the 

last seismic input, no elements attain the DL3 limit. This behaviour is due to the triangular inverse load 
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distribution, which generally increases actions at the upper storeys. In this case, the most damaged piers 

of the in-plane walls remain the lower ones, but the upper elements also show plastic deformations. 

Compared to the previous results, the damage is no more concentrated in the bottom components of the 

structure, which doesn’t correspond to the observed behaviour. 

 

Figure 6.68: P4 - P1 corner of the BM-SR model: experimental [73] and numerical final DLs (cyclic pushover with triangular 

inverse load pattern) 

 

Figure 6.69: P4 and P5 walls of the BM-SR model: experimental [73] and numerical final DLs final damage state (cyclic pushover 

with triangular inverse load pattern) 

 

Figure 6.70: P2 – P3 corner of the BM-SR model: experimental [73] and numerical final DLs (cyclic pushover with triangular 

inverse load pattern) 
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Finally, the experimental horizontal displacement (LP03 - LP01) is also compared to the values of uy 

calculated by TREMURI in node 17. 

The results reported in [73] show that the deformation of the numerical model is different from the 

experimental one in particular during the last four earthquakes, in the retrofitted model is widely in the 

nonlinear phase of the seismic response. Therefore, it is possible to confirm that the structural behaviour 

and damage pattern of the BM-SR model is better reproduced by the cyclic pushover analysis with force 

distribution proportional to the masses.  

Table 58: Horizontal displacement of the first storey of the BM-SR model in the y-direction (cyclic pushover analysis with 

triangular inverse load pattern) 

Earthquake span [%] (LP03 - LP01) [mm] TREMURI node 17 uy [mm] 

El Centro 50 0.423 -0.38 0.297 -0.368 

Petrovac 36 0.438 -0.32 0.478 -0.735 

Northridge 16 0.275 -0.271 0.198 -0.292 

El Centro 65 0.579 -0.562 0.278 -0.527 

Petrovac 40 0.629 -0.306 0.521 -0.337 

El Centro 75 0.801 -0.613 0.347 -0.615 

Petrovac 45 0.65 -0.463 0.427 -0.372 

Northridge 20 0.449 -0.298 0.319 -0.275 

El Centro 80 0.793 -0.679 0.401 -0.621 

Northridge 25 0.556 -0.511 0.396 -0.415 

Petrovac 50 0.751 -0.534 0.482 -0.451 

Petrovac 70 1.22 -0.973 0.675 -1.205 

Petrovac 75 1.113 -1.199 0.771 -0.855 

Petrovac 100 1.981 -1.936 1.260 -1.568 

Petrovac 120 2.378 -2.061 1.534 -1.638 

El Centro 100 1.261 -0.845 0.607 -0.683 

Petrovac 150 3.146 -3.575 2.204 -2.237 

Petrovac 180 4.162 -11.044 3.016 -6.407 

Petrovac 220 5.179 -19.742 3.890 -12.071 

Petrovac 260 6.708 -26.033 5.229 -16.711 

Petrovac 250 7.401 -27.983 5.510 -18.276 
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6.2.3 Nonlinear dynamic analyses of the BM-SR model 

The last four acceleration-time histories of the experimental test program, i.e. Petrovac 180, Petrovac 220, 

Petrovac 260 and Petrovac 250 (Figure 6.71), are considered to perform the non-linear dynamic analyses 

in the y-direction of the BM-SR model. The material properties of the retrofitted structure and the param-

eters adopted for the cyclic nonlinear behaviour of the ML-BEAM elements (piers and spandrels) are the 

same as those assumed in § 6.2.1 and § 6.2.2 for the modal and pushover analyses. The coefficients α1 

and β1 of the Rayleigh viscous damping are determined using the same procedure adopted for the BM 

model and described in § 6.1.3.  

 

Figure 6.71: Acceleration-time histories applied to the base of the BM-SR model in TREMURI 

The mode shapes in the y-direction that reach at least 85% of the total seismic mass are the first and the 

fourth. The numerical results reported in Table 53 show that 89% of mass participation is achieved by 

considering these two modes. 

Moreover, the lower first frequency ω1
* is adopted for the calculation of α1 and β1 since the natural 

frequencies of the BM-SR model were also measured after testing. Table 59 summarizes the experimental 

first natural frequency recorded in the East-West direction before and after testing and the fourth one 

obtained from the modal analysis with TREMURI.  

Table 59: Natural frequencies and periods of the BM-SR model 

1st mode (before testing) ω1 = 79.33 rad/s T1 = 0.079 s 

1st mode (after testing) ω1
* = 37.07 rad/s T1

* = 0.17 s 

4th mode (modal analysis) ω4 = 205.62 rad/s T4 = 0.031 s 
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Therefore, the coefficients α1 and β1 are calculated adopting the frequencies ω1
* and ω4 and assuming the 

elastic damping ratio ξ equal to 3%: 
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As depicted in Figure 6.72,  the elastic damping ratio ξ can be assumed nearly constant in the range 

between the 1st and 4th frequency. Therefore, the lower damping ratio ξ* in the fundamental mode ω1 is 

equal to 2.2%, and it is calculated through Eq. (6.16): 

* 1 1
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1
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2 2 2 79.33 2
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Figure 6.72: Rayleigh damping ratios ξ and ξ* of the BM-SR model 

The numerical results are compared to the experimental ones in terms of displacements and accelerations. 

In this regard, Figure 6.73 illustrates the results of the last performed nonlinear dynamic analysis, Pe-

trovac 250. The other ones, i.e. Petrovac 180, 220 and 260, are reported in § 8. 

In detail, Figure 6.73 depicts the experimental horizontal relative displacements of the first and second 

storey, (LP03 – LP01), (LP04 – LP01), (LP05 – LP01), (LP06 – LP01), compared with the values calcu-

lated by TREMURI in the corresponding nodes of the model, i.e. 17, 18, 9 and 12. The numerical dis-

placements indicate a more symmetrical structural response than observed during the tests. It is important 

to stress that the non-symmetrical experimental displacement values were probably due to the higher 

resistance of some masonry elements of the BM-SR model. As shown in Figure 6.75 and Figure 6.77, 

flexural cracks occurred in the P1 and P4 walls and not in the symmetrical ones, i.e. the P2 and P3. 

Therefore, it is reasonable to assume that some masonry panels of the P2 and P3 walls probably had a 

higher resistance and ductility. For this reason, the structural response of the BM-SR model lost sym-

metry when the weaker elements failed, and the experimental damage prevailed only in the already 

cracked panels. 
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Regarding the absolute accelerations measured by the sensors ACC04, ACC05, ACC06, they are also 

compared in Figure 6.73 with those calculated by the program in the corresponding nodes of the model, 

i.e. 6, 12, 174. In this case, a very good match between the results is evident. 

 

Figure 6.73: Results of the last nonlinear dynamic analysis Petrovac 250 performed on the BM-SR model with TREMURI 

 
4 The complete arrangement of the adopted sensors is illustrated in [73]. 
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Furthermore, Figure 6.74 depicts the base shear force-displacement diagram obtained from the dynamic 

analyses. The maximum and minimum shear force values are achieved during the seismic input Petrovac 

180 and are equal to 153.8 kN and -150.1 kN, respectively. It is worth noting that the curve pattern, 

strength and displacement values attained in the negative quadrant are coherent with the cyclic pushover 

curve with the load distribution proportional to the masses (Figure 6.61). Moreover, the strength drop 

after the positive peak of base shear force (Figure 6.74) is due to attaining the ultimate tensile normal 

force of some masonry piers of the in-plane walls. Then, when these elements are compressed again 

during the analysis, their in-plane resistance equals the unstrengthened one. Therefore, the residual 

positive base shear force is very close to the value reached by the unstrengthened BM model (Figure 

6.42).  

 

Figure 6.74: Base shear force – horizontal displacement curve resulting from the nonlinear dynamic analyses performed on the 

BM-SR model with TREMURI 

Finally, the numerical results confirm that the bottom piers of the P2, P4 and P5 walls are more damaged. 

These elements achieve the DL3 limit for flexural, shear or hybrid failure, as experimentally observed and 

confirmed by the cyclic pushover analysis with load pattern proportional to the masses (§ 6.2.2.2).  

 

Figure 6.75: P4 - P1 corner of the BM-SR model: experimental [73] and numerical final DLs (nonlinear dynamic analysis Petrovac 

250) 
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It is worth pointing out that the damage level attained by the piers 47, 49, and 21, 23 of the P2, P4 is 

higher than that obtained from the pushover analysis because of the higher displacement values calculated 

by the program in the positive y-direction. On the other hand, the damage pattern shown by the other 

masonry elements is consistent with that obtained from the pushover analysis in § 6.2.2.2. 

 

Figure 6.76: P4 and P5 walls of the BM-SR model: experimental [73] and numerical final DLs (nonlinear dynamic analysis 

Petrovac 250) 

 

Figure 6.77: P2 – P3 corner of the BM-SR model: experimental [73] and numerical final DLs (nonlinear dynamic analysis Petrovac 

250) 

Therefore, it is possible to conclude that the seismic response of the BM-SR model is well reproduced 

since the numerical results show a good correspondence with the experimental ones. The assumed materi-

al properties, the parameters defined for the cyclic nonlinear behaviour of the ML-BEAM elements (piers 

and spandrels) and the calculation method adopted for the EQ-GRID system are confirmed. 
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7 Conclusions 

This work concerns the experimental characterization and modelling of textile reinforced masonry struc-

tures with the Equivalent frame method. It is subdivided into six chapters. The first one gives an overview 

of the structural behaviour of unreinforced masonry buildings under seismic actions and the most com-

mon numerical modelling approaches. In particular, more attention is given to the Equivalent frame 

method implemented in the TREMURI program since it is adopted for the numerical analyses. This 

modelling approach is based on idealizing the masonry walls in a frame. Then, each load-bearing wall is 

subdivided into a set of deformable masonry panels, i.e. piers and spandrels, in which the deformation 

and nonlinear behaviour are concentrated. 

Furthermore, the structural elements are connected by rigid nodes that correspond to the wall parts not 

generally subjected to damage. Consequently, a limited number of degrees of freedom is required. The 

analysis of complex three-dimensional models of masonry structures is obtained by assembling walls and 

floors, mainly referring to their in-plane strength and stiffness contributions. This approach is also sug-

gested in some seismic codes because of the reasonable computational effort. 

The second chapter concerns the seismic reinforcing and retrofitting of masonry buildings with composite 

materials. In detail, the limits of the fibre-reinforced polymers (FRP) in the application to the masonry 

structures are illustrated, and the innovative strengthening technique of the externally bonded textile 

mortar is presented. This technology originates from the ferrocement, in which the steel mesh is replaced 

with high-performance, open textile meshes applied with inorganic matrices. It is commonly named 

fabric-reinforced cementitious matrix (FRCM) or textile-reinforced mortar (TRM). In this work, only the 

name FRCM is used for the sake of simplicity. Concerning the open mesh, it generally consists of contin-

uous fibre yarns of alkali-resistant (AR) glass, carbon, aramid, basalt, or polyparaphenylene benzobisoxa-

zole (PBO). The threads can be preimpregnated, coated, or dry and are generally arranged in two or more 

directions. Furthermore, the matrix can be cement- or lime mortar-based. It has the function to protect the 

fibre yarns and ensure the stress transfer between masonry and textile layers. 

The FRCM system studied in this work is named EQ-GRID, and it has been developed at the Karlsruhe 

Institute of Technology in Germany. The third chapter illustrates the results of a wide experimental 

campaign performed on this system. The textile mesh is a multi-axial hybrid grid made of alkali-resistant 

glass and polypropylene fibres. The matrix is a very fine-grained natural hydraulic lime mortar (NHL). 

Therefore, it can encapsulate the threads very well by penetrating the mesh openings. It is worth high-

lighting that this aspect is very important for the FRCM systems since the bond strongly influences the 

performance at the textile-matrix and matrix-support interface. 

The performed experimental program included direct tensile tests on bare textile samples and composite 

specimens for each main direction of the grid, i.e. vertical, horizontal and diagonal. Two types of grips 

were adopted to test the composite samples: clamping and clevis-type grips. With the first ones, the free 

textile ends of the composite specimens were clamped between the machine wedges, and the observed 

failure was always the fibres’ rupture. On the contrary, the tensile load was introduced in the specimens 

only by adhesion with the clevis-type grips. Therefore, the second test setup corresponds to the applica-

tion cases in which no mechanical anchorage is adopted. The results show that the textile tensile 

strength’s exploitation ratios obtained with both test setups are very similar for the horizontal and diago-

nal directions. On the contrary, the tensile response of the system in the vertical direction depends on the 

adopted test setup. 
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Furthermore, compression and bending tests were performed on the EQ-GRID matrix to identify its 

mechanical properties. Then, the bonding behaviour of the applied system was investigated through 

double- and single-lap shear-bond tests. Hollow and solid clay bricks were adopted as standard masonry 

support. The system was applied without any mechanical anchorage, and different bonding lengths were 

tested. No premature debonding from the masonry unit was observed. Only the textile tensile failure or 

the slippage of the grid within the matrix were observed. 

Finally, twelve masonry panels were tested through cyclic lateral shear tests. Four specimens were in 

original conditions, and eight were strengthened with EQ-GRID. Two types of masonry units were 

adopted, i.e. the calcium-silicate and hollow clay bricks. Two different values of constant vertical load 

were applied, that is, 120 kN and 240 kN. 

The structural performance of the strengthened specimens is compared to that of the URM specimens. 

The achieved damage level and the experimental shear-drift diagrams are shown. Moreover, equivalent 

multilinear curves are determined from the cyclic envelopes of the hysteretic curves. The obtained results 

confirm that the EQ-GRID system can improve the load-bearing and inelastic deformation capacity of a 

masonry panel.  

Furthermore, the in-plane shear strength and failure domains of all the tested masonry panels are calculat-

ed in the fourth chapter of this work. The assumed mechanical properties for the URM specimens are 

consistent with Eurocode 6 ([81], [28]) and values typical for the tested masonry. The presence of the EQ-

GRID system is considered through the proposed modification of the masonry initial shear strength and 

brick tensile strength as well as after the Italian technical standard CNR-DT 215/2018 “Guide for the 

Design and Construction of Externally Bonded Fibre Reinforced Inorganic Matrix Systems for Strength-

ening Existing Structures” [52]. The analytical results show that the experimental shear forces can be 

obtained with a good approximation. Moreover, a very good correspondence is observed between the 

values calculated with the proposed formulations and that suggested by CNR-DT 215/2018 [52]. 

The analysis of the panel’s cross-section strengthened with EQ-GRID is also performed. In this regard, it 

is observed that the in-plane flexural domains of the reinforced specimens shift to tensile values of the 

normal force. Compared to the URM elements, the strengthened ones can carry tensile loads thanks to the 

EQ-GRID system. It is worth noting that this aspect is fundamental to individuate the correct type of 

failure and resistance, particularly in the domain parts where the shear and flexural resistance intersect.  

Furthermore, the fifth chapter of this work shows the numerical modelling of all the tested masonry 

panels. The nonlinear beam element with piecewise behaviour and lumped inelasticity, implemented in 

the TREMURI program, is adopted. The parameters obtained from the calculated equivalent multilinear 

curves, e.g. secant stiffness, drift values at the ith DL achievement, are assumed. Therefore, the cyclic 

lateral shear tests are reproduced through sequential static analyses under displacement control. The 

results are expressed in the form of internal forces and moments. Thus, the numerical in-plane strength, 

the achieved DLs are compared to the experimental observations. 

The obtained results confirm that the Equivalent frame method and the nonlinear beam element with 

multilinear constitutive law can well reproduce the cyclic behaviour of masonry panels strengthened with 

EQ-GRID. In this context, the implemented formulations after CNR-DT 215/2018 [52] allow individuat-

ing the correct behaviour, particularly when the system is applied on both sides. In this case, the consider-

ation of the tensile load-bearing capacity in the flexural behaviour is fundamental. 

Finally, the sixth chapter of this work presents the numerical modelling of two shaking table tests per-

formed on a 1:2 scaled masonry building at the Institute of Earthquake Engineering and Engineering 

Seismology (IZIIS) in Skopje (2013). The original model was a two-storey solid clay masonry building, 
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and it was tested under different scaled earthquakes until a considerable damage level was observed. 

Then, the model was repaired and retrofitted with the EQ-GRID system. Therefore, the strengthened 

building was tested to compare its structural performance with the original one. 

Since the natural frequencies of the URM and reinforced model were experimentally measured, modal 

analyses are performed. In this way, the elastic material properties, such as the Young’s and shear moduli, 

are well-calibrated. Then, monotonic and cyclic pushover analyses are carried out. To this aim, the 

nonlinear beam element with piecewise behaviour and lumped inelasticity is adopted. The assumed 

masonry material properties are consistent with the average values suggested by the explanatory Circular 

of the Italian Building Code [22] for existing solid clay masonry buildings. Therefore, the pushover 

analyses allow comparing the experimental observations and failure modes in detail with the numerical 

results. Moreover, the formulations after CNR-DT 215/2018 [52] are adopted since the flexural behaviour 

of the strengthened piers was dominant in the retrofitted structure. 

Finally, time-history analyses are performed on both models with the TREMURI program.  The measured 

displacements and accelerations are compared to the numerical ones, and the results obtained with the 

static analyses are also dynamically well reproduced. 

Therefore, the Equivalent frame method and the adopted nonlinear beam element are validated as a 

technique suitable for modelling the textile reinforced masonry structures.  
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8 Appendix 

 

Figure 8.1: P2 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover analysis in the -y direction 
with load pattern proportional to the masses)  

 

Figure 8.2: BM model: shear-drift diagrams of the masonry piers of the P2 wall (monotonic pushover in the -y direction with load 

pattern proportional to the masses) 
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Figure 8.3: P4 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover analysis in the -y direction 
with load pattern proportional to the masses)  

 

Figure 8.4: Wall P5 of the BM model: experimental [73] and numerical final DLs (monotonic pushover analysis in the -y direction 
with load pattern proportional to the masses)  

 

Figure 8.5: BM model: shear-drift diagrams of the masonry piers of the P5 wall (monotonic pushover in the -y direction with load 

pattern proportional to the masses) 
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Figure 8.6: P1, P3 walls of the BM model: numerical final DLs (monotonic pushover in the -y direction with load pattern propor-

tional to the masses)  

 

Figure 8.7: P2 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover in the -y direction with 

triangular inverse load pattern)  
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Figure 8.8: BM model: shear-drift diagrams of the masonry piers of the P2 wall (monotonic pushover in the -y direction with 

triangular inverse load pattern) 

 

Figure 8.9: P4 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover in the -y direction with 

triangular inverse load pattern)  
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Figure 8.10: P5 wall of the BM model: experimental [73] and numerical final DLs (monotonic pushover in the -y direction with 

triangular inverse load pattern)  

 

Figure 8.11: BM model: shear-drift diagrams of the masonry piers of the P5 wall (monotonic pushover in the -y direction with 

triangular inverse load pattern) 

       

Figure 8.12: P1, P3 walls of the BM model: numerical final DLs (monotonic pushover in the -y direction with triangular inverse 

load pattern)  
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Figure 8.13: Results of the nonlinear dynamic analysis Northridge 25 performed on the BM model with TREMURI 
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Figure 8.14: Results of the nonlinear dynamic analysis Petrovac 50 performed on the BM model with TREMURI 
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Figure 8.15: Results of the nonlinear dynamic analysis Petrovac 70 performed on the BM model with TREMURI 
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Figure 8.16: P4 - P1 corner of the BM-SR model: experimental [73] and numerical final DLs (monotonic pushover analysis in the 

+y direction with load pattern proportional to the masses)  

  

Figure 8.17: BM-SR model: shear-drift diagrams of the masonry piers of the P4 wall (monotonic pushover in the +y direction with 

load pattern proportional to the masses) 
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Figure 8.18: P4 wall of the BM-SR model: experimental [73] and numerical final DLs (monotonic pushover analysis in the +y 

direction with load pattern proportional to the masses)  

 

Figure 8.19: P2 – P3 corner of the BM-SR model: experimental [73] and numerical final DLs (monotonic pushover analysis in the 

+y direction with load pattern proportional to the masses) 

 

Figure 8.20: P5 wall of the BM-SR model: numerical final DLs and shear-drift diagrams of the masonry piers 55 and 56 (monoton-

ic pushover analysis in the +y direction with load pattern proportional to the masses) 
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Figure 8.21: P4 - P1 corner of the BM-SR model: experimental [73] and numerical final DLs (monotonic pushover analysis in the 

+y direction with triangular inverse load pattern)  

  

Figure 8.22: BM-SR model: shear-drift diagrams of the masonry piers of the P4 wall (monotonic pushover in the +y direction with 

triangular inverse load pattern) 
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Figure 8.23: P4 wall of the BM-SR model: experimental [73] and numerical final DLs (monotonic pushover analysis in the +y 

direction with triangular inverse load pattern)  

 

Figure 8.24: P2 – P3 corner of the BM-SR model: experimental [73] and numerical final DLs (monotonic pushover analysis in the 

+y direction with triangular inverse load pattern) 

 

Figure 8.25: P5 wall of the BM-SR model: numerical final DLs and shear-drift diagrams of the masonry piers 55 and 56 (monoton-

ic pushover analysis in the +y direction with triangular inverse load pattern) 

 



8 Appendix 

227 

 

Figure 8.26: Results of the nonlinear dynamic analysis Petrovac 180 performed on the BM-SR model with TREMURI 
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Figure 8.27: Results of the nonlinear dynamic analysis Petrovac 220 performed on the BM-SR model with TREMURI 
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Figure 8.28: Results of the nonlinear dynamic analysis Petrovac 260 performed on the BM-SR model with TREMURI 
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