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Abstract. A method to improve the energy efficiency of a bipedal walk-
ing robot by means of nonlinear elastic couplings between the robot’s
thighs is presented. The robot model consists of five rigid segments which
are connected by four actuated revolute joints in the hip and knees. The
walking movement is generated and stabilized by a nonlinear controller
based on the hybrid zero dynamics approach. The optimum walking gaits
and the optimum characteristic of the elastic coupling are identified via
numerical optimization whereby the energy consumption of locomotion
is minimized. Different walking speeds from 0.2 m/s to 1.4 m/s are con-
sidered in the study. According to simulations, the optimal nonlinear
elastic coupling reduces the mean energy consumption by 78 % over the
range of investigated speeds. This is significantly better compared to the
coupling with optimal linear torsion spring, which saves 62 % energy.
The free oscillations frequency of the swing leg under influence of the
elastic coupling is derived from a simplified pendulum model. This free
oscillations frequency closely matches with the double step frequency of
the robot at different walking speeds. The nonlinear elastic coupling gives
the robot the capability to walk in resonance at different speeds with a
very high energy efficiency.

Keywords: energy efficient robot, bipedal walking, numerical optimiza-
tion

1 Introduction

Bipedal robots are capable of walking in many different environments and have
therefore a wide range of applications. For example, humanoid robots are used for
supporting rescue missions in many natural disaster scenarios that are demon-
strated in the DARPA Robotics Challenge. Besides stabilizing the walking move-
ments, improving the energy efficiency of locomotion is another major challenge
in the development of these robots. An autonomous robot has to carry its en-
ergy source (e.g. a battery) which limits its operation time and range. Compared
to humans, even the latest developed humanoid walking robots such as Boston
Dynamics ATLAS and Honda Asimo show poorer energy efficiencies [1–3]. One
of the main reasons of the less efficient walking lies on the control strategies,
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whose major task is to generate and stabilize the walking motion. There are
many strategies focusing on different goals: e.g. the zero moment point (ZMP)
principle enforces a nearly static stability of each robot body during the move-
ment [4–6]. The controller focuses on giving the robot the capability to interact
with the environments but may sacrifice the energy efficiency of the periodic
movements like walking or running [7–9].

Other control strategies make use of the robot’s natural dynamics and al-
low for higher efficiencies. For example, hybrid zero dynamics (HZD) based
controllers stabilize periodic walking movements of underactuated robots. The
dynamics are similar to human walking which utilizes the system’s natural dy-
namics to achieve a high efficiency. The system’s natural dynamics, which are
preserved due to the underactuation, are influenced by the mechanical design
parameters. Coupling the robot’s segments with linear elastic torsion springs
significantly increases the energy efficiency [10–12]. A numerical optimization
process simultaneously optimizes the walking gaits as well as the elasticity of the
torsion spring to minimize the energy consumption of locomotion. This paper
investigates the influence of the elastic coupling’s nonlinearity on the efficiency
of walking using cubic splines to describe and optimize the spring characteristics.

2 Model of the robot and the nonlinear spring

Since the energy efficiency of locomotion mainly depends on the motion in the
walking direction [13, 14], the focus of the presented research lies on a planer
robot model whose lateral stabilizations are not considered. The robot model
consists of five rigid segments, representing an upper body, two thighs and two
shanks, which are connected by ideal revolute joints. Four electric motors in-
stalled at each joint provide the driving torque for the motion. The robot’s
thighs are coupled by a nonlinear torsion spring, whose characteristics are de-
scribed by cubic splines. The parameters of the cubic splines are considered as
mechanical design parameters of the robot.

As depicted in Fig. 1, the robot has periodic walking gaits that can be mathe-
matically described as a hybrid dynamic model including two alternating phases:
a single support phase (SSP) and a double support phase (DSP). In both walking
phases, point feet are modeled at the end of the shanks. Therefore, no torques
can be transmitted between the contacting leg and the ground. In the SSP, the
stance leg is in contact with the ground and the other leg swings forwards with-
out scuffing. The contact of the stance foot is modeled as an ideal revolute joint
without actuation, which gives the robot model one degree of underactuation.
The continuous motion in the SSP is described via differential equations. In the
DSP, a discrete mapping models an instantaneous impact of the swing leg with
the ground; at the same time, the former stance leg lifts off. Physical condi-
tions of walks without slipping, unilateral contacts and static frictions at the
contacting feet are ensured through further constraints.

A nonlinear controller generates and stabilizes the periodic walking gaits,
namely a limit cycle of the hybrid dynamic system [15, 16]. The angles of the
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Fig. 1. Left: In the single support phase (SSP), leg 1 is in contact with the ground and
leg 2 swings forwards. Right: In the double support phase (DSP), both legs instanta-
neously touch the ground. The former swing leg impacts the ground and the former
stance leg lifts off.

Table 1. Model parameters

upper body thigh shank simplified
model

moment of inertia (in kgm2) 0.15 0.02 0.01 0.27
mass (in kg) 6.00 2.00 0.98 2.98
length (in m) 0.55 0.30 0.30 0.60
center of mass position (in m) 0.21 0.13 0.16 0.24

four actuated joints are synchronized to a set of time-invariant reference trajec-
tories, described by Bézier polynomials with the parameters α. The remaining
one degree of underactuation, namely the absolute rotation of the whole robot
body about the contacting foot, is the controlled system’s hybrid zero dynamics,
if the error between the joint angles and the reference trajectories vanishes. Fur-
thermore, the required driving torques u = [u1, . . . , u4]

T in each electric motor
are calculated through inverse dynamics, considering the elastic torques that are
produced by the nonlinear torsion spring between the thighs.

In the mathematical description of the spring’s nonlinearity, cubic splines
show several advantages against high order polynomials. Cubic splines are smooth
functions, combined by piecewise third-order polynomials, which pass through a
set of control points (knots) [17]. Excluding the endpoints of the spline, whose
second derivatives are set to zero, the first and the second derivatives of the
knots are set equal to their neighborhoods. These boundary conditions uniquely
define the complete spline, which is also known as a natural cubic spline.
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It is assumed that the robot model is symmetric and its walking gaits are pe-
riodic. In this manner, the characteristic of the torsion spring between the thighs
is supposed to be centrally symmetric. According to simulations, the maximal
relative angle between the thighs of the robot without elastic couplings is 0.45 rad
at the walking speed of 1.4 m/s. Thus, the active deflections of the nonlinear tor-
sion spring are interpolated via splines in the interval of [-0.5, 0.5] rad; for larger
deflections beyond this range a linear extrapolation is used. The spline is de-
fined by a set of knots with the coordinates (ϕi, yi) for i = 0, ..., 10: [(−0.5,−m5),
(−0.4,−m4), (−0.3,−m3), (−0.2,−m2), (−0.1,−m1), (0, 0), (0.1,m1), (0.2,m2),
(0.3,m3), (0.4,m4), (0.5,m5)]. The nonlinear characteristic c(ϕ) of the nonlinear
torsion spring has the property of central symmetry and is defined by the set of
parameters M sp = (m1,m2, . . . ,m5)

T .

3 Simultaneous Optimization

Solving the closed loop walking motion is formulated as an optimization problem.
On the one hand, the robot’s walking gaits are defined by the Bézier parameters
α; on the other hand, the nonlinear characteristics of the torsion spring are
determined by the cubic spline with knots values Msp. While minimizing the
energy consumption of walking, both parameter sets α and M sp are optimized
simultaneously. The energy efficiency is optimized for different walking speeds
form 0.2 m/s to 1.4 m/s. Sequential quadratic programming (SQP) is used as the
optimization algorithms, which is mainly supported by the open source libraries
“NLop.jl” and “OSQP.jl” in the programming language Julia. All derivatives
required by the SQP algorithms are evaluated by automatic differentiation (AD)
using the library “ForwardDiff.jl”.

The objective of the numerical optimization is the energy consumption of lo-
comotion. This is evaluated by a dimensionless quantity cost of transport (COT ):
the total supplied energy divided by the walking distance and the robot’s weight.
DC servo motors including gear transmissions convert the electrical energy into
heat losses and mechanical energy. This work dosn’t consider the heat losses, that
are produced by the electric motor while it is maintaining static torques [11].
Furthermore, it is assumed that none of the generated electrical energy from the
DC motors can be recovered during their braking operations (generator mode).
So only positive mechanical power is considered in calculating

COT =

∑4
i=1

∫ t−

0
max(ui(t)q̇i(t), 0) dt

ℓstepmg
(1)

with the step length ℓstep and the total weight of the robot mg.
The physical conditions, that are introduced in Section 2, are considered as

constraints in the numerical optimization [10–12]. Besides the walking speed v,
which is enforced by an equality constraint g(x), other conditions are guaranteed
through a set of inequality constraints h(x). These are unilateral ground contacts;
the condition of static frictions at the contact; no scuffing of the swing foot and
no hyperextension of the knees.
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The characteristics of the torsion spring are assumed to be constant once it
has been manufactured and assembled. On the other hand, the walking gaits can
be changed by reprogramming the controller according to the desired operating
states. To identify the optimal elastic coupling for a range of walking speeds,
the mean COT by considering different walking speeds V = [v1 = 0.2, v2 =
0.3, . . . , vn = 1.4] m/s with the same spring characteristic is minimized. An
optimization problem is formulated for each desired walking speed vi with the
constraits gi(x) and hi(x). These problems are combined into an extended op-
timization problem with x = [M sp, α1, . . . , αn]. In this way, a nonlinear torsion
spring is identified that increases the overall energy efficiency at different walking
speeds.

4 Results and discussion

Fig. 2. The optimized cost of transport COT for different walking speeds from 0.2 m/s
to 1.4 m/s with and without elastic couplings.

The nonlinear elastic coupling shows significant improvements even compared
to a linear characteristic, as depicted in Fig. 2. In comparison to the robot
without any elastic couplings, the mean energy consumption is reduced by 78 %
for the investigated walking speeds. This is significantly better than using linear
torsion springs, which results in a mean reduction of 62 %. In Fig. 2, COT

represents the total positive mechanical work that is supplied to the walking
system from electric motors for compensating the energy losses to maintain the
periodic walking gaits. From the aspect of the energy balance, less energy losses
results in a high energy efficiency using nonlinear springs. Besides, the maximal
power of the electric motors is also reduced through the elastic coupling: without
torsion springs the total maximal electrical power of four DC motors is 157.70
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W at the speed 1.4 m/s; this is reduced to 71.63 W by using nonlinear springs.
This makes the downsizing of the electric motors possible in an early development
stage of any bipedal robots.

The optimal characteristic of the nonlinear torsion spring c(ϕ) (the optimal
parameter set Msp = [−1.89,−6.89,−24.82,−183.35,−798.69]T Nm) and the
optimal stiffness (k = 120.44 Nm/rad) of the linear torsion spring are presented
in Fig. 3. The deflections of the elastic couplings are equivalent to the relative
angle ϕ between the thighs, which can be derived from the kinematical rela-
tionships. The simulations generally show an approximately linear relationship
between the maximum relative angle of the thighs to the walking speed. At the
walking speed of 1.4 m/s, the maximal deflection angle of the nonlinear torsion
spring is 0.36 rad, which becomes 0.10 rad at 0.2 m/s; in the case of the optimal
linear torsion spring, 0.33 rad is reached at 1.4 m/s and 0.05 at 0.2 m/s.

Fig. 3. The optimized linear and nonlinear torsion springs. The active operating ranges
of the springs are plotted with solid lines.

During one step, the optimal nonlinear torsion spring provides little elastic
torques at smaller deflection angles, where the swing leg finds itself in the swing
period. At the beginning as well as the end of the step, the deflection angle
reaches its maximum in this step and the elastic torque increases dramatically.
This implies that the nonlinear spring tends to be activated only at the beginning
and the end of the step. According to the studies about the normal human walk
in [18] and [19], the muscles of the swing leg are mainly activated just right at the
beginning and end of one step. During the swing period in the middle of this step,
the muscles are normally inactive. In this sense, the optimized nonlinear torsion
spring acts in a way similar to the human muscles. The natural dynamics of the
swing leg are less suppressed through a nonlinear torsion spring during the swing
period. Also, this leads to a larger step length and therefore less steps required
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for the same walking distance: 0.20 m for using nonlinear torsion springs at the
speed of 1.4 m/s; 0.18 m for linear torsion springs. The increased elastic torque
decelerates the movement right before the swing leg touches the ground. In this
process, kinetic energy is stored as potential energy into the torsion spring, which
is reused for accelerating the robot at the beginning of the next step.

Fig. 4. Left: Simplified pendulum model for the analysis of the free oscillations fre-
quency of the system consisting of two rigid bodies coupled by a nonlinear torsion
spring. Right: Comparison of the derived free oscillations frequency of the pendulum
model (dashed line) to the double step frequency of the complete robot (solid line).

A closer study on the walking motion is employed based on a simplified com-
pound pendulum model in Fig. 4: both stance and swing leg are considered as
rigid rods, whose mechanical parameters are derived from the thigh and shank
of the formal complete robot model in Table 1. The stance leg is assumed to
be firmly attached to the ground and connected to the swing leg by the tor-
sion spring that is introduced in Fig. 3. The characteristic of the torsion spring
therefore determines the free oscillations frequency of the simplified pendulum
model. As the cubic spline c(ϕ) is defined by piecewise cubic polynomials, the
potential energy of the nonlinear spring is evaluated via integration:

V (ϕ) = −
∫ ϕ

0

c(ϕ) dϕ. (2)

No energy dissipation is considered, the sum of the kinetic energy and the po-
tential energy is constant

1

2
Joϕ̇

2 +mgr(1 − cos(ϕ)) + V (ϕ) = mgr(1 − cos(ϕMAX)) + V (ϕMAX) (3)

with the maximal deflection ϕMAX of the spring, where the velocity ϕ̇(ϕMAX) = 0
and Jo = Jsmp +msmpr

2
smp, with the model parameters given in Table 1. The
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angular velocity ϕ̇ is then given by

ϕ̇ =

√

2(mgr(cos(ϕ)− cos(ϕMAX)) + V (ϕMAX)− V (ϕ))

Jo
. (4)

The swing period T
4 , starting from the position ϕ(0) = 0 and ending at ϕ(T4 ) =

ϕMAX, of this nonlinear system can be determined via numerical integration

T

4
=

∫ ϕMAX

0
1
ϕ̇
dϕ =

√

Jo

2

∫ ϕMAX

0
1√

mgr(cos(ϕ)−cos(ϕMAX))+V (ϕMAX)−V (ϕ)
dϕ. (5)

The effective free oscillations frequency is given by feff = 1
T
. The effective fre-

quencies for the linear torsion spring flin and without any elastic coupling frobot
also follow from equation (5) by changing the elastic potential energy V (ϕ) ac-
cordingly.

As depicted in Fig. 4, the double step frequencies of the optimized gaits using
nonlinear springs are very close to the effective frequency feff of the correspond-
ing pendulum model at different walking speeds, i.e. at different amplitudes of
the spring. In contrast, the pendulum model containing linear or no springs has
an almost constant free oscillations frequency due to small oscillations ampli-
tude. Studies in [20] and [21] approach a nearly linear relationship between the
step frequency and the walking speed according to observations of the normal
human walk. Thus, the major effect of the optimized nonlinear torsion spring is
that the walking gaits and the characteristics of the spring are simultaneously
optimized in such a way, that the robot always walks near the resonance of the
system even at different walking speeds with a very high efficiency.

Fig. 5 illustrates that both linear and nonlinear torsion springs reduce the
energy losses while walking. These consist of two parts: the energy losses caused
by the inelastic impact of the swing leg on the ground in the DSP, and the
generated electrical energy from the electric motors in their braking operations,
which is mainly turned into heat. Since the periodic walking gaits are limit cycles
of the controlled system, any energy which is removed from the system due to
braking or impact losses has to be supplied by the electric motors at some time. In
all considered cases in Fig. 5, the impact losses are minimized by the optimization
algorithm. After the numerical optimization, the robot always brakes its motion
right before the impact in order to minimize the impact losses. This braking
torque must be provided through the electric motors in the case that the robot
has no elastic couplings. As described in Fig. 3, the spring contributes to the
braking operations at the right moments which greatly reduces the required
energy input by the electric motors.

5 Conclusion

A method to improve the energy efficiency of a bipedal walking robot is investi-
gated using nonlinear torsion springs characterized by cubic splines to couple its
thighs. The underactuated robot is controlled by a nonlinear controller based on
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Fig. 5. Top: Removed energy due to the braking mode of the electric motors. Bottom:
Energy losses due to the impact of the swing leg on the ground.

the hybrid zero dynamics approach. Its periodic walking gaits and the nonlin-
earity of the spring are determined simultaneously via numerical optimization,
during the process of minimizing the energy consumption. Through the opti-
mized nonlinear torsion spring, the mean energy consumption for walking speeds
from 0.2 m/s to 1.4 m/s is reduced by 78 %. This is significantly better than
an optimal linear spring that reduces 62 % of energy for the same conditions.
The nonlinear spring tends to be activated only at the beginning and the end
of one step, and remains silent during the swing period of the swing leg, which
functions in a way similar to the human muscles. The free oscillations frequency
of the swing leg is derived from a simplified pendulum model that is connected to
the environment over the nonlinear spring. The free oscillations frequency of the
pendulum model closely matches with the double step frequencies of the robot,
that has optimum gaits generated by the optimization, i.e. the robot walks in
resonance to achieve a very high energy efficiency at different walking speeds.
According to simulations, not only the optimal step lengths but also step fre-
quencies increase at larger walking speeds. This is in accordance with the studies
about the relationship between the normal human step frequency and walking
speeds.

In future works, the nonlinear elastic couplings between the other segments
of the robot will be investigated. The nonlinear characteristics are supposed to
be realized in praxis through compliant smart mechanisms [22]. The simulation
results will be validated on a prototype of the robot with the real nonlinear
torsion springs.
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