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Abstract

Atrial fibrillation is the most common cardiac arrhythmia. During atrial fibrillation,
the atrial substrate undergoes a series of electrical and structural remodeling
processes. The electrical remodeling is characterized by the alteration of specific
ionic channels, which changes the morphology of the transmembrane voltage
known as action potential. Structural remodeling is a complex process involving
the interaction of several signalling pathways, cellular interaction, and changes in
the extracellular matrix. During structural remodeling, fibroblasts, abundant in the
cardiac tissue, start to differentiate into myofibroblasts, which are responsible for
maintaining the extracellular matrix structure by depositing collagen. Additionally,
myofibroblasts paracrine signalling with surrounding myocytes will also affect
ionic channels.

Highly detailed computational models at different scales were used to study
the effect of structural remodeling induced at the cellular and tissue levels. At the
cellular level, a human fibroblast model was adapted to reproduce the myofibrob-
last electrophsyiology during atrial fibrillation. Additionally, the calcium handling
in myofibroblast electrophysiology was assessed by fitting a calcium ion channel
to experimental data. At the tissue level, myofibroblast infiltration was studied to
quantify the increase of vulnerability to cardiac arrhythmia. Myofibroblasts alter
the dynamics of reentry. A low density of myofibroblasts allows the propagation
through the fibrotic area and creates focal activity exit points and wave breaks
inside this area. Moreover, fibrosis composition plays a key role in the alteration
of the propagation pattern. The alteration of the propagation pattern affects the
electrograms computed at the surface of the tissue. Electrogram morphology was
altered depending on the arrangement and composition of the fibrotic tissue.

Detailed cardiac tissue models were combined with realistic models of the
commercially available mapping catheters to understand the clinically recorded
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signals. A noise model from clinical signals was generated to reproduce the
signal artifacts in the model. Electrograms from highly detailed bidomain models
were used to train a machine learning algorithm to characterize the atrial fibrotic
substrate. Features that quantify the complexity of the signals were extracted to
identify fibrotic density and fibrotic transmurality. Subsequently, fibrosis maps
were generated using patient recordings as a proof of concept. A fibrosis map
provides information about the fibrotic substrate without using a single cut-off
voltage value of 0.5 mV. Furthermore, in this study, using information theory
measurements such as transfer entropy combined with directed graphs, the wave
propagation direction was tracked. Transfer entropy with directed graphs provides
crucial information during electrophysiology to understand wave propagation
dynamics during atrial fibrillation.

In conclusion, this thesis presents a multiscale in silico study of atrial fibril-
lation mechanisms providing insight into the cellular mediators responsible for
the extracellular matrix remodeling and its electrophysiology. Additionally, it
provides a realistic setup to create in silico data that can be translated to clinical
applications that could support ablation treatment.
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Zusammenfassung

Vorhofflimmern ist die häufigste Herzrhythmusstörung. Während des Vorhofflim-
merns wird das Vorhofsubstrat einer Reihe von elektrischen und strukturellen
Umbauten unterzogen. Die elektrophysiologische Umgestaltung ist durch die
Veränderung spezifischer Ionenkanäle gekennzeichnet, die die Morphologie des
als Aktionspotential bekannten Transmembranspannungsverlaufs verändert. Die
strukturelle Umgestaltung ist ein komplexer Prozess, der die Wechselwirkung
mehrerer Signalwege, die zelluläre Wechselwirkung und Veränderungen in der
extrazellulären Matrix umfasst. Während des strukturellen Umbaus beginnen Fi-
broblasten, die im Herzgewebe reichlich vorhanden sind, sich in Myofibroblasten
zu differenzieren, die für die Aufrechterhaltung der extrazellulären Matrixstruktur
durch Ablagerung von Kollagen verantwortlich sind. Zusätzlich beeinflussen
parakrine Signale von Myofibroblasten mit umgebenden Myozyten auch die Io-
nenkanäle.

Hochdetaillierte Rechenmodelle in verschiedenen Maßstäben wurden verwen-
det, um die auf Zell- und Gewebeebene induzierte strukturelle Umgestaltung zu
untersuchen. Eine Anpassung eines menschlichen Fibroblastenmodells wurde auf
zellulärer Ebene vorgenommen, um die Elektrophysiologie von Myofibroblasten
während des Vorhofflimmerns zu reproduzieren. Zusätzlich wurde der Einfluss des
Calciumhandlings auf die Elektrophysiologie der Myofibroblasten durch Anpassen
des Calciumionenkanals an experimentelle Daten untersucht. Auf Gewebeebene
wurde die Infiltration von Myofibroblasten untersucht, um die Zunahme der Anfäl-
ligkeit für Herzrhythmusstörungen zu quantifizieren. Myofibroblasten verändern
die Dynamik hin zu pathologisch kreisenden Erregungen. Eine geringe Dichte
von Myofibroblasten ermöglicht die Ausbreitung der Depolarisationswelle durch
den fibrotischen Bereich und erzeugt fokale Aktivitätsaustrittspunkte und Wellen-
brüche innerhalb dieses Bereichs. Darüber hinaus spielt die Zusammensetzung
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der Fibrose eine Schlüsselrolle bei der Veränderung des Ausbreitungsmusters der
Depolarisationswelle. Die Änderung des Ausbreitungsmusters beeinflusst die an
der Oberfläche des Gewebes berechneten Elektrogramme. Die Elektrogrammmor-
phologie verändert sich in Abhängigkeit von der Anordnung und Zusammenset-
zung des fibrotischen Gewebes.

Detaillierte Herzgewebemodelle wurden mit realistischen Modellen der kom-
merziell erhältlichen Untersuchungskatheter kombiniert, um die klinisch aufgeze-
ichneten Signale zu verstehen. Ein Rauschmodell wurde aus klinischen Signalen
erstellt, um die Signalartefakte im Modell zu reproduzieren. Elektrogramme aus
hochdetaillierten Bidomainmodellen wurden verwendet, um einen Algorithmus
für maschinelles Lernen zur Charakterisierung des atrialen fibrotischen Substrats
zu trainieren. Merkmale, die die Komplexität der Signale quantifizieren, wurden
extrahiert, um die Dichte und Transmuralität der Fibrose zu identifizieren. An-
schließend wurden Fibrosekarten unter Verwendung von Patientenaufzeichnungen
als Proof of Concept erstellt. Die Fibrosekarte liefert Informationen über das
fibrotische Substrat, ohne den häufig klinisch verwendeten Grenzwert von 0,5
mV zu verwenden. Darüber hinaus wurde in dieser Studie unter Verwendung
von Messmethoden wie der Transferentropie aus der Informationstheorie in Kom-
bination mit gerichteten Graphen die Wellenausbreitungsrichtung verfolgt. Die
Transferentropie liefert in Kombination mit gerichteten Graphen wichtige elektro-
physiologische Informationen, um die Dynamik der Wellenausbreitung während
des Vorhofflimmerns zu verstehen.

Zusammenfassend stellt diese Arbeit eine In-Silico-Studie von der Zelle zu
detaillierten Herzgewebemodellen vor, die Einblicke in die zellulären Mediatoren
bietet, die für den Umbau der extrazellulären Matrix und ihrer Elektrophysiologie
verantwortlich sind. Darüber hinaus präsentiert die Arbeit eine Simulationsumge-
bung zum Erstellen von realistischen In-Silico-Daten, die in klinische Anwendun-
gen übersetzt werden können, um Ablationsbehandlungen zu unterstützen.
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Resumen

La fibrilación auricular es la arritmia cardíaca más común. Durante la fibrilación
auricular, el sustrato auricular sufre una serie de cambios o remodelados a nivel
eléctrico y estructural. La remodelación eléctrica se caracteriza por la alteración
de una serie de canales iónicos, lo que cambia la morfología del potential de trans-
membrana conocido como potencial de acción. La remodelación estructural es un
proceso complejo que involucra la interacción de varios procesos de señalización,
interacción celular y cambios en la matriz extracelular. Durante la remodelación
estructural, los fibroblastos que abundan en el tejido cardíaco, comienzan a difer-
enciarse en miofibroblastos que son los encargados de mantener la estructura de
la matriz extracelular depositando colágeno. Además, la señalización paracrina de
los miofibroblastos afecta a los canales iónicos de los miocitos circundantes.

Se utilizaron modelos computacionales muy detallados a diferentes escalas
para estudiar la remodelación estructural inducida a nivel celular y tisular. Se
realizó una adaptación de un modelo de fibroblastos humanos a nivel celular
para reproducir la electrofisiología de los miofibroblastos durante la fibrilación
auricular. Además, se evaluó la exploración de la interacción del calcio en la
electrofisiología de los miofibroblastos ajustando el canal de calcio a los datos
experimentales. A nivel tisular, se estudió la infiltración de miofibroblastos para
cuantificar el aumento de vulnerabilidad a una arritmia cardíaca. Los miofibrob-
lastos cambian la dinámica de la reentrada. Una baja densidad de miofibroblastos
permite la propagación a través del área fibrótica y crea puntos de salida de ac-
tividad focal y roturas de ondas dentro de esta área. Además, las composiciones
de fibrosis juegan un papel clave en la alteración del patrón de propagación. La
alteración del patrón de propagación afecta a los electrogramas recogidos en la
superficie del tejido. La morfología del electrograma se alteró dependiendo de la
disposición y composición del tejido fibrótico.
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Se combinaron modelos detallados de tejido cardíaco con modelos realistas de
los catéteres de mapeo disponibles comercialmente para comprender las señales
registradas clínicamente. Se generó un modelo de ruido a partir de señales clínicas
para reproducir los artefactos de señal en el modelo. Se utilizaron electrogramas
de modelos de dos dominios altamente detallados para entrenar un algoritmo
de aprendizaje automático para caracterizar el sustrato fibrótico auricular. Las
características que cuantifican la complejidad de las señales fueron extraídas para
identificar la densidad fibrótica y la transmuralidad fibrótica. Posteriormente, se
generaron mapas de fibrosis utilizando el registro del paciente como prueba de
concepto. El mapa de fibrosis proporciona información sobre el sustrato fibrótico
sin utilizar un valor único de corte de 0,5 milivoltios. Además, utilizando la
medición del flujo de información como la entropía de transferencia combinada
con gráficos dirigidos, en este estudio, se siguió la dirección de propagación del
frente de onda. La transferencia de entropía con gráficos dirigidos proporciona
información crucial durante la electrofisiología para comprender la dinámica de
propagación de ondas durante la fibrilación auricular.

En conclusión, esta tesis presenta un estudio in silico multiescala que propor-
ciona información sobre los mediadores celulares responsables de la remodelación
de la matriz extracelular y su electrofisiología. Además, proporciona una configu-
ración realista para crear datos in silico que pueden ser usados para aplicaciones
clínicas y servir de soporte al tratamiento de ablación.
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Resum

La fibril·lació auricular és l’arrítmia cardíaca més freqüent, en la qual el substrat
auricular patix una sèrie de remodelacions elèctriques i estructurals. La remod-
elació de tipus elèctric es caracteritza per l’alteració d’un conjunt de canals iònics
que modifica la morfologia del voltatge transmembrana, conegut com a potencial
d’acció. La remodelació estructural és un fenomen complex que implica la relació
entre diversos processos de senyalització, interaccions cel·lulars i canvis en la
matriu extracel·lular. Durant la remodelació estructural, els abundants fibroblasts
presents en el teixit cardíac comencen a diferenciar-se en miofibroblasts, els quals
s’encarreguen de mantenir l’estructura de la matriu extracel·lular dipositant-hi
col·lagen. A més, la senyalització paracrina dels miofibroblasts amb els miòcits
circumdants també afectarà els canals iònics.

Es van utilitzar models computacionals molt detallats a diferents escales per
estudiar la remodelació estructural induïda a nivell tissular i cel·lular. Es va fer
una adaptació a nivell cel·lular d’un model de fibroblasts humans per reproduir-
hi l’electrofisiologia dels miofibroblasts durant la fibril·lació auricular. A més,
l’exploració de la interacció del calci amb l’electrofisiologia dels miofibroblasts
va ser avaluada mitjançant l’adequació del canal de calci a les dades experimentals.
A nivell tissular es va estudiar la infiltració de miofibroblasts per tal de quantificar
l’augment de vulnerabilitat que això conferia per patir una arrítmia cardíaca.
Els miofibroblasts canvien la dinàmica de la reentrada, i presentar-ne una baixa
densitat permet la propagació a través de la zona fibròtica, tot creant punts de
sortida d’activitat focal i trencaments d’ones dins d’aquesta àrea. A més, les
composicions de fibrosi tenen un paper clau en l’alteració del patró de propagació,
afectant els electrogrames recollits en la superfície del teixit. La morfologia dels
electrogrames es va veure alterada en funció de la disposició i la composició del
teixit fibròtic. Per comprendre els senyals clínicament registrats es van combinar
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models detallats de teixits cardíacs amb models realistes dels catèters de cartografia
disponibles comercialment. Es va generar un model de soroll a partir de senyals
clínics per reproduir-hi els artefactes de senyal. Es van utilitzar electrogrames
de models de bidominis molt detallats per entrenar un algoritme d’aprenentatge
automàtic destinat a caracteritzar el substrat fibròtic auricular. Les característiques
que quantifiquen la complexitat dels senyals van ser extretes per identificar la
densitat i transmuralitat fibròtica. Posteriorment, es van generar mapes de fibrosi
mitjançant la gravació del pacient com a prova de concepte. El mapa de fibrosi
proporciona informació sobre el substrat fibròtic sense utilitzar un sol valor de
tensió de tall de 0,5 mV. A més, utilitzant la mesura del flux d’informació com
l’entropia de transferència combinada amb gràfics dirigits, en aquest estudi es va
fer un seguiment de la direcció de propagació de l’ona. L’entropia de transferència
amb gràfics dirigits proporciona informació crucial durant l’electrofisiologia per
entendre la dinàmica de propagació d’ones durant la fibril·lació auricular.

En conclusió, aquesta tesi presenta un estudi multi-escala in silico que propor-
ciona informació sobre els mediadors cel·lulars responsables de la remodelació
de la matriu extracel·lular i la seva electrofisiologia. A més, proporciona una
configuració realista per crear dades in silico que es poden traduir a aplicacions
clíniques que puguen donar suport al tractament de l’ablació.
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Chapter 1
Introduction

1.1 Motivation

Atrial fibrillation (AF) is the most common arrhythmia and is characterized by
irregular electrical activity. The estimated worldwide prevalence of AF in adults is
between 2% and 4%, and undiagnosed AF is expected to increase 2.3-fold in the
general population. Increasing age is a prominent AF risk factor, but other comor-
bidities (arterial hypertension, diabetes mellitus, obesity, autoimmune diseases,
among others) are potent contributors to AF development and progression [1].
However, AF development and maintenance resulting from the interaction with
substrate remodeling known as fibrosis is still under study.

The atrial substrate is a complex structure composed of approximately 75%
cardiac myocytes of the tissue volume [2]. The remaining 25% of the volume can
contain different types of cells, i.e., non-cardiomyocytes, that can be electrically
connected and could affect cardiac electric propagation [3–6].

During persistent atrial fibrillation, the atrial substrate undergoes electrical and
structural remodeling. This involves ion channel remodeling [7], fibroblast differ-
entiation [8], changes in the extracellular matrix and inflammatory processes [9].
Inflammatory signaling plays a key role in the electrical and structural remod-
eling [10], causing alteration of the action potential [11] and differentiation of
fibroblasts into myofibroblasts [12, 13]. Myofibroblasts are the cells responsible
for maintaining the extracellular matrix and can be electrically connected to the
cardiac myocytes [8, 14, 15].
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This heterogeneity of the atrial substrate alters the cardiac propagation wave-
front, and the dynamics of arrhythmia [16]. Electro-anatomical mapping of the
atrial tissue gives a global overview of different patterns of propagation and shows
regions that are associated with fibrosis or structural remodeling [17, 18]. Dif-
ferent characteristics of the cardiac tissue can change the dynamics of excitation
propagation and alter arrhythmia patterns and affect the morphology of the intrac-
ardiac signals. Fractionation of electrograms and a single cut-off voltage value of
0.5 mV are used in clinical practice to define low voltage areas but might be not
sufficient to characterize the cardiac substrate [19].

Based on electrogram features at the surface of the tissue, Campos et al.
classified different fibrosis types using in silico experiments [20]. However,
quantification of fibrotic volume fraction and transmurality in the atrial substrate
has not been reported yet. Data-driven approaches can help to overcome the use
of a single voltage cut-off value to characterize the cardiac fibrotic substrate based
on a more comprehensive, holistic set of criteria.

Additionally, structural modified cardiac substrate alters the propagation. Dur-
ing persistent AF, the electrical activity is chaotic, and the identification of the
wavefront propagation is not trivial. Granger causality has been proposed as a mea-
surement that globally characterizes the organization of the wavefront propagation
and maps rotational drivers using low spatial resolution sequentially acquired
data [21]. However, it requires sequentially recorded segments longer than 2.5
seconds, which are not commonly found in clinical electrophysiology studies.
Transfer entropy quantifies the electrogram’s information flow and can be used to
characterize the wavefront propagation for short recorded segments.

Computational modeling provides a better insight into the mechanistic role of
fibrotic tissue characteristics in the initiation and maintenance of arrhythmias [22].
Recently, detailed computational models of the atria have been applied to under-
stand the fibrotic tissue composition and their effect on the electrical propaga-
tion [23–25] as well as the electrograms collected over these regions [22, 26, 27].
Relevant characteristics of the electrograms can show how tissue heterogeneities
influence their morphology [28] and help on future therapies [17, 29].
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1.2 Objectives of the Thesis

The main objective of this thesis is to study the electrical propagation in the atrial
substrate in patients with atrial fibrillation using in silico experiments and data-
driven techniques. Computer modeling and simulation will allow to reproduce
the biophysical phenomena of the electrical propagation at different levels and
data-driven techniques help to characterize the fibrotic substrate from electrogram
signals and create maps that could be used to guide ablation therapies.

More specifically, this thesis aims to achieve a better understanding of the
following research questions:
◦ Characterization of the fibroblast/myofibroblast electrophysiology and its

impact on atrial myocyte action potential.
◦ Analysis of the role of calcium channels in myofibroblast electrophysiology

and its intracellular calcium handling system.
◦ Quantification of the impact on arrhythmogenicity of myofibroblast infiltra-

tion in atrial tissue during atrial fibrillation.
◦ Investigation of fibrosis composition and the effect on electrogram signals.
◦ Analysis of the use of electrogram signals to characterize fibrotic substrate.
◦ Investigation of the use of non-parametric measurements to understand the

electrical propagation in cardiac tissue.

1.3 Structure of the Thesis

Part I presents the motivation, the necessary medical and technical fundamentals,
and the state of the art to put the research described in this thesis into context.
◦ Chapter 2 provides an overview of cardiac anatomy and the pathophysiology

of AF and fibrosis.
◦ Chapter 3 reviews the computational models used in this thesis.
◦ Chapter 4 gives an overview of the clinical electro-anatomical systems used

in electrophysiological studies.

Part II describes the in silico experiments to understand myofibroblast elec-
trophysiology that conforms fibrotic tissue.

3



Chapter 1. Introduction

◦ Chapter 5 shows the results obtained using the myocyte model adaptation
to simulate electrophysiological heterogeneity.
◦ Chapter 6 contains the simulation results of fibroblasts coupling to human

atrial myocytes.
◦ Chapter 7 contains the in silico experiments of myofibroblast electrophysi-

ology.

Part III describes the tissue level simulations, which analyze fibrosis’s influ-
ence on the wave front propagation.
◦ Chapter 8 shows the effect of myocyte-myofibroblast coupling in the atrial

tissue during atrial fibrillation.
◦ Chapter 9 contains the simulation results of the fibrotic tissue composition

and the effect on electrograms signals.
◦ Chapter 10 shows the importance of using a realistic geometry of catheters

in the in silico experiments.
◦ Chapter 11 shows the use of in silico simulations and machine learning to

characterize the atrial fibrotic tissue composition.
◦ Chapter 12 shows the results of using a non-parametric statistic measure-

ment to characterize the electrical propagation in cardiac tissue.

Part IV describes the translation of the created models to clinical applications
to identify and characterize fibrotic substrate and wave front propagation.
◦ Chapter 13 gives an overview of the application of fibrosis maps to guide

ablation therapies.
◦ Chapter 14 gives an overview of the directed graph information flow vector

field map to show the electrical propagation in clinical data.

Part V presents the conclusions and possible future works from this thesis.
◦ Chapter 15 concludes the use of in silico studies and the translation to

clinical applications.
◦ Chapter 16 gives a brief outlook for future studies.

During my research at the KIT and at the UPV, I published one journal paper,
eight conference contributions as first author, and an additional journal publication
is under review. As a co-author, two journal papers, one conference contribution
were published, and an additional journal publication is under review. Moreover,
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1.3. Structure of the Thesis

I supervised four student final degree theses that partly form the basis of the
work presented here. Both publications and student theses are referenced in the
corresponding sections of this thesis.
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Chapter 2

Medical fundamentals

2.1 Atrial anatomy and physiology

In this chapter, the fundamentals of cardiac anatomy, physiology, modeling,
and electro-anatomical mapping are described. These concepts are essential to
understand the studies presented in the subsequent parts and to put them into
context. After a brief description of atrial anatomy and physiology, cardiac
electrophysiology is summarized. Then, the state of the art in clinical mapping
systems is presented. For a more in-depth introduction to the different topics,
interested readers are referred to the cited bibliography.

2.2 Atrial fibrillation

Atrial fibrillation (AF) is a global health care issue, with an increasing prevalence
and incidence worldwide. Several theories have been proposed for the AF increase,
including the rising prevalence of AF risk factors such as obesity, diabetes, auto-
immune diseases, and aging of the population (Figure 2.1).

During AF the atrial substrate undergoes an electrical and structural remodel-
ing which increases the tissue’s vulnerability to fibrillation initiation and mainte-
nance. As a consequence of AF, an increased risk of stroke and transient ischemic
attack have been reported. Furthermore, AF-related strokes could lead to long-
term disability or death.
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Figure 2.1: Atrial fibrillation risk factors can originate or modify the cardiac substrate. Atrial
fibrosis, inflammatory mediators, cellular, and molecular changes can modify the substrate
arising an electrical and structural remodeling and the development of additional risk factors
and cardiovascular diseases. Atrial fibrillation is not a deadly arrhythmia but increases the risk
of stroke, heart failure, myocardial infarction, dementia, and others. Adapted from [30]

2.3 Anatomy of the human heart

The heart is a four chamber hollow organ whose main function is to pump blood
into the circulatory system. The human heart lies within the thorax, posterior to
the sternum and costal cartilages, and rests on the diaphragm’s superior surface.
The heart occupies a space between the two lungs in an oblique position, with
two-thirds to the left of the thorax’s midline.

The pericardium is a serous membrane that surrounds the heart. In the inferior
region, the pericardium is attached to the diaphragm. In the anterior region, the
superior and inferior pericardiosternal ligaments fix the pericardium to the sternum.
The pericardial space contains a lubricating substance called pericardial fluid.

The two upper chambers, i.e. the atria, work as collecting chambers; the two
lower chambers, i.e. the ventricles, pump blood out of the heart. The septum
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separates the heart into the left and right sides. The right side collects the blood
coming from the circulatory system and pumps the blood for oxygenation. The
oxygenated blood comes from the lungs to the heart’s left side, which pumps the
blood back to the circulatory system (Figure 2.2).

Figure 2.2: Anatomy and blood flow of the human heart. Blue arrows indicate the blood flow
direction from the circulatory system with deoxygenated blood to the right atrium through
the superior and inferior vena cava. Deoxygenated blood then passes to the right ventricle,
which pumps the blood to the lungs through the pulmonary artery. Red arrows indicate the
blood flow of oxygenated blood from the lungs to the left atrium through the pulmonary veins.
Oxygenated blood passes to the left ventricle, and then it is pumped back to the circulatory
system through the aorta.

The right atrium has three anatomically distinct regions: the posterior wall,
the anterior wall, and the interatrial septum. The posterior portion has a smooth
wall and holds most of the structures of the right atrium. It receives blood through
both the superior and inferior vena cavae and the coronary sinus. It also contains
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the fossa ovalis, the sinus node, and the atrioventricular node. The wall of the
anterior portion of the right atrium is lined with horizontal, parallel ridges of
muscle bundles called pectinate muscles.

The right ventricle wall has abundant, coarse trabeculae carnae. The right
ventricle is communicated with the right atrium through the tricuspid valve. The
right ventricle communicates with the lungs through the pulmonary trunk.

The left atrium receives the oxygenated blood from the lungs through the left
and right pulmonary veins. The pulmonary veins typically enter the heart as two
pairs of veins inserting posteriorly and laterally into the left atrium (individuals
with 3 or 5 pulmonary veins have also been identified). The posterior and anterior
walls of the left atrium are smooth. The left atrial appendage is characterized by
pectinate structures similar to the ones found in the right atrium.

The left ventricle communicates with the left atrium through the mitral valve.
The left ventricle, as the right ventricle, has abundant trabeculae carneae. In
contrast to the right ventricle, the muscular ridges tend to be relatively thin.
However, the myocardium in the left ventricle wall is much thicker than the right
one due to the amount of force that needs to be developed to pump the blood into
the circulatory system.

2.4 Histology of the heart

The atrial substrate is a complex structure composed of approximately 75%
cardiac myocytes of the tissue volume [2] and the remaining 25%, i.e., non-
cardiomyocytes [3–6].

Myocytes in the myocardium are organized in bundles, separated by perimysial
fibrous tissue. Within these bundles, strands of myocytes can be separated from
each other by endomysial fibrous tissue. Structural remodeling due to heart disease
is often associated with fibrosis and increased transverse fiber separation. In the
atria, fibrosis between myofibers increases in volume with aging.

Single myocytes are nucleated specialized muscle cells with an almost cylin-
drical shape of 100 µm length and 10-25 µm diameter. However, in reality,
myocytes have an irregular ellipsoidal shape and align along their principal axis.

Histological cuts from atrial tissues from animals with persistent AF using
Masson’s trichrome stain demonstrated a significant increase in diffuse collage-
nous stroma in the atria compared to controls (11.01±2.87% and 3.08±0.77%;
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P < 0.01) [31]. Cardiac healthy tissue presents a lower amount of collagenous
fibers. Cardiac cells are electrically connected through channels known as gap
junctions allowing action potentials to spread through the cardiac tissue.

Fibroblasts play a critical role in wound healing in various organs such as
skin, lungs, liver, heart, among others. Fibroblasts’ contribution to wound healing
includes migration, differentiation, and recruitment of inflammatory cells. Differ-
entiated fibroblasts in the heart are known as myofibroblasts and are responsible
for secreting the extracellular matrix in response to injury signals. They secrete
large amounts of matrix proteins, including collagen type I, collagen type III,
collagen type IV, periostin, and fibronectin (Figure 2.3).

Morphologically, myofibroblasts are spindle shaped cells with large endo-
plasmic reticulum organelles. The characteristics of myofibroblasts are the ex-
pression of alpha-smooth muscle actin (αSMA) and the intermediate filament
desmin. While these characteristics are well known, the electrophysiology and
the molecular mechanisms in myofibroblast transdifferentiation in vivo are not
well understood.

Figure 2.3: Fibroblasts (top left corner) are cells that can differentiate by different trigger-
ing stimuli. On the one hand, mechanical tension can differentiate fibroblasts into proto-
fibroblasts (top right corner), which can also differentiate into myofibroblasts. On the other
hand, mechanical tension or inflammatory cytokines can directly differentiate fibroblasts into
myofibroblasts. Moreover, after the stimulus is over, some myofibroblasts can differentiate
back into fibroblasts.

In patients with AF, various degrees and forms of atrial fibrosis can be found,
which results in conduction disturbances. Atrial fibrosis may be sufficient to
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increase AF vulnerability, as shown in mice with selective atrial fibrosis due to
overexpression of TGF-β1, a cytokine that is expressed during the inflammatory
process [13]. The inflammatory process triggers the differentiation of fibrob-
lasts into myofibroblasts. Myofibroblasts start depositing the extracellular matrix
that underlie the structural remodeling and are obstacles for electrical propaga-
tion. Additionally, myofibroblasts can be electrically connected and introduce
depolarization and repolarization heterogeneities within the cardiac tissue.

2.5 Eletrophysiology of the heart

At the microscopical level and under physiological conditions, the distribution of
ions in the extracellular and intracellular medium across the cell membrane yields
a resting membrane potential of approximately -80 mV in cardiac cells. Ions can
move across the membrane through specific ion channels that can open and close
in response to changes in membrane potential or ligands binding to receptors
associated with the channel. The orchestrated interaction of the ion channels
leads to a characteristic transmembrane potential waveform known as the action
potential. The action potential can be divided into four phases concerning the flux
of ions across the membrane (Figure 2.4 (blue trace)). Phase 4 corresponds to the
resting potential. Phase 0 is the phase of rapid depolarization. The membrane
potential shifts into a positive voltage range, mainly characterized by an influx
of sodium ions. Phase 1 is the phase of rapid repolarization characterized by an
efflux of potassium ions. Phase 2, the plateau phase, is the longest phase. It is
unique among excitable cells and marks the phase of calcium entry into the cell
and potassium efflux. Phase 3 is the phase of rapid repolarization that restores the
membrane potential to its resting value. Gap junctions allow action potentials to
spread through the cardiac tissue in a coordinated manner.

During AF, cardiomyocytes undergo an electrical remodeling of ion channels,
which will shorten the action potential (Figure 2.4 (red trace)). Experimental
studies have revealed a decrease in ICaL, Ito, Isus, and IKur currents as factors
underlying action potential shortening. It has also been observed an increase in
IK1. Additionally, several studies have reported alterations in the proteins that
form the gap junctions connexin 40 (Cx40) and/or connexin 43 (Cx43) in patients
with AF. Other studies have reported lateralization of connexins, with an increased
heterogeneity in Cx40 distribution and a reduction of Cx43 [32].
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Figure 2.4: Physiologaical human atrial action potential (blue trace) and persistent atrial fib-
rillation action potential (red trace). The four characteristic phases of the action potential are
shown with the main ion flux. Cardiac myocytes are in a resting state (Phase 4) mainly main-
tained by K+. When the cell is stimulated, it depolarizes (Phase 0) characterized by an influx
of Na+. It is followed by rapid repolarization (Phase 1) and a plateau phase (Phase 3). The cell
then recovers its resting state (Phase 4).

At the macroscopical level (Figure 2.5), the electrical activation of the heart
starts at the sinus node. Sinus node cells are self-excitatory pacemaker cells. The
activation propagates throughout the right atrium and to the left atrium through
Bachmann’s bundle from the sinus node. The atrioventricular node (AV node),
located at the atria and ventricles boundary, provides the only conducting path from
the atria to the ventricles. A specialized conduction system provides propagation
from the AV node to the ventricles. This system is composed of a common bundle,
called the bundle of His, which separates into two bundle branches propagating
along each side of the septum, constituting the right and left bundle branches. The
ventricular myocardium activation is performed from the apex to the base and
from the endocardial side to the epicardial side.
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Figure 2.5: The heart’s electrical activation starts at the sinus node, which is located in the
right atrium. The depolarization wave travels across the right atrium to the atrioventricular
node and the left atrium across the Bachmann’s bundle. The depolarization wave passes to
the ventricle from the atrioventricular node to the bundle of His. Its distal section splits into
the left and right bundle branches and into the Purkinje fibers, which activate the ventricular
myocardium.
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Figure 2.6: Late-gadolinium enhanced magnetic resonance and histological cuts from hearts
that suffered from atrial fibrillation. a) Low density of fibrosis, where magenta color indicates
cardiacmyocytes in the tissue. b)Mid-fibrosis densitywhere the amount of collagen (blue)was
increased in the histological cut. c) High fibrosis density, histological cut reveals a considerable
amount of collagen present in the tissue and a few cardiac myocytes. Adapted from [33].
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Fibrosis, considered as structural remodeling of the cardiac substrate, can
notably alter the electrical propagation (Figure 2.6). Fibrotic tissue has been
shown to attract and anchor rotational activity. However, it is still unclear how
fibrosis alters atrial fibrillation dynamics and increases the vulnerability to atrial
fibrillation.
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Chapter 3

Computational modeling of
cardiac electrophysiology

In this chapter, the basic concepts of computational models of cardiac electrophys-
iology are introduced. The mathematical formulations cover different scales from
single cell ion channel to the tissue level of the electrical propagation and forward
calculation of the intracardiac signals.

3.1 Cardiac cell modeling

In 1952 Alan Hodgkin and Andrew Huxley were the first scientists to describe
the ionic mechanisms underlying the action potential initiation in the squid giant
axon [34]. The neuron cell was modeled using an analogy to an electric circuit
where the cell membrane is represented as a capacitor. Ion channels are represented
as variable conductances. Specific ions can flow through ion channels driven by
the electrochemical gradient, represented by voltage sources, and current sources
representing ion pumps. The transmembrane voltage is determined by the sum of
all currents across the membrane as described in Eq 3.1.

Im =Cm
dVm

dt
+Σχ Iχ (3.1)

where Im is the total current across the cell membrane, Cm is the cellular
membrane capacitance, dVm

dt is the derivative of the transmembrane voltage with
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respect to the time, and Iχ is the ion current flow for a specific ion species (Na+,K+,
Ca2+).

In the Hodgkin-Huxley formulation, channel conductance is assumed to be
controlled by gates that take on values between zero and one, representing the
cells’ portion in one state. Since cells have thousands of ion channels, the current
flow produced by ion species passing through a channel is described by Eq. 3.2

Iχ = gχ ∏
n

ηn(Vm−Eχ)

where gχ is the maximum conductance of the channel and ηn is a product of
all gating variables. The gating variable is assumed to follow first order dynamics
(Eq. 3.2).

dη

dt
= α(Vm)(1−η)−β (Vm)η =

η∞(Vm)−η

τη(Vm)

where α and β are rates which can be cast into an equivalent form of a steady
state value (η∞) and a rate of change (τη).

3.2 Tissue and organ modeling

As previously mentioned in chapter 2, cardiac cells are electrically connected via
gap junctions. The mathematical model that describes the electrical propagation’s
biophysical phenomena in cardiac tissue is known as the bidomain model. The
bidomain model represents cardiac tissue as a homogeneous medium of the
intracellular and the extracellular domains. The two computational domains
coexist in the bidomain model and occupy the same geometrical space.

∇ · (σi∇φi)) = β Im (3.2)

∇ · (σe∇φe)) =−β Im− Ie,s (3.3)

Im =Cm
∂Vm

∂ t
+ Iion(Vm,ν)− Itrans (3.4)

Vm = φi−φe (3.5)
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φ represents the electrical potential, the indices i and e refer to the intracellular
and extracellular spaces, respectively. σ is the conductivity tensor, β is the surface
to volume ratio of the myocytes, and Iion the total transmembrane ionic current
density from the cellular model. The latter is dependent on Vm and a vector ν of
further state variables. Itrans, a transmembrane current density stimulus, and Ie,s,
an extracellular current density, describe external stimuli. If a bath surrounds a
tissue, the bath is treated as an extension of the extracellular space.
Adding (3.2) and (3.3) and incorporating it into (3.5) yields:

∇ · (σi +σe)∇φe =−∇ · (σi∇Vm)− Ie,s (3.6)

∇ · (σi∇Vm) =−∇ · (σi∇φe)+β Im (3.7)

The monodomain model assumes that the intra- and extracellular domains
have equal anisotropy ratios. Although it is a simplification of the bidomain model,
it is still valid to study the electrical propagation in the cardiac tissue.

In case of equal anisotropy ratios, the tensors can be related by a scalar, λ ,
such as in Eq 3.8.

σe = λσi (3.8)

we can recast the bidomain equation in a simpler form. Plugging Eq. 3.8 into
3.2 and using 3.5 yields

∇ ·σi∇φi = β Im− Ii (3.9)

∇ ·σi∇φe = ∇ ·σi∇φi−∇ ·σi∇Vm =− 1
λ
(β Im + Ie). (3.10)

Subtracting 3.10 from 3.9 and multiplying with λ/(1+λ ) results in

λ

1+λ
∇ ·σi∇Vm = β Im +

1
1+λ

Ie−
λ

1+λ
Ii. (3.11)

Now, subtract 3.9 from 3.11 to obtain

λ

1+λ
∇ ·σi∇Vm = β Im +

1
1+λ

Ie−
λ

1+λ
Ii︸ ︷︷ ︸

−β Itr

. (3.12)
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(1+λ )∇ ·σi∇φe =−∇ ·σi∇Vm− Ie− Ii (3.13)

As indicated in Eq. 3.12, the combined effect of the intracellular and extracellu-
lar injected stimulus currents can be interpreted as a depolarizing transmembrane
stimulus if we define

Itr =−
1
β

(
1

1+λ
Ie−

λ

1+λ
Ii

)
. (3.14)

The choice Ie =−Ii at any given site is equivalent to a transmembrane current
stimulus of strength Ii/β , that is,

β Itr =−
(

1
1+λ

Ie−
λ

1+λ
Ii

)
=−

(
− 1

1+λ
Ii−

λ

1+λ
Ii

)
=−

(
−1+λ

1+λ
Ii

)
= Ii.

(3.15)
This is consistent with the assumption that the injection of a positive current Ii

into the intracellular space increases φi which exerts a depolarizing effect upon
Vm = φi−φe.

In this case the current terms in Eq. 3.13 cancel out. As expected, any cur-
rent injected in one domain is withdrawn at the same spot in the other domain.
Therefore no current flow occurs as a consequence of Ie or Ii and no extracellular
potential field is set up. All changes in φe are caused indirectly then via changes
in Vm.

Eqs. 3.12-3.13 reveal that, unlike in the bidomain model where σe 6= λσi

holds, the temporal evolution of the transmembrane voltage in Eq. 3.12 is fully
independent of φe. Hence, if only the evolution of Vm is of interest, only Eq. 3.12
needs to be solved, but not the elliptic PDE given by 3.13 which is a more
expensive task. For more detailed considerations we refer the reader to the report
by Nielsen et al [35].

The monodomain model is an approximation which can be used whenever the
effect of extracellular fields upon tissue polarization can be ignored. As mentioned
above, since the temporal evolution of the Vm in Eq. 3.12 is fully independent
of φe, any changes in the extracellular potential fields cannot exert any influence
upon Vm.

Therefore, under the assumption of equal anisotropy ratios one needs to solve
only the parabolic PDE above with the intracellular conductivity set to twice the
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harmonic mean, σiσe(σi +σe)
−1. This yields

∇ · (σm∇Vm) = β Im +β Itr (3.16)

where the bidomain equivalent monodomain conductivity σm is given as

σm = σiσe(σi +σe)
−1. (3.17)

Simulations were run using two different software packages. One of the
software was developed during this thesis in the UPV, in which the source code
was based on the acceleration of the cardiac monodomain simulations using
GPUs [36]. As part of the research project at KIT, simulations were then migrated
and extended to bidomain simulations and ran under the developed software
openCARP (www.opencarp.org) [37, 38].
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Chapter 4
Electro-anatomical mapping

In this chapter, an introduction to clinical electro-anatomical mapping systems
is presented. An overview of mapping catheters, intracardiac signals, and maps
generated to guide ablation therapies is given.

4.1 Intracardiac signals

Single electrodes capture the extracellular potential in respect to a far away refer-
ence ground electrode. These recorded signals are known as unipolar electrograms.
Unipolar electrograms are strongly affected by different artifacts from the patient
and the recording system, and by the clinical environment.

The difference between two signals from neighboring electrodes constitutes a
bipolar electrogram, which is the most common waveform used during a typical
clinical electrophysiology study.

The main advantage of bipolar recordings is far-field rejection. Far-field
artifacts present in a unipolar signal are removed from the bipolar signal because
each electrode of the bipolar pair perceives a similar far-field voltage signal.
Consequently, using a high-pass filter with a higher cut-off frequency, such as 30
Hz, for bipolar signals helps minimize baseline drifts/shifts, with no further loss
of information. One of the drawbacks of using bipolar electrograms is that they
are affected by the orientation of the electric propagation wavefront.

In the last years, omnipolar electrograms have emerged with the advantage of
overcoming the directional dependence of the bipolar electrogram. The omnipolar
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electrogram calculation looks at all possible bipolar electrode orientations and
obtains the electrode orientation–independent electrograms along the maximal
bipolar direction.

4.2 Mapping catheters

Available mapping catheters have different shapes and electrode characteristics
depending on the manufacturer (Figure 4.1). In silico experiments have shown
that different electrode sizes can influence the recorded voltage [39]. Smaller
electrodes typically result in sharper and shorter EGM duration. Therefore, the
amplitude of a bipolar electrogram depends on the electrode size, the angle of
incidence between the catheter and tissue [40], and the orientation of the bipole
relative to the wavefront propagation. The design of most multi-electrode catheters
with small electrodes allows reducing the influence of the angle of incidence.
Computer and animal models suggest an optimal spatial resolution with electrodes
sizes of 1 mm.

Commercially, there are several mapping catheters that are commonly used in
the daily clinical practice for an electrophysiological study. Table 4.1 summarizes
the characteristics of the electrode, such as size, interelectrode space, and diameter
of the catheters used in this thesis.

Table 4.1: Commercially available cardiac mappping catheters

Model Manufacturer Number of
electrodes

Electrode
size (mm)

Spacing
(Edge to
Edge)

Spacing
recorded
(Center to
Center)

Lasso Biosense
Webster

20 1 2-6-2 3

HD Grid Abbott 16 or 32 1 3 4
IntellaMap
Orion

Boston
Scientific

64 0.9x0.45 1.6 2.5
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4.3. Clinical maps

Figure 4.1: Commercially available mapping catheters. A) Circular loop catheter; B, Five-
splined catheter (PentaRay, BiosenseWebster); C, Linear catheter (Decapolar, BiosenseWeb-
ster); D, Grid catheter (HD Grid, Abbott); E, Mini-basket catheter (Orion, Boston Scientific); F,
Basket catheter (Constellation, Boston Scientific). Adapted from [41].

4.3 Clinical maps

The electro-anatomical mapping system is a fundamental tool for guiding ablation
procedures. The term electro-anatomical mapping is related to the assignment
and displays encoded information (i.e., voltage, activation time) according to its
spatial coordinates.

The distribution of voltage on the cardiac surface is used to identify patho-
logical tissue or fibrotic areas with a cut-off value. In the ventricle, Marschlinski
et al. [42] using an ablation catheter with a large tip, determined a low voltage
cut-off value ranging from 0.5 mV to 1.5 mV in ischemic regions. Other studies
have validated the threshold of 1.5 mV in animal models of transmural myocardial
infarction. However, for fibrosis, only post-infarct scars have been validated.
Whole-heart histology in non-ischaemic cardiomyopathy has highlighted that no
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Chapter 4. Electro-anatomical mapping

Figure 4.2: Patients calculated voltage map during an electrophysiology study. The voltage
map at the right indicates the high or low voltage amplitude derived from the electrograms
showed at the left. In this specific case, purple color indicates values above a defined voltage
cut-off value of 0.3mV.

specific voltage cut-offs can be found, as fibrosis patterns and architecture are
different from ischaemic cardiomyopathy.

In clinical practice, bipolar peak-to-peak voltage is of great importance, and
a single cut-off value of 0.5 mV is commonly used to identify fibrotic areas in
the atria [43]. Nevertheless, this cut-off value has not yet been standardized and
differentiated from patient to patient due to the fibrosis microarchitecture [44].
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Chapter 5
Human atrial myocyte

electrophysiology

The Koivumäki et al. [45] mathematical model of human atrial cells is suitable
for investigating heterogeneous myocyte-to-myocyte electrical coupling, atrial
fibrillation electrical remodeling, and the heterocellular electrical coupling be-
tween myocyte-to-non-cardiomyocyte cells such as fibroblast/myofibroblast. The
myocyte model conductances were fitted to obtain different action potentials to
simulate the electrophysiology from different human atrial regions, as will be
detailed in this section.

5.1 Methods

From Eq. 3.2 the maximum conductances gχ were fitted to reproduce physiological
action potentials of the human atria. The conductance of five ionic currents:
transient outward K+ current (Ito), potassium rapid current (IKr), potassium slow
current (IKs), time-independent K+ current (IK1), and L-type Ca2+ current (ICaL)
were fitted using the least-squares fitting method to reproduce experimental data
of the action potential, as proposed in previous simulation studies [46, 47].
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As many experimental data have the action potential duration at its 90 percent
(APD90) and the resting membrane potential (RMP), the cost function was defined
as in Eq. 5.1.

J(θ) =

√
∑

n
i=1(APD90 predi−APD90)2

n
+

√
∑

n
i=1(RMPpredi−RMP)2

n
(5.1)

The fitted models were then simulated for 10000 seconds to ensure long term
stability.

Furthermore, the cardiomyocyte model ionic channels were changed to reflect
the electrical remodeling during persistent AF in all atrial regions by modifying
ion channel conductances for ICaL, Ito, IK1, sustained outward K+ current (Isus),
Na+/Ca2+ exchanger (NCX), sarcoplasmic reticulum Ca2+ ATPase (SERCA)
pump, and ryanodine receptors (RyR), and specific calcium handling parameters,
such as phospholamban (PLB), sarcolipin (SLN), and the baseline phosphorylation
(phos). Dilation was also modeled by increasing the length of the cell by a factor
of 1.1 as proposed by Koivumäki et al. [48].

At the cellular level in silico experiments offer a wide range of possibilities to
investigate in detail the electrophysiology of single cells.

Following the law of the conservation of charge, the total net flux of ions
across a specific channel can be quantified using the area under the ionic current
curve along time. The total net flux can be used to identify differences in ion
channels during pathological events such as AF or because cellular coupling was
altered.

The action potential is a characteristic trace of the transmembrane voltage
along time. In the action potential, we can measure several biomarkers such as
APD90, the amplitude (APA), RMP, and the change rate of the membrane potential
at repolarization (dV/dtmax)

Additionally, the action potential duration (APD) is closely related to the
frequency of stimulation. The faster the cell is paced, the less time has the cell
to recover its initial state. This has been identified as a potential mechanism for
arrhythmia. To better understand the changes of APD in relation to the stimulation
frequency, the concept of restitution curves has been established. The steepness of
the APD restitution curve and local tissue refractoriness are both thought to play
important roles in arrhythmogenesis.
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5.2. Results

The restitution curve’s dependence on its preceding pacing history was inves-
tigated by the standard extra-stimulus (S1–S2) restitution protocol (Figure 5.1).
Single myocytes were stimulated with 5 pulses (S1) at an initial cycle length of
1000 ms followed by an extra-stimulus (S2) where the coupling interval is progres-
sively shortened. Restitution curve’s slope is an indicator of arrhymogencity [49].
Maximum slope values less than 1 have been shown to be less arrhythmogenic
than slope values higher than 1.

Figure 5.1: Single cell restitution stimulation protocol. The protocol starts with an initial pre-
pacing periodwhere a number of defined stimuli are delivered at the chosen basic cycle length
(BCL) to stabilize the action potential. After stabilization, BCL is kept constant, but prematurity
of the coupling interval (CI) of the S2 decreases until the final S2 CI. Adapted from [50]

.

5.2 Results

Atrial electrophysiology heterogeneity was produced for single cell action po-
tential simulations with a BCL of 1000 ms. Fitted relative values for each atrial
region with respect to their maximum conductance are shown in Table 5.1. APD90

values in Table 5.1 matched the reported experimental values for different regions
of the atria [7, 51–54].

Figure 5.2a depicts action potentials under normal sinus rhythm and Fig-
ure 5.2b action potentials under peAF conditions in the different atrial regions.
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Table
5.1:Ionic

channelconductance
and

APD
90
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V
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to

1.0
0.55

0.5
1.35

1.0
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1.35
1.35

1.0
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1.0
0.55

0.5
2.0

1.35
4.8

1.6
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0.67
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1.0
1.0

1.0
1.0

1.6
5.12

1.0
1.0

0.67
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CaL

1.0
1.0

1.0
0.8

0.8
0.3

0.67
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1.25
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1.0
1.0

1.0
1.0

1.0
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1.0
1.0

1.0
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236.4

292.8
292.8

241.2
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214.5
176.1
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172.6

Sim
ulated

peAF
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s)
165.5

180.2
180.2

141.5
141.5
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120.8

136.2
110.1

Experim
ental

APD
90

(m
s)

207±
18

[55]
289±

43
[56]

270.0±
10

255±
45

[57]
173

[47]
200.0

[58]
178.0

[58]
208.12

[59]
158.0

[47]
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5.2. Results

This study highlights the differences in APD90 for four characteristic atrial regions,
which are common areas where reentrant activity can be maintained or where
ectopic beats are originated. Under physiological conditions, APD90 was 236.4 ms
for RA, 214 ms for LA, 176.1 ms for PV, and 292.8 ms for CT. However, under
peAF conditions APD90 was 165.5 ms, 139.8 ms, 120.8 ms, and 180.2 ms for the
RA, LA, PV, and CT, respectively.

Figure 5.2: a) Human atrial action potential heterogeneity under physiological conditions. b)
Human atrial action potential heterogeneity under the electrical remodeling due to persistent
atrial fibrillation.

APD90 decreased by 40% for RA, LA, and CT and by approximately 30% for
PV with respect to normal conditions. In peAF, in addition to APD shortening,
RMP dropped from -75 mV to -79 mV, and dV/dtmax increased from 163 V/s to
168 V/s for RA, CT, and LA. RMP fell from -68 mV to -78 mV, and dV/dtmax rose
from 157 V/s to 165 V/s for PV.

APD restitution curves show the behavior of single cells from different regions
of the atria. Restitution curves in nSR, showed a decrease of APD90 with respect
to the diastolic interval (DI) (Figure 5.3). For nSR, the maximal slope of the
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restitution curve was 0.77 for the PV. Furthermore, in peAF, the restitution curve’s
maximal slope was decreased (0.39). Restitution curves for peAF were flattened
and shifted in the y axis due to the shortening of APD90.

Figure 5.3: Calculated restitution curves for all the different anatomical regions in the human
atria. a) Under physiological conditions, there is a considerable heterogeneity in the behavior
of the cardiac myocyte in the atria. b) Restitution curves from electrical remodeled myocytes
due to persistent atrial fibrillation were flattened, and the dispersion of the curves was re-
duced.

Figure 5.3a showed that the myocytes from the pulmonary veins had the
steppest slope (0.77) and a spatial heterogenity in restution of APD. The steep
slope in the PV region is mainly due to the reduced availability of ICaL compared
to the other atrial regions. In contrast, due to peAF remodeling the slope is
decreased due to the reduction of potassium currents and the spatial hetereogenity
in restution curves is reduced for all regions of the atria (Figure 5.3b).
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5.3 Discussion

In silico experiments allowed fitting an existing ionic model to reproduce the
heterogeneous atrial electrophysiology. Krueger et al. [60] reported the importance
of the atrial APD heterogeneity. In this study, we have also incorporated the
difference of RMP in atrial cellular electrophysiology. The pulmonary veins
exhibit a more depolarized RMP of -68 mV, which is in accordance with several
experimental data [61].

The pulmonary vein has a decreased potassium current compared to other
regions of the left atria. In the atria, APD heterogeneity is notable between the
right and the left atrium. However, the local heterogeneity in the regions of the
atria is not considerable. Spatial heterogeneity of the APD has been demonstrated
to be pro-arrhythmic and contributes to the pathogenesis of atrial arrhythmias in
humans [62], specially in the junction between PV and LA [63]. During atrial
fibrillation, the heterogeneity in both sides of the atrium is reduced due to the
shortening of the APD in both sides of the atria.

Spatial heterogeneity is a key factor in the physiological function of the atria.
Restitution curves of the APD are attributed to the incomplete recovery of ionic
currents and concentrations after a previous beat. During the short time between
beats the ICaL ionic channel cannot fully recover and the flow of calcium to the
sarcoplamic reticulum is not sufficient. Our results of the restitution curves during
peAF are in accordance to the results shown by Krummen et al. [64] where
APD restitution curves during AF were flattened and with maximal slope less
than one. It is expected that the marked increase in APD restitution dispersion
would promote greater heterogeneous refractoriness across the atria, and lead to a
significant increase in susceptibility of AF especially at rapid heart rates.
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Chapter 6
Human atrial myofibroblast

electrophysiology

Several models of fibroblasts have been proposed during the past years [65–
68]. However, experimental data have shown that there is a difference between
atrial and ventricular fibroblasts electrophysiology. Additionally, fibroblasts are
heterogeneous cells and their electrophysiology is hard to determine under in vivo
experimentation or even in vitro [13, 69]. For that reason, an in silico experiment
using genetic algorithms was implemented to optimize the model parameters
while maintaining the parameter values within physiological ranges.

6.1 Methods

Using in silico experiments, the parameters of the fibroblast model were deter-
mined to reproduce in vivo experiments. In this study, we first investigate the
effect of the sodium current (INa) and the RMP [13, 68, 69]. We introduce the
formulation of INa to the underling fibroblast[68] models according to the experi-
mental results from Poulet et al. [69]. A wide range of 7 initial parameters was
fitted. The cost function to minimize was defined in Eq. 6.1.

J(θ) =

√
∑

n
i=1([Ko+](θ)predi− [Ko+])2

n
+

√
∑

n
i=1(RMP(θ)predi−RMP)2

n
(6.1)
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Parameters were constrained to vary 10% from the value originally defined
in the model. The constraints assured that the values were kept within reported
physiological ranges [65, 67–69]. The fitted fibroblast model was then simulated
for 1000 seconds without stimulation to ensure long term stability.

Fibroblasts/myofibroblasts were coupled by Eq. 6.4 which represents the
current that flows between cells across gap juntions.

Cmyo ·
dV mmyo

dt
+ Iion−myo + Igap = 0 (6.2)

C f ib ·
dV m f ib

dt
+ Iion− f ib− Igap = 0 (6.3)

Igap =
n

∑
i=0

Ggap · (V mmyo−V m f ib(i)) (6.4)

The genetic algorithm is a stochastic global search optimization algorithm in
difficult solution spaces. The algorithm is inspired from biological evolution where
fitter individuals are more likely to pass on their genes to the next generation [70].

6.2 Results

The RMP for the fibroblast model was fitted to obtain experimental values [69].
Two different fibroblast’s RMP (RMPf) (-45 mV, and -26 mV) were obtained.
Moreover, as the fibroblast size differs from the myofibroblast, the membrane ca-
pacitance (Cmf) was changed. Two different values, 6.3pF and 50.8pF, were used
for the Cmf value for fibroblast and myofibroblast. Values for the myofibroblast
are listed in Table 6.1

Table 6.1: Myofibroflast model ionic conductance modifications.

gKv gK1 gNab gNaK rKv sKv PNa
1.75 3 5.22 2.75 15 18 1

Myocyte RMP and dV/dtmax (Figure 6.1) coupled to different numbers of
fibroblasts were analyzed. Myocyte’s RMP (Figure 6.1b) changed similarly when
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6.2. Results

Cmf increased for both RMPf values (-26 mV and -45 mV). Increasing the number
of fibroblasts moved the myocyte RMP closer to RMPf value. The most significant
change was observed in dV/dtmax (Figure 6.1a), which was much lower at an RMPf
of -26 mV than the reduction obtained at an RMPf of -45 mV. When fibroblasts are
coupled to myocytes their RMP move closer to each other and more Na+ channels
are available, although myocyte Na+ channel availability is reduced due to a more
depolarized RMP depending on the number of coupled fibroblasts.

Figure 6.1: Fibroblasts coupling effect on myocyte electrophysiology. a) Myocyte maximum
upstroke velocity (dV/dtmax). b) Myocyte resting membrane potential (RMP). The levels for
myocytes in normal sinus rhythm (nSR) and persistent atrial fibrillation (peAF) conditions are
given in blue and red, respectively. Discontinuous lines are myocytes in peAF coupled to one
fibroblast (1:1), 3 (1:3), or 9 (1:9).

One myocyte was coupled to one, three or nine myofibroblasts to study the
effect on myoycte action potential. The effect of RMP and Cmf is depicted in
Figue 6.2. Figure 6.2a shows the effect of the fibroblast RMP on the myocyte’s
action potential. The myocyte’s RMP was highly depolarized with more coupled
fibroblasts. Additionally, the Cmf has little effect on myocyte’s action potential.
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Figure 6.2: Effect of fibroblast and myocyte coupling under persistent atrial fibrillation (peAF)
electrical remodeling in RA (baseline model). First and second rows show fibroblasts resting
membrane potential (RMPf) of –26 and –45 mV, respectively, for a fibroblast membrane ca-
pacitance (Cmf) of 6.3 pF (first column) and 50.4 pF (second column). The different traces are
action potentials of isolatedmyocytes under peAF (blue), onemyocyte under PeAF coupled to
1 fibroblast (1:1) (dashed orange), one myocyte under peAF coupled to three fibroblasts (1:3)
(dotted yellow), and onemyocyte under PeAF coupled to nine fibroblasts (1:9) (dotted-dashed
purple).

In four characteristic regions of the atria restitution curves were computed to
analyze the effect of three myofibroblasts to one myocyte. Figure 6.3 shows how
myofibroblasts increase the spatial heteorogenity by reducing APD90. However, in
the left atrium, myofibroblasts reduce APD90 below 100 ms for DIs below 500 ms.
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6.3. Discussion

Figure 6.3: Restitution curves calculated for one myocyte coupled to three myofibroblasts
(solid lines). Myofibroblasts change the duration of the action potential and increase the atrial
tissue heterogeneity compared to non-coupled myocytes (dashed lines).

6.3 Discussion

Atrial tissue is differently affected by peAF remodeling and by the presence of
fibroblasts, due to the electrophysiological heterogeneity of the different atrial
regions. Our results in isolated single cells show differences in the RMP, dV/dtmax,
and APD for the four different atrial regions (RA, LA, CT, and PV) in nSR and
in peAF. These differences are in agreement with the simulations carried out by
Krueger et al. [46], who reported the differential effects of AF remodeling in
different atrial regions. It has to be noted that in contrast to the Krueger study, our
model presents a long-term stability in all regions in single-cell and tissue simula-
tions and also considers the effect of fibroblast coupling. To our knowledge, this is
the first simulation study including the three components (atrial heterogeneity, AF
remodeling, and fibroblasts) using a detailed electrophysiological AP model for
fibroblasts and focusing on the analysis of the different effects exerted by fibrosis
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in the different atrial regions. A recent study by Roney et al. [63] showed that high
phase singularity density in the PVs favored the effectiveness of PV isolation in
ablation procedure. Their model also considered electrophysiological remodeling
in AF, electrophysiological heterogeneities in different atrial regions, and fibrosis
that was simulated by changes in tissue conductivity. In a previous study [27],
the same group modeled fibrosis using different methods and did not consider
either electrophysiological heterogeneities in the atrial regions or AF remodeling
to determine how different fibrosis models could affect rotor dynamics.

Different experimental studies show that atrial fibroblasts have a different
electrophysiology from ventricular fibroblasts [13, 65, 69, 71]. Morgan et al. [66]
found that fibroblast electrophysiology changes the dynamics of an arrhythmic
process and provides relevant information on the effect of myocyte-fibroblast
coupling in the atria. Our results indicate that RMPf, Cmf, and the number
of coupled fibroblasts altered the behavior of myocytes AP, as was found in
previous simulation studies [68, 72, 73]. Furthermore, in the present study we
found that introducing INa current into the fibroblast model had an interesting
effect; due to the high RMP of isolated fibroblasts INa current was blocked but
when fibroblasts were coupled with myocytes INa channels became available.
Additionally, myocyte-fibroblast coupling led to a partial inactivation of the
myocyte INa due to the higher RMP in the myocyte.

Fibroblast electrophysiology (RMPf and Cmf) changes myocyte AP charac-
teristics [67, 74, 75]. Our simulation results also show that electrical coupling
with myocytes increases atrial electrophysiological heterogeneity. Changes in the
BCL altered the behavior of the coupled cells, with different responses in different
regions. Interestingly, myofibroblast-myocyte coupling in regions with higher IK1

and ICaL (RA and CT) exhibited more sensitivity to changes in frequency, while
regions with smaller IK1 and ICaL (PV) developed no AP for any of the BCLs. In
contrast to McDowell et al. [76], we defined different electric characteristics for
atrial myofibroblasts, which have a different effect on myocyte AP. Myofibroblasts
act as the current source, raising the myocyte RMP [75] depending on the number
of coupled myofibroblasts [67, 68], thus leading to a partial inactivation of the
myocyte INa current.
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Chapter 7

Myofibroblast Ca2+ current and
intracellular Ca2+ handling

Calcium dynamics in contractile cells play a key role in electrophysiology. Recent
experimental data have shown that the ionic calcium channel in the myofibrob-
last membrane changes the electrophysiological behavior of this cell [77–79].
Therefore, in this chapter in silico experiments exploring the presence of ICaL are
presented.

7.1 Methods

Recent experimental studies have shown that myofibroblasts exhibit α-smooth
proteins and are able to contract [80]. Based on this result, we hypothesize the
myofibroblast need calcium to contract and the presence of a calcium ionic channel
and intracellular calcium handling system. Recent studies have shown that ionic
channels permeable to calcium are present in the myofibroblast membrane[78, 79].
Therefore, we used the genetic algorithms explained above to explore the influence
of the calcium current in the electrophysiology of the myofibroblast. The number
of variables to be fitted was 13. The cost function (Eq. 7.1) was then adjusted to
minimize the error between the experimental curves for ICaL calcium current and
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the simulated data. Additionally, [K+]o was also considered in Eq. 7.1 to ensure
long term stability and maintain the value within physiological ranges.

J(θ) =

√
∑

n
n=1(ICaLpredi− ICaL)2

n
+

√
∑

n
n=1([Ko+](θ)predi− [Ko+])2

n
(7.1)

A second step was to include intracellular calcium handling. Since differenti-
ated myofibroblasts exhibit similar phenotypes to the surrounding myocytes in
cardiac tissue, Courtemanche et al. [81] human atrial model was used to formu-
late the intracelullar calcium handling system and was included in the human
atrial myofibroblast model. Parameters of the intracellular handling system were
constrained to vary ±10% from their established values in a human atrial car-
diomyocyte model. Parameters with variation less than ±1% were taken out to
reduce the parameter search space and increase the speed of the genetic algorithm.

Additionally, three, six, or nine myofibroblasts with only the ICaL ionic current
or with the ICaL ionic current and the intracellular Ca2+ were coupled to one
myocyte to explore the effect on APD as described in Chapter 6.

7.2 Results

The fitted parameters for ICaL are in the range of the available experimental
data [79]. The modified parameters for the ICaL with the intracellular Ca2+ han-
dling system are listed in Table 7.1. The fitted ICaL parameters’ error was below
1% with respect to experimental patch clamp data (Figure 7.1). Figure 7.1 depicts
the result of the fitted ICaL (blue trace) with respect to the experimental values
(white dots).

Table 7.1: Myofibroflast model including the ICaL with the intracellular Ca2+ handling system
ionic conductance modifications.

gKv gK1 gNab gNaK rKv sKv PNa gCaL KNaCa gCab KpCa fL dL
1.34 1.79 2.39 0.84 14.04 16.21 0.73 0.48 2.55 0.57 1.0 1.0 1.0

Figure 7.2 depicts myofibroblast transmembrane voltage. At its resting state,
the myofibroblast RMP is constant at a value of -26 mV. In the presence of ICaL,
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Figure 7.1: Fitted myofibroblast ICaL according to experimental data. a) Voltage clamp experi-
ments of the ICaL where the behavior of the current is shown at different voltages. b) White
dots represents the maximum current value of ICaL with respect to the experimental data[79]
(blue curve).

the myofibroblast exhibits automaticity. The transmembrane voltage range is from
-46 mV to 26.5 mV. The triggered activity has a constant cycle length of 100 ms.
When the intracellular handling system was included, the automaticity of the
myofibroblast ceased. The calcium ions which were not pumped out of the cell by
NCX, were now pumped by the IpCa and taken inside the sarcoplasmic reticulum,
and ICaL was not activated, yielding a RMP of -46 mV.

The system of ordinary equations is not linear. The presence of ICaL and the
intracellular Ca2+ changed the net current flux across ionic channels. Due to a
decrease of 50% in the flux of IK1 the RMP has a more negative RMP with respect
to the control myofibroblast model. During the resting state, the net flux across the
different ion channels changed. The control myofibroblast model at resting state
has a total flux of potassium ions through the ionic channels of 6.76 C/s, which
helped reach the RMP of -26 mV. When ICaL was introduced in the myofibroblast,
the net flux of K+ was decreased. The automaticity of the cell was mainly driven by
a constant exchange of potassium from the intracellular and extracellular medium
since the ICaL channel was deactivated for a RMP of -46 mV (Figure 7.3).

Figure 7.4 shows the results of in silico experiments exploring the coupling of
myofibroblast model with ICaL and intracellular Ca2+ handling to one myocyte.
Single myocytes electrophysiology was less affected when coupled to three,
six, or nine myofibroblasts compared with the effect of coupling the baseline
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Figure 7.2:Myofibroblast transmembrane potential without stimulation. The red trace shows
the transmembrane potential of the myofibroblast without ICaL. The yellow trace shows the
transmembrane potential and the automaticity that themyofibroblasts exhibit when ICaL ionic
current is included. Blue trace indicates the myofibroblast transmembrane potential with ICaL
and the Ca2+ intracellular handling system.

myofibroblast model. Myocytes APD90 was less affected, and the RMP was less
hyperpolarized (from -74 mV to -60 mV). With a myocyte RMP of -60 mV or
more, sodium ion channels were available, and the myocyte can trigger a complete
action potential.

7.3 Discussion

In vitro and in vivo studies have shown that the number of myofibroblasts and
collagen in rat hearts were reduced by blocking L/T-type Ca2+channels [82–
84]. These studies suggest that Ca2+ ion channels and calcium intracellular
handling plays an essential role in the electrophysiology of myofibroblasts and
the understanding of the development of cardiac fibrosis.

Miragoli et al. [15] have shown myofibroblasts’ automaticity. The results
presented in this study are in accordance with previously mentioned experimental
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Figure 7.3: Current across the different ion channels in the membrane of the myofibroblasts.
The ionic currents exhibit different dynamics, and the influx and efflux of K+ mainly drives the
behavior of the cell.

data. The myofibroblast model with ICaL shows automatic activity mainly driven
by the voltage-activated potassium channels due to the small conductance of
IK1 [85]. However, by introducing the intracellular Ca2+ handling system, the
autonomic activity ceased due to the regulation of the Ca2+ in the intracellular
space, which regulates the function of the NCX exchanger and the NaK pump.

Moreover, when the intracellular handling system was introduced, the auto-
nomic activity stopped. However, it is worth noticing that the RMP was -46 mV.
This finding is in accordance with the RMP reported in different studies [69, 80].
The wide range of RMP reported experimentally can be due to the differentiation
of fibroblast into myofibroblast and their phenotype.

A better understanding of the fibroblasts’ electrical properties should lead to
an improved comprehension of AF pathophysiology and a variety of novel targets
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Figure 7.4: Myocyte action potential without myofibroblast coupling under the electrical re-
modeling due to persistent atrial fibrillation (blue trace). The myocyte was then coupled with
one, three, six, and nine myofibroblasts with ICaL and intracellular Ca2+ handling. Six or nine
coupled myofibroblasts highly influence the myocyte’s action potential duration and the rest-
ing potential.

for antiarrhythmic intervention. The presence of calcium current and intracellular
handling system is an important factor that needs to be explored in more detail.
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Chapter 8

Myofibroblast infiltration

Myofibroblasts have been shown to disturb the electrical conduction in the cardiac
tissue [15, 86]. Previous results from single cell simulations have shown how
myofibroblasts can alter the myocyte action potential [36, 87]. Therefore, this
chapter covers the in silico simulations at tissue level that study the role of the
electrical coupling between myocytes and myofibroblasts in cardiac tissue.

8.1 Methods

Using 1D tissue strands, the aim of this study was to analyze the effect of myofi-
broblast infiltration on conduction velocity. One dimensional (1D) detailed tissue
strands were created with different element sizes to account for the differences
between myocytes and fibroblasts. Diffusion coefficients were then calculated
considering the physiological size of each cell, as shown in Eq. 8.1 [88].

D =
1

ρSCm
(8.1)

where D is the diffusion coefficient, ρ is the cellular resistivity, S is the
surface-to-volume ratio of the cell, and Cm is the membrane capacitance.

To simulate tissue strands under physiological conditions and sinus rhythm,
the diffusion coefficient was tuned to achieve realistic conduction velocities of the
cardiac tissue [47]. In addition, four different densities of myofibroblasts (10%,
20%, 40%, and 60%) were uniformly randomly distributed in the fiber. Tissue
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strands were stimulated from the right side with ten pulses at a basic cycle length
of 1000 ms.

Two-dimensional (2D) tissue patch meshes of 5 cm x 5 cm, representing car-
diac tissues were built with a central region of 2 cm diameter. In the tissue central
region, four different densities of myofibroblasts (10%, 20%, 40%, and 60%) were
uniformly randomly distributed. To minimize the effect of the random distribution,
ten different realizations for each density were created.

Additionally, a cross-shock (S1-S2) protocol was used to quantify the struc-
turally remodeled cardiac tissue vulnerability to initiate and maintain an arrhyth-
mia (Figure 8.1). The tissue was stimulated from the left border with five pulses
(S1). S1 was paced at a basic cycle length of 1000 ms to stabilize the tissue.
Afterwards, an S2 stimulus at the end of the refractory period was applied at the
left lower quarter of the tissue to induce a reentry.

Figure 8.1: Snapshots in time explaining the cross-schock (S1-S2) protocol. The first panel
(left upper corner) shows the S1 pulse and the depolarization wave. At 180 ms, the tissue
cells are finishing their repolarization phase, and then at 190 ms, a second stimulus (S2) was
introduced in the lower left quarter of the tissue to induce a reentry. From the time 210 ms, it
is possible to observe the reentry activity’s progression andmaintenance in the cardiac tissue.
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Looking for an S2 that creates a sustained reentry is a tedious job. A function
was created to automate the search of the right time to introduce the S2 stimulus.
The function traced one node’s action potential and calculated APD90 of one given
node. Then S2 was applied, and then, using a bisection algorithm, different S2 are
tested. The function then looks at the action potential trace from four given nodes
to define a sustained reentry. A sustained reentry was defined as electrical tissue
activity longer than 1 s. If the reentry was sustained for 1 s or longer, the S2 time
was considered to calculate the tissue’s vulnerability time window to arrhythmia.
Phase singularities (PSs) detection was used to obtain the instantaneous location
of the reentry [89, 90]. Phase maps based on the Hilbert transform (HT) of the
APs were created [91, 92] by computing the instantaneous phase θ , which values
ranged from -π to π radians:

HT |V m(t)|= 1
π

∫ V m(τ)

t− τ
dτ

θ = tan-1(
HT |V m(t)|

V m(τ)
)

where Vm is the transmembrane potential. Then PSs, where all phases con-
verge (7), were computed to track the rotor trajectory:∮

∇θdr =±2π (8.2)

Detected PSs were also used to assess the heterogeneity degree in the tissue
due to the inclusion of fibrotic regions following the trajectory of the reentry tip.

Finite element monodomain simulations were ran using GPUs [36]. Meshes
with quadrilateral elements with a resolution of 100 µm were created, and time
discretization of 1µs was used.

8.2 Results

Electrical remodeling of atrial fibrillation has already an impact on the tissue
conduction velocity. Tissue strands show how myofibroblasts alter the local
conduction velocity of the cardiac tissue (Figure 8.2).
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During nSR and without fibroblasts, the RA has a CV of 70 cm/s, CT has
a CV of 100 cm/s, LA has a CV of 70 cm/s, and PV has a CV of 80 cm/s
(discontinuous blue lines). AP propagation along the strand was affected by peAF
electrical remodeling (discontinuous red lines), and CVs dropped significantly.
At higher fibroblast (dark grey) or myofibroblasts (light grey) densities in the
strand, CV dropped. Boxplot measurements of the CV were represented for
the 100 random distributions of fibroblasts for each density (10%, 20%, and
40%). The region with the greatest differential effect on the CV was the PV,
depending on whether the distribution was with fibroblasts or myofibroblasts. PV
also experienced conduction blocks in some of the random distributions (indicated
by blue asterisks). Conduction block was also seen in the LA at a density of 40%
in some distributions.

Figure 8.2: Conduction velocity (CV) of a tissue strand in four different regions of the atria
with random fibroblasts (Fib) or myofibroblast (MyoFib) distribution and different fibroblast
densities. For each density 100 random configurations were simulated. CV measurements
are represented in boxplots. (A) Right atria (RA). (B) Pulmonary vein (PV), (C) Left atria (LA),
and (D) Crista terminalis (CT). Adapted from [36]

Tissue simulations were run to quantify the tissue vulnerability to reentry
under atria fibrillation electrical remodeling and in the presence of myofibroblasts
with different densities. Figure 8.3 shows snapshots of phase maps (taken at the
same time). Reentrant circuits can be seen in the RA (top panels) and the LA
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(bottom panels) in peAF remodeling and increasing levels of myofibroblast density
from left to right (membrane potential snapshots can be seen in Supplementary
Figure S4). In the absence of myofibroblasts, a functional reentry was obtained in
RA and LA. The tip of these rotors (Figure 8.3, first column), corresponding to
the PS superimposed in white on the phase maps, describes a regular circular path,
which agrees with the results obtained in previous simulation studies [93]. In the
LA, the rotor tip describes a smaller path due to the shorter wavelength caused by
shorter LA ERP [46, 47, 94].

Figure 8.3: Instantaneous phase maps and phase singularities (in white) for different densities
of myofibroblasts (non-fibrotic, 10%, 20%, and 40%) in the right atria (RA) and left atria (LA)
under conditions of persistent AF remodeling. Adapted from [36]

When myofibroblasts were present in the center of the tissue, the obstacle
altered the reentrant activity. Small percentages of myofibroblasts (10%–20%)
allowed the wavefront to propagate through the fibrotic region, but the electro-
physiological heterogeneities of myofibroblasts and myocytes caused wave breaks,
which were detected as PSs. However, propagation in the fibrotic region was prac-
tically blocked when myofibroblast density was raised to 40%, which produced an
anatomical reentry surrounding the fibrotic obstacle. Since the wavefront did not
propagate through the fibrotic region, the number of wave breaks was significantly
reduced, as were the number of PSs detected.
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The myofibroblasts in the tissue increased vulnerability to reentry, measured as
the vulnerable window (VW), a time interval for which premature S2 stimulation
generates a reentry (Figure 8). In the RA, the vulnerable window in the absence
of myofibroblasts was 37 ms. When myofibroblasts density was raised to 10%,
the VW increased to 38 ± 0.0 ms. The VW also increased (39 ± 0.63 ms) when
density was raised to 20%, but at 40%, the VW dropped below the control value
(35 ± 0.82 ms). Interestingly, LA was more sensitive to myofibroblasts with a
larger VW than the RA. The LA VW, in the absence of myofibroblasts, was 40
ms. When myofibroblasts density was raised to 10%, the VW rose to 40 ± 0.10
ms, at 20% it increased to 40.5 ± 0.53 ms, and at 40% it dropped to 38 ± 0.88 ms.

8.3 Discussion

Structural remodeling in cardiac tissue contributes to the reduction of conduc-
tion velocity, delaying regional functional activations, and increasing structural
heterogeneities, which are essential factors for establishing a reentrant driver
or conduction block [2]. Our results show that fibroblasts and myofibroblasts
can alter the activation time in a 1D tissue strand, in agreement with different
studies [6, 95]. One hundred random configurations for different fibroblasts/my-
ofibroblasts densities in the four atrial regions were implemented. Zhan et al. [96]
showed that fibroblasts can alter the CV and can lead to blocks in conduction with
fibrosis densities of 40% and 45%. Our results showed that a high density (40%)
led to conduction blocks in the LA and that the PV was the most sensitive region
to the presence of fibroblasts-myofibroblasts. Similarly, in an experimental study,
Miragoli et al. [15] showed that myofibroblast proliferation changed the tissue
conduction velocity and myocyte dV/dtmax. Our results showed a reduction in CV,
in agreement with several other experimental and simulation studies that found
that fibroblasts-myofibroblasts can establish an electrical coupling with myocytes,
reducing their dV/dtmax and activation time, reflected in reduced CV [6, 8, 15, 97].
We also found a monotonic reduction in all four atrial regions.

Tanaka et al. [98] have shown that local fibrosis distribution reduces CV in the
different atrial regions, in agreement with our results, which showed a reduced
CV with a tendency to homogenize in all four atrial regions. CV heterogeneity
is responsible for giving the atria the characteristic activation times [99]; if all
the regions were to have a homogenous CV, this might induce the appropriate
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conditions for reentrant rhythms and conduction blocks [100]. As the fast conduc-
tion systems (CT) conduction velocity was significantly reduced, this may be an
interesting AF mechanism in the right atrium.

Structural remodeling and endo-epicardial dissociation alter the atrial substrate
and could produce macroreentries and focal activity [101, 102]. When the propa-
gation was analyzed in different regions of the atria and at different myofibroblast
densities, it was found that a low myofibroblasts percentage increased the number
of PSs due to wave breaks. However, at higher percentages, propagation through
the fibrotic zone was blocked, the number of wave breaks and PSs decreased, and
an anatomical reentry was anchored around the fibrotic zone, in agreement with
previous studies [27, 76]. Several simulation studies have also shown that reentry
dynamics are altered by heterogeneities of the AP in the cardiac tissue [61, 103],
the presence of fibroblasts [66, 104, 105], and that PSs increase in the zones with
fibroblasts [25].

Waks and Josephson [106] demonstrated that the rotation dynamics depend
on the atrial region (RA or LA) and its electrophysiological characteristics, as did
we in the present study in which vulnerability to reentries and the dynamics of the
rotation depended on the atrial region. LA presented slightly wider VWs, due to
its shorter APD.

Gomez et al. [107] showed that the density of fibroblasts had a biphasic impact
on the ventricular vulnerable window for reentry. Moreover, our results showed
the same VW biphasic behavior for the first time in atrial tissue. Krul et al. [108]
found that local fibrosis is associated with reentrant activity, in accordance to our
results at low fibroblast density (10%), considered as a region of local diffuse
fibrosis, which presented higher vulnerability to reentry and resulted in multiple
wave breaks. When myofibroblast density was raised (20%), tissue vulnerability
to reentry rose, and conduction blocks occurred. However, at higher densities
(40%) conduction blocks also occurred, but the VW dropped, as was found by
Campos et al. [109]. This suggests that myocyte-fibroblast coupling in peAF
plays an essential role in AF electrical propagation [110], with different effects in
different atrial regions.
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Fibrosis composition

Cardiac and lung fibrotic diseases cause over 800,000 deaths per year world-
wide [12]. The fibrotic process is complex and several cellular mediators and
signalling pathways are involved (Figure 9.1).

Cardiac fibrosis has been classified as a cardiomyopathy, and its composition
varies from patient to patient. In cardiac fibrosis, differentiated fibroblasts or
myofibroblasts are mainly responsible for structural remodeling. Experimental
studies have shown that myofibroblasts derived from AF patients display different
phenotypes compared to those patients in the healthy control group [69]. Differ-
entiation of fibroblasts can be triggered by paracrine signalling from myocytes
or other cells in the cardiac tissue. The paracrine signalling of cytokines, such as
transforming growth factor β 1 (TGF-β1), interleukin 6 (IL-6), and tumor necrotic
factor alpha (TNF-α) are segregated by myocytes, fibroblasts and macrophages,
this process is known as inflammation. Myofibroblasts alter the extracellular
medium, depositing protein fibers (collagen I, collagen III) to maintain the cardiac
tissue’s integrity. Using confocal microscopy, Greiner et al. have shown, with a
high level of resolution, the composition of fibrotic tissue where different types of
cells are found [111].

In this chapter, the fibrotic composition was varied, and the effect on electrical
propagation and the electrograms was quantified. Part of this work was presented
as a conference contribution [112].
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Figure 9.1: Atrial fibrillation (AF) is a complex pathology and inflammation plays a role in
the initiation and maintenance of AF. Danger-associated molecular patterns (DAMP) or alter-
ations in the Renin-Angiotensin-Aldosterone System (RAAS) trigger a cascade of reactions
in the cardiac myocyte, which results in a remodeling of gap junctions and ionic channels.
Additionally, cardiac myocytes segregate cytokines such as TGF-β1, which recruit mast cells
and macrophages. Furthermore, TGF-β1 also triggers the differentiation of fibroblasts into
myofibroblasts which deposit collagen and are responsible for the extracellular remodeling.

9.1 Methods

Two-dimensional (2D) patch meshes of 5 cm x 5cm x 0.2 cm (Figure 9.2), repre-
senting cardiac tissues were built with a central structurally remodeled region
of 2 cm diameter. In the central region of the tissue, different tissue properties
arrangements were simulated to study the effect of myofibroblasts coupling, the
inflammatory paracrine remodeling and the deposit of collagen fibers. Within
the region, myofibroblasts and collagen were randomly distributed with differ-
ent ratios (0%-100%, 25%-75%, 50%-50%, 75%-25% and 100%-0%). TGF-β1
paracrine remodeling was represented by modifying ion channel conductances,
50% reduction in IK1, 50% reduction ICaL, and 40% reduction in sodium current
INa [11]. The mesh was conformed by tetrahedral elements with an average length
of 100 µm to capture the details of collagen deposit in the cardiac tissue.

62



9.1. Methods

Figure 9.2: Dimensions of an atrial tissue patch of 5 cmx5cmx0.2 cm with a circular area of
2 cm of diameter. The circular region has different cells: myocytes affected by persistent atrial
fibrillation (pink) and inflammation (yellow). Additionally, myofibroblasts (blue) and collagen
fibers were modeled as empty cylindrical holes in the cardiac tissue (white).

Additionally, collagen was modeled as cylindrical strands to mimic the texture
reported in interstitial fibrosis during AF [101]. Moreover, percolation has been
described to better reflect the findings in experimental data [26, 63]; therefore
elements representing collagen were taken out creating empty spaces in the mesh.

Reentry was initiated using a cross-shock stimulation and PSs were quantified.
Additionally, pseudo-unipolar equally spaced (1 mm) electrograms were computed
at the surface of the tissue using the infinity volume conductor approximation
Eq. 9.1.

φ =
1

4πσ

∫∫∫
V

Isrc

||x− xsrc||
dV (9.1)

where σ is the conductivity coefficient of the medium, Isrc is the current density
and ||x− xsrc|| is the Euclidean distance from the source point to the measuring
point. Bipolar EGMs were calculated from two unipolar EGM with a spacing of
1 mm (Figure 1, panel B). The criteria for fractionation were based on the duration
of the active segment of the signal using the Nonlinear Energy Operator (NLEO)
algorithm described by Schilling et al. [113] and the Shannon Entropy [114].
Signals with peak to peak values below 0.5 mV were not considered for the
calculations.
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9.2 Results

When the fibrotic density was low (10% and 20%), the excitation was able to prop-
agate across the fibrotic region (Figure 9.3a). In contrast, for higher density (40%),
conduction was blocked in this region (Figure 9.3a). Reentry changed gradually
from functional to anatomical due to block of conduction. Figure 9.3b shows a
biphasic behaviour of the number of PSs quantified with different compositions of
the fibrotic area. For all densities the maximum amount of PSs was achieved for a
proportion of 50% of myofibroblasts and 50% of collagen in the cardiac tissue.

Figure 9.3: a) Snapshot of a single time frame for three tissue patches from the right atria, left
atria, and pulmonary vein. The first column depicts a reentry activity without fibrosis. The
second to fourth columns show how reentry dynamics change due to the presence of fibrotic
tissue. b) Different fibrotic compositions change the reentry dynamics, where a mixture of
myofibroblasts and collagen exhibit a high density of singularity points.

EGMs in Figure 9.4 show the different morphologies inside and outside of the
fibrotic region. Depending on the myofibroblast-collagen ratio, EGM’s morphol-
ogy is also affected. Additionally, the EGM morphology outside of the fibrotic
area did not change significantly. EGM activity duration increased inside the fi-
brotic region compared to the duration at the outside of this region. For the fibrotic
density of 10% we detected segments with shorter duration (45.21±1.24 ms). In-
creasing fibrosis density (20%) increased the duration of the segments (60.73±1.10
ms), and for higher density of fibrosis (40%), segments were shortened again with
a duration of (46.59±1.29 ms) or inactivity near the core.
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Figure 9.4: Electrograms calculated at the surface of the cardiac tissue. White and black dots
show the signal at the outside the fibrotic area where the signal is not affected by fibrosis com-
position. The gray dot shows how the electrogram computed at the core of the fibrotic tissue
is affected due to its composition. Fractionated signals were mainly found with a mixture of
myofibroblasts and collagen. Adapted from [112]

.

Figure 9.5 shows the difference in duration of the active segments and Shannon
entropy found inside and outside of the fibrotic region. Fibrotic regions with a
lower percentage of myofibroblasts (below 50% compared to the percentage
of collagen) had active segments with shorter duration. When increasing the
percentage of myofibroblast densities (above 50% compared to the percentage
of collagen), propagation exhibited a slower frequency of activation, which was
reflected in segments with a longer duration of activity.

For simulations with 40% fibrotic density, we were not able to detect any
activity near the core. This center of the fibrotic region had an EGM with a
smaller peak-to-peak amplitude (below 0.5 mV). However, the Shannon entropy
was homogenously distributed and higher compared to the values at the outside
the fibrotic region.

9.3 Discussion

Heterogeneities in the fibrotic tissue do not only alter the dynamics of the reentrant
activity but can change the morphology of the EGM. McDowell et al. explored the
influence of using collagen, fibroblasts, and gap junction reduction but neglected
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Figure 9.5: a) Mean duration of the active segment for different fibrosis densities and my-
ofibroblasts vs. collagen ratios inside and outside the fibrotic region. As fibrosis density in-
creases, the duration of the detected segment also increases. At 40% fibrosis density voltage
becomes very small and block can occur. b) Mean Shannon Entropy at the inside and outside
of the fibrotic region. Different densities of fibrosis increase the Shannon Entropy, it is not
significantly affected by the ratio of myofibroblasts vs. collagen. Adapted from [112]

the effect of inflammation [76]; however, they did not study the effect on the
EGM’s morphology. An increase in the number of myofibroblasts in the cardiac
tissue affects the rotation dynamics due to the ability of these cells to follow
myocytes action potential [25]. Myofibroblasts introduced a delay in propagation
but not a block when they are sparsely distributed (less than 40% density) [2, 15].

Ashihara et al. [104] showed that fibroblasts present in the atrial substrate
could alter the morphology of the EGM. Our results also show that myofibroblasts
changed the morphology of the EGM. Since myofibroblasts tend to homogenize
cardiac tissue, segments with shorter activity duration were found compared
to simulations where only collagen was present. However, depolarization and
repolarization heterogeneity introduced by inflammation paracrine remodeling in
the myocyte and myofibroblast infiltration can increase the tissue’s vulnerability
to arrhythmia [115].

The simulations showed that the composition of the fibrotic tissue clearly
affects the dynamics of the reentry. Roney et al. [27] also showed that modeling
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methodologies of fibrotic tissue have a large effect on rotor dynamics in 3D
simulations. However, it is still unclear how fibrosis structure and transmurality
may affect the morphology of the EGM. This will be subject of investigation in
subsequent chapters of the present Thesis.

Understanding the mechanisms responsible for initiation, progression, and
resolution of cardiac fibrosis is crucial and may help design anti-fibrotic treatment
strategies and ablation therapies for patients with peAF.
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Chapter 10

Computational modeling of
intracardiac signals

Signals measured at the surface of cardiac tissue are known as electrograms.
Electrograms are generated by cellular depolarization during the propagation of
the electrical activation in cardiac tissue.

Electrograms recorded in electrodes close to the cardiac surface are know as
unipolar electrograms. Unipolar electrograms from healthy tissue have a biphasic
deflection. With a depolarization front approaching the electrode, the potential
field is positive, which results in a positive deflection of the electrogram. The
value of the electrogram becomes zero at the time when the wavefront is precisely
underneath the electrode. Then, when the wavefront propagates away from the
electrode, the electrogram becomes negative because the electrode is located in
the negative part of the potential field.

Several modeling studies calculate the extracellular potential at one point in
space but they neglect the effect of electrode’s geometry and orientation [116, 117].
This chapter explores the effect of modeling a realistic geometry of the catheter
on EGM. Part of this study has been published as a conference contribution [39]
and a preprint [118].
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10.1 Methods

Two different setups were created to study the influence of the electrode and
catheter’s geometry on computed electrograms in in silico experiments. Both
setups modeled the cardiac tissue with a surrounding blood bath. In the first setup,
a grid of 16 cubic electrodes of 1 mm side length, and interelectrode space of
3 mm was created. In the second setup, the realistic geometry of the two catheters
was placed at the surface of the tissue. The HD Grid catheter (St. Jude Medical,
EnSite HD Grid catheter, St. Paul, MN) with a constant interelectrode space of
3 mm and the Lasso catheter (Biosense Webster, Diamond Bar, CA, USA) with an
interelectrode distance of 2 mm between electrodes of one pair and 6 mm between
pairs. Realistic geometries that consider electrode size, separation, and position
with respect to the wavefront were taken into account.

Bidomain simulations were ran using openCARP [37, 38] to simulate the
biophysical phenomena of the electrical propagation in the cardiac tissue and the
catheter’s influence on the electrograms at the surface of the tissue.

The blood bath around the cardiac tissue was modeled as a conductive medium
with a conductivity of 0.625 S/m [119, 120]. Electrodes were modelled as a highly
conductive material (1×1012 S/m). In the case of the catheter, insulator materials
were modelled with a low conductivity 1×10−6 S/m.

Figure 10.1: Model of the in silico setup with the commercial catheter. a) HD-grid model
included on top of a fibrotic area. b) 20-pole lasso catheter over a non-fibrotic tissue.

Additionally, a realistic clinical noise model was added to the simulated elec-
trograms to produce a more accurate unipolar electrogram. More in detail, clinical
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unipolar electrograms were extracted from patients’ recordings. With the help of
the tool ECGDeli [121], the ECG signal recorded on the surface of the thorax of
the patient was used to detect the time windows of the ventricular activity, which
corresponds with the duration of the QRST complex. The detected time windows
were used to automatically blank the ventricular far-field artifact from unipolar
electrograms. Afterwards, the non linear energy operator (NLEO) algorithm was
used in the signal without the ECG complex to detect the atrial activity. Also atrial
activity was blanked from unipolar electrogram. The remaining signal was then
pure noise artifacts present during the electrophysiological study.

With the isolated noise artifact segments, an autoregressive model was fitted to
obtain a generalized clinical noise model. The model was determined by Eq. 10.1:

Xt =
p

∑
i=1

φiXt−i + ε
∗
t , (10.1)

where Xt is the time series and ε∗t is white noise. The model order p was
determined based on the Bayesian information criterion. The smallest Akaike
information criterion value determined the global order, and the model coefficients
φi were averaged to obtain a global model representing the clinical noise of intrac-
ardiac signals. The generalized model was added to the simulated unipolar signals
as depicted in Figure 10.2. After adding noise, unipolar synthetic signals were
filtered using a band-pass filter between 0.05 Hz and 900 Hz. Additionally, bipolar
electrograms were calculated by subtracting the signals from the corresponding
pairs of electrodes and filtered by a band-pass filter between 30 Hz and 300 Hz
used in clinical settings.

10.2 Results

The use of realistic geometries to represent the electrodes alters the morphology
of simulated electrograms. Figure 10.3a shows a simulated bipolar electrogram
sensed with cubic electrodes where the impact of filtering on the positive slope
becomes visible. Figure 10.3b shows a simulation with a cylindrical electrode
geometry mimicking the commercial catheters used in this study. The resulting
electrogram is not symmetric and filtering has no significant effect on the positive
slope, which is steeper than in the electrogram sensed with cubic electrodes.
Adding noise to the simulated signals decreases their amplitude and fractionates
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Figure 10.2: Workflow to generate the noise model and the addition to the simulated signals.
In the top left corner, the different segments of the activity from a clinical unipolar electro-
gram are depicted. Autoregression was applied on the noise segments. The noise model was
used to estimate the simulated unipolar electrogram with noise. Afterwards, the unipolar
electrograms (red and blue trace) were filtered, and the bipolar electrogram was calculated by
subtracting the unipolar electrograms. Adapted from [118].

the morphology (Figure 10.3c). Simulated bipolar electrograms without noise
have a higher amplitude of R and S peaks, which decrease with the addition
of noise. Figure 10.3d compares a simulated signal with a clinical signal. In
simulated electrograms negative and positive slopes are close to the values of the
clinical signal, 0.1 mV/ms and 0.25 mV/ms, respectively.

In silico electrograms were validated against clinical electrograms recorded
from areas of the atria with peak-to-peak amplitudes higher than 0.5 mV. Cross-
correlation was used to align clinical signals and simulated electrograms in time
for maximal similarity. Simulated bipolar signals for non-fibrotic tissue had a cor-
relation of 91.13±0.05 % with clinical signals. Clinical high voltage (peak-to-peak
>0.5 mV) and simulated control electrograms (no fibrosis) had a peak-to-peak
voltage of 1.67±0.05 mV and 2.25±0.01 mV, respectively. Clinical and simu-
lated control electrograms had a duration of 18.30±0.56 ms and 17.5±0.04 ms,
respectively.
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Figure 10.3: Importance of using a realistic electrode geometry and adding noise for simulated
intracardiac signals. a) Bipolar electrogram signal recorded with a cubic electrode (blue trace)
and the corresponding filtered signal (red trace). b) Signal recordedwith a cylindrical electrode
(blue trace) and the resulting signal after filtering (red trace). c) Simulated signals recorded
with a cylindrical electrode with and without noise and the resulting signals after filtering.
d) Comparison of a simulated signal with a clinical signal.

10.3 Discussion

The bidomain model captures the biophysical phenomena of cardiac depolariza-
tion and the generated electric field in the extracellular medium with wavefront
propagation. The biophysical model also simulates the equipotential character-
istic of a metal electrode and the influence of the geometry in the simulated
electrogram.

Nairn et al. [39] have shown the importance of the electrode size in the ampli-
tude of the electrogram. Furthermore, the results presented in this chapter showed
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the importance of introducing a realistic geometry of the catheter to compute the
electrogram morphology. Additionally, simulated bipolar electrograms from this
study have shown a high correlation with clinical bipolar clinical signals [43].

A high correlation between clinical and in silico electrograms is of great
importance to study the electrical activation of the cardiac tissue. Electrograms
from in silico experiments provide the information of the cardiac cells’ action
potential (sources) that will generate the extracellular potential measured by the
electrode. Therefore, there is a great necessity to use realistic geometries to
understand the mechanisms that affect the electrograms and translate the gained
knowledge to clinical applications that improve the patients’ quality of life.
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machine learning

With the increasing amount of clinical data available, the use of machine learning
for the interpretation of cardiac signals is steadily increasing. Machine learning
has been extensively used in electrocardiogram analysis due to its potential to
analyze big datasets and uncover mechanistic information about cardiac electri-
cal function [122–124]. Several studies aimed at quantifying AF mechanisms
and automatically localize reentrant drivers using in silico or clinical electro-
grams [125, 126]. Less attention has been paid to how intracardiac electrograms
can provide information about the cardiac substrate based on fibrosis effects on
the signal morphology. Campos et al. classified different types of fibrosis based
on electrogram features using in silico experiments [20]. However, quantification
of fibrotic volume fraction and transmurality in the atrial substrate has not been
reported yet to the best of our knowledge. Additionally, data-driven approaches
can help to overcome the use of a single voltage cut-off value to characterize the
cardiac substrate and distinguish between non-fibrotic and fibrotic tissue based on
a more comprehensive holistic set of criteria. Part of this work was presented as a
part of a prepint [118].
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11.1 Methods

11.1.1 Modeling realistic setups

Computational cardiac modeling can considerably accelerate the process of de-
signing and evaluating medical devices, including mapping systems and software
to treat patients with cardiac arrhythmia. The American Society of Mechanical
Engineers (ASME) Verification and Validation Subcommittee standard V&V40
(Verification and Validation in Computational Modeling of Medical Devices)
outlines credibility requirements of a computational model based on risk.

Following the recommendations of the ASME V&V40 the modeling steps
(Figure 11.1) for the present study were carefully chosen.

Figure 11.1: ASME V&V40 workflow to verify and validate models that will be translated to
clinical applications. Adapted from [127]

As an input of the flowchart in Figure 11.1, two questions of interest were
defined:

1. "Can tissue fibrotic characteristics be derived from intracardiac signals to
guide ablation therapies?"

2. "Can synthetic data be used to train a classifier to locate fibrotic tissue and
quantify its characteristics?"

These guiding questions helped define the required model level of detail for the
in silico experiment. In the next step, we established the risk-informed credibility
of using a detailed biophysical model to simulate electrograms and use them to
generate a hybrid dataset which combines clinical and synthetic signals. Risk-
informed assessment defined the level of uncertainty and the model’s complexity
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based on the context of use (CoU) of the in silico experiments. The CoU of the
model is to generate a hybrid dataset to train a classifier to locate and quantify
fibrotic tissue.

The strategy used to model fibrosis affects the dynamics of electrical prop-
agation as described by Roney et al. [63], which in turn affects electrogram
morphology. Fibrosis modeling uncertainty was reduced by considering several
realizations of random uniformly distributed collagen fibers with different volume
fraction and transmurality. We overcame the limitation of catheter geometry and
wavefront direction by including two models of commercially available catheters
(HD-grid catheter and 20-pole lasso catheter) and pacing from three different
locations [128]. Two different human atrial cardiomyocyte models were consid-
ered to minimize the uncertainty of the action potential morphology influence
on the electrogram. Moreover, an autoregression model of clinically measured
noise artifacts was created. The modeled clinical noise in combination with the
simulated electrograms reduced the uncertainty of simulated with respect to mea-
sured electrograms. Considering all points mentioned above, the risk-informed
assessment of using in silico experiments to characterize the fibrotic substrate was
defined as medium.

Afterwards, Table 11.1 establishes the credibility level based on the model
risk [129]. Verification steps of the software’s quality code is ensured using
an automatic regression testing framework [37], and numerical solutions were
established following the steps of Niederer et al. [130]. In silico electrograms
where compared with different clinical measurements from different healthy
areas of the atria to evaluate the degree of credibility of bidomain simulations
(Figure 10.3d).

11.1.2 In vivo and in silico electrograms

The dataset was composed of two data sources. The first source was clinical data
from in vivo recordings from patients who were diagnosed with persistent AF.
From the clinical data source, a cut-off value of 0.5 mV was used to distinguish
electrograms from healthy and pathological tissue. Electrograms from healthy
tissue were validated by expert cardiologists in the field of electrophysiology.

The second source of data were in silico electrograms from fibrotic tissue. In
silico experiments were set up to collect the electrograms at the surface of the
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Table 11.1: Summary of the credibility factors. Assesment was based on the ASME V&V40
standard [129].

Activity Credibility factor Rigor Credibility level
Verification

Code Software quality assurance D High
Numerical code verification D High

Calculation
Discretization error D High

Numerical solver error D High
User error N/A N/A

Validation

Computer model Model forms C High
Model input N/A N/A

Comparator Test samples C Medium
Test conditions B Low-Medium

Assesment Equivalency of input parameters N/A N/A
Output Comparison 4 Medium/High

Applicability Relevance of the quantities of interest N/A N/A
Relevance of the validation activities to the CoU C Medium/High

fibrotic tissue. The tissue was stimulated from three different locations. The left
and bottom border were stimulated to simulate a planar wave across the fibrotic
tissue. Additionally, the tissue’s left top corner was stimulated to simulate a
non-planar wave across the fibrotic area. Simulated signals were added with the
realistic clinical noise model explained in chapter 10, which reproduced the noise
present in the clinical unipolar electrograms.

Both in silico electrograms and clinical electrograms followed the standard
clinical practice filter configuration. Unipolar electrograms were filtered using
a band-pass filter from 0.05 Hz to 900 Hz. Then bipolar electrograms were
calculated and a band-pass filter from 30 Hz to 300 Hz was used.

In this study a method based on the Hilbert transform is proposed to detect
the atrial activity segments from the electrograms. The electrogram signal was
transformed in the Hilbert space as depicted in Figure 11.2a. From the centroid
(orange trace) a vector was used to measure the distance to the signal and to
trace loops in the signal. Frequency distributions of loop distances were used to
distinguish atrial activity and noise artifacts (Figure 11.2b). As a result, atrial
activity packages were detected as depicted in Figure 11.2c.
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Figure 11.2: Electrogram activity detection in the Hilbert space. a) Electrogram signal (c) in
the Hilbert Space with centroid (orange trace), green arrow depicts the distance measured
from the centroid to the signal. b) Frequency distribution of centroid to signal distance, red
line represents mean value plus one standard deviation. c) Bipolar electrogram (blue trace)
and activity segments (orange trace). Adapted from [118].

11.1.3 Machine learning

Nowadays, there is a wide variety of machine learning algorithms. Two main
branches of machine learning algorithms can be clearly identified: supervised
algorithms and unsupervised algorithms. Supervised algorithms are best suited to
problems where there is a set of available ground truth data to train the algorithm.
Unsupervised algorithms automatically find structure in the data without labels by
extracting characteristic features and similar clustering data. The lack of a ground
truth makes hard measuring the accuracy of an unsupervised algorithm.

In this thesis, supervised algorithms are used to characterize the atrial fibrotic
substrate from electrogram features due to ground truth data availability, thanks
to the highly detailed in silico experiments. In the hybrid dataset, every single

79



Chapter 11. Fibrosis characterization using machine learning

bipolar electrogram was labeled as non-fibrotic, 10% fibrotic density, 20% fibrotic
density, 40% fibrotic density, 60% fibrotic density, subendocardial (0.5 mm), par-
tial transmural (1 mm) or total transmural (2 mm). The features extracted from
bipolar electrograms quantify their complexity. For each bipolar electrograms,
segments of atrial activity were calculated by tracking closed loops in Hilbert
space. The distribution of the radius of every single loop was calculated and the
mean value plus one standard deviation was chosen to distinguish between cardiac
activity and noise. The peak-to-peak amplitude was calculated for each active seg-
ment. Furthermore, different entropy measures (sample entropy [131], Shannon
entropy [114], spectral entropy [132], and Kolmogorov complexity [133]) were
calculated for each segment of atrial activity. Additionally, the fractal dimension
coefficient was calculated for the whole 2.5 s signal segment [134].

Four different supervised machine learning algorithms (support-vector ma-
chine, decision tree, random forest, and K-Nearest neighbor) were benchmarked
to define which algorithm was most adequate to identify the characteristics of the
fibrotic tissue from extracted features of the electrograms. Hyperparameter for
each algorithm were tuned to find the best set of parameters that best fitted the
problem.

Afterwards, both clinical and simulated electrograms were synergically com-
bined to create a hybrid dataset containing in vivo and in silico electrograms. The
hybrid data set was split into training, validation, and test sets as a 70%/15%/15%
random split. All classes were guaranteed to be in all subsets. The validation set
was used by the Greedy technique to tune the classifier optimally. Furthermore,
validation set accuracy was used to check that the algorithm was not overfitting
when comparing against the test set accuracy. One hundred different realiza-
tions were run using hold-out cross-validation to obtain the mean accuracy of the
classification algorithm.

11.2 Results

The benchmark for the machine learning algorithms is depicted in Figure 11.3.
One hundred different realizations were done in order to obtain the mean value and
the standard deviation for each algorithm. For this specific case the used decision
tree had a mean accuracy of 97.3%±0.6. Random forest, support vector machine
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and K-Nearest neighbor had and mean accuracy of 92.2%±0.9, 96.2%±0.6, and
93.8%±1.5, respectively.

Figure 11.3: Machine learning benchmark of four different algorithm to characterize the car-
diac fibrotic substrate. One hundred random realization were done to measure the accu-
racy of the classifier for the specific task. Decision tree, random forest, support vector ma-
chine (SV) and K-Nearest neighbor (kNN) had and mean accuracy of 97.3%±0.6, 92.2%±0.9,
96.2%±0.6, and 93.8%±1.5, respectively.

Extracted features from bipolar electrograms are depicted in Figure 11.4. The
main diagonal shows the distribution of the calculated features for the different
groups of signals (different fibrotic densities in Figure 11.4a, different degrees
of fibrosis transmurality in Figure 11.4b). Peak-to-peak amplitude is not a good
feature to determine the degree of fibrosis due to the wide range of amplitudes that
overlap for fibrotic vs. non-fibrotic cases. While sample entropy can distinguish
between fibrotic and non-fibrotic tissue, the distribution of the values overlaps for
different densities. The distinction between different fibrosis transmuralities is

81



Chapter 11. Fibrosis characterization using machine learning

not possible using only one feature since the value for all features overlap for all
density or transmurality values (Figure 11.4b, main diagonal).

A decision tree classification algorithm was trained to separate different fibro-
sis densities and degrees of transmurality. The combination of signal complexity
features was determined by a Greedy forward algorithm. The dataset was randomly
divided into 70% train, 15% test, and 15% validation. The mean accuracy of the
three classifiers was calculated by doing 100 different realizations. Figure 11.5a
shows the confusion matrix of the classifier for distinguishing between non-fibrotic
and fibrotic tissue. The mean accuracy for this classifier was 97.95±0.03% with
98.81±0.01% sensitivity and 97.16±0.01% specificity. The classifier slightly
overestimated the fibrotic areas. Figure 11.5b shows the classifier performance
to identify fibrosis density (non-fibrotic, 10%, 20%, 40%, and 60%) with a mean
accuracy of 97.01±0.02% and 96.33±0.03% and 99.05±0.01%, for sensitivity
and mean specificity, respectively. The most relevant features for classification
of fibrosis density, determined by the Greedy forward algorithm, were sample
entropy and spectral entropy.
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Figure 11.4: Feature distribution for all in vivo and in silico electrograms (including noise). Sin-
gle feature distribution can be observed in the diagonal and the combination of two features
is reflected in the scatter plots. a) Features split by different densities of fibrosis. b) Fea-
tures split by different transmurality degrees. Abbreviation: Duration: Duration of the active
segment (ms), SmpEn: sample entropy, ShEn: Shannon entropy, SpEn: spectral entropy, p2p:
peak-to-peak amplitude (mV), Kolmogorov: Kolmogorov complexity, Fractal: Fractal dimen-
sion. Adapted from [118].
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Figure 11.5: a) Confusion matrix of the decision tree classifier for identifying non-fibrotic vs.
fibrotic substrate. b) Confusion matrix of the decision tree classifier showing the performance
for identifying different fibrosis densities. c) Confusion matrix of the decision tree classifier
showing the performance for identifying transmurality of fibrosis. d) Effect of increasing the
electrode surface to tissue surface distance on the accuracy of the classifiers to distinguish
fibrotic tissue, density and transmurality. Adapted from [118].

To identify transmurality of fibrosis in the tissue, the classifier yielded a mean
accuracy of 94.62±0.01%, 92.99±0.02% sensitivity, and 97.86±0.01% specificity.
For fibrosis transmurality, misclassification occurred for some cases. Nevertheless,
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it is able to distinguish all four classes (non-fibrotic, 0.5 mm, 1 mm and 2 mm).
The most relevant features for classification of transmurality were sample entropy
and peak-to-peak amplitude.

Furthermore, the effect of increasing the distance between the catheter and
atrial endocardial surface on the classifiers’ accuracy was investigated. The
classifier’s accuracy dropped with increasing distance, as shown in Figure 11.5.
The accuracy of the classifier dropped to 0% for electrode-to-tissue distances
bigger than 4.1 mm, to distinguish non-fibrotic from fibrotic tissue. To identify
different densities, the accuracy dropped to 59.17% at 1.1 mm distance of the
tissue. Additionally, transmural accuracy dropped to 33.30% with a distance of
the tissue of 1.1 mm (Figure 11.5d).

11.3 Discussion

With the increasing number of data available, data-driven approaches help improve
patient’s diagnosis and therapies. Several studies used data-driven approaches
with clinical data to characterize electrocardiogram signals measured on the body
surface [135–138]. Costabal et al. used a hybrid dataset approach to interpret
activation times during AF[139]. In this Thesis a detailed in silico setup was
developed as a perfectly controlled testing environment to understand intracardiac
signals recorded with two different commercial catheters. Furthermore, a decision
tree classifier using clinical and simulated data to characterize signals based on
complexity measurements was trained. Decision trees offer a comprehensible
structure to follow the decisions taken for the classification. All three classifiers
had a high accuracy. Despite overlapping features for different degrees of trans-
murality (Figure 11.4b), the combined features used to train all decision tree
classifiers distinguished non-fibrotic tissue, fibrosis volume fraction and all three
different transmuralities of fibrosis from electrogram signals. Our results suggest
that combining clinical and simulated data helps to characterize electrical tissue
properties more accurately than using synthetic data alone. In future work, the
classifier could be extended to include more training signals recorded directly at
the surface of the tissue and at certain distances above the tissue to increase the
perfomance when there is non direct contact of the catheter with the tissue surface.

Different ablation strategies target fibrotic areas by ablating or isolating
them [12]. Both techniques rely on a voltage cut-off value for the identifica-
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tion of possible fibrotic areas. While ablating fibrotic areas tries to homogenize
the fibrotic substrate, isolation encloses the fibrotic regions and connects them
to the pulmonary vein isolation lines to prevent a potential proarrhythmic effect.
This suggests that identifying fibrotic tissue through electroanatomic mapping is
essential and the choice of a single voltage cut-off value may not be sufficient
to decrease the recurrence of arrhythmia [17]. Gutbrod et al. showed the impor-
tance of fibrosis transmurality for electric propagation during AF [140]. Using a
hybrid dataset approach, our findings can help standardize the identification of
non-fibrotic vs. fibrotic areas and provide valuable information on the fibrotic
tissue characteristics such as fibrosis density and transmurality. Several studies
have shown that low-density fibrosis can modify the propagation and initiate or
maintain arrhythmia [43, 141]. The border zone of high-density fibrotic areas
are prone to be a point of anchor for rotational activity [108, 142–144] while
low-density fibrosis micro-structure can alter the propagation pattern and maintain
reentry [145, 146]. The trained classifier was used on five patients from the test
set of our patient cohort to distinguish and characterize fibrotic tissue. For clinical
data, not all low voltage areas were marked as fibrosis when using a single cut-
off value. Areas with low-density (10%) subendocardial fibrosis (0.5 mm) were
annotated as high voltage area when using a single peak-to-peak cut-off value of
0.5 mV. Therefore, the use of hybrid datasets and data-driven approaches could
help estimate fibrotic tissue characteristics to support planning of ablation therapy.

The results show that current clinical standards for substrate mapping using
bipolar voltage alone are not sufficient to characterize the atrial fibrillation sub-
strate comprehensively. Machine learning algorithms trained using hybrid datasets
and multiple features obtained from intracardiac signals may overcome these
limitations providing fibrosis density and transmurality maps. This may lead to
optimized therapeutic approaches.

The model approach does not capture the influence of atrial anatomy, nev-
ertheless our hybrid dataset approach tries to minimize this effect by including
clinical signals. Furthermore, increasing the catheter to tissue distance decreases
the accuracy of the classifier. The effect of the distance can likely be minimized
if the dataset is extended by including signals that were acquired at a certain
distance of the cardiac tissue. Additionally, only a homogeneous distribution of
fibers from the endocardium to the epicardium was considered, which may not
represent heterogenous tissue architecture observed in some regions of the atria.
In this study the effect of inflammation-induced paracrine remodeling or myofi-
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broblast interaction [36] was not included. While our approach shows promising
results and highlights the essential features of intracardiac signals to characterize
atrial substrate, validation through independent experimental and clinical data is
desirable.

The modeling approach successfully answered the question of interest: A clas-
sifier can be trained using clinical and simulated data to characterize the cardiac
substrate to support ablation therapy by providing fibrosis density and transmu-
rality maps. Moreover, the credibility assessment showed that detailed cardiac
modeling can be a valuable framework. In the future, classifiers to predict cardiac
tissue characteristics could be integrated in clinical electroanatomic mapping sys-
tems. Finally, our study emphasizes the potential of in silico experimentation and
data-driven approaches to characterize the patient’s substrate and demonstrates
the potential of software tools to support medical decisions during the procedure.
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Chapter 12

Determination of wavefront
direction using transfer entropy

Determining the direction of the wavefront is essential to understand the behavior
of atrial electrical activity. Van Nieuwenhuyse et al. [147] have recently shown
the advantage of using directed graphs to understand the wavefront direction;
however, the method relies on the annotation of electrograms, which is not a trivial
task under AF due to the complexity of the signal. In neuroscience and more
specifically in the study of the electroencephalogram, statistical approaches have
emerged as a powerful tool to understand the electrical activity of the brain [148].
Statistical methods have the advantage of not relying on the electrical signal’s
annotation of biomarkers. This chapter explores the use of information theory
measurements to understand the electrical propagation in cardiac tissue. Part of
this work was presented as a conference contribution.

12.1 Methods

12.1.1 Transfer entropy

In non linear systems, statistical relationships between the process variables reveal
information about the biophysical dynamics. Therefore, identification of the
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relevant variables and characterization of their interactions are crucial for a better
understanding of the underlying mechanism in a complex system.

Different studies use mutual information, which provides a model-free ap-
proach to quantify the information overlap between two variables. However,
mutual information only captures the information shared by two variables but not
the flow of information between two variables. Therefore, Scheriber et al. [149]
proposed transfer entropy (TE) as an information measurement.

TE is defined by Eq. 12.1, which measures the amount of uncertainty that is
reduced in future values of one variable (Y) by knowing past values of another
variable (X), given the past values of the first variable (Y).
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(12.1)

where X and Y are the variables to be considered for calculating the flow of
information.

12.1.2 Directed graphs

In mathematics, and more specifically in graph theory, a graph is made up of a set
of vertices connected by edges (Figure 12.1a). A directed graph is when the edges
have a direction associated with them.

In a directed graph (DG) (Figure 12.1b), an arrow is considered to indicate the
direction from node (vertex) v1 to node (vertex) v2; where v2 is the head and v1 is
the tail of the arrow. The relation of the nodes is described in the adjacency matrix.
The adjacency matrix of a directed graph is unique up to identical permutation of
rows and columns.

A directed graph was created using the physical electrode position and its
relation with its neighbors. Electrodes will correspond to nodes of the graphs and
edges are all possible connections with all its neighbors. TE values are used to add
directionality to each edge of the graph. Higher TE values will indicate a higher
flow of information. Therefore, for each direct neighboring node the maximum
TE value was used to define the direction of the edge.
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Figure 12.1: a) Undirected graph, where vertices or nodes are connected with bidirectional
edges. b) Directed graph,where vertices or nodes are connected with directed edges repre-
sented by arrows. Arrow’s tail points the source and the arrow’s head points to the sink.

12.2 Results

Simulated electrograms had a total duration of 8 s. The length of the signal was
reduced to 2.5 s which is the duration of the clinical recordings. The reduction of
the signal’s length had little effect on the value of TE. Signals with 8 s had a TE
value of 0.4 and signals of 2.5 s had a value of 0.38.

Transfer entropy was calculated for each electrode with all the others. Values
of transfer entropy were then shown as a matrix where the diagonal is the TE
value with its self (Figure 12.2). Different wave front propagation arises different
matrices patterns. Planar waves patterns are organized blocked pattern matrix
with a maximum transfer entropy value of 0.45 (Figure 12.2a). When a reentry
is generated, the matrix pattern is now disorganized with a maximum transfer
entropy value of 0.4 (Figure 12.2f).
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Figure 12.2: Different TE matrices patterns of calculated TE. a) TE pattern for a planar wave
following the fiber direction while b) shows a planar wave transversal to the fiber direction
and c) a radial planar wave. When conduction block modifies the propagation direction. d)
shows a u-turn of the wave propagation due to a line of block. e) shows a fibrotic area where
the propagation can travel across, and d) shows a reentry activity around a fibrotic area where
the pattern is sparse but organized.

Directed graphs help to visualize local and global directionality of the de-
polarization wave in the cardiac tissue. In the case of a planar depolarization
wavefront, TE in a combination of DG shows the propagation direction. When
reentry was induced, DG shows the direction of the rotational activity, and the
disconnection of nodes identifies the conduction block where the reentry was
anchored. Moreover, under the presence of low fibrosis density (10%) in the
cardiac tissue (Figure 12.3a), DG shows the global direction of the wavefront and
reveals local alteration in the directionality of the wave front propagation due to
the presence of collagen. Increasing the amount of fibrosis (40% - 60%) in the
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Figure 12.3: Directed graph calculated using a directed graph from anHD-grid. a) Subendocar-
dial low-density fibrosis alters the wave propagation locally. DG-TE can locate the local block
while activation times fail to distinguish local blocks. b) DG-TE map shows a block due to a
transmural high-density fibrotic area and shows the wave front’s local direction. In contrast,
local activation times show a delay on the activation but not a conduction block.

tissue alters the global and local propagation (Figure 12.3b), indicating a high
level of accuracy in the presence of collagen deposits in the tissue.

12.3 Discussion

Transfer entropy has shown to be a robust measurement to characterize the flow of
information between two neighboring signals and to characterize the direction of
the wave front propagation. Directed graphs help to preserve the spatial relation
of each node, while providing the electrophysiology information between them.
This information is of great importance during a clinical electrophysiology study
to understand the wavefront propagation and the dynamics of an arrhythmia. The
results presented in this chapter are in agreement with the finding from Rodrigo
et al. [150] that showed that causality relations between electrograms could help
guiding ablation therapies.
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Van Nieuwenhuyse et al. [147] have shown the advantage of using directed
graphs to determine reentry circuits during atrial flutter. However, the algorithm
provides global direction of the wave front and macroreentry paths. The combined
DG-TE has the advantage of showing local and global direction of the wave front
which provides a more detailed information of possible micro structural block due
to low density fibrosis (10%) and bigger structural blocks which occur with higher
densities of fibrosis (40% and 60%). DG-TE helps to understand the mechanism
of conduction block and provide useful spatial information.
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Chapter 13

Clinical fibrosis maps

Beyond pulmonary vein isolation, targeting the substrate has been proposed as
another ablation strategy with promising results. However, the determination of
low-voltage areas that define fibrotic substrate is based on a cut-off voltage value
of 0.5 mV. The amplitude of electrograms is strongly affected by the angle of
incidence of the wavefront, the electrode size, the thickness of cardiac tissue, and
the distance of the recording electrodes to the cardiac tissue. In this chapter, the
trained machine learning classifier was used in patient recordings as a proof of
concept to overcome the use of a single cut-off voltage value to determine the
fibrotic susbtrate and its composition. Part of this work was presented as a part of
a prepint [118].

13.1 Methods

This study includes five patients recruited at Städtisches Klinikum Karlsruhe
with the diagnosis of persistent AF. The five patients recordings were used as
a proof of concept to test our approach to characterize the atrial tissue from
clinical electrograms. Electroanatomical maps were acquired during sinus rhythm
using the CARTO3 mapping system (Biosense Webster, Diamond Bar, CA, USA)
with the Lasso catheter (Biosense Webster) or with the Rhytmia mapping system
(Boston Scientific, Cambridge, MA, USA) with the Orion mini-basket catheter
(Boston Scientific, Cambridge, MA, USA).
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Fibrosis maps were created from a high density of electrogram recordings.
However, missing data were interpolated using a radial basis function kernel (RBF).
The RBF function computes the similarity for two points x1 and x2 (Eq. 13.1).

K(x1,x2) = exp(−||x1− x2||2

2σ2 ) (13.1)

where ||x1− x2||2 is the Euclidean distance and σ2 is the variance of the
distribution.

13.2 Results

We applied the trained classifier to intracardiac signals measured in five patients of
the test set of our cohort, which were not used to train the classifier, to create maps
of atrial substrate characteristics. Figure 13.1 presents representative results for
patient 1. The yellow dot (Figure 13.1a, posterior view) shows a signal annotated
as high voltage and identified as non-fibrotic tissue by the classifier.

Low voltage and high voltage areas determined by the clinical system using a
cut-off value of 0.5 mV are shown in Figure 13.1a. The low voltage areas showed
a mean dice similarity coefficient of 69.84±0.03% with the predicted fibrotic
areas for the five patients. Patients 1, 3, and 4 showed fibrotic areas mostly within
the low voltage areas. Figure 13.1b shows the classified fibrotic areas based on the
signal features by the machine learning approach, where electrogram signals were
fractionated and exhibited a longer activity duration independent from their peak-
to-peak amplitude (Figure 13.1a, anterior view, green and white dot). Regions
annotated as high voltage areas partly exhibited fractionated electrograms with a
peak-to-peak voltage (1.4 mV) above the cut-off value of 0.5 mV (Figure 13.1a,
posterior view, light blue dot) where these areas were classified as low density
(20%) and partially transmural (1 mm) fibrosis. Fibrotic volume fraction was
estimated using patient electrograms as input for the classifier (Figure 13.1c). In
general for this patient cohort, high density was located at the core of fibrotic areas.
Furthermore, Figure 13.1d shows the classification of different transmuralities.
Fully transmural fibrosis was predominantly found in areas of high fibrotic density.
Thus, not all high-density fibrotic areas are entirely transmural. In contrast to
patients 1,3, and 4, patient 2 and patient 5 had a low similarity (55.74% and
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Figure 13.1: Anterior and posterior view of patient 1 maps for clinical low/high voltage (a)
and classification results for non-fibrotic vs. fibrotic (b), fibrosis density (c), and fibrosis trans-
murality (d). The green dot represents a signal at the base of the pulmonary vein which was
marked as high voltage and classified as subendocardial (0.5mm) low density (10%) fibrotic
tissue. The white dot refers to a signal recorded in the pulmonary vein classified as low volt-
age and high density (60%), transmural (2mm) fibrotic tissue. The yellow dot represents a
high voltage area identified as non-fibrotic and the light blue dot indicates a signal collected
in the pulmonary vein annotated as high voltage and classified as low density (20%), partially
transmural (1mm) fibrotic tissue. Modified from [118].

58.76%, respectively) of low voltage and fibrotic areas due to a generally low
peak-to-peak voltage in the electrograms.

13.3 Discussion

In this chapter, a novel approach was presented to characterize the patient’s
fibrotic substrate using the trained machine learning algorithm developed in
chapter 11 using the recorded electrograms. Currently, voltage and activation
time maps are used to guide ablation therapies [151]; however, they rely on
manual annotation of the electrograms and do not provide information about the
cardiac substrate. The generated fibrosis maps add additional information about
the cardiac substrate and especially the fibrotic density and transmurallity, which
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could help to guide ablation procedures. The data-driven approach presented
in this chapter overcomes the use of a single cut-off value to characterize the
atrial fibrotic substrate. Although the model needs further validation, the present
study is a proof of concept on how machine learning could help improve clinical
treatments.
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Directed graph - Transfer

entropy flow maps

Understanding the electrical propagation during atrial fibrillation (AF) is crucial
for an optimal ablation strategy. Technologies like Coherent mapping [152] and
STAR mapping [153] estimate the electrical propagation relying on the annotation
of local activation time (LAT) of electrograms, which is hard to determine in
complex signals. Transfer entropy (TE) measures the amount of information flow
between two processes, and allows the study of the propagation’s spatio-temporal
dynamics without electrogram annotation.

14.1 Methods

This study includes five patients recruited at Städtisches Klinikum Karlsruhe
with the diagnosis of persistent AF. The five patients recordings were used as a
proof of concept to test our approach to characterize the atrial tissue from clinical
electrograms. Patiens’ electroanatomical maps and recordings were the same as
used in chapter 13.

Electrograms were imported and stored in a standard structure where data
from the geometry, recorded signals coordinates and time of recording were
collected to create the directed graph and calculate TE. Recording time was
used to overcome the limitation of non-sequential recording characteristic of the
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electrograms collected during an electrophysiology study. Afterwards, a directed
graph (DG) was created to obtain the propagation direction. Regions of the
atria where data were not collected was interpolated using the RBF described in
Eq. 13.1.

The available recordings were mapped non sequentially. Therefore, a weight-
ing coefficient was introduced to resolve the global direction of the wave front
based on the recording time without the need of annotating local activation times
on the acquired electrograms.

14.2 Results

Local and global direction is depicted in Figure 14.1. Electrograms collected from
a close area showed local conduction direction (black arrow).

Figure 14.1: DG-TE flowmap showing the local and global direction of the propagation during
fibrillation. Black arrows indicate the local wave front propagation and white arrow indicate
the global propagation. Local activation times are in the background as a reference.
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White arrows indicate the global direction of the wave front. Red areas
correspond with late activation times which in which global direction was going
around. However, there were areas of late activation time where local direction
was altered but followed the global direction. According to the results shown in
Chapter 12 this might correspond with areas of low density fibrosis (10%).

14.3 Discussion

Current technologies such as Coherent map (Biosense) or STAR mapping [153]
and other studies have shown the possibility to determine the wavefront direction
and using a graph approach [154, 155]. Most of these methods rely on the
annotation of LAT on the electrograms, which is not a trivial task under peAF due
to fractionation of the signal.

In this proof of concept, we proposed a method that does not rely on the
annotation of clinical electrograms and overcomes the limitation of nonsequential
mapping by introducing a weighting coefficient to resolve the wavefront’s global
direction.
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Chapter 15
Conclusion

This chapter summarizes and briefly discusses the main contributions of the
present thesis, that go beyond the state of the art in translating computational
modeling to clinical applications. The main conclusions corresponding to the
specific objectives defined in this thesis are summarized as follows:

1. Characterization of the fibroblast/myofibroblast electrophysiology and its
impact on myocyte action potential
Cardiac structural remodeling is a complex process that involves the interaction
of different types of cells that are present in the cardiac tissue. During persistent
atrial fibrillation, the presence of fibrosis modifies electrical propagation in cardiac
tissue. However, in this thesis, the fibrotic tissue composition was explored using
computational models at different scales. Fibroblast differentiation to myofibrob-
last is a key factor in understanding the dynamics of electrical propagation. In this
thesis, the characterization of the electrophysiology of human atrial myofibrob-
last was assessed by fitting the model parameters to existing experimental data.
Moreover, the RMP and sodium current of myofibroblast is of great importance in
cardiac propagation.

2. Analysis of the role of calcium channels in myofibroblast electrophysiology
and its intracellular calcium handling system
Additionally, in silico experiments allowed to go beyond the limitations of in vitro
experiments and explore more in detail the electrophysiogy of isolated cells. In
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this thesis, we explored the presence of ionic calcium channels in the membrane of
the myofibroblast and the intracellular handling. These results are in accordance
with the literature and could explain the wide range of data due to the fibroblasts’
ability to differentiate and express different ionic currents.

3. Quantification of the impact on arrhythmogenicity of myofibroblast infiltra-
tion in atrial tissue during atrial fibrillation
At the tissue level, a high density of myofibroblasts will lead to a block of con-
duction, and reentry activity that is anchored to the border of the area where
myofibroblasts were present. Interestingly, in case of myofibroblasts’ low density
this allows the reentry to meander inside the area defined as fibrotic, changing
the dynamics of the fibrillatory event. Increased myofibroblast density induces a
biphasic behavior of the tissues vulnerability where the reentry activity progresses
from functional to an anatomical due to the conduction block.

4. Investigation of fibrosis composition and the effect on electrogram signals
The study of tissue fibrosis was carried out, looking at how fibrosis increases the
tissue’s vulnerability to trigger a reentry event and how the composition alters
the intracardiac signal collected at the surface of the tissue. Longer duration
of electrograms was observed when fibrosis was composed of myofibroblast;
however, by introducing a third component such as collagen electrograms where
fractionated due alteration of the wave propagation.

5. Analysis of the use of electrogram signals to characterize fibrotic substrate
Simulated electrograms were compared with clinical signals from healthy tissue
to validate the modeling methodology. Realistic modeling of the catheter and a
clinical noise model was used to create realistic signals compared with in vivo
recordings. To further verify and validate the proposed modeling in this Thesis,
the ASME V&V40 recommendations were followed. After the validation of the
model and the creation of 1048 different simulations, a machine learning algorithm
was used to characterize the fibrotic substrate. This study showed that machine
learning provides information about the cardiac fibrotic substrate without the need
to set a single cut-off value to distinguish healthy tissue from pathological tissue.

6. Investigation of the use of non-parametric measurements to understand the
electrical propagation in cardiac tissue
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Throughout this Thesis, it was shown that fibrosis alters the propagation of the
depolarization wavefront. Therefore, transfer entropy in a combination of directed
graphs was used to indicate the depolarization wavefront’s direction. Transfer
entropy does not need annotation of the electrograms, which is advantageous
when the signals are fractioned. As a proof of concept, fibrosis maps and DG-TE
maps were created to characterize the patients’ fibrotic substrate and the direction
of the wavefront from clinical recordings.

General conclusion
In conclusion, in silico experiments help to study and understand the electrophysi-
ology of isolated cells. Moreover, in silico experiments can be extended to tissue
level simulation to study how different cells and collagen interact and change the
depolarization wavefront. In addition, in silico data were used to synergistically
create a dataset with in vivo recordings to train machine learning algorithms
that can be used to guide ablation therapies. During electrophysiology studies,
knowing the depolarization wavefront direction helps understand the dynamics
of the reentrant activity. DG-TE flow allows to create a map that indicates the
wavefront direction with no need of electrogram annotation.
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Chapter 16
Outlook

At the cellular level, the investigation of calcium ionic currents and intracellular
calcium handling can be further extended to validate the results. Additionally, the
main hypothesis for including calcium dynamics in the myofibroblasts electrophys-
iology is under the assumption that myofibroblasts are cells that can mechanically
contract. Therefore, coupled simulations of electrophysiology and mechanics can
be carried out to fully understand intracellular calcium handling at the cellular
level. Additionally, at the tissue level, coupled simulations can assess the effect of
heterogeneous contraction during atrial fibrillation.

The model of the atria which included the catheter’s model can be further
developed to create a more realistic setup that better reflects clinical recordings.
Furthermore, exploring the advantage of the open code of openCARP a simulated
electrogram reference electrode can be extended to use an external signal that
corresponds to the Wilson central terminal, which is used in clinical setups as
a reference signal. Additionally, the Discontinuous Galerkin method can be
implemented in openCARP to study the cardiac tissue’s fibrotic composition at a
microscale resolution.

Further studies can be carried out to improve the machine learning algorithm to
characterize the atrial substrate better. From the created matrices of TE, machine
learning algorithm can be trained to characterize the depolarization pattern and
identify regions that are driving the reentry activity.
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With the increase of high-density electro-anatomical recordings, further inves-
tigation of the DG-TE can be developed to detect micro reentry loops and global
macro loops that better support ablation therapies.
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The atrial substrate undergoes a series of electrical and structural re-
modeling processes during atrial fibrillation. The electrical remodeling is 
characterized by the alteration of specific ionic channels, which changes 
the transmembrane voltage. Structural remodeling is a complex process 
involving the interaction of several signalling pathways, cellular interaction, 
and changes in the extracellular matrix known as fibrosis.

Highly detailed computational models at different scales were used to study 
the effect of structural remodeling induced at the cellular and tissue levels. 
Electrograms from bidomain models were used to train a machine learn-
ing algorithm to characterize the atrial substrate. Features that quantify 
the complexity of the signals were extracted to identify fibrotic density 
and fibrotic transmurality. Furthermore, the wave propagation direction 
was tracked by combining transfer entropy and directed graphs from 
unannotated electrograms.
 
In conclusion, this work presents a multiscale in silico study of atrial fibril-
lation mechanisms providing insight into the cellular mediators responsible 
for the extracellular matrix remodeling and its electrophysiology.
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