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1 Introduction

Precision studies of hadron collisions moved into the focus of the particle physics community
after no clear evidence for physics beyond the Standard Model has been found during the
first two LHC runs. A pre-requisite for such studies is a solid theoretical framework that
allows one to describe hadron collisions using quark and gluon degrees of freedom and, in
this way, connect experimental data to the Standard Model Lagrangian without the need for
additional modeling. The current theoretical framework is based on the concept of collinear
factorization [1] that, for processes with large momentum transfer, relates hadronic cross
sections to convolutions of partonic cross sections, computable in perturbation theory, with
universal non-perturbative parton distribution functions. Further refinements and practical
advancements of such a framework are currently among the central topics in theoretical
collider physics.
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Improvements in an existent framework may be provided by the soft-collinear effective
theory (SCET) [2–6] that seeks to establish a general pattern of factorization in collider
processes including both perturbative and non-perturbative physics. This effective theory
defines objects that are sensitive to particular momenta “modes” such as e.g. soft, collinear
etc. These objects can be calculated independently of each other and then combined to
provide predictions for physical quantities such as cross sections and kinematic distributions.
Key to this effort are factorization theorems that both define these objects precisely and
also provide information on how physical predictions should be assembled once these objects
have been computed.

There are four types of objects that appear in SCET; they are known as hard, beam, jet
and soft functions. Theoretical predictions for these functions are of interest since they can
be used to re-sum logarithmically-enhanced terms that appear in perturbative expansion in
QCD. In addition, they can also be used to set up a slicing method for deriving fixed-order
predictions for fully-differential calculations in QCD [7–18].

The slicing method requires an observable which can be used to separate the real-
emission phase spaces into “singular” and “regular” parts. Although, in principle, any
observable can be used to do that, if an observable is chosen in a way that does not violate
factorization into collinear and soft modes, a cross section, differential with respect to
such an observable, should satisfy a particular factorization theorem. Such a factorization
theorem would then contain soft and beam functions whose computation enables both, the
construction of subtraction terms for perturbative computations and the re-summation of
large logarithms that arise in theoretical predictions once the slicing variable becomes small.

In this paper we will deal with the so called zero-jettiness variable [19, 20] that can be
used as a slicing variable for processes where a color-less final state is produced in hadron
collisions. Calculations of the corresponding soft and beam functions have been performed
during the past decade. The zero-jettiness soft function has been computed through NNLO
QCD in refs. [21, 22] (see also refs. [23, 24]). The zero-jettiness beam function has been
calculated through NNLO QCD in refs. [25–27]. Studies of zero-jettiness beam functions at
N3LO QCD were initiated in refs. [24, 28–30] and were recently completed in refs. [31, 32].1

In this paper, we focus on certain technical aspects that arise in the computation of
the zero-jettiness soft function in higher orders of perturbative QCD. Due to algebraic
complexity of computations in high orders of perturbation theory, specialized tools and
methods are usually employed. Chief among them is the integration-by-parts (IBP) method
for loop integrals introduced in ref. [43] and adapted to real-emission integrals in ref. [44].
However, application of the IBP method to the computation of the zero-jettiness soft
function is not straightforward, as the zero-jettiness observable contains Heaviside functions
that depend on the light-cone components of four-momenta of the emitted partons.2 This
fact, as well as the need to compute large number of complicated integrals, makes the

1Jettiness soft functions for more complicated final states were studied in refs. [33–36]. Beam functions
for qT factorization were calculated in refs. [37–40]. Automated approaches to computation of soft, beam
and jet functions are discussed in refs. [41, 42].

2We note that Heaviside functions can also appear in the construction of NNLO subtraction terms that
need to be integrated over unresolved phase spaces of final state particles, see e.g. refs. [45–47].
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calculation of N3LO soft function non-trivial. Our goal in this paper is to discuss possible
ways to overcome these technical difficulties paving the way for the computation of the
triple-real and real-virtual contributions to the N3LO soft function. As a proof of concept,
we compute a number of non-trivial contributions to the N3LO soft function, that describe
emission of three gluons into the same hemisphere.

The remainder of this paper is organized as follows. In section 2 we introduce the
zero-jettiness soft function. In section 3 we explain how integration by parts can be used
to simplify computation of integrals with Heaviside functions. In section 4, we apply this
method to compute the soft function at next-to-next-to-leading order in QCD. We then
discuss various aspects of the N3LO calculation in section 5. We conclude in section 6.
Some useful formulas are collected in appendices A and B.

2 Heaviside functions in the zero-jettiness soft function

In this section we will briefly discuss the zero-jettiness soft function to explain how Heaviside
functions appear in phase-space integrals. Consider a process where two partons with
(normalized) momenta n and n̄ collide and produce a color-neutral final state together with
m QCD partons with momenta k1,2,.,m. The jettiness variable τ is defined as follows

τ =
m∑
j=1

minq∈{n,n̄}
[2qkj
nn̄

]
. (2.1)

To compute the minima in eq. (2.1), we use the Sudakov parameterization of the parton’s
momenta and write

ki = αi
2 n+ βi

2 n̄+ k⊥,i, i = 1, . . . ,m, (2.2)

where k⊥,in = k⊥,in̄ = 0, n2 = n̄2 = 0 and nn̄ = 2. It follows that

τ =
m∑
i=1

min {αi, βi} . (2.3)

To enable the choice between αi and βi in the above equation, we can partition the phase
space by writing

1 = θ(αi − βi) + θ(βi − αi), (2.4)

for each of the m partons.3 It is clear that the first term will contribute βi and the second
one αi to the jettiness variable τ .

Inserting the partition eq. (2.4) into integrals over momenta of final-state gluons we
find phase-space integrals with Heaviside functions. In general, for m-emitted gluons we
can obtain 2m different terms however, using the symmetry between m gluons and the fact
that the result is invariant under the simultaneous replacement of all αi’s with βi’s and
vice versa, the number of different terms is dramatically reduced. For example, for m ≤ 3
which covers NLO, NNLO and N3LO cases, only two independent contributions to the

3In what follows, we will focus on gluon emissions.
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soft-function need to be considered. They are 1) all m gluons are emitted into the same
hemisphere and 2) all but one gluons are emitted into the same hemisphere.

These different cases can be described as integrals over the following phase spaces

dΦh1,...,hm
f1,...,fm

= (Nε)−m
 m∏
j=1

[dkj ]fj(∆j,hj )

 δ(1−
m∑
j=1

κj,hj ) , (2.5)

where
Nε = (4π)−ε

16π2Γ(1− ε) , (2.6)

and

∆j,hj =

αj − βj , hj = n ,

βj − αj , hj = n̄ ,
and κj,hj =

βj , hj = n ,

αj , hj = n̄ .
(2.7)

Thanks to the definition of the jettiness variable, we associate functions fj in eq. (2.5) with
Heaviside functions but, as we will see later, we will also need to consider cases where one
or several of these functions f are δ-functions.

To explicitly see how these phase spaces are used, we consider an example of the
real-emission contribution to the soft function. Then, for NNLO and N3LO computations
we require the following integrals

Snn =
∫

dΦnn
θθ Eik2g({ki}, n, n̄), Snn̄ =

∫
dΦnn̄

θθ Eik2g({ki}, n, n̄), (2.8)

and

Snnn =
∫

dΦnnn
θθθ Eik3g({ki}, n, n̄), Snnn̄ =

∫
dΦnnn̄

θθθ Eik3g({ki}, n, n̄), (2.9)

where Eik3g({ki} and Eik2g({ki} are properly rescaled three-gluon and two-gluon eikonal
functions. We will specify these functions later. For now, suffice it to say that they
depend on the scalar products of gluon four-momenta kikj and on scalar products of gluon
four-momenta with external vectors n and n̄.

A standard way to simplify computation of complicated phase-space integrals is to use
reverse unitarity [44] to map such integrals onto cut loop integrals for which IBP identities
can be derived in a straightforward manner. This is achieved by using the formula

δ(P (~x))→ i

2π

[ 1
P (~x) + i0 −

1
P (~x)− i0

]
, (2.10)

where P (~x) is a polynomial in variables ~x that can be e.g certain components of gluons’
momenta. Once all δ-function constraints in phase-space integrals are removed using
eq. (2.10) and, provided, that there are no other non-polynomial constraints in the integrands,
one can make use of the powerful integration-by-parts technology [43] to reduce computation
of a large number of phase-space integrals to a few master integrals.

Unfortunately, if integrands contain Heaviside functions, this approach fails since the
last condition mentioned in the previous paragraph is not fulfilled. A possible solution to
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this problem was pointed out by one of us in ref. [24], where it was suggested to rewrite all
θ-functions that appear in relevant integrals as follows4

θ(bi − ai) =
∫ 1

0
dzi δ(zi bi − ai) bi , ai, bi > 0 . (2.11)

While this representation yields an integrand whose dependence on auxiliary variables zi can
be computed using reverse unitarity, it also introduces one additional parametric integral
per θ-function, which can become quite cumbersome. For this reason, in this paper we
would like to investigate how to derive and use IBP relations for phase-space integrals with
θ-functions directly, i.e. without the need to introduce additional variables.

3 Applying integration-by-parts technology to integrals with θ-functions

The goal of reverse unitarity [44] is to turn phase-space integrals into loop integrals. We
explained the main idea of the method in the previous section; we will now make this
discussion more specific considering the zero-jettiness soft function.

To remove all δ-function constraints from the integration measure, we start with a
phase-space element of a gluon i with momentum kµi = (Ei, ~ki) and write it as

[dki] = dd−1~ki
(2π)d−12Ei

= ddki
(2π)d 2π δ+(k2

i ). (3.1)

We then re-write the δ-function as in eq. (2.10)

δ(k2
i ) = i

2π

(
1

k2
i + i0 −

1
k2
i − i0

)
= 1

[k2
i ]c
. (3.2)

In addition, to deal with soft functions shown in eqs. (2.8), (2.9) we need to re-write all
δ-functions that define the re-scaled jettiness as cut propagators. For example, in case of
the nnn̄ kinematic configuration, we write

δ(1− k12n− k3n̄) = 1
[1− k12n− k3n̄]c

, (3.3)

where k12 = k1 + k2.
Hence, if we ignore θ-functions in the integrands of Snn, Snn̄, Snnn, Snnn̄, we immediately

recognize that we need to compute a collection of “loop” integrals with conventional
and unconventional cut “propagators”. To do that, we can apply integration-by-parts
identities [43] to reduce the number of independent integrals that need to be calculated.
Furthermore, there are powerful public programs such as Fire [48, 49], Kira [50, 51],
LiteRed [52, 53], and Reduze [54, 55] that can perform reductions to master integrals in a
highly automated and efficient fashion.

However, if relevant integrands contain a collection of θ-functions, as is indeed the
case for the soft function, this procedure can not be applied. An obvious problem is that

4See also section 4.2.2 in ref. [38].
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θ-functions cannot be turned into “propagators” since the mapping similar to the one shown
in eq. (3.3) does not exist. However, we would like to understand what happens if we ignore
this problem and attempt to derive IBP identities for integrands with θ-functions.

To study this question, we consider the following integral

I[θ(f), g] =
∫

ddk θ(f(k)) g(k), (3.4)

where f(k) is a polynomial in momentum k and g(k) is a function that allows a standard
derivation of integration-by-parts identities.5 To derive integration-by-parts identities for
the integral I[θ(f), g], we write the standard equation

0 =
∫

ddk ∂

∂kµ
[vµθ(f(k)) g(k)] , (3.5)

that is valid for dimensionally-regularized integrals. Vector vµ in eq. (3.5) is an arbitrary
vector that we do not need to specify further. Calculating the derivative, we obtain

∂

∂kµ
{
vµ θ(f(k)) g(k)

}
= θ(f(k)) ∂

∂kµ
{
vµg(k)

}
+
{
g(k) δ(f(k)) vµ

}∂f(k)
∂kµ

. (3.6)

It follows that
0 = I[θ(f), ∂µ(vµg)] + I[δ(f), gvµ(∂µf)]. (3.7)

The first term on the right-hand side belongs to the same class of integrals as the original
one I[θ(f), g] because it involves the same θ-function; we call this term the homogeneous
part of the IBP relation. Since, by assumption, integrals of g(k) can be studied using
standard integration-by-parts technology, it follows that the homogeneous terms produce a
closed set of linear equations when studied on their own.

The second term in eq. (3.7) involves δ(f); we call this term the inhomogeneous part of
the IBP relation. Since we can use the generalized unitarity trick to write δ(f)→ 1/f and
since f is a polynomial in k, I[δ(f), gvµ∂µf ] defines a class of integrals that can be studied on
their own independent of integrals with θ-functions. In fact, obtaining integration-by-parts
identities for this class of integrals can be done with standard methods. The only subtlety
that we have to deal with when working with inhomogeneous terms is that the function
g(k)/f(k) may contain linearly-dependent “propagators” that will have to be re-mapped
onto properly-defined integral families. Although this, by itself, is not a crucial issue, it
does not allow us to derive IBP relations for integrals with arbitrary powers of propagators
and forces us to produce IBP relations for each of the seed integrals individually.

We thus conclude that it is possible to establish useful integration-by-parts identities
for integrals with multiple θ-functions by iteratively using eq. (3.7). It follows from that
equation that the derivative of an integrand produces inhomogeneous terms, where a
θ-function is replaced by a δ-function.

Therefore, by using eq. (3.7) repeatedly, we obtain a hierarchical sequence of IBP
relations containing integrals with a decreasing number of θ-functions and an increasing
number of δ-functions. The IBP relations can be used to express all relevant integrals

5In case of the soft functions, f(k) reads f(k) = ±(kn̄− kn).
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through a set of master integrals. When choosing master integrals, we try to select those
that contain fewer θ-functions since they are easier to compute. We will illustrate the
construction of IBP relations and their usage in the next section where we will calculate
the real-emission contribution to the zero-jettiness soft function at NNLO.

4 IBP identities and the NNLO QCD contribution to the zero-jettiness
soft function

In this section, we show how to use reverse unitarity and modified IBP relations to compute
the maximally non-abelian contribution to zero-jettiness soft function at NNLO. We define
it as

S2g
NA = 1

τ1+4ε

[∫
dΦnn

θθ ω
(2)
nn̄ (k1, k2) +

∫
dΦnn̄

θθ ω
(2)
nn̄ (k1, k2)

]
, (4.1)

where [56]

ω
(2)
nn̄ (k1, k2) = Snn̄(k1, k2) + Sn̄n(k1, k2)− Snn(k1, k2)− Sn̄n̄(k1, k2) , (4.2)

with

Spipj (k1, k2) = (1− ε)
(k1 · k2)2

[(pi · k1)(pj · k2) + i↔ j]
(pi · k12)(pj · k12)

− (pi · pj)2

2(pi · k1)(pj · k2)(pi · k2)(pj · k1)

[
2− [(pi · k1)(pj · k2) + i↔ j]

(pi · k12)(pj · k12)

]

+ (pi · pj)
2(k1 · k2)

[
2

(pi · k1)(pj · k2) + 2
(pj · k1)(pi · k2) −

1
(pi · k12)(pj · k12)

×
(

4 + [(pi · k1)(pj · k2) + i↔ j]2

(pi · k1)(pj · k2)(pi · k2)(pj · k1)

)]
.

(4.3)

In the next section we explicitly construct a few examples of IBP equations with
θ-functions that are relevant for this case. We discuss the computation of the two terms in
eq. (4.1) after that.

4.1 An example of an IBP relation

In this section, we explain how to employ modified integration-by-parts identities discussed in
section 3. As the first step, we map all integrals that appear in eq. (4.1) onto integral families.
These families are defined by sets of linearly-independent propagators6 and additionally
contain two θ-functions from phase-space measures in eq. (4.1). Cut propagators are
constructed from δ-functions δ(k2

i ) that enforce the on-shell conditions for the emitted
gluons, and also from jettiness-dependent δ-functions that appear in the corresponding
phase spaces

dΦnn
θθ ∼ δ(1− β1 − β2) = δ(1− k1n− k2n) , (4.4)

dΦnn̄
θθ ∼ δ(1− β1 − α2) = δ(1− k1n− k2n̄). (4.5)

6When referring to propagators, we imply both cut and ordinary ones. In case of the real-emission
contribution to NNLO soft function, we have three cut propagators and four ordinary ones.
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After partial fractioning, we find that we need several independent integral families in
this case. For example, one integral family that is required to describe the nn-configuration
reads

T ex
a1...a7 =

∫ ddk1ddk2 θ(k1n̄− k1n)θ(k2n̄− k2n)[
(k2

1)a1(k2
2)a2(1− k12n)a3

]
c (k1k2)a4 (k2n)a5 (k1n̄)a6 (k12n̄)a7

, (4.6)

where the subscript c denotes cut propagators.
In order to construct an explicit example of the modified IBP relations discussed in

section 3, we consider the integral

Iex =
∫ dΦnn

θθ

(k2n) (k1n̄) (k12n̄) = T ex
1,1,1,0,1,1,1 . (4.7)

Starting with this “seed integral” and following the discussion around eq. (3.5), we
derive eight different equations by computing derivatives w.r.t. k1 and k2 and by using
vectors v ∈ {k1, k2, n, n̄}. For example, differentiating w.r.t. k1 and choosing v = k1, we find

0 =
∫

ddk1ddk2
∂

∂kµ1

kµ1 θ(k1n̄− k1n)θ(k2n̄− k2n)
(k2

1)(k2
2)(1− k12n) (k2n) (k1n̄) (k12n̄)

= (d− 4)T ex
1,1,1,0,1,1,1 − T ex

1,1,1,0,1,0,2 − T ex
1,1,2,0,0,1,1 + T ex

1,1,2,0,1,1,1

+
∫

ddk1ddk2
kµ1 (n̄− n)µ δ(k1n̄− k1n)θ(k2n̄− k2n)
(k2

1)(k2
2)(1− k12n)(k2n) (k1n̄) (k12n̄) .

(4.8)

In writing this equation, we have used the fact that homogeneous terms, which arise when
the derivative does not act on the θ-function, belong to the same family of integrals as the
seed integral.

As we already mentioned, inhomogeneous terms arise when derivatives act on the
θ-functions. In our example the last term in eq. (4.8) is inhomogeneous. This term vanishes
because kµ1 (n̄ − n)µ δ(k1n̄ − k1n) = 0. This is a general feature; indeed, we find that
integration-by-parts identities that involve a differential operator kµi ∂/∂ki,µ do not produce
inhomogeneous terms. To prove that assertion, consider

∂

∂kµi
[kµi θ(k

µ
i qµ)g(k)] = θ(kµi qµ) ∂

∂kµi
[kµi g(k)] + [g(k)] kµi qµ δ(k

µ
i qµ) . (4.9)

The second term on the right hand side of eq. (4.9) vanishes which implies that differential
operators of the form kµi ∂/∂k

µ
i do not produce inhomogeneous contributions.

As a second example, we consider the derivative w.r.t. k1 and use v = n. We find

0 =
∫

ddk1ddk2 n
µ ∂

∂kµ1

θ(k1n̄− k1n)θ(k2n̄− k2n)
(k2

1)(k2
2)(1− k12n)(k1n̄) (k2n) (k12n̄)

= 2T ex
1,1,1,0,1,1,2 − 2T ex

1,1,1,0,1,2,1 + 2T ex
2,1,1,0,0,1,1 − 2T ex

2,1,1,0,1,1,1

+ (nn̄)
∫

ddk1ddk2
δ(k1n̄− k1n)θ(k2n̄− k2n)

(k2
1)(k2

2)(1− k12n)(k1n̄) (k2n) (k12n̄) .

(4.10)

Similar to the previous case, we have expressed homogeneous terms through integrals of
the family T ex. However, in this second example, the inhomogeneous term does not vanish
and requires further treatment in the IBP setup.
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The reason for that is the fact that the propagators in that term are linearly dependent
due to the new δ-function in the integrand δ(k1n̄− k1n) that becomes a rational function if
reverse unitarity is used. To see this explicitly, we make the replacement δ(k1n̄− k1n)→
1/[k1n̄− k1n]c, multiply the result with the partial fractioning identity

1 = (k1n̄)− [k1n̄− k1n]c
(k1n) × {[1− k12n]c + (k1n) + (k2n)} , (4.11)

and obtain∫ ddk1ddk2 θ(k2n̄− k2n)[
(k2

1)(k2
2)(1− k12n)(k1n̄− k1n)

]
c (k1n̄) (k2n) (k12n̄)

=
∫ ddk1ddk2 θ(k2n̄− k2n)[

(k2
1)(k2

2)(1− k12n)(k1n̄− k1n)
]
c (k12n̄)

[ 1
(k1n) + 1

(k2n)

]
.

(4.12)

We note that terms that do not contain the complete set of cut propagators were set to
zero in the above equation. Furthermore, we note that it is the partial fractioning step that
prevents us from writing IBP relations for arbitrary powers of propagators, as it is usually
done when traditional IBP relations are derived for integrals without θ-functions. Because
of this, we need to generate equations by selecting seed integrals, deriving IBP relations
for them and explicitly mapping all inhomogeneous terms to simpler integral families. We
further elaborate on this point in the next section.

In summary, we found that modified IBP relations in the considered case relate integrals
with two θ-functions to integrals with one θ-function. Written as phase-space integrals, the
modified IBP relations read

0 =
∑
i

ahom
i (ε)

∫
dΦh1h2

θθ gi(n, n̄, k1, k2) +
∑
i

ainhom
i (ε)

∫
dΦh1h2

δθ gi(n, n̄, k1, k2) , (4.13)

0 =
∑
i

bhom
i (ε)

∫
dΦh1h2

θθ gi(n, n̄, k1, k2) +
∑
i

binhom
i (ε)

∫
dΦh1h2

θδ gi(n, n̄, k1, k2) , (4.14)

where the two equations arise from derivatives w.r.t. k1 and k2, respectively.
We can apply the same logic to integrals with a θ-function and a δ-function. Inhomoge-

neous terms in this case will contain two δ-functions and no θ-function. IBP relations for
such integrals can be derived using conventional methods since δ-function constraints can
be immediately mapped onto rational functions of parton momenta using reverse unitarity.

4.2 Reduction to master integrals

In the previous section, we presented an explicit example of a modified IBP relation that
we derived starting with a seed integral with two θ-functions. We note that modified IBP
relations naturally form a hierarchical structure since the smaller the number of θ-functions
that a particular integral contains, the easier it is to compute it. Hence, in the course of the
reduction, we try to express integrals with larger number of θ-functions through integrals
with some of the θ-functions replaced by the δ-functions. Integrals that belong to the same
“hierarchical level” are organized into distinct integral families.
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In practice, we implement derivation of modified IBP relations in Mathematica and
solve them using the “user-defined system” functionality of Kira. This requires us to define
integral families with different numbers of θ- and δ-functions and to derive relations among
integrals that belong to different families. We note that for conventional integrals all these
steps are done automatically by publicly-available reduction programs, but we have to take
care of them ourselves in the present case.

As we already mentioned, it is straightforward to derive homogeneous relations for
integrals in each family for arbitrary powers of propagators. For example, for the integral
family defined in eq. (4.6), the derivative with respect to k2, contracted with v = n̄ yields7

0 =
∫

ddk1ddk2 n̄
µ ∂

∂kµ2

θ(k1n̄− k1n)θ(k2n̄− k2n)
[. . . ]c (k1k2)a4 (k2n)a5 (k1n̄)a6 (k12n̄)a7

=
[
2a22̂+(6̂− − 7̂−) + 2a33̂+ − a44̂+6̂− − 2a55̂+

]
T ex
a1,a2,a3,a4,a5,a6,a7 + . . . .

(4.15)

In writing this equation, we have defined operators î+(−) that raise (lower) the index ai of
the integral T ex

a1,a2,a3,a4,a5,a6,a7 by one.
Inhomogeneous terms, such as the one that appeared in eq. (4.10) and discussed after

that equation, are generated on an integral-by-integral basis; they require partial fraction
decomposition and “on-the-fly” matching to topologies with fewer θ-functions. Although
this step is straightforward, it needs to be implemented in a separate Mathematica code
whose output is then fed to Kira.

Using this setup, we express the maximally non-abelian contribution to the zero-jettiness
soft function defined in eq. (4.1) in terms of eleven master integrals

S2g
NA = τ−1−4ε

{[(192ε5 + 48ε4 − 736ε3 + 1336ε2 − 376ε+ 33
)

3ε3(2ε− 3)(2ε− 1) Inn1

− 8(4ε− 1)
(
12ε4 − 25ε2 + 41ε− 3

)
3ε2(2ε− 3)(2ε− 1) Inn2 + 3

ε
Inn3 + 2

ε
Inn4

]
+
[128ε7 + 864ε6 − 848ε5 − 1680ε4 + 152ε3 + 770ε2 − 163ε+ 3

ε3(ε+ 1)(2ε− 1)(2ε+ 1)(2ε+ 3) Inn̄1 (4.16)

− 8
(
64ε7 + 120ε6 − 164ε5 − 246ε4 + 69ε3 + 126ε2 − 46ε+ 3

)
ε2(ε+ 1)(2ε− 1)(2ε+ 1)(2ε+ 3) Inn̄2

+
(
16ε5 + 16ε3 + 36ε2 + 11ε− 9

)
ε(ε+ 1)(2ε+ 1)(2ε+ 3) Inn̄3 + 2

ε
Inn̄4

− 8(4ε− 1)
(
2ε3 + 3ε2 + 3ε− 3

)
ε(2ε+ 1)(2ε+ 3) Inn̄5 + 2 Inn̄6 + 4Inn̄7

]}
.

The master integrals that appear in eq. (4.16) read

Inn1 =
∫

dΦnn
δδ , Inn2 =

∫ dΦnn
δθ

(k12n̄) ,

Inn3 =
∫ dΦnn

δθ

(k1k2)(k2n̄) , I
nn
4 =

∫ dΦnn
δθ

(k1k2)(k2n)(k12n̄) ,
(4.17)

7We neglect inhomogeneous terms, represented by the ellipses.
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and

Inn̄1 =
∫

dΦnn̄
δδ , Inn̄2 =

∫ dΦnn̄
δθ

(k12n) ,

Inn̄3 =
∫ dΦnn̄

δθ

(k1k2)(k2n) , Inn̄4 =
∫ dΦnn̄

δθ

(k1k2)(k2n̄)(k12n) ,

Inn̄5 =
∫ dΦnn̄

θθ

(k12n)(k12n̄) , Inn̄6 =
∫ dΦnn̄

θθ

(k1k2)(k1n̄)(k2n) ,

Inn̄7 =
∫ dΦnn̄

θθ

(k1k2)(k2n)(k12n̄) .

(4.18)

It is interesting that the above set of master integrals is actually redundant since for
i = 1, 2, 3, 4, Inn̄i = Inni . This happens because in certain cases integrals depend on αi and
βi (or on n and n̄) in a symmetric way. As an example, consider Inn̄2 . We find

Inn̄2 = N−2
ε

∫ [dk1][dk2]δ(1− k1n− k2n̄)δ(k1n̄− k1n)θ(k2n− k2n̄)
(k12n)

n↔n̄= N−2
ε

∫ [dk1][dk2]δ(1− k1n̄− k2n)δ(k1n− k1n̄)θ(k2n̄− k2n)
(k12n̄)

δ(k1n−k1n̄)= N−2
ε

∫ [dk1][dk2]δ(1− k1n− k2n)δ(k1n̄− k1n)θ(k2n̄− k2n)
(k12n̄) = Inn2 .

(4.19)

Another interesting feature of the above set of master integrals is that only three master
integrals I5...7 contain two θ-functions; all these integrals correspond to the nn̄ configuration.
For all other master integrals, either one or both θ-functions are replaced by δ-functions;
these integrals are simpler to compute than the original ones.

To understand why there are no nn master integrals with two θ-functions, we note
that homogeneous parts of IBP relations are unaffected by θ-functions; hence, by solving
homogeneous parts of the IBP relations we should find master integrals that would be
present if all θ-functions are removed from the integrand. It is then easy to see that, in the
case of nn integrals, removal of θ-functions from the integrand leads to scaleless integrals
since the jettiness constraint only depends on β1,2 in this case.

4.3 Computation of master integrals

Having discussed the reduction to master integrals, in this section we explain how to
compute the master integrals that appear in eqs. (4.17), (4.18). Since the NNLO soft
function is required for the computation of N3LO soft function, we will compute S2g

NA

through weight six.
We begin by calculating the four integrals that are needed to describe the nn config-

uration. To this end, we combine the phase-space parameterization in eq. (2.5) and the
Sudakov parametrization of the phase-space element of gluon i

[dki] = Ω(d−2)

4(2π)d−1 dαi dβi (αiβi)−ε
dΩ(d−2)

i,⊥
Ω(d−2) , αi , βi ∈ [0,∞) , (4.20)
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to write

Inn1 =
∫

dΦnn
δδ =

∫ 2∏
i=1

dαi dβi(αiβi)−ε δ(1− β12) δ(α1 − β1) δ(α2 − β2)

=
∫ 1

0
dβ1 dβ2(β1β2)−2ε δ(1− β12) = Γ2(1− 2ε)

Γ(2− 4ε) ,
(4.21)

where we have used β12 = β1 + β2.
The computation of Inn2 proceeds in a similar way. We find

Inn2 =
∫ dΦnn

δθ

(k12n̄) =
∫ ∞

0
dα2 dβ1 dβ2

(α2β
2
1β2)−ε δ(1− β12) θ(α2 − β2)

β1 + α2

α2→β2/ξ2=
∫ 1

0
dξ2

∫ 1

0
dβ1

β−2ε
1 (1− β1)1−2εξε−1

2
1− β1(1− ξ2)

= Γ(1− 2ε) Γ(2− 2ε)
εΓ(3− 4ε) 3F2 [{1, 1, 1− 2ε} , {3− 4ε, 1 + ε} ; 1] .

(4.22)

The integral Inn3 involves the scalar product of the two gluon momenta. To facilitate its
computation, we write

Inn3 =
∫ dΦnn

δθ

(k1k2)(k2n̄)
α2→β2/ξ2=

∫ dΩ(d−2)
12[

Ω(d−2)]2
∫ dξ2 dβ1 ξ

ε
2 [β1(1− β1)]−1−2ε[

ξ2 + 1− 2
√
ξ2 cosϕ12

] , (4.23)

where dΩ(d−2)
12 = dΩ(d−2)

1 dΩ(d−2)
2 and ϕ12 is the relative angle between transverse compo-

nents of k1 and k2. To integrate over this angle, we introduce a new variable η defined as

η = 1− cosϕ12
2 , (4.24)

and write

dΩ(d−2)
12 = 2 dΩ(d−2) dΩ(d−3) dη [4η(1− η)]−1/2−ε . (4.25)

We integrate over η using the formula

2 Ωd−3

Ω(d−2)

∫ 1

0
dη [4η(1− η)]−1/2−ε[

ξ2 + 1− 2
√
ξ2(1− 2η)

] =
2F1

[
{1, 1/2− ε} , {1− 2ε} ; −4

√
ξ2

(1−
√
ξ2)2

]
(1−

√
ξ2)2 , (4.26)

apply the following hypergeometric identity8

2F1 [{a, b} , {2b} ; z] =
(

1− z

2

)−a
2F1

[{
a

2 ,
a+ 1

2

}
,

{
b+ 1

2

}
; z2

4 (1− z/2)2

]
, (4.27)

and obtain

Inn3 = − 2 Γ2(1− 2ε)
ε (1 + ε) Γ(1− 4ε) 3F2 [{1, 1 + ε, 1 + ε} , {1− ε, 2 + ε} ; 1] . (4.28)

8See, e.g. eq. (15.3.16) in ref. [57].
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Following similar steps, we derive

Inn4 =
∫ dΦnn

δθ

(k1k2) (k2n) (k12n̄) = − 2 Γ2(1− 2ε)
εΓ(1− 4ε)

∫ 1

0
dξ2 ξ

−1−ε
2 (1− ξ2)−1−2εX4(ξ2) , (4.29)

where the function X4 reads

X4(ξ2) = 2F1 [{−1− 4ε,−2ε} , {−4ε} ; 1− ξ2] 2F1 [{−ε,−2ε} , {1− ε} ; ξ2] . (4.30)

We note that the integral in eq. (4.29) diverges logarithmically at the integration boundaries
ξ2 = 0, 1 but the function X4(ξ2) is regular at these points

X4(0) = Γ(1− 4ε) Γ(1 + 2ε)
2 Γ(1− 2ε) , X4(1) = Γ(1− ε) Γ(1 + 2ε)

Γ(1 + ε) . (4.31)

Hence, we can compute the master integral Inn4 by subtracting divergent contributions at
endpoints and adding them back. Specifically, we write

Inn4 =−2 Γ2(1−2ε)
εΓ(1−4ε)

{
X4(0)

∫ 1

0
dξ2 ξ

−1−ε
2 +X4(1)

∫ 1

0
dξ2 (1−ξ2)−1−2ε

+
∫ 1

0
dξ2

[
ξ−1−ε

2 (1−ξ2)−1−2εX4(ξ2)−ξ−1−ε
2 X4(0)−(1−ξ2)−1−2εX4(1)

]}
.

(4.32)

The first two integrals on the r.h.s of eq. (4.32) are trivial. The last integral is regular in
the integration domain ξ2 ∈ [0, 1] and can be computed after expansion in ε. We construct
such an expansion using the package HypExp [58] and use the program HyperInt [59] to
integrate the result over ξ2. We arrive at

Inn4 = 2
ε2

+ π2

3 −
17π4ε2

90 + ε3
[
−6π2ζ3 − 26ζ5

]
− ε4

[
193π6

810 + 64ζ2
3

]
+O(ε5) , (4.33)

where we have discarded contributions of weight seven and higher.
It remains to compute three additional integrals for the nn̄ configuration. We begin

with Inn̄5 and change variables α1 = β1/ξ1, β2 = α2/ξ2. We find

Inn̄5 =
∫ dΦnn̄

θθ

(k12n)(k12n̄)

= 2 Γ2(2− 2ε)
Γ(4− 4ε)

×
∫ 1

0
dξ1

∫ 1

0
dξ2

(1− ξ1)(ξ1ξ2)−1+ε

1− ξ1ξ2
2F1 [{1, 2− 2ε} , {4− 4ε} ; 1− ξ1]

= 2 Γ2(2− 2ε)
εΓ(4− 4ε)

∫ 1

0
dξ1(1− ξ1)ξ−1+ε

1 X5(ξ1) ,

(4.34)

where

X5(ξ1) = 2F1 [{1, ε} , {1 + ε} ; ξ1] 2F1 [{1, 2− 2ε} , {4− 4ε} ; 1− ξ1] . (4.35)
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We subtract the (only) logarithmic singularity at ξ1 = 0 and obtain after the integration

Inn̄5 = 1
ε2

+ 2
ε

+
[
2 + π2

6

]
+ ε

[
2ζ3 − 8 + π2

]
+ ε2

[
16ζ3 − 64 + 4π2 + π4

9

]

+ ε3
[
64ζ3 −

2π2ζ3
3 + 30ζ5 − 256 + 32π2

3 + 26π4

45

]

+ ε4
[
128ζ3 + 4π2ζ3 + 8ζ2

3 + 60ζ5 − 512 + 92π4

45 + 44π6

945

]
+O

(
ε5
)
.

(4.36)

Following the same steps as described above, we find the result for Inn̄6

Inn̄6 = − 2 Γ2(1− 2ε)
ε(1 + ε)2 Γ(1− 4ε) 4F3 [{1, 1 + ε, 1 + ε, 1 + ε} , {1− ε, 2 + ε, 2 + ε} ; 1] . (4.37)

Finally, for the integral Inn̄7 we obtain

Inn̄7 =
∫ dΦnn̄

θθ

(k1k2)(k2n)(k12n̄)

= − Γ2(1− 2ε)
ε(1 + ε) Γ(1− 4ε)

∫ 1

0
dξ1ξ

ε
1

× 2F1 [{1,−2ε} , {1− 4ε} ; 1− ξ1] 3F2 [{1, 1 + ε, 1 + ε} , {1− ε, 2 + ε} ; ξ1] .

(4.38)

The ξ1-integral is finite; we expand it in powers of ε and integrate using HyperInt. The
result reads

Inn̄7 = − π2

6ε + 2ζ3 + π4ε

12 + ε2
[

5π2ζ3
3 + 19ζ5

]
+ ε3

[
937π6

3780 − 82ζ2
3

]
+O(ε4) . (4.39)

This concludes the computation of master integrals required for the calculation of the
real-emission contribution to the zero-jettiness soft function at NNLO.

4.4 Results for the real emission contribution at NNLO

We use the master integrals computed in section 4.3, insert them into eq. (4.16) and obtain

S2g
NA = τ−1−4ε

{
2
ε3

+ 11
3ε2 + 1

ε

[67
9 −π

2
]

+
[

404
27 −

11π2

9 −18ζ3

]

+ε

[
2140
81 + 67π2

9 − 59π4

90 −
220ζ3

3

]
+ε2

[12416
243 −

368π2

81

− 143π4

45 +268ζ3 +4π2ζ3−182ζ5

]
+ε3

[67528
729 + 2416π2

81

+ 469π4

45 − 17π6

105 −
7864ζ3

27 + 880π2ζ3
9 −122ζ2

3−
6248ζ5

3

]
+O(ε4)

}
.

(4.40)

The result agrees with the one derived earlier in ref. [24].9

9We note that it also agrees with the results of refs. [21, 22] which were computed through weight four.
Partial results through weight six have been obtained in ref. [60].
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To summarize, we have shown that by constructing the integration-by-parts identities
for phase-space integrals with Heaviside functions it is possible to express the real emission
contribution to the zero-jettiness NNLO soft function through seven master integrals. The
majority of these integrals needs to be computed by integrating over a simplified phase
space with all or some θ-functions replaced by the δ-functions. This simplification is
very striking in case of the nn kinematic configuration where we find that no master
integrals with two θ-functions need to be computed. As we discussed earlier, this interesting
feature can be readily understood if IBP technology is applied to phase-space integrals with
Heaviside functions.

5 Testing the method with some N3LO contributions to the zero-jettiness
soft function

It appears from the discussion in the previous section that it is useful to construct IBP
relations for integrals with Heaviside functions. However, given an enormous growth in
computational complexity with increase in the perturbative order, it is important to check
this statement by considering a more complex example. Given our interest in the N3LO
QCD contribution to the zero-jettiness soft function, it is natural to check if modified IBP
relations can be constructed and used to compute it.

To this end, in this section we consider the maximally non-abelian part of the real-
emission contribution to the soft function with all gluons emitted to the same hemisphere.
We define it as follows

S3g
nnn = τ−1−6ε

∫
dΦnnn

θθθ ω
(3)
nn̄ (k1, k2, k3), (5.1)

where the function ω(3)
nn̄ (k1, k2, k3) in eq. (5.1) reads [61]

ω
(3)
nn̄ (k1, k2, k3) =

∑
t∈{a,b,c,d}

ω
(3),t
nn̄ (k1, k2, k3) , (5.2)

ω
(3),t
nn̄ =

[
S(t)
nn̄(k1, k2, k3) + S(t)

n̄n(k1, k2, k3)− S(t)
nn(k1, k2, k3)− S(t)

n̄n̄(k1, k2, k3)
]

+ permutations{k1, k2, k3} .
(5.3)

In eq. (5.3), “permutations{k1, k2, k3}” describes all possible permutations of the gluon
momenta ki. The four terms S(t)

ik , t = a, b, c, d in eq. (5.3) are contributions to the soft eikonal
function that are ordered according to the structure of their collinear singularities [61].

A simple generalization of the discussion in section 3 implies that, in order to set
up IBP relations for integrals that appear in S3g

nnn, we require eight distinct classes of
integrals. They correspond to integrations over the following phase spaces Iθθθ ∼

∫
dΦnnn

θθθ ,
Iθθδ ∼

∫
dΦnnn

θθδ , Iθδδ ∼
∫

dΦnnn
θδδ , Iδδδ ∼

∫
dΦnnn

δδδ and four more cases where the ordering of
θ- and δ-functions differs from the above examples.

Similar to the two-gluon case, these classes of integrals possess hierarchical structure that
we rely upon when solving the integration-by-parts identities. Indeed, a closed set of IBP
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relations can be derived for Iδδδ using reverse unitarity. On the other hand, IBP identities
for Iθδδ involve Iδδδ, and IBP identities for Iθθδ involve Iθδδ and Iδδδ. Finally, integration-by-
parts identities for Iθθθ make use of all other integrals with θ- and δ-functions. We illustrate
how this approach applies to various N3LO QCD contributions to the zero-jettiness soft
function in the next sections.

5.1 The ω(3),a
nn̄ contribution

The simplest contribution to consider is an integral of ω(3),a
nn̄ . According to eq. (5.3), this

function is constructed from the function S(a)
ik , which reads [61]10

S(a)
ik (q1, q2, q3) = 31

144
(pipk)3

piq1 pkq1 piq2 pkq2 piq3 pkq3

+ (pipk)3

32 pkq12 pkq3 piq1 piq3

( 1
pkq1

− 1
pkq2

) ( 6
piq12

+ pi(q3 − q1)
piq13 piq2

)
+ (pipk)3

288 pkq123 piq123

( 1
pkq1

− 1
pkq2

)
×
{ 2
piq1

( 1
piq3

− 3
piq12

) ( 1
pkq3

− 3
pkq12

)
+
( 1
piq2

− 3
piq13

) ( 1
piq1

− 1
piq3

) ( 1
pkq3

− 3
pkq12

)}
,

(5.4)

where pi = n, pk = n̄ and qi = ki, i = 1, 2, 3 in our notations. As can be easily checked, S(a)
ik

is not singular when any of the two gluons become collinear to each other. This feature
reduces the number of scalar products that appear in the denominators of that function,
making integration over three-gluon phase space simpler.

Applying integration-by-parts identities, we find that the integral of ω(3),a
nn̄ over the phase

space dΦnnn
θθθ can be expressed through six master integrals. The result of the reduction reads∫
dΦnnn

θθθ ω
(3),a
nn̄ (k1, k2, k3)

= 1
(1− 4ε)(1− 5ε)

{[182
5ε5 −

3392
5ε4 + 23268

5ε3 − 69432
5ε2 + 75728

5ε

]
I1

+
[ 8

5ε3 −
72
5ε2 + 32

ε

]
I2 +

[
−112

5ε4 + 2016
5ε3 −

13328
5ε2 + 38304

5ε − 8064
]
I3

+
[
− 4
ε4

+ 356
5ε3 −

2248
5ε2 + 5968

5ε −
5664

5

]
I4 +

[
− 8

5ε3 + 104
5ε2 −

448
5ε + 128

]
I5

+
[
− 36

5ε4 + 648
5ε3 −

4428
5ε2 + 2592ε+ 14328

5ε − 22032
5

]
I6

}
.

(5.5)

Definitions of the six master integrals are given in appendix A, eq. (A.1). However, it is
useful to emphasize at this point that none of these integrals contains three θ-functions.
We have explained why this happens when discussing the NNLO contribution to the soft
function in section 4.

Calculation of master integrals that appear in eq. (5.5) is rather straightforward. As
an example, consider a phase-space integral I1 with three δ-functions. It reads

I1 =
∫

dΦnnn
δδδ . (5.6)

10We note that we take the emitters i, j to be massless.
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Since the integrand does not depend on the relative orientation of the three partons in
the transverse plane, we can integrate over dΩ(d−2)

i,⊥ for i = 1, 2, 3. We then remove all
δ(αi − βi)-functions by integrating over αi, i = 1, 2, 3, and find

I1 =
∫ 3∏

i=1
dβiβ−2ε

i δ(1− β123) = Γ3(1− 2ε)
Γ(3− 6ε) . (5.7)

For a less trivial example, consider the integral I5. It reads

I5 =
∫ dΦnnn

δδθ

(k13n)(k123n̄) . (5.8)

To compute this integral, we remove two δ-functions by integrating over α1,2 and then
integrate over β1 to remove δ(1− β123). Then, writing β2 = (1− β3)ξ, we arrive at

I5 =
∫

dα3dβ3α
−ε
3 β−ε3 θ(α3 − β3)(1− β3)1−4ε

1− β3 + α3

1∫
0

dξ ξ−2ε(1− ξ)−2ε

1− (1− β3)ξ . (5.9)

It is straightforward to express the integrals over ξ and α3 through hypergeometric functions.
The result reads

I5 = Γ2(1− 2ε)
εΓ(2− 4ε)

1∫
0

du (1− u)1−2εu1−4ε
2F1 [{1, 1− 2ε} , {2− 4ε} ;u] 2F1 [{1, 1} , {1 + ε} ;u] ,

(5.10)
where we introduced a new variable u = 1− β3. Although both hypergeometric functions
in eq. (5.10) are singular at u = 1, this singularity is made integrable by an explicit factor
(1− u)1−2ε in the integrand. Hence, we can directly expand the integrand in eq. (5.10) in
powers of ε and integrate over u using HyperInt [59]. We find

I5 = 1
ε

+ 8 + ε

(
2ζ3 −

7π2

6 + 46
)

+ ε2
(
−26ζ3 + 83π4

360 −
23π2

3 + 216
)

+ ε3
(
−1

689π2ζ3 − 180ζ3 + 585ζ5
2 + 17π4

180 −
86π2

3 + 776
)

+ ε4
(
−271ζ2

3 −
89π2ζ3

3 − 536ζ3 + 729ζ5 + 7739π6

7560 + 4π2

3 − 149π4

90 + 1024
)
,

(5.11)

where we retained all contributions through weight six.
The results for all other integrals which appear in eq. (5.5) can be obtained along

similar lines; they are given in the supplementary material. Using them in eq. (5.5), we
obtain a remarkably simple result for the integral of ω(3),a

nn̄ in the nnn configuration∫
dΦnnn

θθθ ω
(3),a
nn̄ (k1, k2, k3) = 8

ε5
− 20π2

ε3
− 584ζ3

ε2
− 86π4

15ε +
(
1472π2ζ3 − 12480ζ5

)
+ ε

(
22288ζ2

3 −
3796π6

945

)
,

(5.12)

showing the usefulness of applying integration-by-parts technology to phase-space integrals
with Heaviside functions.
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5.2 The ω(3),b
nn̄ contribution

We consider the second contribution to the zero-jettiness soft function given by an integral
of the function ω(3),b

nn̄ . This function is constructed from the function S(b)
ik , which reads [61]

S(b)
ik = 1

16 q1q2 piq12

{ 7 pipk
piq1 piq3 pkq2 pkq3

(−pipk piq12)

+ (pipk)2

piq3

[ 12 pi(q1 − q2)
pkq12 piq1 pkq3

+ 1
pkq13

( 1
pkq3

− 1
pkq1

) (
3 + piq1

piq2
− 2 pkq1

pkq2

)]}
+ 1

48 q1q2 pkq123

{ 3
pkq1 piq2

( 1
pkq12

− 1
pkq3

) (
pipk
piq3

)
(pipk pkq12)

+ 3
( 1
pkq3

− 1
pkq12

)
(pipk pkq12)

[
pipk

piq23 pkq1

( 1
piq2

− 1
piq3

)]}
+ pipk

48 q1q2 pkq123 piq123

( 1
piq12

− 1
piq3

) (
2 pipk pk(q2 − q1)

)
×
[( 1
pkq3

− 3
pkq12

) ( 1
pkq1

− 1
pkq2

)
+
( 1
pkq2

− 3
pkq13

) ( 1
pkq1

− 1
pkq3

)]
,

(5.13)

where pi = n, pk = n̄ and qi = ki, i = 1, 2, 3 in our notations. At variance with S(a)
ik , the

function S(b)
ik contains a scalar product of two gluon momenta q1q2 which causes a collinear

singularity in the limit q1 ‖ q2 and makes it more difficult to integrate the function ω(3),b
nn̄

compared to the discussion in the previous section. However, there is no reason to expect
that things may work differently for this contribution.

We have, therefore, proceeded as before and performed a reduction to master integrals.
To check our results numerically, we derived Mellin-Barnes (MB) representations for relevant
integrals [62] and used computer packages developed in refs. [63, 64] to compute them
numerically. Comparing numerical and analytic results, we have found that reduction
to master integrals produces wrong results because not all integrals that appear in the
integration-by-parts identities in the course of the reduction are regulated dimensionally.

It is interesting to point out that a) integrals that appear in the function ω(3),b
nn̄ (k1, k2, k3)

are well-defined in dimensional regularization and b) all master integrals that appear in the
expression for the amplitude obtained after the reduction do not exhibit singularities that
cannot be regulated dimensionally. This means that the failure of dimensional regularization
is very well hidden in the internal dynamic of the reduction process and, therefore, hard
to detect.

To remedy this situation, we introduced an analytic regulator in addition to the
dimensional one. The analytic regulator is introduced in such a way that the phase-space
element is multiplied by a factor

dΦnnn
fff → dΦnnn

fff (k1n)ν(k2n)ν(k3n)ν . (5.14)

This modification changes the integration-by-parts equations making them ν-dependent
and, therefore, significantly more complicated.11

11To illustrate increase in complexity related to the introduction of the regulator, we mention that the
size of the reduction tables grew from 300 KB (without the regulator) to 64 MB (with the regulator).
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However, the main steps that we have described earlier in connection with deriving IBP
equations and establishing a hierarchy of integrals is not affected by the analytic regulator.

Having performed the reduction for finite values of ν and ε, we have found that the
integral of ω(3),b

nn̄ (k1, k2, k3) can be written in a remarkably simple form which, however,
demonstrates very clearly why the analytic regulator is needed. We obtain∫

dΦnnn
θθθ (k1n)ν(k2n)ν(k3n)νω(3),b

nn̄ (k1, k2, k3) =
23∑
i=1

C
(b)
i (ε, ν)Ji(ε, ν). (5.15)

As indicated in eq. (5.15), both the reduction coefficients and the integrals J1,..,23 are
functions of ν but, studying the ν → 0 limit of eq. (5.15), we find that for i = 1, 2, .., 22 the
following holds

lim
ν→0

Ci(ε, ν) = Ci(ε), lim
ν→0

Ji(ε, ν) = Ii. (5.16)

The integrals I1,..,6 have been already discussed in the previous section and I7,..,22 are
another sixteen integrals that can be evaluated at ν = 0. These integrals are given in
eq. (A.2).

The last integral, J23(ε, ν), has a 1/ν pole but C23(ε, ν) is proportional to ν. Therefore,
C23(ε, ν)J23(ε, ν) produces a finite result in the ν → 0 limit that, however, is completely
missed if the reduction at ν = 0 is performed.

Following this discussion and taking the ν → 0 limit where appropriate, we write the
result of the reduction as follows∫

dΦnnn
θθθ ω

(3),b
nn̄ (k1, k2, k3) =(

10249456ε5 − 6479980ε4 + 713856ε3 + 268429ε2 − 67966ε+ 4287
)

200ε5(2ε− 1)(4ε− 1)(5ε− 1) I1

+ 7
5ε3 I2 −

38
(
504ε3 − 270ε2 + 37ε− 1

)
5ε4(2ε− 1) I3

−
(
4260192ε5 − 3531008ε4 + 674380ε3 + 124140ε2 − 49897ε+ 3923

)
50ε4 (40ε3 − 38ε2 + 11ε− 1) I4 (5.17)

+
(
704ε2 − 280ε+ 26

)
5ε3 − 10ε4 I5 + 9

(
9288ε4 − 7308ε3 + 858ε2 + 347ε− 55

)
5ε4(4ε− 1) I6 −

237
4ε2 I7

− 6(4ε+ 1)
ε3

I8 + 10
3ε2 I9 −

10
ε2
I10 + 6

ε2
I11 + 6

5ε2 I12 −
6

5ε2 I13 + 18
ε2
I14 −

9
5ε2 I15

+ (14− 84ε)
5ε2 I16 + 12

5ε I17 + 93
5ε I18 −

12
ε
I19 −

39
ε
I20 + 22(4ε− 1)

ε2
I21

− 7
ε
I22 −

4
3ε2

[
lim
ν→0

νJν(ε, ν)
]
,

where we renamed J23 to Jν .
As we already mentioned the integrals I1..22 that appear in the above expression can

be found in appendix A, eqs. (A.1), (A.2). The integral that is singular in the ν → 0 limit
is defined as follows

Jν(ε, ν) =
∫ dΦnnn

θδθ (k1n)ν(k2n)ν(k3n)ν
(k1k3)(k1n)(k12n̄)(k3n̄) . (5.18)

We will now explain how this “pathological” integral can be computed.
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To integrate over the relative azimuthal angle between ~k1,⊥ and ~k3,⊥, we use the
following formula

∫ dΩ(d−2)

Ω(d−2)
1
kikj

= 2
{
θ(αiβj − αjβi)

αiβj
2F1

[
{1, 1 + ε} , {1− ε} ; αjβi

αiβj

]

+ θ(αjβi − αiβj)
αjβi

2F1

[
{1, 1 + ε} , {1− ε} ; αiβj

αjβi

]}
,

(5.19)

where i = 1 and j = 3. To proceed further, we change variables α1,3 → β1,3/ξ1,3 and obtain
the following integral representation

Jν = 2
∫ 3∏

i=1
dβiβ−2ε+ν

i δ(1− β123) dξ1dξ3(ξ1ξ3)ε−1

β1β3(β1 + β2ξ1)

{
ξ3θ(ξ1 − ξ3)

× 2F1

[
{1, 1 + ε} , {1− ε} ; ξ3

ξ1

]
+ ξ1θ(ξ3 − ξ1) 2F1

[
{1, 1 + ε} , {1− ε} ; ξ1

ξ3

]}
.

(5.20)

We make a further change of variables, ξ3 = rf and ξ1 = f in the first term in the square
brackets and ξ3 = f and ξ1 = rf in the second one. We find

Jν = 2
∫ 3∏

i=1
dβiβ−2ε+ν

i δ(1− β123) dr df rε f2ε
2F1 [{1, 1 + ε} , {1− ε} ; r]

× 1
β1β3

(
1

(β1 + β2f) + 1
(β1 + β2fr)

)
.

(5.21)

It is convenient to write β1 = x(1− y), β2 = xy and β3 = 1− x, 0 < x, y < 1. Upon doing
that, we find that integrations over x and y can be readily performed. We obtain

Jν = 2Γ(−4ε+ 2ν)Γ(−2ε+ ν)
Γ(−6ε+ 3ν)

Γ(1− 2ε+ ν)Γ(−2ε+ ν)
Γ(1− 4ε+ 2ν) J̃ν , (5.22)

where

J̃ν =
∫

df dr f2εrε
[

2F1 [{1, 1− 2ε+ ν} , {1− 4ε+ 2ν} ; 1− f ]

+ 2F1 [{1, 1− 2ε+ ν} , {1− 4ε+ 2ν} ; 1− rf ]
]

2F1 [{1, 1 + ε} , {1− ε} ; r] .
(5.23)

The two hypergeometric functions in the square brackets in the last equation can be
conveniently re-written using the following identity

2F1 [{1, 1− 2ε+ ν} , {1− 4ε+ 2ν} ; z]
= (1− z)−1−2ε+ν

2F1 [{−4ε+ 2ν,−2ε+ ν} , {1− 4ε+ 2ν} ; z] .
(5.24)
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Inserting eq. (5.24) into eq. (5.23), we obtain

J̃ν =
1∫

0

df dr fν−1rε
{

2F1 [{−4ε+ 2ν,−2ε+ ν} , {1− 4ε+ 2ν} ; 1− f ]

+ r−2ε+ν−1
2F1 [{−4ε+ 2ν,−2ε+ ν} , {1− 4ε+ 2ν} ; 1− rf ]

}
× 2F1 [{1, 1 + ε} , {1− ε} ; r] .

(5.25)

From the above equation we readily see how the 1/ν-singularity appears; it is generated by
the singularity at f = 0 in eq. (5.25) which is not regulated dimensionally.

Although we can compute J̃ν by expanding it in Laurent series in ε and ν, we only
require the 1/ν singularity of this integral. We therefore compute the residue at f = 0 and
find

J̃ν |ν→0 = 2F1 [{−4ε,−2ε} , {1− 4ε} ; 1]
ν

1∫
0

dr rε 2F1 [{1, 1 + ε} , {1− ε} ; r]
[
1 + r−2ε−1

]

= 2F1 [{−4ε,−2ε} , {1− 4ε} ; 1]
ν

(
Γ(1 + ε)
Γ(2 + ε) 3F2 [{1, 1 + ε, 1 + ε} , {1− ε, 2 + ε} ; 1] (5.26)

+ Γ(−ε)
Γ(1− ε) 3F2 [{1, 1 + ε,−ε} , {1− ε, 1− ε} ; 1]

)
.

We now use eqs. (5.22), (5.26), expand the result in ε and obtain

lim
ν→0

(νJν) = − 3
2ε3 + π2

ε
+ 75ζ3 + 77π4ε

20 + ε2
(
2025ζ5 − 50π2ζ3

)
+ ε3

(
1787π6

210 − 1875ζ2
3

)
+O

(
ε4
)
.

(5.27)

Calculation of the master integrals I1,2,...,22 required for computing the integral of the
function ω

(3),b
nn̄ proceeds in full analogy to the above case and for this reason we do not

discuss it here. Finally, if we use the reduction to master integrals eq. (5.17) and explicit
results for the master integrals that can be found in the supplementary material, we obtain
the following result for the integral of the function ω(3),b

nn̄ in the nnn configuration∫
dΦnnn

θθθ ω
(3),b
nn̄ (k1,k2,k3) = 8

ε5
+ 32
ε4

+ 1
ε3

(
64− 41π2

3

)

+ 1
ε2

(
128−64π2−774ζ3

)
+ 1
ε

(
256−128π2− 581π4

10 −2144ζ3

)

+
(

512−256π2− 1688π4

15 −4288ζ3+ 1306π2ζ3
3 −28770ζ5

)
+ε
(

1024−512π2− 3376π4

15 − 616π6

5 −8576ζ3+2304π2ζ3

+19480ζ2
3−68736ζ5

)
. (5.28)
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Again, we see that, apart from an unexpected (and interesting) complication related to the
need to introduce an analytic regulator, it is beneficial to make use of the IBP identities to
compute non-trivial contributions to the zero-jettiness soft function at N3LO.

5.3 The ω(3),c
nn̄ contribution

The third contribution to the zero-jettiness soft function is associated with the integral of
the function ω

(3),c
nn̄ . Similar to the other two contributions, we construct ω(3),c

nn̄ from the
function S(c)

ik , which reads [61]

S(c)
ik = 1

8(q1q2)2 piq12 pkq3

{(
(4−d)piq1 +dpiq2

)[ pipk pkq1
2pkq123 piq123

(
pkq3
pkq12

−1
) (

piq12
piq3

−1
)

+ pipk
piq3

(
piq1
piq12

− 3
2
pkq1
pkq12

)]
+ pipk
piq123

( 1
piq3
− 1
piq12

) (
(4−d) (piq1)2 +dpiq1 piq2

)}
+ 1

32q1q2 q1q3 piq12

{
pipk
pkq2

[4pk(q2−q1)
pkq3

+ 2piq12
piq3

+2 piq2 piq3 +piq1 piq123
piq13 piq3

+ 1
pkq13 piq3

(
piq1 pk(5q1−8q2 +2q3)−3piq2 pkq3 +4pipk q2q3

)]
+ 2
piq123 pkq3

( 1
piq2
− 1
piq13

)(
pipk piq12 piq13

)
+ 2
pkq123 pkq3

( 1
pkq13

− 1
pkq2

)[
2pipk pkq13 pk(q2−q1)

]
+ 1
pkq123 piq123

(
1− piq12

piq3

)
×
( 1
pkq13

− 1
pkq2

) [
4(pipk)2 q2q3 +pipk

(
piq1 pk(5q1−8q2 +2q3)−3piq2 pkq3

)]}
,

(5.29)

where pi = n, pk = n̄ and qi = ki, i = 1, 2, 3 in our notations. At variance with the functions
S(a,b)
ik , the function S(c)

ik contains propagators 1/(q1q3) and 1/(q2q3) and, therefore, exhibits
a more complicated singularity structure. However, no additional issues arise when modified
IBP relations are constructed and used to reduce required integrals, so that working with
the analytic regulator introduced in the previous section, see eq. (5.14), suffices.

Performing the reduction to master integrals and taking the ν → 0 limit where
appropriate, we obtain∫

dΦnnn
θθθ ω

(3),c
nn̄ (k1, k2, k3) =(

− 5152
675ε5 + 60883

1350ε4 + 2218663
5400ε3 −

33423797
10800ε2 −

49850253233ε
466560 + 44313583

12960ε + 40023347
15552

)
I1

+
(
− 262

135ε3 + 8
135ε2 −

1280ε
9 − 16

9ε + 160
9

)
I2 +

( 2242
135ε4 −

23954
135ε3 + 74967872ε2

1215

+ 14596
45ε2 + 2845312ε

405 + 69832
45ε −

733168
135

)
I3 +

(
− 47683

675ε4 + 27427
25ε3 −

7899529
1350ε2

+ 11094485353ε2
12960 − 119650151ε

2160 + 7137263
900ε + 5243129

360

)
I4 +

( 334
135ε3 −

600703ε2
81
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− 794
45ε2 + 38854ε

27 + 5036
135ε −

2024
9

)
I5 +

(
− 1202

15ε4 + 4022
3ε3 + 6077660177ε2

6480 − 121631
15ε2

− 76894303ε
1080 + 170291

10ε + 534641
180

)
I6 +

(
−3211ε4 +1409ε3−151ε2− 9

2ε2 +119ε

+ 3
2ε+44

)
I7 +

(16640ε4
3 − 3968ε3

3 + 1088ε2
3 − 14

3ε2 −
224ε

3 − 8
3ε+ 80

3

)
I9 + 65

9ε2 I10

+
(
− 430971ε4

32 + 238589ε3
48 − 21817ε2

24 − 47
9ε2 + 1527ε

4 + 337
9ε + 47

6

)
I11 +

(1613075ε4
96

− 118055ε3
48 + 8195ε2

24 − 13
15ε2 −

515ε
12 + 25

6

)[
I12−I13

]
+
(
− 127360ε4

3 + 18560ε3
3

− 2560ε2
3 − 578

45ε2 + 320ε
3 + 16

45ε−
32
3

)
I14 +

(
− 377080ε4

9 + 54680ε3
9 − 7480ε2

9

+ 19
15ε2 + 920ε

9 + 8
45ε−

88
9

)
I15 +

(
− 110384ε3

3 + 21808ε2
3 − 92

15ε2 −
4496ε

3

+ 212
15ε + 832

3

)
I16 +

(
− 1075877ε5

16 + 114497ε4
8 − 10397ε3

4 + 1217ε2
2 −17ε

+ 68
5ε +14

)
I17 +

(1111653ε5
16 − 127713ε4

8 + 9933ε3
4 − 1593ε2

2 −87ε+ 12
5ε −36

)
I18 (5.30)

+
(2546205ε5

16 − 275865ε4
8 + 22005ε3

4 − 3465ε2
2 −15ε+ 18

ε
−150

)
I19

+
(
−172ε3 +44ε2 +32ε+ 2

ε
−14

)
I20 +

(
64ε3 +32ε2− 4

3ε2 +16ε+ 4
3ε+8

)
I21

+
(

1968ε3−320ε2 + 172ε
3 + 40

9ε −
68
9

)
I22 +

(
−312ε3 + 151

60ε3 −
4532ε2

3 + 73
6ε2

−270ε− 69
10ε−

353
3

)
I23 +

(
3840ε4−672ε3 +96ε2−24ε− 2

ε

)
I24 +

(
69719ε4

−9413ε3 +2419ε2 + 1
3ε2 −107ε− 125

18ε + 920
9

)
I25 +

(83680ε4
3 − 13280ε3

3 + 2080ε2
3

+ 4
45ε2 −

320ε
3 − 104

45ε +16
)
I26 +

(
−96ε4−48ε3−24ε2−12ε− 3

ε
−6
)
I27

+
(4480ε5

3 + 2240ε4
3 + 1120ε3

3 + 560ε2
3 + 4

3ε2 + 280ε
3 + 91

6ε + 140
3

)
I28

+
(

117120ε5−19200ε4 +3360ε3−480ε2− 2
ε2

+120ε+ 2
3ε

)
I29 +

(
34560ε5

−5760ε4 +960ε3−160ε2 + 80ε
3 + 20

9ε −
40
9

)
I30 +

(
−96576ε5 +15216ε4

−2976ε3 +276ε2 + 2
3ε2 −156ε− 9

ε
−29

)
I31 +

(
− 40832ε5

3 + 7232ε4
3 − 992ε3

3

+ 272ε2
3 + 7

18ε2 + 8ε
3 + 29

18ε+ 76
9

)
I32 +

(
−5728ε4 +1048ε3−128ε2− 37

18ε2

+ 134ε
3 − 9

2ε+ 38
9

)
I33 +

(93152ε5
3 − 15632ε4

3 + 2552ε3
3 − 452ε2

3 − 7
18ε2 + 62ε

3 −
1
6ε

– 23 –



J
H
E
P
0
2
(
2
0
2
2
)
0
8
1

− 17
3

)
I34 +

(
34695ε5−5805ε4 +975ε3−165ε2 + 85ε

3 + 5
3ε−5

)[
I35−I36 +I37

]
+ 4

3ε

[
I38−I39

]
+
(
− 16640ε4

3 + 3968ε3
3 − 1088ε2

3 + 8
3ε2 + 224ε

3 + 8
3ε

− 80
3

)[
lim
ν→0

νJν

]
+O(ε2) .

All the master integrals I1,..,39 that appear in eq. (5.30) are computed at ν = 0; their
definition can be found in appendix A, eqs. (A.1), (A.2), (A.3). The only ν-dependent
integral Jν present in eq. (5.30) is the same integral which we have seen (and computed) in
the previous section.

In principle, computation of the I-integrals that appear in the calculation of the case “c”
does not differ from what we already discussed for cases “a” and “b”. However, integrals with
two separate scalar products of parton’s four-momenta are significantly more complicated
than what we have discussed so far and, to illustrate this point, we will discuss how one of
them can be computed.

We consider integral I30 defined as

I30 =
∫ dΦnnn

θδθ

(k1k2)(k1k3)(k12n)(k13n̄) . (5.31)

We can use eq. (5.19) to perform integration over azimuthal angles of k2 and k3. We note,
however, that the momentum k2 is special because the δ-function in the definition of I30
implies that α2 = β2. This condition removes one of the two hypergeometric functions in
eq. (5.19). Integrating over azimuthal angles and changing variables α1,3 = β1,3/ξ1,3, we
arrive at the following representation for I30

I30 = 4
∫ 3∏

i=1
dβi β−2ε−1

i δ(1− β123) dξ1dξ3 ξ
ε
1ξ
ε−1
3 β3

(β1 + β2)(β1ξ3 + β3ξ1)

× 2F1 [{1, 1 + ε} , {1− ε} ; ξ1]
[
ξ1θ(ξ3 − ξ1) 2F1

[
{1, 1 + ε} , {1− ε} ; ξ1

ξ3

]

+ ξ3θ(ξ1 − ξ3) 2F1

[
{1, 1 + ε} , {1− ε} ; ξ3

ξ1

] ]
.

(5.32)

As the next step, we remove δ(1 − β123) by integrating over β2 and change variables
(β1, β3) → (x, y) according to the following formula β1 = x(1 − y), β3 = xy. Integration
over x leads to a hypergeometric function. We obtain

I30 = 4Γ(−4ε)Γ(−2ε)
Γ(−6ε)

∫
dy dξ1dξ3

y−2ε(1−y)−2ε−1ξε1ξ
ε
3

(1−y)ξ3 +yξ1

×2F1 [{1,−4ε} ,{−6ε} ;y] 2F1 [{1,1+ε} ,{1−ε} ;ξ1] (5.33)

×
[
ξ1
ξ3
θ(ξ3−ξ1) 2F1

[
{1,1+ε} ,{1−ε} ; ξ1

ξ3

]
+θ(ξ1−ξ3) 2F1

[
{1,1+ε} ,{1−ε} ; ξ3

ξ1

]]
.
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The integral naturally splits into two parts. To proceed, we change variables ξ1 =
rξ, ξ3 = ξ, and ξ3 = rξ, ξ1 = ξ, in the first and the second integral in eq. (5.33),
respectively. We also rewrite the hypergeometric functions that appear in square brackets
in the above equation using the transformation

2F1 [{a, b} , {c} ; z] = (1− z)c−a−b 2F1 [{c− a, c− b} , {c} ; z] . (5.34)

We then write
I30 = 4Γ(−4ε)Γ(−2ε)

Γ(−6ε)
(
I(a)

30 + I(b)
30

)
, (5.35)

where

I(a)
30 =

∫
dy dξ dr y

−2ε(1− y)−4ε−2 ξ2ε r1+ε [(1− r)(1− rξ)]−1−2ε

1− y(1− r)
× 2F1 [{−1− 6ε,−2ε} , {−6ε} ; y] 2F1 [{−ε,−2ε} , {1− ε} ; rξ] (5.36)
× 2F1 [{−ε,−2ε} , {1− ε} ; r] .

and

I(b)
30 =

∫
dydξdr y

−2ε(1− y)−4ε−2 ξ2ε rε(1− r)−2ε−1

r + y(1− r)
× 2F1 [{−1− 6ε,−2ε} , {−6ε} ; y] 2F1 [{1, 1 + ε} , {1− ε} ; ξ] (5.37)
× 2F1 [{−ε,−2ε} , {1− ε} ; r] .

The difficulty with computing these integrals is a power-like singularity at y = 1.
To extract and isolate it, we transform the y-dependent hypergeometric function in the
following way

2F1 [{−1− 6ε,−2ε} , {−6ε} ; y] = Γ(−6ε)Γ(1 + 2ε)
Γ(−4ε) y1+6ε

+ (1− y)1+2εΓ(−1− 2ε)Γ(−6ε)
Γ(−1− 6ε)Γ(−2ε) 2F1 [{1,−4ε} , {2 + 2ε} ; 1− y] .

(5.38)

This representation is helpful because the y-dependence of the first term in eq. (5.38) is
simple so that integration over y can be immediately performed, and the second term in
eq. (5.38) leads to integrals with only a logarithmic singularity at y = 1.

To proceed further, we consider integral I(a)
30 and write it as

I(a)
30 = I(a,1)

30 + I(a,2)
30 , (5.39)

where the two terms correspond to the two terms on the right hand side of eq. (5.38). To
compute I(a,1)

30 we integrate over y and obtain

∫
dyy

1+4ε(1− y)−4ε−2

1− y(1− r) = Γ(2 + 4ε)Γ(−1− 4ε) r−2−4ε. (5.40)
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We then use this result in the expression for I(a,1)
30 and write

I(a,1)
30 = −Γ(2 + 4ε)Γ(−6ε)Γ(1 + 2ε)

(1 + 4ε)

∫
dξ dr ξ2εr−1−3ε(1− r)−2ε−1(1− ξr)−2ε−1

× 2F1 [{−ε,−2ε} , {1− ε} ; rξ] 2F1 [{−ε,−2ε} , {1− ε} ; r] .
(5.41)

This integral has a singularity at r = 0 and another (overlapping) singularity at r = 1, ξ = 1.
The two singularities can be separated by multiplying the integrand with 1 = (1− r) + r.
The first term in the sum removes the r = 1 singularity. Since the r = 0 singularity does
not overlap with any other singularity, it can be easily extracted. On the contrary, the r = 1
singularity overlaps with ξ = 1 singularity and for this reason a slightly more sophisticated
treatment is needed. To this end, we subtract the product of hypergeometric functions at
r = 1 and add it back. When the difference

2F1 [{−ε,−2ε} , {1− ε} ; rξ] 2F1 [{−ε,−2ε} , {1− ε} ; r]
− 2F1 [{−ε,−2ε} , {1− ε} ; ξ] 2F1 [{−ε,−2ε} , {1− ε} ; 1] ,

(5.42)

is used in the integrand, it becomes non-singular at r = 1, so that we can expand it in
ε and integrate. On the other hand, hypergeometric functions in the subtraction term
do not depend on r so that integration over r becomes straightforward. The resulting
one-dimensional integration over ξ contains a logarithmic singularity at ξ = 1 that can be
easily isolated and extracted. Putting everything together, we find

I(a,1)
30 = − 1

18ε2 + 1
48ε3 + 1

ε

(
5
18 + π2

6

)
+ 43ζ3

12 + 5π2

108 −
25
18

+ ε

(
61ζ3

6 + 437π4

540 + 125
18 −

13π2

108

)
+ ε2

(
89π2ζ3

9 − 85ζ3
2 + 845ζ5

4 + 209π4

162

+17π2

108 −
625
18

)
+ ε3

(
−32ζ2

3 + 304π2ζ3
9 + 1075ζ3

6 + 3059ζ5
6 + 57637π6

17010

+107π2

108 + 3125
18 − 2194π4

405

)
. (5.43)

The computation of I(a,2)
30 proceeds in the following way. First, we observe that in this

case there are two singularities, y = 1 and r = 1. We note that the latter overlaps with the
ξ = 1 singularity. To disentangle overlapping singularities, we replace

r1+ε

1− y(1− r) 2F1 [{−ε,−2ε} , {1− ε} ; ξr] 2F1 [{−ε,−2ε} , {1− ε} ; r]→

2F1 [{−ε,−2ε} , {1− ε} ; ξ] 2F1 [{−ε,−2ε} , {1− ε} ; 1] ,
(5.44)

in eq. (5.36) and add the difference of the two terms back. In the difference, the r = 1
singularity is regulated, so that one only needs to extract a logarithmic y = 1 singularity. To
compute the contribution of the subtraction term (the r.h.s. of eq. (5.44)), we can integrate
over y and over r to obtain yet another hypergeometric function of ξ. The resulting integral
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over ξ has a logarithmic singularity at ξ = 1 which can be easily extracted. We obtain

I(a,2)
30 = − 1

16ε3 −
1

4ε2 + 1
ε

(
1− π2

4

)
− 15ζ3

4 − 2π2

3 − 4 + ε

(
−23ζ3 + 8π2

3

− 23π4

36 + 16
)

+ ε2
(

23π2ζ3
6 + 104ζ3 −

595ζ5
4 − 32π2

3 − 47π4

30 − 64
)

+ ε3
(

249ζ2
3 + 2π2ζ3

3 − 476ζ3 − 577ζ5 + 67π4

10 + 128π2

3 − 4756π6

2835 + 256
)
.

(5.45)

Computation of the integral I(b)
30 proceeds in a similar way except that the integration

over ξ can be performed right away. We find

I(b)
30 = 1

1 + 2ε 3F2 [{1, 1 + ε, 1 + 2ε} , {1− ε, 2 + 2ε} ; 1]

×
∫

dy dr y
−2ε(1− y)−4ε−2 rε(1− r)−2ε−1

r + y(1− r)
× 2F1 [{−1− 6ε,−2ε} , {−6ε} ; y] 2F1 [{−ε,−2ε} , {1− ε} ; r] .

(5.46)

We then rewrite 2F1 [{−1− 6ε,−2ε} , {−6ε} ; y] using eq. (5.38) and integrate the two terms
that appear in that equation separately. This integration is relatively straightforward since
integration of the first term in eq. (5.38) leads to yet another 3F2-function and integration
of the second term does not require resolution of any overlapping singularities.

Putting everything together, we arrive at the following result for the integral I30

I30 = 3
8ε4 + 13

6ε3 + 1
ε2

(
−109

12 −
π2

12

)
+ 1
ε

(
−31ζ3 + 5π2

9 + 461
12

)
− 76ζ3

− 1969
12 − 23π2

18 − 1211π4

360 + ε

(
−311

6 π2ζ3 + 292ζ3 −
3111ζ5

2 + 7π2

18 + 8501
12

− 355π4

36

)
+ ε2

(
18ζ2

3 −
727π2ζ3

3 − 1108ζ3 − 4035ζ5 + 1147π4

30

+ 397π2

18 − 37129
12 − 10729π6

810

)
.

(5.47)

Finally, using reduction to master integrals and explicit expressions for integrals given
in the supplementary material, we arrive at the following result for the integral of ω(3),c

nn̄

over the nnn phase space∫
dΦnnn

θθθ ω
(3),c
nn̄ (k1, k2, k3)

=− 4
ε5

+ 70
3ε4 + 1

ε3

(920
9 + 19π2

3

)
+ 1
ε2

(8527
27 + 122π2

3 + 162ζ3

)
+ 1
ε

(67193
81 + 1280π2

9 + 197π4

90 + 2732ζ3
3

)
+
(558745

243 + 10990π2

27 + 439π4

9

+ 32032ζ3
9 − 1604π2ζ3

3 + 4204ζ5

)
+ ε

(4074557
729 + 89138π2

81 + 28024π4

135

− 23029π6

2835 + 288992ζ3
27 − 9224π2ζ3

3 − 7604ζ2
3 + 50296ζ5

)
.

(5.48)
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5.4 Differential equations and ω(3),d
nn̄ contribution

Application of integration-by-parts identities to phase-space integrals with Heaviside func-
tions opens up an opportunity to compute complicated integrals using differential equations.
We will illustrate this by considering the contribution of the function ω

(3),d
nn̄ , constructed

using the function S(d)
ik defined in ref. [61], to the zero-jettiness soft function. The function

S(d)
ik reads

S(d)
ik = −(pipk)2

4q2
123 pkq123 pkq1 piq2 piq3

+ 1
4q2

123 pkq123

{ 1
q1q2

[ 1
pkq1 piq2

(
pipk (q2q3−q1q3)

(pipk
piq3

)
+2 pipk

piq3
(piq12 pkq123−piq3 pkq2−piq2 pkq3)

)
+ 1

2piq13 pkq2

{( 1
piq1
− 1
piq3

)
×
[
pipk

(
pkq1 pi(4q3−3q12)−3pkq2 piq12+pkq3 pi(q1−3q2)+2pipk (q2q3−q1q3)

)]
+4pipk pk(q3−q1)

}
+ 1
piq12 pkq3

{( 1
piq1
− 1
piq2

)(
−2pipk piq1 pkq123

)
+pipk pk(q1−3q2−q3)

}
+ 1
pkq13 piq2

{
pipk pkq13

+
( 1
pkq3

− 1
pkq1

)[pipk
2 pkq123 pkq12

]}
+ 1
pkq12 piq3

{
pipk pk(3q1+q2−3q3)

+
( 1
pkq2

− 1
pkq1

)[
2pipk pkq1 pkq13

]}
+ 2
piq123

{(pkq13
pkq2

−1
)(pipk

2
)

+
( 1
pkq12

− 1
pkq3

)(
−pipk pk(q2+2q3)

)
+ 1

3
( 1
pkq3

− 3
pkq12

)( 1
pkq1

− 1
pkq2

)(
2pipk pkq2 pk(q12−q3)

)
+ 1

12
( 1
pkq2

− 3
pkq13

)( 1
pkq1

− 1
pkq3

)[
4pipk pk(q1−q2)pk(q3−q12)

]}]
+ 1

(q1q2)2

[ 2
piq123

( 1
pkq3

− 1
pkq12

)
(5.49)

×
[
pipk q1q3

(
(d−4)pkq1−dpkq2

)
+2(d−2)piq2 (pkq1)2+pkq1 pkq2

(
(4−d)piq1+ d

2 piq3
)]

+ 1
piq12 pkq3

{
(d−2)pi(q2−q1)pkq1 pkq13

}
+ 1
pkq12 piq3

{
2pipk q1q3

(
(4−d)pkq1+dpkq2

)
+(d−2)piq1 pk(q1−q2)pk(q13−3q2)

}]
+ 1

2q1q2 q1q3

[ 1
piq12 pkq3

{
4pipk q2q3 pk(2q1+q3)

+(pkq1)2
(
(7−2d)piq1+(2d+1)piq2−4piq3

)
+2pkq1 pkq3

(
(5−d)piq1+(d−5)piq2−2piq3

)
+pkq1 pkq2

(
(2d−3)piq1+(9−2d)piq2−2piq3

)
+3(pkq3)2 pi(q1−q2)
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+pkq2 pkq3 pi(9q1−3q2+2q3)+2(pkq2)2 pi(q3−q1)
}

+ 1
pkq12 piq3

{
2pipk q2q3 pk(q12+2q3)+(pkq1)2

(
(2d−7)piq1+2piq2+piq3

)
+pkq1 pkq3

(
(2d−7)piq1+4piq2−3piq3

)
+2pkq1 pkq2 (piq2−2dpiq1)+2(pkq3)2 pi(2q1−q2)

+pkq2 pkq3
(
2piq2+3piq3−(2d+1)piq1

)
+(pkq2)2

(
(2d−9)piq1−piq3

)}
+ 4
piq123

( 1
pkq12

− 1
pkq3

){
q2q3

[pipk
2 pk(5q1−3q2+4q3)

]
+(pkq2)2 piq3

+(pkq1)2
(
piq1+(3−d)piq2

)
+(d−2)pkq1 pkq2 piq2+pkq1 pkq3 pi(q1−3q2)+pkq2 pkq3 pi(3q1−q2)

}]}
+ 1

2(q2
123)2 piq123 pkq123

{
(3d−10)pipk+ 2pipk q1q3

(q1q2)2

(
(d−4)q1q3−dq2q3

)
+ 1
q1q2

[
pkq1

(
(8−3d)piq1+(16−7d)piq2

)
− d2 pkq3 piq3−2pipk (2q1q3+3q2q3)

]
+ q2q3
q1q2 q1q3

[
pipk q2q3+4(d−4)pkq1 piq1−16pkq1 piq2+4(2−d)pkq2 piq2

]}
,

where pi = n, pk = n̄ and qi = ki, i = 1, 2, 3 in our notations. A distinct feature of
the function S(d)

ik is that it contains a propagator 1/k2
123 which depends on the relative

orientation of all three gluons in the plane transverse to the collision axis. This feature
makes it very difficult to integrate the function ω(3),d

nn̄ analytically over the phase space with
θ-functions. On the other hand, the ability to write down the IBP equations and perform
reduction to master integrals should allow us to use differential equations to compute even
the most complicated master integrals. This is what we would like to discuss in this section.

We begin by expressing the integral of ω(3),d
nn̄ through master integrals. These master

integrals can be found in appendix A; they can be split into two groups, depending on
whether they contain the 1/k2

123 propagator or not. The master integrals from the first
group are similar to what we have discussed earlier; they can be calculated in a similar
manner and the results are provided in the supplementary material. Master integrals that
belong to the second group involve a propagator 1/k2

123. These are the most complicated
integrals and we decided to compute them numerically.

To this end, we replace a propagator 1/k2
123 with 1/(k2

123 +m2) in all master integrals
that contribute to the integral of ω(3),d

nn̄ and derive differential equations for these integrals
w.r.t. the mass parameter m2. We emphasize that the very possibility to use differential
equations for phase-space integrals with Heaviside functions depends on our ability to set
up integration-by-parts identities and reduce the derivatives of master integrals back to
basis integrals.

It is quite clear that additional mass parameter makes integration-by-parts identities
more complex and requires us to introduce more integrals to close them. However, once the
differential equations are derived, it is in principle straightforward to compute the required
integrals by solving them numerically. We do this by using the method described in ref. [65].
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In what follows, we first discuss calculation of boundary conditions and then explain how
to solve differential equations by considering a (relatively) simple example.

5.4.1 Calculation of the boundary conditions

We have seen in the previous sections that, although IBP reductions have to be performed
for a non-vanishing value of the analytic regulator, the limit ν → 0 can be taken in an
absolute majority of integrals after the reduction is performed. The same applies to integrals
that contain propagators 1/k2

123 that we modify by introducing the mass parameter m.
We will therefore discuss calculation of boundary conditions for such integrals, setting the
analytic regulator to zero.12

The complexity of the boundary conditions computation strongly depends on the type
of constraints that a particular integral is subject to. As we explain below, the more
δ-functions a particular integral has, the easier it is to compute the boundary conditions.
To understand this, consider integrals with three δ-functions

Iδδδ(m) =
∫ dΦnnn

δδδ

(k2
123 +m2)i . . . . (5.50)

In eq. (5.50) the ellipses stand for mass-parameter-independent scalar products and i is
an integer number. In all integrals that refer to the nnn configuration, all β-variables are
restricted because βi > 0, i = 1, 2, 3 and β1 + β2 + β3 = 1. Moreover, for integrals with
three δ-functions, all α-variables are equal to β-variables and k2

i,⊥ = αiβi = β2
i , i = 1, 2, 3.

Hence, integration in eq. (5.50) is performed over a finite region of the three-particle phase
space, so that the approximate form of the integral in the m2 →∞ limit is simply obtained
by expanding the propagator 1/(k2

123 + m2) in k2
123/m

2. It follows that all Iδδδ integrals
have a particularly simple asymptotic mass dependence

lim
m→∞

Iδδδ(m) ∼ m−2i. (5.51)

It is obvious that a Taylor expansion of Iδδδ-integrals in k2
123/m

2 produces integrals where a
“massive” propagator is absent. As the result, once the expansion is performed, we can use
integration by parts for k2

123-independent integrals to express any expanded Iδδδ integral
through master integrals computed in the previous sections.

Consider now an integral that contains two δ-functions and one θ-function. We choose
four-momenta k1,2,3 in such a way that the θ-function depends on k1 (more precisely on α1
and β1) and write

Iθδδ(m) =
∫ dΦnnn

θδδ

(k2
123 +m2)i . . . . (5.52)

At variance with Iδδδ integrals, the integration over α1 in Iθδδ integrals is not restricted
from above. This implies that, in the limit m→∞, there are contributions from the region
α1 ∼ m as well as α1 ∼ 1. Since the phase-space element scales as α−ε1 and since in the

12There are two integrals Jν and J(d)
ν (defined in eq. (5.18) and eq. (A.6)) that exhibit 1/ν behavior and

enter ω(3),d
nn̄ through the combination νJν and νJ (d)

ν . The differential equation relevant to νJν and νJ (d)
ν is

regular in ν, which can be solved in exactly the same way as described in the following.
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limit α1 → ∞, k2
123 + m2 ∼ α1(β2 + β3) · · · + m2, we find that all integrals Iθδδ have the

following asymptotic dependence on the mass parameter m in the m→∞ limit

lim
m→∞

Iθδδ(m) ∼ m−2i1−2εA2 +m−2iA1. (5.53)

In this formula i1, i are two integers that are particular to the integral under consideration,
and A1,2 are independent of the mass. To compute A1 we need to Taylor-expand the
integrand in k2

123/m
2 and then use integration by parts to reduce the resulting integrals to

massless θδδ-integrals. To compute A2, we need to drop the θ(α1 − β1) constraint, as it is
only relevant for α1 ∼ β1 ∼ 1, and then simplify a particular integral under the assumption
that α1 ∼ m2 � α2, α3, β1, β2, β3. We note that in this case all the relevant integrals can
be straightforwardly computed in a closed form in terms of hypergeometric functions.

Finally, we require integrals with two θ-functions and one δ-function13

Iθθδ =
∫ dΦnnn

θθδ

(k2
123 +m2)i . . . . (5.54)

The asymptotic m→∞ mass-dependence of such integrals reads

lim
m→∞

Iθθδ(m) ∼ m−2i2−4εA3 +m−2i1−2εA2 +m−2iA1. (5.55)

In eq. (5.55) A3 receives contributions from the integration region with α1 ∼ α2 ∼ m2,
A2 — from regions where either α1 ∼ m2, α2 ∼ 1 or α2 ∼ m2, α1 ∼ 1 and A1 — from
the region where α1 ∼ α2 ∼ 1. We obtain A1 upon Taylor expansion of an integrand in
k2

123/m
2 and A2 upon Taylor expanding in “small” α- and β-parameters and neglecting the

corresponding θ-function constraint.
To illustrate how contributions of different regions can be computed, we consider one

of the integrals with 1/(k2
123 +m2) propagator

B1,δθθ =
∫ dΦnnn

δθθ

(k2
123 +m2)(k1k3)(k12n)(k3n̄) . (5.56)

We would like to compute the leading contribution to O(m−2ε) branch of this integrals in
the limit m→∞. We consider two distinct contributions α2 ∼ m2 � 1 and α3 ∼ m2 � 1.
In the first case, [dk2] ∼ dα2α

−ε
2 , k2

123 +m2 ∼ α2(β1 + β3) · · ·+m2, k1k3 ∼ 1, k12n ∼ β12 ∼
1, k3n̄ ∼ α3 ∼ 1. Hence, we conclude that

lim
m→∞

B1,δθθ

∣∣∣∣∣
α2∼m2

∼
∫ dα2 α

−ε
2

α2(β1 + β3) +m2 ∼ m
−2ε. (5.57)

However, in the case α3 ∼ m2, there are additional dependences of the integrand on k3
including k3k1 ∼ α3β1 ∼ m2 and k3n̄ ∼ α3 ∼ m2. This implies that

lim
m→∞

B1,δθθ

∣∣∣∣∣
α3∼m2

∼
∫ dα3 α

−ε
3

(α3(β1 + β2) +m2)α3α3
∼ m−2ε−4. (5.58)

13As we explained earlier, there are no master integrals with three theta-functions in case of the nnn con-
figuration.
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We conclude that the leading m→∞ contribution to the O(m−2ε) branch of the integral
B1,δθθ in eq. (5.56) arises from the region where α2 ∼ m2 and all other variables are of
order one.

To compute this contribution, we notice that, upon taking the limit α2 ∼ m2 →∞ in
k2

123 +m2, the only dependence of the integrand on relative azimuthal angles of massless
partons resides in the simple scalar products, e.g. k1k3 in B1. This integration can be easily
performed following the discussion in the previous sections. We find

B1,δθθ

∣∣∣∣∣
α2∼m2

= 2
∫ dβ1dβ2dβ3 β

−2ε
1 β−ε2 β−ε3 δ(1− β123) dα3α

−ε
3 θ(α3 − β3)

(β1 + β2)β1α2
3

× 2F1

[
{1, 1 + ε} , {1− ε} ; β3

α3

] ∞∫
0

dα2 α
−ε
2

α2β13 +m2 .

(5.59)

We integrate over α2 and obtain
∞∫
0

dα2 α
−ε
2

α2β13 +m2 = m−2ε(β13)ε−1Γ(ε)Γ(1− ε) . (5.60)

We then change variables α3 → ξ, α3 = β3/ξ, observe that integration over ξ factorizes
and find

B1,δθθ

∣∣∣∣∣
α2∼m2

= 2 m−2ε Γ(1− ε)Γ2(1 + ε)
εΓ(2 + ε) 3F2 [{1, 1 + ε, 1 + ε} , {1− ε, 2 + ε} ; 1]

×
∫

dβ1dβ2dβ3 δ(1− β123) β−2ε−1
1 β−ε2 β−ε3 β−1

12 β
ε−1
13 β−ε−1

3 .

(5.61)

To compute the remaining integral, we remove the δ-function by integrating over β2 and
change variables as follows β1 = xy and β3 = x(1− y). The integral over x and y is then of
a hypergeometric type and we obtain the result for the required branch

B1,δθθ

∣∣∣∣∣
α2∼m2

= 2m−2ε Γ2(1−ε)Γ2(1+ε)Γ(−1−3ε)Γ2(−2ε)
εΓ(2+ε)Γ2(−4ε)

×3F2 [{1,1+ε,1+ε} ,{1−ε,2+ε} ; 1] 3F2 [{1,−1−3ε,−2ε} ,{−4ε,−4ε} ; 1] .

(5.62)

The computation of the asymptotic behavior of the O(m−2ε) branch that we just described
is typical. In fact, all such boundary conditions can be calculated in terms of hypergeometric
functions in a straightforward manner.

It turns out that the most difficult boundary contributions to compute are the O(m−4ε)
branches of Iθθδ integrals. Indeed, for such branches, we need to consider asymptotic limits
α1 ∼ α2 ∼ m2 � α3, β1, β2, β3. Inspecting k2

123 in this limit, we find that we cannot simplify
the scalar product k1k2 so that k2

123 +m2 still depends on the relative orientation of k1 and
k2 in the transverse plane, even if m is taken to infinity.

To understand how such integrals can be calculated, we note that for the computation
of the O(m−4ε) branch, we need to neglect all θ-functions in the definition of θθδ integrals
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since they are only relevant for α1,2 ∼ β1,2 ∼ 1 which violates the assumption α1,2 ∼ m2.
Hence, a O(m−4ε) branch of any θθδ integral can be computed by writing

m−2i1−4εA3 ∼
∫

ddq [dk3]δ(1− qn− k3n)δ(k3n̄− k3n)
((k3 + q)2 +m2)i

×
∫

[dk1][dk2]δ(q − k1 − k2) . . . ,
(5.63)

where ellipses stand for various scalar products of momenta that appear in a particular
integral. All these scalar products have to be simplified under the assumption that k1n̄ ∼
k2n̄ ∼ m2 � k1n, k2n, k3n, k3n̄. We can further write

k2
123 = (q + k3)2 = q2 + 2k3q → q2 + β3(qn̄) = q2 + (1− qn)(qn̄). (5.64)

Therefore, to determine the O(m−4ε) branch of any Iθθδ integral, we need to compute

m−2i1−4εA3 ∼
∫ ddq

(q2 + (1− qn)(qn̄) +m2)i F (q2, qn, qn̄),

F (q2, qn, qn̄) =
∫

[dk3]δ(1− qn− k3n)δ(k3n̄− k3n)
∫

[dk1][dk2]δ(q − k1 − k2) . . . .
(5.65)

At this point, we can again use the integration-by-parts method and express all relevant
integrals F (q2, qn, qn̄) as linear combinations of five master integrals. They read

{B1,B2,B3,B4,B5}

=
∫

[dk3]δ(1− qn− k3n)δ(k3n̄− k3n)
∫

[dk1][dk2]δ(q − k1 − k2)

×
{

1, 1
k2n̄

,
1

(k2n)(k2n̄) ,
1

(k2n)(k1n̄) ,
1

1− k1n

}
.

(5.66)

Note that these integrals do not contain scalar products of the gluon four-momenta. This
happens because such scalar products are either simple as e.g. in case of k1k2 = q2/2 or can
be simplified for large α1,2 as e.g. in k3k1 → (k3n)(k1n̄), k3k2 → (k3n)(k2n̄).

It is convenient to compute the integrals B1,..,5 in the rest frame of q where k1,2 are
back-to-back. Then, using the following result for the angular integral∫ dΩ(d−1)

k

(1− ~nk~n)(1− ~nk~n) = 2−2εΩ(d−2) Γ(1− ε)Γ(−ε)
Γ(1− 2ε) 2F1

[
{1, 1} , {1− ε} ; 1 + ~n~n

2

]
, (5.67)

we easily find

B1 = Ñε(q2)−ε(1− qn)−2ε,

B2 = Ñε
(1− 2ε)

(−ε)
(q2)−ε(1− qn)−2ε

qn̄
,

B3 = Ñε
(1− 2ε)

(−ε)
2(q2)−ε(1− qn)−2ε

(qn)(qn̄)2 2F1

[
{1, 1} , {1− ε} ; 1− q2

(qn)(qn̄)

]
,

B4 = Ñε
(1− 2ε)

(−ε)
2(q2)−ε(1− qn)−2ε

(qn)(qn̄)2 2F1

[
{1, 1} , {1− ε} ; q2

(qn)(qn̄)

]
,

B5 = Ñεq
−2ε(1− qn)−2ε

2F1 [{1, 1− ε} , {2− 2ε} ; qn] ,

(5.68)
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where

Ñε = 1
(2π)d−1

[
Ω(d−2)

4(2π)d−1

]2 Γ2(1− ε)
Γ(2− 2ε) . (5.69)

A typical function F (q2, qn, qn̄) is given by a linear combination of the integrals B1,..,5.
For example, for one of the boundary integrals that we will refer to as B2 this function
reads

F2(q2, qn, qn̄) =
[

4(1− 2ε)2(2− qn)(1− qn)
(1 + ε)m6(qn)2 B1 + 4ε2

(1 + ε)m4B2

− 2(1 + 2ε)(1− qn)qn̄
m2q2 B4

]
.

(5.70)

Hence, to determine the m−4ε branch of the corresponding integral, we need to compute

B2 =
∫ ddq θ(1− qn)
q2 + qn̄(1− qn) +m2F2(q2, qn, qn̄). (5.71)

To calculate the integral in eq. (5.71), we need to choose a convenient parameterization to
integrate over q. We do this in the following way. We introduce the Sudakov decomposition
for the vector q and write q = 1

2αqn+ 1
2βqn̄+ q⊥. It follows that

ddq θ(1− qn) = 1
4dαqdβqdq2

⊥(q2
⊥)−εdΩ(d−2) θ(1− βq). (5.72)

In addition, the four-vector q needs to be time-like, q2 > 0. This implies

q2 = αqβq − q2
⊥ > 0. (5.73)

We would like to simplify the mass-dependent denominator in eq. (5.71). To do that, we
first re-write it using Sudakov variables

q2 + qn̄(1− qn) +m2 = αq − q2
⊥ +m2 = t+m2, (5.74)

where we introduce a new variable t = αq − q2
⊥. Positivity of q2 requires

αq >
q2
⊥
βq
. (5.75)

This implies

t = αq − q2
⊥ >

q2
⊥(1− βq)

βq
> 0,

q2 > 0⇒ t− αq(1− βa) > 0.
(5.76)

Hence, we can write

ddqθ(1− qn) = 1
4dαqdβqdt(αq − t)−εdΩ(d−2)θ(1− βq), (5.77)
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where the integration boundaries are 0 < βq < 1, 0 < αq < ∞ and αq(1 − βq) < t < αq.
Using the fact that the integrand in eq. (5.71) does not depend on the azimuthal angle, we
integrate over dΩ(d−2) and write

B2 = Ω(d−2)

4

∫ dαqdβqdt(αq − t)−ε
t+m2 θ(t− αq(1− βq))

×
[

4(1− 2ε)2(2− βq)(1− βq)
(1 + ε)m6β2

q

B1 + 4ε2
(1 + ε)m4B2 −

2(1 + 2ε)(1− βq)αq
m2(t− αq(1− βq))

B4

]
.

(5.78)

To integrate further, we change variables αq → ξ with αq = t/ξ and 0 < ξ < 1. Since

q2 = t− αq(1− βq) = t

ξ
(ξ − (1− βq)) > 0, (5.79)

the integration boundary for βq becomes 1− ξ < βq < 1. To accommodate these boundaries
in a natural way, we change variables β → r, with β = 1− ξr, 0 < r < 1.

Upon changing variables and using explicit expressions for integrals B1,2,4, we note that
integration over t factorizes and can be performed easily. We obtain

B2 =−m
−4−4εΓ2(1−ε)Γ(1+2ε)

ε2

1∫
0

dξ dr W2(ξ, r),

W2(ξ, r) =
{

2ε
(
r(1+rξ)+ε

(
1−2r(1+ξ)−2r2ξ(1−ξ/2)

))
(1+ε)(1−r)εr2ε(1−ξ)εξε(1−rξ)2

+2(2ε+1) r1−2εξ1−ε(1−rξ)ε
(1−r)1+ε(1−ξ)1+2ε 2F1

[
{−ε,−ε} ,{1−ε} ; (1−r)ξ

1−rξ

]}
.

(5.80)

Integrating over ξ and r, we find

B2 = m−4ε−4
(
− 3

2ε4 −
6
ε3
− 12
ε2

+ 15ζ3 − 36
ε

+ 60ζ3 + π4

4 − 84 + ε

(
120ζ3

+ 81ζ5 + π4 − 204
)

+ ε2
(
−75ζ2

3 + 360ζ3 + 324ζ5 + 11π6

63 + 2π4 − 468
))

.

(5.81)

Calculation of O(m−4ε) branches for other integrals that are needed to determine
boundary conditions proceeds along similar lines. Integration over t can always be performed
exactly and the subsequent integration over ξ and r is then completed by constructing
subtraction terms of end-point singularities to facilitate expansion of integrands in ε.

5.4.2 Numerical solution of the differential equations

Having discussed the computation of the boundary conditions, we need to explicitly write
down and solve the differential equations. We note that we need to consider about two
hundred mass-dependent master integrals in total to close the system of differential equations.
Since it is impossible to discuss such a huge system of differential equations in any detail, we
decided to choose a small eleven-by-eleven sub-system and discuss it in a comprehensive way.
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We consider eleven integrals

J1 =
∫

dΦnnn
δδδ , J2 =

∫ dΦnnn
δδδ

k2
123 +m2 ,

J3 =
∫ dΦnnn

δδδ

(k2
123 +m2)k1 · n

, J4 =
∫ dΦnnn

δδθ

k2
123 +m2 ,

J5 =
∫ dΦnnn

δδθ

(k2
123 +m)2 , J6 =

∫ dΦnnn
δδ′θ

k2
123 +m2 , (5.82)

J7 =
∫ dΦnnn

δδθ

(k2
123 +m2)(k1n) , J8 =

∫ dΦnnn
δδθ

(k2
123 +m2)(k3n̄) ,

J9 =
∫ dΦnnn

δθθ

k2
123 +m2 , J10 =

∫ dΦnnn
δθθ

(k2
123 +m2)(k2n̄) ,

J11 =
∫ dΦ̃nnn

δθθ

(k2
123 +m2)(k2n̄) .

We note that somewhat different notations for the phase-space measures in J6 and J11, com-
pared to other integrals, imply that derivatives of δ-functions, namely dδ(k2n̄− k2n)/d(k2n)
and dδ(1−k123n)/dk123n appear in J6 and J11 respectively. It is straightforward to compute
these derivatives if the corresponding δ-functions are represented using eq. (2.10) in the
spirit of reverse unitarity.

To derive differential equations, we consider a vector of eleven integrals introduced in
eq. (5.82), differentiate it with respect to m2, use integration-by-parts identities to perform
a reduction of the resulting integrals back to the integrals J1,...,11 and obtain

∂

∂m2 J =
[
M1

m2 + 1 + M2

m2 + 1
4

+ M3
m2 +M4 +m2M5

]
J . (5.83)

The matrices M1,..,5 are independent of m2 but depend on ε. They can be found in
appendix B.

We have already explained how to compute the boundary conditions in the previous
section; explicit results for integrals J1,..,11 that appear in eq. (5.82) can be found in the
supplementary material. With the boundary conditions at hand, we solve the differential
equation in the following way. At m2 → i∞, all master integrals are written as power-
logarithmic series in y = 1/m2

J =
∑
C∞(k, n)yk lnn y. (5.84)

Coefficients of these series solutions are fixed with the help of boundary conditions and the
differential equations. We can use these series solutions to evaluate integrals in the upper
complex half-plane within its radius of convergence. The radius of convergence follows from
eq. (5.83) where we observe singularities at m2 = 0,−1/4,−1.

Suppose we take the point m2 = m2
0 = 1/y0 where the solution eq. (5.84) is valid. We

construct another series solution at this point

J =
∑
Cy0(k)(y − y0)k, (5.85)
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and find coefficients Cy0(k) by matching the above equation to eq. (5.84) at around y = y0.
The solution in eq. (5.85) has its own radius of convergence and allows us to move past the
radius of convergence of the original solution eq. (5.84). We then repeat this procedure at
another point m2 = m2

1 closer to the physical point at m2 = 0 and iterate.
After sufficient number of steps, we arrive at a point m2 = m2

f within the radius of
convergence of the formal solution at m2 = 0. As follows from the differential equation
eq. (5.83) m2 = 0 is a regular singular point of the differential equation; to determine
coefficients of the solution constructed as an expansion around m2 = 0 we proceed as follows.

The formal solution in the neighborhood of the point m2 = 0 can be written as

J (m2) = P (ε,m2)(m2)M(ε)J 0(ε), (5.86)

where P is a matrix that can be computed as a series in m2 and the matrix M is related
to M3 defined in eq. (5.83).

The matrix P can be found by constructing a series solution around m2 = 0. The vector
J 0 corresponds to the boundary conditions at m = 0; we can determine it by matching the
formal solution against the evaluation at a finite-m point m2

f . We write

J 0(ε) =
[
P (ε,m2

f )(m2
f )M(ε)

]−1
J (m2

f ). (5.87)

The above procedure allows us to obtain the complete solution J in the neighborhood
of the point m2 = 0, and the only thing left to do is to select integrals we are interested in.

By construction, these integrals correspond to a situation when the limit m2 → 0 is
taken while keeping ε fixed; this means that all contributions to integrals J that scale as
(m2)iε+i1 lnkm2, where i, i1 and k are non-vanishing rational numbers, should be set to zero.

To isolate those terms, we determine eigenvectors of the matrix M(ε) with zero
eigenvalues

M(ε)ξa = 0, a = 1, .., N0, (5.88)

and write

Jm2=0 =
N∑
a=1

(ξ̃†a ·J 0) P (ε, 0) ξa, (5.89)

where dual normalized eigenvectors {ξ̃†a} are orthogonal to {ξa}, i.e ξ̃
†
b ·ξa = δab. The above

equation provides the desired results for integrals J1,..,11 at m2 = 0.
We emphasize that the algorithm described above can be used to obtain numerical

solutions of the differential equations with arbitrary precision. To illustrate this point, we
present the results for two integrals that appear in eq. (5.82) at the physical point m2 = 0
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computed up to at least 15 significant digits through weight six. They read

J9|m2=0 =
∫ dΦnnn

δθθ

k2
123

= −0.5
ε
− 5− 28.17026373260709 ε− 119.43143332972728 ε2

− 430.4404286909044 ε3 − 1410.1679482808422 ε4

− 4372.111524529197 ε5 − 13148.701437210732 ε6 +O( ε7), (5.90)

J10|m2=0 =
∫ dΦnnn

δθθ

(k2
123)(k2n̄) = 0.5

ε2 + 5.5
ε

+ 34.34926305180546 + 170.0583525098628 ε

+ 758.7443815516605 ε2 + 3238.222100561864 ε3

+ 13535.346184323936 ε4 +O( ε5). (5.91)

Numerical results for remaining nine integrals shown in eq. (5.82) can be found in
the supplementary material. We note that it is possible to reconstruct analytic solu-
tions using the PSLQ algorithm [66] and a basis of transcendental constants. Using
FindIntegerNullVector function provided by Mathematica, we test this explicitly for all
the integrals in this example and verify the analytic solutions numerically up to 2000 digits.

6 Conclusion

In this paper we discussed computation of real-emission integrals for observables that
contain Heaviside functions. This is an interesting problem because reverse unitarity [44]
cannot be immediately applied to map such integrals onto multi-loop integrals, preventing
straightforward use of integration-by-parts identities in such cases.

We discussed a way to re-introduce integration-by-parts technology into the computation
of such integrals and showed that the resulting IBP relations have a clear hierarchical
structure since, in addition to original integrals, there appear integrals with Heaviside
functions replaced with δ-functions. Integrals with δ-functions are, however, much simpler
since they can be dealt with using reverse unitarity and, thus, IBP equations for them
are self-contained. In addition, IBP relations provide a foundation for deriving differential
equations for real-emission master integrals with Heaviside functions that can be solved
numerically even if analytic integration becomes too difficult.

We have shown the efficacy of this approach by computing the real-emission contribution
to the zero-jettiness soft function at NNLO. We have also discussed several non-trivial
contributions to the zero-jettiness soft function at N3LO and used them to illustrate all the
different aspects of the proposed computational techniques. We believe that theoretical
methods discussed in this paper will be useful for computing other phase-space integrals
that involve Heaviside functions. In particular, we hope that their application will allow us
to complete the computation of all real-emission contributions to zero-jettiness soft function
at N3LO.
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A Master integrals for nnn contribution to the soft function

The master integrals that arise in the computation of the nnn contribution to the soft
function are defined as follows:

• integrals for
∫

dΦnnn
θθθ ω

(3),a
nn̄ :

I1 =
∫

dΦnnn
δδδ , I2 =

∫ dΦnnn
δδδ

(k12n)(k13n) ,

I3 =
∫ dΦnnn

δδθ

(k13n̄) , I4 =
∫ dΦnnn

δδθ

(k123n̄) ,

I5 =
∫ dΦnnn

δδθ

(k13n)(k123n̄) , I6 =
∫ dΦnnn

δθθ

(k123n̄) .

(A.1)

• additional integrals for
∫

dΦnnn
θθθ ω

(3),b
nn̄ :

I7 =
∫ dΦnnn

δδθ

(k1k3)(k3n̄) , I8 =
∫ dΦnnn

δδθ

(k1k3)(k3n)(k13n̄) ,

I9 =
∫ dΦnnn

δδθ

(k1k3)(k3n)(k23n̄) , I10 =
∫ dΦnnn

δδθ

(k1k3)(k12n)(k13n̄) ,

I11 =
∫ dΦnnn

δδθ

(k1k3)(k3n)(k123n̄) , I12 =
∫ dΦnnn

δθδ

(k1k2)(k12n)(k2n̄)(k13n) ,

I13 =
∫ dΦnnn

δθδ

(k1k2)(k12n)(k2n̄)(k123n̄) , I14 =
∫ dΦnnn

θδδ

(k1k3)(k12n)(k13n̄) ,

I15 =
∫ dΦnnn

θδδ

(k1k2)(k12n)(k13n̄) , I16 =
∫ dΦnnn

δθθ

(k1k2)(k23n̄) ,

I17 =
∫ dΦnnn

δθθ

(k1k2)(k2n̄)(k13n̄) , I18 =
∫ dΦnnn

δθθ

(k1k2)(k2n̄)(k123n̄) ,

I19 =
∫ dΦnnn

δθθ

(k1k2)(k2n)(k123n̄) , I20 =
∫ dΦnnn

δθθ

(k1k3)(k12n)(k123n̄) ,

I21 =
∫ dΦnnn

δθθ

(k1k2)(k23n)(k123n̄) , I22 =
∫ dΦnnn

θδθ

(k1k3)(k12n)(k123n̄) .

(A.2)
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• additional integrals for
∫

dΦnnn
θθθ ω

(3),c
nn̄ :

I23 =
∫

dΦnnnθδδ

(k1k2)(k1k3) , I24 =
∫

dΦnnnθδδ

(k1k2)(k1k3)(k12n̄) ,

I25 =
∫

dΦnnnθδδ

(k1k2)(k1k3)(k123n̄) , I26 =
∫

dΦnnnθδδ

(k1k2)(k1k3)(k12n)(k13n̄) ,

I27 =
∫

dΦnnnθδδ

(k1k2)(k1k3)(k12n)(k123n̄) , I28 =
∫

dΦnnnθδθ

(k1k2)(k1k3)(k3n̄) ,

I29 =
∫

dΦnnnθδθ

(k1k2)(k1k3)(k12n̄)(k3n̄) , I30 =
∫

dΦnnnθδθ

(k1k2)(k1k3)(k12n)(k13n̄) ,

I31 =
∫

dΦnnnθδθ

(k1k2)(k1k3)(k123n̄)(k3n̄) , I32 =
∫

dΦnnnθδθ

(k1k2)(k1k3)(k3n)(k123n̄) , (A.3)

I33 =
∫

dΦnnnθδθ

(k1k2)(k1k3)(k12n)(k123n̄) , I34 =
∫

dΦnnnθδθ

(k1k2)(k1k3)(k3n)(k123n̄)2 ,

I35 =
∫

dΦnnnδθθ

(k1k2)(k1k3)(k2n)(k123n̄)(k3n̄) , I36 =
∫

dΦnnnδθθ

(k1k2)(k1k3)(k12n)(k2n̄)(k13n̄) ,

I37 =
∫

dΦnnnδθθ

(k1k2)(k1k3)(k12n)(k123n̄)(k2n̄) , I38 =
∫

dΦnnnθθδ

(k1k2)(k1k3)(k12n)(k2n̄)(k13n̄) ,

I39 =
∫

dΦnnnθθδ

(k1k2)(k1k3)(k12n)(k123n̄)(k2n̄) .

• additional integral for
∫

dΦnnn
θθθ ω

(3),d
nn̄ without 1/k2

123 propagator:

I40 =
∫ dΦnnn

θδθ

(k1k3)(k1n)(k123n̄)(k3n̄) , (A.4)

• additional integrals for
∫

dΦnnn
θθθ ω

(3),d
nn̄ with 1/k2

123 propagator:

I41 =
∫

dΦnnnδδδ

k2
123(k12n) , I42 =

∫
dΦnnnδδδ

k2
123(k1n)(k2n) ,

I43 =
∫

dΦnnnδδθ

k2
123

, I44 =
∫

dΦnnnδδθ

k2
123(k3n̄) ,

I45 =
∫

dΦnnnδδθ

k2
123(k13n̄) , I46 =

∫
dΦnnnδδθ

k2
123(k23n) ,

I47 =
∫

dΦnnnδδθ

k2
123(k13n̄)2 , I48 =

∫
dΦnnnδδθ

k2
123(k1n)(k3n̄) ,

I49 =
∫

dΦnnnδδθ

k2
123(k1k3)(k3n̄) , I50 =

∫
dΦnnnδδθ

k2
123(k1k3)(k3n) ,

I51 =
∫

dΦnnnδδθ

k2
123(k13n̄)(k2n) , I52 =

∫
dΦnnnδδθ

k2
123(k13n̄)(k1n) ,

I53 =
∫

dΦnnnδδθ

k2
123(k1k3)(k23n̄) , I54 =

∫
dΦnnnδδθ

k2
123(k12n)(k1k3) ,

I55 =
∫

dΦnnnδδθ

k2
123(k1k3)(k23n) , I56 =

∫
dΦnnnδδθ

k2
123(k123n̄)(k1n) ,

I57 =
∫

dΦnnnδδθ

k2
123(k123n̄)(k3n) , I58 =

∫
dΦnnnδδθ

k2
123(k123n̄)(k13n) ,

I59 =
∫

dΦnnnδδθ

k2
123(k1k3)(k23n̄)2 , I60 =

∫
dΦnnnδδθ

k2
123(k123n̄)2(k13n) ,

I61 =
∫

dΦnnnδδθ

k2
123(k12n)(k1k3)(k3n̄) , I62 =

∫
dΦnnnδδθ

k2
123(k123n̄)(k1n)(k3n) ,
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I63 =
∫

dΦnnnδδθ

k2
123(k123n̄)(k1k3)(k3n) , I64 =

∫
dΦnnnδδθ

k2
123(k123n̄)(k1k3)(k3n̄) , (A.5)

I65 =
∫

dΦnnnδδθ

k2
123(k123n̄)(k13n)(k1n) , I66 =

∫
dΦnnnδδθ

k2
123(k123n̄)(k1k3)(k23n) ,

I67 =
∫

dΦnnnδθθ

k2
123(k2n̄) , I68 =

∫
dΦnnnδθθ

k2
123(k13n̄) ,

I69 =
∫

dΦnnnδθθ

k2
123(k13n̄)(k1k2) , I70 =

∫
dΦnnnδθθ

k2
123(k12n)(k3n̄) ,

I71 =
∫

dΦnnnδθθ

k2
123(k123n̄)(k2n) , I72 =

∫
dΦnnnδθθ

k2
123(k123n̄)(k12n) ,

I73 =
∫

dΦnnnδθθ

k2
123(k1k2)(k2n̄)(k3n̄) , I74 =

∫
dΦnnnδθθ

k2
123(k1k2)(k2n)(k3n̄) ,

I75 =
∫

dΦnnnδθθ

k2
123(k13n̄)(k2n)(k2n̄) , I76 =

∫
dΦnnnδθθ

k2
123(k13n̄)(k1k2)(k2n) ,

I77 =
∫

dΦnnnδθθ

k2
123(k1k2)(k23n̄)(k2n̄) , I78 =

∫
dΦnnnδθθ

k2
123(k123n̄)(k2n)(k2n̄) ,

I79 =
∫

dΦnnnδθθ

k2
123(k123n̄)(k12n)(k1k3) , I80 =

∫
dΦnnnθδθ

k2
123(k12n)(k1k3)(k3n̄) ,

I81 =
∫

dΦnnnθδθ

k2
123(k1k3)(k1n)(k23n̄) , I82 =

∫
dΦnnnθδθ

k2
123(k1k3)(k1n)(k23n̄)2 ,

I83 =
∫

dΦnnnδθθ

k2
123(k123n̄)(k1k3)(k2n)(k3n̄) , I84 =

∫
dΦnnnδθθ

k2
123(k123n̄)(k13n)(k1k2)(k2n̄) ,

I85 =
∫

dΦnnnδθθ

k2
123(k123n̄)(k1k3)(k23n)(k2n) , I86 =

∫
dΦnnnθδθ

k2
123(k123n̄)(k1k3)(k1n̄)(k23n) .

• additional integral for
∫

dΦnnn
θθθ ω

(3),d
nn̄ with 1/k2

123 propagator and 1/ν behaviour:

J (d)
ν =

∫ dΦnnn
θδθ (k1n)ν(k2n)ν(k3n)ν

k2
123(k1k3)(k1n)(k12n̄)(k3n̄) . (A.6)

B Matrices for the differential equations in section 5.4.2

In section 5.4.2, we discussed an example of a differential equation w.r.t. the auxiliary mass
parameter. The differential equation for eleven selected integrals is given in eq. (5.83); it
involves five eleven-by-eleven matrices whose explicit form is shown below.

M1 =



0 0 0 0 0 0 0 0 0 0 0
1− 3ε −ε 0 0 0 0 0 0 0 0 0

− (3ε−1)(6ε−1)
2ε

1
2(1− 6ε) 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 2ε− 1 0 −1

2(5ε− 1)(6ε− 1) 1− 6ε −3ε 0 0 0 0 0
0 1− 2ε 0 1

2(5ε− 1)(6ε− 1) 6ε− 1 3ε 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

1−3ε
ε

1−3ε
ε 0 (5ε−1)(6ε−1)

2ε
6ε−1
ε 3 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

−2(3ε−1)
ε −2(3ε−1)

ε 0 30ε2−11ε+1
ε

2(6ε−1)
ε 6 0 0 0 0 0


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M2 =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

3ε−1
ε

3ε−1
ε

1
4 − (5ε−1)(6ε−1)

2ε −3(6ε−1)
8ε −3 0 −3ε 0 0 0

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

2(3ε−1)(7ε−2)
ε(5ε−2)

11ε−4
2ε 0 −238ε3+157ε2−32ε+2

ε(5ε−2)
−25ε2+11ε−1

ε(5ε−2)
34−97ε
2(5ε−2)

7ε
2

1
2(2ε− 1) 4(2ε− 1)(3ε− 1) −1

2(2ε− 1)(6ε− 1) 1
2(1− 8ε)


(B.2)

M3 =



0 0 0 0 0 0 0 0 0 0 0
3ε− 1 −2ε 0 0 0 0 0 0 0 0 0

(3ε−1)(6ε−1)
2ε

1
2(6ε− 1) 1

2(−6ε− 1) 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1− 2ε 0 1

2(5ε− 1)(6ε− 1) 1
2(−4ε− 1) 3ε 0 0 0 0 0

0 1
2(2ε− 1) 0 −1

2(5ε− 1)(6ε− 1) 0 −4ε 0 0 0 0 0
0 2ε−1

2ε 0 0 0 −2 −3ε 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1

2−5ε 0 0 (4ε−1)2

(3ε−1)(5ε−2) 0 0 0 0 1− 2ε 0 0
0 0 0 0 0 0 0 0 0 1

2(1− 6ε) 1
2

−4(3ε−1)
5ε−2 0 0 4(4ε−1)2

5ε−2 0 0 0 0 −4(2ε− 1)(3ε− 1) 1
2(2ε− 1)(6ε− 1) 1

2(1− 2ε)


(B.3)

–
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M4 =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 (4ε−1)(6ε−1)

(2ε−1)(5ε−2) −
2(4ε−1)

(3ε−1)(5ε−2)
2ε(4ε−1)

(2ε−1)(3ε−1)(5ε−2) −
2ε2

(2ε−1)(3ε−1) 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2(4ε−1)

5ε−2 0 0 0 0 0 0



(B.4)

M5 =



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 − 2(4ε−1)

(2ε−1)(5ε−2) 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0



(B.5)
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