KIT | KIT-Bibliothek | Impressum | Datenschutz

MOFSocialNet: Exploiting Metal-Organic Framework Relationships via Social Network Analysis

Jalali, M. ORCID iD icon 1; Tsotsalas, M. ORCID iD icon 1; Wöll, C. 1
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

The number of metal-organic frameworks (MOF) as well as the number of applications of this material are growing rapidly. With the number of characterized compounds exceeding 100,000, manual sorting becomes impossible. At the same time, the increasing computer power and established use of automated machine learning approaches makes data science tools available, that provide an overview of the MOF chemical space and support the selection of suitable MOFs for a desired application. Among the different data science tools, graph theory approaches, where data generated from numerous real-world applications is represented as a graph (network) of interconnected objects, has been widely used in a variety of scientific fields such as social sciences, health informatics, biological sciences, agricultural sciences and economics. We describe the application of a particular graph theory approach known as social network analysis to MOF materials and highlight the importance of community (group) detection and graph node centrality. In this first application of the social network analysis approach to MOF chemical space, we created MOFSocialNet. This social network is based on the geometrical descriptors of MOFs available in the CoRE-MOFs database. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000143497
Veröffentlicht am 07.03.2022
Originalveröffentlichung
DOI: 10.3390/nano12040704
Scopus
Zitationen: 11
Web of Science
Zitationen: 10
Dimensions
Zitationen: 11
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2079-4991
KITopen-ID: 1000143497
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Nanomaterials
Verlag MDPI
Band 12
Heft 4
Seiten Art.-Nr.: 704
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Schlagwörter metal organic framework; social network analysis; centrality in the graph; community detection
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page