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In this paper, we consider the propagation of waves in an open waveguide in R2

where the index of refraction is a local perturbation of a function which is peri-
odic along the axis of the waveguide (which we choose to be the x1 axis) and
equal to one for |x2|> h0 for some h0 > 0. Motivated by the limiting absorption
principle (proven in an earlier paper by the author), we formulate a radiation
condition which allows the existence of propagating modes and prove unique-
ness, existence, and stability of a solution under the assumption that no bound
states exist. In the second part, we determine the order of decay of the radiating
part of the solution in the direction of the layer and in the direction orthogonal to
it. Finally, we show that it satisfies the classical Sommerfeld radiation condition
and allows the definition of a far field pattern.
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1 INTRODUCTION

Let k > 0 be the wavenumber which is fixed throughout the paper and n ∈ L∞(R2) the real valued index of refraction
which is assumed to be 2𝜋-periodic with respect to x1 and equals to 1 for |x2|> h0 for some h0 > 0. Furthermore, let
q ∈ L∞(R2) and 𝑓 ∈ L2(R2) have compact support in Q ∶= (0, 2𝜋) × (−h0, h0). It is the aim to solve

Δu + k2(n + q)u = −𝑓 in R
2 (1)

subject to a suitable radiating condition stated below.
The solution of (1) is understood in the variational sense; that is,

∫
R2

[
∇u · ∇𝜓 − k2(n + q)u𝜓

]
dx = ∫

Q

𝑓 𝜓 dx (2)

for all 𝜓 ∈ H1(R2) with compact support. By standard regularity theorems, it is known that for |x2|> h0, the solution u is
a classical solution of the Helmholtz equation and thus analytic.

As mentioned above, a further condition is needed to assure uniqueness (see Definition 2.5 below). In contrast to the
closed waveguide, that is, where R2 is replaced by R × (a−, a+) and where boundary conditions for x2 = a± are added, not
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only a radiation condition in the direction of periodicity, that is, x1, is needed but also one in direction of x2. The radiation
condition should be in accordance with the limiting absorption principle; that is, the solution u should be the limit (as
𝜀 > 0 tends to zero) of the solutions u𝜀 ∈ H1(R2) corresponding to wave numbers k + i𝜀 instead of k.

Candidates are the Sommerfeld radiation condition (see, e.g., Colton & Kress1 for bounded scatterers in free space or
Brandsmeier et al2 for periodic open waveguides) or the “upward propagating radiation condition” which is popular for
scattering problems by rough surfaces (see, e.g., Chandler-Wilde & Zhang3). However, one of the basic differences between
the scattering by bounded (penetrable or impenetrable) obstacles in free space and (unbounded) layers is the existence of
guided (or propagating) modes in the latter case which don't exist for the scattering by bounded obstacles in free space.
Therefore, Sommerfeld's radiation condition is too restrictive, while the upward propagating radiation condition is not
sufficient for uniqueness, that is, not restrictive enough. The special case of layered media, that is, where n is constant
with respect to x1, is well studied in the literature; see, e.g., previous studies4–9 for different types of radiation conditions
based on spectral representations of the scattered field (or the radiating part of the scattered field) with respect to the
(point oder continuous) spectrum of the transverse contribution of the Helmholtz operator. In any case, this leads to a
decomposition of the scattered field into a radiating part and a guided part. The radiating part decays in all directions,
while the components of the guided part do not decay with respect to x1. Since they decay exponentially with respect to
x2, they are also called surface waves.

In Kirsch10,11,13 and Kirsch and Lechleiter,12 we introduced a new kind of radiation condition which has been derived
rigorously from the limiting absorption principle for unperturbed (i.e., q = 0) problems. For closed waveguides, this radi-
ation condition is equivalent to the condition based on the dispersion curves (see, e.g. Fliss & Joly14 and also Remark 2.4
below). In Sections 3 and 5, we investigate uniqueness, existence, and continuous dependence on f of Equation 1 com-
plemented by this radiation condition. This seems to be new for this kind of problems. For the proof of uniqueness in
Section 3, we were inspired by Furuya.15 We had, however, to modify his proof considerably because of the full-space
waveguide instead of the half-space waveguide considered in Furuya.15 The Floquet-Bloch transform is a basic tool in the
analysis of periodic problems and replaces the role of the Fourier transform for layered media. It transforms the problem
in R2 into a class of quasi-periodic (with respect to x1) problems in Q∞ ∶= (0, 2𝜋) × R. Section 4 is devoted to the analysis
of quasi-periodic problems, in particular smoothness with respect to the Floquet-parameter. The results obtained in this
section (Theorems 4.1–4.3) are not surprising, and one can skip this section if one is only interested in the main arguments.

In Section 6, we will investigate the asymptotic behavior of the radiating part of the solution in the direction of the
waveguide and orthogonal to it. While for closed waveguides, the radiating part decays exponentially along the waveguide,
we will show that the radiating part for open waveguides behaves only as (|x1|−3∕2) in the direction of the waveguide
and as (|x2|−1∕2) orthogonal to it. We will show Sommerfeld's radiation condition for the radiating part and introduce
its far field pattern. These results seem to be new as well.

2 THE OPEN WAVEGUIDE RADIATION CONDITION AND FIRST
CONSEQUENCES

As mentioned above, the field will have a decomposition into a propagating and a radiating part. The loss of exponen-
tial decay of the radiating part is a consequence of the existence of cut-off values while the propagative wave numbers
determine the behavior of the guided part along the waveguide. These quantities are defined as follows.

Definition 2.1. 𝛼 ∈ [− 1/2, 1/2] is called a cut-off value if there exists 𝓁 ∈ Z such that |𝛼 +𝓁|=k.
𝛼 ∈ [− 1/2, 1/2] is called a propagative wave number if there exists a non-trivial u ∈ H1

𝛼,loc(R
2) ∶={

u ∈ H1
loc(R

2) ∶ u(·, x2)is𝛼 − quasi-periodic
}

such that

Δu + k2nu = 0 in R
2 , (3a)

and u satisfies the Rayleigh expansion

u(x) =
∑
𝓁∈Z

u±
𝓁 ei(𝓁+𝛼)x1 ei

√
k2−(𝓁+𝛼)2(±x2−h0) for ± x2 > h0 (3b)

for some u±
𝓁 ∈ C where the convergence is uniform for |x2|≥ h0 + 𝜀 for every 𝜀 > 0. Here, and in all of the paper,

we choose the square root function to be holomorphic in the cutted plane C∖(iR≤0). In particular,
√

t = i
√|t| for

t ∈ R<0. We recall that a function u(· , x2) is 𝛼-quasi-periodic if u(x1 + 2𝜋, x2)= e2𝜋𝛼iu(x1, x2) for all x = (x1, x2) ∈ R2.
The functions u are called guided (or propagating or Floquet) modes.
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Throughout this paper, we make the following assumption.

Assumption 2.2. Let |𝓁 + 𝛼|≠ k for every propagative wave number 𝛼 ∈ [− 1/2, 1/2] and every 𝓁 ∈ Z; that is, no
cut-off value is a propagative wave number.

Under Assumption 2.2, it can be shown (see, e.g., Kirsch & Lechleiter12) that at most, a finite number of propagative
wave numbers exists in the interval [− 1/2, 1/2]. Furthermore, if 𝛼 is a propagative wave number with mode u, then −𝛼 is
a propagative wave number with mode u. Therefore, we can number the propagative wave numbers in [− 1/2, 1/2] such
they are given by {�̂�𝑗 ∶ 𝑗 ∈ J}, where J ⊂ Z is finite and symmetric with respect to 0 and �̂�−𝑗 = −�̂�𝑗 for j∈ J. Furthermore,
it is known that (under Assumption 2.2) every mode u is evanescent, that is, exponentially decaying as |x2| tends to infinity,
that is, satisfying|u(x)| ≤ ce−𝛿|x2| for |x2|≥ h0 and some c, 𝛿 > 0 which are independent of x. The corresponding space

X𝑗 ∶=
{

u ∈ H1
�̂�𝑗 ,loc(R

2) ∶ u satisfies (3a) and (3b) for 𝛼 = �̂�𝑗

}
(4)

of modes is finite dimensional with some dimension mj > 0. We note that the elements of Xj are in H2(Q∞) and even
analytic for |x2|> h0. They decay exponentially as |x2| tends to infinity. On Xj, we define the sesqui-linear form E ∶ X𝑗 ×
X𝑗 → C by

E(𝜙,𝜓) ∶= −2i∫
Q∞

𝜕𝜙

𝜕x1
𝜓 dx , 𝜙, 𝜓 ∈ X𝑗 , (5)

where Q∞ ∶= (0, 2𝜋) × R. We note that E is Hermitian and make the assumption that E is non-degenerated on every Xj;
that is,

Assumption 2.3. For every j∈ J and 𝜓 ∈Xj, the linear form E(·, 𝜓) ∶ X𝑗 → C is non-trivial on Xj; that is, there exists
𝜙∈Xj with E(𝜙,𝜓) ≠ 0.

Remark 2.4. This condition is equivalent to the requirement that the group velocity does not vanish. Indeed, assume
that for all 𝛼, there exists eigenvalues 𝜇𝜈(𝛼) ∈ R and corresponding eigenfunctions u𝜈(𝛼) ∈ H1

𝛼(Q∞) that satisfy
Δu𝜈(𝛼) + 𝜇𝜈(𝛼)nu𝜈(𝛼) = 0 in Q∞. Then, �̂� is a propagative wave number if 𝜇𝜈(�̂�) = k2 for some 𝜈. We transform u𝜈 to
its periodic form by setting ũ𝜈(x) ∶= e−i𝛼x1 u𝜈(x). Then, ũ𝜈(𝛼) is 2𝜋-periodic with respect to x1 and satisfies Δũ𝜈(𝛼) +
2i𝛼𝜕ũ𝜈(𝛼)∕𝜕x1 +(𝜇𝜈(𝛼)n−𝛼2)ũ𝜈(𝛼) = 0 in Q∞. Assuming that ũ𝜈(𝛼) is differentiable with respect to 𝛼, we differentiate
this equation and set 𝛼 = �̂�. This yields

Δũ′
𝜈(�̂�) + 2i �̂�

𝜕ũ′
𝜈(�̂�)
𝜕x1

+ (k2 n − �̂�2) ũ′
𝜈(�̂�) = −2i 𝜕ũ𝜈(�̂�)

𝜕x1
+ [2�̂� − 𝜇′

𝜈(�̂�)n] ũ𝜈(�̂�)

in Q∞. We multiply this equation by ũ𝜈(�̂�), integrate over Q∞, and use Green's second theorem. This yields

2i∫
Q∞

ũ𝜈(�̂�)
[
𝜕ũ𝜈(�̂�)
𝜕x1

+ i�̂�ũ𝜈(�̂�)
]

dx + 𝜇′
𝜈(�̂�)∫

Q∞

n |ũ𝜈(�̂�)|2 dx = 0.

Formulated with u𝜈 instead of ũ𝜈 , this reads as

2i∫
Q∞

u𝜈(�̂�)
𝜕u𝜈(�̂�)
𝜕x1

dx + 𝜇′
𝜈(�̂�)∫

Q∞

n |u𝜈(�̂�)|2 dx = 0.

Therefore, the condition of Assumption 2.3 (for m𝑗 = 1) is equivalent to 𝜇′
𝜈(�̂�) ≠ 0.

The Hermitian sesqui-linear form E defines the cones {𝜓 ∈ X𝑗 ∶ E(𝜓,𝜓) ≷ 0} of propagating waves traveling to the
right and left, respectively. We construct a basis of Xj with elements in these cones by taking any inner product (·, ·)X𝑗

and
consider the following eigenvalue problem in Xj for every fixed j∈ J. Determine 𝜆𝓁,𝑗 ∈ R and non-trivial �̂�𝓁,𝑗 ∈ X𝑗 with

E(�̂�𝓁,𝑗 , 𝜓) = −2i∫
Q∞

𝜕�̂�𝓁,𝑗

𝜕x1
𝜓 dx = 𝜆𝓁,𝑗

(
�̂�𝓁,𝑗 , 𝜓

)
X𝑗

for all 𝜓 ∈ X𝑗 (6)
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and 𝓁 = 1, … ,m𝑗 . We normalize the basis such that
(
�̂�𝓁,𝑗 , �̂�𝓁′,𝑗

)
X𝑗

= 𝛿𝓁,𝓁′ for 𝓁,𝓁′ = 1, … ,m𝑗 . Then, 𝜆𝓁,𝑗 = E(�̂�𝓁,𝑗 , �̂�𝓁,𝑗),
and Assumption 2.3 is equivalent to 𝜆𝓁,𝑗 ≠ 0 for all 𝓁 = 1, … ,m𝑗 and j∈ J.

Now, we are able to formulate the radiation condition. In all of the paper, we make Assumptions 2.2 and 2.3 without
mentioning this always. To simplify the notation, we define the space H1

∗(R2) by

H1
∗(R2) ∶=

{
u ∈ H1

loc(R
2) ∶ u ∈ H1(WR) for all R > 0

}
, (7)

where WR = R × (−R,R).

Definition 2.5. Let 𝜓+, 𝜓− ∈ C∞(R) be any functions with 𝜓±(x1) = 1 for ±x1 ≥ 𝜎0 (for some 𝜎0 > 2𝜋 + 1) and
𝜓±(x1) = 0 for ±x1 ≤ 𝜎0 − 1.

A solution u ∈ H1
loc(R

2) of (1), that is,

Δu + k2(n + q)u = −𝑓 in R
2, (8)

satisfies the open waveguide radiation condition with respect to an inner product (·, ·)X𝑗
in Xj if u has a decomposition

into u=urad + uprop with a radiating part urad ∈ H1
∗(R2) and a propagating part uprop which satisfy the following

conditions.

(a) The propagating part uprop has the form

uprop(x) =
∑
𝑗∈J

⎡⎢⎢⎣𝜓+(x1)
∑

𝓁∶𝜆𝓁,𝑗>0
a𝓁,𝑗 �̂�𝓁,𝑗(x) + 𝜓−(x1)

∑
𝓁∶𝜆𝓁,𝑗<0

a𝓁,𝑗 �̂�𝓁,𝑗(x)
⎤⎥⎥⎦ (9)

for x ∈ R2 and some a𝓁,𝑗 ∈ C. Here, for every j∈ J, the scalars 𝜆𝓁,𝑗 ∈ R and �̂�𝓁,𝑗 ∈ X̂𝑗 for 𝓁 = 1, … ,m𝑗 are given
by the eigenvalues and corresponding eigenfunctions, respectively, of the self adjoint eigenvalue problem (6).

(b) urad ∈ H1
∗(R2) satisfies the generalized angular spectrum radiation condition

∞

∫
−∞

||||(sign x2)
𝜕(urad)(𝜔, x2)

𝜕x2
− i

√
k2 − 𝜔2 (urad)(𝜔, x2)

||||2
d𝜔 → 0 , |x2| → ∞, (10)

where the Fourier transform is defined as

(𝜙)(𝜔) ∶= 1√
2𝜋

∞

∫
−∞

𝜙(s)e−is𝜔 ds , 𝜔 ∈ R,

considered as an unitary operator from L2(R) onto itself.

This radiation condition has a natural extension to the scattering by an infinitely long penetrable cylinder with peri-
odic (with respect to the axis of the cylinder) refractive index; see Kirsch.10,11 In this case, the one-dimensional Fourier
transform in the angular spectrum radiation condition (10) has to be replaced by the cylindrical Fourier transform.

It has been shown in Kirsch and Lechleiter12 for the case of a half plane problem that this open waveguide radia-
tion condition for the inner product (𝜙,𝜓)X𝑗

= 2k∫Q∞n𝜙𝜓 dx is a consequence of the limiting absorption principle. A
second motivation is the following result on the direction of the energy flow which will play a central role in the proof of
uniqueness.

Lemma 2.6. Let uprop be given by (9). With Ir ∶= {r} × R and r + Q∞ ∶= (r, r + 2𝜋) × R for |r|≥ 𝜎0, we have

4𝜋 Im∫
Ir

uprop
𝜕uprop

𝜕x1
ds = 2 Im ∫

r+Q∞

uprop
𝜕uprop

𝜕x1
dx =

⎧⎪⎨⎪⎩
∑
𝑗∈J

∑
𝜆𝓁,𝑗>0

𝜆𝓁,𝑗 |a𝓁,𝑗|2 , r > 𝜎0,∑
𝑗∈J

∑
𝜆𝓁,𝑗<0

𝜆𝓁,𝑗 |a𝓁,𝑗|2 , r < −𝜎0.
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Proof. We only consider r > 𝜎0. Then, uprop(x) =
∑

𝑗∈J
∑

𝜆𝓁,𝑗>0a𝓁,𝑗 �̂�𝓁,𝑗(x) for x1 > 𝜎0. First, we fix j∈ J and define
u+
𝑗
(x) ∶=

∑
𝜆𝓁,𝑗>0a𝓁,𝑗 �̂�𝓁,𝑗 . Since we fix j in the first part, we drop the index j and write u+ for u+

𝑗
. Furthermore, we define

v(x) ∶= (x1−r)u+(x). Then, 𝜕v
𝜕x1

= u++(x1−r) 𝜕u+

𝜕x1
andΔv+k2nv = 2 𝜕u+

𝜕x1
. Therefore, with r+Q∞ ∶= (r, r+2𝜋) × R ⊂ R2,

2∫
Q∞

u+ 𝜕u+

𝜕x1
dx = 2 ∫

r+Q∞

u+ 𝜕u+

𝜕x1
dx = ∫

r+Q∞

u+
(
Δv + k2nv

)
dx

= ∫
r+Q∞

v
(
Δu+ + k2nu+

)
dx + ∫

r+𝜕Q∞

(
u+ 𝜕v

𝜕𝜈
− v 𝜕u+

𝜕𝜈

)
ds

= −∫
Ir

|u+|2ds + ∫
Ir+2𝜋

[
u+

(
u+ + 2𝜋 𝜕u+

𝜕x1

)
− 2𝜋u+ 𝜕u+

𝜕x1

]
ds

= 2𝜋 ∫
Ir

(
u+ 𝜕u+

𝜕x1
− u+ 𝜕u+

𝜕x1

)
ds = 4𝜋 i Im∫

Ir

u+ 𝜕u+

𝜕x1
ds,

which shows the first equality for fixed j∈ J. Furthermore, with L+
𝑗
∶= {𝓁 ∶ 𝜆𝓁,𝑗 > 0},

4𝜋 Im∫
Ir

u+
𝑗

𝜕u+
𝑗

𝜕x1
ds = E(u+

𝑗
,u+

𝑗
) =

∑
𝓁,𝓁′∈L+

𝑗

a𝓁,𝑗 a𝓁′,𝑗E
(
�̂�𝓁,𝑗 , �̂�𝓁′,𝑗

)
=

∑
𝓁∈L+

𝑗

𝜆𝓁,𝑗 |a𝓁,𝑗|2

by the orthonormalization of �̂�𝓁,𝑗 where we indicated the dependence on j. In the second part, we take j, j′ ∈ J, apply
Green's theorem in r + Q∞, and use the quasi-periodicities of u+

𝑗
and u+

𝑗′
.

0 = ∫
r+𝜕Q∞

⎛⎜⎜⎝u+
𝑗

𝜕u+
𝑗′

𝜕𝜈
− u+

𝑗′

𝜕u+
𝑗

𝜕𝜈

⎞⎟⎟⎠ ds

= −∫
Ir

⎛⎜⎜⎝u+
𝑗

𝜕u+
𝑗′

𝜕x1
− u+

𝑗′

𝜕u+
𝑗

𝜕x1

⎞⎟⎟⎠ ds + ∫
Ir+2𝜋

⎛⎜⎜⎝u+
𝑗

𝜕u+
𝑗′

𝜕x1
− u+

𝑗′

𝜕u+
𝑗

𝜕x1

⎞⎟⎟⎠ ds

=
(

ei(�̂�𝑗′ −�̂�𝑗 )2𝜋 − 1
)
∫

Ir

⎛⎜⎜⎝u+
𝑗

𝜕u+
𝑗′

𝜕x1
− u+

𝑗′

𝜕u+
𝑗

𝜕x1

⎞⎟⎟⎠ ds.

Therefore, the last integral vanishes for j ≠ j′. Thus, we have

4𝜋i Im∫
Ir

uprop
𝜕uprop

𝜕x1
ds

= 2𝜋 ∫
Ir

[
uprop

𝜕uprop

𝜕x1
− uprop

𝜕uprop

𝜕x1

]
ds = 2𝜋

∑
𝑗∈J ∫Ir

⎡⎢⎢⎣u+
𝑗

𝜕u+
𝑗

𝜕x1
− u+

𝑗

𝜕u+
𝑗

𝜕x1

⎤⎥⎥⎦ ds

= 4𝜋i
∑
𝑗∈J

Im∫
Ir

u+
𝑗

𝜕u+
𝑗

𝜕x1
ds = i

∑
𝑗∈J

∑
𝓁∈L+

𝑗

𝜆𝓁,𝑗 |a𝓁,𝑗|2.

As the next step, we prove a first result on the asymptotic behavior of urad which will be needed in the proof of
uniqueness.
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Because q𝜓± vanishes identically by our choice of 𝜓±, we observe that the radiating part urad satisfies

Δurad + k2(n + q)urad = −𝑓 −
∑
𝑗∈J

m𝑗∑
𝓁=1

a𝓁,𝑗𝜑𝓁,𝑗 in R
2, (11a)

where

𝜑𝓁,𝑗(x) =
⎧⎪⎨⎪⎩

2𝜓 ′
+(x1)

𝜕�̂�𝓁,𝑗 (x)
𝜕x1

+ 𝜓 ′′
+ (x1) �̂�𝓁,𝑗(x) if 𝜆𝓁,𝑗 > 0,

2𝜓 ′
−(x1)

𝜕�̂�𝓁,𝑗 (x)
𝜕x1

+ 𝜓 ′′
− (x1) �̂�𝓁,𝑗(x) if 𝜆𝓁,𝑗 < 0.

(11b)

We note that f has compact support in Q and 𝜑𝓁, j vanish for |x1|≥ 𝜎0 and are evanescent; that is, there exist ĉ, 𝛿 > 0 with|𝜑𝓁,𝑗(x)| ≤ ĉ exp(−𝛿|x2|) for all x ∈ R2.
Using the result of Lemma 7.1 of the appendix, we are able to show the following asymptotic behavior * for urad. We set

𝜑 ∶=
∑
𝑗∈J

m𝑗∑
𝓁=1

a𝓁,𝑗𝜑𝓁,𝑗 and 𝜙 ∶= urad|Γ ∈ H1∕2(Γ)

for abbreviation where Γ ∶= Γh0 ∪ Γ−h0 with Γ±h0 ∶= R × {±h0} and note that urad ∈ H1
∗(R2) satisfies

Δurad + k2urad = −𝜑 for |x2| > h0 , urad = 𝜙 on Γ, (12)

and the generalized angular spectrum radiation condition (10).

Lemma 2.7. Let Assumptions 2.2 and 2.3 hold, and let u ∈ H1
loc(R

2) be a solution of (8) satisfying the radiation condition
of Definition 2.5. Then, the radiating part urad has the form

urad(x) =

𝜎0

∫
−𝜎0

∞

∫
h0

𝜑(𝑦)G+(x, 𝑦)d𝑦2 d𝑦1 +
i
2 ∫

Γh0

𝜙(𝑦) 𝜕

𝜕𝑦2
H(1)

0 (k|x − 𝑦|)ds(𝑦) (13)

for x2 > h0, where the Green's function G+(x, y) is defined as G+(x, 𝑦) ∶= i
4

[
H(1)

0 (k|x − 𝑦|) − H(1)
0 (k|x − 𝑦∗|)] for x, 𝑦 ∈ R2

with x2, y2 > h0 and x ≠ y. Here, 𝑦∗ ∶= (𝑦1, 2h0 − 𝑦2)⊤ is the reflected point at the line Γh0 ∶= R × {h0}, and H(1)
0 denotes

the Hankel function of the first kind and order zero. An analogous representation holds for x2 < −h0.
urad satisfies a stronger form of the radiation condition (10), namely,

||||(sign x2)
𝜕(urad)(𝜔, x2)

𝜕x2
− i

√
k2 − 𝜔2 (urad)(𝜔, x2)

|||| ≤ c
𝛿 +

√|𝜔2 − k2| e−𝛿|x2| (14)

for almost all 𝜔 ∈ R and |x2|> h0, where c > 0 is independent of 𝜔 and x. Here, 𝛿 > 0 is again a constant such that|𝜑𝓁,𝑗(x)| ≤ ĉ exp(−𝛿|x2|) for all x.
Furthermore, there exists c > 0 with

|urad(x)| + |∇urad(x)| ≤ c (1 + |x2|)𝜌(x1) (15)

for all x ∈ R2 with |x2|≥ h0 + 1, where 𝜌 ∈ L2(R) ∩ L∞(R) is given by

𝜌(x1) ∶=
∑

𝜎∈{+,−}
∫
R

|urad(𝑦1, 𝜎h0)|
(1 + |x1 − 𝑦1|)3∕2 d𝑦1 +

1
1 + |x1|3∕2 , x1 ∈ R. (16)

Proof. First, we note that 𝜌 ∈ L2(R) because the first term can be expressed as the convolution of the L2-function
|urad(· ,± h0)| and the L1-function y1 → (1 + |y1|)−3/2. It is also bounded by the inequality of Cauchy-Schwarz.

We restrict ourselves to the upper half plane R2
h0

∶= {x ∈ R2 ∶ x2 > h0}. In Lemma 7.1 of the appendix
uniqueness of (12), (10) has been shown and that the volume potential in (13) satisfies (12) for 𝜙 = 0 and the

* We will sharpen this result in Section 6.
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estimates (14) and (15). It remains to study the line integral in (13) which we denote by v(x). (Again, we con-
sider only the upper half plane) The function v(· , x2) is a convolution of the L2−function 𝜙(· , h0) and the function
𝜒(𝑦1) = i

2
𝜕

𝜕𝑦2
H(1)

0 (k
√

𝑦2
1 + (x2 − 𝑦2)2)|𝑦2=h0 (for fixed x2 > h0). It is 𝜒 ∈ W 1,1(R) by the asymptotic behavior of the

Hankel functions (see Zhang & Chandler-Wilde16). Indeed, for all a > 0, there exists c= c(a) > 0 with

|||| 𝜕

𝜕𝑦2
H(1)

0 (k|x − 𝑦|)|||| + ||||∇x
𝜕

𝜕𝑦2
H(1)

0 (k|x − 𝑦|)|||| ≤ c
|x2| + |𝑦2| + 1|x − 𝑦|3∕2 (17)

for all x, 𝑦 ∈ R2 with |x− y|≥ a. Taking the Fourier transform with respect to x1, we get first (v)(·, x2) =
√

2𝜋(𝜙)(𝜒)
by our normalization of the Fourier transform and thus, using (𝜒)(𝜔) = 1√

2𝜋
ei
√

k2−𝜔2(x2−h0) (differentiate the formulas

3. and 4. in Gradshteyn & Ryshik,17 section 6.677, with respect to z), (v)(𝜔, x2) = (𝜙)(𝜔, h0)ei
√

k2−𝜔2(x2−h0) for x2 > h0
which satisfies the radiation condition (14) trivially. Furthermore, from Parseval's identity, we get

H

∫
h0

∞

∫
−∞

[|v(x)|2 + |∇v(x)|2] dx1 dx2 =

H

∫
h0

∞

∫
−∞

(1 + 𝜔2 + |k2 − 𝜔2|) |(v)(𝜔, x2)|2d𝜔dx2

=

H

∫
h0

∞

∫
−∞

(1 + 𝜔2 + |k2 − 𝜔2|) |(𝜙)(𝜔, h0)|2e−2 Im
√

k2−𝜔2(x2−h0)d𝜔dx2

≤ 2(1 + k2)

H

∫
h0

∫|𝜔|<k

(1 + 𝜔2) |(𝜙)(𝜔, h0)|2d𝜔dx2

+ 2(1 + k2) ∫|𝜔|>k

(1 + 𝜔2) |(𝜙)(𝜔, h0)|2

H

∫
h0

e−2
√
𝜔2−k2(x2−h0)dx2 d𝜔

≤ cH

∞

∫
−∞

√
1 + 𝜔2 |(𝜙)(𝜔, h0)|2d𝜔 = cH||𝜙||2

H1∕2(Γh0 )
.

This shows that v ∈ H1(W+
H) for all H > h0 where W+

H ∶= R × (h0,H).
Finally, using (17), v(x) is estimated by

|v(x)| ≤ c (x2 + h0 + 1)

∞

∫
−∞

|urad(𝑦1, h0)|
[(x1 − 𝑦1)2 + 1]3∕4 d𝑦1

for x2 > h0 + 1 which proves the desired estimate (15).

3 UNIQUENESS

In this section, we follow the proof of uniqueness given by Furuya15 for the half-plane case. We have to modify his
approach, however, because the free space Green's function; that is, the fundamental solution i

4
H(1)

0 (k|x − 𝑦|) does not
decay as fast as the Green's function G+(x, y) for the half-plane as |x1| tends to infinity. Therefore, we can't use his integral
representations.

We begin with the following technical result.

Lemma 3.1. Let Assumptions 2.2 and 2.3 hold, and let u ∈ H1
loc(R) be a solution of (1) satisfying the open waveguide

radiation condition of Definition 2.5. Analogously to 𝜌(x1) of (16) (see Lemma 2.7), we define

𝜌N(x1) ∶=
∑

𝜎∈{+,−}

N

∫
−N

|urad(𝑦1, 𝜎h0)|
(1 + |x1 − 𝑦1|)3∕2 d𝑦1 +

1
1 + |x1|3∕2 , x1 ∈ R , N ∈ N. (18)
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Then, there exists c > 0 and a sequence (Nm) in N converging to infinity such that

∫|x1|>Nm

𝜌Nm (x1)2 dx1 ≤ c√
Nm

, ∫|x1|<Nm

|𝜌(x1) − 𝜌Nm (x1)|2 dx1 ≤ c√
Nm

,

and

∫
Nm<|x1|<Nm+1

𝜌(x1)2 dx1 ≤ c√
Nm

for all m ∈ N.

Proof. We define the sets JN ∶= (−N −
√

N,−N +
√

N) ∪ (N −
√

N,N +
√

N). As in Chandler-Wilde,18 we first note
that for every m ∈ N, there exists Nm ≥m with ||urad(·, h0)||L2(JNm )+||urad(·,−h0)||L2(JNm ) ≤ 1

N1∕4
m

. Indeed, otherwise, there

exists m ∈ N such that ||urad(·, h0)||L2(JN ) + ||urad(·,−h0)||L2(JN ) ≥ 1
N1∕4 for all N≥m. Since JN2 ∩ JM2 = ∅ for N ≠ M, we

would have

∑
𝜎∈{−1,+1}

∫|x1|>m2−m

|urad(x1, 𝜎h0)|2 dx1 ≥ ∑
𝜎∈{−1,+1}

∞∑
N=m ∫

JN2

|urad(x1, 𝜎h0)|2 dx1

≥
∞∑

N=m

1
N

= ∞ ,

a contradiction to urad(·,±h0) ∈ L2(R).
We set N−

m ∶= Nm −
√

Nm for abbreviation and estimate for |x1|>Nm:

∫|𝑦1|<Nm

|urad(𝑦1, 𝜎h0)|
(1 + |x1 − 𝑦1|)3∕2 d𝑦1

= ∫|𝑦1|<N−
m

|urad(𝑦1, 𝜎h0)|
(1 + |x1 − 𝑦1|)3∕2 d𝑦1 + ∫

N−
m<|𝑦1|<Nm

|urad(𝑦1, 𝜎h0)|
(1 + |x1 − 𝑦1|)3∕2 d𝑦1

≤ ||urad||L2(R)

√√√√√ ∫|𝑦1|<N−
m

d𝑦1

(1 + |x1| − |𝑦1|)3 + ||urad||L2(JNm )

√√√√√ ∫
N−

m<|𝑦1|<Nm

d𝑦1

(1 + |x1| − |𝑦1|)3

≤ c
1 + |x1| − N−

m
+ 1

N1∕4
m

c
1 + |x1| − Nm

and thus

∫|x1|>Nm

𝜌Nm (x1)2 dx1 ≤ 8
(1 + Nm)2 + c ∫|x1|>Nm

dx1

(1 + |x1| − N−
m)2

+ c√
Nm

∫|x1|>Nm

dx1

(1 + |x1| − Nm)2

≤ 8
(1 + Nm)2 + c

1 +
√

Nm
+ c√

Nm
.
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Analogously, with N+
m ∶= Nm +

√
Nm, we estimate for |x1|<Nm:

𝜌(x1) − 𝜌Nm (x1) = ∫|𝑦1|>Nm

|urad(𝑦1, 𝜎h0)|
(1 + |x1 − 𝑦1|)3∕2 d𝑦1

= ∫|𝑦1|>N+
m

|urad(𝑦1, 𝜎h0)|
(1 + |x1 − 𝑦1|)3∕2 d𝑦1 + ∫

Nm<|𝑦1|<N+
m

|urad(𝑦1, 𝜎h0)|
(1 + |x1 − 𝑦1|)3∕2 d𝑦1

≤ ||urad||L2(R)

√√√√√ ∫|𝑦1|>N+
m

d𝑦1

(1 + |𝑦1| − |x1|)3 + ||urad||L2(JNm )

√√√√√ ∫
Nm<|𝑦1|<N+

m

d𝑦1

(1 + |𝑦1| − |x1|)3

≤ c
1 + N+

m − |x1| + 1
N1∕4

m

c
1 + Nm − |x1|

and thus ∫|x1|<Nm
|𝜌(x1) − 𝜌Nm (x1)|2 dx1 ≤ c∕

√
Nm as before. Finally, for Nm < |x1|<Nm + 1, we estimate

𝜌(x1) = ∫
JNm

|urad(𝑦1, 𝜎h0)|
(1 + |x1 − 𝑦1|)3∕2 d𝑦1

+ ∫|𝑦1|<N−
m

|urad(𝑦1, 𝜎h0)|
(1 + |x1 − 𝑦1|)3∕2 d𝑦1 + ∫|𝑦1|>N+

m

|urad(𝑦1, 𝜎h0)|
(1 + |x1 − 𝑦1|)3∕2 d𝑦1

≤ c ||urad||L2(JNm ) + ||urad||L2(R)

√√√√√ ∫|𝑦1|<N−
m

d𝑦1

(1 + |x1| − |𝑦1|)3

+ ||urad||L2(R)

√√√√√ ∫|𝑦1|>N+
m

d𝑦1

(1 + |𝑦1| − |x1|)3

≤ c
N1∕4

m

+ c
1 + |x1| − N−

m
+ c

1 + N+
m − |x1| ≤ c′

N1∕4
m

.

Integration with respect to x1 yields the last assertion.

After these preparations, we turn to the proof of uniqueness. From the following theorem, 𝑓 = 0 implies that already
the propagating part uprop has to vanish.

Theorem 3.2. Let again 𝑓 ∈ L2(R2) and q ∈ L∞(R2) have support in Q ∶= (0, 2𝜋) × (−h0, h0) and u ∈ H1
loc(R

2) a
solution of Δu + k2(n + q)u = −𝑓 in R2 satisfying the open waveguide radiation condition of Definition 2.5. Then,

Im∫
Q

𝑓 udx ≤ − 1
4𝜋

∑
𝑗∈J

∑
𝓁∶𝜆𝓁,𝑗>0

𝜆𝓁,𝑗 |a𝓁,𝑗|2 + 1
4𝜋

∑
𝑗∈J

∑
∶𝓁∶𝜆𝓁,𝑗<0

𝜆𝓁,𝑗 |a𝓁,𝑗|2 ≤ 0. (19)

Proof. Choose 𝜓N ∈ C∞(R) with 𝜓N(x1) = 1 for |x1|≤N and 𝜓N(x1) = 0 for |x1|≥N + 1. For N > 𝜎0 + 1 and
H > h0 + 1, we define the regions DN,H ∶= (−N,N) × (−H,H) and W−

N,H ∶= (−N − 1,−N) × (−H,H) and
W+

N,H ∶= (N,N + 1) × (−H,H) and the vertical and horizontal segments I±N,H ∶= {±N} × (−H,H) and ΓN,±H ∶=
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(−N,N) × {±H}. We apply Green's theorem in DN + 1, H to v(x) ∶= 𝜓N(x1)u(x) (note that Q⊂DN, H):

∑
𝜎∈{+,−}

𝜎 ∫
ΓN+1,𝜎H

𝜓2
N u 𝜕u

𝜕x2
ds

=
∑

𝜎∈{+,−}
𝜎 ∫

ΓN+1,𝜎H

v 𝜕v
𝜕x2

ds = ∫
DN+1,H

[|∇v|2 + vΔv
]

dx

= ∫
DN,H

[|∇u|2 + uΔu
]

dx + ∫
W+

N,H

[|∇v|2 + vΔv
]

dx + ∫
W−

N,H

[|∇v|2 + vΔv
]

dx;

that is, with Δu = −k2(n + q)u − 𝑓 ,

Im∫
Q

𝑓 udx = Im ∫
W+

N,H

[|∇v|2 + vΔv
]

dx + Im ∫
W−

N,H

[|∇v|2 + vΔv
]

dx

−
∑

𝜎∈{+,−}
𝜎 Im ∫

ΓN+1,𝜎H

𝜓2
N u 𝜕u

𝜕x2
ds.

(20)

We note that Δv = −𝜓N k2(n + q)u + 2𝜓 ′
N

𝜕u
𝜕x1

+ 𝜓 ′′
N u and ∇v = 𝜓N∇u + u𝜓 ′

N e(1) in W±
N,H where e(1) ∶= (1, 0)⊤. The

decomposition u=urad + uprop yields four terms in each of the three integrals on the right-hand side of (20).

(a) First, we look at the first two integrals on the right-hand side of (20). We define v(1)(x) ∶= 𝜓N(x1)urad(x) and
v(2)(x) ∶= 𝜓N(x1)uprop(x) and estimate the terms

a±
N,H(𝑗,𝓁) ∶= ∫

W±
N,H

[
∇v(𝑗) · ∇v(𝓁) + v(𝑗) Δv(𝓁)

]
dx

for j,𝓁 ∈ {1, 2}. Then, with (15),

|a+
N,H(1, 1)| ≤ c ||urad||2

H1(W+
N,h0+1)

+ c ||urad||2
H1(W+

N,H∖W+
N,h0+1)

≤ c||urad||2
H1(W+

N,h0+1)
+ c

N+1

∫
N

∫
h0+1<|x2|<H

x2
2 𝜌(x1)2 dx2 dx1

≤ c𝛾N,H with

(21)

𝛾N,H ∶= ||urad||2
H1(QN )

+ H3 ∫
N<|x1|<N+1

𝜌(x1)2 dx1 (22)

and QN ∶= W+
N,h0+1 ∪ W−

N,h0+1 = {x ∈ R2 ∶ N < |x1| < N + 1, |x2| < h0 + 1}. Analogously, since ||uprop||H1(W+
N,H )

and ||∇uprop||H1(W+
N,H ) are bounded with respect to N and H,

|a+
N,H(1, 2)| + |a+

N,H(2, 1)| ≤ c
[||urad||2

H1(W+
N,h0+1)

+ ||urad||2
H1(W+

N,H∖W+
N,h0+1)

]1∕2

≤ c
√
𝛾N,H .
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For a+
N,H(2, 2), we apply Green's theorem:

a+
N,H(2, 2) = − ∫

IN,H

uprop
𝜕uprop

𝜕x1
ds +

∑
𝜎∈{+,−}

𝜎 ∫
N < x1 < N + 1

x2 = 𝜎H

𝜓2
N uprop

𝜕uprop

𝜕x2
ds

= −∫
IN

uprop
𝜕uprop

𝜕x1
ds + 𝛽+N,H

with IN ∶= {N} × R and

|𝛽+N,H| ≤ ∑
𝜎∈{+,−}

|||||| ∫
N < x1 < N + 1

x2 = 𝜎H

𝜓2
N uprop

𝜕uprop

𝜕x2
ds

||||+|||| ∫
IN∖IN,H

uprop
𝜕uprop

𝜕x1
ds

|||| ≤ ce−2𝛿H .

The same estimates hold for a−
N,H(𝑗,𝓁), that is, the integrals over W−

N,H . Therefore, using Lemma 2.6, we have
shown that

Im ∫
W+

N,H

[|∇v|2 + vΔv
]

dx + Im ∫
W−

N,H

[|∇v|2 + vΔv
]

dx

≤ − Im∫
IN

uprop
𝜕uprop

𝜕x1
ds + Im∫

I−N

uprop
𝜕uprop

𝜕x1
ds + ce−2𝛿H + c

[
𝛾N,H +

√
𝛾N,H

]
≤ − 1

4𝜋
∑
𝑗∈J

∑
𝜆𝓁,𝑗>0

𝜆𝓁,𝑗 |a𝓁,𝑗|2 + 1
4𝜋

∑
𝑗∈J

∑
𝜆𝓁,𝑗<0

𝜆𝓁,𝑗 |a𝓁,𝑗|2 + ce−2𝛿H + c
[
𝛾N,H +

√
𝛾N,H

]
.

(23)

(b) Now, we look at the third integral on the right-hand side of (20) and decompose again u into u=urad + uprop.
Using Cauchy-Schwarz and (15), we estimate for 𝜎 ∈ {− 1, 1}

∫
ΓN+1,𝜎H

𝜓2
N
||||urad

𝜕uprop

𝜕x2
+ uprop

𝜕urad

𝜕x2
+ uprop

𝜕uprop

𝜕x2

|||| ds

≤ c ||urad||L2(ΓN+1,𝜎H )
‖‖‖‖𝜕uprop

𝜕x2

‖‖‖‖L2(ΓN+1,𝜎H )
+ c ||uprop||L2(ΓN+1,𝜎H )

‖‖‖‖𝜕urad

𝜕x2

‖‖‖‖L2(ΓN+1,𝜎H )

+ c ||uprop||L2(ΓN+1,𝜎H )
‖‖‖‖𝜕uprop

𝜕x2

‖‖‖‖L2(ΓN+1,𝜎H )
≤ c

[
H ||𝜌||L2(ℜ)

√
N + N

]
e−𝛿H .

Finally, we consider ∫ΓN+1,±H
𝜓2

N urad
𝜕urad
𝜕x2

ds. We approximate urad by functions uN,H
rad which satisfy the homogeneous

Helmholtz equation for |x2|>H. To do this, we restrict ourselves to the region x2 > h0 and set uN,H
rad ∶= u+

N + w+
H for

x2 > h0 where u+
N is the unique radiating solution of Δu+

N + k2u+
N = 0 for x2 > h0 and u+

N(x1, h0) = urad(x1, h0) for
|x1|<N and u+

N(x1, h0) = 0 for |x1|>N, while the function w+
H is defined as the unique radiating solution of

Δw+
H + k2w+

H =
{

−
∑

𝑗∈J
∑m𝑗

𝓁=1 a𝓁,𝑗 𝜑𝓁,𝑗 for h0 < x2 < H,

0 for x2 > H,
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and w+
H = 0 for x2 = h0. Then, u+

N and w+
H are given by (compare with (13))

u+
N(x) =

i
2

N

∫
−N

urad(𝑦1, h0)
𝜕

𝜕𝑦2
H(1)

0 (k
√
(x1 − 𝑦1)2 + (x2 − h0)2)d𝑦1 , x2 > h0,

w+
H(x) =

∑
𝑗∈J

m𝑗∑
𝓁=1

a𝓁,𝑗

H

∫
h0

𝜎0

∫
−𝜎0

G+(x, 𝑦)𝜑𝓁,𝑗(𝑦)d𝑦1d𝑦2 , x2 > h0,

and it is easy to show by modifying the proof of Lemma 2.7 that

|||uN,H
rad (x)||| + |||∇uN,H

rad (x)||| ≤ cx2𝜌N(x1),|||urad(x) − uN,H
rad (x)||| + |||∇ (

urad(x) − uN,H
rad (x)

)||| ≤ cx2 [𝜌(x1) − 𝜌N(x1)] +
cx2|x|3∕2 e−𝛿H ,

for all x ∈ R2 with x2 ≥ h0 + 1, where 𝜌, 𝜌N ∈ L2(R) ∩ L∞(R) are given by (16) and (18), respectively. The functions
uN,H

rad for x2 < −h0 are defined analogously. With Γ∞,±H ∶= R × {±H}, we decompose

∫
ΓN+1,±H

𝜓2
N urad

𝜕urad

𝜕x2
ds

= ∫
Γ∞,±H

uN,H
rad

𝜕uN,H
rad

𝜕x2
ds + ∫

ΓN+1,±H

𝜓2
N

[
urad

𝜕urad

𝜕x2
− uN,H

rad

𝜕uN,H
rad

𝜕x2

]
ds

− ∫
Γ∞,±H∖ΓN+1,±H

uN,H
rad

𝜕uN,H
rad

𝜕x2
ds + ∫

ΓN+1,±H∖ΓN,±H

(𝜓2
N − 1)uN,H

rad

𝜕uN,H
rad

𝜕x2
ds

= ∫
Γ∞,±H

uN,H
rad

𝜕uN,H
rad

𝜕x2
ds + 𝜂N,±H ,

where

|𝜂N,±H| ≤ c ||urad − uN,H
rad ||L2(ΓN+1,±H )

‖‖‖‖𝜕urad

𝜕x2

‖‖‖‖L2(ΓN+1,±H )

+ c ||uN,H
rad ||L2(ΓN+1,±H )

‖‖‖‖‖‖
𝜕urad

𝜕x2
−

𝜕uN,H
rad

𝜕x2

‖‖‖‖‖‖L2(ΓN+1,±H )

+ c ||uN,H
rad ||L2(Γ∞,±H∖ΓN,±H )

‖‖‖‖‖‖
𝜕uN,H

rad

𝜕x2

‖‖‖‖‖‖L2(Γ∞,±H∖ΓN,±H )

≤ cH2 ||𝜌||L2(R)

√√√√ ∫|x1|<N

|𝜌(x1) − 𝜌N(x1)|2 dx1 + cH2 ∫|x1|>N

𝜌N(x1)2 dx1.

(24)

Now, we show that the imaginary part of 𝜎∫Γ∞,𝜎H
uN,H

rad
𝜕uN,H

rad
𝜕x2

ds is non-negative. Indeed, we take the Fourier transform
ûN,H(𝜔, x2) = (uN,H

rad )(𝜔, x2) for 𝜎x2 > H. Then,

∫
Γ∞,𝜎H

uN,H
rad

𝜕uN,H
rad

𝜕x2
ds =

∞

∫
−∞

ûN,H(𝜔, 𝜎H) û′
N,H(𝜔, 𝜎H)d𝜔. (25)
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Furthermore, û′′
N,H(𝜔, x2) + (k2 −𝜔2) ûN,H = 0 for |x2|>H and satisfies the radiation condition (14). Therefore, ûN,H

has the form

ûN,H(𝜔, x2) =

{
ûN,H(𝜔,H)ei

√
k2−𝜔2(x2−H) for x2 > H,

ûN,H(𝜔,−H)ei
√

k2−𝜔2(−x2−H) for x2 < −H,

and thus, 𝜎ûN,H(𝜔, 𝜎H) û′
N,H(𝜔, 𝜎H) = i |ûN,H(𝜔, 𝜎H)|2

√
k2 − 𝜔2, and its imaginary part is therefore non-negative.

At this point, we set N ∶= Nm, where (Nm) is the sequence from Lemma 3.1. Then, from (22) and (24) in combination
with the estimates of Lemma 3.1, we conclude that 𝛾Nm,H ≤ c ||urad||2

H1(QNm ) + c H3√
Nm

and |𝜂Nm,±H| ≤ c H2

N1∕4
m

. We choose

H = Hm such that the reminders converge to zero, for example, Hm ∶= N1∕10
m . Then,

∑
𝜎∈{−1,+1}

𝜎limsup
m→∞

⎡⎢⎢⎢⎣ Im ∫
ΓNm+1,𝜎Hm

𝜓Nm urad
𝜕urad

𝜕x2
ds

⎤⎥⎥⎥⎦ ≥ 0,

and, from (23),

liminf
m→∞

⎡⎢⎢⎢⎣ Im ∫
W+

Nm ,Hm

[|∇v|2 + vΔv
]

dx + Im ∫
W−

Nm ,Hm

[|∇v|2 + vΔv
]

dx
⎤⎥⎥⎥⎦

≤ − 1
4𝜋

∑
𝑗∈J

∑
𝜆𝓁,𝑗>0

𝜆𝓁,𝑗 |a𝓁,𝑗|2 + 1
4𝜋

∑
𝑗∈J

∑
𝜆𝓁,𝑗<0

𝜆𝓁,𝑗 |a𝓁,𝑗|2 .

Estimate (19) follows now from (20).

We are now able to prove (partial) uniqueness.

Theorem 3.3. Let Assumptions 2.2 and 2.3 hold, and let u ∈ H1
loc(R

2) solve the problem (1) for 𝑓 = 0 and the open
waveguide radiation condition of Definition 2.5. Then, u is a bound state; that is, u ∈ H1(R2). In other words, k2 is in the
point spectrum of − 1

n+q
Δ. In the unperturbed case q = 0, there are no bound states; that is, u = 0 follows.

Proof. From (19) of the previous theorem, we conclude that the coefficients a𝓁, j vanish. Therefore, u=urad ∈H1(WH)
for all H > h0 where again WH ∶= R × (−H,H). We now show that u=urad is a bound state under a smoothness
assumption on its Fourier transform. The latter property is shown in Corollary 4.5 below.

From Green's theorem applied in WH, we conclude (compare with (20)) that

Im
∑

𝜎∈{+,−}
𝜎

∞

∫
−∞

u(x1, 𝜎H) 𝜕u(x1, 𝜎H)
𝜕x2

dx1 = Im∫
WH

[|∇u|2 − k2(n + q) |u|2] dx = 0.

Transforming this equation to the Fourier space, we observe just as in (25) that (u)(𝜔,±H) vanishes for all |𝜔|< k.
For |𝜔|> k, we conclude again that

(u)(𝜔, x2) = (u)(𝜔,±H)e−
√
𝜔2−k2(±x2−H) for ± x2 > H, (26)

and thus, for |𝜔|> k,
∞

∫
H

|(u)(𝜔, x2)|2 dx2 = |(u)(𝜔,H)|2

∞

∫
H

e−2
√
𝜔2−k2(x2−H) dx2 = |(u)(𝜔,H)|2

2
√
𝜔2 − k2

.

The integrand vanishes for |𝜔|< k. The analogous formula holds for the integral ∫ −H
−∞ |(u)(𝜔, x2)|2 dx2. Now, we use

the fact that (u)(·,±H) is continuous in a neighborhood of 𝜔 = ±k which we will prove in Corollary 4.5 below (set
g:= k2qu in this corollary). Therefore, the integral is integrable with respect to 𝜔 ∈ R and, by Parseval's theorem,
u ∈ H1(R2). This implies that u is a bound state.
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In the case q = 0, we recall that u satisfies the differential equation Δu + k2nu = 0 in R2 and, because of (26), the
generalized angular spectral radiation condition (10). Theorem 4.1 below implies that almost all 𝛼 ∈ (− 1/2, 1/2) are
propagative wave numbers which contradicts the fact that there exist only finitely many of them.

Remark 3.4. In the case of general q, we call this a partial uniqueness result in contrast to the complete uniqueness
result where in addition the absence of bound states has to be shown. For general q, such a complete uniqueness result
is not known to the author. For the unperturbed case q = 0, however, we have shown above the absence of bound
states under Assumptions 2.2. However, this assumption is not needed as proven in Hoang and Radosz.19

4 THE FLOQUET-BLOCH TRANSFORM AND QUASI-PERIODIC PROBLEMS

In this section, we collect properties of the Floquet-Bloch transform and quasi-periodic scattering problems. These results
are essential for proving existence of a solution and the asymptotics of the radiating part urad. As a standard reference for
the Floquet-Bloch transform, we recommend Kuchment's monograph.20 For 𝜙 ∈ C∞

0 (R), the Floquet-Bloch transform F
is defined by

(F𝜙)(x1, 𝛼) ∶=
∑
𝓁∈Z

𝜙(x1 + 2𝜋𝓁)e−i2𝜋𝓁𝛼 , x1, 𝛼 ∈ R.

Then, (F𝜙)(· , 𝛼) is 𝛼−quasi-periodic, and (F𝜙)(x1, ·) is periodic with period 1. Therefore, we can restrict ourselves to
x1 ∈ [0, 2𝜋] and 𝛼 ∈ [− 1/2, 1/2]. Setting R ∶= (0, 2𝜋) × (−1∕2, 1∕2) for abbreviation, F has an extension to an unitary
operator from L2(R) into L2(R); that is,

∞

∫
−∞

v(x1)𝜓(x1)dx1 =

1∕2

∫
−1∕2

2𝜋

∫
0

(Fv)(x1, 𝛼) (F𝜓)(x1, 𝛼)dx1 d𝛼 , v, 𝜓 ∈ L2(R). (27)

The inverse transform is given by

𝜙(x1) =

1∕2

∫
−1∕2

(F𝜙)(x1, 𝛼)d𝛼 , x1 ∈ R, (28)

where (F𝜙)(· , 𝛼) has to be extended 𝛼-quasi-periodically into R. We note the following connection between the Fourier
transform 𝜙 of 𝜙 ∈ L2(R) and the Fourier coefficients �̃�𝓁(𝛼) of the 𝛼-quasi-periodic function (F𝜙)(· , 𝛼):

(𝜙)(𝓁 + 𝛼) = 1√
2𝜋

2𝜋

∫
0

(F𝜙)(x1, 𝛼)e−i(𝓁+𝛼)x1 dx1 = �̃�𝓁(𝛼) , 𝓁 ∈ Z, (29)

which is easily seen by decomposing R in the definition of the Fourier transform into R=
⋃

𝓁∈Z (2𝜋𝓁, 2𝜋(𝓁 + 1)).
With a slight abuse of notation, we use the symbol of F also for functions u of two variables. Therefore, let

(Fu)(x1, x2, 𝛼) ∶=
∑
𝓁∈Z

u(x1 + 2𝜋𝓁, x2)e−i2𝜋𝓁𝛼 (30)

for x ∈ R2 and 𝛼 ∈ R denote the Floquet-Bloch transform of u(· , x2) with respect to x1. Then, it is well known (see, e.g.,
Lechleiter21) that F maps Hs(WH) onto

L2 ((−1∕2, 1∕2),Hs
𝛼(QH)

)
∶=

{
v ∈ L2 ∶ v(·, 𝛼) ∈ Hs

𝛼(QH)for almost all𝛼and
𝛼 → ||v(·, 𝛼)||Hs(QH )is inL2(−1∕2, 1∕2)

}
for all s ∈ R. Here, WH ∶= R × (−H,H) and QH ∶= (0, 2𝜋) × (−H,H), and Hs

𝛼(QH) denotes the subspace of Hs(QH)
consisting of 𝛼-quasi-periodic functions. It can be characterized by the decay of the Fourier coefficients; that is, 𝜓 ∈
Hs

𝛼(R2) if, and only if, ∫ ∞
−∞

∑
𝓁∈Z(1 + 𝓁2 + 𝜔2)s|�̂�𝓁(𝜔)|2d𝜔 < ∞ where �̂�𝓁(𝜔) are the Fourier coefficients of the Fourier

transform �̂�(x1, 𝜔) with respect to x2 which is itself 𝛼−quasi-periodic with respect to x1.
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From (11a), we note that urad satisfies Δurad + k2nurad = −g in R2 where g = 𝑓 + k2qurad +
∑

𝑗∈J
∑m𝑗

𝓁=1 a𝓁,𝑗𝜑𝓁,𝑗 and
thus Δ(Furad)(·, 𝛼) + k2n(Furad)(·, 𝛼) = −(Fg)(·, 𝛼) in Q∞ ∶= (0, 2𝜋) × R. The right-hand side (Fg)(· , 𝛼) is not compactly
supported with respect to x2. Nevertheless, we can rewrite the problem as a variational equation in a bounded domain
by well-known techniques using the Dirichlet-Neumann operator. This is done in the following theorem where we write
u for urad. In Theorem 4.2, we will prove existence and in Theorem 4.3 smoothness of the solution with respect to the
parameter 𝛼.

First, analogously to QH ∶= (0, 2𝜋) × (−H,H) define the regions QH
+ ∶= (0, 2𝜋) × (H,∞) and QH

− ∶= (0, 2𝜋) × (−∞,−H),
recall WH ∶= R × (−H,H) and let ΓH ∶= ((0, 2𝜋) × {H}) ∪ ((0, 2𝜋) × {−H}) denote the horizontal part of 𝜕QH.

Theorem 4.1. Let g ∈ L2(R2) with g(x) = 0 for |x1|>𝜎0 and |g(x)| ≤ ĉe−𝛿|x2| in R2 for some 𝜎0, ĉ, 𝛿 > 0.

(a) For every 𝛼 ∈ [− 1/2, 1/2], there exists a unique 𝛼-quasi-periodic solution w±
𝛼 ∈ H1

𝛼,loc(Q
H
± ) of Δw±

𝛼 + k2w±
𝛼 =

−(Fg)(·, 𝛼) in QH
± , w±

𝛼 = 0 for x2 = ±H, which satisfies the generalized Rayleigh condition

∑
𝓁∈Z

|||||(sign x2)
dw±

𝛼,𝓁(x2)
dx2

− i
√

k2 − (𝓁 + 𝛼)2 w±
𝛼,𝓁(x2)

|||||
2

→ 0 , x2 → ±∞,

where w±
𝛼,𝓁(x2) = 1√

2𝜋
∫ 2𝜋

0 w±
𝛼 (x)e−i(𝓁+𝛼)x1 dx1 are the Fourier coefficients of w±

𝛼 (·, x2).
(b) Let u ∈ H1

loc(R
2)with u∈H1(WH) for every H > h0 satisfyΔu+k2nu = −g inR2 and the generalized angular spec-

trum radiation condition (10). Then, for almost all 𝛼 ∈ (− 1/2, 1/2), the transform ũ𝛼 ∶= (Fu)(·, 𝛼) ∈ H1
𝛼,loc(Q

∞)
satisfies

Δũ𝛼 + k2nũ𝛼 = −(Fg)(·, 𝛼) in Q∞ (31a)

in the variational sense and the generalized Rayleigh condition; that is,

∑
𝓁∈Z

|||(sign x2) ũ′
𝛼,𝓁(x2) − i

√
k2 − (𝓁 + 𝛼)2 ũ𝛼,𝓁(x2)

|||2
→ 0 , |x2| → ∞. (31b)

(c) For fixed 𝛼 ∈ [− 1/2, 1/2], the problem (31a)-(31b) is equivalent to the variational equation

∫
QH

[∇ũ𝛼 · ∇𝜓 − k2nũ𝛼 𝜓]dx − ∫
ΓH

(Λ𝛼ũ𝛼)𝜓 ds = ∫
QH

(Fg)(·, 𝛼)𝜓 dx + ∫
ΓH

𝜕w𝛼

𝜕𝜈
𝜓 ds (32)

for all 𝜓 ∈ H1
𝛼(QH) where Λ𝛼 ∶ H1∕2

𝛼 (ΓH) → H−1∕2
𝛼 (ΓH) is the 𝛼-quasi-periodic Dirichlet-to-Neumann operator

given by

(Λ𝛼𝜙)(x1,±H) ∶= i√
2𝜋

∑
𝓁∈Z

√
k2 − (𝓁 + 𝛼)2𝜙𝓁(±H)ei(𝓁+𝛼)x1 , x1 ∈ (0, 2𝜋), (33)

for 𝜙 ∈ H1∕2
𝛼 (ΓH), and where 𝜕w𝛼∕𝜕𝜈 ∶= ±𝜕w±

𝛼 ∕𝜕x2 for x2 = ±H with the solutions w±
𝛼 from part (a).

(d) For fixed 𝛼 ∈ [− 1/2, 1/2], the variational equation (32) can be written as

(I − K𝛼)ũ𝛼 = r𝛼 in H1
𝛼(QH), (34)

where r𝛼 ∈ H1
𝛼(QH) and K𝛼 is a compact linear operator from H1

𝛼(QH) into itself. The operator I−K𝛼 is invertible
if, and only if, 𝛼 is not a propagative wave number.
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Proof.

(a) We show that w±
𝛼 is given by w±

𝛼 (x) =
∑

𝓁∈Zw±
𝛼,𝓁(x2)ei(𝓁+𝛼)x1 for x ∈ QH

± where the Fourier coefficients are
given by

w±
𝛼,𝓁(x2) ∶=

i
2
√

k2 − (𝓁 + 𝛼)2

∞

∫
H

(Fg)𝓁(±𝑦2, 𝛼)
[

ei
√

k2−(𝓁+𝛼)2|x2∓𝑦2|

− ei
√

k2−(𝓁+𝛼)2(±(x2+𝑦2)−2H)
]

d𝑦2 ,±x2 > H , 𝓁 ∈ Z.

(35)

Indeed, to show the generalized Rayleigh condition for w+
𝛼 , we split the integral from H to x2 and from x2 to ∞

and compute

d
dx2

w+
𝛼,𝓁(x2) − i

√
k2 − (𝓁 + 𝛼)2w+

𝛼,𝓁(x2) = −1
2

∞

∫
x2

(Fg)𝓁(𝑦2, 𝛼)ei
√

k2−(𝓁+𝛼)2(𝑦2−x2)d𝑦2.

For |𝓁 + 𝛼|> k, we use the Cauchy-Schwarz inequality and estimate

|||| d
dx2

w+
𝛼,𝓁(x2) − i

√
k2 − (𝓁 + 𝛼)2w+

𝛼,𝓁(x2)
||||2

≤ 1
4

∞

∫
x2

|(Fg)𝓁(𝑦2, 𝛼)|2 d𝑦2

∞

∫
x2

e−2
√
(𝓁+𝛼)2−k2(𝑦2−x2) d𝑦2

= 1
8
√
(𝓁 + 𝛼)2 − k2

∞

∫
x2

|(Fg)𝓁(𝑦2, 𝛼)|2 d𝑦2

and thus ∑
|𝓁+𝛼|>k

|||| d
dx2

w+
𝛼,𝓁(x2) − i

√
k2 − (𝓁 + 𝛼)2w+

𝛼,𝓁(x2)
||||2

≤ c
∑
𝓁∈Z

∞

∫
x2

|(Fg)𝓁(𝑦2, 𝛼)|2 d𝑦2 = c

2𝜋

∫
0

∞

∫
x2

|(Fg)(𝑦1, 𝑦2, 𝛼)|2 d𝑦2 d𝑦1,

and this tends to zero as x2 tends to infinity. For |𝓁 + 𝛼|≤ k, we estimate

|||| d
dx2

w+
𝛼,𝓁(x2) − i

√
k2 − (𝓁 + 𝛼)2w+

𝛼,𝓁(x2)
||||

≤ 1
2

∞

∫
x2

|(Fg)𝓁(𝑦2, 𝛼)| d𝑦2 ≤ 1
2
√

2𝜋

∞

∫
x2

2𝜋

∫
0

|(Fg)(𝑦1, 𝑦2, 𝛼)| d𝑦1 d𝑦2,

and this tends to zero as x2 tends to infinity because (Fg)(·, 𝛼) ∈ L1(QH
+ ). In the same way, it is shown that

∑
𝓁∈Z

[|||||
dw±

𝛼,𝓁(x2)
dx2

||||| +
√

1 + 𝓁2 |w±
𝛼,𝓁(x2)|] ≤ c

[||(Fg)(·, 𝛼)||L2(QH
± ) + ||(Fg)(·, 𝛼)||L1(QH

± )

]
for ±x2 > H and thus w±

𝛼 ∈ H1
𝛼,loc(Q

H
± ) with

||w±
𝛼 ||H1(QH

± ∖QH′
± ) ≤ cH,H′

[||(Fg)(·, 𝛼)||L2(QH
± ) + ||(Fg)(·, 𝛼)||L1(QH

± )

]
(36)

for H′ > H. We omit the proofs of uniqueness and the fact that w±
𝛼 satisfies the differential equation.
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(b) The variational form of Δu + k2nu = −g is given by

∫
R2

[∇u · ∇𝜓 − k2nu𝜓]dx = ∫
Q

g𝜓 dx

for all 𝜓 ∈ H1(R2) which vanish for |x2|>H for some H > h0. From (27) and the fact that F commutes with
differentiation yields the equivalent form

∫
Q∞

1∕2

∫
−1∕2

[∇x(Fu)(x, 𝛼) · ∇x𝜓(x, 𝛼) − k2n(x) (Fu)(x, 𝛼)𝜓(x, 𝛼)]d𝛼dx

= ∫
Q

1∕2

∫
−1∕2

(Fg)(x, 𝛼)𝜓(x, 𝛼)d𝛼dx

for all 𝜓 ∈ L2 ((−1∕2, 1∕2),H1
𝛼(Q∞)

)
which vanish for |x2|>H for some H > h0. For any 𝜓1 ∈L2(− 1/2, 1/2) and

any 𝜓2 ∈ H1
per(Q∞) ∶=

{
𝜓 ∈ H1(Q∞) ∶ 𝜓(·, x2)is2𝜋 − periodic

}
which vanishes for |x2|>H for some H > h0,

we set 𝜓(x, 𝛼) ∶= ei𝛼x1𝜓1(𝛼)𝜓2(x). Substituting this 𝜓 ∈ L2 ((−1∕2, 1∕2),H1
𝛼(Q∞)

)
into the variational equation

and the fact that ∫ 1∕2
−1∕2 𝜒(𝛼)𝜓1(𝛼)d𝛼 = 0 for all 𝜓1 ∈L2(− 1/2, 1/2) implies that 𝜒 vanishes almost everywhere

yields

∫
Q∞

[∇x(Fu)(x, 𝛼) · ∇x(ei𝛼x1𝜓2(x)) − k2n(x) (Fu)(x, 𝛼) (ei𝛼x1𝜓2(x))]dx

= ∫
Q

(Fg)(x, 𝛼) (ei𝛼x1𝜓2(x))dx

for almost all 𝛼 and thus

∫
Q∞

[∇x(Fu)(x, 𝛼) · ∇𝜓(x) − k2n(x) (Fu)(x, 𝛼)𝜓(x)]dx = ∫
Q

(Fg)(x, 𝛼)𝜓(x)dx

for all 𝜓 ∈ H1
𝛼(Q∞) which vanish for |x2|>H for some H > h0. This is the variational form of (31a). We leave it

to the reader to show that the application of (29) to (10) implies the generalized Rayleigh condition (31b).
(c) We define v𝛼 by v𝛼 ∶= ũ𝛼 in QH and v𝛼 ∶= ũ𝛼 + w±

𝛼 in QH
± . Then, v𝛼 solves (in a variational form) Δv𝛼 + k2v𝛼 = 0

in Q∞∖QH and Δv𝛼 + k2nv𝛼 = −(Fg)(·, 𝛼) in QH and v𝛼|− = v𝛼|+ on ΓH and 𝜕v𝛼∕𝜕𝜈|− = 𝜕v𝛼∕𝜕𝜈|+ − 𝜕w𝛼∕𝜕𝜈 on
ΓH. The reduction of this problem to the variational equation (32) is standard and omitted.

(d) Using

∫
ΓH

(Λ𝛼ũ)𝜓 ds = i
∑

𝜎∈{+,−}

∑
𝓁∈Z

√
k2 − (𝓁 + 𝛼)2 ũ𝓁(𝜎h0)𝜓𝓁(𝜎h0),

we write (32) in the form

∫
Q

[∇ũ𝛼 · ∇𝜓 + ũ𝛼 𝜓]dx +
∑

𝜎∈{+,−}

∑
|𝓁|≥k+1

|𝓁| ũ𝛼,𝓁(𝜎h0)𝜓𝓁(𝜎h0)

− ∫
Q

(k2n + 1) ũ𝛼 𝜓]dx − i
∑

𝜎∈{+,−}

∑
|𝓁|<k+1

√
k2 − (𝓁 + 𝛼)2 ũ𝛼,𝓁(𝜎h0)𝜓𝓁(𝜎h0)

−
∑

𝜎∈{+,−}

∑
|𝓁|≥k+1

[|𝓁| −√
(𝓁 + 𝛼)2 − k2

]
ũ𝛼,𝓁(𝜎h0)𝜓𝓁(𝜎h0)

= ∫
Q

(Fg)(·, 𝛼)𝜓 dx + ∫
ΓH

𝜕w𝛼

𝜕𝜈
𝜓 ds for all 𝜓 ∈ H1

𝛼(Q).
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Since the two terms in the first line describe a coercive sesqui-linear form, we can write these two terms as
(Aũ𝛼, 𝜓)H1(Q) for some isomorphism A from H1

𝛼(Q) onto itself (theorem of Lax-Milgram). By the representation
theorem of Riesz and the compact embedding of H1(QH) in L2(QH), the remaining parts can be written as (B𝛼ũ𝛼, 𝜓)H1(Q)

for some compact operator B𝛼 . (Note that |𝓁| − √
(𝓁 + 𝛼)2 − k2 is bounded!) Application of the theorem of Riesz to

the right-hand side yields an equation of the type (A − B𝛼)ũ𝛼 = R𝛼 which has the form (34) with K𝛼 = A−1B𝛼 and
r𝛼 = A−1R𝛼 .

The following result answers the question of existence of solutions of quasi-periodic problems of the form (31a)-(31b).

Theorem 4.2. Let Assumptions 2.2 and 2.3 hold and let g𝛼 ∈L2(Q∞) such that there exist ĉ, 𝛿 > 0 with |g𝛼(x)| +|𝜕g𝛼(x)∕𝜕𝛼| ≤ ĉe−𝛿|x2| for almost all x∈Q∞ and all 𝛼 ∈ [− 1/2, 1/2]. Furthermore, for any propagative wave number
�̂�𝑗 ∈ [−1∕2, 1∕2], let the orthogonality condition

∫
Q∞

g�̂�𝑗 (x) �̂�(x)dx = 0 (37)

hold for all modes �̂� ∈ X𝑗 corresponding to the propagative wave number �̂�𝑗 .
Then, for every 𝛼 ∈ [− 1/2, 1/2], there exists a 𝛼-quasi-periodic solution v𝛼 ∈ H1

𝛼,loc(Q
∞) of the equation

Δv𝛼 + k2nv𝛼 = −g𝛼 in Q∞ (38)

satisfying the generalized Rayleigh radiation condition (31b).

Proof. From parts (c) and (d) of the previous theorem, we know that (38) is equivalent to the variational equation (32)
(with g𝛼 replacing (Fg)(· , 𝛼)) and

L𝛼v𝛼 = R𝛼 in H1
𝛼(QH), (39)

where r𝛼 ∈ H1
𝛼(QH) and the linear and bounded operator L𝛼 from H1

𝛼(QH) into itself are defined as

(L𝛼v, 𝜓)H1(QH ) = ∫
Q

[∇v · ∇𝜓 − k2nv𝜓]dx − ∫
ΓH

(Λ𝛼v)𝜓 ds,

(R𝛼, 𝜓)H1(QH ) = ∫
Q

g𝛼 𝜓 dx + ∫
ΓH

𝜕w𝛼

𝜕𝜈
𝜓 ds

for all v, 𝜓 ∈ H1
𝛼(QH). Then, L𝛼 is Fredholm with index zero and 𝛼 is a propagative wave number if, and only if, L𝛼

fails to be invertible. For propagative wave numbers 𝛼, this form (39) allows the application of Fredholm's theorem;
that is, L𝛼v𝛼 = R𝛼 is solvable if, and only if, R𝛼 is orthogonal to the null space of the adjoint L∗

𝛼 of L𝛼 . This is indeed the
case for this particular form of the right-hand side and follows directly from the following properties of the operators
L𝛼 and the right-hand side R𝛼 . Let 𝛼 = �̂� be a propagative wave number.

(i) The null spaces  (L�̂�) and  (L∗
�̂�
) of L�̂� and L∗

�̂�
, respectively, coincide and are given by the restrictions to QH of

the space of corresponding modes.
(ii) The Riesz number of L�̂� is one; that is, the geometric and algebraic multiplicities of the eigenvalue zero coincide.

(iii) For every mode �̂� corresponding to �̂�, we have

(
R�̂� , �̂�

)
H1(QH ) = ∫

Q∞

g�̂�(x) �̂�(x)dx,

where g�̂� is again the right hand side of (38).
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Proof of (i): L∗
𝛼𝜙 = 0 is equivalent to (L𝛼𝜓, 𝜙)H1(QH ) = 0 for all 𝜓 ; that is,

∫
QH

[∇𝜓 · ∇𝜙 − k2n𝜓𝜙]dx − ∫
ΓH

(Λ𝛼𝜓)𝜙ds = 0 ; that is,

∫
QH

[∇𝜓 · ∇𝜙 − k2n𝜓𝜙]dx − i
∑

𝜎∈{−1,+1}

∑
𝓁∈Z

√
k2 − (𝓁 + 𝛼)2𝜓𝓁(𝜎H)𝜙𝓁(𝜎H) = 0

for all 𝜓 ∈ H1
𝛼(QH). If 𝛼 = �̂� this yields, by taking 𝜓 = 𝜙 and the imaginary part, that 𝜙𝓁(±H) = 0 for |𝓁 + �̂�| < k; that

is, 𝜙 is evanescent and also L𝛼𝜙 = 0.
Proof of (ii): Let 𝜙 with L2

�̂�
𝜙 = 0. Then, w ∶= L�̂�𝜙 ∈  (L�̂�) =  (L∗

�̂�
), and thus, ||w||2

H1(QH ) = (w,L�̂�𝜙)H1(QH ) =(
L∗
�̂�
w, 𝜙

)
H1(QH ) = 0; that is, w = 0.

Proof of (iii): We compute (note that w�̂� vanishes on ΓH):

(
R�̂� , �̂�

)
H1(QH ) = ∫

QH

g�̂� �̂�dx + ∫
ΓH

[
𝜕w�̂�

𝜕𝜈
�̂� − 𝜕�̂�

𝜕𝜈
w�̂�

]
ds

= ∫
QH

g�̂� �̂�dx − ∫
Q∞∖QH

[
�̂�Δw�̂� − w�̂�Δ�̂�

]
dx

= ∫
QH

g�̂� �̂�dx − ∫
Q∞∖QH

�̂�
[
Δw�̂� + k2w�̂�

]
dx = ∫

Q∞

g�̂� �̂�dx.

This ends the proof of (i)–(iii) and, in particular, existence of a solution for every 𝛼 ∈ [− 1/2, 1/2] under the
assumption (37).

Smoothness with respect to 𝛼 is shown in the following theorem.

Theorem 4.3. Let all of the assumptions of the previous theorem hold and, in addition, let, for some open bounded
neighborhood U ⊂ C of [− 1/2, 1/2], the mapping 𝛼 → g𝛼 be holomorphic from U into L2(Q), thus analytic (see Colton
& Kress1). Furthermore, let there exist ĉ, 𝛿 > 0 with |g𝛼(x)| + |𝜕g𝛼(x)∕𝜕𝛼| ≤ ĉe−𝛿|x2| for almost all x∈Q∞ and all 𝛼 ∈U.
Furthermore, for any propagative wave number �̂�𝑗 ∈ [−1∕2, 1∕2], let the orthogonality condition (37) hold. Then, we
have the following:

(a) The solution v𝛼 of (38)-(31b) (which exists by the previous theorem) can be chosen such that the mapping 𝛼 → v𝛼 is
continuous as a mapping from [− 1/2, 1/2] into H1(QH) for every H > h0. Again, QH ∶= (0, 2𝜋) × (−H,H).

(b) Let �̂� be no cut-off value. Then, the mapping 𝛼 → v𝛼 has an extension to an analytic mapping from a neighborhood
W ⊂ C of �̂� to H1(QH) for every H > h0.

(c) In a neighborhood (�̂� − 𝛿, �̂� + 𝛿) ⊂ R of a cut-off value �̂� ∈ [−1∕2, 1∕2], the function v𝛼 has the form

v𝛼 = v(1)𝛼 +
√
�̂� − 𝛼 v(2)𝛼 +

√
𝛼 − �̂� v(3)𝛼 + |𝛼 − �̂�|v(4)𝛼 (40)

with analytic functions 𝛼 → v(𝑗)𝛼 , 𝑗 = 1, 2, 3, 4, from a neighborhood W ⊂ C of �̂� into H1(QH).

Proof. We transform the equation L𝛼v𝛼 = R𝛼 into the 2𝜋-periodic form and define the operator J𝛼 ∶ H1
per(QH) →

H1
𝛼(QH) by (J𝛼v)(x) ∶= ei𝛼x1 v(x) and set L̃𝛼 ∶= J−1

𝛼 L𝛼 J𝛼 ∶ H1
per(QH) → H1

per(QH) and r̃𝛼 ∶= J−1
𝛼 R𝛼 ∈ H1

per(QH) where
H1

per(QH) denotes again the space of periodic (with respect to x1) functions. Then, L𝛼v𝛼 = R𝛼 is equivalent to L̃𝛼 ṽ𝛼 = r̃𝛼
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where L̃𝛼 and r̃𝛼 are given by the forms(
L̃𝛼v, 𝜓

)
H1(QH ) = ∫

QH

[
∇v · ∇𝜓 − 2i𝛼 𝜕v

𝜕x1
𝜓 − (k2n − 𝛼2)v𝜓

]
dx

− i
∑

𝜎∈{−1,+1}

∑
𝓁∈Z

√
k2 − (𝓁 + 𝛼)2 v𝓁(𝜎H)𝜓𝓁(𝜎H) ,

(41a)

(r̃𝛼, 𝜓)H1(QH ) = ∫
QH

e−i𝛼x1 g𝛼(x)𝜓(x)dx + ∫
ΓH

e−i𝛼x1
𝜕w𝛼(x)
𝜕𝜈

𝜓(x)ds

= ∫
QH

e−i𝛼x1 g𝛼(x)𝜓(x)dx

+
∑

𝜎∈{−1,+1}

∑
𝓁∈Z

∞

∫
H

g𝛼,𝓁(𝜎𝑦2)ei
√

k2−(𝓁+𝛼)2(𝑦2−H)d𝑦2𝜓𝓁(𝜎H)

(41b)

for v, 𝜓 ∈ H1
per(QH)where we used the form (35) of the Fourier coefficients of w𝛼 . Then, L̃𝛼 and r̃𝛼 depend continuously

on real 𝛼 ∈ [− 1/2, 1/2] and, for any �̂� ∈ [−1∕2, 1∕2] which is not a cut-off value, analytically on 𝛼 in some neighbor-
hood W1 ⊂U of �̂�. We prove only the latter property. First, we note that the integral terms in the definitions of L̃𝛼 and
r̃𝛼 are analytic with respect to 𝛼. Furthermore, there exist c+ > c− > 0 and a neighborhood V⊂U of [− 1/2, 1/2] with

c+|𝓁| ≥ |√k2 − (𝓁 + 𝛼)2| ≥ Im
√

k2 − (𝓁 + 𝛼)2 ≥ c−|𝓁| (42)

for all 𝛼 ∈V and |𝓁|≥ k + 1 and thus ||| d
d𝛼

√
k2 − (𝓁 + 𝛼)2||| = |𝓁+𝛼||√k2−(𝓁+𝛼)2| ≤ c for all 𝛼 ∈V and |𝓁|≥ k + 1.

From this, we observe that the operator Ã+
𝛼 corresponding to the series

∑|𝓁|≥k+1

√
k2 − (𝓁 + 𝛼)2 v𝓁(𝜎H)𝜓𝓁(𝜎H)

is analytic as a mapping from V into (H1
per(QH)). The remaining part corresponding to the finite sum∑|𝓁|<k+1

√
k2 − (𝓁 + 𝛼)2 v𝓁(𝜎H)𝜓𝓁(𝜎H) is obviously continuous for 𝛼 ∈V∩ [− 1/2, 1/2]. If �̂� is not a cut-off value, then

k2−(𝓁 + 𝛼)2 ∉ iR≤0 for 𝛼 in some neighborhood W2 ⊂V of �̂� and thus the remaining parts—and thus also L̃𝛼—depend
analytically on 𝛼 in W2.

Next, we look at the right-hand side r̃𝛼 and use similar arguments. With the product rule applied to
𝜕

𝜕𝛼

[
g𝛼,𝓁(𝜎𝑦2)ei

√
k2−(𝓁+𝛼)2(𝑦2−H)

]
, we have to estimate the series

∑
𝓁∈Z

∞

∫
H

[|𝜙𝛼,𝓁(𝑦2)| |||ei
√

k2−(𝓁+𝛼)2(𝑦2−H)||| d𝑦2 |𝜓𝓁(𝜎H)|
for 𝜙𝛼,𝓁(y2):= g𝛼,𝓁(𝜎y2), 𝜙𝛼,𝓁(𝑦2) ∶= g𝛼,𝓁(𝜎𝑦2) (𝑦2 − H) i d

d𝛼

√
k2 − (𝓁 + 𝛼)2, and 𝜙𝛼,𝓁(𝑦2) ∶= 𝜕

𝜕𝛼
g𝛼,𝓁(𝜎𝑦2). We restrict

ourselves to𝜙𝛼,𝓁(𝑦2) ∶= g𝛼,𝓁(𝜎𝑦2) (𝑦2−H) i d
d𝛼

√
k2 − (𝓁 + 𝛼)2. Using the estimate ||| d

d𝛼

√
k2 − (𝓁 + 𝛼)2||| ≤ c for |𝓁|≥ k + 1,

it remains to estimate

⎡⎢⎢⎣
∑

|𝓁|≥k+1

∞

∫
H

[
(𝑦2 − H)|g𝛼,𝓁(𝜎𝑦2)| |||ei

√
k2−(𝓁+𝛼)2(𝑦2−H)||| d𝑦2 |𝜓𝓁(𝜎H)|]2

≤ ∑
|𝓁|≥k+1

|||||||
∞

∫
H

(𝑦2 − H)|g𝛼,𝓁(𝜎𝑦2)| |||ei
√

k2−(𝓁+𝛼)2(𝑦2−H)||| d𝑦2

|||||||
2 ∑
|𝓁|≥k+1

|𝜓𝓁(𝜎H)|2

≤ ∑
|𝓁|≥k+1

∞

∫
H

|g𝛼,𝓁(𝜎𝑦2)|2 d𝑦2

∞

∫
H

(𝑦2 − H)2 e−2c−|𝓁|(𝑦2−H)d𝑦2
∑

|𝓁|≥k+1
|𝜓𝓁(𝜎H)|2

≤ c ||𝜓||2
H1(QH )

∑
|𝓁|≥k+1

∞

∫
H

|g𝛼,𝓁(𝜎𝑦2)|2 d𝑦2 ≤ c ||𝜓||2
H1(QH ) ∫

QH
𝜎

|g𝛼(𝑦)|2d𝑦,
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where again QH
+ ∶= (0, 2𝜋) × (H,∞) and QH

− ∶= (0, 2𝜋) × (−∞,−H). For the finite series over |𝓁|< k + 1, we use
that |g𝛼,𝓁(𝜎𝑦2)| ≤ ĉe−𝛿𝑦2 and |ei

√
k2−(𝓁+𝛼)2(𝑦2−H)| ≤ 1 for real values of 𝛼 which shows continuity of 𝛼 → r̃𝛼 . In the case

that �̂� is not a cut-off value, we use for complex values 𝛼 that there exists a neighborhood W3 ⊂W2 of �̂� such that
Im

√
k2 − (𝓁 + 𝛼)2 ≥ − 𝛿

2
for all |𝓁|≤ k + 1 and all 𝛼 ∈W. Then,

∞

∫
H

(𝑦2 − H)|g𝛼,𝓁(𝜎𝑦2)| |||ei
√

k2−(𝓁+𝛼)2(𝑦2−H)||| d𝑦2 ≤ c

∞

∫
H

(𝑦2 − H)e−𝛿(𝑦2+H)∕2 d𝑦2.

This shows the desired smoothness properties of Ã𝛼 and r̃𝛼 .
Standard arguments on the perturbation of an invertible operator imply the continuous dependence of the solution

ṽ𝛼 of L̃𝛼 ṽ𝛼 = r̃𝛼 on 𝛼 in a neighborhood of �̂� provided �̂� is not a propagative wave number and analytic dependence pro-
vided �̂� is neither a propagative wave number nor a cut-off value. It remains to study the case where �̂� is a propagative
wave number. Note that in this case, �̂� is not a cut-off value by assumption. Therefore, Ã𝛼 and r̃𝛼 depend analytically
on 𝛼 in a neighborhood of �̂�. In this case, L̃�̂� fails to be invertible, but (by the analytic Fredholm theory, see Colton &
Kress1) L̃𝛼 is invertible in a neighborhood of �̂�.

Let P be the projection from H1
per(QH) into the null space  ∶=  (L̃�̂�) along the direct decomposition H1

per(QH) =
⊕with range space ∶= (L̃�̂�) (note that the Riesz number of L̃�̂� is one) and set Q ∶= I−P. Then, we project the
equation L̃𝛼 ṽ𝛼 = r̃𝛼 onto the subspaces. With the ansatz ṽ𝛼 = v𝛼 + v𝛼 ∈  +, we arrive at the equivalent equations

PL̃𝛼(v𝛼 + v𝛼 ) = Pr̃𝛼 , QL̃𝛼(v𝛼 + v𝛼 ) = Qr̃𝛼.

Since QL̃�̂�| = L̃�̂�| is an isomorphism from  onto itself, the operators B𝛼 ∶=
[
QL̃𝛼|]−1 exist for all 𝛼 in a neigh-

borhood W⊂W3 of �̂� by a perturbation argument. Solving for v𝛼 from the second equation and substituting this into
the first equation yields

PL̃𝛼(I − B𝛼QL̃𝛼)v𝛼 = Pr̃𝛼 − PL̃𝛼B𝛼Qr̃𝛼 in  ,

which we write as C𝛼v𝛼 = s𝛼 . We note that C�̂� = 0 and also s�̂� = 0. Therefore, C𝛼v𝛼 = s𝛼 is equivalent to 1
𝛼−�̂�

[C𝛼 −
C�̂�]v𝛼 = 1

𝛼−�̂�
[s𝛼 − s�̂�]. Also, C𝛼 and s𝛼 are analytic in the neighborhood W of �̂� with derivatives C′

𝛼 and s′𝛼 , respectively.
We will show below that C′

�̂�
is invertible in the finite dimensional space  . Then, elementary arguments yield that

𝛼 → v𝛼 has an extension to an analytic function in all of W and v̂
𝛼

is the unique solution of C′
�̂�
v̂
𝛼

= s′
�̂�
. This implies

that also ṽ𝛼 depends analytically on 𝛼.
It remains to show that C′

�̂�
is one to one. By the chain rule (note that PL̃�̂� = L̃�̂�P = 0), we compute C′

�̂�
v = PL̃′

�̂�
v for

v ∈  . Therefore, C′
�̂�
v = 0 is equivalent to

∫
QH

[
−2i 𝜕v

𝜕x1
𝜓 + 2�̂� v𝜓

]
dx +

∑
𝜎∈{−1,+1}

∑
|𝓁+𝛼|>k

𝓁 + 𝛼√
(𝓁 + 𝛼)2 − k2

v𝓁(𝜎H)𝜓𝓁(𝜎H) = 0 (43)

for all 𝜓 ∈  . We extend v by

v(x) ∶= 1√
2𝜋

∑
|𝓁+𝛼|>k

v𝓁(±H)e−
√
(𝓁+𝛼)2−k2(|x2|−H)ei𝓁x1 ,±x2 > H,

and analogously 𝜓 . Then, we observe that the second term on the left-hand side of (43) is just
∫

Q∞∖QH

[
−2i 𝜕v

𝜕x1
𝜓 + 2�̂� v𝜓

]
dx. Therefore, C′

�̂�
v = 0 is equivalent to

∫
Q∞

[
−2i 𝜕v

𝜕x1
𝜓 + 2�̂� v𝜓

]
dx = 0
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for all modes 𝜓 corresponding to �̂�. In terms of the quasi-periodic modes 𝜙 ∶= J�̂�v and �̂� ∶= J�̂�𝜓 , this is written as

∫
Q∞

𝜕𝜙

𝜕x1
�̂� dx = 0

for all modes �̂� . Therefore, 𝜙 vanishes because �̂� is regular. This ends the proof of parts (a) and (b).
(c) We go back to the periodic equation L̃𝛼 ṽ𝛼 = r̃𝛼 where L̃𝛼 and r̃𝛼 are given by (41a)-(41b), respectively. The

decomposition k = 𝓁+𝜅 with𝓁 ∈ N∪{0} and 𝜅 ∈ (− 1/2, 1/2] shows that the propagative wave numbers in [− 1/2, 1/2]
are given by �̂� = 𝜅 or �̂� = −𝜅. We consider first the case �̂� = 𝜅 and assume first that 𝜅 < 1/2.

We look again at the second term in the definition (41a) of L̃𝛼 which contains the square roots
√

k2 − (𝓁 + 𝛼)2. We
split the series into the series over 𝓁 ≠ 𝓁 and the term with 𝓁 = 𝓁. This term defines the two-dimensional operator
E(𝛼) from H1

per(QH) into itself by

(E(𝛼)𝜙,𝜓)H1(QH ) ∶= i
√

k + 𝓁 + 𝛼
[
𝜙𝓁(H)𝜓𝓁(H) + 𝜙𝓁(−H)𝜓𝓁(−H)

]
, 𝜙, 𝜓 ∈ H1

per(QH),

and the operator L̃𝛼 has a decomposition in the form

L̃𝛼 = B(𝛼) −
√
𝜅 − 𝛼E(𝛼),

where E and B depend analytically on 𝛼 in a neighborhood of 𝛼 = 𝜅.

Now, we look at the right hand r̃𝛼 , given by (41b). We split the series again as above and decompose ei
√

k2−(𝓁+𝛼)2(𝑦2−H)

into

ei
√

k2−(𝓁+𝛼)2(𝑦2−H) = cos
[√

k2 − (𝓁 + 𝛼)2(𝑦2 − H)
]

+ i
√
𝜅 − 𝛼

√
k + 𝓁 + 𝛼

sin
[√

k2 − (𝓁 + 𝛼)2(𝑦2 − H)
]

√
k2 − (𝓁 + 𝛼)2

= a1(𝑦2, 𝛼) +
√
𝜅 − 𝛼a2(𝑦2, 𝛼)

with analytic functions a1, a2 in a neighborhood of 𝛼 = 𝜅 which satisfy

|a𝑗(𝑦2, 𝛼)| ≤ ce− Im
√

k2−(𝓁+𝛼)2(𝑦2−H) ≤ ce𝛿(𝑦2−H)∕2

for 𝑗 = 1, 2 and y2 > H and 𝛼 in a neighborhood W1 ⊂U of 𝜅. From this, we observe that ∫ ∞
H |g𝛼,𝓁(𝜎𝑦2)| |a𝑗(𝑦2, 𝛼)|d𝑦2

exist and r̃𝛼 = r̃(1)𝛼 +
√
𝜅 − 𝛼 r̃(2)𝛼 where r̃(𝑗)𝛼 is analytic with respect to 𝛼 ∈W1 for 𝑗 = 1, 2.

Therefore, L̃𝛼 ṽ𝛼 = r̃𝛼 is equivalent to[
B(𝛼) −

√
𝜅 − 𝛼E(𝛼)

]
ṽ𝛼 = r̃(1)𝛼 +

√
𝜅 − 𝛼 r̃(2)𝛼 . (44)

Since the cut-off value �̂� = 𝜅 is not a propagative wave number by Assumption 2.2, we conclude that L̃𝜅 = B(𝜅) is
invertible and thus also B(𝛼) in a neighborhood W⊂W1 of 𝜅. Since the operator on the left-hand side of (44) is a small
perturbation of B(𝜅) = L̃𝜅 the solution is given by the Neumann series as

ṽ𝛼 =
∞∑

m=0
[
√
𝜅 − 𝛼B(𝛼)−1E(𝛼)]mB(𝛼)−1[r̃(1)𝛼 +

√
𝜅 − 𝛼 r̃(2)𝛼 ].

Therefore, sorting this series with respect to even and odd powers of
√
𝜅 − 𝛼 =

√
�̂� − 𝛼, we conclude the form ṽ𝛼 =

ṽ(1)𝛼 +
√
�̂� − 𝛼 ṽ(2)𝛼 and ṽ(𝑗)𝛼 depend analytically on 𝛼 in a neighborhood of 𝛼 = 𝜅 = �̂�.
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The case �̂� = −𝜅 > −1∕2 is treated in the same way and leads to the singularity
√
𝜅 + 𝛼 =

√
𝛼 − �̂� in a neighborhood

of �̂� = −𝜅.
The cases 𝜅 = 0 or 𝜅 = 1∕2 are more complicated. For example, if 𝜅 = 0, then k = 𝓁 ∈ N, and one has to split the

series in L̃𝛼 into the series over 𝓁 ∉ {+𝓁,−𝓁} and into the terms with ±𝓁. This leads to the splittings

L̃𝛼 = B(𝛼) −
√
−𝛼E+(𝛼) −

√
𝛼E−(𝛼) , r̃𝛼 = r̃(1)𝛼 +

√
−𝛼 r̃(2)𝛼 +

√
𝛼 r̃(3)𝛼 .

In the Neumann series, also powers of
√
𝛼
√
−𝛼 = i|𝛼| appear which gives the forth term in (40). The case 𝜅 = 1∕2

and �̂� = ±1∕2 is treated analogously.

By the proof, we observe that all of the four terms in (40) appear only in the cases 𝜅 = 0 or 𝜅 = 1∕2; that is, if k ∈ 1
2
N.

Remark 4.4. During the proof, we have shown the existence of 𝛿H , cH , c′H > 0 (independent of g𝛼) such that

||v𝛼||H1(QH ) ≤ cH

[
sup
𝛽∈I

||r̃𝛽 ||H1(QH ) + sup
𝛽∈I

||𝜕r̃𝛽∕𝜕𝛽||H1(QH )

]
≤ c′H

[
sup
𝛽∈I

||g𝛽||L(1,2)(Q∞) + sup
𝛽∈I

||𝜕g𝛽∕𝜕𝛽||L(1,2)(Q∞)

] (45a)

for all 𝛼 ∈ I ∶ =
⋃

𝑗∈J[�̂�𝑗 − 𝛿H , �̂�𝑗 + 𝛿H] ⊂ R and

||v𝛼||H1(QH ) ≤ cH||r̃𝛼||H1(QH ) ≤ c′H||g𝛼||L(1,2)(Q∞) (45b)

for all 𝛼 ∈ [− 1/2, 1/2] ∖ I where r̃𝛼 is defined in (41b). For the second estimates, we use (41b) and (36). Here,||g||L(1,2)(Q∞) = ||g||L1(Q∞) + ||g||L2(Q∞).

For the proof of Theorem 3.3, we needed the following implication of Theorem 4.3.

Corollary 4.5. Let Assumptions 2.2 and 2.3 hold and let u ∈ H1
loc(R

2) with u∈H1(WH) for all H > h0 satisfy Δu +
k2nu = −g in R2 where g∈L2(Q). Then, the Fourier transform (u)(·, x2) of u(· , x2) with respect to x1 is continuous in a
neighborhood of 𝜔 = ±k for all |x2|> h0 and, even more, (u)(·, x2) ∈ W 1,1(−R,R) for all R > 0.

Proof. We decompose k again as k = 𝓁+𝜅 with 𝓁 ∈ N∪{0} and 𝜅 ∈ (− 1/2, 1/2]. Then, ±𝜅 are the cut-off values and,
by (29),

(u)(±k, x2) = (u)(±(𝓁 + 𝜅), x2) =
1√
2𝜋

2𝜋

∫
0

(Fu)(x1, x2,±𝜅)e∓i(𝓁+𝜅)x1 dx1,

where Fu denotes the Floquet-Bloch transform, defined in (30). Therefore, it suffices to prove continuity of
𝛼 → (Fu)(· , 𝛼) in a neighborhood of ±𝜅. By Theorem 4.1, Fu satisfies (38) with g𝛼 = (Fg)(·, 𝛼). Furthermore, ±𝜅
are no propagative wave numbers by Assumption 2.2. Application of Theorem 4.3 yields the desired continuity.
Differentiation of the decomposition (40) yields that 𝜕(Fu)(· , 𝛼)/𝜕𝛼 is integrable.

5 EXISTENCE

In this section, we will prove existence of a solution under the Assumptions 2.2 and 2.3 and, in the case that q does not
vanish identically, under the additional assumption that no bound states exist. The main part deals with the unperturbed
case q = 0 in which complete uniqueness has been shown in Theorem 3.3. The general case will follow by a compactness
argument. Therefore, for given f∈L2(Q), we consider first the problem to determine u ∈ H1

loc(R
2) which satisfies

Δu + k2nu = −𝑓 in R
2 (46)

and the open waveguide radiation condition of Definition 2.5. We note that existence has been shown (for the half-plane
problem or the case of scattering by an inhomogeneous cylinder in R3) in Kirsch10 and Kirsch and Lechleiter12 by the
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limiting absorption principle. In this section, we will give a direct proof; see also Kirsch.11 With the propagative wave
numbers �̂�𝑗 for j∈ J and their modes �̂�𝓁,𝑗 , 𝓁 = 1, … ,m𝑗 , j∈ J (determined in (6)), we define the coefficients a𝓁,𝑗 ∈ C as

a𝓁,𝑗 ∶= 2𝜋 i|𝜆𝓁,𝑗| ∫
Q

𝑓 (x) �̂�𝓁,𝑗(x)dx , 𝓁 = 1, … ,m𝑗 , 𝑗 ∈ J. (47)

Therefore, we have to solve Equation 11a for q = 0; that is,

Δurad + k2nurad = −g in R
2 with g ∶= 𝑓 +

∑
𝑗∈J

m𝑗∑
𝓁=1

a𝓁,𝑗𝜑𝓁,𝑗 , (48)

where 𝜑𝓁, j are given by (11b). Furthermore, urad has to satisfy the generalized angular spectrum radiation condi-
tion (10). The plan is to take the Floquet-Bloch transform of this equation, show solvability for all 𝛼 ∈ [− 1/2, 1/2] (without
exception) with Theorem 4.2 and continuity with respect to 𝛼 with Theorem 4.3, and apply the inverse transform.

We note that the right-hand side g of (48) is in L2(R2) ∩ L1(R2) (and has even compact support with respect to x1).
Therefore, for every 𝛼 ∈ [− 1/2, 1/2], we try to solve the Floquet-Bloch transformed equation; that is, find v𝛼 ∈ H1

𝛼,loc(Q
∞)

with
Δv𝛼 + k2nv𝛼 = −(Fg)(·, 𝛼) in Q∞ = (0, 2𝜋) × R, (49)

satisfying the radiating condition (31b). Here, Fg denotes the Flochet-Bloch transform of g, defined in (30). The right-hand
side Fg has no compact support but decays exponentially to zero as |x2| tends to infinity. Furthermore, Fg is analytic
with respect to 𝛼 ∈ C (because the right hand side g of (48) vanishes for |x1|≥ 𝜎0), and there exists ĉ, 𝛿 > 0 such that|(Fg)(x, 𝛼)| + |𝜕(Fg)(x, 𝛼)∕𝜕𝛼| ≤ ĉe−𝛿|x2| for almost all x∈Q∞ and all 𝛼 ∈ C with |𝛼|≤ 1. Therefore, to apply Theorem 4.2
of the previous section, we only have to show the orthogonality condition (37). This holds for the particular choice (47)
of a𝓁, j as we show now.

Lemma 5.1. For every propagative wave number �̂�𝑗 the right-hand side g�̂�𝑗 ∶= (Fg)(·, �̂�𝑗) of (49) is orthogonal to
the eigenspace Xj (see (4)) in L2(Q∞). Therefore, by Theorem 4.2, the problems (49) and (31b) are solvable for all
𝛼 ∈ [− 1/2, 1/2] without exception. Furthermore, by Theorem 4.3, for every H > h0, the mapping 𝛼 → v𝛼 is continuous
from [− 1/2, 1/2] into H1(QH), and there exists cH > 0 which is independent of f such that ||v𝛼||H1(QH ) ≤ cH||𝑓 ||L2(Q) for all
𝛼 ∈ [− 1/2, 1/2].

Proof. Recall the definition of g and thus Fg = F𝑓 +
∑

𝑗∈J
∑m𝑗

𝓁=1 a𝓁,𝑗F𝜑𝓁,𝑗 , where 𝜑𝓁𝑗
are defined in (11b). Since �̂�𝓁,𝑗

is �̂�𝑗-quasi-periodic, it follows easily from the properties of the Floquet-Bloch transform that

(F𝜑𝓁,𝑗)(x, 𝛼) = 2 (F𝜓 ′
±)(x1, 𝛼 − �̂�𝑗)

𝜕�̂�𝓁,𝑗(x)
𝜕x1

+ (F𝜓 ′′
± )(x1, 𝛼 − �̂�𝑗) �̂�𝓁,𝑗(x)

for 𝓁 with 𝜆𝓁,𝑗 ≷ 0. (Note that 𝜓 ′
± ∈ L2(R) in contrast to 𝜓± itself) Since (F𝜓 ′

±)(·, 𝛽) is 𝛽-quasi-periodic, its Fourier
series is given by

(F𝜓 ′
±)(x1, 𝛽) =

1√
2𝜋

∑
𝓁∈Z

(𝜓 ′
±)(𝓁 + 𝛽)ei(𝓁+𝛽)x1 ,

where we used (29) for the relationship between the Fourier transform 𝜓 ′
± and the Fourier coefficients of the

Floquet-Bloch transform (F𝜓 ′
±)(·, 𝛽).

With (𝜓 ′
±)(0) =

1√
2𝜋

∫ ∞
−∞ 𝜓 ′

±(t)dt = ± 1√
2𝜋

, we can write

(F𝜓 ′
±)(x1, 𝛽) =

⎧⎪⎨⎪⎩
1√
2𝜋

𝜕

𝜕x1

∑
𝓁∈Z

(𝜓 ′
±)(𝓁+𝛽)

i(𝓁+𝛽)
ei(𝓁+𝛽)x1 , 𝛽 ∉ Z,

± 1
2𝜋

+ 1√
2𝜋

𝜕

𝜕x1

∑
𝓁≠0

(𝜓 ′
±)(𝓁)

i𝓁
ei𝓁x1 , 𝛽 ∈ Z,
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which we abbreviate as (F𝜓 ′
±)(x1, 𝛽) = ± 1

2𝜋
𝛿𝛽 + 𝜕

𝜕x1
𝜌±(x1, 𝛽) where 𝛿𝛽 ∶= 0 for 𝛽 ∉ Z and 𝛿𝛽 ∶= 1 for 𝛽 ∈ Z and

obvious meaning of 𝜌±. This allows us to write

(F𝜑𝓁,𝑗)(x, 𝛼) = ± 1
𝜋

𝜕�̂�𝓁,𝑗(x)
𝜕x1

𝛿𝛼−�̂�𝑗

+ 2 𝜕

𝜕x1
𝜌±(x1, 𝛼 − �̂�𝑗)

𝜕�̂�𝓁,𝑗(x)
𝜕x1

+ 𝜕2

𝜕x2
1
𝜌±(x1, 𝛼 − �̂�𝑗) �̂�𝓁,𝑗(x)

= ± 1
𝜋

𝜕�̂�𝓁,𝑗(x)
𝜕x1

𝛿𝛼−�̂�𝑗 + Δxṽ±𝓁,𝑗(x, 𝛼) + k2n(x)ṽ±𝓁,𝑗(x, 𝛼)

for 𝓁 with 𝜆𝓁,𝑗 ≷ 0 where ṽ±𝓁,𝑗(x, 𝛼) ∶= 𝜌±(x1, 𝛼 − �̂�𝑗)�̂�𝓁,𝑗(x) is 𝛼-quasi-periodic.
Now, the proof of orthogonality is not difficult anymore. Let 𝛼 = �̂�𝑗0 for some j0 ∈ J and �̂�𝓁0,𝑗0 ∈ X𝑗0 . Then,

∫Q∞

[
Δṽ±𝓁,𝑗(·, �̂�𝑗0) + k2nṽ±𝓁,𝑗(·, �̂�𝑗0)

]
�̂�𝓁0,𝑗0 dx vanishes by Green's second theorem and therefore

∫
Q∞

(Fg)(x, �̂�𝑗0) �̂�𝓁0,𝑗0 (x)dx

= ∫
Q∞

(F𝑓 )(x, �̂�𝑗0) �̂�𝓁0,𝑗0 (x)dx +
∑
𝑗∈J

m𝑗∑
𝓁=1

a𝓁,𝑗 ∫
Q∞

(F𝜑𝓁,𝑗)(x, �̂�𝑗0 ) �̂�𝓁0,𝑗0 (x)dx

= ∫
Q∞

(F𝑓 )(x, �̂�𝑗0) �̂�𝓁0,𝑗0 (x)dx +
∑
𝑗∈J

m𝑗∑
𝓁=1

a𝓁,𝑗sign 𝜆𝓁,𝑗
1
𝜋
𝛿�̂�𝑗0−�̂�𝑗 ∫

Q∞

𝜕�̂�𝓁,𝑗(x)
𝜕x1

�̂�𝓁0,𝑗0 (x)dx

= ∫
Q∞

(F𝑓 )(x, �̂�𝑗0) �̂�𝓁0,𝑗0 (x)dx +
m𝑗0∑
𝓁=1

a𝓁,𝑗0 sign 𝜆𝓁,𝑗0

1
𝜋 ∫

Q∞

𝜕�̂�𝓁,𝑗0 (x)
𝜕x1

�̂�𝓁0,𝑗0 (x)dx

= ∫
Q∞

(F𝑓 )(x, �̂�𝑗0) �̂�𝓁0,𝑗0 (x)dx + a𝓁0,𝑗0 sign 𝜆𝓁0,𝑗0

1
𝜋 ∫

Q∞

𝜕�̂�𝓁0,𝑗0 (x)
𝜕x1

�̂�𝓁0,𝑗0 (x)dx = 0

by the properties of �̂�𝓁,𝑗 from (6), the definition (47) of a𝓁, j, and the fact that Ff= f because f has support in Q.
Application of Theorem 4.2 yields existence. In (45a) and (45b) of Remark 4.4, the norm ||v𝛼||H1(QH ) is estimated by||g𝛼||L1(Q∞) + ||g𝛼||L2(Q∞) and its derivative with respect to 𝛼. We observe that g𝛼 = (Fg)(·, 𝛼), defined in (48), depends
linearly on (Ff)(· , 𝛼)= f and (F𝜑𝓁, j)(· , 𝛼). Therefore,

||g𝛼||Lp(Q∞) ≤ c

[||𝑓 ||Lp(Q) +
∑
𝑗∈J

m𝑗∑
𝓁=1

|a𝓁,𝑗|] ≤ c′||𝑓 ||L2(Q)

for all 𝛼 where p = 1 or p = 2. The same estimate holds also for the derivative with respect to 𝛼. This proves
boundedness of f → v𝛼 from L2(Q) into H1(QH) uniformly with respect to 𝛼 ∈ [− 1/2, 1/2].

Now, we are able to prove the main result of this section.

Theorem 5.2. Let Assumptions 2.2 and 2.3 hold. Furthermore, in the case q ≠ 0, we assume that no bound states exist;
that is, there is no non-trivial solution u ∈ H1(R2) of Δu + k2(n + q)u = 0 in R2. Then, there exists a unique solution
u ∈ H1

loc(R
2) of the source problem (8) satisfying the open waveguide radiation condition of Definition 2.5 for every

f∈L2(Q). Furthermore, for every H > h0, the mapping f →u is bounded from L2(Q) into H1(WH).
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Proof. For q = 0, the solution u is given by the inverse Floquet-Bloch transform

u(x) =

1∕2

∫
−1∕2

v𝛼(x)d𝛼 , x ∈ R
2,

where v𝛼 denotes the solution of (49) and (31b) which depends continuously on 𝛼 and is extended as an
𝛼-quasi-periodic function into R2. By the uniform boundedness of f → v𝛼 from L2(Q) into H1(QH), we conclude that
(x, 𝛼) → v𝛼(x) belongs to L2 ((−1∕2, 1∕2),H1

𝛼(QH)
)

and thus u∈H1(WH) with ||u||H1(WH ) ≤ cH||𝑓 ||L2(Q) by the mapping
property of the inverse Floquet-Bloch transform.

It remains to study the case of a general q. Let S : L2(Q)→H1(Q) be the linear and bounded operator which maps
f∈L2(Q) into u|Q where u solves (8) for q = 0 and the radiation condition. For arbitrary q, the solution of (8) is
equivalent to the fixpoint equation u = S(𝑓 +k2qu) for u∈L2(Q). Since S is compact from L2(Q) into itself, uniqueness
implies existence.

6 THE ASYMPTOTIC BEHAVIOR OF THE RADIATING PART

It is well known (see, e.g., Fliss & Joly14) that for closed waveguides the radiating part of the solution decays exponentially
as |x1| tends to infinity. This follows also from the analog of Theorem 4.3. Indeed, in this case, no cut-off values exist, and
Theorem 4.3 implies analyticity of 𝛼 → (Furad)(· , 𝛼) in a neighborhood W ⊂ C of [− 1/2, 1/2]. Then, we can modify the
path [− 1/2, 1/2] of integration for the inverse transform

urad(x1 + 2𝜋𝓁, x2) =

1∕2

∫
−1∕2

(Furad)(x1, x2, 𝛼)ei2𝜋𝓁𝛼 d𝛼 , x ∈ Q∞ , 𝓁 ∈ Z,

depending on the sign of 𝓁. We choose the path to be 𝛼 = t+(sign 𝓁)𝜏i for t∈ [− 1/2, 1/2] where 𝜏 > 0 is chosen such that
Furad is analytic in the strip | Im𝛼| ≤ 𝜏. Then, it follows that |urad(x1 + 2𝜋𝓁, x2)|≤ c e−2𝜋𝜏|𝓁| for |𝓁|≥ 1; that is, urad decays
exponentially with respect to x1. †

The situation is different in the case of an open waveguide because of the existence of cut-off values.

Theorem 6.1. Let Assumptions 2.2 and 2.3 hold. For all H > h0, there exists c > 0 such that ||urad||H1(QH
𝓁 )

≤ c|𝓁|3∕2 for
all 𝓁 ≠ 0. Here, QH

𝓁 ∶= (2𝜋𝓁, 2𝜋(𝓁 + 1)) × (−H,H) for 𝓁 ∈ Z. In particular, urad ∈W1, 1(WH) for all H > h0 and
x → (1 + x2

1)
𝜌∕2urad(x) is in H1(WH) for all 𝜌 < 1 and H > h0 where again WH ∶= R × (−H,H).

Proof. Let again k = 𝓁 + 𝜅 with 𝓁 ∈ N ∪ {0} and 𝜅 ∈ (− 1/2, 1/2]. For the different cases of 𝜅, we define open sets I1,
I2, and/or I3 and corresponding functions 𝜓1, 𝜓2, 𝜓3 ∈ C∞(R) with supp𝜓𝑗 ⊂ I𝑗 as follows.

Case I: If |𝜅| <
1
2
, we define I ∶= [−1∕2, 1∕2], I1 ∶= (−1∕2 − 𝜀, 1∕2 + 𝜀)∖{±𝜅}, I2 ∶= (𝜅 − 𝜀, 𝜅 + 𝜀), and I3 ∶=

(−𝜅 − 𝜀,−𝜅 + 𝜀) for some small 𝜀 > 0 (the latter only if 𝜅 ≠ 0.) The functions 𝜓 j are chosen such that∑
𝑗𝜓𝑗(𝛼) = 1 for all 𝛼 ∈ I (partition of unity).

Case II: If 𝜅 = 1∕2 we define I ∶= [0, 1], I1 ∶= (−𝜀, 1+𝜀)∖{1∕2}, and I2 ∶= (1∕2−𝜀, 1∕2+𝜀). The functions 𝜓1, 𝜓2 are
chosen such that 𝜓1(𝛼) +𝜓2(𝛼) = 1 for all 𝛼 ∈ I. In any case the inverse Floquet-Bloch transform is given by

urad(x1 + 2𝜋𝓁, x2) = ∫
I

(Furad)(x, 𝛼)ei2𝜋𝓁𝛼d𝛼 =
∑
𝑗
∫

I

𝜓𝑗(𝛼) (Furad)(x, 𝛼)ei2𝜋𝓁𝛼d𝛼

for x∈QH and 𝓁 ∈ Z. (Note that we can choose any interval of length one as domain of integration because
of the periodicity of (Furad)(x, ·)) In the following, we restrict ourselves to the first case. The second case is
treated as the case 𝜅 = 0.

† Actually, such an estimate holds only in the H1-norm and not pointwise; see below.
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The integrand of the term containing𝜓1 vanishes in a neighborhood of the cut-off values±𝜅 and is therefore smooth
by Theorem 4.3, part (b). Furthermore, since 𝜓1 = 1 in neighborhoods of ±1/2 and since (Furad)(x, ·) is 1−periodic,
partial integration (two times) yields

‖‖‖‖‖‖‖
1∕2

∫
−1∕2

𝜓1(𝛼) (Furad)(·, 𝛼)ei2𝜋𝓁𝛼 d𝛼
‖‖‖‖‖‖‖H1(QH )

≤ c
𝓁2 .

Next, we consider the case containing 𝜓 j for j∈ {2, 3}, that is, by part (c) of Theorem 4.3 for v𝛼 = (Furad)(·, 𝛼),

1∕2

∫
−1∕2

𝜓𝑗(𝛼) (Furad)(·, 𝛼)ei2𝜋𝓁𝛼d𝛼

=

1∕2

∫
−1∕2

𝜓𝑗(𝛼)v(1)𝛼 ei2𝜋𝓁𝛼d𝛼 +

1∕2

∫
−1∕2

𝜓𝑗(𝛼) |𝛼 − �̂�|v(4)𝛼 ei2𝜋𝓁𝛼d𝛼

+

1∕2

∫
−1∕2

𝜓𝑗(𝛼)
[√

�̂� − 𝛼 v(2)𝛼 +
√
𝛼 − �̂� v(3)𝛼

]
ei2𝜋𝓁𝛼d𝛼,

where �̂� = 𝜅 or �̂� = −𝜅 if 𝑗 = 2 or 𝑗 = 3, respectively. Two times partial integration of the first term gives (1∕𝓁2)
(note that 𝜓 j vanishes near ±1/2). Also, the second term can be partially integrated twice and gives (1∕𝓁2). Partial
integration of the third term yields

1∕2

∫
−1∕2

𝜓𝑗(𝛼)
[√

�̂� − 𝛼 v(2)𝛼 +
√
𝛼 − �̂� v(3)𝛼

]
ei2𝜋𝓁𝛼d𝛼

= − 1
i2𝜋𝓁

1∕2

∫
−1∕2

𝜕

𝜕𝛼

[√
�̂� − 𝛼𝜓𝑗(𝛼)v(2)𝛼 +

√
𝛼 − �̂� 𝜓𝑗(𝛼)v(3)𝛼

]
ei2𝜋𝓁𝛼d𝛼

= 1
i4𝜋𝓁

�̂�+𝜀

∫̂
𝛼−𝜀

(
1√
�̂� − 𝛼

𝜓𝑗(𝛼)v(2)𝛼 − 1√
𝛼 − �̂�

𝜓𝑗(𝛼)v(3)𝛼

)
ei2𝜋𝓁𝛼d𝛼

− 1
i2𝜋𝓁

�̂�+𝜀

∫̂
𝛼−𝜀

(√
�̂� − 𝛼

𝜕

𝜕𝛼

[
𝜓𝑗(𝛼)v(2)𝛼

]
+

√
𝛼 − �̂�

𝜕

𝜕𝛼

[
𝜓𝑗(𝛼)v(3)𝛼

])
ei2𝜋𝓁𝛼d𝛼.

The second term on the right-hand side is again of order (1∕𝓁2). For the first integral, we write

�̂�+𝜀

∫̂
𝛼−𝜀

(
1√
�̂� − 𝛼

𝜓𝑗(𝛼)v(2)𝛼 − 1√
𝛼 − �̂�

𝜓𝑗(𝛼)v(3)𝛼

)
ei2𝜋𝓁𝛼d𝛼

= v(2)
�̂�

�̂�+𝜀

∫̂
𝛼−𝜀

1√
�̂� − 𝛼

ei2𝜋𝓁𝛼d𝛼 − v(3)
�̂�

�̂�+𝜀

∫̂
𝛼−𝜀

1√
𝛼 − �̂�

ei2𝜋𝓁𝛼d𝛼 +

�̂�+𝜀

∫̂
𝛼−𝜀

ṽ(𝛼)ei2𝜋𝓁𝛼d𝛼

with

ṽ(𝛼) ∶= 1√
�̂� − 𝛼

[
𝜓𝑗(𝛼)v(2)𝛼 − v(2)

�̂�

]
− 1√

𝛼 − �̂�

[
𝜓𝑗(𝛼)v(3)𝛼 − v(3)

�̂�

]
.
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We show that ṽ ∈ W 1,1 ((−1∕2, 1∕2),H1(QH)
)
. Indeed, for the first term, which we denote by v1(𝛼), we compute

𝜕v1(𝛼)
𝜕𝛼

= 1
2(�̂� − 𝛼)3∕2

[
𝜓𝑗(𝛼)v(2)𝛼 − v(2)

�̂�

]
+ 1√

�̂� − 𝛼

𝜕

𝜕𝛼

[
𝜓𝑗(𝛼)v(2)𝛼

]
.

We estimate (note that 𝜓𝑗(�̂�) = 1)

1|𝛼 − �̂�| ‖‖‖𝜓𝑗(𝛼)v(2)𝛼 − v(2)
�̂�

‖‖‖H1(QH )

= 1|𝛼 − �̂�|
‖‖‖‖‖‖‖

𝛼

∫̂
𝛼

𝜕

𝜕𝛽

[
𝜓𝑗(𝛽)v(2)

𝛽

]
d𝛽

‖‖‖‖‖‖‖H1(QH )

≤ max
𝛽

‖‖‖‖ 𝜕

𝜕𝛽

[
𝜓𝑗(𝛽)v(2)

𝛽

]‖‖‖‖H1(QH )
.

This shows that 𝜕v1/𝜕𝛼 satisfies an estimate of the form ||𝜕v1(𝛼)∕𝜕𝛼||H1(QH ) ≤ c∕
√|𝛼 − �̂�|. The second integral is

estimated in the same way. Therefore, the integral ∫ 1∕2
−1∕2 ṽ(𝛼)ei2𝜋𝓁𝛼d𝛼 is of order(1∕|𝓁|) by partial integration. Finally,

we compute

e−i2𝜋𝓁�̂�
√

2𝜋|𝓁|�̂�+𝜀∫̂
𝛼−𝜀

1√
�̂� − 𝛼

ei2𝜋𝓁𝛼d𝛼

=
√

2𝜋|𝓁| 𝜀

∫
−𝜀

1√
𝛼

e−i2𝜋𝓁𝛼d𝛼 →

{
(1 − i)

√
2𝜋 , 𝓁 → ∞,

0 , 𝓁 → −∞,

by Lemma 7.3 of the appendix, and analogously

e−i2𝜋𝓁�̂�
√

2𝜋|𝓁|�̂�+𝜀∫̂
𝛼−𝜀

1√
𝛼 − �̂�

ei2𝜋𝓁𝛼d𝛼 →

{
0 , 𝓁 → ∞,

(1 − i)
√

2𝜋 , 𝓁 → −∞.

Therefore, we conclude that

lim
𝓁→±∞

⎡⎢⎢⎣|𝓁|3∕2e−i2𝜋𝓁�̂�

1∕2

∫
−1∕2

(Furad)(·, 𝛼)ei2𝜋𝓁𝛼d𝛼
⎤⎥⎥⎦ = −1 + i

4𝜋

{
ṽ(2)
�̂�
, 𝓁 → ∞,

ṽ(2)
�̂�
, 𝓁 → −∞,

in H1(QH), and thus ||urad||H1(QH
𝓁 )

≤ || ∫ 1∕2
−1∕2(Furad)(·, 𝛼)ei2𝜋𝓁𝛼d𝛼||H1(QH ) ≤ c∕|𝓁|3∕2.

To show that urad ∈W1, 1(WH), we estimate

∫
WH

[|urad| + |∇urad|] dx =
∑
𝓁∈Z

∫
QH
𝓁

[|urad| + |∇urad|] dx

≤ √
4𝜋H

∑
𝓁∈Z

(||urad||L2(QH
𝓁 )
+ ||∇urad||L2(QH

𝓁 )

)
≤ c

∑
𝓁∈Z

||urad||H1(QH
𝓁 )

≤ c′
[||urad||H1(QH ) +

∑
|𝓁|≥1

1|𝓁|3∕2

]
< ∞.
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Analogously, for 𝜌∈ [0, 1),

∫
WH

(1 + x2
1)

𝜌 |urad|2 dx =
∑
𝓁∈Z

∫
QH
𝓁

(1 + x2
1)

𝜌 |urad|2 dx

≤ ∑
𝓁∈Z

[1 + (|𝓁| + 1)24𝜋2]𝜌 ||urad||2
L2(QH

𝓁 )

≤ c

[
(1 + 4𝜋2)𝜌 ||urad||2

L2(QH ) +
∑
|𝓁|≥1

[1 + (|𝓁| + 1)24𝜋2]𝜌|𝓁|−3

]

≤ c′
[

1 +
∑
|𝓁|≥1

|𝓁|2𝜌−3

]
< ∞

because 𝜌 < 1. The proof for the derivative follows the same lines.

We note that by the trace theorem urad|Γh0
∈ L2

𝜌(Γh0) for all 𝜌 < 1 where Γh0 ∶= R × {h0} and

L2
𝜌(Γh0) ∶=

{
𝜙 ∈ L2(Γh0) ∶ ∫

∞

−∞
(1 + |t|2)𝜌|𝜙(t, h0)|2dt < ∞

}
, (50)

equipped with its canonical norm || · ||L2
𝜌
(Γh0 ).

After the investigation of the asymptotic behavior in x1-direction, we turn to the study of the behavior in x2-direction.
We will prove the Sommerfeld radiation condition for urad in the upper and lower half planes {x ∈ R2 ∶ x2 > h0 + 𝜏} and
{x ∈ R2 ∶ x2 < −h0 − 𝜏}, respectively, for every 𝜏 > 0. We note again that in R2∖Wh0 = {x ∈ R2 ∶ |x2| > h0}, the part
urad satisfies the inhomogeneous Helmholtz equation

Δurad + k2urad = −
∑
𝑗∈J

m𝑗∑
𝓁=1

a𝓁,𝑗𝜑𝓁,𝑗 for |x2| > h0,

where 𝜑𝓁, j are given by (11b) and the radiation condition (10).

Theorem 6.2. Let Assumptions 2.2 and 2.3 hold. Furthermore, in the case q ≠ 0, we assume that no bound states exist.
Let u ∈ H1

loc(R
2) be the unique solution of the source problem (8) satisfying the open waveguide radiation condition of

Definition 2.5.

(a) Then, urad satisfies the Sommerfeld radiation condition

sup
x∈R2, |x2|≥h0+𝜏

√|x||urad(x)| + sup
x∈R2, |x2|≥h0+𝜏

√|x| ||||𝜕urad(x)
𝜕r

|||| < ∞, (51a)

for all 𝜏 > 0, and √
r sup

x∈S𝜏
r

||||𝜕urad(x)
𝜕r

− ikurad(x)
|||| → 0 , r → ∞, (51b)

for all 𝜏 > 0 where S𝜏
r ∶= {x ∈ R2 ∶ |x2| ≥ h0 + 𝜏, |x| = r}.

(b) There exists a unique function u∞ ∈C(S′) with

sup
x∈S𝜏

r

|||e−ikr
√

r urad(x) − u∞(x∕r)||| → 0 , r → ∞, (52)

for all 𝜏 > 0 where S′ = {x ∈ R2 ∶ |x| = 1, x2 ≠ 0}.

Proof. We restrict ourselves to the upper half plane {x ∈ R2 ∶ x2 > h0}. Recall from (13) that urad(x) is explicitly given
as the sum of a volume potential v1(x) on (− 𝜎0, 𝜎0)× (h0,∞) and a double layer potential v2(x) on Γh0 ∶= R × {h0}.
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We show the assertions separately for v1 and v2. Estimate (51a) for v1(x) follows directly from (A2) of Lemma 7.1 of
the appendix for h= h0. To show (51b), let 𝜀 > 0 be arbitrary. (A2) implies the existence of h > h0 with

k
√|x||ṽh(x)| +√|x| ||||𝜕ṽh(x)

𝜕r
|||| ≤ 𝜀

2
for all x ∈ R

2
h0
,

where ṽh is defined in (A1) of Lemma 7.1 of the appendix. The function v1 − ṽh is a volume potential on the compact
rectangle (− 𝜎0, 𝜎0)× (h0, h) and therefore satisfies the classical Sommerfeld radiation condition (51b); that is, there
exists R > 0 with √|x| ||||𝜕[v1(x) − ṽh(x)]

𝜕r
− ik [v1(x) − ṽh(x)]

|||| ≤ 𝜀

2
for all x ∈ R

2
h0
, |x| ≥ R.

The triangle inequality yields

√|x| ||||𝜕v1(x)
𝜕r

− ikv1(x)
|||| ≤ 𝜀 for all x ∈ R

2
h0
, |x| ≥ R,

which shows that v1 satisfies (51b) even for 𝜏 = 0.
Defining v∞1 (x̂) by

v∞1 (x̂) ∶= 𝛾

𝜎0

∫
−𝜎0

∞

∫
h0

𝜑(𝑦)
[
e−ikx̂·𝑦 − e−ikx̂·𝑦∗] d𝑦2 d𝑦1 , |x̂| = 1,

with 𝛾 ∶= ei𝜋∕4√
8𝜋k

, one shows estimate (52) in exactly the same way using the asymptotics

i
4

H(1)
0 (k|x − 𝑦|) = 𝛾

eik|x|√|x| e−ik𝑦·x̂ +  (|x|−3∕2) , |x| → ∞,

uniformly with respect to x̂ = x∕|x| and y from compact sets (see Colton & Kress1), and the obvious estimate

sup|x̂|=1

|||||||v
∞
1 (x̂) − 𝛾

𝜎0

∫
−𝜎0

h

∫
h0

𝜑(𝑦)
[
e−ikx̂·𝑦 − e−ikx̂·𝑦∗] d𝑦2 d𝑦1

||||||| ≤ ce−𝛿h.

Now, we turn to the double layer potential v2(x). This function has been investigated in Hu et al.22 We recall and
simplify their arguments for the convenience of the reader. First, we recall the asymptotic behavior (17) of the Hankel
function H(1)

0 (k|x − 𝑦|) and their derivatives. Let 𝜙 ∈ L2
𝜌(Γh0) be any function for some 𝜌 < 1 where L2

𝜌(Γh0) is the
weighted space from (50). We obtain for x2 ≥ h0 + 𝜏:

∫
𝑦 ∈ Γh0|𝑦1| > 1

|𝜙(𝑦)| |||| 𝜕

𝜕𝑦2
H(1)

0 (k|x − 𝑦|)|||| ds(𝑦)

≤ c (x2 + 1) ∫|𝑦1|>1

|𝜙(𝑦1, h0)| 1
[(x1 − 𝑦1)2 + (x2 − h0)2]3∕4 d𝑦1

= c (x2 + 1) ∫|𝑦1|>1

(1 + 𝑦2
1)

𝜌∕2|𝜙(𝑦1, h0)| 1
(1 + 𝑦2

1)𝜌∕2 [(x1 − 𝑦1)2 + (x2 − h0)2]3∕4
d𝑦1

≤ c (x2 + 1) ||𝜙||L2
𝜌
(Γh0 )

√√√√ ∫|𝑦1|>1

1|𝑦1|2𝜌 [(x1 − 𝑦1)2 + (x2 − h0)2]3∕2 d𝑦1.
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Now, we apply Lemma 7.2 from the appendix with q = 3∕2. Let first |x1|≤ x2 − h0. By the first estimate of Lemma 7.2,
we have

∫
𝑦 ∈ Γh0|𝑦1| > 1

|𝜙(𝑦)| |||| 𝜕

𝜕𝑦2
H(1)

0 (k|x − 𝑦|)|||| ds(𝑦) ≤ c ||𝜙||L2
𝜌
(Γh0 )

1 + x2

(x2 − h0)3∕2 ≤ c′ ||𝜙||L2
𝜌
(Γh0 )

1√|x| ,

where we used x2 − h0 ≥ 𝜏

h0+𝜏
x2 and thus (x2 − h0)2 ≥ 1

2
(x2

1 + (x2 − h0)2) ≥ 1
2

𝜏2

(h0+𝜏)2
|x|2 in the last estimate.

Second, let |x1|≥ x2 − h0. Then, by the second estimate of Lemma 7.2 (note that x1 ≠ 0 because x2 ≥ h0 + 𝜏),

∫
𝑦 ∈ Γh0|𝑦1| > 1

|𝜙(𝑦)| |||| 𝜕

𝜕𝑦2
H(1)

0 (k|x − 𝑦|)|||| ds(𝑦)

≤ c ||𝜙||L2
𝜌
(R) (1 + x2)

√|x1|−3 + |x2 − h0|−2|x1|−2𝜌 ≤ c′ ||𝜙||L2
𝜌
(R)

√|x|−1 + |x|−2𝜌,

because x2
1 ≥ 1

2
(x2

1 + (x2 − h0)2) ≥ 1
2

(
𝜏2

(h0+𝜏)2
|x|2. Since 2𝜌 > 1, we have shown the existence of a constant ĉ which is

independent of 𝜙 (but depends on 𝜏 > 0) such that

√|x| ∫
𝑦 ∈ Γh0|𝑦1| > 1

|𝜙(𝑦)| |||| 𝜕

𝜕𝑦2
H(1)

0 (k|x − 𝑦|)|||| ds(𝑦) ≤ ĉ ||𝜙||L2
𝜌
(Γh0 ) (53)

for all x ∈ R2 with x2 ≥ h0 + 𝜏. The same estimate holds also for the gradient∇x
𝜕

𝜕𝑦2
H(1)

0 (k|x−𝑦|) by the same arguments.
Now, we specify the function 𝜙. First, we set 𝜙=urad. The estimate (53) and the boundedness of

supx2≥h0+𝜏
√|x|∫|𝑦1|<1|urad(𝑦)| ||| 𝜕

𝜕𝑦2
H(1)

0 (k|x − 𝑦|)||| ds(𝑦) for the double layer potential on the compact line segment
{𝑦 ∈ Γh0 ∶ |𝑦1| < 1} implies the first estimate of (51a). The same argument holds also for the derivative.

Second, for any a > 1 we set 𝜙a(y)=urad(y) for 𝑦 ∈ Γh0 , |y1|> a, and 𝜙a(𝑦) = 0 for 𝑦 ∈ Γh0 , |y1|< a, and define va by

va(x) =
i
2 ∫

𝑦 ∈ Γh0|𝑦1| < a

urad(𝑦)
𝜕

𝜕𝑦2
H(1)

0 (k|x − 𝑦|)ds(𝑦) , x ∈ R
2
h0
.

Then, by (53),

√|x| |||| 𝜕v2(x)
𝜕r

− ikv2(x)
|||| ≤ √|x| |||| 𝜕va(x)

𝜕r
− ikva(x)

||||+
+

√|x| ∫
𝑦 ∈ Γh0|𝑦1| > 1

|𝜙a(𝑦)| [||||∇x
𝜕

𝜕𝑦2
H(1)

0 (k|x − 𝑦|)|||| + k
|||| 𝜕

𝜕𝑦2
H(1)

0 (k|x − 𝑦|)||||
]

ds(𝑦)

≤ √|x| ||||𝜕va(x)
𝜕r

− ikva(x)
|||| + (1 + k)ĉ ||𝜙a||L2

𝜌
(Γh0 )

(54)

for all x ∈ R2 with x2 ≥ h0 + 𝜏. Let now 𝜀 > 0 be arbitrary. We choose a > 1 such that

(1 + k)ĉ ||𝜙a||L2
𝜌
(Γh0 ) = (1 + k)ĉ

√√√√ ∫|𝑦1|>a

|urad(𝑦)|2(1 + 𝑦2
1)𝜌 ds(𝑦) ≤ 𝜀

2
.
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For this fixed a, we note that va is a double layer potential on a compact line segment. Therefore, va satisfies the
classical Sommerfeld radiation condition, and we can find R > 0 such that

√|x| ||||𝜕va(x)
𝜕r

− ikva(x)
|||| ≤ 𝜀

2
for all |x| ≥ R.

By (54), this proves that v2 satisfies Sommerfelds's radiation condition.
In the same way, ones proves (52) for v2 with

v∞2 (x̂) ∶= 𝛾 ∫
Γh0

urad(𝑦)
𝜕

𝜕𝑦2
e−ikx̂·𝑦 ds(𝑦) , |x̂| = 1

(see also22). We omit this part.

Remark 6.3. Finally, we note that we can weaken the assumption with respect to the source f. Indeed, a careful inspec-
tion shows that we can take 𝑓 ∈ H−1(R2) with support in K (as a distribution) where K is any compact subset of Q. For
example, we can think of 𝑓 = 𝜕𝜒∕𝜕x𝑗 for some 𝜒 ∈ L2(R2) with support in Q. We sketch the necessary modifications.
In (2), the right-hand side has to be replaced by the dual form ⟨𝑓, 𝜓⟩. The Floquet-Bloch transform of f still coin-
cides with f. In Theorems 4.1–4.3, the functions g and g𝛼 have to be replaced by 𝑓 + g̃ and 𝑓 + g̃𝛼 , respectively, where
g̃ ∈ L2(R2) and g̃𝛼 ∈ L2(Q∞) decay exponentially with respect to x2. The orthogonality condition (37) and the form (47)
of a𝓁, j have to be replaced by ⟨𝑓, �̂�⟩ + ∫Q∞ g̃�̂�𝑗 (x) �̂�(x)dx = 0 and a𝓁,𝑗 = 2𝜋i|𝜆𝓁,𝑗 | ⟨𝑓, �̂�𝓁,𝑗⟩, respectively. Then, Theorem 5.2
holds, and the mapping f → u is bounded as a mapping from the closed subspace {𝑓 ∈ H−1(R2) ∶ supp𝑓 ⊂ K} into
H1(WH) for all H > h0.
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APPENDIX

In the first lemma, properties of the volume potential with certain non-compactly supported densities are shown. We
set again R2

h0
= {x ∈ R2 ∶ x2 > h0} and W+

H = R × (h0,H).

Lemma 7.1. Let𝜑 ∈ L2(R2
h0
)with𝜑(x) = 0 for |x1|>𝜎0 and |𝜑(x)| ≤ ĉ e−𝛿x2 for x2 ≥ h0 for some𝜎0, ĉ, 𝛿 > 0 (independent

of x). Define

vh(x) =

𝜎0

∫
−𝜎0

∞

∫
h

𝜑(𝑦)G+(x, 𝑦)d𝑦2 d𝑦1 , x ∈ R
2
h0
, (A1)

for h≥ h0, with the Green's function G+(x, 𝑦) ∶= i
4

[
H(1)

0 (k|x − 𝑦|) − H(1)
0 (k|x − 𝑦∗|)] for x, 𝑦 ∈ R2

h0
with x ≠ 𝑦. Here,

𝑦∗ ∶= (𝑦1, 2h0 − 𝑦2)⊤ is the reflected point at the line x2 = h0. Then, vh and its gradient satisfy the estimate

|vh(x)| + |∇vh(x)| ≤ c 1 + x2

1 + |x|3∕2 (1 + h)e−𝛿h∕2 , x2 > h0, (A2)

where c is independent of x ∈ R2
h0

and h≥ h0. In particular, vh ∈ H1(W+
H) for all H > h0 and h≥ h0. Furthermore,

vh ∈ H1
loc(R

2
h0
) is the unique solution of the boundary value problem

Δvh + k2vh =
{

0 for h0 < x2 < h,
−𝜑 for x2 > h, vh = 0 for x2 = h0,

satisfying the generalized angular spectrum radiation condition (10).

Proof. First, we show (A2). We know from Chandler-Wilde and Ross23 that for all a > 0, there exists c > 0 with

||G+(x, 𝑦)|| ≤ c (1 + x2) (1 + 𝑦2)|x − 𝑦|3∕2 for all x, 𝑦 ∈ R
2
h0

with |x − 𝑦| ≥ a, (A3a)

info:doi/10.1002/mma.8137
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||∇xG+(x, 𝑦)|| ≤ c (1 + x2) (1 + 𝑦2)|x − 𝑦|3∕2 for all x, 𝑦 ∈ R
2
h0

with |x − 𝑦| ≥ a, (A3b)

||G+(x, 𝑦)|| ≤ c |ln |x − 𝑦|| for all x, 𝑦 ∈ R
2
h0

with 0 < |x − 𝑦| ≤ a, (A3c)

||∇xG+(x, 𝑦)|| ≤ c|x − 𝑦| for all x, 𝑦 ∈ R
2
h0

with 0 < |x − 𝑦| ≤ a. (A3d)

First, we consider |x1|≤ 2𝜎0 and x2 ≤ 2 (if h0 < 2, otherwise drop this case). In the definition of vh, we split the region
of integration with respect to y2 into {y2 > h: |y2 − x2|< 1}∪ {y2 > h: |y2 − x2|> 1} and use the estimates of G+ in each
of the regions. (Note that |y1|≤ 𝜎0) Therefore,

|vh(x)| ≤ c ∫
𝑦2 > h|x2 − 𝑦2| < 1

𝜎0

∫
−𝜎0

e−𝛿𝑦2 |ln |x − 𝑦|| d𝑦1 d𝑦2

+ c (1 + x2) ∫
𝑦2 > h|x2 − 𝑦2| > 1

𝜎0

∫
−𝜎0

e−𝛿𝑦2
1 + 𝑦2|x2 − 𝑦2|3∕2 d𝑦1 d𝑦2

≤ ce−𝛿h

1

∫
−1

3𝜎0

∫
−3𝜎0

|ln |z|| dz1 dz2 + 6𝜎0 c

∞

∫
h

e−𝛿𝑦2 (1 + 𝑦2)d𝑦2 ≤ c′ (1 + h)e−𝛿h.

Let now |x1|≤ 2𝜎0 and x2 > 2. We split {𝑦2 > h ∶ |𝑦2 − x2| > 1} = {𝑦2 > h ∶ 1 < |𝑦2 − x2| < x2∕2} ∪ {𝑦2 > h ∶|𝑦2 − x2| > x2∕2}. Then,

|vh(x)| ≤c ∫
𝑦2 > h|x2 − 𝑦2| < 1

𝜎0

∫
−𝜎0

e−𝛿𝑦2 |ln |x − 𝑦|| d𝑦1 d𝑦2

+ c (1 + x2) ∫
𝑦2 > h

1 < |x2 − 𝑦2| < x2∕2

𝜎0

∫
−𝜎0

e−𝛿𝑦2
1 + 𝑦2|x2 − 𝑦2|3∕2 d𝑦1 d𝑦2

+ c (1 + x2) ∫
𝑦2 > h|x2 − 𝑦2| > x2∕2

𝜎0

∫
−𝜎0

e−𝛿𝑦2
1 + 𝑦2|x2 − 𝑦2|3∕2 d𝑦1 d𝑦2

≤ ce−𝛿h∕2 e−𝛿(x2−1)∕2

1

∫
−1

3𝜎0

∫
−3𝜎0

|ln |z|| dz1 dz2

+ c (1 + x2)e−𝛿x2∕4

∞

∫
h

(1 + 𝑦2)e−𝛿𝑦2∕2d𝑦2 + c 1 + x2

(x2∕2)3∕2

∞

∫
h

(1 + 𝑦2)e−𝛿𝑦2 d𝑦2,

where we used the estimate y2 = y2/2 + y2/2≥ h/2 + (x2 − 1)/2 in the first integral and y2 ≥ y2/2 + x2/4 in the second
integral. Combining this with the estimate for x2 ≤ 2 implies

|vh(x)| ≤ c 1 + x2

1 + |x|3∕2 (1 + h)e−𝛿h∕2 (A4a)
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for all x2 ≥ h0 and |x1|≤ 2𝜎0 and h≥ h0. Now, we consider |x1|> 2𝜎0. Then, |y1 − x1|≥ |x1|−𝜎0 > |x1|/2≥ 𝜎0, and thus,

|vh(x)| ≤ c (1 + x2)

∞

∫
h

𝜎0

∫
−𝜎0

e−𝛿𝑦2
1 + 𝑦2|x − 𝑦|3∕2 d𝑦1 d𝑦2.

We split the integral with respect to y2 into {y2 > h: |y2 − x2|> x2/2}∪ {y2 > h: |y2 − x2|< x2/2}. For |y2 − x2|> x2/2, we
have |x − 𝑦|2 ≥ 1

4
|x|2, and thus,

∫
𝑦2 > h|x2 − 𝑦2| > x2∕2

𝜎0

∫
−𝜎0

e−𝛿𝑦2
1 + 𝑦2|x − 𝑦|3∕2 d𝑦1 d𝑦2 ≤ ∫

𝑦2 > h|x2 − 𝑦2| > x2∕2

(1 + 𝑦2)e−𝛿𝑦2 d𝑦2
2𝜎0

(|x|∕2)3∕2

≤ c|x|3∕2

∞

∫
h

(1 + 𝑦2)e−𝛿𝑦2 d𝑦2 ≤ c′

1 + |x|3∕2 (1 + h)e−𝛿h. (A4b)

Finally, since |y2|≥ |x2|− |y2 − x2|≥ x2/2 for |y2 − x2|< x2/2, we have by estimating y2 ≥ y2/2 + x2/4

∫
𝑦2 > h|x2 − 𝑦2| < x2∕2

𝜎0

∫
−𝜎0

e−𝛿𝑦2
1 + 𝑦2|x − 𝑦|3∕2 d𝑦1 d𝑦2 ≤ e−𝛿x2∕4

∞

∫
h

(1 + 𝑦2)e−𝛿𝑦2∕2 d𝑦2

𝜎0

∫
−𝜎0

d𝑦1|x1 − 𝑦1|3∕2

≤ ce−𝛿x2∕4 1|x1|3∕2

∞

∫
h

(1 + 𝑦2)e−𝛿𝑦2∕2 d𝑦2 ≤ c′

1 + |x|3∕2 (1 + h)e−𝛿h∕2 (A4c)

(note that |x1|> 2𝜎0 and x2 ≥ h0).
The proofs for the derivatives follow exactly the same lines. (Only the integral over ln |x − 𝑦| has to be replaced by

the integral over 1/|x− y|) Combining (A4a), (A4b), and (A4c) yields (A2).
From these estimates, it follows directly that vh ∈ H1(W+

H) for all H > h0. By truncating the domain with respect to
y2 and using classical results on volume integrals on bounded domains, it is easily seen that vh satisfies the differential
equation.

To show the radiation condition (10), we take the Fourier transform with respect to x1 and note that the integral with
respect to y1 is a convolution. By our normalization of the Fourier transform and the formulas 3. and 4. in Gradshteyn
and Ryshik,17 section 6.677, this yields

(vh)(𝜔, x2) =
i

2
√

k2 − 𝜔2

∞

∫
h

(𝜑)(𝜔, 𝑦2)
[

ei
√

k2−𝜔2|x2−𝑦2| − ei
√

k2−𝜔2(x2+𝑦2−2h0)
]

d𝑦2,

and thus, for x2 > h,

𝜕(vh)(𝜔, x2)
𝜕x2

− i
√

k2 − 𝜔2 (vh)(𝜔, x2) =

∞

∫
x2

(𝜑)(𝜔, 𝑦2)ei
√

k2−𝜔2(𝑦2−x2) d𝑦2.

For |𝜔|< k, we just estimate

||||𝜕(vh)(𝜔, x2)
𝜕x2

− i
√

k2 − 𝜔2 (vh)(𝜔, x2)
|||| ≤ c

∞

∫
x2

e−𝛿𝑦2 d𝑦2 = c
𝛿

e−𝛿x2 .
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For |𝜔|> k, we estimate ||||𝜕(vh)(𝜔, x2)
𝜕x2

− i
√

k2 − 𝜔2 (vh)(𝜔, x2)
||||

≤ c

∞

∫
x2

e−𝛿𝑦2−
√
𝜔2−k2(𝑦2−x2) d𝑦2 = c

𝛿 +
√
𝜔2 − k2

e−𝛿x2 .

Together, we have shown

||||𝜕(vh)(𝜔, x2)
𝜕x2

− i
√

k2 − 𝜔2 (vh)(𝜔, x2)
|||| ≤ c

𝛿 +
√|𝜔2 − k2| e−𝛿x2 (A5)

for almost all 𝜔 ∈ R and x2 > h where c > 0 is independent of 𝜔 and x. Squaring and integrating with respect to 𝜔

yields the generalized angular spectrum radiation condition (10).
Finally, we show uniqueness of the boundary value problem. Therefore, let v ∈ H1

loc(R
2
h0
) with v ∈ H1(W+

H) for all
H > h0 be a solution for 𝜑 = 0 and 𝜙 = 0. The Fourier transform v̂(𝜔, x2) ∶= (v)(𝜔, x2) satisfies

v̂′′ (𝜔, x2) + (k2 − 𝜔2)v̂(𝜔, x2) = 0 , x2 > h0 , v̂(𝜔, h0) = 0,

for almost all 𝜔 and the radiation condition (10). The general solution of the differential equation and the initial
condition is given by

v̂(𝜔, x2) = a(𝜔)
[

ei
√

k2−𝜔2(x2−h0) − e−i
√

k2−𝜔2(x2−h0)
]
, x2 > h0,

for some a(𝜔) ∈ C, and thus, v̂′(𝜔, x2) − i
√

k2 − 𝜔2 v̂(𝜔, x2) = 2a(𝜔)i
√

k2 − 𝜔2e−i
√

k2−𝜔2(x2−h0). Therefore,

||||v̂′(𝜔, x2) − i
√

k2 − 𝜔2 v̂(𝜔, x2)
||||2

=

{
4|a(𝜔)|2

√
k2 − 𝜔2 , |𝜔| < k,

4|a(𝜔)|2
√
𝜔2 − k2 e

√
𝜔2−k2(x2−h0) , |𝜔| > k.

The radiation condition (10) implies a(𝜔) = 0 for almost all 𝜔; that is, v vanishes identically which proves uniqueness.

We recall the following auxiliary result from Hu et al.22

Lemma 7.2. For given 1/2 < 𝜌 < 1 and q > 1/2, define I(x) by

I(x) ∶= ∫|𝑦1|>1

1
[(x1 − 𝑦1)2 + x2

2]q|𝑦1|2𝜌
d𝑦1 , x ∈ R

2 , x2 ≠ 0.

Then, there exists c > 0 with I(x)≤ c|x2|−2q for all x ∈ R2 with x2 ≠ 0 and also I(x) ≤ c
[|x1|−2q + |x2|−2q+1|x1|−2𝜌] for

x ∈ R2 with x2 ≠ 0 and x1 ≠ 0.

Proof.
(a) Obviously, for all x ∈ R2 with x2 ≠ 0, we have

I(x) ≤ ∫|𝑦1|>1

1|x2|2q |𝑦1|2𝜌 d𝑦1 = 1|x2|2q ∫|𝑦1|>1

d𝑦1|𝑦1|2𝜌 = 2
2𝜌 − 1

1|x2|2q .

(b) We split the region of integration into y1 with |y1 − x1|> |x1|/2 and |y1 − x1|< |x1|/2. For x1 ≠ 0, we have

∫|𝑦1| > 1|𝑦1 − x1| > |x1|∕2

1
[(𝑦1 − x1)2 + x2

2]q |𝑦1|2𝜌
d𝑦1 ≤ ∫|𝑦1|>1

1
(|x1|∕2)2q |𝑦1|2𝜌 d𝑦1 = 22q+1

2𝜌 − 1
1|x1|2q .
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For y1 with |y1 − x1|< |x1|/2, we conclude that |y1|≥ |x1|/2; thus,

∫|𝑦1| > 1|𝑦1 − x1| < x1∕2

1
[(𝑦1 − x1)2 + x2

2]q |𝑦1|2𝜌
d𝑦1

≤ ∫|𝑦1|>1

1
[(𝑦1 − x1)2 + x2

2]q
1

(|x1|∕2)2𝜌 d𝑦1 = 4𝜌|x2|2q|x1|2𝜌 ∫|𝑦1|>1

1[(
𝑦1−x1|x2|

)2
+ 1

]q d𝑦1

≤ 4𝜌 |x2||x2|2q|x1|2𝜌

∞

∫
−∞

1
(t2 + 1)q dt = c|x2|2q−1|x1|2𝜌 ,

where we have used the substitution t = 𝑦1−x1|x2| . Therefore,

I(x) ≤ c
[|x1|−2q + |x2|−2q+1 |x1|−2𝜌] ,

which ends the proof.

The following lemma is a simple consequence of the improper integrals ∫ ∞
0

cos t√
t

dt = ∫ ∞
0

sin t√
t

dt =
√

𝜋

2
.

Lemma 7.3. For every a > 0 and 𝜎 ∈ {+ 1,− 1},

lim
𝜎T→∞

⎡⎢⎢⎣
√|T| a

∫
0

1√
𝛼

e−iT𝛼 d𝛼
⎤⎥⎥⎦ = (1 − i𝜎)

√
𝜋

2
,

lim
𝜎T→∞

⎡⎢⎢⎣
√|T| a

∫
−a

1√
𝛼

e−iT𝛼 d𝛼
⎤⎥⎥⎦ =

{
(1 − i)

√
2𝜋 , 𝜎 = 1,

0 , 𝜎 = −1.

Proof. Using the substitution t = |T|𝛼 = 𝜎T𝛼, the first formula follows from

a

∫
0

1√
𝛼

e−iT𝛼 d𝛼 = 1√|T|
a|T|
∫

0

1√
t

e−i𝜎t dt = 1√|T|
a|T|
∫

0

cos t√
t

dt − i𝜎 1√|T|
a|T|
∫

0

sin t√
t

dt

and

lim
T→∞

T

∫
0

cos t√
t

dt = lim
T→∞

T

∫
0

sin t√
t

dt =
√

𝜋

2
.

For the second formula, we note that

a

∫
−a

1√
𝛼

e−iT𝛼 d𝛼 =

a

∫
0

1√
𝛼

e−iT𝛼 d𝛼 + 1
i

a

∫
0

1√
𝛼

eiT𝛼 d𝛼

= (1 − i)Re

a

∫
0

1√
𝛼

e−iT𝛼 d𝛼 − (1 − i) Im

a

∫
0

1√
𝛼

e−iT𝛼 d𝛼,

which yields the second assertion.


	A scattering problem for a local perturbation of an open periodic waveguide
	Abstract
	1 INTRODUCTION
	2 THE OPEN WAVEGUIDE RADIATION CONDITION AND FIRST CONSEQUENCES
	3 UNIQUENESS
	4 THE FLOQUET-BLOCH TRANSFORM AND QUASI-PERIODIC PROBLEMS
	5 EXISTENCE
	6 THE ASYMPTOTIC BEHAVIOR OF THE RADIATING PART
	REFERENCES
	Appendix  



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c00200064006500720020006600f800720073007400200073006b0061006c00200073006500730020006900670065006e006e0065006d00200065006c006c0065007200200073006b0061006c0020006f0076006500720068006f006c006400650020005000440046002f0058002d00310061003a0032003000300031002c00200065006e002000490053004f002d007300740061006e0064006100720064002000740069006c00200075006400760065006b0073006c0069006e00670020006100660020006700720061006600690073006b00200069006e00640068006f006c0064002e00200059006400650072006c006900670065007200650020006f0070006c00790073006e0069006e0067006500720020006f006d0020006f007000720065007400740065006c007300650020006100660020005000440046002f0058002d00310061002d006b006f006d00700061007400690062006c00650020005000440046002d0064006f006b0075006d0065006e007400650072002000660069006e006400650072002000640075002000690020006200720075006700650072006800e5006e00640062006f00670065006e002000740069006c0020004100630072006f006200610074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200034002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b00610020007400610072006b0069007300740065007400610061006e00200074006100690020006a006f006900640065006e0020007400e400790074007900790020006e006f00750064006100740074006100610020005000440046002f0058002d00310061003a0032003000300031003a007400e400200065006c0069002000490053004f002d007300740061006e006400610072006400690061002000670072006100610066006900730065006e002000730069007300e4006c006c00f6006e00200073006900690072007400e4006d00690073007400e4002000760061007200740065006e002e0020004c0069007300e40074006900650074006f006a00610020005000440046002f0058002d00310061002d00790068007400650065006e0073006f00700069007600690065006e0020005000440046002d0064006f006b0075006d0065006e0074007400690065006e0020006c0075006f006d0069007300650073007400610020006f006e0020004100630072006f0062006100740069006e0020006b00e400790074007400f6006f0070007000610061007300730061002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200034002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


