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1 | INTRODUCTION

Let k > 0 be the wavenumber which is fixed throughout the paper and n € L*(R?) the real valued index of refraction
which is assumed to be 2z-periodic with respect to x; and equals to 1 for Ix,| > hy for some hy > 0. Furthermore, let
g € L®(R?) and f € L*(R?) have compact support in Q := (0,2x) X (—hg, ho). It is the aim to solve

Au+k*(n+qu =—fin R? (1)

subject to a suitable radiating condition stated below.
The solution of (1) is understood in the variational sense; that is,

/[Vu~Vq/—k2(n+q)uy/]dx=/fq/dx )
R2 Q

for all w € H'(R?) with compact support. By standard regularity theorems, it is known that for Ix,| > hy, the solution u is
a classical solution of the Helmholtz equation and thus analytic.

As mentioned above, a further condition is needed to assure uniqueness (see Definition 2.5 below). In contrast to the
closed waveguide, that is, where R? is replaced by R X (a_, a;) and where boundary conditions for x, = a.. are added, not
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only a radiation condition in the direction of periodicity, that is, x;, is needed but also one in direction of x,. The radiation
condition should be in accordance with the limiting absorption principle; that is, the solution u should be the limit (as
£ > 0 tends to zero) of the solutions u, € H'(R?) corresponding to wave numbers k + ie instead of k.

Candidates are the Sommerfeld radiation condition (see, e.g., Colton & Kress! for bounded scatterers in free space or
Brandsmeier et al? for periodic open waveguides) or the “upward propagating radiation condition” which is popular for
scattering problems by rough surfaces (see, e.g., Chandler-Wilde & Zhang?). However, one of the basic differences between
the scattering by bounded (penetrable or impenetrable) obstacles in free space and (unbounded) layers is the existence of
guided (or propagating) modes in the latter case which don't exist for the scattering by bounded obstacles in free space.
Therefore, Sommerfeld's radiation condition is too restrictive, while the upward propagating radiation condition is not
sufficient for uniqueness, that is, not restrictive enough. The special case of layered media, that is, where n is constant
with respect to x;, is well studied in the literature; see, e.g., previous studies*? for different types of radiation conditions
based on spectral representations of the scattered field (or the radiating part of the scattered field) with respect to the
(point oder continuous) spectrum of the transverse contribution of the Helmholtz operator. In any case, this leads to a
decomposition of the scattered field into a radiating part and a guided part. The radiating part decays in all directions,
while the components of the guided part do not decay with respect to x;. Since they decay exponentially with respect to
X,, they are also called surface waves.

In Kirsch1®11:13 and Kirsch and Lechleiter,!? we introduced a new kind of radiation condition which has been derived
rigorously from the limiting absorption principle for unperturbed (i.e., ¢ = 0) problems. For closed waveguides, this radi-
ation condition is equivalent to the condition based on the dispersion curves (see, e.g. Fliss & Joly'* and also Remark 2.4
below). In Sections 3 and 5, we investigate uniqueness, existence, and continuous dependence on f of Equation 1 com-
plemented by this radiation condition. This seems to be new for this kind of problems. For the proof of uniqueness in
Section 3, we were inspired by Furuya.!> We had, however, to modify his proof considerably because of the full-space
waveguide instead of the half-space waveguide considered in Furuya.'® The Floquet-Bloch transform is a basic tool in the
analysis of periodic problems and replaces the role of the Fourier transform for layered media. It transforms the problem
in R? into a class of quasi-periodic (with respect to x;) problems in Q® := (0,2x) X RR. Section 4 is devoted to the analysis
of quasi-periodic problems, in particular smoothness with respect to the Floquet-parameter. The results obtained in this
section (Theorems 4.1-4.3) are not surprising, and one can skip this section if one is only interested in the main arguments.

In Section 6, we will investigate the asymptotic behavior of the radiating part of the solution in the direction of the
waveguide and orthogonal to it. While for closed waveguides, the radiating part decays exponentially along the waveguide,
we will show that the radiating part for open waveguides behaves only as ©(|x;|~3/?) in the direction of the waveguide
and as O(|x,|'/2) orthogonal to it. We will show Sommerfeld's radiation condition for the radiating part and introduce
its far field pattern. These results seem to be new as well.

2 | THE OPEN WAVEGUIDE RADIATION CONDITION AND FIRST
CONSEQUENCES

As mentioned above, the field will have a decomposition into a propagating and a radiating part. The loss of exponen-
tial decay of the radiating part is a consequence of the existence of cut-off values while the propagative wave numbers
determine the behavior of the guided part along the waveguide. These quantities are defined as follows.

Definition 2.1. « €[—1/2,1/2] is called a cut-off value if there exists # € Z such that la + Z|=k.

a€[-1/2,1/2] is called a propagative wave number if there exists a non-trivial u € H; loc(]Rz) =

{ueH (R : u(,x)isa — quasi-periodic} such that

loc

Au+k*nu = 0in R?, (3a)
and u satisfies the Rayleigh expansion
ux) = z u; plC+ax, ei\/kz—(f+a)2(ix2—h0) for + x, > h (3b)

el
+
¢
we choose the square root function to be holomorphic in the cutted plane C\(iR<o). In particular, \/—t = i\/m for
t € Ry. We recall that a function u(-,x,) is a-quasi-periodic if u(x; + 27, x,) = e***u(x,, x,) for all x = (x;,x;) € R2.
The functions u are called guided (or propagating or Floquet) modes.

for some u7 € C where the convergence is uniform for Ix,| > hy + € for every € > 0. Here, and in all of the paper,
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Throughout this paper, we make the following assumption.

Assumption 2.2. Let I£ + al # k for every propagative wave number « € [—1/2,1/2] and every ¢ € Z; that is, no
cut-off value is a propagative wave number.

Under Assumption 2.2, it can be shown (see, e.g., Kirsch & Lechleiter!'?) that at most, a finite number of propagative
wave numbers exists in the interval [— 1/2,1/2]. Furthermore, if « is a propagative wave number with mode u, then —« is
a propagative wave number with mode u. Therefore, we can number the propagative wave numbers in [— 1/2,1/2] such
they are given by {&; : j € J}, whereJ C Z is finite and symmetric with respect to 0 and @_; = —@; for j € J. Furthermore,
itis known that (under Assumption 2.2) every mode u is evanescent, that is, exponentially decaying as Ix;,| tends to infinity,
that is, satisfying|u(x)| < ce™®™! for Ix,| > hy and some ¢, 5 > 0 which are independent of x. The corresponding space

X; = {u € H; , (R? : u satisfies (3a) and (3b) for a = &j} 4)

;,loc
of modes is finite dimensional with some dimension m; > 0. We note that the elements of X; are in H*(Q®) and even
analytic for Ix,| > ho. They decay exponentially as Ix,| tends to infinity. On X, we define the sesqui-linear form E : X; X

. [ 0¢
E(¢,w) 1= -2i a—l//dx by €X;, ©)
X1
Qoo
where Q% := (0,27z) X R. We note that E is Hermitian and make the assumption that E is non-degenerated on every Xj;
that is,

Assumption 2.3. For everyj€Jand y €Xj, the linear form E(-,y) : X; — C is non-trivial on Xj; that is, there exists
¢ € X; with E(¢p,y) # 0.

Remark 2.4. This condition is equivalent to the requirement that the group velocity does not vanish. Indeed, assume
that for all a, there exists eigenvalues u,(a) € R and corresponding eigenfunctions u,(a) € HL(Q%®) that satisfy
Au, (@) + p,(@)nu, (@) = 0in Q*. Then, & is a propagative wave number if y, (&) = k? for some v. We transform u, to
its periodic form by setting ii,(x) := e iy, (x). Then, i, () is 27-periodic with respect to x; and satisfies A, (a) +
2iadit, (a)/0x; + (. (@) n — a?)it, (@) = 0in Q®. Assuming that i, («) is differentiable with respect to «, we differentiate
this equation and set « = &. This yields

o, (&) 6uv(a)

Al (@) + 2ia —— + (K*n — &*) (@) = + [26 — pi(@)n] i, (&)
0x; Cox

in Q%*. We multiply this equation by @, (&), integrate over Q*, and use Green's second theorem. This yields

Zi/ﬁ( )[al;;( ) 4 iadi, ((x)] dx+,uv(a)/n|uv(a)| dx = 0.
QOO

Formulated with u, instead of ii,, this reads as

2i/uv(6z gu,(@) ’(&)/nluv(&)lzdx = 0.
dxl
QDO

Qoo
Therefore, the condition of Assumption 2.3 (for m; = 1) is equivalent to x| (&) # 0.

The Hermitian sesqui-linear form E defines the cones {y € X; : E(y,y) 2 0} of propagating waves traveling to the
right and left, respectively. We construct a basis of X; with elements in these cones by taking any inner product (-, -)x, and
consider the following eigenvalue problem in X; for every fixed j € J. Determine A, ; € R and non-trivial ¢, ; € X; with

. [ b _ .
E(¢rj ) = —2i o wdx = s (@,,»,w)xj forall w € X; (6)
Qoo
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andZ = 1, ... ,m;. We normalize the basis such that ((ﬁf’j,(l;f’,j)x =8spfort,¢' =1, ... ,m;. Then, s = E(dsj, dr)),
and Assumption 2.3 is equivalent to A, ; # OforallZ =1, ..., m; andjeJ.

Now, we are able to formulate the radiation condition. In all of the paper, we make Assumptions 2.2 and 2.3 without
mentioning this always. To simplify the notation, we define the space H}(R?) by

HI(R?) := {ueH,

b Rt u e H'(Wg) forall R> 0}, (7)
where W =R X (—R,R).

Definition 2.5. Let y,,y_ € C®(R) be any functions with y,(x;) = 1 for +x; > o (for some 69 > 27 + 1) and
w4 (x1) = 0 for +x1 <op—1.
A solution u € Hy, (R?) of (1), that is,

Au+kK*(n+qu =—f in R? (8)
satisfies the open waveguide radiation condition with respect to an inner product (-, -)x, in Xj if u has a decomposition

into u=uyq + Uprop With a radiating part u,q € H(R?) and a propagating part Uprop Which satisfy the following
conditions.

(a) The propagating part up,, has the form

Uprop@) = D W) D arjbe ) +y_(a) D ardex) ©)
JjeJ Cihp ;>0 Chp ;<0
for x € R? and some a, ; € C. Here, for every j € J, the scalars A,; € Rand ¢,; € X, for# = 1, ... ,m; are given

by the eigenvalues and corresponding eigenfunctions, respectively, of the self adjoint eigenvalue problem (6).
(b) uyaqg € HL(R?) satisfies the generalized angular spectrum radiation condition

o 2
/ (sign ) X ORD) 313 02 Fuggh(o )| dev — 0, ol = o, (10)
2
where the Fourier transform is defined as
Fo)@) = —— [ ps)e™ds, w € R,

27 7

considered as an unitary operator from L(R) onto itself.

This radiation condition has a natural extension to the scattering by an infinitely long penetrable cylinder with peri-
odic (with respect to the axis of the cylinder) refractive index; see Kirsch.!®!! In this case, the one-dimensional Fourier
transform in the angular spectrum radiation condition (10) has to be replaced by the cylindrical Fourier transform.

It has been shown in Kirsch and Lechleiter!? for the case of a half plane problem that this open waveguide radia-
tion condition for the inner product (¢, y)x, = 2k menqﬁﬁdx is a consequence of the limiting absorption principle. A
second motivation is the following result on the direction of the energy flow which will play a central role in the proof of
uniqueness.

Lemma 2.6. Let u,,p be given by (9). WithI, :={r} x Randr+ Q% :=(r,r +27) X R for Irl > 69, we have

Y X Aejlas?, r> oo,
OUpy OUprop JEJ 47 ;>0

op
drIm [ Upe, ——ds = 21Im / Uprop —— dx =
I/ prop 0x; prop o0x1 Z 2 ﬁf,j Iaf,jlz, r < —oy.

r r+Q% JET 4y ;<0
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Proof. We only consider r > og. Then, up(x) = Y jejz 4y 5002, (f),f, j(x) for x; > 0. First, we fix jeJ and define
u;“(x) =) 4, 5002, ds. ;- Since we fix j in the first part, we drop the index j and write u* for u;r. Furthermore, we define

v(x) 1= (¢ —r)ut(x). Then, :Tv =ut+(q—r) % and Av+k?ny = 2%. Therefore, with r+Q® := (r,r+27) x R c R?,
Ayt Ayt _
2/u+aidx=2/u+aidx= ut (Av +k*nv) dx
0x1 0x1
Q r+Qx rQ®
— — — Y
= /v(Au++k2nu+>dx+ / 0 g
dav ov
r+Q® Q%

— + 1+
—/|u+|2ds+/ (w2025 ) — 2t 94 gs
axl axl
Iy

r+2n

:2n/<u_+(())u u+?)u >ds—4mIm u+0u ds,
X1 X1

r

which shows the first equality for fixed j € J. Furthermore, with L;r ={C : is; >0},

4z Im/ ds = E(u u Z asjag ;E qbfj,qbf, = Z /lf,jlaf,jlz

Z, f’eL+ feL;’

by the orthonormalization of ¢,. ; where we indicated the dependence on j. In the second part, we take j,j’ €J, apply
Green's theorem in r+ Q, and use the quasi-periodicities of u} and u;r,.

o’ aE
0= ut — oyt I s
) J

— au;f, . ()E — 6uj, . ou
= - U —— —ul, —|ds + um—— —u, ——|ds
/ J ax1 J 6x1 /

1, Lyor

+ o+
_ (i@, —d)2m — o, o
_(e % —1) u, ——u, — ds.
J dxl J 0x1
I,

r

Therefore, the last integral vanishes for j # j’. Thus, we have

Ju
4rziIm / Uprop a; P d

OUprop OUprop _+(3u;r .\ 0 ;f
= 27[/ [uprop ox; — Uprop o ds = 2rx Z/ uj a—xl - uj a—xl ds
I &
=47zi2 Im/u —ds— lz Z Aejlagjl?.
jel Jj€l teL}

O

As the next step, we prove a first result on the asymptotic behavior of u,,q which will be needed in the proof of

uniqueness.
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Because qy .. vanishes identically by our choice of y .., we observe that the radiating part u,,4 satisfies

ml
Aygg + K2+ Q) Uygg = —f — Z Za,f,jqof,j in R?, (11a)
jel r=1
where
N N R ,
2y () —2— +wi (a) de 0 if Az >0,
Prj(X) = 2 l(x) o (11b)
ZV/L(XI);—;I +yl (X)) e (x) if A, <O0.

We note that fhas compact support in Q and ¢, ; vanish for Ix;| > o and are evanescent; that is, there exist ¢, 6 > 0 with
lpsj(x)| < Eexp(—5|x,|) for all x € R,
Using the result of Lemma 7.1 of the appendix, we are able to show the following asymptotic behavior * for u,.q. We set

mn;
@ = Z Zaf,j(p,f,j and ¢ := Ueq|r € HY2(D)

JEJ £=1

for abbreviation where I' := T, UT'_, with ., :=R X {#ho} and note that u,,q € H(R?) satisfies
Auygq + kzurad =—¢ for |x;] > hy, Uga=¢ on T, 12)

and the generalized angular spectrum radiation condition (10).

Lemma 2.7. Let Assumptions2.2and 2.3 hold, and letu € H }OC(RZ) be a solution of (8) satisfying the radiation condition
of Definition 2.5. Then, the radiating part u,q.q has the form

raa(x) = / / 0()G*(x, y)dy,dy; + % / $() aiyZHS)(Mx — yds(y) (13)
—0g hy Ly,

forx, > hy, where the Green's function Gt (x, y) is defined as G*(x, y) := i [Hél)(klx -y - H(()l)(klx —y* |)] forx,y € R?

with x,, ¥, > hgandx # y. Here, y* = (y1,2hg — y,)" is the reflected point at the line [y, ;=R X {ho}, and H[()l) denotes
the Hankel function of the first kind and order zero. An analogous representation holds for x, < —hy.
Urqq Satisfies a stronger form of the radiation condition (10), namely,

(sign x,) IF a2 X2) _ Vk? = 0* (Fuyea)(@, X2)

< —= ekl (14)
()X2

5+ |02 — k2]

for almost all o € R and Ixz| > hy, where c > 0 is independent of w and x. Here, 6 > 0 is again a constant such that
|@r,;(x)| < eexp(—6|x,|) for all x.
Furthermore, there exists ¢ > 0 with

[Uraa ()| + | Vitraa(X)] < (1 + [x2]) p(x1) (15)

forall x € R? with |x;| > hy + 1, where p € L>(R) n L®(R) is given by

Uy ,oh 1
p(xp) = E / |Uraa(y1, oho)| dy;, + x; € R. (16)
cE(+,—} (
R

1+ |x — yi])3/? 1+ |x |32

Proof. First, we note that p € L?(R) because the first term can be expressed as the convolution of the L?>-function
luraa(-, + ho)l and the L'-function y, — (1 + ly;)~*2. It is also bounded by the inequality of Cauchy-Schwarz.

We restrict ourselves to the upper half plane Rio = {x € R? : x; > hy}. In Lemma 7.1 of the appendix
uniqueness of (12), (10) has been shown and that the volume potential in (13) satisfies (12) for ¢ = 0 and the

" We will sharpen this result in Section 6.
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estimates (14) and (15). It remains to study the line integral in (13) which we denote by v(x). (Again, we con-
sider only the upper half plane) The function v(-,x,) is a convolution of the L>—function ¢(-, ho) and the function

xOn) = %%Hé”(kw / yf + (X2 = ¥2)?)|y,=h, (for fixed x, > hy). Itis y € WLL(R) by the asymptotic behavior of the
Hankel functions (see Zhang & Chandler-Wilde'¢). Indeed, for all a > 0, there exists ¢=c(a) > 0 with

0

|X2| + |yl +1
0y>

0 o)
H k 17
(klx—=yh| < X2 17)

9 HO(kpx - y|>‘

forallx, y € R?with [x — yl > a. Taking the Fourier transform with respect to x;, we get first (Fv)(-, x;) = V/2x2(F)(F y)
by our normalization of the Fourier transform and thus, using (F y)(w) = \/%ei Vki-w2x,-hy) (differentiate the formulas

3.and 4. in Gradshteyn & Ryshik,!” section 6.677, with respect to z), (Fv)(@,X;) = (F)(w, hy) el VK="=~ for x, > h,
which satisfies the radiation condition (14) trivially. Furthermore, from Parseval's identity, we get

H o
/ / (VO + [Vveol?] du die, = / / (1 + 02 + [ — &) | (Fo)(@.x)Pdedx,
hy —o0 hy —o0
H o
= / / 1+ 0 + K = ? ) |(F ), ho) e 10VE= )y iy
hy —o0
H
<214k / / (1 + o) |(F@)(w, ho)|*dwdx,
hy |oo|<k

+2(1+ K% / 1 + &) |(Fd)(w, ho)|* / e 2V =k 0o=ho) ) dey

|o|>k

< / VIt (F)@ holdo = call gl |

This shows that v € H'(W}") for all H > ho where W}, :=R X (ho, H).
Finally, using (17), v(x) is estimated by

[Urad(y1, ho)l
T 1P

Y1

WOl < et +ho + 1) /
o

for x, > ho + 1 which proves the desired estimate (15). O

3 | UNIQUENESS

In this section, we follow the proof of uniqueness given by Furuya®® for the half-plane case. We have to modify his
approach, however, because the free space Green's function; that is, the fundamental solution iHél)(k|x — y|) does not
decay as fast as the Green's function G*(x, y) for the half-plane as Ix; | tends to infinity. Therefore, we can't use his integral
representations.

We begin with the following technical result.

Lemma 3.1. Let Assumptions 2.2 and 2.3 hold, and letu € H }OC(R) be a solution of (1) satisfying the open waveguide
radiation condition of Definition 2.5. Analogously to p(x;) of (16) (see Lemma 2.7), we define

|urad(y1a O'h())l 1
X1) = dy; + ,x€R,NeN. 18
pn(X1) Z /(1 PRI ity Y 1 (18)
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Then, there exists c > 0 and a sequence (Ny,) in N converging to infinity such that

/ﬂN () dxy < — /lp(xl)—me(x1)|2dx1§

m b
/Ny,
[ [>Ny, X1 1<Np,

5

and

() dx; < —

/ N
N,y <|X, | <N, +1

forallm e N.

Proof. We define the sets Jy := (-N — /N, =N + v/N) U (N — /N, N + v/N). As in Chandler-Wilde,'® we first note
that for every m € N, there exists N,,, > m with ||uqq(:, ho)lle(]N )+ [l traq (-, —ho)lleUN y < % Indeed, otherwise, there

exists m € N such that ||uyea(:, ho)llz2y) + 1Urad (s —=ho)llz2iy) = N1/4 for all N> m. Since JNz NJy: = @ for N # M, we
would have

Y[ litnchoPdn > » 2 / thraaCir, o)y

ce(—1,+1} [ —1,41}

o 1
>ZN: s

N=m

a contradiction to u;uq(-, +ho) € L*(R).
We set N,, := N,, — \/Ny, for abbreviation and estimate for Ix;| > Ny,:

[Uraa(y1, oho)|

A+ g — y11)*?
|y1|<Nm

dy,

[Uraa(y1, oho)| [Uraa(y1, oho)l
Ty dy; + Ty dy,
A+ =y A+ =y
[y I<N, N, <y |<N,
dy dy,
< Ntradll 2 / ——————— + |[tadllr2,, ) —_—
e A+ bl = [y 3 - A+ x| = [n)?
[y11<N;, N <|y1I<Ny,

c 1 c

= +
T+ pal =N, | NV T+ Pl — Ny,

and thus

8 dx
2 < — 8 /—1
/ o, () < s e 1+ x| = N;)?

[ >N, [ >Ny,
C / dx1
+ — T v O
N, ] GFmi-Nw
%, [>N,,

8

< .
(1 + Np) 1+\/]V_m \/]V_m
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Analogously, with N} := N, + 1/N,,, we estimate for |x;| < N,:

[Uraa(y1, oho)l

o) = ) = [ fEORTIOL

[¥11>N,

dy,

[Uraa(y1, oho)l [Uraa(y1, oho)|

Ty dy: + Ty dy

A+ =y A+ =y

[y >Ny, N, <y |<Ny,
dy dy
< Ntraallr2r / ——————— + [ tadllzzgy ) _—
® A+ Iyl = al)? (i A+ Iyl = a?
[y11>N;, N, <|y|<N;,

< c + 1 c
T 14Nl N4 L+ N lxl

and thus /|X1|<N |p(Ge1) — p,, (e1)|>dx; < ¢/4/Ny, as before. Finally, for N;, < Ix11 <Ny, + 1, we estimate

|urad(y1’ O'hO)l
= _d
pea) / A+ | — y1))3/? n

Nm
u ,oh u ,oh
/ | rad()’l 0)3|2dy1 + / | rad(yl 0)3|2dy1
1+ |x1 — 33 1+ |x — 33
Iy1l<N; I 1>N;,
dJ’1
< cllwradlliza, » + ltraallo / W
radiE e A+ x| = [y
[»I<N;,
dy,
+ |l traall 2@ / _—
Tt 1+ [yl = )3

[y11>N5,

c c c c

< + — + < .
NY* 14l =N,  1+Nj—lal = N4

Integration with respect to x; yields the last assertion. U

After these preparations, we turn to the proof of uniqueness. From the following theorem, f = 0 implies that already
the propagating part up,, has to vanish.

Theorem 3.2. Let again f € L*(R?) and q € L¥(R?) have support in Q := (0,2z) X (=ho,ho) andu € H, (R?*) a
solution of Au + k*(n + q)u = —f in R? satisfying the open waveguide radiation condition of Definition 2.5. Then,

— 1 , 1 )
Im/fudxs—EZ Y dejlac,l +EZ Y ejlacl* <o. (19)
Q

JET €14 ;>0 JEJ 112, ;<0

Proof. Choose yy € C®(R) with wn(x;) = 1 for Ix;1 <N and wn(x;) = 0 for Ix;1 >N+1. For N > 6o+ 1 and
H > ho+1, we define the regions Dyy := (=N,N) X (-H,H) and W, = (-N - 1,-N) X (-H,H) and
W;H := (N,N +1) X (—H, H) and the vertical and horizontal segments I,y g := {£N} X (-H,H) and I'y.yg :=
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(=N,N) x {£H}. We apply Green's theorem in Dy 1, to v(x) := wn(x1)u(x) (note that Q C Dy, p):

it
z / ﬁﬂds = / [IVv|2+1_)Av] dx
Intron Dyyru
= / [IVul® + uAu| dx + / [IVv]* + D AV] dx + / [IVV]* +VAV] dx;
Dy i Wi, Wy

that is, with Au = —k*(n + qQ)u — f,

Im/fudx— Im/ [IVv[® +vAv]dx+Im/ [IVv]* +VAv] dx

Wi Wyn
(20)
2 — ou
Z cIm wyu—ds.
cE(+-) ox;
’ FN+1,JH
;) ou

We note that Av = —ynyk*(n + q)u + Z‘VNa_ + wNu and Vv = yyVu + uyye® in W5, where eV := (1,0)". The
decomposition u = u,q + Uprp yields four terms in each of the three integrals on the right-hand side of (20).

(a) First, we look at the first two integrals on the right-hand side of (20). We define vV(x) := wx(xX;)uq(x) and
VA (X) 1= yn(X1)Uprop(x) and estimate the terms

ay ;.0 = / [VW.V])(K)_FWAV(K) dx

+

N.H

forj, £ €{1, 2}. Then, with (15),

+ 2
|aN’H(17 1)' S c ”urad”}p(w; + C”urad||H1(W+ \W1\+Jho+1)

N+1
< CIIudeIHl(W+ +C/ / X5 px1)? dxy dxy (1)
0+1
N hy+1<|x,|<H

< CYNH with

= Wl + 12 [ ot )
N<|x;|<N+1
and Qy := WN gt U WNh a=1ixe R2 : N < |x;| < N+1, |xz] < ho + 1}. Analogously, since ||upmp||H1(W;

and || Viprepl| H\(W,,) are bounded with respect to N and H,

1/2
| H(l 2)' + |a H(2 l)l < c ||urad“H1(W+ + “urad”Hl(W+ \W;h0+1) S c \/ yN,H'
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For a}, ,,(2,2), we apply Green's theorem:

ou prop 2 auPVOP
a;\—I,H(Z’ 2)=- / Uprop ds + Z 4 / Wy Uprop —axz ds
Inn N<x3<N+1
X, =cH

ou
_ prop +
= — / Uprop a—)qu + ﬁN,H

Iy
with Iy := {N} x Rand
aquP auprop _
|ﬁ]-\'/:,H| S Z / W]%] uprop?ds‘ +‘ / uprop dS < ce 20H
— 2
N N<x <N+1 B\
Xy = ocH

The same estimates hold for ay 50> 0)s that is, the integrals over WS o Therefore, using Lemma 2.6, we have
shown that

Im/ [|Vv|2+§Av]dx+1m/ [IVVI* + v AV| dx

Wy Wyn
ou
prop prop
—Im/ Uprop ——— ds + Im/ upmp ds+ce ™ + ¢ [ynu + \rna| (23)
IN
S—_Z Z/lfjlafjl +_Z z/lfj|afj|2+ce 2§H+C[yNH+\/7NH]
jel /lfl>0 jel Afj<0

(b) Now, we look at the third integral on the right-hand side of (20) and decompose again u into u = g + Uprp-
Using Cauchy-Schwarz and (15), we estimate for o € {— 1,1}

/ v

FN+1,0H

T OUprop i rad | OUprop
rad — 5 70, 7o,
6x2 prop 0x2 prop aXZ

ds

0 Urad
dxz

OUprop
(3x2

+c ” MPVUP ”L2 CNp1om)

< c||trad ”LZ(FNH_GH)
L*(Cnyrom)

L*(Cnyrom)
OUprop

= < ¢ [Hllpllen VN + N| et
2

+c ”uprop”Lz(l"NHﬁH)

L2(Cys1,0m)

Finally, we consider /r y/N umd Ind s, We approximate u,,q by functions u Wthh satisfy the homogeneous
Helmholtz equation for Ix2| > H. To do thls, we restrict ourselves to the region x, > hy and set um 1= uN + WZ, for
X, > ho where uy, is the unique radiating solution of Auy, + kK*uy, = 0 for x, > ho and u} (X1, ho) = Uyaa(x1, ho) for
Ix;1 <N and u;\f,(xl, hg) = 0 for Ix;1 > N, while the function w;; is defined as the unique radiating solution of

- " ‘g for hog<x, < H
Aw' + Kwt = Zje] Zle Qg j@y¢,j 10T Ng o) s
" " 0 for x, > H,
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and w}; = 0 for x, = hy. Then, uy; and w}, are given by (compare with (13))
N
e = 2 / rad(y1, ho) —H(”ac\/(xl M+ (6 = o) dyr, X, > ho,

N

H o,

wi () = Zam / / G*(x, ) pr,j () dy1dy2, x2 > ho,
jel =1 s,

and it is easy to show by modifying the proof of Lemma 2.7 that

u G0 + |Vu 100] < expnn),

() = 1/ )]+ |V () = w5/ 0) | < exalp0) = pwC)] + o e,

for all x € R? with x, > hg + 1, where p, py € L>(R) n L®(R) are given by (16) and (18), respectively. The functions
”1:1 ’f for x, < —hy are defined analogously. With ', .y :=R X {+H}, we decompose

OUrqd
2 ra
u ds
/ W Urad ox,

Unpram
— ouNH P N.H
N,H rad 2 Urad N,H rad
= rad ds + VN | Urad rad ds
ax2 dxz ()x2
oo, +H FN-H.iH
7 My 7 My
— U ds + (WN—l)u d ds
ra 0%, ra 0%,
Foo,iH\rN-%-l,iH FN+1,1H\FN,1H
0 N.H
_ N.H rad
- urad axz dS + ’7N¢H,
1—‘ocx:H
where
N.H aurad
1N er| < €lltrad — U, ) ey, Y
X2 L2 n)
N.H
+ el OUrad _ auﬂ
rad LZ(FN-H +H) axz axz
LUy an)
NH (24)
N.H rad
+ellu, 2w, \Cy )
rad oo +H \! N.+H axz
L2 (Foo.tH \FN.iH)
2 2 2
< cH ol / [p(x1) = pn(x)|?dxy + cH / pn(x1)"dx;.
|x, |<N [x; [>N

Now, we show that the imaginary part of o /r 1:1 f a;d ds is non-negative. Indeed, we take the Fourier transform
.oH

uN’H(CO,Xz) = (Fumd )(a), .X'Z) for oXy > H. Then,

— oM y
NI a;“zd ds = / iy g1(, cH) iy (0, oH) doo. (25)
I —00
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Furthermore, a}\’, l@,x) + (k* — @*) iy i = 0 for Ix,| > H and satisfies the radiation condition (14). Therefore, fiy 5
has the form
. N g, Hy et VK== for x, > H,
Unp(@,X%) = § iV (—x,—H
an (0w, —H) e V-1 for x, < —H,

and thus, oiiy y(w, cH) a;v y(@,cH) = i|inu(w,cH )|?Vk? — w2, and its imaginary part is therefore non-negative.
Atthis point,weset N := N,,, where (N,,) is the sequence from Lemma 3.1. Then, from (22) and (24) in combination

3 2
with the estimates of Lemma 3.1, we conclude that yy x < cllumdllf{1 Q) + c% and |ny, +r| < c}%. We choose

H = H,, such that the reminders converge to zero, for example, H,, := N,ln/ 10 Then,

. 0
2 climsup| Im / WN. Urad Yrad
" &xz

ce{-1,+1} m= oo

ds| >0,

U+ 10Hp,

and, from (23),

liminf | Im / [IVvI* + VAV dx + Im / [IVV]> + VAV dx

m-—oo
WI\+Im<Hm N -Hm
1 2 1 2
< a Z D dejlas?+ s Z Y dejlacl®.
JEI 4 ;>0 JEI 2,,;<0
Estimate (19) follows now from (20). O

We are now able to prove (partial) uniqueness.

Theorem 3.3. Let Assumptions 2.2 and 2.3 hold, and let u € Hlloc(]Rz) solve the problem (1) for f = 0 and the open
waveguide radiation condition of Definition 2.5. Then, u is a bound state; that is, u € H'(R?). In other words, k? is in the
point spectrum of —n%qA. In the unperturbed case q = 0, there are no bound states; that is, u = 0 follows.

Proof. From (19) of the previous theorem, we conclude that the coefficients a, ; vanish. Therefore, u = uy,q € H YWy
for all H > hy where again Wy := R X (—H, H). We now show that u =u,,4 is a bound state under a smoothness
assumption on its Fourier transform. The latter property is shown in Corollary 4.5 below.

From Green's theorem applied in Wy, we conclude (compare with (20)) that

— 90 ,oH
Im Z a/u(xl,aH)u();l—G)dxl = Im/ [IVul® = K*(n + @) |ul*] dx = 0.
oel+-1 J X2 W,
Transforming this equation to the Fourier space, we observe just as in (25) that (Fu)(w, +H) vanishes for all ol < k.
For lwl > k, we conclude again that

(Fu)(w,x;) = (Fu)(w, +H)e VK&~ for 4 x, > H, (26)

and thus, for lwl >k,

[s9)

y 2
[1Fw@sPdy = (Fua. i [ eV Fominay, - XL,
" " 2Vw? —k?

The integrand vanishes for lwl < k. The analogous formula holds for the integral /_f [(Fu)(w, x2)|? dx,. Now, we use
the fact that (Fu)(-, =H) is continuous in a neighborhood of @ = +k which we will prove in Corollary 4.5 below (set
g:=k?qu in this corollary). Therefore, the integral is integrable with respect to @ € R and, by Parseval's theorem,
u € H'(R?). This implies that u is a bound state.
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In the case g = 0, we recall that u satisfies the differential equation Au + k?nu = 0 in R? and, because of (26), the
generalized angular spectral radiation condition (10). Theorem 4.1 below implies that almost all « € (— 1/2,1/2) are
propagative wave numbers which contradicts the fact that there exist only finitely many of them. O

Remark 3.4. In the case of general g, we call this a partial uniqueness result in contrast to the complete uniqueness
result where in addition the absence of bound states has to be shown. For general g, such a complete uniqueness result
is not known to the author. For the unperturbed case g = 0, however, we have shown above the absence of bound
states under Assumptions 2.2. However, this assumption is not needed as proven in Hoang and Radosz.'’

4 | THE FLOQUET-BLOCH TRANSFORM AND QUASI-PERIODIC PROBLEMS

In this section, we collect properties of the Floquet-Bloch transform and quasi-periodic scattering problems. These results
are essential for proving existence of a solution and the asymptotics of the radiating part u,,4. As a standard reference for
the Floquet-Bloch transform, we recommend Kuchment's monograph.?® For ¢ € C5°(R), the Floquet-Bloch transform F
is defined by
F)xi,@) 1= Y pa +27£)e >, x,a €R.
el

Then, (F¢)(-, @) is a—quasi-periodic, and (F¢)(xy, -) is periodic with period 1. Therefore, we can restrict ourselves to
x1 €[0,2z] and @ €[—1/2,1/2]. Setting R := (0,27) X (—1/2,1/2) for abbreviation, F has an extension to an unitary
operator from L2(R) into L?(R); that is,

© 1/2 2x
/ Vo) w ) dx = / / (Fv)(x1, @) (Fy)(x1, a)dx de, v,y € L*(R). (27)
-0 -1/2 0

The inverse transform is given by
1/2

P() = / Fp)x,a)da, x; €R, (28)

-1/2

where (F¢)(-, @) has to be extended a-quasi-periodically into R. We note the following connection between the Fourier
transform F¢ of ¢ € L*(R) and the Fourier coefficients ¢,(a) of the a-quasi-periodic function (Fp)(- , a):

2r

FO +a) = —— / F)oxr, a)e % dyy = Gy(a). £ € Z, (29)
27
0

which is easily seen by decomposing R in the definition of the Fourier transform into R= | J .7 (277, 27(¢ + 1)).
With a slight abuse of notation, we use the symbol of F also for functions u of two variables. Therefore, let

(Fu)(x, %0, @) = Y ulx + 27¢,xp) e 2" (30)
¢el

for x € R? and a € R denote the Floquet-Bloch transform of u(-,x,) with respect to x;. Then, it is well known (see, e.g.,
Lechleiter?!) that F maps H*(Wy) onto

L2 ((-1/2,1/2), HXQ™M) := {v 12 : V@) € Hy(Q@Mfor almost allaand }

a > |[v(, @)||somis inL3(—=1/2,1/2)

for all s € R. Here, Wy := R x (—H,H) and Q" := (0,2x) x (—H, H), and H3(Q") denotes the subspace of H*(Q")
consisting of @-quasi-periodic functions. It can be characterized by the decay of the Fourier coefficients; that is, y &
HS(R?) if, and only if, f_°:o >,z + % + 0 |Pr(w)|*dow < oo where /() are the Fourier coefficients of the Fourier
transform ¥ (x;, @) with respect to x, which is itself e—quasi-periodic with respect to x;.
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From (11a), we note that uyg satisfies Auyg + K*nitgg = —g in R? where g = f + kK> quyaa + X ;) 221 as ;s and

thus A(Fueg)(:, @) + kK2n(Fpeg)(, @) = —(F)(-, @) in Q® := (0,2x) X R. The right-hand side (Fg)(-, @) is not compactly
supported with respect to x,. Nevertheless, we can rewrite the problem as a variational equation in a bounded domain
by well-known techniques using the Dirichlet-Neumann operator. This is done in the following theorem where we write
u for uyqq. In Theorem 4.2, we will prove existence and in Theorem 4.3 smoothness of the solution with respect to the
parameter a.

First, analogously to Q" := (0, 2x) X (—H, H) define the regions Q :=(0,2x) x (H, 00) and Q¥ := (0, 27) X (-0, —H),
recall Wy :=R x (=H,H)and letI'" := ((0,27) x {H})U ((0,27) x {—H?}) denote the horizontal part of dQ".

Theorem 4.1. Let g € L*(R?) with g(x) = 0 for Ix;| > 6 and |g(x)| < ¢e~®™! in R? for some o, ¢,6 > 0.

(a)

(b)

(©

(@

For every a € [—1/2, 1/2], there exists a unique a-quasi-periodic solution wi € Hi loc(Qf_f) of AwE + kKPwi =

—(Fg)(, @) in Qf, w = 0 for x, = +H, which satisfies the generalized Rayleigh condition

2

) dwy () N
Z (signx;) ——— —iVk* = (£ + @)*w7 ,(x2)| — 0, X3 = *o0,
el dx; |
where W:’g(XZ) = \%—7r /027: wi(x)e “+@%dx, are the Fourier coefficients of wE (-, x,).

Letu € H, (R*)withu e H'(Wy) forevery H > hy satisfy Au+k*nu = —g in R* and the generalized angular spec-
trum radiation condition (10). Then, for almost all « € (— 1/2, 1/2), the transform i, := (Fu)(-,a) € Hi Q™)
satisfies

Jloc

Al + K*nil, = —(Fg)(-, ) in Q® (31a)

in the variational sense and the generalized Rayleigh condition; that is,

2
Y |sign i, () = iV = (7 + @) =0, bl = . (31b)

el
For fixed a € [— 1/2, 1/2], the problem (31a)-(31b) is equivalent to the variational equation
_ _ _ _ oW, —
/[Vﬂa -V — kKPnit, yldx — /(Aaﬂa)l//ds = /(Fg)(~,a)l//dx+/ (;A) yds (32)
QH rH oH rH Y

forall y € HY(QM) where A, : HY*(TH) — H,*(T") is the a-quasi-periodic Dirichlet-to-Neumann operator
given by

()i, £H) 1= —= 3 V= (7 + ap g (£H) %, x, € (0,27), (33)

27 se7,

forp e H;/Z(FH), and where 0w, /0v 1= +0w3 /0x, for X, = +H with the solutions w7 from part (a).
For fixed a € [- 1/2, 1/2], the variational equation (32) can be written as

(I = Kl = 1o in Ho(Q™), (34)

where r, € H:(QY) and K, is a compact linear operator from HL(Q™) into itself. The operator I — K, is invertible
if, and only if, a is not a propagative wave number.
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Proof.
(a) We show that wy is given by w;(x) = Y, 7w’ ,(xp)e“**™ for x € QY where the Fourier coefficients are
given by
WE () 12— / (Fg)s (3, ) [/ P bems
o — (¢ +a) (35)

_ ei\/kz—(f+a)2(i(xz+y2)—ZH)] dy,.+x, > H. 7 € 7.

Indeed, to show the generalized Rayleigh condition for w}, we split the integral from H to x, and from x; to oo
and compute

W, (00) = VI = (£ + a)wy (%) = _% / (F)r (y2, a) V=0 0am0) gy,

X

4
dx,
For IZ + al > k, we use the Cauchy-Schwarz inequality and estimate

2
' Wi, (0) — IV = (2 + aPw? ()

(s

< Z/ |(Fg)f(y2, a)|2dy2/e—2 V(E+a)?=k2(y,—x,) dy2

X2

= W/KFg)f(yZ’a)l dy,
o

and thus
2

dxiw:f(xz) —iVkE-(¢ + a)zw;"f(xz)

2

|6+a|>k
27 oo
SCZ/KFg)t’(YZ,a)l dy, = C//I(Fg)(yl,yz,a)l dy>dy,
el

and this tends to zero as x, tends to infinity. For |£ + a| < k, we estimate

' W, ) — VIE— (7 + 0t ()

o 27w

Y2, a)| dyl d}’2,

1
<! / |(Fe) (2, @) dys <
- 2 T

and this tends to zero as x, tends to infinity because (Fg)(-, ) € Ll(Qf ). In the same way, it is shown that

dw* (x2)
Z l dx—f V1+ 2 |w;—'f(x2)| <c [II(Fg)(',a)IILz(Q@ + ||(FR)(, (X)”Ll(Qf;)]
el 2
for +x, > H and thus w¥ € H! loc(Qf_f ) with
||W§||H1(Q5\Qg’) < Cum [“(Fg)('aa)”Lz(Qg) + [I(FQ)(, 05)||L1(Q1;)] (36)

for H' > H. We omit the proofs of uniqueness and the fact that w7 satisfies the differential equation.
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(b) The variational form of Au + k?nu = —g is given by

/[Vu-VW—kznuW]dx = /gﬁdx
R2 Q

for all w € H'(IR?) which vanish for Ix,| > H for some H > hy. From (27) and the fact that F commutes with
differentiation yields the equivalent form

1/2

/ / [Vi(Fu)(x, @) - Vi (x, @) = K*n(x) (Fu)(x, @) w(x, a)] da dx

Q» -1/2
1/2

= / / (FR)(x, )y (x, @) dar dx
Q -1/2

forally € L? ((—-1/2,1/2), HL(Q*)) which vanish for lx,| > H for some H > hy. For any y; € L(—1/2,1/2) and
any y, € Hp,(Q®) := {w € H(Q®) : (-, X,)is27 — periodic} which vanishes for |x,| > H for some H > hy,
we set w(x,a) 1= ™y (a)y,(x). Substituting this y € L? ((—1/2,1/2), HL(Q®)) into the variational equation
and the fact that /_11//22 y(@yi(e)da = 0 for all w; € L?>(—1/2,1/2) implies that y vanishes almost everywhere
yields

/ [Vx(Fu)(x, @) - Vi(el@iyn(x)) — k2n(x) (Fu)(x, @) (e y, (x)) dx
ro

= / (Fg)(x, a) (el 1y (x)) dx
Q

for almost all a and thus

/ [V (Fu)(x, a) - Vi (x) — k2n(x) (Fu)(x, @) w(x)] dx = / (Fg)(x, ) w(x)dx
Q Q

for all y € HL(Q®) which vanish for |x,| > H for some H > hy. This is the variational form of (31a). We leave it
to the reader to show that the application of (29) to (10) implies the generalized Rayleigh condition (31b).

(c) We define v, by v, := ii, in Q and v, := i, + w} in QY. Then, v, solves (in a variational form) Av, + k?v, = 0
in Q®\Q and Av, + k*nv, = —(Fg)(-,a) in Q¥ and v,l_ =v,l, on T¥ and dv,/dv|_ = dv,/dv|, — Ow,/dv on
', The reduction of this problem to the variational equation (32) is standard and omitted.

(d) Using

/ A)Wds =i Y Y VI2= (€ + a0 (cho) w(oho),
TH o€{+,—} ¢eZ
we write (32) in the form

/ Vi, - Vg + @ plde+ Y Y 11 (cho) we(oho)
Q

o€{+,—} |/|=k+1

- / Kn+DLgldc—i Y Y V- +aPrloho)yroho)
Q (o2

e{+.—} |£|<k+1

=Y Y - VEF 0 =] tucehwe(oho

c€{+,—} |£]|2k+1

= /(Fg)(-,a)de+/ d;va wds forall w € HL(Q).
Q

\2
TH
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Since the two terms in the first line describe a coercive sesqui-linear form, we can write these two terms as
(Ally, w)m (o) for some isomorphism A from H}(Q) onto itself (theorem of Lax-Milgram). By the representation
theorem of Riesz and the compact embedding of H'(Q*) in L?(Q¥), the remaining parts can be written as (Byily, W) (q)
for some compact operator B,. (Note that |£| — /(£ + a)? — k? is bounded!) Application of the theorem of Riesz to
the right-hand side yields an equation of the type (A — B,)il, = R, which has the form (34) with K, = A~'B, and
re =A7IR,. O

The following result answers the question of existence of solutions of quasi-periodic problems of the form (31a)-(31b).

Theorem 4.2. Let Assumptions 2.2 and 2.3 hold and let g, € L?(Q>) such that there exist ¢,6 > 0 with |g,(x)| +
|0ga(x)/0a| < e ™! for almost all x€ Q™ and all a € [— 1/2, 1/2]. Furthermore, for any propagative wave number
&; € [-1/2,1/2], let the orthogonality condition

/ g,00h() dx = 0 (37)
Qoo

hold for all modes ¢ € X ; corresponding to the propagative wave number &;.
Then, for every a € [— 1/2, 1/2], there exists a a-quasi-periodic solution v, € Hi 10c(Q%) of the equation

Av, + K*nv, = —g, in Q% (38)
satisfying the generalized Rayleigh radiation condition (31b).

Proof. From parts (c) and (d) of the previous theorem, we know that (38) is equivalent to the variational equation (32)
(with g, replacing (Fg)(-, @)) and

Lyve = R, in Hy(Q™), (39)

where r, € H:(Q") and the linear and bounded operator L, from H}(Q) into itself are defined as

Lav, W)y = / [Vv- Vi — kK*nvy]dx — / (Av)y ds,
Q T

— ow, —
(RaaV/)Hl(QH)=/gade+/ 5 v ds
Q H

for all v,y € HL(QM). Then, L, is Fredholm with index zero and « is a propagative wave number if, and only if, L,
fails to be invertible. For propagative wave numbers «, this form (39) allows the application of Fredholm's theorem:;
thatis, L,v, = R, is solvable if, and only if, R, is orthogonal to the null space of the adjoint L}, of L,. This is indeed the
case for this particular form of the right-hand side and follows directly from the following properties of the operators
L, and the right-hand side R,. Let « = & be a propagative wave number.

(i) The null spaces N'(Lz) and N (L) of L; and L7, respectively, coincide and are given by the restrictions to QY of
the space of corresponding modes.
(i) The Riesz number of L, is one; that is, the geometric and algebraic multiplicities of the eigenvalue zero coincide.
(iii) For every mode ¢ corresponding to &, we have

(Rﬁt?d;)Hl(QH) = /g&(x)%d&
QDO

where g; is again the right hand side of (38).
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Proof of (i): L;¢ = 0 is equivalent to (L, ¢)pn(ony = 0 for all y; that is,

/[w V¢ — kKP*ny pldx — /(Aay/)ads = 0; that s,
VH l"H

/[w Vo-Enydldi—i Y Y V(€ +a)?yrcH)d(oH) =0
o ce{-1,+1} reZ
for all y € HL(QM). If « = & this yields, by taking y = ¢ and the imaginary part, that ¢,(+H) = 0 for |£ + &| < k; that
is, ¢ is evanescent and also L,¢ = 0.
Proof of (ii): Let ¢ with L2¢ = 0. Then, w := Ly € N (Lz) = N'(L}), and thus, ||W||Hl o = W.La@)ony =
(L;ftw, ¢)H1(QH) = 0; that is, w = 0.
Proof of (iii): We compute (note that w, vanishes on I'*?):

» > owz 7 aE
(R&,(l))H](QH):/g&(ﬁdX-F/ lw¢_gwa‘| ds

Qi TH
=/ga7¢3dx— / [EAwa—w&AE] dx
Qf Q=\QH
= /gaﬁ_i)dx— / g [AW@, +k2W5,] dx = /gagdx
Qt Q=\QH Q

This ends the proof of (i)-(iii) and, in particular, existence of a solution for every a €[—1/2,1/2] under the
assumption (37). O

Smoothness with respect to a is shown in the following theorem.

Theorem 4.3. Let all of the assumptions of the previous theorem hold and, in addition, let, for some open bounded
neighborhood U c C of [- 1/2, 1/2], the mapping a > g, be holomorphic from U into L>(Q), thus analytic (see Colton
& Kress'). Furthermore, let there exist ¢,5 > 0 with |g,(x)| + |0g4(x)/0a| < ¢e~®P! for almost all x€ Q® and all a € U.
Furthermore, for any propagative wave number &; € [—1/2,1/2], let the orthogonality condition (37) hold. Then, we
have the following:

(@) The solution v, of (38)-(31b) (which exists by the previous theorem) can be chosen such that the mapping a +— v, is
continuous as a mapping from [— 1/2, 1/2] into H' (Q) for every H > hy. Again, Q" :=(0,27) x (-H, H).

(b) Let & be no cut-off value. Then, the mapping a — v, has an extension to an analytic mapping from a neighborhood
W c C of & to H'(QY) for every H > h,.

(¢) In a neighborhood (& — 6, & + 6) C R of a cut-offvalue & € [-1/2,1/2], the function v, has the form

— v(l) +Va (2) +Va (3) +a— (4) (40)

with analytic functions a — v(’) j =1,2,3,4, from a neighborhood W c C of & into H'(Q¥).

Proof. We transform the equation L,v, = R, into the 2z-periodic form and define the operator J, : HI},E,(QH ) -
Hy(Q™) by (J,v)(x) := e™v(x) and set Ly := J;'LoJ, : Hp, (QY) = H,, (Q") and 7, := J;'R, € Hp,,(Q7) where
H ;er(QH ) denotes again the space of periodic (with respect to x; ) functions. Then, L,v, = R, is equivalent to L,¥, = 7,
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where L, and 7, are given by the forms

=~ S . 0V — 2 2N —
(Lav,lI/)Hl(QH) =/ |:VV Vl[/—zlaa_xll[/—(k n—aua )VW dx

’ (41a)
-1 Y Y V= v o),
o€{-1+1} reZ
7 —iax ) —iax; oW, (X) ——
(ra’ W)Hl(QH) = /e 1ga(x)y/(x)dx+ / e ITW(X)CIS
Qt TH
B / ¢, () p () dx (41b)
QH

+ / Gur(0y,) V-0 gy v, (6 H)
{ =141} r€Z

forv,y € H;er(QH ) where we used the form (35) of the Fourier coefficients of w,. Then, L, and 7, depend continuously
onreal a € [—1/2,1/2] and, for any & € [-1/2,1/2] which is not a cut-off value, analytically on « in some neighbor-
hood W, C U of &. We prove only the latter property. First, we note that the integral terms in the definitions of L, and
7, are analytic with respect to a. Furthermore, there exist c; > c_ > 0 and a neighborhood V C U of [- 1/2, 1/2] with

erl?] 2 Wk = (£ + )| 2 ImVk? = (£ + a)* > c_|/] (42)

for all €V and IZ1>k+1 and thus ’%\/kz—(f+a)2‘ = % < c for all a€V and I£1>k+1.

From this, we observe that the operator A; corresponding to the series Zl Ik aVk? = (€ +a)?v.(cH)y,(cH)
is analytic as a mapping from V into L£(Hp(Q")). The remaining part corresponding to the finite sum
E|f|<k+1 \/k2 — (¢ + a)?vs(cH)w(cH) is obviously continuous for « € VN [—1/2,1/2]. If & is not a cut-off value, then
k?>—(¢ + a)? & iR, for @ in some neighborhood W, C V of & and thus the remaining parts—and thus also L,—depend
analytically on «a in W,.

Next, we look at the right-hand side 7, and use similar arguments. With the product rule applied to
% [gaf(ayz)e"vkz—(f +a>2(y2—H)] , we have to estimate the series

/ [l 2] | V00| sy (o)

telL

for ¢o, r(¥2): =84, 2(6Y2), Par(y2) = gaf(UJ’Z)(J’Z - H)ii\/ — (£ +a)?, and ¢or(yy) 1= 2 ~-8a.r(0y2). We restrict

ourselves to ¢y ¢ (¥2) 1= 8o (62) (y2— H)l —1/k? — (¢ + ). Using the estimate |—\/k2 -+ a)z’ <cforlZl>k+1,
it remains to estimate

/ (02 = H)lge o9l [VFH0 | sy (o) |
1£12k+1 7

2

/(yz — H)|gar(0y2)] | elvk- <f+a>2<yz—H>| dy| D lyeleH)?

|f|>k+1 [£]>k+1
< ) / |8e.r (02)1* dy> / (y2 = H)?e21410:7 1y, N |yrp (o H)|?
|]12k+1 |€]>k+1
Scllq/”ip(QH) /|gaf(0y2)| dy2 < C”W”HI(QH /lgll(y)|2dy’
£12k+1 7

H
Q(r
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where again QY := (0,27) X (H, o) and Q¥ := (0,27) X (—oc0,—H). For the finite series over 17| <k+ 1, we use
that |g,.,(cy,)| < ¢e~%2 and |elVF~(“+®*0:-H)| < 1 for real values of @ which shows continuity of a ~ 7,. In the case

that & is not a cut-off value, we use for complex values a that there exists a neighborhood W5 c W, of & such that
Imy/k?> - (7 + a)? > -2 for all I/l <k +1and all « € W. Then,

/(Y2 — H)|gur(oy)| € kz_(f+a)z(y2_H)| dy, < C/()’z — H)e™002/2 gy,
H H

This shows the desired smoothness properties of A, and #,.

Standard arguments on the perturbation of an invertible operator imply the continuous dependence of the solution
¥, of L, ¥, = F, on a in a neighborhood of & provided & is not a propagative wave number and analytic dependence pro-
vided @ is neither a propagative wave number nor a cut-off value. It remains to study the case where & is a propagative
wave number. Note that in this case, & is not a cut-off value by assumption. Therefore, A, and 7, depend analytically
on « in a neighborhood of . In this case, L, fails to be invertible, but (by the analytic Fredholm theory, see Colton &
Kress!) L, is invertible in a neighborhood of &.

Let P be the projection from H,,,(Q) into the null space N := N'(L,) along the direct decomposition Hp,,(Q") =
N @R with range space R := R(L;) (note that the Riesz number of L is one) and set Q : = I—P. Then, we project the
equation L,¥, = 7, onto the subspaces. With the ansatz ¥, = vaN +V® € N + R, we arrive at the equivalent equations

PL, (Y +VR) = PFy, QL Y + V) = QF,.

Since QLz|z = Lalr is an isomorphism from R onto itself, the operators B, := [QL,|z] ! exist for all « in a neigh-
borhood W c W; of & by a perturbation argument. Solving for v¥ from the second equation and substituting this into
the first equation yields

PL,(I - B,QL VY = P¥, — PL,B,QF, in N,

which we write as C,v = s,. We note that C; = 0 and also s; = 0. Therefore, C,v¥ = s, is equivalent to ﬁ[Ca -
C&]vé‘f = ﬁ [s¢ — S&]- Also, Cy and s, are analytic in the neighborhood W of & with derivatives C), and s/, respectively.
We will show below that C/, is invertible in the finite dimensional space N'. Then, elementary arguments yield that
a vé‘/ has an extension to an analytic function in all of W and vé‘/ is the unique solution of C} vé‘/ = ). This implies
that also 7, depends analytically on a.

It remains to show that C/, is one to one. By the chain rule (note that PL; = LzP = 0), we compute C,v = PL!v for
v € N. Therefore, C,/;v = 0 is equivalent to

/ [—21';—;1W+2&1)W]dx+ Z Z ¢VK(GH)I//5(O'H)=O (43)

oe(-141) |t+al>k V(€ + a)? — k2
for all y € N. We extend v by

1 _ — _ .
V(x) = Vf(iH)e V(E+a)2—k2(|x,| H)elfxl , X > H,
27 |f+al>k

and analogously w. Then, we observe that the second term on the left-hand side of (43) is just

[ [—21’ %’W + Z&VW] dx. Therefore, C;v = 0 is equivalent to
Q= \QH '

/[—mﬂwn&vw dx =0
axl
QDO
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for all modes y corresponding to &. In terms of the quasi-periodic modes ¢ := Jzv and § := Jy, this is written as
od —
/ _¢¢,dx =0
8x1
Qoo

for all modes . Therefore, ¢ vanishes because @ is regular. This ends the proof of parts (a) and (b).

(c) We go back to the periodic equation L,¥, = ¥, where L, and 7, are given by (41a)-(41b), respectively. The
decomposition k = 7+x with Z € Nu{0} and k € (— 1/2, 1/2] shows that the propagative wave numbers in [— 1/2,1/2]
are given by @ = x or @ = —x. We consider first the case @ = x and assume first that ¥ < 1/2.

We look again at the second term in the definition (41a) of L, which contains the square roots v/k? — (£ + a)2. We
split the series into the series over # # # and the term with # = 7. This term defines the two-dimensional operator
E(a) from H},,(Q") into itself by

B@whinon = iVIe+ &+ a [ DY + )~ . p.v € HhrQ),
and the operator L, has a decomposition in the form

Ly = B(a) — \/k — aE(a),

where E and B depend analytically on « in a neighborhood of a = .

Now, we look at the right hand 7,, given by (41b). We split the series again as above and decompose ¢ V ¥~ +@?*(>=H)

into
A VE=C+a?-H) _ oq [\/ k2 — (£ + a)*(y, — H)]
sin [ k2 — (€ + a)X(y, — H)]
+i\/1<—a\/k+f+a

=a1(y2, @) + VK — aax(y2, @)

with analytic functions a;, a, in a neighborhood of @ = x which satisfy

k2 — (£ + )?

la;(ys )] < ce Im\/ 2=+ (1,-H) < (o002—H)/2

for j =1,2andy, > H and « in a neighborhood W; C U of . From this, we observe that fH°° 18a.c(6¥2)||a;(y2, @) dy2
exist and 7, = ?f,l) + /K — (x?,(f) where Tfff ) is analytic with respect to a € W; for j = 1, 2.

Therefore, L, ¥, = ¥, is equivalent to

[B(a) Y s aE(a)] B = PV 4 1/ — a72. (44)

Since the cut-off value & = « is not a propagative wave number by Assumption 2.2, we conclude that L, = B(x) is
invertible and thus also B(«) in a neighborhood W C W} of k. Since the operator on the left-hand side of (44) is a small
perturbation of B(k) = L, the solution is given by the Neumann series as

B = ) [Vx — aB@ BE@]"Bl@) ' [Fy) + x — a1,
m=0

Therefore, sorting this series with respect to even and odd powers of 1/x — a = /& — @, we conclude the form ¥, =
f)fxl) +Va-— af)ff) and 175,“ depend analytically on « in a neighborhood of « = k¥ = &.



KIRSCH W I L EY 23

The case @ = —x > —1/2istreated in the same way and leads to the singularity 1/« + @ = v/ a — @ in aneighborhood
of @ = —k.

The cases k = 0 or k¥ = 1/2 are more complicated. For example, if « = 0, then k = # € N, and one has to split the
series in L, into the series over ¢ ¢ {+zf - } and into the terms with +7. This leads to the splittings

Ly = B(@) = V/=aEi(@) = VaE_(a), Fo =1 + /=aF? + \/a i)
In the Neumann series, also powers of \/E \/—a = i|a| appear which gives the forth term in (40). The case ¥ = 1/2
and & = +1/2 is treated analogously. O
By the proof, we observe that all of the four terms in (40) appear only in the cases xk = 0 or k = 1/2; that s, ifk € %N .

Remark 4.4. During the proof, we have shown the existence of 6y, cy, c}l > 0 (independent of g, ) such that

[Vl @ry < cu [sup I7glmnqry + sup ||a7’ﬁ/5/3||H1(QH)]
pel pel

(45a)
< ¢y [sup lIgsllLaa(g=) + sup ||agﬂ/aﬁ||L<1~2>(Qm)]
pel pel
foralla el : = Ujej[&j —6n,&; + 6y] C Rand
Vel < cullallmen < cjllgallLanos) (45b)

for all @ €[—1/2,1/2]\ I where 7, is defined in (41b). For the second estimates, we use (41b) and (36). Here,
lIgllzaa(o=) = Igllzr Q=) + 11&llz2cQ=)-

For the proof of Theorem 3.3, we needed the following implication of Theorem 4.3.

Corollary 4.5. Let Assumptions 2.2 and 2.3 hold and let u € Hlloc(Rz) with u € H{(Wy) for all H > hy satisfy Au +
k*nu = —g in R? where g € L?(Q). Then, the Fourier transform (Fu)(-,x;) of u(-, x2) with respect to x; is continuous in a
neighborhood of @ = +k for all |x,| > hy and, even more, (Fu)(-,x;) € WH(=R, R) for all R > 0.

Proof. We decompose k again as k = Z +x with Z € NU{0} and « € (— 1/2,1/2]. Then, +« are the cut-off values and,
by (29),

2

(Fu)(xk,x;) = (Fu)(=( + k), x;) = L / (Fu)(x1, Xz, ) €7+ dy
N

where Fu denotes the Floquet-Bloch transform, defined in (30). Therefore, it suffices to prove continuity of
a— (Fu)(-, @) in a neighborhood of +«x. By Theorem 4.1, Fu satisfies (38) with g, = (Fg)(-, ). Furthermore, +x
are no propagative wave numbers by Assumption 2.2. Application of Theorem 4.3 yields the desired continuity.
Differentiation of the decomposition (40) yields that d(Fu)(-, @)/« is integrable. O

5 | EXISTENCE

In this section, we will prove existence of a solution under the Assumptions 2.2 and 2.3 and, in the case that g does not
vanish identically, under the additional assumption that no bound states exist. The main part deals with the unperturbed
case g = 0 in which complete uniqueness has been shown in Theorem 3.3. The general case will follow by a compactness
argument. Therefore, for given f€ L2(Q), we consider first the problem to determine u € H ;OC(RZ) which satisfies

Au+k*nu =—f in R? (46)

and the open waveguide radiation condition of Definition 2.5. We note that existence has been shown (for the half-plane
problem or the case of scattering by an inhomogeneous cylinder in R?) in Kirsch!® and Kirsch and Lechleiter!'? by the
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limiting absorption principle. In this section, we will give a direct proof; see also Kirsch.!* With the propagative wave

numbers &; for j € J and their modes (ﬁ,;, ¢ =1,...,m;,je](determined in (6)), we define the coefficients a, ; € C as
agj 1= Ijﬂll /f(x)qsf,j(x)dx, £=1,..,mjjel. (47)
¢.j
Q

Therefore, we have to solve Equation 11a for g = 0; that is,

m;
Alygg + K*nu = —gin R? with g 1= f + z Zaf,j(pf,j, (48)
jel =1

where ¢ ; are given by (11b). Furthermore, u,q has to satisfy the generalized angular spectrum radiation condi-
tion (10). The plan is to take the Floquet-Bloch transform of this equation, show solvability for all « € [— 1/2, 1/2] (without
exception) with Theorem 4.2 and continuity with respect to « with Theorem 4.3, and apply the inverse transform.

We note that the right-hand side g of (48) is in L>(R?) n L}(R?) (and has even compact support with respect to x;).
Therefore, for every a € [— 1/2,1/2], we try to solve the Floquet-Bloch transformed equation; that is, find v, € H‘i (Q*™)
with

Joc
Av, + k*nv, = —(Fg)(-,a) in Q® =(0,27) X R, (49)

satisfying the radiating condition (31b). Here, Fg denotes the Flochet-Bloch transform of g, defined in (30). The right-hand
side Fg has no compact support but decays exponentially to zero as Ix;| tends to infinity. Furthermore, Fg is analytic
with respect to @ € C (because the right hand side g of (48) vanishes for Ix;| > ), and there exists ¢, > 0 such that
|(Fg)(x, )| + |0(Fg)(x, a)/da| < ¢e~®P! for almost all x€ Q® and all « € C with lal < 1. Therefore, to apply Theorem 4.2
of the previous section, we only have to show the orthogonality condition (37). This holds for the particular choice (47)
of ay j as we show now.

Lemma 5.1. For every propagative wave number &; the right-hand side gz, := (Fg)(-,&;) of (49) is orthogonal to
the eigenspace X; (see (4)) in L*(Q*). Therefore, by Theorem 4.2, the problems (49) and (31b) are solvable for all
a € [—1/2, 1/2] without exception. Furthermore, by Theorem 4.3, for every H > hy, the mapping a+— v, is continuous
from [—1/2,1/2] into H (Q"), and there exists c;; > 0 which is independent of f such that ||ve || iy < cull f llz2(q) for all
ae[-1/2,1/2].

Proof. Recall the definition of gand thus Fg = Ff + ¥, Z:Zl as jFoe j, where @, are defined in (11b). Since be,
is &;-quasi-periodic, it follows easily from the properties of the Floquet-Bloch transform that

O ;%)
6x1

(Foe )x, @) = 2(Fy,)(a, a — &) + (Fy )1, @ — &) e ()

for # with 4,; 2 0. (Note that | € L?(R) in contrast to v, itself) Since (F w,)(, p) is p-quasi-periodic, its Fourier
series is given by

Fyl)n, ) = —— 3 FuE + P,

\/E el

where we used (29) for the relationship between the Fourier transform Fy and the Fourier coefficients of the
Floquet-Bloch transform (Fy,)(:, ).

With (Fy)(0) = \/LZ_” 5 whde = i\/%—”, we can write

L PVLED) iiesim | g ¢ 7,

9
V2r ox /o7 i(¢+p)

Py &)
1 9 Z(Wi)()elfxl’ﬂez’

2
FyDea.p) =9

+ _—

—2r \/ﬂaxlf#o it
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which we abbreviate as (Fy’,)(x1, ) = izi op + %pi(xl,ﬁ) where 6; :=0forf ¢ Zand 6y := 1for f € Z and
+ ,, )
obvious meaning of p... This allows us to write

0z ;(x)

6x1

For ), a) =+

N

50[—&/

0dr;(X) 92

0 A
+2—p (X, — @ + —pi (1,0 — & i(x
xlpi( 1 /) ox; ax%pi( 1 /)¢f,j( )

Sa-a, + Axf)ﬁj(x, a) + kzn(x)f);j(x, @)

for # with A, ; Z 0 where ﬁij(x, a) 1= pi(x,a — &j)(i;f’ ;(x) is a-quasi-periodic.

Now, the proof of orthogonality is not difficult anymore. Let « = &;, for some j, €J and (]’Sfo,jo € Xj,- Then,

me [Afz;—f!j(-, a;) + kznf);—f!j(-, a jo)] 434), j, dx vanishes by Green's second theorem and therefore

(Fg)(x &) e, o () dx

/ EN0 &) boydx+ Y Yar, / (Fopr )%, &) b, j, () dx

JEJ =1

0
=/(Ff)(x,a/0)¢gojo(x)dx+ZZafJSIgn /1”—50 . / ¢f;(x) B
- JjeJ =1 0>
= / F L)X 85,) e, j, 0) dx + Zaf,omgn A, / ¢;’°(x) be, jox) dx

Qoo

e, ,(X) 7
(Ff)(x ajo)('bfolo(x)dx-i- afoJoSIgn ’1570]0 / Td)fojo(x)dx =0
Qco

by the properties of quJ from (6), the definition (47) of a, j, and the fact that Ff=f because f has support in Q.
Application of Theorem 4.2 yields existence. In (45a) and (45b) of Remark 4.4, the norm ||V ||z (or) is estimated by
18allzio>) + I8« llz2(@~) and its derivative with respect to a. We observe that g, = (Fg)(-, ), defined in (48), depends
linearly on (Ff)(-, @) =fand (Fe¢ ;)(- , a). Therefore,

ml
lgellie= < ¢ [Ifllw@ + Y, Dlacil| < ISl

JEJ =1

for all « where p = 1 or p = 2. The same estimate holds also for the derivative with respect to a. This proves
boundedness of f + v, from L*(Q) into H'(Q¥) uniformly with respect to a« € [—1/2,1/2]. O

Now, we are able to prove the main result of this section.

Theorem 5.2. Let Assumptions 2.2 and 2.3 hold. Furthermore, in the case q # 0, we assume that no bound states exist;
that is, there is no non-trivial solution u € H*(R?) of Au + k*(n + q)u = 0 in R?. Then, there exists a unique solution
u e Hllo C(Rz) of the source problem (8) satisfying the open waveguide radiation condition of Definition 2.5 for every
f€ L?(Q). Furthermore, for every H > hy, the mapping f — u is bounded from L?(Q) into H'(Wy).
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Proof. For q = 0, the solution u is given by the inverse Floquet-Bloch transform

1/2

u(x) = /v,,(x)da, x € R?,

-1/2

where v, denotes the solution of (49) and (31b) which depends continuously on « and is extended as an
a-quasi-periodic function into R2. By the uniform boundedness of f +~ v, from L?(Q) into H'(Q), we conclude that
(x, @)+ v,(x) belongs to L? ((—1/2,1/2), Hy(Q")) and thus u € H'(Wy) with ||ullmw,,) < cull fllz2 by the mapping
property of the inverse Floquet-Bloch transform.

It remains to study the case of a general q. Let S: L2(Q) — H'(Q) be the linear and bounded operator which maps
feL*(Q) into ulg where u solves (8) for ¢ = 0 and the radiation condition. For arbitrary g, the solution of (8) is
equivalent to the fixpoint equation u = S(f +k?qu) for u € L*(Q). Since S is compact from L?(Q) into itself, uniqueness
implies existence. O

6 | THE ASYMPTOTIC BEHAVIOR OF THE RADIATING PART

It is well known (see, e.g., Fliss & Joly'#) that for closed waveguides the radiating part of the solution decays exponentially
as Ix; | tends to infinity. This follows also from the analog of Theorem 4.3. Indeed, in this case, no cut-off values exist, and
Theorem 4.3 implies analyticity of a = (Fuy.q)(-, «) in a neighborhood W c C of [-1/2,1/2]. Then, we can modify the
path [—1/2,1/2] of integration for the inverse transform

1/2
Urad(X1 + 2708, %) = / (Flbrag) (X1, %2, @) €2 *da, x € Q®, ¢ € Z,

-1/2

depending on the sign of £. We choose the path to be a = t+(sign #)zifor t€[—1/2,1/2] where r > 0is chosen such that
Fu,qq is analytic in the strip | Ima| < 7. Then, it follows that |u,.q(x; +277,%,)| < ce 27! for |£] > 1; that is, u,qq decays
exponentially with respect to x;. T

The situation is different in the case of an open waveguide because of the existence of cut-off values.

Theorem 6.1. Let Assumptions 2.2 and 2.3 hold. For all H > hy, there exists ¢ > 0 such that ||U,uq]| md) < IKILW for

all ¢ # 0. Here, QY := (2x¢,2x(¢ + 1)) x (-H.H) for ¢ € 7. In particular, u,,a € W"'(Wy) for all H > hy and
x> (1 + X3 2Upaq(x) is in H{(Wy) forall p < 1 and H > ho where again Wy :=R X (—H, H).

Proof. Letagain k = £+ Kk with? e Nu {0} and k € (— 1/2,1/2]. For the different cases of kx, we define open sets I,
I, and/or I5 and corresponding functions y1, y», w3 € C®(R) with suppy; C I; as follows.

Casel: If |k| < % we define I := [-1/2,1/2], I := (-1/2—¢,1/2+ e)\{xx}, ], ;= (k — g,k +¢e),and [3 :=
(—x — &,—k + ¢) for some small £ > 0 (the latter only if ¥ # 0.) The functions y; are chosen such that
2 ;wj(a) =1 for all « € I (partition of unity).

Casell: Ifx =1/2wedefine!l :=1[0,1],; := (—¢,14+¢)\{1/2},and I, := (1/2—¢,1/2+¢). The functions y1, y, are
chosen such that y; (a) + yz(a) = 1 for all @ € I. In any case the inverse Floquet-Bloch transform is given by

Upad(X1 + 2708, %) = / (Fuipaa)(x, )¢ “da = ) / w;(a) (Fuirgg)(x, @) €2 *da
I J I

forxe Qf and ¢ € Z. (Note that we can choose any interval of length one as domain of integration because
of the periodicity of (Fu,,4)(x, -)) In the following, we restrict ourselves to the first case. The second case is
treated as the case k = 0.

 Actually, such an estimate holds only in the H'-norm and not pointwise; see below.
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The integrand of the term containing y, vanishes in a neighborhood of the cut-off values +x and is therefore smooth
by Theorem 4.3, part (b). Furthermore, since y; = 1 in neighborhoods of +1/2 and since (Fuq)(X, -) is 1—periodic,

partial integration (two times) yields

1/2
/ Y1(@) (Firag) (-, @) e dax < %-
12 HI(QH)

Next, we consider the case containing y; for j €{2, 3}, that is, by part (c) of Theorem 4.3 for v, = (Fu,uq)(:, @),

1/2
(@) (Filyag)(-, @) € *da
21/2
1/2 12
= / wi(a)vy e da + / wi(@)|a — a|ve e da
-1/2 2172
1/2
+ / y;(a) [V& —av? + Va - &VS)] e2rtagy,
-1/2
where @ = x or & = —x if j = 2 or j = 3, respectively. Two times partial integration of the first term gives O(1/£2)

(note that w; vanishes near +1/2). Also, the second term can be partially integrated twice and gives O(1/¢2). Partial

integration of the third term yields

1/2
/ yj(a) [\/& - avff) +Va-— &vff)] i2ma
-1/2
1/2
i2rt Ja \
-1/2
a+e
i - / . v (any — L u,j(a)vf) o27ta gy
idrnt 7 — —
a—e
a+e
_— / (\/& e [Wj(a)vff)] +Va-al [ll/j(a)vff)]) o2ty
i2nt da oa
a—e

The second term on the right-hand side is again of order ()(1/£?2). For the first integral, we write

a+e

1 1 i
/ < u/j(a)vf,,z) - —y/j(a)vf)) e % dy
F & —a Va—a

G+e
e2rlady — v(A3) e2rlady + /17((1) e2rta

G+e

_, /; /;

& T & <
Ge VET X Ge VETX e

with

A

Ba) = i@t =] - —== [ws@? -]

a—a a—a
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We show that v € W ((-1/2,1/2), H/(Q" )). Indeed, for the first term, which we denote by v;(«), we compute

wy(a) 1

_ @ _,@ 1 [ A <2>]
da 2(& - ) ["’1(“)" ]+ Vi —a 00 vi@ve'|-
We estimate (note that y;(&) = 1)
@ _ @
Ia |w’(a)v Y || gy
(14
1 [ @) @)
- — P ap| < max | S fwon]|
o — & /aﬁ Vi s llop 1™ o)

HY(QH)

This shows that dv,/da satisfies an estimate of the form ||dv,(a)/da||m sy < ¢/4/|a — &|. The second integral is

estimated in the same way. Therefore, the integral /_11/ /22 P(a)e?" *da is of order O(1/|#|) by partial integration. Finally,

we compute

a+e

e i2a [l 7] / L intayy,
J Va—-a

a—&
£

Vz—w/%

e—iZIL'fada - { 1-iy2r, £ — oo,

. 0, - —oo,

—&

by Lemma 7.3 of the appendix, and analogously

a+te

o an 1 . 0, £ > oo,
e—lZ;rfa lzﬂ,lbpl/ elanada N {
—s A -2, £ - —co.

a—e

Therefore, we conclude that

1/2
o . i | 72,7
lim |f|3/2e_12”fa (Fllra)(-, a)eLanada — _m ?2 — 00,
f—to0 4z V7, - —oo0,
21/2 ¢
. 1/2 ;
in H'(Q"), and thus ||”rad||H1(Q§) <l /_{/Z(Furad)('»a)eﬂ”fada”Hl(QH) < C/|f|3/2.
To show that u,,g € W-(Wy), we estimate
/[lurad| + |Vurad|] /[|urad| + |Vurad|] dx
W, el QH
< VarH Y, (ltmallizgn + 1Vl )
tel

teL |£]>1

<c Z ||urad||Hl(QH <c l”umd”Hl(QH) + Z |f|3/2] < 00
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Analogously, for p €0, 1),

/(1 +xf)”|umd|2dx= Z/(l +x%)p|umd|2dx

Wy el o
< 24 21p 2
< 2 L+ 21+ 1747 lugaal 7, g,
¢el

<c l(l +47°) ttradl 3o gy + Y, [1+ (1] + 124z 127
1£1=1

<c [1+ > |f|2”‘3] < o

[Z1=21
because p < 1. The proof for the derivative follows the same lines. O

We note that by the trace theorem umlll-h0 IS Lﬁ(l‘ho) forall p < 1 whereI',, :=R X {ho} and

LyTy,) = {¢ € LX(Ty,) / A+ 61219t ho)|Pdt < 00}, (50)

equipped with its canonical norm || - || L2(T,)-

After the investigation of the asymptotic behavior in x;-direction, we turn to the study of the behavior in x,-direction.
We will prove the Sommerfeld radiation condition for u,,q in the upper and lower half planes {x € R? : x, > hy + 7} and
{x € R? : x, < —ho — 7}, respectively, for every z > 0. We note again that in R*\Wj, = {x € R? : |x| > ho}, the part
Urqq satisfies the inhomogeneous Helmholtz equation

m

J
2
AlUpgg + K Upgg = — E E asj@e; for x| > hy,
JEl £=1

where @, ; are given by (11b) and the radiation condition (10).

Theorem 6.2. Let Assumptions 2.2 and 2.3 hold. Furthermore, in the case q # 0, we assume that no bound states exist.
Letu € H}OC(Rz) be the unique solution of the source problem (8) satisfying the open waveguide radiation condition of
Definition 2.5.

(a) Then, uyg satisfies the Sommerfeld radiation condition

OUyad(X)
sup VIXlwaa@+  sup Vx| /L < oo, (51a)
x€R2, |x,|>hy+7 xeR2, x| 2ho+7 or
forall t > 0, and
3}
\/r sup Irad0) _ ikuga(0)| = 0, r = o0, (51b)
X€ES?
forallt > Owhere S* := {x € R? : |xy| > hg + 1, |x| =1}
(b) There exists a unique function u® € C(S') with
sup e \/ritg(x) — u®@/r)| = 0, r - o, (52)
X€EST

forallt > Owhere S’ = {x € R? : |x| = 1, x, # 0}.

Proof. We restrict ourselves to the upper half plane {x € R? : x, > ho}. Recall from (13) that u,,q(x) is explicitly given
as the sum of a volume potential v;(x) on (= 69, 6¢) X (ho, ) and a double layer potential v2(x) on I, :=R x {ho}.
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We show the assertions separately for v; and v,. Estimate (51a) for v;(x) follows directly from (A2) of Lemma 7.1 of
the appendix for h = hy. To show (51b), let € > 0 be arbitrary. (A2) implies the existence of h > hy with

kvl + Vx|

ovR(x)
or

<% forall xeR?,
2 0

where ¥, is defined in (A1) of Lemma 7.1 of the appendix. The function v; — ¥, is a volume potential on the compact
rectangle (— o, 69) X (hg, h) and therefore satisfies the classical Sommerfeld radiation condition (51b); that is, there
exists R > 0 with

<

Vx| ‘M — ik [y (%) = Dp(¥)] forall x e Rfio, |x| > R.

2
2
The triangle inequality yields

ov1(x)
or

Vx| —ikn(x)| < e forall xe Rﬁo, |x| >R,

which shows that v; satisfies (51b) even for ¢ = 0.

Defining v{*(X) by

0y

) = 7//(P(J’) [e_ikxy - e_ikfc'y*] dy>dyr, |X] =1,
0o hy

withy := \e/i:_Ak, one shows estimate (52) in exactly the same way using the asymptotics
TT
e e s 3/2
FHo U=y =y ==+ O (IX7?) , x| = o,
x|

uniformly with respect to £ = x/|x| and y from compact sets (see Colton & Kress!), and the obvious estimate

oy h
sup [v°(%) — v / / @) e — e dy,dy; | < ce™h.
=t oo hy

—0o Ny

Now, we turn to the double layer potential v,(x). This function has been investigated in Hu et al.?> We recall and
simplify their arguments for the convenience of the reader. First, we recall the asymptotic behavior (17) of the Hankel
function H(()l)(k|x — y|) and their derivatives. Let ¢ € L2(I',) be any function for some p < 1 where L2(I'y,) is the
weighted space from (50). We obtain for x, > ho + 7:

/ 60| ‘ang“adx— )| dsty)
Y2

yETy,
[l >1
1
< +1 h p
<cto )| /| | 901 O e e
11>
1
=cx+1 / 1+ y2)P/? ho) g
2 )l |>1( VT Rl a+ yi)!’/2 [ — y1)? + (G — hg)?]3/4 Y1
Y1

1
s ”(b”Lﬁ(rhn)\J / [y1122 [(x1 — y1)? + 6z — ho)?]3/? .

[»n1>1
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Now, we apply Lemma 7.2 from the appendix with g = 3/2. Let first [x;| <X, — hy. By the first estimate of Lemma 7.2,
we have

d 1+x 1
[ 100 [Sb = | dso) < ez, =2 < il =
2 X
yETy,
[yl >1
where we used x; — hy > hoﬁxz and thus (x; — ho)? > %(xf + (6, — ho)?) > 3 (h e —~__|x|? in the last estimate.

Second, let Ix;| >x, — hy. Then, by the second estimate of Lemma 7.2 (note that x; # 0 because x, > hg + 7),

/ 16O ‘aiyzHé”(klx—yl) ds(y)

y €Ly,
[y1]>1

< cllbllzqey (0 +32) VIl + 1 = Bl 2ber |2 < ¢ lbllgzqey VIR + X127,

|x|2. Since 2p > 1, we have shown the existence of a constant ¢ which is

because x; (x + (2 — hp)?) > 3 <(h oo
1ndependent of ¢ (but depends on = > 0) such that

VR [ o0l |k 50| dso) < gl (53)

y €Ty,
[yl > 1

forallx € R? with x, > hy + 7. The same estimate holds also for the gradient V, %H(()l)(klx— y|) by the same arguments.
2

Now, we specify the function ¢. First, we set ¢p=u,q. The estimate (53) and the boundedness of
Sup, >, wVIxl /Iy | <1|umd(y)| Hm(klx y|)‘ ds(y) for the double layer potential on the compact line segment

{y €Ty, : Iyl <1} implies the ﬁrst estimate of (51a). The same argument holds also for the derivative.
Second, for any a > 1 we set ¢o(y) = Uraa(y) for y € I'y, Iy11 > a, and ¢, (y) = 0 for y € I'y,, ly1| < a, and define v, by

i 0
va(x) = % / Urad(¥) a—Hg”(Iqx —yDds(y), xeR2 .
V2 0

y € Iy,
Inl <a
Then, by (53),
VI | 229 i) < V| 29— vy o)| +
0 0
+ Vi / e ||V HO (il - y|>‘ Tk '—Hg”aqx - y|>H ds(y)
0y, 0y, (54)
y €Ty,
[yi] >1

<Vl ‘ 0 — bevyo)

+1+ k)e”qba”Lﬁ(l"hn)

for all x € R? with x, > hy + 7. Let now £ > 0 be arbitrary. We choose a > 1 such that

<&
>

[»1>a

I +leldallzr,) = A+ k)?—’\J / [Uraa()I2(1 + yDrds(y) <
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For this fixed a, we note that v, is a double layer potential on a compact line segment. Therefore, v, satisfies the
classical Sommerfeld radiation condition, and we can find R > 0 such that

Vg ()

<
or

[x]| — ikvg(x) for all |x| > R.

£
2

By (54), this proves that v, satisfies Sommerfelds's radiation condition.
In the same way, ones proves (52) for v, with

N 0 ik .

vy (X) = Y/urad(Y)a_e lkxde(J’)s % =1
J y2
ho

(see also??). We omit this part. O

Remark 6.3. Finally, we note that we can weaken the assumption with respect to the source f. Indeed, a careful inspec-
tion shows that we can take f € H~!(R?) with support in K (as a distribution) where K is any compact subset of Q. For
example, we can think of /' = dy/dx; for some y € L*(R?) with support in Q. We sketch the necessary modifications.
In (2), the right-hand side has to be replaced by the dual form (f,y). The Floquet-Bloch transform of f still coin-
cides with f. In Theorems 4.1-4.3, the functions g and g, have to be replaced by f + g and f + g,, respectively, where
g € L’(R?) and g, € L*(Q™) decay exponentially with respect to x,. The orthogonality condition (37) and the form (47)

of a, j have to be replaced by (f, ) + /Qw 8a, () $(x)dx = 0 and ay, = I%I< f.de. ), respectively. Then, Theorem 5.2

holds, and the mapping f — u is bounded as a mapping from the closed subspace {f € H~}(R?) : suppf C K} into
HY(Wy) for all H > hy.
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APPENDIX

In the first lemma, properties of the volume potential with certain non-compactly supported densities are shown. We
setagain R? = {x € R? : x, > ho} and W}, = R x (ho, H).
0

Lemma7.1. Letg € L*(R} )with g(x) = 0forlx;| > 69 and |p(x)| < ¢e™2 forx; > hy for some oo, ¢, 6 > 0 (independent
of x). Define

Va(x) = / / PG (x.y)dyrdyr, x ER} (A1)

-0y h

for h > hy, with the Green's function G*(x,y) := i [H((]D(klx -y - H(()l)(klx - y*l)] forx,y € Ri with x # y. Here,
0
y* 1= (y1,2ho — y,)" is the reflected point at the line x, = hy. Then, v, and its gradient satisfy the estimate

1+x

m a+ I’l) e‘éh/z, X, > hy, (AZ)

[vh()| + [Vve(X)| < ¢
where c is independent of x € Rfl and h > hy. In particular, v, € Hl(W;I) for all H > hy and h > hy. Furthermore,
0
v, € Hllo C(Ri ) is the unique solution of the boundary value problem
0

0 for hg <x, <h,

— for x> h v, =0 for x; = hg,

Avy + kv, = {

satisfying the generalized angular spectrum radiation condition (10).
Proof. First, we show (A2). We know from Chandler-Wilde and Ross?® that for all a > 0, there exists ¢ > 0 with

A +x)A+y,)

+
6] < et

forall x,y € ]Rflo with |x —y| > a, (A3a)
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1 1
|V<G*(x, y)| < CM for all x,y € R? with |x—y| > a, (A3b)
e — yI3/2 o
|G*(x,»)| < cllnjx—y|| forall x,y € ]Rflowith O<|x—yl<a, (A3¢)
|V.G*(x, )| < = ¢ | forall x,y € R} with 0< |x—y| <a. (A3d)
=)

First, we consider Ix;1 <20 and x, <2 (if hy < 2, otherwise drop this case). In the definition of v, we split the region

of integration with respect to y, into {y, > h:ly, —xl <1}U{y, > h:ly, — x| > 1} and use the estimates of G* in each
of the regions. (Note that |y, < o) Therefore,

[vh(¥)| < ¢ / /e"s” [In |x — y|| dy: dy,

»>h %
|x2 —y2] <1
Co
1+
+c(1+x) / /e"sy2 —)1232 dydy,
X2 — 2|/
»>h %
|x2 = y2| > 1
1 30y 0o
< ce“s’“/ / [In |z|| dz1dz, + 60'0C/e_6y2 (1+y2)dys < ¢/ (1 +hye*h.
-1-30, h

Let now Ix;1 <209 andx; > 2. Wesplit {y2 > h : [y =% > 1} = {3 >h 1< |yp—X%| <x2/2}U{y > h :
|y2 = X2| > x,/2}. Then,

IvnGO] <c / / e |ln x - yI| dy dys

Y2 > h —0%
lx2 —y2 <1
%0
1+
+ C(l +XZ) / /e_§y2 —yz3/2dy1 dy2
|x2 = yal
»>h %

1< X =yl <x2/2

%o
1+
+c(1+x) / /€_§y2 —y2 dy1 dy2
0

X, — y2|3/2
»>h o
|2 = y2| > x2/2

1 30y

< ce /2 gm0n=D/2 / / [In |z]| dz: dz»

-1-30,

(o] (o]
_ _ 1+x _
+c(l+x)e 5"2/4/(1 + y2)e~2/2dy, +c(x/—2)32/2/(1 + yy)e 2 dy,,
2
h h

where we used the estimate y, =y,/2+y,/2>h/2 + (x, — 1)/2 in the first integral and y, >y,/2 + x,/4 in the second
integral. Combining this with the estimate for x, <2 implies

1+x

()| < c—2—
[V ()] T+ P2

(1 + h)e /2 (Ada)
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for all x, > hy and Ix;1 < 269 and h > hy. Now, we consider Ix;| > 26. Then, ly; —x11 > Ix;1—69 > 1x11/2 > 6, and thus,

0 0

[vh(0)| < c(1 +x2)// _5y2 |3/2 dy, dy;.

We split the integral with respect to y, into {y, > h:ly, —x| >x,/2}U{ys > hily, — x| <x,/2}. For [y, — X1 > X,/2, we
have |x — y|?> > 4—1‘|x|2, and thus,

20

-ﬁyz dy,d / 1+ y)e 2 dy, —>

/h / |3/2 ydy, < ) (1+y2) Y2 (/20772

Y2 > - Y2 >
|x2 = y2| > x/2 |x2 = y2| > x/2
¢ (a4 yyedy, <« —C 1+ e (A4b)
|x|3/2 Y2 Y2 = 1+ |x|3/2 ’
h

Finally, since [y, > Ix;1— [y, —x21 > x,/2 for ly, — x| <x,/2, we have by estimating y, >y,/2 + x,/4

—5y —6x, /4 8y,/2
/ / 2 |3/2dy1dy2<e 2 /(1+y2)e 2 dy/le NG

y2>h -
lx2 = y2| <x2/2

/

1 c

< ce‘5x2/4—/ 1+ y)e ™ /2dy, < ———— (1 +h)e™/? Adc

TAEE 1+ y2) Y2 S TR ( ) (Adc)
h

(note that Ix;1 > 20 and x, > hy).

The proofs for the derivatives follow exactly the same lines. (Only the integral over In |x — y| has to be replaced by
the integral over 1/Ix — yl) Combining (A4a), (A4b), and (A4c) yields (A2).

From these estimates, it follows directly that v, € H'(W},) for all H > hy. By truncating the domain with respect to
¥, and using classical results on volume integrals on bounded domains, it is easily seen that vy, satisfies the differential
equation.

To show the radiation condition (10), we take the Fourier transform with respect to x; and note that the integral with
respect to y; is a convolution. By our normalization of the Fourier transform and the formulas 3. and 4. in Gradshteyn
and Ryshik,!” section 6.677, this yields

(th)(a),xz) k—/(]—“(p)(w y2) [ 1\/]{2 —w?|x,—y,| _el\/k2 @ (6, +y,~2h, )] dy
- w?

and thus, for x, > h,

AR e = Fu) = [ForoyeVFroay,

()XZ

For lwl < k, we just estimate

AIVND0) _ i+ fa — o (Pop(e,x2)

0x2

o0
_ c _
< c/e V2 dy, = 5¢ 8%

X
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For |lwl > k, we estimate

‘M — VI - 02 (Fup)(@.%)

6x2
©

< c/e“syZ‘V“’z‘kz(yZ‘xz)dyz =— & en
5+ Var — k2

X

Together, we have shown

’a(rvh)(w, %)
0x2

iV — 0? (Fup)(@,%)| € ——————¢™® (A5)
5+

@ =]

for almost all @ € R and x, > h where ¢ > 0 is independent of @ and x. Squaring and integrating with respect to @
yields the generalized angular spectrum radiation condition (10).

Finally, we show uniqueness of the boundary value problem. Therefore, letv € H}OC(Rf‘O) with v € H'(W}}) for all
H > hg be a solution for ¢ = 0 and ¢ = 0. The Fourier transform d(w, x,) := (Fv)(w, X,) satisfies

V' (w,%) + (K> — 0*)d(@, %) = 0, x5 > hy, Hw, ) =0,

for almost all w and the radiation condition (10). The general solution of the differential equation and the initial
condition is given by

@, x%2) = a@) [V VI |y >,

for some a(w) € C, and thus, ¥ (w, X;) — iVk? — @2V, %) = 2a(w)iV k% — w2e VK -0*@%=h) Therefore,

2 21/52 _ o2
¥ (w, %) — iVK2 — 0w, X) { 4a()|* VK — ?, lw| < k,

4la(@)|*Vw? — k2eVOKx%—h) " |p| > k.

The radiation condition (10) implies a(w) = 0 for almost all w; that is, v vanishes identically which proves uniqueness]

We recall the following auxiliary result from Hu et al.?2

Lemma 7.2. Forgiven 1/2 < p < 1 and q > 1/2, define I(x) by

1
Ix) := / dy;, xeR?,x, #0.
(a1 — y1)? + x3)9| 1 [ ' ’

[y11>1

Then, there exists ¢ > 0 with I(x) < clx,|7%4 for all x € R? with x, # 0 and also I(x) < ¢ [|x1 |~ + |x2|‘2‘1+1|x1|‘2”] for
x € R?withx, # 0and x; # 0.

Proof.
(a) Obviously, for all x € R? with x, # 0, we have

1 1 d 2 1
s [ = A [ 2 -
2|29 | y1 |2 |x2 %4 yil? 2p—1 |x|%

[y1>1 [y1>1

(b) We split the region of integration into y; with [y; —x;1> Ix31/2 and ly; —x11 < Ix;1/2. For x; # 0, we have

1 1 2%+
5 dyl < > 3 dy1 = >
[(71 —x1)* +x319 | y1| % (el /2)% | y1 ] 2p—1 |x|*
[yl >1 bl>1

[y1 —x1| > |x1|/2
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For y; with [y; —x;1 < Ix;1/2, we conclude that [y; | > Ix;1/2; thus,

1
7 > > dy
(1 —x1)* +x519 |31 ]*
[y1l > 1
Iy —x1| <x1/2
1 1 4» 1
< dy, = dy
—x1)2 +x219 (|x11/2)% 2 |29]x1 |2 / e \2 1
[y11>1 [(yl 1) 2] ! / ? ' ni> <y|1 Tl> +1
2
47 |x;, | / _ c
|x2|2q|x1 |2 ) (2 + 1)q 2 x|’

where we have used the substitution t = 2 ; Tl Therefore,
2

Ix) < e[l + e 7204 x| 7],

which ends the proof.
The following lemma is a simple consequence of the improper integrals 0°° &\/S; dt = 0°° %: dt =
Lemma 7.3. Foreverya > Oandoc €{+1, — 1},
_ " -
lim \/|T|/Le—i“da =(1—io) \/z
ocT—o0 A \/E | 2
- . -
¥m /lTl/Le—iTada — {(1—12)\/27[, ()'=1,1
ol—00 N o =—-—1.
L —a ﬁ =
Proof. Using the substitution ¢t = |T|a = oTa, the first formula follows from
a|T| alT| alT|

oot g 1 cost i 1 sm t

/f_’“d“_ﬁfw vmd v,

and
T

T /costdt Tim Smtdt \/Z
—)oo — 00
Y
For the second formula, we note that
a

a a
/Le‘m’ da = /Le‘m’ da + l/iem” da
i

a

=(1-1i)Re / L itagy (1-i)Im / L it da,
Va | Va

0

which yields the second assertion.
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