Software-Managed Read and Write Wear-Leveling for
Non-Volatile Main Memory

CHRISTIAN HAKERT, KUAN-HSUN CHEN, and HORST SCHIRMEIER, Technical University
of Dortmund

LARS BAUER, Karlsruhe Institute of Technology

PAUL R. GENSSLER, University of Stuttgart

GEORG VON DER BRUGGEN, Max Planck Institute for Software Systems

HUSSAM AMROUCH, University of Stuttgart

JORG HENKEL, Karlsruhe Institute of Technology

JIAN-JIA CHEN, Technical University of Dortmund

In-memory wear-leveling has become an important research field for emerging non-volatile main memories
over the past years. Many approaches in the literature perform wear-leveling by making use of special hard-
ware. Since most non-volatile memories only wear out from write accesses, the proposed approaches in the
literature also usually try to spread write accesses widely over the entire memory space. Some non-volatile
memories, however, also wear out from read accesses, because every read causes a consecutive write access.
Software-based solutions only operate from the application or kernel level, where read and write accesses
are realized with different instructions and semantics. Therefore different mechanisms are required to handle
reads and writes on the software level. First, we design a method to approximate read and write accesses to
the memory to allow aging aware coarse-grained wear-leveling in the absence of special hardware, providing
the age information. Second, we provide specific solutions to resolve access hot-spots within the compiled pro-
gram code (text segment) and on the application stack. In our evaluation, we estimate the cell age by counting
the total amount of accesses per cell. The results show that employing all our methods improves the memory
lifetime by up to a factor of 955x.

CCS Concepts: « Computer systems organization — Embedded systems; - Hardware — Memory and
dense storage;

Additional Key Words and Phrases: Non-volatile memory, wear-leveling, read-destructive, age approximation

This work was supported by Deutsche Forschungsgemeinshaft (DFG), as part of the project OneMemory (no. 405422836)
and the project SFB876 A1 (no. 124020371).

Authors’ addresses: C. Hakert, Otto-Hahn Strafle 16, Raum E20, 44227 Dortmund, Germany; email: christian.hakert@tu-
dortmund.de; K.-H. Chen, University of Twente P.O. Box 217, 7500 AE Enschede, The Netherlands; email:
k.h.chen@utwente.nl; H. Schirmeier, Andreas-Pfitzmann-Bau, Raum 3102, Nothnitzer Strafle 46, 01187, Dresden,
Germany; email: horst.schirmeier@tu-dresden.de; L. Bauer, Haid-und-Neu-Str. 7, Bldg. 07.21, 76131 Karlsruhe, Ger-
many; email: lars.bauer@kit.edu; P. R. Genssler, Pfaffenwaldring 47, D-70569 Stuttgart, Room: 3.170, Germany; email:
Paul.Genssler@informatik.uni-stuttgart.de; G. von der Briiggen, Otto-Hahn Strafle 16, Raum E19, 44227 Dortmund, Ger-
many; email: georg.von-der-brueggen@tu-dortmund.de; H. Amrouch, Pfaffenwaldring 47, D-70569 Stuttgart Room: 3.163,
Germany; email: amrouch@iti.uni-stuttgart.de; J. Henkel, Haid-und-Neu-Str. 7, Bldg. 07.21, 76131 Karlsruhe, Germany;
email: henkel@kit.edu; J.-J. Chen, Otto-Hahn Strafie 16, Raum E21, 44227 Dortmund, Germany; email: jian-jia.chen@cs.tu-
dortmund.de.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2022 Copyright held by the owner/author(s).
1539-9087/2022/02-ART5
https://doi.org/10.1145/3483839

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3483839

5:2 C. Hakert et al.

ACM Reference format:

Christian Hakert, Kuan-Hsun Chen, Horst Schirmeier, Lars Bauer, Paul R. Genssler, Georg von der Briiggen,
Hussam Amrouch, Jérg Henkel, and Jian-Jia Chen. 2022. Software-Managed Read and Write Wear-Leveling
for Non-Volatile Main Memory. ACM Trans. Embedd. Comput. Syst. 21, 1, Article 5 (February 2022), 24 pages.
https://doi.org/10.1145/3483839

1 INTRODUCTION

In recent years, non-volatile memory (NVM) has been considered as an alternative to DRAM
or SRAM for memory. Due to several drawbacks (e.g., a lower cell endurance), maintenance strate-
gies have been proposed in the literature to overcome the impacts. Memory lifetime is a crucial
issue when NVMs are considered, because it can shrink to hours or even minutes when no main-
tenance is applied [5, 9]. Therefore, wear-leveling strategies try to extend the memory lifetime to
the maximum by stressing all memory cells equally over time. Wear-leveling strategies can be cate-
gorized as aging-aware and non-aging-aware strategies, where aging-aware strategies investigate
the current cell ages to make adequate wear-leveling decisions. This requires precise knowledge
about the cell ages, which can be either gathered from special hardware or can be approximated
by software. Non-aging-aware strategies, in contrast, base their wear-leveling decisions on other
mechanisms (e.g., on random). Most aging-aware and non-aging-aware strategies usually only
target write accesses, because only write accesses wear out the memory cells for most NVM types.

Some NVMs, such as Ferroelectric RAM (FeRAM), are also read-destructive [18]. This means
that every read access also wears out the memory cell. For FeRAM, the reason is that read accesses
overwrite the current cell value and thus it has to be recharged subsequently [18]. Therefore, every
read access results in an automatic subsequent write access to the cell. This process is triggered by
the memory controller during every read access. Consequently, read accesses have to be considered
with the same impact as write accesses during wear-leveling if such read-destructive memories
are used. Although this does not imply a significant difference on the hardware level (especially
hardware-based wear-leveling), because hardware can simply be extended to track read accesses
as part of the wear-leveling, it does so on the software level. If wear-leveling is realized in software,
tracking and counting read accesses differs from write accesses. Read and write accesses happen
with different semantics on the software level, and indeed there is various “read-only” data in most
programs. Thus, the different semantics have to be considered during the design of software-based
solutions.

In this article, we study the design of software-managed wear-leveling, where we investigate
the design and usage of age approximations for aging-aware wear-leveling in the absence of spe-
cial hardware. By our software-managed mechanism, we hereby denote a solution that is not fully
independent of the underlying hardware and still requires a certain set of system features. We
rather consider solutions, which configure commonly available hardware components from the
software level and therefore can be implemented purely on the software level of state-of-the-art
systems. More specifically, our solution requires an MMU and performance counters, which can
be found in many recent application processors. The solution, however, does not propose a mod-
ification of the aforementioned hardware but only manages and configures it from the software
level to achieve the wear-leveling goals. A software-based solution in general must not be favor-
able over a hardware-based solution, but rather offers a wear-leveling solution for systems where
the required hardware support is not implemented, either on purpose to save chip space or be-
cause the system hardware is already configured. We further cover the destructive influence of
read and write accesses within our method, such that read-destructive NVMs can be targeted as
well. First, we design coarse-grained aging-aware wear-leveling, where we sample read and write

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

https://doi.org/10.1145/3483839

Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 5:3

accesses to the main memory with the help of performance counters and memory access permis-
sions. This provides us a statistical approximation of the read and write access distribution. We
feed this approximation into a virtual memory page based wear-leveling algorithm, which remaps
the physical memory pages behind the virtual memory pages in an aging-aware manner.

As an orthogonal, we further design non-aging-aware fine-grained wear-leveling, which re-
solves dense access hot-spots within memory pages. The application stack segment faces intensive
hot-spots of dense read and write accesses, whereas compiled program code (i.e., in the text seg-
ment) only faces read hot-spots. Targeting this, we propose a mechanism that moves the stack and
the text segment in a circular manner with small offsets through the physical memory while the
correct execution of the program is ensured. In combination with the preceding coarse-grained
aging-aware wear-leveling, we achieve allover wear-leveled memory, even in the presence of a
read-destructive main memory.

Our novel contributions include the following:

e An online read and write approximation to allow coarse-grained page swapping with respect
to read and write accesses.

o A fine-grained wear-leveling for the stack segment to avoid write and read hot-spots. The
stack is moved in a rotational manner while correctness of pointers is maintained.

o A fine-grained wear-leveling for the text segment to avoid read hot-spots. This approach
moves the text segment in a rotational manner to spread read hot-spots through a larger
memory area.

2 RELATED WORK

Over the past decades, several approaches for in-memory wear-leveling for NVM have been pro-
posed. These approaches can be categorized along different criteria. First, there are aging-aware
approaches [1, 2, 4-6, 11, 15, 17, 20, 24], which take the current cell age into account to apply
wear-leveling. In contrast, randomized approaches [5, 19, 24] apply wear-leveling in a circular or
randomized manner. Both approaches are often combined to achieve a randomized wear-leveling
on fine granularities inside of memory blocks, whereas an aging-aware approach is used to tar-
get these coarse-grained memory blocks. The granularity also varies from single bits [3, 23] over
cache-lines [19, 24] for fine-grained approaches to memory pages [1, 2, 5, 6, 20] or even bigger
memory segments [22, 24] for coarse-grained approaches.

Some approaches are not based on remapping the physical memory content through an ab-
straction layer, but hook into the memory allocation process of the operating system to apply
wear-leveling to the memory allocator [1, 15, 20]. Li et al. [15] also propose to use an allocated
memory portion, whenever a function is called, for the function’s stack memory to wear-level the
stack region.

2.1 Aging-Aware Wear-Leveling

Gogte et al. [6] propose a software-only coarse-grained wear-leveling approach by using a sampled
approximation of the write distribution. They make use of advanced debugging capabilities, such
as Intel Processor Event Based Sampling (PEBS), which allows them to sample the write requests
from the CPU. These debugging capabilities, however, can rarely be found in embedded systems
and resource-constrained hardware.

All other mentioned aging-aware approaches rely on the current write-count information of the
memory. Most approaches introduce specialized hardware into the memory controller to collect
the write-count information, which is not available in commonly available systems and might
be hard to realize. Dong et al. [4] use an offline recorded memory trace to estimate the write
distribution, which limits the approach to a subset of well-known applications only.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

5:4 C. Hakert et al.

2.2 Read Wear-Leveling

To the best of our knowledge, there are no dedicated algorithms for read wear-leveling in read-
destructive NVMs. However, hardware-based approaches that are not aging-aware or that directly
decide based on the wear of each cell are compatible with read-destructive memories by default. If
the wear is estimated from the write count, it could be also estimated from the read and write count
together. This implies that hardware-software interplay algorithms can obtain the accurate wear
estimation by extending the hardware to count read accesses as well. As long as generic mecha-
nisms (e.g., virtual memory page remapping) are used [1, 2], the modifications to the algorithms are
minimal. In contrast, when specific mechanisms (e.g., heap allocation or stack allocation) are used
for wear-leveling [14, 15, 20], then read wear-leveling cannot be integrated easily. Thus, another
special mechanism for read wear-leveling is required in those cases. In addition, for algorithms
that ship with their own write approximation [6, 9, 12], a specialized read approximation has to
be added.

To the best of our knowledge, this is the first work to propose a software-managed memory
read and write access approximation that does not rely on special debug capabilities. Furthermore,
specific algorithms are provided, which operate on application-specific data (stack and text), where
the algorithm for text is dedicated to read accesses only.

3 TARGET SYSTEM

In this section, we first scope the typical target setup of our proposed methods. Although
we do not limit our methods to specific NVM types, we consider certain properties regarding
the wear-out. We assume any cell modification wears out a cell equally. We further do not assume
iterative writing, and thus the number of memory accesses corresponds to the memory lifetime
linearly. In our proposed method, we target write destructive, as well as read-destructive, NVMs
by implementing an add-on for read-destructive NVMs. Although the read-destructive property
may not only be found in one NVM type, FERAM is the prominent example for such an NVM.
This, however, does not imply that our method is limited to FeERAM,; it could be also applied on a
non-read-destructive NVM, for instance, by not enabling the read wear-leveling.

The read-destructive property of FERAM stems from the fact that the reading procedure (i.e., the
sensing of a cell value) overwrites the cell [13, 18]. During the read operation, an electric field is
applied to the FeRAM cell and the transferred charges are measured, which polarizes the cell. To
maintain the original cell state after reading, the old value has to be written to the cell again.
This necessary subsequent write access makes FeERAM read-destructive. As the target system, we
consider embedded systems in resource-constrained environments, which have to fulfill complex
tasks and therefore also run complex software. These kind of systems can be found in automotive
controllers or in aerospace applications. Equipping them with NVM is desirable to increase the
memory capacity on low costs while maintaining a low energy consumption. In the following,
we scope our target system with respect to (1) the cache hierarchy and (2) the general memory
architecture.

The class of considered systems usually provides many features that are also available in normal
desktop computers. For instance, a complete MMU and virtual memory is often used to isolate
the address space of several tasks from each other or to restrict hardware access. However, this
does not imply that a full cache hierarchy is possible and useful. The clock frequency of these
systems is usually set to some hundreds of megahertz to reduce the power consumption. Memory
access latencies become less critical under this condition anyway, and a cache would not improve
the situation much but would consume further chip area. Additionally, to guarantee worst-case
execution times, scratchpad memory may be preferred over caches. Therefore, the memory wear-
out is reduced for the memory regions that are covered by the scratchpad memory, but not for

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 5:5

the other regions. These remaining regions still need a wear-leveling mechanism. In this article,
we focus on the worst case that all memory regions need wear-leveling. Because of the reasons
mentioned previously, our target system consists of an embedded processor with full MMU, virtual
memory, and no caches.

To overcome disadvantages of single types of memories (e.g., the lifetime of NVMs or the volatil-
ity of SRAMs), several systems implement a hybrid memory architecture [7]. For these systems,
more than one memory type is connected to the CPU (e.g., a FERAM and an SRAM) and mapped to
the CPU address space. The operating system and the application then can actively decide which
memory content should be placed in which memory, by storing it in the corresponding address re-
gion. However, in this work, we only assume one NVM as main memory in the system and develop
our solution for all memory segments allocated to this main memory for two reasons. First, if there
is a hybrid memory hierarchy with various memories, appropriate maintenance mechanisms for
the other memories can be applied separately. We then still provide a wear-leveling mechanism
for the NVM part. Second, even if a hybrid memory hierarchy is available, the allocation of mem-
ory segments may have to obey several constraints, which makes an arbitrary mapping impossible.
Hence, memory contents may still have to be allocated to the NVM, which wears it out rapidly. Our
solution provides a mechanism to improve the lifetime of a given mapping of memory segments.

As our proposed methods are software based, they need to run in an operating system like layer
to have privileged control over the running application. Even if a full operating system may not
be present for small embedded systems, a thin software layer is required to manage the hardware,
control startup procedures, and manage the control flow. Our methods can be implemented in
such a basic operating system as well. Although we focus on the described target system class
throughout this work, our methods are still applicable on other systems with appropriate modifi-
cations. For larger systems with caches, for instance, hits and misses would have to be properly
distinguished since the first do not wear out the memory but the latter do.

3.1 Implementation Platform

Since we assess our implemented methods regarding their wear-leveling quality in the evaluation,
we use a platform for our implementation where we can precisely extract the age (i.e., the total
number of accesses per memory cell). We use the full system simulation based framework from our
previous work [10]. This framework runs the gem5 simulator in combination with the NVMain
plugin for NVM simulations and a special operating system, which allows a sharp separation of
application and operating system memory. NVMain outputs a trace file for each simulation that
contains precise information about every memory access (i.e., read and write accesses).

Later in this work, we describe our implementation of wear-leveling strategies. We implemented
these strategies for the bare-metal operating system, running in the simulation framework as well.
Therefore, we can directly evaluate our algorithms in a realistic full system simulation and do not
rely on any high-level estimate by analyzing the resulting memory access trace from a simulation
with enabled wear-leveling. We further reuse the benchmark applications [10], since the code is
directly available with the simulation framework. Nevertheless, our wear-leveling techniques are
independent of the CPU architecture, and the concrete implementation and evaluation is done for
an ARM-based 64-bit application processor (ARMv8) due to the memory simulator [10]. Note that
a concrete implementation on a specific CPU architecture requires several specific implementation
details, which are also stated in this article. These details, however, can be reimplemented on other
CPU architectures.

4 PROBLEM ANALYSIS

To illustrate the need for wear-leveling and to justify wear-leveling for specific regions, we ana-
lyze the memory access behavior of a set of benchmark applications in this section and discuss

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

5:6 C. Hakert et al.

dijkstra lesolve sha
g 2 &
= sl S
B &
3« <« S«
2m : [} 2= -
g- i = g-
H = : g
232 kB 76 kB 364 kB
\(“ ~ ‘\/ W—IW \(s ~ AY
text data stack text data stack text data stack
gsort rijndael crc32
g g E

#accesses (W)
1E4
1E4
1E4

- | - —eem, ~ :
= =] % = .
B
— A B— — :
180 kB 428 kB 76 kB
y%—lv v%—ly
text data stack text data stack text data stack

Fig. 1. Benchmark baseline memory traces (write only).

the influence on the memory lifetime. The benchmark applications are presented in detail in the
following:

o dijkstrais part of the MiBench suite [8] and computes the shortest paths in a graph according
to the Dijkstra algorithm. The speciality of this benchmark is that the steps of the algorithm
are managed in a queue, which is stored in the data segment.

e lesolve is part of the NVM simulation setup [10] and solves a system of linear equations
according to the Gaussian elimination algorithm. This benchmark directly modifies its input
data.

e sha is also part of the MiBench suite [8] and computes the SHA-1 hash of given input data.

e gsort is part of the NVM simulation setup [10] and is a recursive implementation of the
quicksort algorithm. Therefore, not only is the input data modified, but the stack segment is
also used intensively.

o rijndael is part of the MiBench security suite [8] and encrypts given input data with the
rijndael algorithm. For this benchmark, the input is not read from a file but is read from a
region in the data segment itself.

o crc32 is also part of the MiBench security suite [8] and computes crc checksums on given
input data.

Since we target two different scenarios—read-destructive and non-read-destructive NVM
systems—we analyze both situations. For non-read-destructive NVM systems, we investigate the
total number of write accesses per memory cell, and for read-destructive NVM systems, we in-
vestigate the accumulated number of read and write accesses per memory cell. We execute the
benchmark applications as described earlier and illustrate the resulting memory access patterns
in Figures 1 and 2.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 5:7

dijkstra lesolve sha
g & g
5 5]
& 2 =
& e
s - = -
g e — b & g

& d !
i
< o <
Him— = — = R — —
232 kB 76 kB 364 kB
Y v “~ S~ e v Y
text data stack text data stack text data stack
gsort rijndael crc32

g g g

£ g g
g /
Z -
TI;"‘ H < ol
22 H = = —_—
g —_———————
* ~N ~N - N

= = =

8{— . - Bl -

180 kB 428 kB 76 kB
Y%—Iv
text data stack text data stack text data stack

Fig. 2. Benchmark baseline memory traces (write and read).

We observe that memory accesses happen at different rates on memory cells of the differ-
ent memory regions. Generally, despite large regions with uniform access patterns, dense access
hot-spots can be found. These hot-spots have a drastic influence on the memory lifetime, because
only a few cells wear out intensively, whereas other cells are not used at all. If these accesses
would be better distributed, the lifetime would be increased drastically. For non-read-destructive
NVMs (Figure 1), dense write hot-spots are mainly found in the stack, which stems from the way
stack memory is used. All other regions face less write hot-spots. For read-destructive NVMs, read
hot-spots can be also found in the text regions, because the compiled program code resides in this
region and is read during execution.

Overall, we deduce two objectives for our wear-leveling algorithms. First, the regions with dif-
ferent access frequencies have to be detected properly during runtime and have to be relocated
to other memory regions, according to the frequency of accesses. We propose a coarse-grained
aging-aware wear-leveling algorithm to fulfill this objective. Second, the dense access hot-spots
need to be resolved in such a way that the accesses are spread over a larger region of memory cells.
This reduces the stress of single cells and averages the wear-out to a larger region. We propose
two fine-grained solutions to achieve this: one for the stack segment and another one for the text
segment.

5 COARSE-GRAINED WEAR-LEVELING

In this section, we detail the proposed aging-aware coarse-grained wear-leveling. To assess the
age of a memory cell, the memory access behavior has to be tracked. If the current access be-
havior cannot be tracked by the hardware and no memory trace is known for the running ap-
plication, aging-aware techniques cannot be applied by default. To overcome this issue, we first

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

5:8 C. Hakert et al.

propose a software-managed access-distribution approximation technique, which estimates the
memory access distribution (i.e., the write and read count to fixed-size memory regions) using only
commonly available hardware support (i.e., MMU, performance counters, and interrupts). This ac-
cess approximation is implemented as a system service in the runtime environment (e.g., the op-
erating system). The access-distribution approximation can be subsequently provided as an input
to an aging-aware wear-leveling algorithm.

5.1 Write Access Sampling

As already introduced, the first step toward software-managed coarse-grained wear-leveling is a
proper approximation of the memory access distribution. Although capturing this approximation
for write and read accesses is mostly similar, we present the capturing of the write approximation
in detail first. Subsequently, we describe the additional steps required to also capture the read
approximation.

Several steps are required to record an approximation of the write distribution of an application

at runtime. First, we equally spaced sample every C:Varr:f;le th write access of the application, capture
e

its target address, and store it in an appropriate data structure. The number Csvzrrfl; 1. determines
the temporal granularity of the approximation technique, allowing a trade-off between accuracy
and introduced overhead. After capturing the write, the spatial granularity of the data structure
has to be considered as well. Storing the estimated write count for every byte introduces a big
storage overhead and leads to imprecise results, when the temporal granularity is coarse. Instead,
bytes can be related to larger memory blocks and the write counts are aggregated for every write
access into these blocks. For our implementation, we aggregate the write counts for 4-kB memory
blocks, because the wear-leveling algorithm considers this granularity (i.e., the decision is based
on memory pages). Using an 8-byte counter for every block, % - memory-size bytes are required
to store the approximated write distribution (e.g., 2 MB when 1 GB of main memory is tracked).

The detailed flow of capturing the target of every C*"*¢ th memory write access requires two
sample

techniques to be implemented. First, a trap has to be generated after every C;V‘(’z”; ; ;o [h write access,
and thus the approximation implementation can take action. Subsequently, the target of a memory
write access has to be determined and stored in the data structure. Both implementations are stated
in detail subsequently. Although the approach by Gogte et al. [6] allows to directly capture CPU
write requests at sampled intervals, their approach relies on a specialized debugging capability. Our
method provides an alternative that makes use of more widely available hardware features. Vogl
and Eckert [21] propose to use performance counters to specifically analyze instruction execution
of an application. We similarly make use of performance counters to analyze memory usage of an
application, in contrast, as described in the following.

5.1.1 Temporal Write Distribution Sampling. To generate a trap after every C¥’''¢ th write
sample

access of the application, we use the CPU internal performance counting mechanism. The
BUS_ACCESS_ST event in ARMv8 counts the total number of store requests on the memory bus,
and thus the number of write accesses of the application is recorded. For Intel CPUs, the same
behavior could be achieved by using a performance counter for writebacks of the last-level cache.
If no such performance counter is available in some system, any approximation (e.g., the cycle
counter or a timer) still can be considered. The performance counting mechanism allows to gener-
ate a trap when the performance counter C overflows (i.e., exceeds the value of Cyay = 232 —1). To

. write . ; _ (~write
establish traps on every C" pleth write access, the performance counter is set to Cipax —C}7 ple

during the handling of the overflow trap. When choosing the rate C'"" ’p ;> the introduced overhead
for trap handling should be considered.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 5:9

5.1.2 Write Access Trapping. As the last written memory address cannot be determined during
the trap handling of the performance counter overflow, a second technique is implemented to track
the target address of the next memory write. During the handling of the overflow trap, the memory
access permission for the tracked memory region is set to READ_ONLY. Note that the ARMv8 archi-
tecture allows hierarchical memory access permissions, allowing to configure memory regions of
1-GB size to READ_ONLY by only modifying one page table entry. Due to the READ_ONLY permis-
sion, the next write access causes a permission violation trap, which is handled as an synchronous
interrupt. The violation-causing address is available for the trap handler in a dedicated register,
which then is used to increment the corresponding counter in the write distribution approxima-
tion.! During the handling of the trap, the access permissions are set back to READ_WRITE ? Note
that this mechanism does not strictly require an MMU; it could also be implemented with a very
lightweight MPU on a microcontroller. However, if an MMU is present, the write access trapping
could be limited to a certain subset of memory pages. If, for instance, some timing critical applica-
tion relies of fast memory accesses, the write access trapping can be disabled for this application
on the cost of bad wear-leveling.

5.2 Read Access Sampling

To record a statistical approximation of read accesses, we follow the same two steps as described
before. First, we set up an architectural performance counter that counts read accesses on the
memory bus. By setting the performance counter value C manually to its maximum value Cy,qx =

2% — 1 minus a configurable sampling rate C! Z;‘n‘; 1 Whenever the counter overflows, an overflow

cad yead accesses. During the handling of the overflow, we set the

ample
memory permissions of all observed memory pages to NO_ACCESS, which leads to a permission

violation trap on read and write accesses. This violation trap is utilized to record the target of the
next read access. During the trap handling, the memory permissions are restored such that the
execution can continue. In consequence, this mechanism leads to a sampling of the current read

address every Cr¢4
sample

In our test system, the read approximation is used alongside the write approximation. Con-
sequently, both methods interfere with each other, since they both use the memory permission
system to trap a subsequent memory access. The write approximation only uses the READ_ONLY
permission, and therefore read accesses still proceed and the read approximation is not disturbed.
The read approximation in contrast uses the NO_ACCESS permission, and thus also a subsequent
write access causes a permission violation trap, even if currently no sample for the write approxi-
mation should be recorded. This requires tight cooperation between both approximators to ignore
these write traps. However, if the read approximator aims to record a read sample but the next
memory access is a write access, the write access has to be completed to continue the execution
and reach the read request finally.

To complete the write access, the memory permissions have to be relaxed to allow write
accesses again. To still trap the next read access, we utilize a debugging mechanism that sets
the memory permissions back to NO_ACCESS after the write access completed. Therefore, we

trap is generated every C!

read accesses.

IThe semantics of the performance counter and of the write access trapping mechanism differ slightly. Whereas the per-
formance counter counts every write to the memory, including cache writebacks and other indirect memory accesses, the
write access trapping only applies to CPU write operations, which require a fetch of a translation lookaside buffer line from
memory. However, this only implies that the distance between two recorded writes is not always Cs“’arr; t;le, but sometimes

write
Cs ample
2For our runtime system implementation, memory permissions are not used for any protection purposes. If this is the case,

the modified permissions might have to be backed up and restored later on.

+ x, where x is a small integer.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

5:10 C. Hakert et al.

replace the instruction after the write instruction with a breakpoint instruction.® As long as write
instructions cannot manipulate the program counter,* the subsequent instruction is guaranteed
to be executed. The breakpoint handler then replaces the breakpoint with the original instruction,
resets the memory permission to NO_ACCESS, and continues execution.

5.2.1 Instruction Execution Sampling. When read accesses to main memory are approximated,
instruction fetches to the compiled source code should be sampled as well, since they also are
memory read accesses. However, using the preceding mechanism would lead to only instruction
fetches being captured, since the first thing the CPU does after returning from the trap handler
that modified the memory permissions is to fetch the next instruction. Therefore, only accesses to
the text segment would be captured in the read approximation.

To overcome this, we do not observe text section pages for the read approximation and therefore
do not modify the permissions for these pages. Instead, we take a separate sample of the program
counter on every overflow of the performance counter (C] zfn‘;le), which leads to a separate and
independent approximation of the text segment.

5.2.2 Approximation Scaling. As pointed out previously, the read and write approximations are
used to estimate the age of memory regions and are fed forward to a coarse-grained wear-leveling
algorithm. To maintain the quality of the aging-aware wear-leveling algorithm, it is essential to
scale the read approximation according to the write approximation. The read approximation may
run with a different sample rate C:Zﬁl{fole than the write approximation C;"a’r:l; ¢, for performance
reasons. The wear-leveling algorithm, however, only gets the estimated cell age as an input, which
is the write approximation for a non-read-destructive NVM and the read approximation plus the
write approximation for a read-destructive NVM. Thus, the read and write approximation must
have the same weight.

The scaled read approximation csrizli , can be calculated in the following way: the required scaling
factor x, which has to be multiplied with the read approximation before it is submitted to the wear-
leveling algorithm, is calculated according to Equation (1).

read
sample

(1)

write
sample

5.3 Coarse-Grained Wear-Leveling Algorithm

The access-distribution approximation enables arbitrary aging-aware wear-leveling algorithms.
The algorithm does not need to be aware if it is running on a read-destructive NVM or not, because
read accesses have the same destructive influences as write accesses. Thus, the algorithm can
take the age as an input, which is computed from the sum of read and write accesses. We feed
the algorithm with an indicator from the access approximation, which estimates the age of each
page. Note that the approximation system only operates on virtual memory and does not consider
the mapping to physical memory pages. This is maintained by the wear-leveling algorithm itself.
The wear-leveling algorithm decides which virtual memory pages are relocated to other physical
memory pages and therefore maintains the allover age of the physical memory.

However, the interface between the approximation system and the wear-leveling algorithm has
to be well defined. We interleave our wear-leveling algorithm further with the approximation
implementation to reduce redundantly stored data. Our wear-leveling algorithm uses a red-black

31f the CPU does not provide debug instructions, the same behavior can be achieved by provoking an instruction abort
failure due to an invalid instruction.
41f the specific CPU allows this feature, this can be still detected by interpreting the current instruction.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 5:11

EA =25

Physical address:
0xa2000

Logical address:
0xb8000

Fig. 3. Organization of the physical memory pages in a red-black tree with their estimated age (EA).

tree to maintain all managed physical memory pages along with their estimated age [10]. As the
estimated age is already present inside of the tree nodes, there is no need to store these values in the
approximation implementation as well. The tree is illustrated in Section 5.3.1. Each page is stored
in the tree with regard to the estimated age, and thus a lookup and extraction of the youngest page
is efficiently possible. The approximation system maintains a temporary read and write counter
per virtual memory page and notifies the wear-leveling algorithm with an age increment action
if one of these counters exceeds a certain threshold. In consequence, the wear-leveling algorithm
increases the internal age value and relocates the physical memory content to another page.

5.3.1 Management of Memory Pages. Whenever a virtual memory page should be relocated to
another physical memory page, the current minimum (i.e., the physical memory page with the
lowest assumed age) is extracted from the tree as the target physical page and the estimated ages
are adjusted accordingly. The choice of the youngest page as a victim for wear-leveling leads to an
incremental wear-leveling, where every page becomes the youngest page after a certain amount
of time. Regarding the overhead, the wear-leveling algorithm is only called in this setup when a
memory page has to be relocated. Regarding the selection policy of the wear-leveling decisions,
the estimated age of all physical pages is balanced equally over time, because every page will be
the current minimum page at a certain time. This establishes a stateless incremental wear-leveling,
and the memory is assumed to be wear-leveled at any time and is kept wear-leveled. Therefore,
the system does not need to store ages across power cycles. The data structures of the access
approximation and the wear-leveling algorithm themselves need to be targeted by wear-leveling
itself, which requires a special implementation. These technical details, however, are outside the
scope of this work.

Eventually, this integration of the wear-leveling algorithm and the approximation system leads
to an additional configuration parameter, besides the temporal and spatial granularity of the write-
count approximation, i.e. the threshold n,.;,¢, after which number of estimated writes or reads a
relocation should be performed. This configuration parameter provides a trade-off between the
overhead of page relocation and the frequency, and respectively the resulting quality, of wear-
leveling actions without influencing the quality of the access approximation.

5.3.2 Memory Page Relocation. Once the wear-leveling algorithm determines a pair of two vir-
tual memory pages, and respectively their mapped physical memory pages, to swap, two steps are
required to perform the relocation. First, the virtual memory mapping in the page table has to be
adjusted accordingly such that the physical pages of both virtual memory pages are exchanged. A

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

5:12 C. Hakert et al.

translation lookaside buffer (TLB) maintenance operation is required afterward to ensure the
exchanged mapping is applied. Note that the ARMv8 virtual memory system allows single entries
to be invalidated in the TLB, and thus a total TLB flush is not necessary. After the new page map-
ping is established, the physical content has to be exchanged to maintain the application’s view
on the virtual memory. This is achieved by copying one page to a spare buffer, copying the second
page to the first page, and copying the buffer content to the second page. The size of the buffer
is chosen as 4 kB for two reasons. First, copying a sequential memory content can be done more
efficiently in most systems than copying single bytes or words from different regions. Second, the
write access pattern to the buffer memory page is completely uniform and thus has no negative
influence on the memory lifetime if it is also handled by the wear-leveling system.

6 FINE-GRAINED WEAR-LEVELING

Since the aforementioned algorithm in Section 5 only operates on the granularity of memory pages
(4 kB), only the average age of these pages is wear-leveled. In reality, programs use the memory
within each memory page very non-uniformly, and thus only a small portion of the page is used
intensively. In consequence, leveling the wear on finer granularities has high optimization poten-
tial if it manages to wear-level the intensive accesses to single bytes to all the rest of the memory
page. Maintaining an aging-aware algorithm as described in the previous section for such fine
granularities is not only hard to realize but also causes an immense overhead if estimated ages
are stored for single bytes. Therefore, we tackle this problem with non-aging-aware algorithms.
These algorithms operate on a small portion of the memory (only a few pages) and wear-level the
peak hot-spots within these regions to the entire region. The coarse-grained aging-aware algo-
rithm then still remaps the physical locations of the pages to wear-level them over the entire main
memory.

According to various benchmark runs, we identify the stack as the region with the most dense
peak hot-spots regarding read and write accesses and the text as the region with the most dense
peak hot-spots regarding read accesses. Consequently, we propose two algorithms to wear-level
these specific regions internally. Although both algorithms differ in the implementation, there is
a common concept—we employ a virtual memory region, called the shadow region, which allows
us to move memory content within a fixed amount of memory pages in a rotational manner while
maintaining full access to all memory contents at all times. We employ this mechanism to move
the entire stack and text region within a bounded region of multiple memory pages in small steps
(64 bytes in each step). This also moves the dense peak hot-spots in the small steps through the
memory and distributes the memory accesses equally. Considering that for our target system the
usage of heap memory is not very common, we do not focus on the heap section in this work. If
the application uses the heap, however, a similar mechanism as for the stack has to be employed.
The rest of this section details the specific implementation for the movement of the stack and text
during runtime.

6.1 Shadow Region

An arbitrary piece of memory can be shifted within a larger memory region by copying it byte-
wise to a new location. This can be also used to move some piece of memory from the bottom to
the top of some memory region, which may be a good strategy to spread dense peak hot-spots
within the copied memory. However, as long as the memory is in use, the movement is limited
because the active memory segment has to be at a consecutive address space and cannot be split.
For instance, if 90 bytes are used out of a memory region of 100 bytes, the actively used memory
can only be moved by an offset of at most 10 bytes before it would have to be split. To allow a full
movement of 100 bytes without splitting the actively used memory, we employ a special virtual

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 5:13

to t t2 13
]
Eﬁﬁ"ﬁ \"g%"g%
\\: _‘I \\ \\j:| \

I
Y

:
Fig. 4. The physical memory pages (each on the left) and the main and shadow virtual memory map (each

on the right) during the movement steps. The colored blocks contain the allocated and used memory; the
red color indicates that this block already performed the wraparound.

memory mapping, which we call the shadow map. We map the physical pages in the same sequence
twice into the virtual memory space into subsequent virtual pages.

Figure 4 illustrates the principle of the shadow region. The physical memory pages (each on
the left) are mapped twice to consecutive virtual memory pages (each on the right). We call the
second virtual memory area the shadow because the physical pages are shadowed there from the
main virtual memory map. When now the active memory content is moved through the virtual
memory, it may cross the boundary between the main and shadow (#; and t,). Still, the entire active
memory is fully addressable at consecutive virtual addresses, but the physical content performs a
wraparound within the bounded physical memory area. Once the active memory has crossed the
boundary entirely (t4), the wraparound is complete and the physical representation is the same as
in ty. Thus, the system starts to use addresses from the main virtual memory region now instead
of addresses from the shadow region. This process is repeated, leading to a rotational movement.
As the wraparound is managed in virtual memory, this method does not introduce a large memory
capacity overhead. The actual active memory has to be rounded up to multiple memory pages, to
ensure the shadow boundary resides exactly between two pages. This method is invasive in the
virtual memory system and the memory allocation service of the runtime environment, and thus
it has to be ensured that whenever the mapping of either the main or shadow map is modified, the
counterpart is modified as well.

6.2 Stack Movement

In combination with the shadow region map, we implement a mechanism to move the actively
used stack memory during runtime in arbitrary small steps. We achieve this by copying the stack
content to new memory locations. We implement several steps to keep the application’s perspec-
tive on the stack consistent in this scenario. The stack is relocated from time to time by adding
a small offset to the stack pointer (sp) and copying the old stack content to the according new
location. The logical view of the application always expects free memory bytes before (negative
offset) the sp and the already created stack content directly after (positive offset) the sp. As long
as the stack only is relocated within a consecutive memory space, this view can be maintained
easily. Due to the employment of the shadow region, a wraparound is achieved while the stack is
only moved into one direction. This leads to a rotational relocation of the stack.

6.2.1 Address Consistency. The concept of moving the stack in a circular manner is based on the
sp relative access of the stack region by C / C++ compiled applications. However, the sp relative
access is not the only way to access memory contents within the stack memory. Sometimes the
application requires to create pointers to variables inside the stack for subsequent function calls

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

5:14 C. Hakert et al.

or to store the pointer in a global data structure. Furthermore, pointers to variables on the stack
may also be moved out of the stack to some global or heap data structures. During a relocation of
the stack, the memory address of the variables on the stack changes, whereas the content of the
pointers stays unchanged. This leads to invalid pointers and thus a wrong application behavior.
To overcome this problem, we equip the stack relocation system with two pointer adjustment
mechanisms, which maintain the correctness of pointer contents over stack relocations.

To provide a mechanism to detect and adjust references to outdated locations within the stack
segment, we implement a page-based pointer consistency mechanism. Whenever the stack seg-
ment is moved by a small offset d (e.g., 64 bytes), the entire virtual memory location is replaced.
Given the stack segment allocates n memory pages, the setup (including shadow) consumes 2n
virtual memory pages. Instead of relocating from the former base address b to b + d, we relocate
the stack to the virtual address b +d + (2n-4096). Due to this, we can invalidate the virtual memory
map to the old location of the stack. Whenever the application now holds an outdated address and
tries to access it, a trap is raised and handled by the operating system. The trap-causing register is
adjusted to the current valid position of the stack segment and the execution can continue. Traps
for branches to outdated locations are handled similarly (Section 6.3).

The drawback of this mechanism is that the virtual memory address space is slowly consumed
and cannot be reused. However, a simple calculation shows this to be still useful: with a virtual-
address size of 48 bits (e.g., for many ARMv8-based CPUs) and 512 MiB being allocated for the
system (i.e., cannot be utilized by the consistency mechanism), 2.8 - 10!! pages are available. When
a relocation happens every second and the size of the stack is n = 8 memory pages, relocations
can continue for 136 years until the system runs out of virtual memory pages. This may exceed
the lifetime of most embedded systems by far.

6.3 Text Movement

The second mechanism for fine-grained wear-leveling in this work is a mechanism to move the
compiled binary code (i.e., the text segment). This mechanism again employs the shadow region
(Section 6.1) to allow a rotational movement of the entire text segment. In contrast to moving the
stack (Section 6.2), several different steps have to be performed to maintain the correctness of the
program during execution. The basic concept is again to move the text segment in small steps
(e.g., 64 bytes) through a subset of memory pages, to distribute the non-uniform read accesses
within these pages. To achieve this, we modify the running application to allow to move the binary
program code during execution.

6.3.1 Binary Preparation. As afirst step toward movable binary program code during execution,
we make the entire program code position independent such that it becomes independent of the
absolute address of the text segment. This can be achieved by using the gcc option -fPIC, which
generates position-independent code [16]. The resulting compiled binary code performs branches
and function calls always relative to the program counter (i.d., to the position of the currently
executed instruction). Accesses to global data structures (data and BSS), as well as external function
calls, are handled by the Global Offset Table (GOT) and the Procedure Linkage Table (PLT).
These tables can be accessed with program counter relative addressing. The tables are populated
with corresponding absolute addresses from the operating system (i.e., from the dynamic linker) at
runtime. The PLT also contains entries for internal functions (not external library functions), since
absolute addresses are sometimes used for further address calculation. To avoid any suppression
of these entries by the compiler, we compile the application as a shared library and load it into the
operating system at runtime. This requires partial linking, where references to external functions
and data structures are populated in the GOT and PLT.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 5:15

6.3.2 Relocation Routine. The actual movement of the text segment in small distances (e.g., 64
bytes) requires the following steps:

(1) Word-wise copy of the binary text
(2) Adjustment of page-based addressing
(3) Address consistency maintenance

(4) GOT/PLT maintenance

(5) PC relocation.

Whereas step (1) is a straightforward copy of single words to new memory locations, the sub-
sequent maintenance steps require some special effort. As mentioned before, we use position-
independent code to maintain the independence of the absolute address of the text. For ARMvS,
the compiler inserts adrp instructions for this purpose (i.e., to address the GOT and PLT), which
calculate an address relative to the 4-KiB page of the current program counter. Thus, whenever
such an instruction migrates from one to another 4-KiB page, we rewrite the instruction in step (2)
and reduce the immediate offset by 1 to maintain the offset calculation to the target. Since the
GOT and PLT addresses are always determined by these adrp instruction, we exclude the GOT
and PLT from the movement of the text segment. Step (3) employs the same address consistency
mechanism as described earlier (Section 6.2.1). Step (4) adjusts self-references to functions and
data elements of the application itself to allow the application to still generate correct pointers for
these (e.g., function pointers). We finally set the program counter to the according new position
and continue execution.

Overall, we provide two specialized mechanisms to move the stack and text in small steps
through the main memory. In combination with our shadow region setup, this movement becomes
a rotational movement, which spreads dense access hot-spots over a bounded memory region. This
the shadow setup operates entirely in the virtual memory space, and the mapped physical pages
can be still exchanged by the coarse-grained aging-aware mechanism meanwhile. The implemen-
tation only is modified to keep the double mapping of the shadow pages consistent. Thus, allover
aging-aware wear-leveling is achieved.

7 EVALUATION

In this section, we evaluate two main scenarios: (1) no-read-destructive NVMs and (2) read-
destructive NVMs. For the former, only a subset of the presented concepts is used, and for the
latter, all of the presented concepts are employed. For each scenario, we evaluate coarse-grained,
aging-aware wear-leveling first. As we already explained, this method cannot achieve optimal
wear-leveling, and thus we evaluate it in combination with the fine-grained approaches afterward.
First, we detail our evaluation setup and our analysis methodology, then we present the results for
our two main scenarios.

7.1 Evaluation Setup

As the technical setup for the evaluation, we use the simulation environment [10], where we also
implement our wear-leveling algorithms from Sections 5 and 6. Although the simulation setup ex-
ecutes a full system simulation and therefore our implementation would also run on a real system,
using the simulation features the key advantage that we can easily trace memory accesses and ana-
lyze them afterward. In this work, we consider byte-addressable non-volatile main memories only
(i.e., no block-based memories). Therefore, we only analyze the number of memory accesses per
cell and not additional effects, such as block erase in flash-based memories. We record memory ac-
cess traces for several benchmark applications for a baseline execution without any wear-leveling
and for the various combination of employed wear-leveling mechanisms. We always conduct a

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

5:16 C. Hakert et al.

full system simulation with a working implementation of the wear-leveling algorithms in the
runtime system. We then compare the total number of accesses for every memory byte and com-
pute memory lifetime indicators. For the scenario of non-read-destructive NVMs, we only take
write accesses into account, and for read-destructive NVMs, we consider write as well as read ac-
cesses. This also implies that the baseline (no wear-leveling) for both of these scenarios is different,
and we therefore report improvements in relation to the according baseline. Due to the fact that
our implementation is a small bare metal kernel, porting and running applications from known
benchmark suites requires manual code integration and the implementation of required system
services. Thus, we limit the evaluation to a small set of benchmark applications.

7.2 Analysis Methodology

For each recorded access trace, we aggregate the total amount of filtered accesses to every memory
byte. In addition to graphically illustrating the memory access counts over the memory space for
our six benchmarks, we consider the analytical gain in memory lifetime. We compute several
performance indicators:

. mean_access_count
° : =
Achieved endurance: AE oo acoess.count

Assuming that the memory cannot be used any longer once the first memory cell is worn
out,” the maximum access count across all cells determines the maximum lifetime. Please
note that this circumstance could be omitted by employing additional bad block management.
As long as bad blocks are only detected on a more coarse granularity than virtual memory
pages, the need for wear-leveling on the granularity of virtual memory pages and smaller
granularities still is present. Under perfect conditions, memory accesses could be arbitrarily
shuffled to other memory locations to make all cells entirely wear-leveled, which would lead
to the mean access count being applied to every cell. Therefore, the quotient of both indicates
the percentage of the possible ideal memory lifetime. We do not consider additional spare

memory in this evaluation.

i AEanalyzed
* Endurance improvement: EI = Zp==2==
aseline

Given the achieved endurance from the according baseline and another configuration, the
quotient of both indicates the improvement in the achieved endurance compared to the
baseline.

o Lifetime improvement: LI = 051“
Given the endurance improvement and the overhead OV (percentage of additional memory
accesses) of some trace, compared to its baseline, the gained memory lifetime can be
calculated by relating both. For instance, if an algorithm improves the endurance by a factor
of EI = 4 but causes OV = 100% overhead, meaning that due to wear-leveling the application
requires the double amount of memory accesses to complete, the lifetime of the total system
is increased by a factor of LI = 2.

For all benchmark runs, we calculate the AE, EI, and LI metrics.

7.3 Coarse-Grained Wear-Leveling

Our proposed implementation includes aging-aware coarse-grained wear-leveling, where the age
of memory pages is estimated by sampling accesses during runtime. In this section, we only execute
the age approximation and the memory page remapping, according to the remapping algorithm
(Section 5.3). We record the resulting memory trace and illustrate the total number of accesses per
byte graphically.

>We note that this assumption may be conservative. Single worn-out cells could be detected and excluded, which would
lead to further increased lifetime. However, this requires additional mechanisms.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 5:17

dijkstra lesolve sha

1E8
1E8
1E8

1E6
1E6
1E6

EL T Ry T A -

1E4
1E4
1E4

ﬂ' Lubd Q-l_'-‘-?"u_‘m‘ iy

#accesses (W)

1E2
1E2
1E2

g E g
232 kB 76 kB 364 kB
gsort rijndael cre32
g & g
g & g
S T T
§$. . . ; . 5 R ———— S b
i || —]
g N ARAS T : s -
2 | A Jgff!‘-‘-‘?—ﬂﬁl; . —_— N
(3] E = - (3]] &
=] = i L] Sl I N S A S S A S e
PEICTL - — -
< < <
g & — g
180 kB 428 kB 76 kB

Fig. 5. Coarse-grained wear-leveling (write only).

7.3.1 Non-Read-Destructive NVMs. In case of a non-read-destructive NVM, only write accesses
are approximated and the age is only estimated by the number of write accesses per memory page.
In Figure 5, we depict the total number of write accesses (y-axis) over the used memory space
(x-axis) for our six benchmark applications, when the age approximation and page remapping

algorithm are activated. We set the sampling rate of write accesses to C*"/'¢ = 2,000 and the
sample

notify threshold for the wear-leveling algorithm to n,.;oc = 64. The results show that the aging-
aware algorithm works out because the write accesses are distributed in such a way that all regions
of the memory are written with a similar pattern. However, write accesses are still not entirely
wear-leveled, which can be deduced from the huge amount of peaks in the figure. It can also be
seen that for the benchmarks with larger memory footprints (sha and rijndael), the simulation
time was not sufficient to target the entire memory space equally. If the application cannot run for
alonger time, the wear-leveling configuration would have to be changed to achieve more frequent
wear-leveling to overcome this shortcoming.

7.3.2 Read-Destructive NVMs. When the target system is equipped with a read-destructive
NVM, we enable the write and read approximation and estimate the memory page age based on
their cumulative amount of read and write accesses, because both are assumed to cause the same
wear-out. The wear-leveling algorithm remains unchanged; just the input (i.e., the estimated age)
is different. We keep the configuration of the write approximation and the remapping threshold

as in Section 7.3.1. We further configure the sampling rate of read accesses to cread — — 13 000,
sample

because read accesses happen at a much higher ratio than write accesses. Figure 6 illustrates the
total amount of cumulative read and write accesses (y-axis) over the memory space (x-axis). An
observation similar to that in Figure 5 can be made: the aging-aware wear-leveling works out, even
with respect to destructive read accesses. Still, it can be observed that coarse-grained wear-leveling
is not sufficient to achieve an allover wear-leveled memory. The applications with larger memory

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

5:18 C. Hakert et al.

dijkstra lesolve sha

1E8
1E6 1E8
1E6 1E8

1E6

1E4
1E4

#accesses (r+w)
1E4

1E2
1E2
1E2

< < <
g g Bt
232 kB 76 kB 364 kB
gsort rijndael cre32
« - -
g g &

1E6
1E6
-

z W I Ty iy
2.3 | AR i = R R
§ . .. H Sy - -"_——_'-H-._‘ b
: - -
"3 a
g 8 8
180 kB 428 kB 76 kB

Fig. 6. Coarse-grained wear-leveling (write and read).

footprints result in a better wear-leveling than that presented in Section 7.3.1. Thus, because read
and write accesses are encountered, more wear-leveling actions are performed.

7.4 Fine-Grained Wear-Leveling

As the evaluation in Section 7.3 points out, coarse-grained wear-leveling cannot achieve allover
wear-leveled memory, since dense access hot-spots within memory pages are not resolved. Con-
sequently, this article proposes additional fine-grained wear-leveling, which is evaluated in this
section. We execute the fine-grained stack and text wear-leveling in addition to the coarse-grained
wear-leveling to achieve allover aging-aware wear-leveling.

7.4.1 Non-Read-Destructive NVMs. For non-read-destructive NVMs, the fine-grained extension
only targets the stack, since the text region is only targeted by read accesses. We keep the same con-
figuration as in Section 7.3.1 and perform a stack movement on every remapping of virtual memory
pages (i.e., with the same ratio as the page remapping algorithm). We configure the relocation dis-
tance (i.e., the movement of the stack) to 64 bytes. Figure 7 presents the resulting amount of write
accesses (y-axis) over the memory space (x-axis). It can be observed that for some benchmarks,
a nearly entirely wear-leveled memory is achieved. The shortcoming in the dijkstra benchmark
stems from the fact that dijkstra uses the data segment intensively to manage the algorithm steps.
Therefore, dense write hot-spots appear in the data segment, which cannot be resolved by our
fine-grained stack mechanism.

7.4.2 Read-Destructive NVMs. To perform fine-grained wear-leveling on read-destructive
NVMs, dense hot-spots for reads as well as writes need to be tackled. Therefore, in addition to
the aging-aware coarse-grained setup from Section 7.3.2, we employ our mechanism for stack
and text wear-leveling. We keep the same configuration for the coarse-grained algorithm and exe-
cute a stack and a text relocation on every coarse-grained page relocation. In general, both ratios,
however, can be separately configured to an arbitrary value. The relocation distance for both stack

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 5:19

dijkstra lesolve sha
g & g
& & E

#accesses (W)
1E4
1E4
E:

e L | P—

1E2
1E2
1E2

< < <

= g Bl

232 kB 76 kB 364 kB
gsort rijndael cre32

- - -

g & g

g & g
z
g = ”
22 & g —_ =
3 -
-

W\" Vg ‘—v—;,.l._‘r-—.:_ = — s
\ e

1E2
1E2
1E2

- < <
g1 g = g
180 kB 428 kB 76 kB

Fig. 7. Fine-grained wear-leveling (write only).

and text relocation is set to 64 bytes. The results in Figure 8 again allow similar observations as for
the non-read-destructive case in Section 7.4.1. In general, the memory is allover wear-leveled, con-
sidering the destructive influence of reads and writes. For the crc32 and rijndael benchmarks, still
larger non-uniformity can be observed. This stems from the fact that the text wear-leveling only
moves the relocatable code, but not the GOT and PLT. These two tables, however, are read during
the benchmark execution and therefore cause a destructive influence on the underlying memory.

7.5 Analytic Results

Since the figures presented previously only provide an intuition for the achieved quality of our pro-
posed wear-leveling algorithm, we calculate the analytic lifetime indicators (Section 7.2) for all our
benchmarks and summarize them in Table 1. Several observations can be made in this table. First,
by only considering the last column (LI), it can be seen that the total memory lifetime is increased
by our algorithm by up to a factor of 955. In other words, a memory lifetime of several days without
any maintenance would be extended to many years by only employing our software-based algo-
rithms. Second, read accesses can be slightly worsely wear-leveled than write accesses in some
benchmarks, which can be deduced from the lower lifetime improvement. As explained in Sec-
tion 7.1, another baseline has to be considered for read-destructive NVMs. Thus, the improvement
can be significantly lower than for non-read-destructive NVMs. Third, by investigating the first col-
umn (AE), it can be deduced how optimal the employed algorithms are. If AE would be 1, no further
improvement would be possible. It can be observed that with coarse-grained wear-leveling only,
in most cases only a few percent of the optimal endurance can be achieved. For fine-grained wear-
leveling, the algorithms perform significantly better but still allow potential for further improve-
ment. In addition, the achieved endurance differs for the different benchmark applications. The ri-
jndael benchmark achieves by far the worst results, since our algorithms do not handle it properly.
Although the overhead for the various wear-leveling configurations is implicitly included in
the LI indicator, the overhead as the amount of additional memory accesses due to wear-leveling

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

5:20

dijkstra

#accesses (r+w)
1E2 1E4 1E6 1E8

1E0

lesolve

1E2 1E4 1E6 1E8

1E0

1E2 1E4 1E6 1E8

1E0

C. Hakert et al.

sha

232 kB 76 kB 364 kB
gsort rijndael crc32
= = =
’i\ L I “'.-;-'-.-_” - L . . . - i
o] P A e S AR Sty e £ £ | AN A A ™
] il N P
180 kB 428 kB 76 kB
Fig. 8. Fine-grained wear-leveling (write and read).
Table 1. Memory Lifetime Indicators
Application/ AE EI LI| | Application/ AE El LI
Configuration Configuration
dijkstra gsort
-baseline [w] 0.00048 -baseline [w] 0.01609
-baseline [r+w] 0.00110 -baseline [V+W] 0.00599
-coarse-grained [w] | 0.01349 28.1042 27.8912 -coarse-grained [w] | 0.12174 7.5662 7.5097
-coarse-grained 0.03283 29.8455 29.5888 -coarse-grained 0.02292 3.8264 3.7901
[r+w] [r+w]
-fine-grained [w] 0.01385 28.8542 28.2420 -fine-grained [w] 0.44067 27.3878 23.0112
-fine-grained [r+w] | 0.04527 41.1545 35.6377 -fine-grained [r+w] | 0.19900 33.2220 27.9929
lesolve rijndael
-baseline [w] 0.00189 -baseline [w] 0.00035
-baseline [r+w] 0.00183 -baseline [r+w] 0.00082
-coarse-grained [w] | 0.01712 9.0582 8.9899 -coarse-grained [w] | 0.00123 3.5143 3.4978
-coarse-grained 0.02132 11.6503 11.5302 -coarse-grained 0.00610 7.4390 7.3514
[r+w] [r+w]
-fine-grained [w] 0.82097 434.3757 189.2855 -fine-grained [w] 0.00088 2.5025 2.3027
-fine-grained [r+w] | 0.67184 367.1257 194.7539 -fine-grained [r+w] | 0.01431 17.4564 5.1970
sha crec32
-baseline [w] 0.00028 -baseline [w] 0.00087
-baseline [r+w] 0.00033 -baseline [r+w] 0.00200
-coarse-grained [w] | 0.01182 42.2143 41.8878 -coarse-grained [w] | 0.01117 12.8396 12.7390
-coarse-grained 0.01796 54.4242 53.8633 -coarse-gmined 0.02316 11.5798 11.4619
[r+w] [r+w]
-fine-grained [w] 0.42223 1507.9643 955.6642 -fine-grained [w] 0.70932 815.3117 798.0718
-fine-grained [r+w] | 0.22706 688.0606 418.8788 -fine-grained [r+w] | 0.02764 13.8225 13.0103

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 5:21

Table 2. Memory Access Overhead

Application/ wo RO RWO | [Application/ WO RO RWO
Configuration Configuration
dijkstra gsort
-coarse-grained [w] 0.764% 0.156% 0.205% -coarse-grained [w] 0.752% 0.174% 0.233%
-coarse-grained 4.070% 0.591% 0.868% -coarse-grained 3.434% 0.677% 0.958%
[r+w] [r+w]
-fine-grained [w] 2.168% 0.268% 0.419% -fine-grained [w] 19.020% 2.252% 3.958%
-fine-grained [r+w] | 87.897% 9.231% 15.480% -fine-grained [r+w] | 86.406% 11.009% 18.680%
lesolve rijndael
-coarse-grained [w] 0.760% 0.210% 0.281% -coarse-grained [w] 0.472% 0.204% 0.253%
-coarse-grained 3.286% 0.709% 1.041% -coarse-grained 2.836% 0.827% 1.192%
[r+w] [r+w]
-fine-grained [w] 129.482% 19.274% 33.485% -fine-grained [w] 8.675% 2.023% 3.233%
-fine-grained [r+w] | 339.729% 51.317% 88.507% -fine-grained [r+w] | 645.184% 144.883% 235.894%
sha crc32
-coarse-grained [w] 0.779% 0.339% 0.438% -coarse-grained [w] 0.790% 0.211% 0.287%
-coarse-grained 2.867% 1.155% 1.540% -coarse-grained 3.302% 0.688% 1.029%
[r+w] [r+w]
~fine-grained [w] 57.792% 16.919% 26.111% -fine-grained [w] 2.160% 0.417% 0.644%
-fine-grained [r+w] | 140.368% 42.183% 64.262% “fine-grained [r+w] | 22.761% 3.746% 6.225%

Table 3. Time Overhead

Application/Configuration TO Application/Configuration TO
dijkstra qsort
-coarse-grained [w] 6.92% -coarse-grained [w] 13.67%
-coarse-grained [r+w] 20.33% -coarse-grained [r+w] 36.51%
-fine-grained [w] 14.56% -fine-grained [w] 22.93%
-fine-grained [r+w] 84.30% -fine-grained [r+w] 87.10%
lesolve rijndael
-coarse-grained [w] 6.88% -coarse-grained [w] 50.33%
-coarse-grained [r+w] 17.63% -coarse-grained [r+w] 91.09%
-fine-grained [w] 67.99% -fine-grained [w] 64.35%
-fine-grained [r+w] 178.22% -fine-grained [r+w] 588.10%
sha crc32
-coarse-grained [w] 53.95% -coarse-grained [w] 6.40%
-coarse-grained [r+w] 97.08% -coarse-grained [r+w] 15.23%
-fine-grained [w] 106.79% -fine-grained [w] 8.21%
-fine-grained [r+w] 245.11% -fine-grained [r+w] 31.73%

can be investigated itself. When considering performance-sensitive applications, the additional
amount of memory accesses makes a major factor for the performance degradation. We calculate
the overhead by comparing the total amount of memory accesses from a simulation with wear-
leveling to the baseline simulation without wear-leveling. By considering only read accesses, this
results in the read overhead (RO), for write accesses in the write overhead (WO), and for both
access types in combination in the read write overhead (RWO).

Table 2 contains the resulting overheads for the various wear-leveling scenarios. It can be seen
that for coarse-grained wear-leveling only, all overhead types reside at a few percent. When fine-
grained wear-leveling is employed, it can be seen that the result of the wear-leveling depends on

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

5:22 C. Hakert et al.

the analyzed application. For rijndael, for instance, even allowing huge overheads for the wear-
leveling does not lead to significantly increased memory lifetimes. This can be explained by the
fact that the wear-leveling does not target these types of memory accesses well. A few intensively
accessed memory areas remain not wear-leveled. However, investigating the benchmarks where
the wear-leveling can achieve good memory lifetime improvements, the overhead makes up to
~300%—that is, with wear-leveling, four times as many memory accesses are performed as with-
out wear-leveling. For the interpretation of this result, it should be considered that the overhead
can be tuned by the configuration parameter on cost of the wear-leveling result. However, if the ap-
plication is not performance sensitive, such a big overhead may be still considerable; the memory
lifetime is still increased by a factor of ~200.

The runtime overhead of our wear-leveling algorithms is an important indicator for practical
usage. Not only do the additional memory accesses require more time for execution but also the ex-
ecution of the access approximation and that of the wear-leveling decisions require additional com-
putation time. To analyze this overhead, we compare the total required system cycles for a baseline
configuration and configurations with enabled wear-leveling. The relative increase is reported in
Table 3. It can be observed that the fine-grained wear-leveling methods in general cause a higher
runtime overhead than the coarse-grained methods; the read wear-leveling requires more addi-
tional execution time than write wear-leveling. Furthermore, it can be seen that time overheads
differ largely for different benchmark applications. For example, crc32 faces an overhead of at most
32%, whereas rijndael faces an increase of the execution time by almost seven times. It should be
noted that the time overhead also can be configured by tweaking the frequency of wear-leveling ac-
tions. If, however, a performance degradation in terms of execution time of up to almost two times
is feasible, most benchmark applications can be wear-leveled using software-managed solutions.

8 CONCLUSION

In this work, we target computer systems that are equipped with NVM as the main memory. We
distinguish the cases that this memory is either non-read-destructive or read-destructive. We pro-
pose software-managed wear-leveling to improve the lifetime of such systems, since the low cell
endurance can cause a severely reduced lifetime. For the former type of system, we take write
accesses into account to determine the current age of the memory and to perform according wear-
leveling actions, and for the latter case, we take write and read accesses equally into account since
both stress the memory equally.

To perform aging-aware wear-leveling (i.e., the current memory age is investigated for each
wear-leveling decision) during runtime, we propose a generic runtime approximation of write and
read accesses that does not rely on special hardware or debugging capabilities. This approximation
is subsequently fed into a wear-leveling algorithm that swaps memory pages according to their
estimated age. Since many applications require additional wear-leveling on fine granularities, we
further propose two fine-grained wear-leveling mechanisms, where we specifically target the
stack and text region. These specific solutions also operate without any special hardware or any
special system requirements, and thus they are software managed. The specific solution for the
text segment is only invoked for read-destructive NVMs, since the text segment only is targeted
by read accesses.

Our evaluation compares the final memory lifetime after applying our algorithms with the mem-
ory lifetime of the baseline execution of certain benchmark applications. For non-read-destructive
NVMs, we are able to extend the lifetime by up to a factor of 955X, and for read-destructive
NVMs, we achieve an improvement of up to a factor of 418x. Although these numbers strongly
depend on the memory behavior of the baseline execution of the specific application, we achieve

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

Software-Managed Read and Write Wear-Leveling for Non-Volatile Main Memory 5:23

~40% of ideal wear-leveling for non-read-destructive NVMs and ~20% of ideal wear-leveling for
read-destructive NVMs. The major shortcomings causing this are memory access patterns that are
not explicitly tackled by our methods.

9 OUTLOOK

As our evaluation points out, we achieve a reasonable improvement of the memory lifetime by
employing our algorithms accordingly. Still, we cannot achieve the ideal wear-leveling (indicated
by the achieved endurance (AE)). In other words, our algorithms may be further improved to
achieve better wear-leveling in all scenarios. As can be observed for the dijkstra benchmark, the
data and BSS sections need specific wear-leveling in some cases as well. In addition, the specific
solution for the text segment does not resolve access hot-spots in the GOT and PLT. We intend to
improve upon these shortcomings in future work.

REFERENCES

[1] Hoda Aghaei Khouzani, Yuan Xue, Chengmo Yang, and Archana Pandurangi. 2014. Prolonging PCM lifetime through
energy-efficient, segment-aware, and wear-resistant page allocation. In Proceedings of the 2014 International Sym-
posium on Low Power Electronics and Design (ISLPED’14). ACM, New York, NY, 327-330. https://doi.org/10.1145/
2627369.2627667

[2] Chi-Hao Chen, Pi-Cheng Hsiu, Tei-Wei Kuo, Chia-Lin Yang, and Cheng-Yuan Michael Wang. 2012. Age-based PCM
wear leveling with nearly zero search cost. In Proceedings of the 49th Annual Design Automation Conference (DAC’12).
ACM, New York, NY, 453-458. https://doi.org/10.1145/2228360.2228439

[3] Sangyeun Cho and Hyunjin Lee. 2009. Flip-N-Write: A simple deterministic technique to improve PRAM write per-
formance, energy and endurance. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO’09). ACM, New York, NY, 347-357. https://doi.org/10.1145/1669112.1669157

[4] Jianbo Dong, Lei Zhang, Yinhe Han, Ying Wang, and Xiaowei Li. 2011. Wear rate leveling: Lifetime enhancement
of PRAM with endurance variation. In Proceedings of the 48th Design Automation Conference. ACM, New York, NY,
972-9717.

[5] Alexandre P. Ferreira, Miao Zhou, Santiago Bock, Bruce Childers, Rami Melhem, and Daniel Mossé. 2010. Increasing
PCM main memory lifetime. In Proceedings of the Conference on Design, Automation, and Test in Europe (DATE’10).
914-919. http://dl.acm.org/citation.cfm?id=1870926.1871147.

[6] Vaibhav Gogte, William Wang, Stephan Diestelhorst, Aasheesh Kolli, Peter M. Chen, Satish Narayanasamy,
and Thomas F. Wenisch. 2019. Software wear management for persistent memories. In Proceedings of the 17th
USENIX Conference on File and Storage Technologies (FAST’19). 45-63. https://www.usenix.org/conference/fast19/
presentation/gogte.

[7] William Goh and Andreas Dannenberg. 2014. MSP430 FRAM Technology—How To and Best Practices. Technical Re-
port SLAA628. Texas Instruments. https://www.ti.com/lit/an/slaa628a/slaa628a.pdf?ts=1609843980784&ref url=
https253A252F252Fwww. ti.com252Fproduct252FMSP430FR5989-EP.

[8] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown. 2001. MiBench: A free, com-
mercially representative embedded benchmark suite. In Proceedings of the the 2001 IEEE International Workshop on
Workload Characteristics (WWC’01). IEEE, Los Alamitos, CA, 3-14. https://doi.org/10.1109/WWC.2001.15

[9] Christian Hakert, Kuan-Hsun Chen, Paul R. Genssler, Georg Briiggen, Lars Bauer, Hussam Amrouch, Jian-Jia Chen,
and Jorg Henkel. 2020. SoftWear: Software-only in-memory wear-leveling for non-volatile main memory. CoRR
abs/2004.03244 (2020). https://arxiv.org/pdf/2004.03244.pdf.

[10] Christian Hakert, Kuan-Hsun Chen, Mikail Yayla, Georg von der Briiggen, Sebastian Bloemeke, and Jian-Jia Chen.
2020. Software-based memory analysis environments for in-memory wear-leveling. In Proceedings of the 25th Asia
and South Pacific Design Automation Conference (ASP-DAC’20).

[11] Y. Han, J. Dong, K. Weng, Y. Wang, and X. Li. 2016. Enhanced wear-rate leveling for PRAM lifetime improvement
considering process variation. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 24, 1 (Jan. 2016), 92—
102. https://doi.org/10.1109/TVLSI.2015.2395415

[12] Kaixin Huang, Yijie Mei, and Linpeng Huang. 2020. Quail: Using NVM write monitor to enable transparent wear-
leveling. Journal of Systems Architecture 102 (2020), 101658. https://doi.org/10.1016/j.sysarc.2019.101658

[13] R. E. Jones Jr., P. D. Maniar, R. Moazzami, P. Zurcher, J. Z. Witowski, Y. T. Lii, P. Chu, and S. J. Gillespie. 1995.
Ferroelectric non-volatile memories for low-voltage, low-power applications. Thin Solid Films 270, 1-2 (1995), 584—
588.

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

https://doi.org/10.1145/2627369.2627667
https://doi.org/10.1145/2228360.2228439
https://doi.org/10.1145/1669112.1669157
http://dl.acm.org/citation.cfm?id=1870926.1871147
https://www.usenix.org/conference/fast19/presentation/gogte
https://www.ti.com/lit/an/slaa628a/slaa628a.pdf?ts=1609843980784&ref_url= https253A252F252Fwww.ti.com252Fproduct252FMSP430FR5989-EP
https://doi.org/10.1109/WWC.2001.15
https://arxiv.org/pdf/2004.03244.pdf
https://doi.org/10.1109/TVLSI.2015.2395415
https://doi.org/10.1016/j.sysarc.2019.101658

5:24 C. Hakert et al.

[14] Qingan Li, Yanxiang He, Yong Chen, Chun Jason Xue, Nan Jiang, and Chao Xu. 2014. A wear-leveling-aware dynamic
stack for PCM memory in embedded systems. In Proceedings of the 2014 Design, Automation, and Test in Europe
Conference and Exhibition (DATE 14). IEEE, Los Alamitos, CA, 1-4.

[15] WeilLi, Ziqi Shuai, Chun Jason Xue, Mengting Yuan, and Qingan Li. 2019. A wear leveling aware memory allocator for
both stack and heap management in PCM-based main memory systems. In Proceedings of the 2019 Design, Automation,
and Test in Europe Conference and Exhibition (DATE’19).

[16] ARM Limited. ARM Compiler User Guide (Version 6.12). Retreived November 20, 2021 from
https://static.docs.arm.com/100748/0612/compiler_user_guide_100748_0612_0 0_en.pdf?_ga=2.51313322.225031596.
1586250715-64667359.1569664146.

[17] D. Liu, T. Wang, Y. Wang, Z. Shao, Q. Zhuge, and E. Sha. 2013. Curling-PCM: Application-specific wear leveling
for phase change memory based embedded systems. In Proceedings of the 2013 18th Asia and South Pacific Design
Automation Conference (ASP-DAC’13). 279-284. https://doi.org/10.1109/ASPDAC.2013.6509609

[18] E. M. Philofsky. 1996. FRAM—The ultimate memory. In Proceedings of the Nonvolatile Memory Technology Conference.
99-104. https://doi.org/10.1109/NVMT.1996.534679

[19] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali. 2009. Enhancing lifetime and se-
curity of PCM-based main memory with start-gap wear leveling. In Proceedings of the 2009 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’09). 14-23. https://doi.org/10.1145/1669112.1669117

[20] Songping Yu, Nong Xiao, Mingzhu Deng, Yuxuan Xing, Fang Liu, Zhiping Cai, and Wei Chen. 2015. WAlloc: An

efficient wear-aware allocator for non-volatile main memory. In Proceedings of the 2015 IEEE 34th International Per-

formance Computing and Communications Conference (I[PCCC’15). 1-8. https://doi.org/10.1109/PCCC.2015.7410326

Sebastian Vogl and Claudia Eckert. 2012. Using hardware performance events for instruction-level monitoring on

the x86 architecture. In Proceedings of the 2012 European Workshop on System Security (EuroSec’12), Vol. 12.

[22] W. Zhang and T. Li. 2009. Characterizing and mitigating the impact of process variations on phase change based
memory systems. In Proceedings of the 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO09). 2-13.

[23] M. Zhao, L. Shi, C. Yang, and C. J. Xue. 2014. Leveling to the last mile: Near-zero-cost bit level wear leveling for PCM-
based main memory. In Proceedings of the 2014 IEEE 32nd International Conference on Computer Design (ICCD’14).
16-21. https://doi.org/10.1109/ICCD.2014.6974656

[24] Ping Zhou, Bo Zhao, Jun Yang, and Youtao Zhang. 2009. A durable and energy efficient main memory using phase
change memory technology. In Proceedings of the 36th Annual International Symposium on Computer Architecture
(ISCA’09). ACM, New York, NY, 14-23. https://doi.org/10.1145/1555754.1555759

[21

—

Received February 2021; revised June 2021; accepted August 2021

ACM Transactions on Embedded Computing Systems, Vol. 21, No. 1, Article 5. Publication date: February 2022.

https://static.docs.arm.com/100748/0612/compiler_user_guide_100748_0612_0 0_en.pdf?_ga=2.51313322.225031596.1586250715-64667359.1569664146
https://doi.org/10.1109/ASPDAC.2013.6509609
https://doi.org/10.1109/NVMT.1996.534679
https://doi.org/10.1145/1669112.1669117
https://doi.org/10.1109/PCCC.2015.7410326
https://doi.org/10.1109/ICCD.2014.6974656
https://doi.org/10.1145/1555754.1555759

