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An 𝐿2-Cheeger Müller theorem on compact manifolds with boundary

Benjamin Waßermann

Abstract

We generalize a Cheeger–Müller type theorem for flat, unitary bundles on infinite covering spaces over
manifolds with boundary, proven by Burghelea, Friedlander and Kappeller. Employing recent anomaly
results by Brüning, Ma and Zhang, we prove an analogous statement for a general flat bundle that is only
required to have a unimodular restriction to the boundary.

1. Introduction and statement of the main results

For any flat bundle 𝐸 over a compact, triangulated manifold 𝑀 (briefly denoted by
𝐸 ↓ 𝑀 throughout this paper), one can construct the classical Reidemeister torsion,
see for example [24]. In [14], Chapman showed that for acyclic bundles, this torsion is
independent of the chosen triangulation, thereby also suggesting that there must be an
alternative way to define it.
With the aid of a Riemannian metric 𝑔 on 𝑀, Ray and Singer defined in [30] the

analytic torsion for unitary bundles 𝐸 ↓ 𝑀 and showed that it does not depend on the
choice of metric 𝑔 in case that 𝜕𝑀 = ∅. Furthermore, they conjectured that this analytic
torsion must be equal to the Reidemeister torsion. This result was then independently
proven by Müller [25] and Cheeger [15] in the case 𝜕𝑀 = ∅. Later, Müller defined
analytic torsion in the setting of a unimodular bundle 𝐸 ↓ 𝑀 and extended his earlier
result [26]. At about the same time, Bismut and Zhang formulated a Cheeger–Müller
type theorem for arbitrary flat bundles 𝐸 ↓ 𝑀 [6], generalizing the notion of analytic and
Reidemeister torsion in the same process.
The 𝐿2-versions of Reidemeister and analytic torsion first appeared in [13], respec-

tively [23], andwere first only defined for compactmanifolds that are 𝐿2-acyclic. Burghelea,
Friedlander, Kappeler and MacDonald later extended these definitions to unitary bundles
𝐸 ↓ 𝑀 without any assumption on 𝐿2-acyclicity [12], and showed that both invariants are
in fact equal. In [35], adapting the methods he earlier co-developed in [6], Zhang extended
this result even further to arbitrary flat bundles, providing an explicit formula of the
anomaly between 𝐿2-Reidemeister and 𝐿2-analytic torsion in this case and strengthening
an earlier result [11] in the same vein by Burghelea, Friedlander and Kappeler. Instead
of Reidemeister torsion, the authors of [6, 11, 12, 35] used the so-called Morse–Smale
torsion (see Section 3.1), which is defined using triangulations derived from a given
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Morse function 𝑓 : 𝑀 → R. While additionally requiring a Hermitian bundle metric ℎ of
𝐸 to be defined, the smooth data involved in its construction makes it applicable for the
Witten-deformation technique that plays a key part in the comparsion with analytic torsion.
Moreover, although not explicitly written down anywhere, it is folklore knowledge that
the Morse–Smale torsion coincides with the Reidemeister torsion whenever the volume
form induced by ℎ is flat. An explicit proof of this and other related statements will be
subject of a separate paper from the author.
Now assume that 𝜕𝑀 ≠ ∅. Under the assumption that the Hermitian metric ℎ is flat and

the Riemannian metric 𝑔 is a product near 𝜕𝑀 , the difference between Reidemeister and
analytic torsion has been made explicit by Lück [19], Vishik [33]. After various different
generalizations of this particular result with relaxed assumptions on the metrics 𝑔 and
ℎ, most notable of which is the result by Hassell [18] who assumed 𝑔 to be cylindrical
near 𝜕𝑀 , the general case without any further assumptions on 𝑔 or ℎ has been studied by
Brüning and Ma in [8, 9], who were able to prove an anomaly formula [9, Theorem 0.1]
entirely extending the result of Bismut and Zhang [6, Theorem 0.2] to manifolds with
boundary.
Adapting the techniques of their original result in the closed manifold case, the relation

between 𝐿2-Reidemeister torsion and 𝐿2-analytic torsion on manifolds with boundary
was studied by Burghelea, Friedlander and Kappeller [10] under the assumption that
ℎ is flat and 𝑔 is a product near 𝜕𝑀. In [21], Lück and Schick showed that anomaly
of the 𝐿2-analytic torsion is created when 𝑔 is deformed near 𝜕𝑀. This anomaly was
made explicit by Ma and Zhang [22], showing that it in fact equals the anomaly of
ordinary analytic torsion. Making use of all the results mentioned so far, our main result,
Theorem 4.8, will be a Cheeger–Müller type theorem for 𝐿2-acyclic unimodular bundles
𝐸 ↓ 𝑀 on manifolds with boundary satisfying 𝜒(𝑀) = 0.
In order to state the result, we fix a flat bundle 𝐸 ↓ 𝑀 as above, along with a Riemannian

metric 𝑔 on 𝑀 and an Hermitian metric ℎ on 𝐸 . Additionally, we choose a Morse function
𝑓 : 𝑀 → R, whose critical points lie in the interior of 𝑀 and that is constant along
𝜕𝑀, together with some Riemannian metric 𝑔′ so that the pair ( 𝑓 , 𝑔′) satisfies the
Smale-transversality conditions, cf. Definition 3.1. We denote by ∇𝑔′ 𝑓 the corresponding
gradient vector field and call the quadruple (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) a type II Morse–Smale
system. We say that (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) is of product form if both 𝑔 and ℎ are products
near 𝜕𝑀, see Definition 3.2. Provided that the bundle 𝐸 ↓ 𝑀 is of determinant class
(Definitions 3.3, 3.5 and Theorem 6.4), a Ray–Singer analytic 𝐿2-torsion

𝑇𝑅𝑆
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) ∈ R>0, (1.1)

72



An 𝐿2-Cheeger Müller theorem on compact manifolds with boundary

as well as a Morse–Smale 𝐿2-torsion

𝑇MS
(2) (𝐸 ↓ 𝑀, ℎ,∇𝑔′ 𝑓 ) ∈ R>0 (1.2)

can be defined, see Definition 3.3 and Equation (3.40). To make precise the anomaly
between the two 𝐿2-torsions, two quantities need to be introduced. The first of these is
given by the 1-form

𝜃 (ℎ) ∈ Ω1 (𝑀), (1.3)
derived from ℎ, see Equation (4.2). Roughly stated, it measures the change along 𝑀 of the
volume form induced by ℎ, and vanishes precisely when ℎ is unimodular, i.e. when the
volume form induced by ℎ is flat. The second one is the so-calledMathai–Quillen current

Ψ(𝑇𝑀, 𝑔) ∈ Ω𝑛−1 (𝑇𝑀 \ 𝑀,O𝑇 𝑀 ) (1.4)

derived from 𝑔 [6, Definition 3.6], where O𝑇 𝑀 denotes the orientation line bundle over
the tangent bundle 𝑇𝑀. Since the gradient field ∇𝑔′ 𝑓 can also be regarded as a smooth
embedding from 𝑀 \ Cr( 𝑓 ) into 𝑇𝑀 \ 𝑀 (where 𝑀 ⊆ 𝑇𝑀 is identified with the zero
section), we obtain via pullback a density

∇𝑔′ 𝑓
∗Ψ(𝑇𝑀, 𝑔) ∈ Ω𝑛−1 (𝑀 \ Cr( 𝑓 ),O𝑀 ). (1.5)

With all these objects introduced, our first main result can be stated as follows:

Theorem 1.1 (Theorem 4.5). Let D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) be a type II Morse–Smale
system of product form, where 𝑀 is an odd-dimensional compact manifold and ℎ|𝜕𝑀 is
unimodular. Further, assume that both 𝐸 ↓ 𝑀 and 𝐸 |𝜕𝑀 ↓ 𝜕𝑀 are of determinant class.
Then

log

(
𝑇𝑅𝑆
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 )
𝑇MS
(2) (𝐸 ↓ 𝑀, ℎ,∇𝑔′ 𝑓 )

)
= − log 2

4
𝜒(𝜕𝑀) dim(𝐸) − 1

2

∫
𝑀

𝜃 (ℎ) ∧ ∇𝑔′ 𝑓
∗Ψ(𝑇𝑀, 𝑔). (1.6)

This result can be viewed as a strict generalization of the main result of [10], where
the authors made the more restrictive assumption that the metric ℎ is globally flat.
In order to state the second main result of this paper, we suppose that the bundle

𝐸 ↓ 𝑀 is unimodular, i.e. associated with a unimodular representation of 𝜋1 (𝑀). Then,
assuming that 𝐸 ↓ 𝑀 is 𝐿2-acyclic and of determinant class, one can define a topological
𝐿2-torsion 𝑇Top

(2) (𝑀, 𝐸) ∈ R>0. It can be defined similarly like 𝑇MS
(2) (𝐸 ↓ 𝑀, ℎ,∇𝑔′ 𝑓 ),

with the aid of any given CW-structure on 𝑀 and any fixed inner product on 𝑉 , see [34,
Definition 5.2.5, Theorem 5.3.12], and coincides with 𝑇MS

(2) (𝐸 ↓ 𝑀, ℎ,∇𝑔′ 𝑓 ) whenever ℎ
is unimodular.
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Theorem 1.2 (Theorem 4.8). Let (𝑀, 𝑔) be a compact, connected, odd-dimensional
Riemannian manifold. Then, there exists a density 𝐵(𝑔) ∈ Ω𝑛−1 (𝜕𝑀,O𝜕𝑀 ) with 𝐵(𝑔) ≡ 0
when 𝑔 is product-like near 𝜕𝑀 , such that the following holds:

Let 𝐸 ↓ 𝑀 be a flat, finite-dimensional complex vector bundle, such that

(a) 𝐸 is unimodular,

(b) the pair (𝑀, 𝐸) is 𝐿2-acyclic and of determinant class,

(c) the restriction (𝜕𝑀, 𝐸 |𝜕𝑀 ) is of determinant class.

Then, for any choice of unimodular metric ℎ on 𝐸 , one has

log ©«
𝑇𝑅𝑆
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 )

𝑇
Top
(2) (𝑀, 𝐸)

ª®¬ =
1
2
dimC (𝐸)

∫
𝜕𝑀

𝐵(𝑔). (1.7)

In a forthcoming paper, Theorem 1.2 will be used to generalize the main result of [21]
by Lück and Schick, in which we will show the equality of Ray–Singer analytic 𝐿2-torsion
and topological 𝐿2-torsion for a large class of flat, unimodular bundles over finite-volume,
hyperbolic manifolds, which are studied by several other authors as well [1, 4, 27, 28].
The rest of this paper is subdivided into six sections, which are structured as follows: In

Section 2, we briefly review the abstract theory of HilbertN(Γ)-modules that is necessary
to define the Novikov–Shubin invariants, the determinant class condition and the general
𝐿2-torsion which are studied in the rest of the paper. In Section 3, we introduce the central
objects of this paper: Morse–Smale systems, their Morse–Smale 𝐿2-torsion and analytic
𝐿2-torsion, as well as the derived metric 𝐿2-torsion and relative torsion. In Section 4, we
state our main results, Theorems 4.5 and 4.8 and give a proof of the latter. In Section 5,
we present product and anomaly formulas for the different 𝐿2-torsions. In Section 6,
we will review the techniques employed by Burghelea et al. in their original proof for
unitary bundles: Witten-Deformation, the splitting of the de Rham complex into the small
and large subcomplex and the asymptotic expansions of the respective 𝐿2-torsions. In
Section 7, we give a proof of Theorem 4.5.

Acknowledgments

The paper is based on parts of the author’s dissertation [34]. I thank my advisor, Prof. R.
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2. 𝐿2-torsion of Hilbert N(Γ)-cochain complexes

We start by recollecting the objects and theory of Hilbert N(Γ)-modules that are relevant
for this paper. The well-acquainted reader may skip this section.
Throughout, we fix a countable group Γ. We define 𝐿2 (Γ) to be the complex Hilbert

space generated over the set Γ. Note that multiplying group elements of Γ from the
left naturally determines a left, linear, isometric Γ-action on 𝐿2 (Γ). More generally, a
complex Hilbert space H is called a Hilbert N(Γ)-module if it comes equipped with
a left, linear, isometric Γ-action, so that there exists a Γ-linear, isometric embedding
of H into 𝐿2 (Γ) ⊗̂ 𝐻 for some Hilbert space 𝐻. Here, 𝐿2 (Γ) ⊗̂ 𝐻 denotes the Hilbert
space tensor product of 𝐿2 (Γ) and 𝐻, with isometric Γ-action given by the action on
the left factor. If one can choose 𝐻 to be finite-dimensional over C, we call the Hilbert
N(Γ)-moduleH finitely generated.
A Γ-linear, closed and densely defined operator 𝑓 : H → H ′ between two Hilbert

N(Γ)-modules H and H ′ is called a morphism of Hilbert N(Γ)-modules. Since Γ is
fixed and implicit throughout this section, we will simply refer to such 𝑓 as a morphism.
Any positive, bounded endomorphism 𝑓 : H → H admits a natural von Neumann trace

trΓ ( 𝑓 ) ∈ [0,∞], (2.1)

[20, Definition 1.8] which satisfies trΓ ( 𝑓 ) < ∞ wheneverH is finitely generated. With
this, we define the von Neumann dimension ofH by

dimN(Γ) (H) B trΓ (1H). (2.2)

The adjoint 𝑓 ∗, the self-adjoint composition 𝑓 ∗ 𝑓 , as well as the absolute value
| 𝑓 | B

√︁
𝑓 ∗ 𝑓 of a morphism 𝑓 are again morphisms. Similarly, if 𝐸 | 𝑓 | is the spectral

measure associated with the positive, self-adjoint operator | 𝑓 | and if 𝑝 is a positive,
essentially bounded Borel function defined over the spectrum 𝜎( | 𝑓 |) of | 𝑓 |, then

𝑝( 𝑓 ) B
∫ ∞

−∞
𝑝 d𝐸 | 𝑓 | (𝜆) (2.3)

is a positive, bounded endomorpism, which is why trΓ (𝑝( 𝑓 )) ∈ [0,∞] is always well-
defined. In particular, the family {𝜒[0,𝜆] ( 𝑓 )}𝜆∈R≥0 of spectral projections associated to 𝑓
further gives rise to a non-decreasing, right-continuous function

𝐹 𝑓 (𝜆) B trΓ (𝜒[0,𝜆] ( 𝑓 )) ∈ [0,∞] (2.4)

in 𝜆 ≥ 0, called the spectral density function of 𝑓 . We say that 𝑓 is Fredholm if
𝐹 𝑓 (𝜆) < ∞ for all 𝜆 ≥ 0. As a quantitative measurement of the spectral behaviour near
0, the Novikov–Shubin invariant 𝛼( 𝑓 ) ∈ [0,∞] ∪ {∞+} of a Fredholm morphism 𝑓 is
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defined as

𝛼( 𝑓 ) B

lim inf𝜆→0+

ln
(
𝐹 𝑓 (𝜆) − 𝐹 𝑓 (0)

)
ln(𝜆) if 𝐹 𝑓 (𝜆) > 𝐹 𝑓 (0) ∀ 𝜆 > 0,

∞+ else.
(2.5)

𝛼( 𝑓 ) equals the (purely formal) symbol∞+ precisely when | 𝑓 | has a spectral gap at 0.
Moreover, if 𝑓 is Fredholm, its spectral density determines a Borel measure d𝐹 𝑓 on

R≥0 in the canonical fashion. A Fredholm morphism 𝑓 is said to be of determinant class if∫ 1

0+
log(𝜆)d𝐹 𝑓 (𝜆) > −∞. (2.6)

A morphism 𝑓 with 𝛼( 𝑓 ) > 0 is always of determinant class, although the converse
need not hold. If 𝑓 is a bounded morphism of determinant class, we can define its
Fuglede–Kadison determinant detΓ ( 𝑓 ) ∈ R>0 as

log(detΓ ( 𝑓 )) B
∫ ‖ 𝑓 ‖

0+
log(𝜆)d𝐹 𝑓 (𝜆). (2.7)

A cochain complex

(𝐶∗, 𝑐∗) : 0→ 𝐶0
𝑐0−−→ 𝐶1

𝑐1−−→ 𝐶2
𝑐2−−→ 𝐶3

𝑐3−−→ . . . , (2.8)

with each𝐶𝑖 a HilbertN(Γ)-module and each 𝑐𝑖 a (not necessarily bounded) morphism of
Hilbert N(Γ)-modules is called a Hilbert N(Γ)-cochain complex. If all but finitely many
of the 𝐶𝑖’s are trivial, each 𝐶𝑖 is finitely generated and each 𝑐𝑖 is bounded, then (𝐶∗, 𝑐∗)
is of finite type. A family 𝑓 ∗ : 𝐶∗ → 𝐷∗ : ( 𝑓 𝑘 : 𝐶𝑘 → 𝐷𝑘 )𝑘∈N of bounded morphisms is
called a morphism between the Hilbert N(Γ)-cochain complexes (𝐶∗, 𝑐∗) and (𝐷∗, 𝑑∗) if
it additionally satisfies 𝑓 ∗ (dom(𝑐∗)) ⊆ dom(𝑑∗) and 𝑓 ∗+1 ◦ 𝑐∗ = 𝑑∗ ◦ 𝑓 ∗ on dom(𝑐∗). 𝑓 ∗
is called an isomorphism if each 𝑓 𝑘 is an isomorphism.
We say that two morphisms 𝑓 ∗, 𝑔∗ : 𝐶∗ → 𝐷∗ between Hilbert N(Γ)-cochain

complexes are chain homotopic (written 𝑓 ' 𝑔) if there exists a collection of bounded
morphisms 𝐾∗ : 𝐶∗ → 𝐷∗−1, satisfying

𝐾∗ (dom(𝑐∗)) ⊆ dom(𝑑∗−1),

𝑓 ∗ − 𝑔∗ = 𝐾∗+1𝑐∗ + 𝑑∗−1𝐾∗ on dom(𝑐∗).

𝐾∗ is called an chain homotopy between 𝑓 ∗ and 𝑔∗. Two HilbertN(Γ)-cochain complexes
(𝐶∗, 𝑐∗) and (𝐷∗, 𝑑∗) are called chain homotopy equivalent (written 𝐶∗ ∼ 𝐷∗) if there
exists morphisms 𝑓 ∗ : 𝐶∗ → 𝐷∗ and 𝑔∗ : 𝐷∗ → 𝐶∗ such that 𝑓 ∗𝑔∗ ' 1𝐷∗ and
𝑔∗ 𝑓 ∗ ' 1𝐶∗ . 𝑓 ∗ is called a chain homotopy equivalence between 𝐶∗ and 𝐷∗ with chain
homotopy inverse 𝑔∗.
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The (full) 𝐿2-coholomology of a Hilbert N(Γ)-cochain complex is the graded Hilbert
N(Γ)-module defined as

𝐻∗ (𝐶∗) B
∞⊕
𝑘=0

𝐻𝑘 (𝐶∗), 𝐻𝑘 (𝐶∗) B ker(𝑐𝑘 )/clos(im(𝑐𝑘−1)). (2.9)

A cochain complex (𝐶∗, 𝑐∗) is Fredholm if all of the restricted morphisms 𝑐𝑘 |im(𝑐𝑘−1)⊥ ,
𝑘 ∈ N0, are Fredholm. Observe that a complex (𝐶∗, 𝑐∗) of finite type is automatically
Fredholm. For a Fredholm complex, we define its 𝑘-th Novikov–Shubin invariant
𝛼𝑘 (𝐶∗) ∈ [0,∞] ∪ {∞+} as

𝛼𝑘 (𝐶∗) B 𝛼(𝑐𝑘 |im(𝑐𝑘−1)⊥ ). (2.10)

A Fredholm complex is said to be of determinant class if all of the restricted morphisms
𝑐𝑘 |im(𝑐𝑘−1)⊥ are of determinant class. If 𝐶∗ is a determinant class and of finite type, we
define its 𝐿2-Torsion 𝑇 (2) (𝐶∗) ∈ R>0 as

log(𝑇 (2) (𝐶∗)) B
∞∑︁
𝑘=0

(−1)𝑘 log(detΓ (𝑐𝑘 )). (2.11)

Proposition 2.1 ([17, Proposition 4.1]). Let (𝐶∗, 𝑐∗) and (𝐷∗, 𝑑∗) be two cochain
complexes of Hilbert N(Γ)-modules and 𝑓 ∗ : 𝐶∗ → 𝐷∗ a chain homotopy equivalence
between them. Then, 𝑓 ∗ descends to an isomorphism of 𝐿2-cohomologies

𝐻∗ ( 𝑓 ∗) : 𝐻∗ (𝐶∗) → 𝐻∗ (𝐷∗). (2.12)

Additionally, if both 𝐶∗ and 𝐷∗ are Fredholm, we have

(1) 𝛼𝑘 (𝐶∗) = 𝛼𝑘 (𝐷∗) for each 𝑘 ∈ N0.

(2) 𝐶∗ is of determinant class if and only if 𝐷∗ is of determinant class.

Proposition 2.2 ([20, Lemma 3.44]). Let (𝐶∗, 𝑐∗) and (𝐷∗, 𝑑∗) be two cochain complexes
of Hilbert N(Γ)-cochain complexes, both of finite type and of determinant class. Further,
let 𝑓 ∗ : 𝐶∗ → 𝐷∗ be a chain isomorphism between them. Then

log(𝑇 (2) (𝐶∗)) − log(𝑇 (2) (𝐷∗))

=

∞∑︁
𝑘=0

(−1)𝑘 log(detΓ ( 𝑓 𝑘 )) −
∞∑︁
𝑘=0

(−1)𝑘 log
(
detΓ (𝐻𝑘 ( 𝑓 𝑘 ))

)
. (2.13)
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3. Relative torsion

We commence by introducing in order the main objects of this paper: Morse–Smale
systems and their Morse–Smale, analytic, metric and relative 𝐿2-torsion.
By a system D = (𝐸 ↓ 𝑀, 𝑔, ℎ, 𝑋), we will always mean a set of data consisting of a

flat, complex vector bundle 𝐸 ↓ 𝑀 over a smooth manifold 𝑀 , along with a Riemannian
metric 𝑔 on 𝑀 , a Hermitian form ℎ on 𝐸 and 𝑋 either a vector field or a complex-valued
function over 𝑀 .
Given a uniform lattice Γ < Isom(𝑀, 𝑔), such a system D is called Γ-invariant if in

addition, the isometric action of Γ on (𝑀, 𝑔) leaves 𝑋 invariant and extends to an action
of bundle isometries on the metric bundle (𝐸, ℎ) ↓ (𝑀, 𝑔). Observe that Γ-invariant
systems on 𝑀 are precisely the lifts of systems defined over the compact quotient 𝑀/Γ.
Throughout this chapter, we will frequently form products of systems: Given for

𝑖 = 1, 2 two systems (𝐸𝑖 ↓ 𝑀𝑖 , 𝑔𝑖 , ℎ𝑖 , 𝑋𝑖) with 𝑋𝑖 either both vector fields or functions,
one obtains a new system (𝐸1 ⊗̂ 𝐸2 ↓ 𝑀1×𝑀2, 𝑔1 ⊕ 𝑔2, ℎ1 ⊗̂ ℎ2, 𝑋1 + 𝑋2), where 𝑀1×𝑀2
is the product manifold equipped with the (direct) sum metric 𝑔1 ⊕ 𝑔2, 𝑋1 + 𝑋2 is the sum
of the two vector fields or functions, and

• 𝐸1 ⊗̂ 𝐸2 ↓ 𝑀1 ×𝑀2 is defined to be the flat tensor product bundle 𝜋∗1𝐸1 ⊗ 𝜋
∗
2𝐸2 ↓

𝑀1 × 𝑀2, where 𝜋𝑖 : 𝑀1 × 𝑀2 → 𝑀𝑖 denotes the projection onto the 𝑖-th factor.
Here, the flat structure we choose is the canonical one induced by its flat factors
𝜋∗
𝑖
𝐸𝑖 . Moreover,

• ℎ1 ⊗̂ ℎ2 B 𝜋∗1ℎ1 ⊗ 𝜋
∗
2ℎ2 is the tensor product of the respective pullback Hermitian

forms.

The main focus of our attention will be Morse–Smale systems, which are by definition
systems D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) with ( 𝑓 , 𝑔′) a Morse–Smale pair, the latter of which
we are now going to define: First of all, a pair ( 𝑓 , 𝑔′) with 𝑓 : 𝑀 → R a Morse function
and 𝑔′ a Riemannian metric on 𝑀 is called a Morse pair. Let ∇𝑔′ 𝑓 ∈ Γ(𝑇𝑀) be the
gradient vector field constructed from 𝑓 and 𝑔′ and let 𝜓𝑡 be the flow associated to the
differential equation

𝜕𝑦

𝜕𝑡
= −∇𝑔′ 𝑓 (𝑦). (3.1)

Provided that both 𝑓 and 𝑔′ are lifted from a compact quotient, which we will assume
throughout, it follows that 𝜓𝑡 is globally defined, i.e. for all 𝑡 ∈ R. With Cr( 𝑓 ) ⊂ 𝑀

denoting the set of critical points of 𝑓 , define for each 𝑝 ∈ Cr( 𝑓 ) the stable, respectively
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unstable manifolds

𝑊− (𝑝) B
{
𝑥 ∈ 𝑀 : lim

𝑡→−∞
𝜓𝑡 (𝑥) = 𝑝

}
, (3.2)

𝑊+ (𝑝) B
{
𝑥 ∈ 𝑀 : lim

𝑡→+∞
𝜓𝑡 (𝑥) = 𝑝

}
. (3.3)

Both𝑊+ (𝑝) and𝑊− (𝑝) are smooth submanifolds of 𝑀 , the latter being diffeomorphic
to Rind(𝑝) . Here, as everywhere else, 0 ≤ ind(𝑝) ≤ 𝑛 denotes the index of the critical
point 𝑝.

Definition 3.1. A Morse pair ( 𝑓 , 𝑔′) on 𝑀 is called a Morse–Smale pair, if all of the
following conditions are satisfied:

(1) For each pair 𝑝, 𝑞 ∈ Cr( 𝑓 ), the manifolds𝑊− (𝑝) and𝑊+ (𝑞) intersect transver-
sally.

(2) ( 𝑓 , 𝑔′) is locally trivial at Cr( 𝑓 ). This means that:

(a) For any 0 ≤ 𝑘 ≤ 𝑛 and any 𝑝 ∈ Cr( 𝑓 ), there exists (pairwise disjoint)
coordinate neighborhoods

𝜙𝑝 : 𝑈𝑝 →
{
R𝑛 if 𝑝 ∉ 𝜕𝑀

R𝑛
𝑥𝑛≥0 if 𝑝 ∈ 𝜕𝑀

of 𝑝 with 𝜙𝑝 (𝑝) = 0 and such that we have

( 𝑓 ◦ 𝜙−1𝑝 ) (𝑥1, . . . , 𝑥𝑛) = 𝑓 (𝑝) − 1
2
(𝑥21 + . . . 𝑥

2
ind(𝑝) ) +

1
2
(𝑥2ind(𝑝)+1 + · · · + 𝑥2𝑛).

(b) The pullback 𝜙∗𝑝 (𝑔R𝑛 ) of the standard Euclidean metric on R𝑛 equals 𝑔′ |𝑈𝑝
.

If 𝜕𝑀 ≠ ∅, we additionally assume that there exists 𝜅 > 0, alongwith a collar neighborhood
𝑈 of 𝜕𝑀 and a diffeomorphism 𝜓𝑔′ : 𝜕𝑀 × [0, 𝜅) → 𝑈 coming from the normal
exponential map induced by 𝑔′, so that either of the following two (mutually exclusive)
conditions hold:

(i) One has ( 𝑓 ◦ 𝜓𝑔′) (𝑝, 𝑡) = 𝑓 |𝜕𝑀 (𝑝) + 𝑡2 (in particular, 𝑓 |𝜕𝑀 is a Morse function
on 𝜕𝑀 with Cr( 𝑓 |𝜕𝑀 ) = Cr( 𝑓 ) ∩ 𝜕𝑀). In this case, we say that ( 𝑓 , 𝑔′) is of
type I.

(ii) One has ( 𝑓 ◦𝜓𝑔′) (𝑝, 𝑡) = 𝑏−𝑡 with 𝑏 =max( 𝑓 ) ∈Z (in particular,Cr( 𝑓 )∩𝜕𝑀 =∅).
In this case, we say that ( 𝑓 , 𝑔′) is of type II.
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It is a classic result that any compact manifold admits Morse–Smale pairs ( 𝑓 , 𝑔′), both
of type I and of type II, see e.g. [3, Theorem 6.6]. In fact, we will almost exclusively
focus on type II Morse–Smale pairs. That is because the methods employed to prove
Theorem 4.5 require that the critical points of a given Morse function are all interior, and
thus only work for type II Morse–Smale pairs. Conversely, the techniques used in other
papers, whose results play an essential role in the proof of Theorem 4.8, only work for
type I Morse–Smale pairs, which is why we have included them in the above definition.

Definition 3.2. A Morse–Smale system of the form D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) will be
called a type II Morse–Smale system if ( 𝑓 , 𝑔′) is a type II Morse–Smale pair. A type II
Morse–Smale system is of product form, if

(𝑃1) 𝑔 is a product near 𝜕𝑀: There exists a collar neighborhood 𝑉 of 𝜕𝑀 that is
the diffeomorphic image of the normal exponential map 𝜓𝑔 : 𝜕𝑀 × [0, 𝜖) → 𝑉

induced by 𝑔, such that 𝜓∗
𝑔 (𝑔 |𝑉 ) = 𝑔 |𝜕𝑀 ⊕ d𝑡2, where d𝑡2 denotes the standard

Euclidean metric on the half-open interval [0, 𝜖).

(𝑃2) The isometry 𝜓𝑔 further extends to a flat bundle isometry

Ψ : (𝐸 |𝜕𝑀 ⊗̂ 𝐸C ↓ 𝜕𝑀 × [0, 𝜖), ℎ|𝜕𝑀 ⊗̂ 1C) → (𝐸 |𝑉 ↓ 𝑉, ℎ𝑉 ).
Here, 𝐸C ↓ [0, 𝜖) is the trivial 1-dimensional vector bundle over [0, 1) (with
trivial connection), 𝐸 |𝜕𝑀 ⊗̂ 𝐸C ↓ 𝜕𝑀 × [0, 𝜖) denotes the flat, complex product
bundle as introduced in the previous paragraph and 1C denotes the canonical
constant Hermitian form on 𝐸C ↓ [0, 𝜖).

A type II Morse–Smale system of product form is called weakly admissible, if

(𝐴1) 𝑀 is compact.

(𝐴2) One has 𝑔 ≡ 𝑔′ near Cr( 𝑓 ) and outside from a neighborhood of 𝜕𝑀 .

(𝐴3) The metric ℎ is parallel (see Definition 4.2) in a neighborhood of Cr( 𝑓 ).

Finally, a weakly admissible system D is called admissible if the following extra
compatibility condition is satisfied:

(𝐴4) the restriction ℎ|𝜕𝑀 of ℎ to 𝜕𝑀 is unimodular (see Definition 4.2).

A Γ-invariant systemD = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) that is the lift of an admissible, respectively
weakly admissible systemon the compact quotient𝑀/Γ is calledΓ-admissible, respectively
weakly Γ-admissible.
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Observe that a weakly admissible system is a Morse–Smale system on a compact
manifold 𝑀 with special local conditions on the Riemannian metric 𝑔 and Hermitian form
ℎ near 𝜕𝑀 and the critical points of 𝑓 , while for an admissible system, we additionally
demand a global condition on ℎ|𝜕𝑀 . In particular, any flat bundle 𝐸 ↓ 𝑀 over a compact
manifold fits into some weakly admissible system D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) (by choosing
an appropriate partition of unity), which can be chosen admissible if and only if the
restriction bundle 𝐸 |𝜕𝑀 ↓ 𝜕𝑀 is unimodular.

3.1. The Morse–Smale 𝐿2-torsion 𝑇MS
(2) (𝐸 ↓ 𝑀, ℎ,∇𝑔′ 𝑓 )

LetD = (𝑀, 𝐸, 𝑔, ℎ,∇𝑔′ 𝑓 ) be a Morse–Smale system with𝑀 connected,𝑀 the universal
cover of 𝑀 and D̃ = (𝑀, 𝐸, �̃�, ℎ̃,∇𝑔′ 𝑓 ) the corresponding lifted system over 𝑀. With
Γ B 𝜋1 (𝑀), it follows that D̃ is a Γ-invariant system. Let 𝜌 : Γ → GL(𝑉) be the
complex, finite-dimensional representation associated to the flat bundle 𝐸 ↓ 𝑀 . Then, as
a Γ-equivariant flat bundle, 𝐸 is isomorphic to the trivial flat bundle 𝑀 ×𝑉 with diagonal
Γ-action given by 𝛾.(𝑥, 𝑣) = (𝛾.𝑥, 𝜌(𝛾)𝑣). We fix one such isomorphism throughout.
As before, denote for each 𝑝 ∈ Cr( �̃� ) by𝑊− (𝑝) and𝑊+ (𝑝) the unstable, respectively

stable manifold at 𝑝. Observe that we have 𝛾.𝑊− (𝑝) = 𝑊− (𝛾.𝑝) � Rind(𝑝) for each
𝛾 ∈ Γ, which allows us to fix a global orientation 𝑂 𝑝 on each unstable manifold𝑊− (𝑝)
in a Γ-invariant way. Together with the fact that𝑊− (𝑝) and𝑊+ (𝑞) intersect transversely
for each pair 𝑝, 𝑞 ∈ Cr( �̃� ), we can construct as in [29, Theorem 3.6] integers 𝑛(𝑝, 𝑞) ∈ Z
whenever ind(𝑞) = ind(𝑝) + 1, which satisfy

𝑛(𝑝, 𝑞) = 𝑛(𝛾.𝑝, 𝛾.𝑞) ∀ 𝛾 ∈ Γ, (MS1)

∀ 𝑝 ∈ Cr( �̃� ) : #{𝑞 ∈ Cr( �̃� ) : ind(𝑞) = ind(𝑝) + 1 ∧ 𝑛(𝑝, 𝑞) ≠ 0} < ∞, (MS2)

∀ 𝑞 ∈ Cr( �̃� ) : #{𝑝 ∈ Cr( �̃� ) : ind(𝑝) = ind(𝑞) − 1 ∧ 𝑛(𝑝, 𝑞) ≠ 0} < ∞, (MS3)

∀ 𝑝 ∈ Cr( �̃� ) and ∀ 𝑞 ∈ Cr( �̃� ) with ind(𝑞) = ind(𝑝) + 2 :∑︁
ind(𝑟 )=ind(𝑝)+1

𝑛(𝑝, 𝑟)𝑛(𝑟, 𝑞) = 0. (MS4)

In fact, under the conditions imposed on the pair ( 𝑓 , 𝑔′), it follows from [29, Theo-
rems 3.8, 3.9] (see also [34, Theorem 5.4.10, Corollary 5.4.12]) that

(1) the set {𝑊− (𝑝) : 𝑝 ∈ Cr( �̃� )} is the collection of open cells of a Γ-CW-complex
𝑋 ⊆ 𝑀 , so that

(2) the inclusion 𝑋 ↩→ 𝑀 is a simple Γ-homotopy equivalence. Moreover,
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(3) the integer 𝑛(𝑝, 𝑞) is precisely the degree of the attaching map of the cell𝑊− (𝑞)
to the cell𝑊− (𝑝).

Define [𝑂 𝑝] to be the complex line generated by 𝑂 𝑝 and the cochain complex of vector
spaces

𝐶∗ (𝑀,∇𝑔′ �̃� , 𝐸) B
⊕

𝑝∈Cr( 𝑓 )

[𝑂 𝑝] ⊗C 𝑉 , 𝐶𝑘 (𝑀,∇𝑔′ �̃� , 𝐸) B
⊕
ind(𝑝)=𝑘

[𝑂 𝑝] ⊗C 𝑉 (3.4)

with boundary map

𝜕∗𝑀𝑆 : 𝐶
∗ (𝑀,∇𝑔′ �̃� , 𝐸) → 𝐶∗+1 (𝑀,∇𝑔′ �̃� , 𝐸)

being the unique C-linear extension of the assignment

𝜕∗𝑀𝑆 ( [𝑂 𝑝] ⊗ 𝑣) B
∑︁

ind(𝑞)=ind(𝑝)+1
𝑛(𝑝, 𝑞) · [𝑂𝑞] ⊗ 𝑣. (3.5)

By (MS2)–(MS4), 𝜕∗
𝑀𝑆
is well-defined and satisfies 𝜕𝑘+1

𝑀𝑆
◦𝜕𝑘

𝑀𝑆
= 0 for each 0 ≤ 𝑘 ≤ 𝑛−1.

Furthermore, the respective Γ-actions on 𝑀 and 𝑉 intertwine to produce a Γ-action on
𝐶∗ (𝑀,∇𝑔′ �̃� , 𝐸) given by

𝛾.( [𝑂 𝑝] ⊗ 𝑣) B [𝑂𝛾.𝑝] ⊗ 𝜌(𝛾)𝑣. (3.6)

Due to (MS1), it follows that 𝜕∗
𝑀𝑆
is Γ-equivariant. Now recall the Γ-equivariant Hermitian

form ℎ̃, which is part of the system D̃. Equipping the total space 𝐶∗ (𝑀,∇𝑔′ �̃� , 𝐸) with
the inner product structure given by the direct sum of inner products induced by ℎ̃ at
each fiber, the Γ-action (3.6) becomes an action by isometries. Taking the corresponding
𝐿2-completion, one obtains a Hilbert N(Γ)-cochain complex of finite type, which
we will denote by 𝐶∗

(2) (𝑀,∇𝑔′ �̃� , 𝐸, ℎ̃). In fact, each module 𝐶𝑘
(2) (𝑀,∇𝑔′ �̃� , 𝐸, ℎ̃) is

isomorphic to 𝐿2 (Γ)𝑚𝑘 ⊗C 𝑉 , where 𝑚𝑘 ∈ N is the number of Γ-cosets of the set
{𝑝 ∈ Cr( �̃� ) : ind(𝑝) = 𝑘}.

Definition 3.3. 𝐶∗
(2) (𝑀,∇𝑔′ �̃� , 𝐸, ℎ̃) is called the 𝐿2-Morse–Smale cochain complex

induced by the systemD. For 0 ≤ 𝑘 ≤ 𝑛, we define the 𝑘-th 𝐿2-Morse–Smale cohomology

𝐻𝑘
(2) (𝑀,∇𝑔′ 𝑓 , 𝐸, ℎ) B 𝐻𝑘

(
𝐶∗
(2) (𝑀,∇𝑔′ �̃� , 𝐸, ℎ̃)

)
(3.7)

and the c-𝐿2-Betti number of the pair (𝑀, 𝐸)

𝔟
(2)
𝑘

(𝑀, 𝐸) B dimN(Γ)
(
𝐻𝑘

(2) (𝑀,∇𝑔′ 𝑓 , 𝐸, ℎ)
)
∈ [0,∞) (3.8)

as the von Neumann dimension of the 𝐿2-Morse–Smale cohomology (throughout, the
prefix “c” stands for combinatorial) and similarly the 𝑘-th c-Novikov–Shubin invariant

𝛼
Top
𝑘

(𝑀, 𝐸) B 𝛼𝑘

(
𝐶∗
(2) (𝑀,∇𝑔′ �̃� , 𝐸, ℎ̃)

)
. (3.9)
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We say that (𝑀, 𝐸) is c-𝐿2-acyclic if 𝔟(2)
𝑘

(𝑀, 𝜌) = 0 for all 0 ≤ 𝑘 ≤ 𝑛. We say that
(𝑀, 𝐸) is of c-determinant class if the complex 𝐶∗

(2) (𝑀,∇𝑔′ �̃� , 𝐸, ℎ̃) is of determinant
class. If (𝑀, 𝐸) is of c-determinant class, we define the 𝐿2-Morse–Smale torsion of the
system D as

𝑇MS
(2) (𝐸 ↓ 𝑀, ℎ,∇𝑔′ 𝑓 )

B 𝑇

(
𝐶∗
(2) (𝑀,∇𝑔′ �̃� , 𝐸, ℎ̃)

)
=

𝑛∏
𝑘=0
detΓ (𝜕𝑘𝑀𝑆)

(−1)𝑘+1 ∈ R>0 . (3.10)

As mentioned previously, the Morse–Smale cochain complexes 𝐶∗ (𝑀,∇𝑔′1
�̃�1, 𝐸) and

𝐶∗ (𝑀,∇𝑔′2
�̃�2, 𝐸) coming from two distinct Morse–Smale systems D1 = (𝑀, 𝐸, 𝑔1, ℎ1,

∇𝑔′1
𝑓1) and D ′ = (𝑀, 𝐸, 𝑔2, ℎ2∇𝑔′2

𝑓2) defined over a fixed pair (𝑀, 𝐸) are the cellular
cochain complexes of two Γ-homotopy equivalent subcomplexes of 𝑀. By picking a
cellular approximation of an explicit homotopy equivalence, one can easily show that
the 𝐿2-Morse–Smale complexes 𝐶∗

(2) (𝑀,∇𝑔′1
�̃�1, 𝐸, ℎ̃1) and 𝐶∗

(2) (𝑀,∇𝑔′2
�̃�2, 𝐸, ℎ̃2) are

chain homotopy equivalent. By Proposition 2.1, it follows that the c-𝐿2-betti numbers
𝔟
(2)
𝑘

(𝑀, 𝐸), the c-Novikov–Shubin invariants 𝛼Top
𝑘

(𝑀, 𝐸), as well as the c-determinant
class condition do not depend on the explicit choices of metrics and Morse Smale function.
On the other hand, the 𝐿2-Morse–Smale torsion 𝑇MS

(2) (𝐸 ↓ 𝑀, ℎ,∇𝑔′ 𝑓 ) does in general
depend on the choices of Hermitian forms and Morse–Smale pairs (although it is entirely
independent of the Riemannian metric on 𝑀). However, under the assumption that 𝐸 ↓ 𝑀
is a unimodular bundle, 𝜒(𝑀) = 0, and that (𝑀, 𝐸) is c-𝐿2-acyclic and of c-determinant
class defined as above, there exists a topological 𝐿2-torsion

𝑇
Top
(2) (𝑀, 𝐸) ∈ R≥0 . (3.11)

It can be defined similarly like 𝑇MS
(2) (𝐸 ↓ 𝑀, ℎ,∇𝑔′ 𝑓 ), with the aid of any given CW-

structure on𝑀 and any fixed inner product on𝑉 , see [34, Definition 5.2.5, Theorem 5.3.12].
The following key result establishes a connection between the a priori different Morse–
Smale torsions that come from distinct Morse–Smale systems and 𝑇Top

(2) (𝑀, 𝐸).

Theorem 3.4 ([34, Theorem 5.4.15]). Assume that 𝐸 ↓ 𝑀 is a unimodular bundle over
a compact manifold and that 𝜒(𝑀) = 0. Let D = (𝑀, 𝐸, 𝑔, ℎ,∇𝑔′ 𝑓 ) be an associated
Morse–Smale system with ℎ unimodular and assume that 𝐸 ↓ 𝑀 is c-𝐿2-acyclic and of
c-determinant class. Then, one has

𝑇
Top
(2) (𝑀, 𝐸) = 𝑇

MS
(2) (𝐸 ↓ 𝑀, ℎ,∇𝑔′ 𝑓 ).
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3.2. The analytic 𝐿2-torsion 𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ)

For a Morse–Smale system D as above, we now explain the construction of the 𝐿2-de
Rham complex Ω∗

(2) (𝑀, 𝐸, �̃�, ℎ̃) as well as the computation of the 𝐿
2-analytic torsion

𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ). None of these considerations will take the Morse–Smale pair ( 𝑓 , 𝑔′)
into account.
To begin with, let

Ω∗ (𝑀, 𝐸) � Ω∗ (𝑀) ⊗C Γ(𝐸) (3.12)
be the twisted de Rham complex of 𝐸-valued forms, with differential

𝑑∗ : Ω∗ (𝑀, 𝐸) → Ω∗+1 (𝑀, 𝐸) (3.13)

induced by the flat connection on 𝐸 . Notice that the (fixed) flat identification 𝐸 � 𝑀 ×𝑉
allows us to naturally identify Ω∗ (𝑀, 𝐸) with Ω∗ (𝑀) ⊗C 𝐶∞ (𝑀,𝑉). The canonical
Γ-action on Ω∗ (𝑀) given by pullbacks and the natural Γ-action on Γ(𝐸) � 𝐶∞ (𝑀,𝑉)
induced by the linear representation 𝜌 : Γ → GL(𝑉) intertwine to produce a Γ-action
on Ω∗ (𝑀, 𝐸), with respect to which 𝑑∗ becomes Γ-equivariant. For 𝑥 ∈ M, denote by
〈 · , · 〉𝑥 the inner product at the fiber vector space (Λ∗𝑇∗𝑀 ⊗ 𝐸)𝑥 naturally derived from
the pair 𝑔 and ℎ. Let 𝜇𝑔 ∈ Ω𝑛 (𝑀) be the volume form induced by �̃�. Restricting to the
Γ-invariant subspace Ω∗

𝑐 (𝑀, 𝐸) of compactly supported forms, the integration over the
pointwise inner product

〈 · , · 〉 : Ω∗
𝑐 (𝑀, 𝐸) ×Ω∗

𝑐 (𝑀, 𝐸) → C, (3.14)

〈 𝑓 , 𝑔〉 B
∫
𝑀

〈 𝑓 (𝑥), 𝑔(𝑥)〉𝑥d𝜇𝑔 (𝑥) (3.15)

determines itself an inner product on Ω∗
𝑐 (𝑀, 𝐸), with respect to which the Γ-action on

Ω∗
𝑐 (𝑀, 𝐸) is by isometries.
Let𝑇∗𝜕𝑀 the cotangent bundle over the boundary 𝜕𝑀 . As usual, theRiemannianmetric

𝑔 induces an orthogonal decomposition of the restricted cotangent bundle 𝑇∗𝑀 |
𝜕𝑀

=

𝑇∗𝜕𝑀 ⊕ 𝑁∗𝜕𝑀, where 𝑁∗𝜕𝑀 ↓ 𝜕𝑀 denotes the 1-dimensional conormal bundle
over 𝑀. For each 𝑥 ∈ 𝜕𝑀, each 0 ≤ 𝑘 ≤ 𝑛 and each 𝜔 ∈ Ω𝑘 (𝑀, 𝐸), the vector
𝜔(𝑥) ∈ (Λ𝑘𝑇∗𝑀 ⊗ 𝐸)𝑥 consequently decomposes orthogonally into a tangential and a
normal part:

𝜔(𝑥) = ®𝑡𝜔(𝑥) + ®𝑛𝜔(𝑥) ∈ (Λ𝑘𝑇∗𝜕𝑀 ⊗ 𝐸)𝑥 ⊕ (Λ𝑘−1𝑇∗𝜕𝑀 ⊗ 𝑁∗𝜕𝑀 ⊗ 𝐸)𝑥 . (3.16)

Let

𝛿∗ : dom∗ (𝛿∗) → dom∗−1 (𝛿∗−1), (3.17)
dom∗ (𝛿∗) B {𝜎 ∈ Ω∗

𝑐 (𝑀, 𝐸) : ®𝑛𝜎 = 0} (3.18)
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be the formal adjoint of 𝑑∗ with respect to the inner product 3.15 and with absolute
boundary conditions. Define the Hodge–Laplacian with absolute boundary conditions

Δ∗ B 𝛿∗+1𝑑∗ + 𝑑∗−1𝛿∗ : dom(Δ∗) → dom(Δ∗), (3.19)

dom(Δ∗) B {𝜔 ∈ Ω∗
𝑐 (𝑀, 𝐸) : ®𝑛𝜔 = ®𝑛𝑑∗𝜔 = 0} ⊆ Ω∗ (𝑀, 𝐸). (3.20)

Let Ω∗
(2) (𝑀, 𝐸) = Ω∗

(2) (𝑀, 𝐸, �̃�, ℎ̃) be the 𝐿
2-completion of Ω∗

𝑐 (𝑀, 𝐸) with regards to
the previously defined inner product. Together with the extension of the isometric Γ-action
on Ω𝑐 (𝑀, 𝐸), Ω∗

(2) (𝑀, 𝐸) becomes a Hilbert N(Γ)-module (although not a finitely
generated one). Moreover, the restricted operators 𝑑∗ and Δ∗ each admit unbounded
closed, Γ-equivariant extensions (denoted by the same symbol), which can therefore be
regarded as morphisms between the corresponding Hilbert N(Γ)-modules. We obtain a
cochain complex of Hilbert N(Γ)-modules

0→ Ω0(2) (𝑀, 𝐸)
𝑑0−−→ Ω1(2) (𝑀, 𝐸)

𝑑1−−→ . . .
𝑑𝑛−1
−−−→ Ω𝑛

(2) (𝑀, 𝐸) → 0, (3.21)

called the 𝐿2-de Rham complex induced by the system D.
For each 0 ≤ 𝑘 ≤ 𝑛, the (closed extension of the) formal adjoint 𝛿𝑘 (with ab-

solute boundary conditions) is in fact the Hilbert space adjoint of the differential
𝑑𝑘 [34, Proposition 3.4.6]. Furthermore, the (closed extension of the) Laplace opera-
tor Δ𝑘 is positive and self-adjoint [34, Theorem 3.4.1]. With 𝑡 ranging over R>0, let
𝑒−𝑡Δ𝑘 : Ω𝑘

(2) (𝑀, 𝐸) → Ω𝑘
(2) (𝑀, 𝐸) be the 1-parameter, monotonically decreasing family

of positive heat operators associated to Δ𝑘 , defined via the spectral theorem applied to Δ𝑘 .
Each 𝑒−𝑡Δ𝑘 is a bounded morphism of Hilbert N(Γ)-modules that is also of trace class,
i.e. satisfies trΓ (𝑒−𝑡Δ𝑘 ) < ∞. More precisely, each 𝑒−𝑡Δ𝑘 possesses an integral kernel
𝑒−𝑡Δ𝑘 ( · , · ), a smooth section of a certain naturally derived vector bundle over 𝑀 × 𝑀,
such that for any arbitrary fundamental domain F ⊆ 𝑀 for the Γ-action on 𝑀, one has
the equality

trΓ (𝑒−𝑡Δ𝑘 ) =
∫
F
tr(𝑒−𝑡Δ𝑘 (𝑥, 𝑥))d𝜇𝑔 (𝑥), (3.22)

see [2, Proposition 4.16] for the details. By dominated convergence, we obtain for each
0 ≤ 𝑘 ≤ 𝑛 that

dimN(Γ) (ker(Δ𝑘 )) = lim
𝑡→∞
trΓ (𝑒−𝑡Δ𝑘 ) ∈ R≥0 . (3.23)

In fact, the closed subspace ker(Δ𝑘 ) ⊆ Ω𝑘
(2) of 𝐿

2-integrable harmonic 𝑘-forms is not
only a finite-dimensional Hilbert N(Γ)-module, but also consists entirely of smooth
forms and is isomorphic to the 𝑘-th 𝐿2-cohomology

H 𝑘
(2) (𝑀, 𝐸, 𝑔, ℎ) B 𝐻𝑘 (Ω∗ (𝑀, 𝐸, �̃�, ℎ̃)) (3.24)
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ofΩ∗ (𝑀, 𝐸, �̃�, ℎ̃) [34, Propositions 3.4.2, 4.1.33].We define the 𝑘-th a-𝐿2-Betti number as

b(2)
𝑘

(𝑀, 𝐸) B dimN(Γ) (H 𝑘
(2) (𝑀, 𝐸, 𝑔, ℎ)) = dimN(Γ) (ker(Δ𝑘 )). (3.25)

Throughout, the prefix “a” stands for analytic.
Similarly, the restriction Δ⊥

𝑘
B Δ𝑘 |ker(Δ𝑘 )⊥ is a self-adjoint morphism of Hilbert

N(Γ)-modules, so that

trΓ (𝑒−𝑡Δ
⊥
𝑘 ) = trΓ (𝑒−𝑡Δ𝑘 ) − b(2)

𝑘
(𝑀, 𝐸) ∈ R≥0 (3.26)

for each 𝑡 > 0. For 0 ≤ 𝑘 ≤ 𝑛 and 𝑠 ∈ C, the (truncated) zeta-function 𝜁𝑘 (𝑠) is defined as
the formal expression

𝜁𝑘 (𝑠) B Γ(𝑠)−1
∫ 1

0
𝑡𝑠−1 trΓ (𝑒−𝑡Δ

⊥
𝑘 )d𝑡. (3.27)

Here, Γ(𝑠)−1 denotes the (entire) inverse gamma function, which should not be confused
with the group Γ. Due to the rational asymptotic behavior of trΓ (𝑒−𝑡Δ

⊥
𝑘 ) near 𝑡 = 0 [21,

Lemma 1.3] (see also [34, Theorem 4.3.2]), there exists a constant 𝐶 > 0, such that 𝜁𝑘 (𝑠)
determines a holomorphic function on the domain {𝑠 ∈ C : <(𝑠) � 𝐶} that extends to a
meromorphic function on all of C with 𝑠 = 0 being a regular point.

Definition 3.5. Let D = (𝑀, 𝐸, 𝑔, ℎ,∇𝑔′ 𝑓 ) be a Morse–Smale system as above. For
0 ≤ 𝑘 ≤ 𝑛, the 𝑘-th a-Novikov–Shubin invariant 𝛼𝐴𝑛

𝑘
(𝑀, 𝐸) ∈ [0,∞] ∪ {∞+} is defined

as
𝛼𝐴𝑛
𝑘 (𝑀, 𝐸) B 𝛼𝑘

(
Ω∗

(2) (𝑀, 𝐸, �̃�, ℎ̃)
)
. (3.28)

The pair (𝑀, 𝐸) is said to be of a-determinant class if the 𝐿2-de Rham complex
Ω∗

(2) (𝑀, 𝐸, �̃�, ℎ̃) is of determinant class. If (𝑀, 𝐸) is of a-determinant class, we can
define the analytic 𝐿2-torsion 𝑇 𝐴𝑛

(2) (𝐸 ↓ 𝑀, 𝑔, ℎ) ∈ R>0 of the system as

log(𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ))

B
𝑛∑︁

𝑘=0

𝑘

2
(−1)𝑘+1

(
d
d𝑠
𝜁𝑘 (𝑠) |𝑠=0 +

∫ ∞

1
𝑡−1 trΓ (𝑒−𝑡Δ

⊥
𝑘 )d𝑡

)
. (3.29)

The a-determinant class condition of (𝑀, 𝐸) says that for each 0 ≤ 𝑘 ≤ 𝑛, the
restriction 𝑑𝑘 |im(𝑑𝑘−1)⊥ is of determinant class. By [20, Lemma 3.30], this is equivalent
to the operator Δ⊥

𝑘
being of a-determinant class for each 0 ≤ 𝑘 ≤ 𝑛, which in turn [20,

Lemma 3.139] implies that
∫ ∞
1 𝑡−1 trΓ (𝑒−𝑡Δ

⊥
𝑘 )d𝑡 < ∞ for each 0 ≤ 𝑘 ≤ 𝑛, showing

that 𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ) is well-defined. Up to bounded, Γ-equivariant isomorphisms, the

HilbertN(Γ)-cochain complexΩ∗
(2) (𝑀, 𝐸, �̃�, ℎ̃) is independent of the particular choice of

𝑔 and ℎ. Therefore, neither b(2)
𝑘

(𝑀, 𝐸) nor the a-determinant class conditions depend on 𝑔

86



An 𝐿2-Cheeger Müller theorem on compact manifolds with boundary

or ℎ. However, in the general case that we concern ourselves with (i.e. when 𝜕𝑀 ≠ ∅), the
quantity 𝑇 𝐴𝑛

(2) (𝐸 ↓ 𝑀, 𝑔, ℎ) does depend on both 𝑔 and ℎ. The precise metric anomalies,
to be presentend in the next section, are of fundamental importance for this paper.

3.3. The metric 𝐿2-torsion 𝑇Met
(2) (D) and the relative 𝐿2-torsion R(D)

We now describe for a general Morse–Smale system D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) with 𝑀
compact the construction of the relative 𝐿2-torsion R(D) ∈ R, provided that 𝐸 ↓ 𝑀 is
determinant class. To begin with, we are going to define new norms on Ω∗

𝑐 (𝑀, 𝐸, �̃�, ℎ̃),
the de Rham complex of compactly supported forms. Throughout, we will denote by
‖ · ‖0 the 𝐿2-norm defined in the previous section. Assume first that 𝜕𝑀 = ∅. In this case,
we define for each 𝑠 ∈ R>0 the 𝑠-th Sobolev norm

‖𝜔‖𝑠 B ‖(1 + Δ𝑘 )𝑠/4𝜔‖0, 𝜔 ∈ Ω𝑘
𝑐 . (3.30)

In case that 𝜕𝑀 ≠ ∅, we define for each integer 𝑝 ∈ N the 𝑝-th Sobolev norm (with
absolute boundary conditions) inductively as

‖𝜔‖2𝑝 B ‖𝜔‖2𝑝−1 + ‖d𝑘𝜔‖2𝑝−1 + ‖𝛿𝑘−1𝜔‖2𝑝−1 + ‖®𝑛𝜔‖2
𝑝−1/2 𝜔 ∈ Ω𝑘

𝑐 . (3.31)

For fixed 0 ≤ 𝑘 ≤ 𝑛 and integer 𝑝 ∈ N0, the 𝐿2-completionW𝑘
𝑝 (𝑀, 𝐸, �̃�, ℎ̃) is called the

𝑝-th Sobolev space of 𝑘-forms. Just like in the case 𝑝 = 0, the Γ-action on Ω𝑘
𝑐 extends to

an isometric Γ-action on𝑊 𝑘
𝑝 , turning it into a HilbertN(Γ)-module. Crucially, we obtain

bounded extensions

𝑑𝑘 :W𝑘
𝑝+1 (𝑀, 𝐸, �̃�, ℎ̃) → W𝑘+1

𝑝 (𝑀, 𝐸, �̃�, ℎ̃) (3.32)

for each 0 ≤ 𝑘 ≤ 𝑛 − 1, which is why we can define for fixed 𝑙 ≥ 𝑛 a cochain complex of
Hilbert N(Γ)-modules

W∗
𝑙−∗ (𝑀, 𝐸, �̃�, ℎ̃) : W

0
𝑙 (𝑀, 𝐸, �̃�, ℎ̃)

d0−→ W1
𝑙−1 (𝑀, 𝐸, �̃�, ℎ̃)
d1−→ · · · d

𝑛−1
−−−→ W𝑛

𝑙−𝑛 (𝑀, 𝐸, �̃�, ℎ̃). (3.33)

Now recall the 𝐿2-Morse–Smale complex 𝐶∗
(2) (𝑀,∇𝑔′ �̃� , 𝐸, ℎ̃) and fix an integer 𝑙 >

3𝑛/2 + 1. Then, it follows from the Sobolev inequality that one has 𝜎 ∈ 𝐶1 ∩ 𝐿2 for
each 𝜎 ∈ W𝑘

𝑙
and each 0 ≤ 𝑘 ≤ 𝑛. Together with our fixed isomorphism 𝐸 � 𝑀 × 𝑉 ,

we deduce that for each 𝑝 ∈ Cr( �̃� ) with ind(𝑝) = 𝑘 , the integral
∫
𝑊 − (𝑝) 𝜎 ∈ 𝑉

over the 𝑘-dimesional unstable manfiold 𝑊− (𝑝) is well-defined. In fact, it holds that∑
ind(𝑝)=𝑘 ‖

∫
𝑊 − (𝑝) 𝜎‖

2
ℎ̃𝑝

< ∞, e.g. [16, Lemma 3.2]. Therefore, we can define a map
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between graded Hilbert N(Γ)-modules

Int∗ :W∗
𝑙−∗ (𝑀, 𝐸, �̃�, ℎ̃) → 𝐶∗

(2) (𝑀,∇𝑔′ �̃� , 𝐸, ℎ̃), (3.34)

Int𝑘 (𝜎) B
∑︁

𝑝∈Cr( 𝑓 )
ind(𝑝)=𝑘

[𝑂 𝑝] ⊗
(∫

𝑊 − (𝑝)
𝜎

)
𝜎 ∈ W𝑘

𝑙−𝑘 , (3.35)

given by integration of Sobolev forms over the unstable manifolds. By a result of
Laudenbach [6, Appendix, Proposition 6], Int∗ is a cochain map. Let

𝜋∗ : ker(𝜕∗𝑀𝑆) → ker(𝜕∗𝑀𝑆)/clos(im(𝜕
∗−1
𝑀𝑆)) C 𝐻∗

(2) (𝑀,∇𝑔′ �̃� , 𝐸, ℎ̃) (3.36)

be the projection of the kernel of the 𝐿2-Morse–Smale boundary operator onto the
corresponding 𝐿2-Morse–Smale homology. By a theorem of Dodziuk [16], extended by
Schick [31] to manifolds with boundary and by Shubin [32] to non-unitary bundles, the
map

Θ∗ : ker(Δ∗) → 𝐻∗
(2) (𝑀,∇𝑔′ �̃� , 𝐸, ℎ̃), (3.37)

defined as the restriction of 𝜋∗◦Int∗ onto the closed subspace ker(Δ∗) ⊆ W∗
𝑙−∗ (𝑀, 𝐸, �̃�, ℎ̃)

of 𝐿2-harmonic forms is an isomorphism of finitely generated Hilbert N(Γ)-modules. In
particular,

𝔟
(2)
𝑘

(𝑀, 𝐸) = b(2)
𝑘

(𝑀, 𝐸) 0 ≤ 𝑘 ≤ 𝑛, (3.38)

i.e. the combinatorial and analytical 𝐿2-Betti numbers of the pair (𝑀, 𝐸) agree. From
now on, since c-𝐿2-acyclicity is equivalent to a-𝐿2-acyclicity, we simply say that the
pair (𝑀, 𝐸) is 𝐿2-acyclic whenever either of the two equivalent conditions hold. The
isomorphism Θ∗ now also allows us to define the metric 𝐿2-torsion 𝑇Met

(2) (D) ∈ R≥0 of
the system D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) as

log𝑇Met
(2) (D) B

∞∑︁
𝑘=0

(−1)𝑘 log detΓ (Θ𝑘 ) = 1
2

∞∑︁
𝑘=0

(−1)𝑘 log detΓ ((Θ𝑘 )∗Θ𝑘 ). (3.39)

Assuming that 𝐸 ↓ 𝑀 is of a-determinant class, we define the Ray–Singer 𝐿2 Torsion
𝑇𝑅𝑆
(2) (D) ∈ R≥0 as

log𝑇𝑅𝑆
(2) (D) B log

(
𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ)
𝑇Met
(2) (D)

)
, (3.40)

Of course, if ker(Δ∗) = {0}, i.e. if (𝑀, 𝐸) is 𝐿2-acyclic, then 𝑇Met
(2) (D) = 1, so that

𝑇𝑅𝑆
(2) (D) = 𝑇 𝐴𝑛

(2) (𝐸 ↓ 𝑀, 𝑔, ℎ). If (𝑀, 𝐸) is both of combinatorial and of analytical
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determinant class, the relative 𝐿2-torsion R(D) ∈ R of the corresponding Morse–Smale
system D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) can be defined as

R(D) B log
(

𝑇𝑅𝑆
(2) (D)

𝑇MS
(2) (𝐸 ↓ 𝑀, ℎ,∇𝑔′ 𝑓 )

)
. (3.41)

We will show in Theorem 6.4 that the condition 𝐸 ↓ 𝑀 being of a-determinant class is
equivalent to 𝐸 ↓ 𝑀 being of c-determinant class. Therefore, we are justified to say that
𝐸 ↓ 𝑀 is of determinant class whenever either determinant class condition (and therefore
both) is satisfied.

Remark 3.6. It should bementioned that the relative torsionR(D) ∈ R can be defined even
if the corresponding bundle 𝐸 ↓ 𝑀 is not of determinant class. In that case, the individual
terms 𝑇𝑅𝑆

(2) (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) and 𝑇MS
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) are not real numbers, but

non-vanishing vectors in the same orientation class of a particular 1-dimensional real
vector space. Therefore, their quotient yields a positive real number, which is why R(D),
the logarithm of the quotient as above, is still well-defined. It can be shown that the
main Theorem 4.5 still holds in this case. We refer to [7, 11, 35] for a detailed study of
𝐿2-torsion without the determinant class conditions.

4. Statement of the main results

Using the terminology introduced in the previous section, we are going to formulate the
main results, Theorems 4.5 and 4.8.
First, however, we also need to establish the notion of a local quantity: Given two

systems D𝑖 = (𝐸𝑖 ↓ 𝑀𝑖 , 𝑔𝑖 , ℎ𝑖 , 𝑋𝑖), an isometry 𝜙 : (𝑀1, 𝑔1) → (𝑀2, 𝑔2) between the
underlying Riemannian manifolds that satisfies 𝜙∗𝑋2 = 𝑋1 and extends to a flat bundle
isometry Φ : (𝐸1, ℎ1) → (𝐸2, ℎ2) is called an isomorphism between the systems.

Definition 4.1 (Local Quantity). An assignment of a form 𝛼 = 𝛼(D) ∈ 𝑌 , where either
𝑌 = Ω𝑛 (𝑀,O𝑀 ), or𝑌 = Ω𝑛−1 (𝜕𝑀,O𝜕𝑀 ) for any systemD = (𝐸 ↓ 𝑀, 𝑔, ℎ, 𝑋) is called
a local quantity of D if it satisfies the following compatibility conditions:

(1) For any open subset𝑈 ⊆ 𝑀 , it holds that 𝛼(D|𝑈 ) = 𝛼(D)|𝑈 .

(2) If 𝜙 : 𝑀1 → 𝑀2 is an isomorphism between two systems D𝑖 = (𝐸𝑖 ↓
𝑀𝑖 , 𝑔𝑖 , ℎ𝑖 , 𝑋𝑖) (for 𝑖 = 1, 2), then 𝜙∗𝛼(D2) = 𝛼(D1).

Here, as everywhere else, O𝑀 ↓ 𝑀 is the (real) orientation line bundle over 𝑀 . Elements
of Ω𝑛 (𝑀,O𝑀 ) are called densities.
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For any systemD = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) with ( 𝑓 , 𝑔′) aMorse–Smale pair, we will now
construct a local quantity of the derived systemD = (𝐸 |𝑀\Cr( 𝑓 ) ↓ 𝑀 \Cr( 𝑓 ), 𝑔, ℎ,∇𝑔′ 𝑓 )
that constitutes an integral part in the analysis of the anomaly between 𝐿2-Ray Singer and
Morse–Smale torsion.
First off, as carefully explained and constructed by Bismut and Zhang in [6, Section 3],

the Levi-Civita connection of the Riemannian metric 𝑔 gives rise to the Mathai–Quillen
Current

Ψ(𝑀, 𝑔) ∈ Ω𝑛−1 (𝑇𝑀 \ 𝑀,O𝑇 𝑀 ). (4.1)

Here, we have identified 𝑀 ⊆ 𝑇𝑀 with its zero section inside 𝑇𝑀. The second local
quantity of relevance is the 1-form 𝜃 (ℎ) ∈ Ω1 (𝑀), which measures the local change of
the volume form induced the metric ℎ along 𝑀 and can be constructed as follows: Let ∇
be the flat connection on 𝐸 ↓ 𝑀 and let 𝐸∗ ↓ 𝑀 be the flat bundle over 𝑀 conjugate dual
to 𝐸 ↓ 𝑀 . The induced endomorphism bundle End(𝐸, 𝐸∗) ↓ 𝑀 carries a flat connection
∇∗ naturally induced by ∇. For the metric ℎ, we now observe that ℎ ∈ Γ(𝑀,End(𝐸, 𝐸∗)),
which allows us to define the 1-form

𝜃 (ℎ) B tr(ℎ−1∇∗ℎ) ∈ Ω1 (𝑀). (4.2)

Definition 4.2. A metric ℎ on a flat bundle 𝐸 ↓ 𝑀 is called unitary (or parallel) if
∇∗ℎ ≡ 0. ℎ is called unimodular if 𝜃 (ℎ) ≡ 0.

The canonical metric associated to a flat unitary bundle 𝐸 ↓ 𝑀, i.e. every bundle
coming from a unitary representation 𝜌 : Γ → 𝑂 (𝑉)), is unitary. Unitary metrics are
obviously unimodular; the converse need not hold. Every unimodular bundle 𝐸 ↓ 𝑀,
i.e. every flat bundle corresponding to a finite-dimensional unimodular representation
𝜌 : Γ → 𝑆𝐿 (𝑉) admits a unimodular metric ℎ. Although there is in general no canonical
choice of a unimodular metric, such metrics can always be chosen with a lot of flexibility,
as the next lemma shows:

Lemma 4.3 ([34, Corollary 5.4.18]). Let 𝐸 ↓ 𝑀 be a flat, unimodular bundle over a
connected manifold 𝑀 and𝑈 =

⊔
𝑖∈𝐼 𝑈𝑖 ⊆ 𝑀 a subset with each𝑈𝑖 open and connected.

Let 𝑥0 ∈ Int(𝑀 \𝑈) and 𝑥𝑖 ∈ 𝑈𝑖 for each 𝑖 ∈ 𝐼 be chosen basepoints with curves 𝑐𝑖 ⊆ 𝑀

connecting 𝑥0 to 𝑥𝑖 . Further, let ℎ̃0 be a Hermitian metric on 𝐸𝑥0 and ℎ̃𝑖 a Hermitian
metric on 𝐸𝑥𝑖 satisfying

det( ℎ̃𝑖 · 𝑃∗
𝑐𝑖
( ℎ̃0)−1) = 1, (4.3)

where 𝑃𝑐𝑖 : GL(𝐸𝑥0 , 𝐸
∗
𝑥0 ) → GL(𝐸𝑥𝑖 , 𝐸

∗
𝑥𝑖 ) denotes the parallel transport along the

curve 𝑐𝑖 . Then, for any unimodular metric
⊔
ℎ𝑖 on 𝐸 |𝑈 extending

⊔
ℎ̃𝑖 , there exists a

global unimodular metric ℎ on 𝐸 further extending
⊔
ℎ𝑖 t ℎ̃0.
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Now notice that ∇𝑔′ 𝑓 determines a smooth embedding ∇𝑔′ 𝑓 : 𝑀 \ Cr( 𝑓 ) → 𝑇𝑀 \ 𝑀 .
Wedging the corresponding pullback ∇𝑔′ 𝑓

∗Ψ(𝑀, 𝑔) ∈ Ω𝑛−1 (𝑀 \ Cr( 𝑓 ),O𝑀 ) with
𝜃 (ℎ) ∈ Ω1 (𝑀), we obtain a density over 𝑀 \ Cr( 𝑓 ) and local quantity of D:

𝜃 (ℎ) ∧ ∇𝑔′ 𝑓
∗Ψ(𝑀, 𝑔) ∈ Ω𝑛 (𝑀 \ Cr( 𝑓 ),O𝑀 ). (4.4)

This allows us to, at least formally, define the integral∫
𝑀

𝜃 (ℎ) ∧ ∇𝑔′ 𝑓
∗Ψ(𝑀, 𝑔) B

∫
𝑀\Cr( 𝑓 )

𝜃 (ℎ) ∧ ∇𝑔′ 𝑓
∗Ψ(𝑀, 𝑔). (4.5)

Note that since𝑀 \Cr( 𝑓 ) is not compact (unlessCr( 𝑓 ) = ∅), the integral need a priori not
converge. That this is indeed the case has been shown in [6], as an immediate consequence
of their main result. Moreover, one can verify either from its explicit construction as done
in [6, Chapter III] or immediately from [11, Section 4], that 𝜃 (ℎ) ∧ ∇𝑔′ 𝑓

∗Ψ(𝑀, 𝑔) is a
local quantity of the system D = (𝐸 |𝑀\Cr( 𝑓 ) ↓ 𝑀 \ Cr( 𝑓 ), 𝑔, ℎ,∇𝑔′ 𝑓 ), as claimed. The
theorem that we wish to generalize is the following result by Zhang:

Theorem 4.4 ([35, Theorem 4.2]). Let D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) be a system with ( 𝑓 , 𝑔′)
a Morse–Smale pair and 𝑀 closed. Then

R(D) = −1
2

∫
𝑀

𝜃 (ℎ) ∧ ∇𝑔′ 𝑓
∗Ψ(𝑀, 𝑔). (4.6)

With aid of the above theorem, we will derive a similar result in case that 𝑀 is
odd-dimensional with non-empty boundary:

Theorem 4.5. Let D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) be a type II Morse–Smale system of product
form, where 𝑀 is an odd-dimensional compact manifold and ℎ|𝜕𝑀 is unimodular. Further,
assume that both 𝐸 ↓ 𝑀 and 𝐸 |𝜕𝑀 ↓ 𝜕𝑀 are of determinant class. Then

R(D) = − log 2
4

𝜒(𝜕𝑀) dim(𝐸) − 1
2

∫
𝑀

𝜃 (ℎ) ∧ ∇𝑔′ 𝑓
∗Ψ(𝑇𝑀, 𝑔). (4.7)

Remark 4.6. Similarly as in the unitary case (cf. [10, Theorem 4.1]), there is also a
version of Theorem 4.5 for relative/mixed, instead of absolute boundary conditions as
we assume here throughout. The proof presented here carries over to this case with only
minor modifications. Although not relevant for this paper, this generalization will prove to
be useful when one wants to extend the gluing formula [10, Theorem 4.3] to non-unitary
bundles, which could in turn be used for future computational purposes.

Example 4.7. Set 𝐼 = [𝑎, 𝑏], and let 𝐸C B C×𝐼 be the trivial 1-dimensional complex
vector bundle over 𝐼. As metrics, we choose 𝑔0 to be the standard Euclidean metric and
ℎ0 the canonical constant Hermitian form, i.e 〈𝑧, 𝑧′〉ℎ0 (𝑥) B 𝑧𝑧′ for any 𝑥 ∈ 𝐼 and any pair
𝑧, 𝑧′ ∈ C. Further, we choose as Morse-function a smooth map 𝑓0 : [𝑎, 𝑏] → R satisfying
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• 𝑓0 (𝑥) B 1
2 (𝑥 − (𝑏 + 𝑎)/2)2 away from a neighborhood of {𝑎, 𝑏},

• 𝑓0 (𝑎 + 𝑡𝜖) = 𝑓0 (𝑏 − 𝑡𝜖) = 𝑏 − 𝑡𝜖 for all 𝑡 ∈ [0, 1] and some small 𝜖 > 0, and
so that

• (𝑏 + 𝑎)/2 is the only critical point of 𝑓0.

One now easily verifies that D𝐼 B (𝐸C ↓ 𝐼, 𝑔0, ℎ0,∇𝑔′0
𝑓0) is an admissible system and

that 𝐸C ↓ 𝐼 is of determinant class. In fact, one can easily compute the corresponding
analytic and combinatorial torsion elements [34, Example 6.1.7] and obtain

R(D𝐼 ) = − log 2
2

= − log 2
4

𝜒({𝑎, 𝑏}) − 1
2

∫ 𝑏

𝑎

=0︷︸︸︷
𝜃 (ℎ0) ∧(∇𝑔′0

𝑓0)∗Ψ(𝑇 𝐼, 𝑔0). (4.8)

The main part of this paper is devoted to the proof of Theorem 4.5. We will adapt the
techniques and strategy developed by Burghelea, Friedlander and Kappeler in [10] to
our situation of non-unitary bundles, together with employing several known anomaly
results that have been shown since. We remark that Theorem 4.5 has also recently been
verified in an (as of now) unpublished paper by Guangxiang Su, employing techniques
and methods different from the ones that we are using. Theorem 4.5, together with the
main results established by Brüning and Ma in [9], Zhang and Ma in [22], and Zhang
in [35], are then used to prove the next key result of this paper:

Theorem 4.8. Let (𝑀, 𝑔) be a compact, connected, odd-dimensional Riemannian
manifold. Then, there exists a density 𝐵(𝑔) ∈ Ω𝑛−1 (𝜕𝑀,O𝜕𝑀 ) with 𝐵(𝑔) ≡ 0 when 𝑔 is
product-like near 𝜕𝑀 , such that the following holds:

Let 𝐸 ↓ 𝑀 be a flat, finite-dimensional complex vector bundle, such that

(a) 𝐸 is unimodular,

(b) the pair (𝑀, 𝐸) is 𝐿2-acyclic and of determinant class,

(c) the restriction (𝜕𝑀, 𝐸 |𝜕𝑀 ) is of determinant class.

Then, for any choice of unimodular metric ℎ on 𝐸 , one has

log ©«
𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ)

𝑇
Top
(2) (𝑀, 𝐸)

ª®¬ =
1
2
dimC (𝐸)

∫
𝜕𝑀

𝐵(𝑔). (4.9)
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In particular, for 𝑖 = 1, 2 and any two representations 𝐸𝑖 ↓ 𝑀 satisfying the above
assertions, it follows that

dimC (𝐸2) log
©«
𝑇 𝐴𝑛
(2) (𝐸1 ↓ 𝑀, 𝑔, ℎ1)

𝑇
Top
(2) (𝑀, 𝐸1)

ª®¬ = dimC (𝐸1) log
©«
𝑇 𝐴𝑛
(2) (𝐸2 ↓ 𝑀, 𝑔, ℎ2)

𝑇
Top
(2) (𝑀, 𝐸2)

ª®¬ , (4.10)
for any choice of unimodular metric ℎ𝑖 on 𝐸𝑖 ↓ 𝑀 .

Remark 4.9. Observe that the statement is vacuous in the case that 𝑀 possesses no flat
bundle 𝐸 ↓ 𝑀 so that (𝑀, 𝐸) is 𝐿2-acyclic. In particular, this is true whenever 𝜒(𝑀) ≠ 0,
cf. [20, Theorem 1.35].

Proof. Let 𝜌 be a representation satisfying the assumptions from the theorem. By the
previous remark, we must have

0 = 𝜒(𝑀) = 1
2
𝜒(𝜕𝑀). (4.11)

The last equality follows from the fact that any CW-stucture on 𝑀 which turns 𝜕𝑀
into a subcomplex naturally induces a CW-structure on the double 𝐷𝑀 B 𝑀 ∪𝜕𝑀 𝑀

with exactly twice the number of cells in each dimension, except for those cells defined
by the natural inclusion 𝜕𝑀 ↩→ 𝐷𝑀. Together with applying Poincaré duality (with
Z2-coefficients) to the closed, odd-dimensional manifold 𝐷𝑀 and counting the cells, we
obtain

0 = 𝜒(𝐷𝑀) = 2𝜒(𝑀) − 𝜒(𝜕𝑀), (4.12)

from which the right-hand equality of (4.11) immediately follows.
Choose a Morse function 𝑓 on 𝑀 of type II, along a Riemannian metric 𝑔′ on 𝑀 that is

a product near 𝜕𝑀 and so that ( 𝑓 , 𝑔′) is a Morse–Smale pair. By Lemma 4.3, we may also
choose a unimodular metric ℎ′ with ℎ′ |𝜕𝑀 ≡ ℎ|𝜕𝑀 and so that D = (𝐸 ↓ 𝑀, 𝑔′, ℎ′, 𝑓 )
becomes an admissible system (in particular, ℎ′ is of product form near 𝜕𝑀). First, since
ℎ′ is unimodular and 𝐸 ↓ 𝑀 is det-𝐿2-acyclic, we obtain from Theorem 3.4 that

𝑇MS
(2) (𝐸 ↓ 𝑀, ℎ′,∇𝑔′ 𝑓 ) = 𝑇Top

(2) (𝑀, 𝐸). (4.13)

Furthermore, we can apply (4.11) and Theorem 4.5 to this situation and obtain

log

(
𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔′, ℎ′, 𝑓 )
𝑇MS
(2) (𝐸 ↓ 𝑀, ℎ′,∇𝑔′ 𝑓 )

)
= R(D) = 0. (4.14)

Next, choose a type I Morse function 𝑓 ′ : 𝑀 → R on 𝑀. As 𝐸 ↓ 𝑀 is by assump-
tion 𝐿2-acyclic, we have 𝑇 𝐴𝑛

(2) (𝐸 ↓ 𝑀, 𝑔, ℎ) = 𝑇𝑅𝑆
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ, 𝑓 ′) and analogously
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𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔′, ℎ′) = 𝑇𝑅𝑆

(2) (𝐸 ↓ 𝑀, 𝑔′, ℎ′, 𝑓 ′). Moreover, by the main result of [22], we
have the equality of Ray–Singer anomalies

log

(
𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ)

𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔′, ℎ′)

)
= log

(
𝑇𝑅𝑆
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ, 𝑓 ′)

𝑇𝑅𝑆
(2) (𝐸 ↓ 𝑀, 𝑔′, ℎ′, 𝑓 ′)

)
= log

(
𝑇𝑅𝑆 (𝐸 ↓ 𝑀, 𝑔, ℎ, 𝑓 ′)
𝑇𝑅𝑆 (𝐸 ↓ 𝑀, 𝑔′, ℎ′, 𝑓 ′)

)
. (4.15)

Here, 𝑇𝑅𝑆 (𝐸 ↓ 𝑀, 𝑔′, ℎ′) is the (ordinary) Ray–Singer-metric as originally introduced
in [6, Definition 2.2] and first extended to manifolds with boundary in [8]. Further, it
is shown in [9, Theorem 3.4] that there exists a density 𝐵(𝑔) ∈ Ω𝑛−1 (𝜕𝑀,O𝜕𝑀 ) with
𝐵(𝑔) ≡ 0 whenever 𝑔 is also product-like near 𝜕𝑀 , so that

log
(
𝑇𝑅𝑆 (𝐸 ↓ 𝑀, 𝑔, ℎ, 𝑓 ′)
𝑇𝑅𝑆 (𝐸 ↓ 𝑀, 𝑔′, ℎ′, 𝑓 ′)

)
=
1
2
dimC (𝐸)

∫
𝜕𝑀

𝐵(𝑔). (4.16)

The density 𝐵(𝑔) is constructed as in [9, p. 1103]. It depends only on the local geometry
of (𝜕𝑀, 𝑔 |𝜕𝑀 ) inside (𝑀, 𝑔).
Using (4.13)–(4.16), we finally obtain

log ©«
𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ)

𝑇
Top
(2) (𝑀, 𝐸)

ª®¬ = log

(
𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ)

𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔′, ℎ′)

)
+ log

(
𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔′, ℎ′)

𝑇MS
(2) (𝐸 ↓ 𝑀, ℎ′,∇𝑔′ 𝑓 )

)
= log

(
𝑇𝑅𝑆 (𝐸 ↓ 𝑀, 𝑔, ℎ, 𝑓 ′)
𝑇𝑅𝑆 (𝐸 ↓ 𝑀, 𝑔′, ℎ′, 𝑓 ′)

)
=
1
2
dimC (𝐸)

∫
𝜕𝑀

𝐵(𝑔), (4.17)

as desired. �

5. Product formulas, determinant class and subdivisions

In this section, we study the effect on 𝐿2-torsion and the local quantities after having
taking the product of two systems. Moreover, we will make precise the anomaly of relative
torsion that occurs when taking a subdivision of a Morse function and appropriate new
metrics.
As hinted towards in the introduction, given two Morse–Smale systems D𝑖 = (𝐸𝑖 ↓

𝑀𝑖 , 𝑔𝑖 , ℎ𝑖 ,∇𝑔′
𝑖
𝑓𝑖) for 𝑖 = 1, 2, an integral part of our methods will involve considering

the product system D1 × D2 = (𝐸1 ⊗̂ 𝐸2 ↓ 𝑀1 × 𝑀2, 𝑔1 × 𝑔2, ℎ1 ⊗̂ ℎ2,∇𝑔′1×𝑔
′
2
( 𝑓1 + 𝑓2))

and derive meaningful information of D1 × D2 in terms of D1 and D2, and vice versa.
Throughout, we assume exclusively that 𝑀1 has non-empty boundary and 𝑀2 has empty
boundary. In this case, a problem that we have to address is that a product of two type II
Morse–Smale systems need not be a type II Morse–Smale system anymore.

94



An 𝐿2-Cheeger Müller theorem on compact manifolds with boundary

The problem is due to the fact that the Morse function 𝑓1 + 𝑓2 doesn’t necessarily fulfil
condition (ii) of Definition 3.1 anymore (in particular, it is not necessarily constant on the
boundary 𝜕 (𝑀1 × 𝑀2) = 𝜕𝑀1 × 𝑀2). This can be remedied by deforming 𝑓1 + 𝑓2 in a
sufficiently small neighborhood of 𝜕𝑀1 × 𝑀2 to be of the type II shape as described in
Definition 3.2, which can be arranged in such a way that the resulting Morse function,
denoted henceforth by 𝑓1 + 𝑓2, equals 𝑓1+ 𝑓2 outside of a small neighborhood of 𝜕𝑀1×𝑀2,
has the same critical points as 𝑓1 + 𝑓2, the same gradient trajectories with respect to ∇𝑔′1+𝑔

′
2

and the same unstable cells. We denote the resulting modified product system by

D1 × D2 B (𝐸1 ⊗̂ 𝐸2 ↓ 𝑀1 × 𝑀2, 𝑔1 × 𝑔2, ℎ1 ⊗̂ ℎ2,∇𝑔′1×𝑔
′
2
( 𝑓1 + 𝑓2)), (5.1)

and observe that D1 × D2 is of product form, respectively weakly admissible whenever
bothD1 andD2 are of product form, respectively weakly admissible. Moreover, under the
assumption that both𝑀1 and𝑀2 are compact, it follows immediately from the construction
of 𝑓1 + 𝑓2 that the Morse–Smale cochain complexes corresponding to D1 × D2 and
D1 × D2 are the same (as Hilbert N(Γ)-cochain complexes). This immediately implies
that

log𝑇Met
(2) (D1 × D2) = log𝑇Met

(2) (D1 × D2). (5.2)

In case that 𝐸 ↓ 𝑀 is of determinant class, we also get

log𝑇MS
2 (D1 × D2) = log𝑇MS

(2) (D1 × D2), (5.3)

log𝑇 𝐴𝑛
(2) (D1 × D2) = log𝑇 𝐴𝑛

(2) (D1 × D2). (5.4)

Still, to obtain an admissible system from two admissible systemsD1 andD2, we need to
ensure that ℎ1 ⊗̂ ℎ2 is unimodular near 𝜕𝑀1 × 𝑀2, which can only be guaranteed if we
assume additionally that ℎ2 is (globally) unimodular. For our purposes, this will provide
no restriction at all, since we will always form products, where 𝐸2 ↓ 𝑀2 is in fact a
unitary bundle and ℎ2 is an associated unitary (and flat) metric. Summarizing, we have
the following:

Lemma 5.1. For, 𝑖 = 1, 2, let D𝑖 = (𝐸𝑖 ↓ 𝑀𝑖 , 𝑔𝑖 , ℎ𝑖 ,∇𝑔′
𝑖
𝑓𝑖) be two type II Morse–Smale

systems with 𝜕𝑀1 ≠ ∅ and 𝜕𝑀2 = ∅. Then, the modified product system D1 × D2 as in
(5.1) is also a type II Morse–Smale system. Moreover, if both D1 and D2 are additionally of
product form/weakly admissible, then also D1 × D2 is of product form/weakly admissible.
Lastly, if both D1 and D2 are admissible, so that ℎ2 is globally unimodular, then D1 × D2
is also admissible.

The first product formula that we state is as follows is as follows
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Proposition 5.2 (Product Formula 1). For 𝑖 = 1, 2, let D𝑖 = (𝐸𝑖 ↓ 𝑀𝑖 , 𝑔𝑖 , ℎ𝑖 ,∇𝑔′
𝑖
𝑓𝑖) be

two type II Morse–Smale systems with 𝑀1 compact, 𝜕𝑀1 ≠ ∅ and with 𝑀2 closed. Then,
the type II Morse–Smale system D1 × D2 is also of determinant class and we get

(1) log𝑇 𝐴𝑛
(2) (D1 × D2) = 𝜒(𝑀1, 𝐸1) log𝑇 𝐴𝑛

(2) (D2) + log𝑇
𝐴𝑛
(2) (D1)𝜒(𝑀2, 𝐸2),

(2) log𝑇Met
(2) (D1 × D2) = 𝜒(𝑀1, 𝐸1) log𝑇Met

(2) (D2) + log𝑇
Met
(2) (D1)𝜒(𝑀2, 𝐸2),

(3) log𝑇MS
(2) (D1 × D2) = 𝜒(𝑀1, 𝐸1) log𝑇MS

(2) (D2) + log𝑇
MS
(2) (D1)𝜒(𝑀2, 𝐸2),

(4) R(D1 × D2) = 𝜒(𝑀1, 𝐸1)R(D2) + R(D1)𝜒(𝑀2, 𝐸2).

Proof. Let’s first prove (1)–(3). If we replaceD1 × D2 by the genuine product systemD1×
D2, the equalities are well-known. Namely, the proofs presented in [10, Proposition 1.21,
Proposition 4.2] can be copied line by line, after changing the definition of Λ−,𝑞 (𝑀, 𝐸) to
be the 𝐶∞-closure of 𝑑∗𝑞

(
Ω𝑞+1 (𝑀, 𝜕𝑀, 𝐸)

)
. Now apply (5.2)–(5.4). (4) is an immediate

consequence of (1)–(3). �

In addition, we will need to analyze the behavior under taking products of the local
quantities introduced in the previous section. Here, the assumption that the Hermitian
forms are unimodular at the boundary becomes essential.
For this, note first thatwe have a natural embeddingΩ∗ (𝑀1)⊗Ω∗ (𝑀2) ↩→ Ω∗ (𝑀1×𝑀2)

(which is dense under the natural 𝐶∞-topology). By passing to local trivializations over
coordinate charts, one easily sees that the 1-form 𝜃 (ℎ1 ⊗̂ ℎ2) lies in Ω∗ (𝑀1) ⊗ Ω∗ (𝑀2)
and is of the form

𝜃 (ℎ1 ⊗̂ ℎ2) = 𝜃 (ℎ1) ⊗ dim(𝐸2) + dim(𝐸1) ⊗ 𝜃 (ℎ2). (5.5)

Furthermore, it has been shown in [11, p. 63-64] (see also [6, Chapter 4] or [5, Theorem 2.7]
for additional details) that

∇𝑔′1×𝑔
′
2
( 𝑓1 + 𝑓2)∗Ψ(𝑇 (𝑀1 × 𝑀2), 𝑔1 × 𝑔2))

= (∇𝑔′1
𝑓1)∗Ψ(𝑇𝑀1, 𝑔1) ⊗ 𝑒(𝑇𝑀2, 𝑔2) + 𝑒(𝑇𝑀1, 𝑔1) ⊗ (∇𝑔′2

𝑓2)∗Ψ(𝑇𝑀2, 𝑔2) (5.6)

on 𝑀1 ×𝑀2 \Cr( 𝑓1 + 𝑓2) = 𝑀1 ×𝑀2 \Cr( 𝑓1) ×𝐶 ( 𝑓2). Here, for a Riemannian manifold
(𝑀, 𝑔), the Euler form 𝑒(𝑀, 𝑔) ∈ Ωdim(𝑀 ) (𝑀,O𝑀 ) is a density defined using Chern–
Weil theory. It has the property that 𝑒(𝑀, 𝑔) ≡ 0 whenever 𝑀 is odd-dimensional.
Moreover, if 𝑀 is closed, it is a representative of the Euler class of the tangent bundle
𝑇𝑀 ↓ 𝑀 . By the Gauss–Chern–Bonnett theorem, it then follows that∫

𝑀

𝑒(𝑀, 𝑔) = 𝜒(𝑀), (5.7)
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if 𝑀 is closed. We refer [9, Page 1103] for an explicit formula for 𝑒(𝑀, 𝑔).
Combining (5.5) with (5.6), we get

𝜃 (ℎ1 ⊗̂ ℎ2) ∧ ∇𝑔′1×𝑔
′
2
( 𝑓1 + 𝑓2)∗Ψ(𝑇 (𝑀1 × 𝑀2), 𝑔1 × 𝑔2)

= 𝜃 (ℎ1) ∧ (∇𝑔′1
𝑓1)∗Ψ(𝑇𝑀1, 𝑔1) ⊗ dim(𝐸2)𝑒(𝑇𝑀2, 𝑔2)

+ dim(𝐸1)𝑒(𝑇𝑀1, 𝑔1) ⊗ 𝜃 (ℎ2) ∧ (∇𝑔′2
𝑓2)∗Ψ(𝑇𝑀2, 𝑔2) (5.8)

on 𝑀1 × 𝑀2 \ Cr( 𝑓1 × 𝑓2). Here, we have used that

𝜃 (ℎ𝑖) ∧ 𝑒(𝑇𝑀𝑖 , 𝑔𝑖) ∈ Ωdim(𝑀𝑖)+1 (𝑀𝑖 ,O𝑀𝑖
) = {0} for both 𝑖 = 1, 2.

Lemma 5.3 (Product Formula 2). For 𝑖 = 1, 2, let D𝑖 B (𝐸𝑖 ↓ 𝑀𝑖 , 𝑔𝑖 , ℎ𝑖 ,∇𝑔′
𝑖
𝑓𝑖) be two

type II Morse–Smale systems of product form, so that both ℎ1 |𝜕𝑀 and ℎ2 are unimodular.
Then, it holds that

𝜃 (ℎ1 ⊗̂ ℎ2) ∧ ∇𝑔′1×𝑔
′
2
( 𝑓1 + 𝑓2)∗Φ(𝑇 (𝑀1 × 𝑀2), 𝑔1 × 𝑔2),
= 𝜃 (ℎ1) ∧ (∇𝑔′1

𝑓1)∗Ψ(𝑇𝑀1, 𝑔1) ⊗ dim(𝐸2) · 𝑒(𝑇𝑀2, 𝑔2) (5.9)

on all of 𝑀 \ Cr( 𝑓1 + 𝑓2). In particular, if either 𝑀2 is odd-dimensional or ℎ1 is also
unimodular, then

𝜃 (ℎ1 ⊗̂ ℎ2) ∧ ∇𝑔′1×𝑔
′
2
( 𝑓1 + 𝑓2)∗Φ(𝑇 (𝑀1 × 𝑀2), 𝑔1 × 𝑔2) = 0. (5.10)

Proof. Due to the assumption that ℎ1 |𝜕𝑀1 and ℎ2 both are unimodular, it follows
from (5.5) that ℎ1 |𝜕𝑀1 ⊗̂ ℎ2 determines a unimodular metric on the restriction bundle
𝐸 |𝜕(𝑀1×𝑀2) = 𝐸 |𝜕𝑀1×𝑀2 . Since the systemD1 is of product form, this allows us to choose
a small neighborhood 𝑈 of 𝜕𝑀1, so that 𝜃 (ℎ1) ≡ 0 on 𝑈. Together with Equation (5.5)
and 𝜃 (ℎ2) ≡ 0 everywhere on 𝑀2, we deduce that

𝜃 (ℎ1 ⊗̂ ℎ2) ≡ 0 on𝑈 × 𝑀2. (5.11)

By choosing𝑈 smaller, if necessary, we also have by construction 𝑓1 + 𝑓2 = 𝑓1 + 𝑓2 on
(𝑀1 \𝑈) × 𝑀2, and therefore the equality of gradients

∇𝑔′1×𝑔
′
2
( 𝑓1 + 𝑓2) = ∇𝑔′1×𝑔

′
2
( 𝑓1 + 𝑓2) on (𝑀1 \𝑈) × 𝑀2. (5.12)

The result now follows from (5.11), (5.12) and the product formula (5.8). �

Apart from considering products of systems, we will also have to investigate in
the anomaly of the relative torsion that arises when changing the metrics of a given
system. In fact, we will only look at anomalies under the assumption that the metrics are
left unchanged in a neighborhood of 𝜕𝑀. The proposition below covers this situation,
generalizing [11, Propositions 5.1, 5.2] onto odd-dimensional Manifolds with boundary
with product metrics near 𝜕𝑀 .
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Proposition 5.4 (Metric anomalywith boundary conditions). LetD𝑖 = (𝐸 ↓𝑀, 𝑔𝑖 , ℎ𝑖 ,∇𝑔 𝑓 )
for 𝑖 = 1, 2 be two Morse–Smale Systems with 𝑀 odd-dimensional, such that either

(1) near 𝜕𝑀 , 𝑔1 ≡ 𝑔2 are of product form and ℎ1 |𝜕𝑀 ≡ ℎ2 |𝜕𝑀 , or

(2) near 𝜕𝑀 , 𝑔1 and 𝑔2 are of product form and ℎ1 |𝜕𝑀 ≡ ℎ2 |𝜕𝑀 is unimodular.

Then

R(D1) − R(D2) =
∑︁

𝑝∈Cr( 𝑓 )
(−1)ind(𝑝) log

(
det(ℎ1 (𝑝)−1 ◦ ℎ2 (𝑝))

)
. (5.13)

Proof. First, observe that

R(D1) − R(D2) = log
(
𝑇 𝐴𝑛
(2) (D1)

𝑇 𝐴𝑛
(2) (D2)

)
+ log

(
𝑇Met
(2) (D2)
𝑇Met
(2) (D1)

)
+ log

(
𝑇MS
(2) (D2)
𝑇MS
(2) (D1)

)
. (5.14)

Furthermore, we have

𝑇Met
(2) (D2)
𝑇Met
(2) (D1)

=

𝑛∑︁
𝑘=0

(−1)𝑘 log
(
detΓ (Θ𝑘

2 )
detΓ (Θ𝑘

1 )

)
, (5.15)

where Θ∗
𝑖
: H ∗ (𝑀, 𝑔𝑖 , 𝐸, ℎ̃𝑖) → 𝐻∗

(2) (𝑀, 𝐸, ℎ𝑖 ,∇𝑔 𝑓 ) are the isomorphisms of finitely
generated Hilbert N(Γ)-modules as defined in (3.37). We let

1∗
[ℎ1 ,ℎ2 ] : 𝐻

∗
(2) (𝑀,∇𝑔 �̃� , 𝐸, ℎ̃1) → 𝐻∗

(2) (𝑀,∇𝑔 �̃� , 𝐸, ℎ̃2) (5.16)

be the isomorphism of Hilbert N(Γ)-modules induced by the (not necessarily unitary)
identity map 1∗

[ℎ2 ,ℎ1 ] : 𝐶
∗
(2) (𝑀,∇𝑔 �̃� , 𝐸, ℎ̃2) → 𝐶∗

(2) (𝑀,∇𝑔 �̃� , 𝐸, ℎ̃1). Also, we let

𝜏∗ : H ∗ (𝑀, 𝑔2, 𝐸, ℎ̃2) → H ∗ (𝑀, 𝑔1, 𝐸, ℎ̃1) (5.17)

be the isomorphism of Hilbert N(Γ)-modules making the diagram below commute.

H ∗ (𝑀, 𝑔1, 𝐸, ℎ̃1)
Θ∗
1 // 𝐻∗

(2) (𝑀,∇𝑔 �̃� , 𝐸, ℎ̃1)

1∗
[ℎ1 ,ℎ2 ]
��

H ∗ (𝑀, 𝑔1, 𝐸, ℎ̃2)

𝜏∗

OO

Θ∗
2 // 𝐻∗

(2) (𝑀,∇𝑔 �̃� , 𝐸, ℎ̃2)

(5.18)

From the multiplicativity of the Fuglede–Kadison determinant [20, Theorem 3.14], it
follows that

detΓ (𝜏∗) detΓ (1∗
[ℎ1 ,ℎ2 ]) = detΓ (Θ

∗
1)

−1 detΓ (Θ∗
2). (5.19)
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Therefore, Equation (5.15) decomposes into

log

(
𝑇Met
(2) (D2)
𝑇Met
(2) (D1)

)
=

𝑛∑︁
𝑘=0

(−1)𝑘 log det(𝜏𝑘 ) +
𝑛∑︁

𝑘=0
(−1)𝑘 log det(1𝑘

[ℎ1 ,ℎ2 ]). (5.20)

By Proposition 2.2, we have

𝑛∑︁
𝑘=0

(−1)𝑘 log det(1𝑘
[ℎ1 ,ℎ2 ]) + log

(
𝑇MS
(2) (D2)
𝑇MS
(2) (D1)

)
=

∑︁
𝑝∈Cr( 𝑓 )

(−1)ind(𝑝) log
(
det(ℎ1 (𝑝)−1 ◦ ℎ2 (𝑝))

)
. (5.21)

For the remaining term, it is due to the main Theorem of [22] that we have an equality

log

(
𝑇 𝐴𝑛
(2) (D1)

𝑇 𝐴𝑛
(2) (D2)

)
+

𝑛∑︁
𝑘=0

(−1)𝑘 log det(𝜏𝑘 ) = log
(
𝑇𝑅𝑆 (D1)
𝑇𝑅𝑆 (D2)

)
. (5.22)

Here, 𝑇𝑅𝑆 (D𝑖) denotes the Ray–Singer Torsion element as originally defined in [6,
Definition 2.2]. It is shown in [9, Theorem 3.4] that, under the conditions that 𝑀 is
odd-dimensional and either one of the two assertions mentioned in the statement of the
proposition is satisfied, one has

log
(
𝑇𝑅𝑆 (D1)
𝑇𝑅𝑆 (D2)

)
= 0. (5.23)

The result direct follows from (5.14) and (5.20)–(5.23). �

Definition 5.5 (Subdivision). Let 𝑀 be a compact manifold and for 𝑖 = 0, 1, let ( 𝑓𝑖 , 𝑔𝑖) be
a Morse–Smale pair. Then ( 𝑓1, 𝑔1) is called a subdivision of ( 𝑓0, 𝑔0) if all of the following
conditions are satisfied

(1) Cr𝑝 ( 𝑓0) ⊆ Cr𝑝 ( 𝑓1) ⊆
⋃

𝑥∈Cr( 𝑓0)𝑊
−
𝑥 ( 𝑓0) for each 0 ≤ 𝑝 ≤ 𝑛,

(2) 𝑊−
𝑥 ( 𝑓1) ⊆ 𝑊−

𝑥 ( 𝑓0) for each 𝑥 ∈ Cr( 𝑓0),

(3) 𝑊−
𝑥 ( 𝑓0) =

⋃
𝑦∈Cr( 𝑓1)∩𝑊 −

𝑥 ( 𝑓0)𝑊
−
𝑦 ( 𝑓1), and

(4) 𝑔0 ≡ 𝑔1 near Cr( 𝑓0) ∪ 𝜕𝑀 and 𝑓0 ≡ 𝑓1 near 𝜕𝑀 .

We now describe the effect on the relative torsion under taking subdivisions. For that,
let 𝑀 be a compact manifold, let ( 𝑓𝑖 , 𝑔𝑖) be a Morse–Smale pair on 𝑀 for 𝑖 = 0, 1, so that
( 𝑓1, 𝑔1) is a subdivision of ( 𝑓0, 𝑔0). Let ℎ be Hermitian form on a flat bundle 𝐸 ↓ 𝑀 . By
definition, there exists for each 𝑦 ∈ Cr( 𝑓1) a unique 𝑥 ∈ Cr( 𝑓0) satisfying 𝑦 ∈ 𝑊−

𝑥 ( 𝑓0).
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Let ℎ̃(𝑦) ∈ GL(𝐸𝑦 , 𝐸
∗
𝑦) be the Hermitian metric on 𝐸𝑦 obtained by parallel transport of

the metric ℎ(𝑥) ∈ GL(𝐸𝑥 , 𝐸
∗
𝑥) along a curve connecting 𝑥 and 𝑦 that is entirely contained

within𝑊−
𝑥 ( 𝑓0). Note that since𝑊−

𝑥 ( 𝑓 ) is simply-connected, the resulting metric doesn’t
depend on the particular choice of curve. Note also that ℎ̃(𝑦) = ℎ(𝑦) whenever ℎ is a
unitary metric.
For each 𝑦 ∈ Cr( 𝑓1), define

𝜔(𝑦) B log det( ℎ̃(𝑦)−1 ◦ ℎ(𝑦)) ∈ R≥0 . (5.24)

Observe that 𝜔 ≡ 0 whenever ℎ is a unimodular metric. The proof of the following
statement for closed manifolds is laid out in [11, Proposition 5.3] and carries over to
general compact manifolds without further modification:

Proposition 5.6. In the above situation, we have

R(𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔0 𝑓0) − R(𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔1 𝑓1) =
∑︁

𝑦∈Cr( 𝑓1)
(−1)ind(𝑦)𝜔(𝑦). (5.25)

Corollary 5.7 (Relative Torsion under subdivision). Let D0 = (𝐸 ↓ 𝑀, 𝑔0, ℎ0,∇𝑔′0
𝑓0) be

a weakly admissible system with 𝑀 odd-dimensional and let ( 𝑓1, 𝑔′1) be a subdivision of
( 𝑓0, 𝑔′0). Then, one finds a Riemannian metric 𝑔1 on 𝑀 and an Hermitian form ℎ1 with
𝑔1 ≡ 𝑔0 and ℎ1 ≡ ℎ0 near 𝜕𝑀 on 𝐸 , so that D1 = (𝐸 ↓ 𝑀, 𝑔1, ℎ1,∇𝑔′1

𝑓1) is a weakly
admissible system, satisfying

R(D0) = R(D1). (5.26)

Proof. For each 𝑦 ∈ Cr( 𝑓1), there exists by the definition of a subdivision a unique
𝑥 ∈ Cr( 𝑓0), such that 𝑦 ∈ 𝑊−

𝑥 ( 𝑓0). As above, we let ℎ̃1 (𝑦) ∈ GL(𝐸𝑦 , 𝐸𝑦
∗) be the

Hermitian metric on the fiber 𝐸𝑦 obtained by parallel transport of the Hermitian metric
ℎ0 (𝑥) ∈ GL(𝐸𝑥 , 𝐸

∗
𝑥) along a curve between 𝑥 and 𝑦 contained entirely within 𝑊−

𝑥 ( 𝑓 ).
With

𝜔(𝑦) B log det( ℎ̃1 (𝑦)−1 ◦ ℎ0 (𝑦)),

we obtain from Proposition 5.6

R(𝐸 ↓ 𝑀, 𝑔0, ℎ0,∇𝑔′0
𝑓0) = R(𝐸 ↓ 𝑀, 𝑔0, ℎ0,∇𝑔′1

𝑓1) +
∑︁

𝑦∈Cr( 𝑓1)
(−1)ind(𝑦)𝜔(𝑦). (5.27)

In order to construct the metric ℎ1, choose small disjoint open coordinate neighborhoods
𝑈𝑦 ⊃ 𝑉𝑦 3 𝑦 around each 𝑦 ∈ Cr( 𝑓1), each also disjoint from a neighborhood of the
boundary, such that 𝑉𝑦 ⊂ 𝑈𝑦 . Define the Hermitian form ℎ1 ∈ GL(𝐸, 𝐸∗) to be an
extension of the metrics

⋃
𝑦∈Cr( 𝑓1) ℎ̃1 (𝑦) that is parallel on

⋃
𝑦∈Cr( 𝑓1) 𝑉𝑦 and equal to ℎ0

on 𝑀 \ ⋃
𝑦∈Cr( 𝑓1)\Cr( 𝑓0) 𝑈𝑦 . Lastly, choose a Riemannian metric satisfying 𝑔1 ≡ 𝑔′1 near

Cr( 𝑓1) and 𝑔1 ≡ 𝑔0 near 𝜕𝑀 (in particular, 𝑔1 is also of product form near 𝜕𝑀). By
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construction of the metrics ℎ1 and 𝑔1, the system D1 = (𝐸 ↓ 𝑀, 𝑔1, ℎ1,∇𝑔′1
𝑓1) is weakly

admissible. Moreover, an application of Proposition 5.4 gives

R(𝐸 ↓ 𝑀, 𝑔0, ℎ0,∇𝑔′1
𝑓1) = R(𝐸 ↓ 𝑀, 𝑔1, ℎ1.∇𝑔′1

𝑓1) +
∑︁

𝑦∈Cr( 𝑓1)
(−1)ind(𝑦)+1𝜔(𝑦). (5.28)

The result now follows from (5.27) and (5.28). �

The proof of the last result of this section can be found in [10, Proposition 3.7]

Proposition 5.8 (Determinant Class under Glueing). For 𝑖 = 1, 2, let (𝐸𝑖 ↓ 𝑀𝑖) be two flat,
complex bundles over a compact manifold, satisfying 𝐸1 |𝜕𝑀1 ↓ 𝜕𝑀1 = 𝐸2 |𝜕𝑀2 ↓ 𝜕𝑀2.
Assume that both 𝐸𝑖 ↓ 𝑀𝑖 and 𝐸𝑖 |𝜕𝑀𝑖

↓ 𝜕𝑀𝑖 are of determinant class. Then, the flat
bundle 𝐸 ↓ 𝑀 with 𝐸 B 𝐸1 ∪𝜕𝐸1 𝐸2 and 𝑀 B 𝑀1 ∪𝜕𝑀1 𝑀2 is of determinant class as
well.

6. Witten deformation and asymptotic expansions

This section collects the main technical results achieved by Burghelea et al. in [10] that
are detrimental for the proof of Theorem 4.5. Since the methods employed by the authors
carry over seamlessly from the unitary case to the general case of flat bundles, the proofs
won’t be included here.

6.1. Witten deformation

Throughout this section, we fix a countable group Γ and a Γ-invariant Morse–Smale
system D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ). For any parameter 𝑡 ∈ R≥0, theWitten-deformation d𝑡
of the exterior derivative d on Ω∗ (𝑀, 𝐸) is defined as

d𝑡 B 𝑒−𝑡 𝑓 d𝑒𝑡 𝑓 = d + 𝑡d 𝑓∧ : Ω∗ (𝑀, 𝐸) → Ω∗+1 (𝑀, 𝐸). (6.1)

Observe that d2𝑡 = 0 for any 𝑡 ∈ R≥0, which is why we can regard the pair
Ω∗

𝑡 (𝑀, 𝐸) B (Ω∗ (𝑀, 𝐸), d𝑡 ) as a cochain complex. In analogy with the case 𝑡 = 0,
let 𝛿𝑡 : Ω∗ (𝑀, 𝐸, 𝑔, ℎ) → Ω∗−1 (𝑀, 𝐸, 𝑔, ℎ) be the formal adjoint of d𝑡 with respect to
the inner product (3.15) on Ω∗

𝑐 (𝑀, 𝐸) induced by 𝑔 and ℎ and define

Δ∗,𝑡 B 𝛿∗+1𝑡 𝑑∗𝑡 + 𝑑∗−1𝑡 𝛿∗𝑡 : dom(Δ∗,𝑡 ) → dom(Δ∗,𝑡 ), (6.2)
dom(Δ∗,𝑡 ) B {𝜎 ∈ Ω∗

𝑐 (𝑀, 𝐸) : ®𝑛𝜎 = ®𝑛d∗𝑡𝜎 = 0}. (6.3)

Observe that for any 𝑡 ≥ 0, Δ∗,𝑡 is an elliptic differential operator of order 2 that is
symmetric (on its domain) with respect to the inner product on Ω∗

𝑡 (𝑀, 𝐸) induced by
𝑔 and ℎ. Moreover, just as in the case 𝑡 = 0, one verifies that all three operators d𝑡 ,
𝛿𝑡 and Δ∗,𝑡 are closable when regarded as unbounded operators on the 𝐿2-completion
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Ω∗
(2) (𝑀, 𝐸). The closed, symmetric operator Δ∗,𝑡 : Ω∗

(2) ,𝑡 (𝑀, 𝐸) → Ω∗
(2) ,𝑡 (𝑀, 𝐸) is

called theWitten–Laplacian (with absolute boundary conditions) associated to the system
D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇′

𝑔′ 𝑓 ). We define the 𝐿2-Witten–de Rham complex of the systemD as

Ω∗
(2) ,𝑡 (𝑀, 𝐸) B (Ω∗

(2) (𝑀, 𝐸), d𝑡 ), (6.4)

where we identify d𝑡 with its minimal 𝐿2-closure. All complexes obtained this way have
the same isomorphism type. Namely, one easily sees that for each 𝑡 > 0, multiplying
a form 𝜔 with the function 𝑒𝑡 𝑓 determines an isomorphism of Hilbert N(Γ)-cochain
complexes

𝑒𝑡 𝑓 : Ω∗
(2) ,𝑡 (𝑀, 𝐸) → Ω∗

(2) (𝑀, 𝐸). (6.5)

Furthermore, since D is a Γ-invariant system, it follows that Δ∗,𝑡 is the lift of an elliptic
operator defined over a bundle on a compact manifold. With this in mind, one verifies
as in the case 𝑡 = 0 that Δ∗,𝑡 is in fact self-adjoint (with the imposed absolute boundary
conditions). In particular, for each 𝑡 ≥ 0, we can define the spectral projections

𝑃∗ (𝑡) B 𝜒[0,1) (Δ∗,𝑡 ) : Ω∗
(2) ,𝑡 (𝑀, 𝐸) → Ω∗

(2) ,𝑡 (𝑀, 𝐸), (6.6)

of Δ∗,𝑡 associated wit the half-open interval [0, 1), as well as the small and large
subcomplexes

Ω∗
𝑆𝑚,𝑡 (𝑀, 𝐸) B

(
𝑛⊕

𝑘=0
im(𝑃𝑘 (𝑡)), d𝑡

)
, (6.7)

Ω∗
𝐿𝑎,𝑡 (𝑀, 𝐸) B

(
𝑛⊕

𝑘=0
im(1Ω𝑘

(2) (𝑀,𝐸) − 𝑃𝑘 (𝑡)), d𝑡

)
. (6.8)

Because Δ∗,𝑡 commutes with its spectral projections, one verifies inductively that
im(𝑃∗ (𝑡)) ⊆ dom(Δ𝑙

∗,𝑡 ) for each 𝑙 ∈ N0. Together with the ellipticity of Δ∗,𝑡 , we
deduce

Ω∗
𝑆𝑚,𝑡 (𝑀, 𝐸) ⊆

∞⋂
𝑙=0

W∗
𝑙 (𝑀, 𝐸). (6.9)

In particular, the complex Ω∗
𝑆𝑚,𝑡

(𝑀, 𝐸) consists entirely of smooth forms. Moreover,
observe that we have an orthogonal decomposition of Hilbert N(Γ)-cochain complexes

Ω∗
(2) ,𝑡 (𝑀, 𝐸) = Ω∗

𝑆𝑚,𝑡 (𝑀, 𝐸) ⊕ Ω∗
𝐿𝑎,𝑡 (𝑀, 𝐸). (6.10)

Finally, just as in the case 𝜕𝑀 = ∅, one verifies:

Proposition 6.1 ([32, Theorem 4.2]). For each 𝑡 ≥0, the projection 𝑃∗ (𝑡) : Ω∗
(2) ,𝑡(𝑀,𝐸)→

Ω∗
𝑆𝑚,𝑡

(𝑀, 𝐸) onto the small subcomplex is a chain homotopy equivalence of Hilbert
N(Γ)-cochain complexes (with chain homotopy inverse given by the inclusion).
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Now assume additionally that the Γ-invariant system D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) is also
weakly Γ-admissible. Recall from the axioms laid out in Definition 3.2 that a Γ-invariant
system is weakly Γ-admissible if certain local conditions near Cr( 𝑓 ) are satisfied: We
can choose for each 𝑝 ∈ Cr( 𝑓 ) radii 𝑟𝑝 > 0, coordinate charts 𝜙𝑝 : 𝐵𝑟𝑝 (0)

�→ 𝑈𝑝 ⊆ R𝑛
disjoint from 𝜕𝑀 with 𝐵𝑟𝑝 (0) B {𝑥 ∈ R𝑛 : ‖𝑥‖ < 𝑟𝑝} and 𝜙𝑝 (0) = 𝑝, along with a flat
bundle isomorphism Φ𝑝 : 𝐵𝑟𝑝 (0) × C𝑚

�→ 𝐸 |𝑈𝑝
that fit into the commutative diagram

𝐵𝑟𝑝 (0) × C𝑚
Φ𝑝

�
//

𝑝𝑟1

��

𝐸 |𝑈𝑝

𝜋𝐸

��
𝐵𝑟𝑝 (0)

𝜙𝑝

�
// 𝑈𝑝 ,

(6.11)

and such that all of the following conditions hold:

(𝐻1) The pullback metric 𝜙∗𝑝 (𝑔 |𝑈𝑝
) equals the Euclidean metric on R𝑛.

(𝐻2) The pullback Hermitian formΦ∗
𝑝 (ℎ|𝑈𝑝

) equals the standard inner product on C𝑚.

(𝐻3) One has

( 𝑓 ◦ 𝜙𝑝) (𝑥1, . . . , 𝑥𝑛) = 𝑓 (𝑝) − 1
2

ind(𝑝)∑︁
𝑖=1

𝑥2𝑖 +
1
2

𝑛∑︁
𝑖=ind(𝑝)+1

𝑥2𝑖 .

(𝐻4) The above choices are Γ-invariant, i.e. 𝛾.𝑈𝑝 = 𝑈𝛾.𝑝, 𝑟𝑝 = 𝑟𝛾.𝑝, 𝛾 ◦ 𝜙𝑝 = 𝜙𝛾.𝑝

and 𝛾 ◦Φ𝑝 = Φ𝛾.𝑝 for each 𝑝 ∈ Cr( 𝑓 ) and each 𝛾 ∈ Γ.

It is precisely due to this Γ-invariant shape of 𝑓 and metric bundle (𝐸, ℎ) ↓ (𝑀, 𝑔)
near Cr( 𝑓 ) that Burghelea et al. were able to prove the next theorem. With the aid of
properties (𝐻1)–(𝐻4), their proof from [10, Section 3.3] can be adapted, word by word,
to our situation of non-unitary bundles without any further modification:

Theorem 6.2. Let (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) be a weakly Γ-admissible system. Then, for each
𝑡 ≥ 0, there exists an isometric embedding of Hilbert N(Γ)-modules

𝐽∗ (𝑡) B
𝑛⊕

𝑘=0
𝐽𝑘 (𝑡) : 𝐶∗

(2) (𝑀,∇𝑔′ 𝑓 , 𝐸, ℎ) → Ω∗
(2) (𝑀, 𝐸),

Moreover, for large 𝑡 � 0, the composition

𝑄(𝑡) B 𝑃∗ (𝑡) ◦ 𝐽∗ (𝑡) : 𝐶∗
(2) (𝑀,∇𝑔′ 𝑓 , 𝐸, ℎ) → Ω∗

𝑆𝑚,𝑡 (𝑀, 𝐸)

is an isomorphism of Hilbert N(Γ)-modules.

103



Benjamin Waßermann

We stress the fact that the map of Hilbert N(Γ)-modules 𝐽∗ (𝑡) from the previous
theorem (and therefore also the isomorphism 𝑄∗ (𝑡)) is in general not a map of cochain
complexes. This is why the maps 𝑄∗ (𝑡) alone cannot be used to reach our desired
conclusion, namely that the complexes 𝐶∗

(2) (𝑀,∇𝑔′ 𝑓 , 𝐸, ℎ) and Ω∗
𝑆𝑚,𝑡

(𝑀, 𝐸, 𝑔, ℎ) are
chain homotopy equivalent. In spite of this, it still follows that for sufficiently large 𝑡 � 0,
the isomorphism 𝑄∗ (𝑡) can be used to define the isometry

𝐼∗ (𝑡) B 𝑄∗ (𝑡) (𝑄∗ (𝑡)∗𝑄∗ (𝑡))−1/2 : 𝐶∗
(2) (𝑀,∇𝑔′ 𝑓 , 𝐸, ℎ) → Ω∗

𝑆𝑚,𝑡 (𝑀, 𝐸, 𝑔, ℎ). (6.12)

Moreover, since (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) is the lift of an admissible system with deck group
Γ, there are also isomorphisms of Hilbert N(Γ)-modules for 𝑡 > 0:
𝑆∗ (𝑡) : 𝐶∗

(2) (𝑀,∇𝑔′ 𝑓 , 𝐸, ℎ) → 𝐶∗
(2) (𝑀,∇𝑔′ 𝑓 , 𝐸, ℎ),

𝜆𝑝 ⊗ [𝑝] ↦→ exp
(
𝑛 − 2 ind(𝑝)

4
log(𝜋/𝑡) − 𝑡 𝑓 (𝑝)

)
· 𝜆𝑝 ⊗ [𝑝], 𝑝 ∈ Cr( 𝑓 ).

(6.13)

Here, we have used the fact that 𝑓 isΓ-invariant, hence in particular satisfies 𝑓 (𝛾.𝑥) = 𝑓 (𝑥)
for any 𝑥 ∈ 𝑀 .
Recall that because of (6.9), we have the inclusion Ω∗

𝑆𝑚,𝑡
(𝑀, 𝐸) ⊆ ⋂

𝑙∈NW∗
𝑙
(𝑀, 𝐸).

This allows us to define the morphism of Hilbert N(Γ)-cochain complexes

𝐹∗ (𝑡) B Int∗ ◦𝑒𝑡 𝑓 : Ω∗
𝑆𝑚,𝑡 (𝑀, 𝐸, 𝑔, ℎ) → 𝐶∗

(2) (𝑀,∇𝑔′ 𝑓 , 𝐸, ℎ), (6.14)

as restricting to the subcomplex Ω∗
𝑆𝑚,𝑡

(𝑀, 𝐸) the composition of the isomorphism

𝑒𝑡 𝑓 : Ω∗
(2) ,𝑡 (𝑀, 𝐸) → Ω∗

(2) (𝑀, 𝐸)

from (6.5) with the integration map

Int∗ :W∗
𝑙−∗ (𝑀, 𝐸) → 𝐶∗

(2) (𝑀,∇𝑔′ 𝑓 , 𝐸, ℎ),

defined as in (3.34). Just as before, the proof of the next theorem, laid out for unitary
bundles in [10, Section 3.3], can be adapted to our setting without any modifications:

Theorem 6.3. Under the previous assumptions, we obtain for large 𝑡 � 0, that

𝑆∗ (𝑡) ◦ 𝐹∗ (𝑡) ◦ 𝐼∗ (𝑡) = 1 + O(𝑡−1). (6.15)

Consequently, for large 𝑡 � 0, the map 𝐹∗ (𝑡) : Ω∗
𝑆𝑚,𝑡

(𝑀, 𝐸, 𝑔, ℎ) → 𝐶∗
(2) (𝑀,∇𝑔′ 𝑓 , 𝐸, ℎ)

is an isomorphism of Hilbert N(Γ)-cochain complexes.

Combining (6.5) with Proposition 6.1 and Theorem 6.3, we arrive at the following
very important intermediate result:

Theorem 6.4. Let D = (𝑀, 𝐸, 𝑔, ℎ,∇𝑔′ 𝑓 ) be a weakly admissible type II-Morse Smale
system with 𝑀 compact, let 𝑀 be the universal cover of 𝑀 and let D̃ = (𝑀, 𝐸, �̃�, ℎ̃,∇𝑔′ �̃� )
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be the corresponding lift of D. Then, there is a chain homotopy equivalence of Hilbert
N(Γ)-cochain complexes

Ω∗
(2) (𝑀, 𝐸, �̃�, ℎ̃)

𝑒−𝑡 𝑓(6.5)
��

' // 𝐶∗
(2) (𝑀,∇𝑔′ �̃� , 𝐸, ℎ̃)

Ω∗
(2) ,𝑡 (𝑀, 𝐸, �̃�, ℎ̃)

𝑃∗ (𝑡)
(6.1)

// Ω∗
𝑆𝑚,𝑡

(𝑀, 𝐸, �̃�, ℎ̃),

𝐹 ∗ (𝑡) (6.3)

OO

(6.16)

with 𝑡 � 0 chosen sufficiently large. In particular, we obtain:

(1) For each 0 ≤ 𝑘 ≤ 𝑛, it holds that 𝛼𝐴𝑛
𝑘

(𝑀, 𝐸) = 𝛼Top
𝑘

(𝑀, 𝐸).

(2) (𝑀, 𝐸) is of a-determinant class if and only if it is of c-determinant class.

6.2. Asymptotic expansions

Let D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔 𝑓 ) be a weakly admissible system with Γ B 𝜋1 (𝑀) and
let D̃ B (𝐸 ↓ 𝑀, �̃�, ℎ̃,∇𝑔 �̃� ) be the Γ-invariant lift of D (throughout this subsection,
we assume that 𝑔 = 𝑔′). We set 𝑏 B 𝑓 −1 (𝜕𝑀). For 𝑡 ≥ 0, let Ω∗

(2) ,𝑡 (𝑀, 𝐸) be
the Witten-deformed complex defined in the previous section (with metric induced
by �̃� and ℎ̃ implicit, in order to simplify notation) with Witten-deformed Laplacian
Δ∗,𝑡 [𝐸] : Ω∗

(2) ,𝑡 (𝑀, 𝐸) → Ω∗
(2) ,𝑡 (𝑀, 𝐸). Further, we define Θ

∗ (𝑡) : ker(Δ∗,𝑡 [𝐸]) →
𝐻∗

(2) (𝑀,∇𝑔 �̃� , 𝐸, ℎ̃) to be the isomorphim of finitely-generated Hilbert N(Γ)-modules
that is the composition Θ∗ · 𝑒𝑡 𝑓 , where Θ∗ : ker(Δ∗,0 [𝐸]) → 𝐻∗

(2) (𝑀,∇𝑔 �̃� , 𝐸, ℎ̃) is the
isomorphism from (3.37). Introduce

Vol(D)(𝑡) B
𝑛∏

𝑘=0
detΓ (Θ𝑘 (𝑡)) (−1)𝑘 . (6.17)

Observe that
Vol(D)(0) = 𝑇Met

(2) (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔 𝑓 ). (6.18)
Moreover, recall the orthogonal decomposition of subcomplexes

Ω∗
(2) ,𝑡 (𝑀, 𝐸) = Ω∗

𝑆𝑚,𝑡 (𝑀, 𝐸) ⊕ Ω∗
𝐿𝑎,𝑡 (𝑀, 𝐸),

which implies the following: Provided that 𝐸 ↓ 𝑀 is of determinant class, the torsion ele-
ments 𝑇 𝐴𝑛

(2) (𝐸 ↓ 𝑀, 𝑔, ℎ) (𝑡), 𝑇𝑆𝑚
(2) (D)(𝑡) and 𝑇𝐿𝑎

(2) (D)(𝑡) of the complexes Ω∗
(2) ,𝑡 (𝑀, 𝐸),

Ω∗
𝑆𝑚,𝑡

(𝑀, 𝐸), respectivelyΩ∗
𝐿𝑎,𝑡

(𝑀, 𝐸) are all well-defined positive real numbers, so that

𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ) (0) = 𝑇 𝐴𝑛

(2) (𝑀, 𝐸, 𝑔, ℎ), (6.19)

𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ) (𝑡) = 𝑇𝑆𝑚

(2) (D)(𝑡) · 𝑇𝐿𝑎
(2) (D)(𝑡). (6.20)
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A function 𝐹 : R→ R is said to admit an asymptotic expansion, if there exists an integer
𝑁 ∈ N and constants (𝑎 𝑗 )𝑁𝑗=0, (𝑏 𝑗 )𝑁𝑗=0 such that for 𝑡 → +∞

𝐹 (𝑡) =
𝑁∑︁
𝑗=0

(
𝑎 𝑗 + 𝑏 𝑗 log(𝑡)

)
𝑡 𝑗 + 𝑜(1). (6.21)

The coefficient 𝑎0 in the expansion is called the free term of 𝐹 and is denoted by FT(𝐹).
In the special case that 𝐸 ↓ 𝑀 is a unitary bundle and ℎ a flat unitary metric, the proof of
the next proposition has been carried out in [10, Theorem 3.13]. In fact, the same proof
still works without further modification in the more general case that the bundle 𝐸 ↓ 𝑀 is
of product from near 𝜕𝑀 , and will therefore be omitted (See also [34, Proposition 6.4.1]
for a slightly different proof).

Proposition 6.5 (Asymptotic expansion for the analytic torsion). There exists a constant
𝐶 ∈ R, such that the following holds: For any weakly admissible system D = (𝐸 ↓ 𝑀,
𝑔, ℎ,∇𝑔 𝑓 ) of determinant class with 𝑀 odd-dimensional, the function log𝑇 𝐴𝑛

(2) (𝐸 ↓ 𝑀,
𝑔, ℎ) (𝑡) − logVol(D)(𝑡) admits the following asymptotic expansion:

log𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ) − logVol(D)(0) + 𝐶𝑡 dim(𝐸)𝜒(𝜕𝑀). (6.22)

Proposition 6.6 (Asymptotic expansion for the small torsion). For any weakly admissible
system D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔 𝑓 ) of determinant class with 𝑛 B dim(𝑀), Cr𝑘 ( 𝑓 ) B {𝑝 ∈
Cr( 𝑓 ) : ind(𝑝) = 𝑘} and 𝑚𝑘 B #Cr𝑘 ( 𝑓 ), the function log𝑇𝑆𝑚

(2) (D)(𝑡) − logVol(D)(𝑡)
admits the asymptotic expansion

log𝑇 (2)
𝑀𝑆

(𝑀, 𝐸, ℎ,∇𝑔 𝑓 )

+ dim(𝐸) ©«
𝑛∑︁

𝑘=0
(−1)𝑘𝑚𝑘

𝑛 − 2𝑘
4

log(𝜋/𝑡) + 𝑡 (−1)𝑘+1
∑︁

𝑝∈Cr𝑘 ( 𝑓 )
𝑓 (𝑝)ª®¬ + 𝑜(1). (6.23)

Proof. For large 𝑡 � 0, there exists by Theorem 6.3 an isomorphism of finitely generated
Hilbert N(Γ)-cochain complexes

𝐹∗ (𝑡) : Ω∗
𝑆𝑚,𝑡 (𝑀, 𝐸, �̃�, ℎ̃) → 𝐶∗

(2) (𝑀,∇𝑔 �̃� , 𝐸, ℎ̃). (6.24)

From Proposition 2.2, it then follows that

log𝑇𝑆𝑚
(2) (𝑀, 𝐸, 𝑔, ℎ, 𝑓 ) (𝑡) + logVol(𝑡)

= log𝑇 (2)
𝑀𝑆

(𝑀, 𝐸, ℎ,∇𝑔 𝑓 ) +
𝑛∑︁

𝑘=0
(−1)𝑘 log detΓ 𝐹𝑘 (𝑡). (6.25)
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Recall also from Theorem 6.3 the formula 𝑆𝑘 (𝑡) ◦ 𝐹𝑘 (𝑡) ◦ 𝐼𝑘 (𝑡) = 1𝐶𝑘
(2)

+𝑂 (𝑡−1), where
𝐼𝑘 (𝑡) is the isometry from (6.12) and 𝑆𝑘 (𝑡) is the scaling isomorphism from (6.13). Con-
sequently, by the multiplicativity of the Fuglede–Kadison determinant in this setting [20,
Theorem 3.14], it holds that

log detΓ 𝐹𝑘 (𝑡) = − log detΓ 𝑆𝑘 (𝑡) + 𝑜(1). (6.26)

From the explicit formula of 𝑆𝑘 (𝑡) (6.13), we obtain

detΓ 𝑆𝑘 (𝑡) =
©«

∏
𝑝∈Cr𝑘 ( 𝑓 )

(𝜋/𝑡) 𝑛−2𝑘
4 𝑒−𝑡 𝑓 (𝑝)

ª®¬
dim(𝐸)

. (6.27)

The result now is an immediate consequence of (6.25)–(6.27). �

Corollary 6.7 (Asymptotic expansion for the large torsion). Let D = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔 𝑓 )
be a weakly admissible system of determinant class with 𝑀 odd-dimensional. Then, the
following assertions hold

(1) The function log𝑇𝐿𝑎
(2) (D)(𝑡) admits an asymptotic expansion. More precisely,

there exists a polynomial Φ(D)(𝑡) : R→ R in 𝑡 and log(𝑡), such that for 𝑡 → ∞

log𝑇𝐿𝑎
(2) (D)(𝑡) = 𝑅(D) +Φ(D)(𝑡) + 𝑜(1). (6.28)

Finally, for any arbitrary small neighborhood𝑈 of Cr( 𝑓 ) ∪ 𝜕𝑀 , the polynomial
Φ(D) depends only on the isomorphism class of the system D 𝑓 |𝑈 B (𝐸 |𝑈 ↓ 𝑈,
𝑔 |𝑈 , ℎ|𝑈 , 𝑓 |𝑈 ).

(2) Suppose that D1 = (𝐸1 ↓ 𝑀1, 𝑔1, ℎ1,∇𝑔1 𝑓1) is another weakly admissible system,
such that there exists neighborhoods 𝑈 ⊆ 𝑀 of Cr( 𝑓 ) ∪ 𝜕𝑀 and 𝑈1 ⊂ 𝑀1 of
Cr( 𝑓1) ∪ 𝜕𝑀1 with the property that the derived systems D 𝑓 |𝑈 B (𝐸 |𝑈 ↓ 𝑈,
𝑔 |𝑈 , ℎ|𝑈 , 𝑓 |𝑈 ) and D 𝑓1

1 |𝑈1 B (𝐸1 |𝑈1 ↓ 𝑈1, 𝑔 |𝑈1 , ℎ|𝑈1 , 𝑓1 |𝑈1 ) are isomorphic (in
particular #Cr𝑘 ( 𝑓 ) = #Cr𝑘 ( 𝑓1) for each 0 ≤ 𝑘 ≤ 𝑛). Then

𝑅(D) − 𝑅(D1) = FT
(
log𝑇𝐿𝑎

(2) (D)
)
− FT

(
log𝑇𝐿𝑎

(2) (D1)
)
. (6.29)

(3) Under the assumptions of (2), there exists local quantities 𝛼(D) ∈ Ω𝑛 (𝑀 \
Cr( 𝑓 ),O𝑀 ) and𝛼(D1) ∈Ω𝑛 (𝑀1\Cr( 𝑓1),O𝑀1 ) of the derived systemsD|𝑀\Cr( 𝑓 )
and D1 |𝑀1\Cr( 𝑓1) , such that one has

FT
(
log𝑇𝐿𝑎

(2) (D)
)
− FT

(
log𝑇𝐿𝑎

(2) (D1)
)
=

∫
𝑀\Cr( 𝑓 )

𝛼(D) −
∫
𝑀1\Cr( 𝑓1)

𝛼(D1). (6.30)
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Proof. (1). We have log𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ) (𝑡) = log𝑇𝑆𝑚

(2) (D)(𝑡) + log𝑇𝐿𝑎
(2) (D)(𝑡), hence

also in particular

log𝑇 𝐴𝑛
(2) (𝐸 ↓ 𝑀, 𝑔, ℎ) (𝑡) − logVol(D)(𝑡)

− log𝑇𝑆𝑚
(2) (D)(𝑡) − logVol(D)(𝑡) = log𝑇𝐿𝑎

(2) (D)(𝑡).

Since the left-hand side of the equation admits an asymptotic expansion, given by the
sum of the explicit formulas (6.22) and (6.23), the result follows.

(2). Observe that
FT

(
log𝑇𝐿𝑎

(2) (D)
)
= 𝑅(D) + FT(Φ(D))

and analogously
FT

(
log𝑇𝐿𝑎

(2) (D1)
)
= 𝑅(D1) + FT(Φ(D1)).

Since the systems D 𝑓 |𝑈 and D 𝑓1 |𝑈1 are isomorphic by assumption, assertion (1) implies
that Φ(D) ≡ Φ(D1) and the result follows.

(3). In case that 𝜕𝑀 = ∅, this is proven in [12, Theorem B, Section 6.2] for unitary
bundles (whose proof is also referred to in [11, Proposition 4.2] for arbitrary flat bundles).
The same proof works without any modifications in the case that 𝜕𝑀 ≠ ∅. �

7. Proof of Theorem 4.5

Armed with the results of the previous two sections, we will closely follow the strategy
of [10] and use Zhang’s result in Theorem 4.4 to prove Theorem 4.5.

Proposition 7.1. For 𝑖 = 1, 2, let D𝑖 = (𝑀𝑖 , 𝐸𝑖 , 𝑔𝑖 , ℎ𝑖 ,∇𝑔𝑖 𝑓𝑖) be two weakly admissible
systems satisfying the assumptions of Corollary 6.7(2). Moreover, assume that there exists
a flat bundle 𝐸3 ↓ 𝑀3 with 𝑀3 compact, satisfying

(1) (𝐸3 |𝜕𝑀3 ) ↓ 𝜕𝑀3 = 𝐸𝑖 |𝜕𝑀𝑖
↓ 𝜕𝑀𝑖 , and

(2) the bundle 𝐸𝑖 ↓ 𝑁𝑖 is of determinant class, where 𝑁𝑖 B 𝑀3 ∪𝜕𝑀3 𝑀𝑖 and
𝐸𝑖 B 𝐸3 ∪𝐸3 |𝜕𝑀3 𝐸𝑖 .

Then

R(D1) +
1
2

∫
𝑀1

𝜃 (ℎ1) ∧ (∇𝑔1 𝑓1)∗Ψ(𝑇𝑀1, 𝑔1)

= R(D2) +
1
2

∫
𝑀2

𝜃 (ℎ2) ∧ (∇𝑔2 𝑓2)∗Ψ(𝑇𝑀2, 𝑔2). (7.1)
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Proof. Choose a smooth function 𝑓3 : 𝑀3 → R on 𝑀3 with 𝑓3 |𝜕𝑀3 = 𝑓𝑖 |𝜕𝑀𝑖
for 𝑖 = 1, 2

and such that the function 𝑓 𝑖 B 𝑓3 ∪𝜕𝑀3 𝑓𝑖 : 𝑁𝑖 → R is a Morse function. Furthermore,
choose a Riemannian metric 𝑔3 on 𝑀3 with 𝑔3 |𝜕𝑀3 = 𝑔𝑖 |𝜕𝑀𝑖

for 𝑖 = 1, 2, such that for the
metric 𝑔𝑖 = 𝑔3 ∪𝜕𝑀3 𝑔𝑖 on 𝑁𝑖 , the pair ( 𝑓 𝑖 , 𝑔𝑖) is a Morse–Smale pair (since 𝑁𝑖 is closed,
there is no distinction between type I and type II). Lastly, choose a Hermitian form ℎ3 on
the flat bundle 𝐸3 ↓ 𝑀3 with ℎ3 |𝜕𝑀3 = ℎ𝑖 |𝜕𝑀𝑖

for 𝑖 = 1, 2 with ℎ𝑖 B ℎ3 ∪𝜕𝑀3 ℎ𝑖 , such
that the system

D𝑖 B (𝐸𝑖 ↓ 𝑁𝑖 , 𝑔𝑖 , ℎ𝑖 ,∇�̄�𝑖 𝑓 𝑖) (7.2)
is weakly admissible. By construction, the pair D𝑖 also satisfies the assumptions of
Corollary 6.7(2). Applying Corollary 6.7(3), we can find densities 𝛼𝑖 on 𝑀𝑖 \ Cr( 𝑓𝑖) and
𝛼𝑖 on 𝑁𝑖 \ Cr( 𝑓𝑖), so that

𝑅(D1) − 𝑅(D2) =
∫
𝑀1\Cr( 𝑓1)

𝛼1 −
∫
𝑀2\Cr( 𝑓2)

𝛼2, (7.3)

𝑅(D∞) − 𝑅(D∈) =
∫
𝑁1\Cr( 𝑓1)

𝛼1 −
∫
𝑁2\Cr( 𝑓2)

𝛼2. (7.4)

Since the densities are local quantities, it follows from the chosen metrics on the respective
bundles that 𝛼𝑖 = 𝛼𝑖 |𝑀𝑖

and 𝛼1 |𝑀3 = 𝛼2 |𝑀3 . Moreover, since Cr( 𝑓𝑖) ∩ 𝑀𝑖 = Cr( 𝑓𝑖) by
construction, we get from (7.3) and (7.4)

𝑅(D1) − 𝑅(D2) = 𝑅(D1) − 𝑅(D2). (7.5)

As 𝑁𝑖 is closed, we can apply Theorem 4.4 and obtain

𝑅(D𝑖) = −1
2

∫
𝑁𝑖

𝜃 (𝐸𝑖 , ℎ𝑖) ∧ (∇𝑔𝑖 𝑓 𝑖)∗Ψ(𝑇𝑁𝑖 , 𝑔𝑖), (7.6)

As mentioned in the introduction, the 𝑛-form 𝜃 (𝐸𝑖 , ℎ𝑖) ∧ (∇𝑔𝑖 𝑓 𝑖)∗Ψ(𝑇𝑁𝑖 , 𝑔𝑖) is a local
quantity. In particular, it follows both

𝜃 (𝐸𝑖 , ℎ𝑖) ∧ (∇𝑔𝑖 𝑓𝑖)∗Ψ(𝑇𝑁𝑖 , 𝑔𝑖) |𝑀𝑖
= 𝜃 (𝐸𝑖 , ℎ𝑖) ∧ (∇𝑔𝑖 𝑓𝑖)∗Ψ(𝑇𝑀𝑖 , 𝑔𝑖)

and

𝜃 (𝐸1, ℎ1) ∧ (∇𝑔1 𝑓 1)∗Ψ(𝑇𝑁1, 𝑔1) |𝑀3 = 𝜃 (𝐸2, ℎ2) ∧ (∇𝑔2 𝑓 2)∗Ψ(𝑇𝑁2, 𝑔2) |𝑀3 .

Therefore∫
𝑁1

𝜃 (𝐸1, ℎ1) ∧ (∇𝑔1 𝑓 1)∗Ψ(𝑇𝑁1, 𝑔1) −
∫
𝑁2

𝜃 (𝐸2, ℎ2) ∧ (∇𝑔2 𝑓 2)∗Ψ(𝑇𝑁2, 𝑔2)

=

∫
𝑀1

𝜃 (𝐸1, ℎ1)∧(∇𝑔1 𝑓1)∗Ψ(𝑇𝑀1, 𝑔1) −
∫
𝑀2

𝜃 (𝐸2, ℎ2)∧(∇𝑔2 𝑓2)∗Ψ(𝑇𝑀2, 𝑔2). (7.7)

Equation (7.1) now is an immediate consequence of (7.5)–(7.7) and the definition of
relative torsion. �
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Theorem 7.2. Assume that D𝑖 = (𝐸𝑖 ↓ 𝑀𝑖 , 𝑔𝑖 , ℎ𝑖 ,∇𝑔′
𝑖
𝑓𝑖) are two admissible systems

with 𝑀𝑖 odd-dimensional, (𝜕𝑀1, 𝑔1 |𝜕𝑀1 ) = (𝜕𝑀2, 𝑔2 |𝜕𝑀2 ) and (𝐸1 |𝜕𝑀1 , ℎ1 |𝜕𝑀1 ) =

(𝐸2 |𝜕𝑀2 , ℎ2 |𝜕𝑀2 ). Then, if both 𝐸𝑖 ↓ 𝑀𝑖 and 𝐸𝑖 |𝜕𝑀𝑖
↓ 𝑀𝑖 are of determinant class, we

get

R(D1) +
1
2

∫
𝑀1

𝜃 (𝐸1, ℎ1) ∧ (∇𝑔′1
𝑓1)∗Ψ(𝑇𝑀1, 𝑔1)

= R(D2) +
1
2

∫
𝑀2

𝜃 (𝐸2, ℎ2) ∧ (∇𝑔′2
𝑓2)∗Ψ(𝑇𝑀2, 𝑔2).

Proof. We consider different cases:

Case 1: The systems D𝑖 satisfy the hypotheses of Corollary 6.7(2). Consider the admis-
sible system D𝑆2 : (𝐸𝑆2

C
↓ 𝑆2, 𝑔, ℎ,∇𝑔 𝑓 ) with 𝐸𝑆2

C
↓ 𝑆2 the trivial complex line bundle

over 𝑆2, ( 𝑓 , 𝑔) some Morse–Smale pair on 𝑆2 and ℎ a parallel metric on 𝐸𝑆2

C
. Since 𝑆2 is

simply-connected, the systemD𝑆2 is of determinant class. It follows from Proposition 5.2
that also the modified product systems D𝑖 × D𝑆2 are of determinant class, so that

R(D𝑖 × D𝑆2 ) = 2R(D𝑖), (7.8)

where we have used that 𝜒(𝑆2) = 2, as well as the well-known fact that R(D𝑆2 ) = 0,
which follows for example also from Theorem 4.4.
Next, consider the trivial complex line bundle 𝐸𝐷3

C
↓ 𝐷3. Since 𝐷3 is simply-connected,

it is of determinant class. Moreover, since 𝐸 |𝜕𝑀1 ↓ 𝜕𝑀1 is of determinant class by
assumption and 𝜕𝑀1 is closed, it follows again fromProposition 5.2 that the product bundle
𝐸 |𝜕𝑀1 ⊗̂ 𝐸𝐷3

C
↓ 𝜕𝑀1 × 𝐷3, as well as its restriction to 𝜕 (𝜕𝑀1 × 𝐷3) = 𝜕𝑀1 × 𝜕𝐷3, is of

determinant class. Now observe that by construction, the identification 𝜕𝐷3 � 𝑆2 induces
an isomorphism of flat bundles 𝐸1 ⊗̂ 𝐸𝐷3

C
|𝜕𝑀1×𝜕𝐷3 ↓ 𝜕𝑀1 × 𝜕𝐷3 � 𝐸𝑖 ⊗̂ 𝐸𝑆2

C
|𝜕𝑀𝑖×𝑆2 ↓

𝜕𝑀𝑖 × 𝑆2 for 𝑖 = 1, 2. Just as in Proposition 7.1, we can therefore define for 𝑖 = 1, 2

𝑁𝑖 := 𝑀𝑖 × 𝑆2 ∪𝜕𝑀1×𝑆2 𝜕𝑀1 × 𝐷
3,

𝐸𝑖 := 𝐸𝑖 ⊗̂ 𝐸𝑆2

C ∪
𝐸𝑖 |𝜕𝑀𝑖

⊗̂𝐸𝑆2
C

𝐸1 ⊗̂ 𝐸𝐷3

C .

By Proposition 5.8, it follows that 𝐸𝑖 ↓ 𝑁𝑖 is of determinant class. Hence, the modified
product systems D𝑖 × D𝑆2 satisfy also the assumptions of Proposition 7.1, from which
we get

R(D1 × D𝑆2 ) +
1
2

∫
𝑀1×𝑆2

𝜃 (ℎ1 ⊗̂ ℎ) ∧ ∇𝑔1×𝑔 ( 𝑓1 + 𝑓 )∗Ψ
(
𝑇 (𝑀1 × 𝑆2), 𝑔1 × 𝑔

)
= R(D2 ×D𝑆2 ) +

1
2

∫
𝑀2×𝑆2

𝜃 (ℎ2 ⊗̂ ℎ) ∧ (∇𝑔2×𝑔 ( 𝑓2 + 𝑓 ))∗Ψ
(
𝑇 (𝑀2×𝑆2), 𝑔2×𝑔

)
. (7.9)
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Applying the product formula (5.3), we obtain for 𝑖 = 1, 2

𝜃 (ℎ𝑖 ⊗̂ ℎ) ∧ ∇𝑔𝑖×𝑔 ( 𝑓𝑖 + 𝑓 )∗Ψ
(
𝑇 (𝑀𝑖 × 𝑆2), 𝑔𝑖 × 𝑔

)
=

(
𝜃 (ℎ𝑖) ∧ (∇𝑔𝑖 𝑓𝑖)∗Ψ(𝑇𝑀𝑖 , 𝑔𝑖)

)
⊗ 𝑒(𝑇𝑆2, 𝑔),

Since 𝑒(𝑇𝑆2, 𝑔) is a representative of the rational Euler class of 𝑇𝑆2, we obtain that∫
𝑆2
𝑒(𝑇𝑆2, 𝑔) = 𝜒(𝑆2) = 2. Together with the previous equation, this implies for 𝑖 = 1, 2,

that∫
𝑀𝑖×𝑆2

𝜃 (ℎ𝑖 ⊗̂ ℎ) ∧ ∇𝑔𝑖×𝑔 ( 𝑓𝑖 + 𝑓 )∗Ψ
(
𝑇 (𝑀𝑖 × 𝑆2), 𝑔𝑖 × 𝑔

)
= 2

∫
𝑀𝑖

𝜃 (ℎ𝑖) ∧ (∇𝑔𝑖 𝑓𝑖)∗Ψ(𝑇𝑀𝑖 , 𝑔𝑖). (7.10)

The result now follows from (7.8)–(7.10).

Case 2: The systems D𝑖 don’t satisfy the hypotheses of Corollary 6.7(2). Since the D𝑖

are by assumption admissible, we find a neighborhood 𝑈𝑖 of 𝜕𝑀𝑖 , such 𝜃 (ℎ𝑖) ≡ 0
on 𝑈𝑖 and 𝑔𝑖 ≡ 𝑔′

𝑖
on 𝑀𝑖 \ 𝑈𝑖 , which is why 𝜃 (ℎ𝑖) ∧ (∇𝑔′

𝑖
𝑓𝑖)∗Ψ(𝑇𝑀𝑖 , 𝑔𝑖) = 𝜃 (ℎ𝑖) ∧

(∇𝑔𝑖 𝑓𝑖)∗Ψ(𝑇𝑀𝑖 , 𝑔𝑖) on all of 𝑀𝑖 . Moreover, since both 𝑔′𝑖 and 𝑔𝑖 are of product form
near 𝜕𝑀𝑖 and ℎ𝑖 |𝜕𝑀𝑖

is unimodular, it follows from Proposition 5.4 that R(D𝑖) = R(𝐸𝑖 ↓
𝑀𝑖 , 𝑔

′
𝑖
, ℎ𝑖 ,∇𝑔′

𝑖
𝑓𝑖). Therefore, we may assume without loss of generality that 𝑔𝑖 ≡ 𝑔′𝑖 on

all of 𝑀𝑖 .
Now since the 𝑀𝑖 are odd-dimensional with 𝜕𝑀1 = 𝜕𝑀2, we have 𝜒(𝑀1) = 𝜒(𝑀2).

Using this, one proceeds as in [12, Section 6] to show that there exist subdivisions ( 𝑓𝑖 , 𝑔𝑖)
of ( 𝑓𝑖 , 𝑔𝑖) (with 𝑔𝑖 = 𝑔𝑖 near 𝜕𝑀𝑖), neighborhoods𝑈𝑖 of Cr( 𝑓𝑖) ∪ 𝜕𝑀𝑖 and an isometry
𝜃 : (𝑈1, 𝑔1) → (𝑈2, 𝑔2) satisfying 𝜃 (Cr( 𝑓1)) = Cr( 𝑓2), 𝜃 (𝑀1) = 𝑀2 and 𝑓2 ◦ 𝜃 = 𝑓1.
By Lemma 5.7, one additionally finds a Hermitian form ℎ𝑖 on the bundle 𝐸𝑖 ↓ 𝑀𝑖

(with ℎ𝑖 = ℎ𝑖 near 𝜕𝑀𝑖) so that D𝑖 B (𝐸𝑖 ↓ 𝑀𝑖 , 𝑔𝑖 , ℎ𝑖 ,∇𝑔𝑖 𝑓𝑖) is an admissible system,
satisfying

R(D𝑖) = R(D𝑖). (7.11)
Moreover, since the new systems D𝑖 now also satisfy the assertions of Corollary 6.7(2),
we can apply Case 1 to them to complete the proof. �

Proof of Theorem 4.5. LetD = (𝐸 ↓ 𝑀, 𝑔, ℎ,∇𝑔′ 𝑓 ) be aMorse–Smale systemof product
form, 𝑀 odd-dimensional, so that 𝐸 |𝜕𝑀 ↓ 𝜕𝑀 is also of determinant class and that ℎ |𝜕𝑀
is unimodular. After appropriately pertubing the metric 𝑔, it is because of Proposition 5.4
that we may assume without loss of generality that 𝑔 ≡ 𝑔′ outside from a neighborhood
of 𝜕𝑀 . Similarly, if𝑈 is an open neighborhood of Cr( 𝑓 ) with contractible components
and disjoint from a collar neighborhood 𝑉 of 𝜕𝑀 , and if ℎ′ is a parallel Hermitian metric
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on 𝑈 that agrees with ℎ on Cr( 𝑓 ), it is again because of Proposition 5.4 that we may
replace ℎ with an arbitrary Hermitian extenstion of the metric ℎ′ ∪ ℎ|𝑉 over𝑈 ∪𝑉 onto
𝑀 without affecting R(D). Summarizing, we may assume without loss of generality that
D is already an admissible system.
Choose a Morse–Smale pair ( �̂� , �̂�) on 𝜕𝑀 . Then,

D ′ B (𝐸 |𝜕𝑀 ↓ 𝜕𝑀, 𝑔 |𝜕𝑀 , ℎ|𝜕𝑀 ,∇�̂� �̂� )

is aMorse–Smale systemof determinant class. Since 𝜕𝑀 is closed, we have byTheorem4.4

R(D ′) = −1
2

∫
𝜕𝑀

𝜃 (ℎ|𝜕𝑀 ) ∧ (∇�̂� �̂� )∗Ψ(𝑇𝜕𝑀, 𝑔 |𝜕𝑀 ) = 0, (7.12)

where the last equality follows from the assumption that ℎ|𝜕𝑀 is unimodular, i.e.
𝜃 (ℎ|𝜕𝑀 ) ≡ 0.
Now recall the trivial system D0 = (𝐸C ↓ 𝐼, 𝑔0, ℎ0,∇𝑔0 𝑓0) over the interval 𝐼 = [𝑎, 𝑏]

that we have defined in (4.7) and its relative torsion

R(D0) = − log 2
2

. (7.13)

Since 𝜕𝑀 is closed and 𝜕𝐼 = {𝑎, 𝑏}, we can form the modified product system

D ′ × D0 = (𝐸𝐼 ↓ 𝜕𝑀 × 𝐼, 𝑔𝐼 , ℎ𝐼 ,∇�̂�𝐼
�̂� 𝐼 ), (7.14)

with 𝐸𝐼 B 𝐸𝜕𝑀 ⊗̂ 𝐸C, 𝑔𝐼 B 𝑔𝜕𝑀 × 𝑔0, �̂�𝐼 B �̂�× 𝑔0, ℎ𝐼 B ℎ|𝜕𝑀 ⊗̂ ℎ0 and �̂� 𝐼 the sum of
the Morse functions �̂� + 𝑓0 that is appropriately modified near the boundary 𝜕𝑀 × {𝑎, 𝑏},
so that D ′ × D0 is a type II Morse–Smale system. By Proposition 5.2, this system is of
determinant class as well and satisfies

R(D ′ × D0) = R(D ′) − log 2
2

𝜒(𝜕𝑀, 𝐸) (7.12)= − log 2
2

𝜒(𝜕𝑀) dim(𝐸). (7.15)

Moreover, as 𝜃 (ℎ0) ≡ 0 and 𝜃 (ℎ|𝜕𝑀 ) = 0 by assumption, we retrieve from the product
formula (5.5) the equality

𝜃 (ℎ𝐼 ) = 𝜃 (ℎ|𝜕𝑀 ⊗̂ ℎ0) = 0. (7.16)

Notice that D ′ × D0 is not necessarily an admissible system. This is due to the fact that
neither is 𝑔𝐼 trivial nor ℎ𝐼 parallel near Cr( �̂� 𝐼 ). However, since Cr( �̂� 𝐼 ) is disjoint from
𝜕𝑀 × {𝑎, 𝑏}, we can pertube the metrics outside of a small neighborhood of 𝜕𝑀 to
produce metrics 𝑔𝐼 and ℎ̃𝐼 , so that ℎ̃𝐼 is parallel near Cr( 𝑓𝐼 ), and that we have 𝑔𝐼 ≡ �̂�𝐼
outside of a neighborhood of 𝜕𝑀 and near Cr( �̂� 𝐼 ). By Lemma 4.3, the pertubation of the
Hermitian form ℎ𝐼 can be performed in such way that still, we have

𝜃 ( ℎ̃𝐼 ) ≡ 0, (7.17)

ℎ̃𝐼 (𝑝) = ℎ𝐼 (𝑝), 𝑝 ∈ Cr( �̂� 𝐼 ). (7.18)

112



An 𝐿2-Cheeger Müller theorem on compact manifolds with boundary

For the resulting admissible systemD𝐼 B (𝐸𝐼 ↓ 𝜕𝑀 × 𝐼, 𝑔𝐼 , ℎ̃𝐼 ,∇�̂�𝐼
�̂� 𝐼 ), we obtain from

Proposition 5.4 that

R(D𝐼 ) = R(D ′ × D0) = − log 2
2

𝜒(𝜕𝑀) dim(𝐸). (7.19)

Observe now that by construction, D𝐼 and the disjoint union D t D B (𝐸 ↓ 𝑀 t 𝐸 ↓
𝑀, 𝑔 t 𝑔, ℎ t ℎ,∇𝑔′ 𝑓 t ∇𝑔′ 𝑓 ) of D with itself are two admissible systems satisfying the
hypotheses of Theorem 7.2. This allows us to finally conclude as follows:

2R(D) = R(D t D)

= R(D𝐼 ) −
∫
𝑀

𝜃 (ℎ) ∧ (∇𝑔 𝑓 )∗Ψ(𝑇𝑀, 𝑔)

+ 1
2

∫
𝜕𝑀×𝐼

𝜃 ( ℎ̃𝐼 ) ∧ (∇�̂�𝐼
�̂� 𝐼 )∗Ψ(𝑇 (𝜕𝑀 × 𝐼), 𝑔𝐼 )

(7.17)
= R(D𝐼 ) −

∫
𝑀

𝜃 (ℎ) ∧ (∇𝑔 𝑓 )∗Ψ(𝑇𝑀, 𝑔)

(7.19)
= − log 2

2
𝜒(𝜕𝑀) dim(𝐸) −

∫
𝑀

𝜃 (ℎ) ∧ (∇𝑔 𝑓 )∗Ψ(𝑇𝑀, 𝑔). (7.20)

This finishes the proof of Theorem 4.5. �
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