

SPONSORED BY THE

Federal Ministry of Education and Research Project is funded by the Federal Ministry of Education and Research under contract number 05K16VKA

Diagnostics of longitudinal bunch instabilities at KARA

Benjamin Kehrer, M. Brosi, E. Bründermann, S. Funkner, G. Niehues M.J. Nasse, M.M. Patil, J.L. Steinmann, A.-S. Müller

LAS - Laboratory for Applications of Synchrotron Radiation

Karlsruhe Research Accelerator (KARA) Accelerator test facility and synchrotron light source at KIT Circumference: 110.4 m Energy range: 500 MeV - 2.5 GeV Bunch spacing: 2 ns Regular low- α_c runs → Short bunches Studies of micro-bunching instability

Self-interaction of bunch with its own field

Self-interaction of bunch with its own field

Deformation of longitudinal phase space

LAS - Laboratory for Applications of Synchrotron Radiation

- Self-interaction of bunch with its own field
- Deformation of longitudinal phase space
- Can lead to bursting behaviour of the bunch

Measurement ³⁰⁰/₂₅₀/₂₀₀/₁₅₀/₁₀₀/₁₀₀₀₀/₂₀₀₀₀/₃₀₀₀₀/₄₀₀₀₀ Courtesy: Miriam Brosi</sub>

Courtesy: Patrik Schönfeldt

Position $(\sigma_{z,0})$

- Self-interaction of bunch with its own field
- Deformation of longitudinal phase space
- Can lead to bursting behaviour of the bunch
- Aim: Understand and control
 - → Studies of the longitudinal phase space

LAS - Laboratory for Applications of Synchrotron Radiation

Long term goal: reconstruction of long. phase space

- Long term goal: reconstruction of long. phase space
- Projections: longitudinal and energy profile

- Long term goal: reconstruction of long. phase space
- Projections: longitudinal and energy profile
- First step: scalar parameter for profiles

- Long term goal: reconstruction of long. phase space
- Projections: longitudinal and energy profile
- First step: scalar parameter for profiles

Distributed sensor network

Short photon pulses

Courtesy: Matthias Martin

LAS - Laboratory for Applications of Synchrotron Radiation

- Short photon pulses
- 2 ns pulse separation

- Short photon pulses
- 2 ns pulse separation
- Detectors: fast Schottky diodes
 - Work at room temperature
 - Response time: 40 ps

- Short photon pulses
- 2 ns pulse separation
- Detectors: fast Schottky diodes
 - Work at room temperature
 - Response time: 40 ps
- Oscilloscopes not usable
 - Trigger dead-time >2 ns
 Limited memory

→ KAPTURE

LAS - Laboratory for Applications of Synchrotron Radiation

KArlsruhe Pulse Taking and Ultrafast Readout Electronics

 Picosecond sampling system for individual THz pulses with high repetition rate (500 MHz)

Courtesy: Matthias Martin

KArlsruhe Pulse Taking and Ultrafast Readout Electronics

- Picosecond sampling system for individual THz pulses with high repetition rate (500 MHz)
- Developed at KIT^{1,2}

Courtesy: Matthias Martin

KArlsruhe Pulse Taking and Ultrafast Readout Electronics

- Picosecond sampling system for individual THz pulses with high repetition rate (500 MHz)
- Developed at KIT^{1,2}
- 18 GHz analog bandwidth
- 8 channels
- 12 Bit ADC
 - →8GB/s

Courtesy: Matthias Martin

KArlsruhe Pulse Taking and Ultrafast Readout Electronics

- Picosecond sampling system for individual THz pulses with high repetition rate (500 MHz)
- Developed at KIT^{1,2}
- 18 GHz analog bandwidth
- 8 channels
- 12 Bit ADC
 - →8GB/s
- Mechanically/electrically compatible with FMC / μTCA

Courtesy: Matthias Martin

Single shot spectrometer

- 8 detectors
- e.g. for different frequencies
- measuring spectrum ³

Courtesy: Matthias Martin

³J.L. Steinmann et al., Phys. Rev. Accel. Beams 21 (11 2018), p. 110705.

Single shot spectrometer

- 8 detectors
- e.g. for different frequencies
- measuring spectrum ³

Courtesy: Matthias Martin

³J.L. Steinmann et al., Phys. Rev. Accel. Beams 21 (11 2018), p. 110705.

ectrometer Peak reconstruction 1 detector

- power-splitter
- measuring pulse shape

Sampling the electric field in the near-field regime

- GaP crystal
- Laser wavelength: 1050 nm

⁴N. Hiller et al., IBIC'14 (MOPD17).

⁵S. Funkner et al., Phys. Rev. Accel. Beams 22, 022801 (2019).

- Sampling the electric field in the near-field regime
 - GaP crystal
 - Laser wavelength: 1050 nm
- Spectral decoding

- Sampling the electric field in the near-field regime
 - GaP crystal
 - Laser wavelength: 1050 nm
- Spectral decoding → Single shot

⁵S. Funkner et al., Phys. Rev. Accel. Beams 22, 022801 (2019).

- Sampling the electric field in the near-field regime
 - GaP crystal
 - Laser wavelength: 1050 nm
- Spectral decoding → Single shot
- First near-field setup at a storage ring^{4,5}

⁵S. Funkner et al., Phys. Rev. Accel. Beams 22, 022801 (2019).

KALYPSO

KArlsruhe Linear arraY detector for MHz-rePetition rate SpectrOscopy

High speed line array developed at KIT⁶

KALYPSO

KArlsruhe Linear arraY detector for MHz-rePetition rate SpectrOscopy

- High speed line array developed at KIT⁶
- Variable design: sensor and number of micro-strips (up to 1024)

KALYPSO

KArlsruhe Linear arraY detector for MHz-rePetition rate SpectrOscopy

- High speed line array developed at KIT⁶
- Variable design: sensor and number of micro-strips (up to 1024)
- Maximum frame rate >10 Mfps
 - → Turn-by-turn studies at KARA ($f_{rev} = 2.7 \text{ MHz}$)

Horizontal bunch size measurements in dispersive section

$$\sigma_{x} = \sqrt{\beta_{x} \epsilon_{x} + (D_{x} \sigma_{\delta})^{2}}$$

⁷B. Kehrer et al., IPAC'15 (MOPHA037).

Horizontal bunch size measurements in dispersive section

$$\sigma_{x} = \sqrt{\beta_{x} \epsilon_{x} + (D_{x} \sigma_{\delta})^{2}}$$

- Visible light diagnostics port at KARA⁷
 - → Incoherent bending radiation from dipole magnet (400 nm to 500 nm)

⁷B. Kehrer et al., IPAC'15 (MOPHA037).

Horizontal bunch size measurements in dispersive section

$$\sigma_{x} = \sqrt{\beta_{x} \epsilon_{x} + (D_{x} \sigma_{\delta})^{2}}$$

 Visible light diagnostics port at KARA⁷
 → Incoherent bending radiation from dipole magnet (400 nm to 500 nm)

Two different systems

⁷B. Kehrer et al., IPAC'15 (MOPHA037).

Horizontal bunch size measurements in dispersive section

$$\sigma_{x} = \sqrt{\beta_{x} \epsilon_{x} + (D_{x} \sigma_{\delta})^{2}}$$

- Visible light diagnostics port at KARA⁷
 - → Incoherent bending radiation from dipole magnet (400 nm to 500 nm)
- Two different systems
 - Fast-gated intensified camera (FGC)

⁷B. Kehrer et al., IPAC'15 (MOPHA037).

Horizontal bunch size measurements in dispersive section

$$\sigma_{x} = \sqrt{\beta_{x} \epsilon_{x} + (D_{x} \sigma_{\delta})^{2}}$$

- Visible light diagnostics port at KARA⁷
 - → Incoherent bending radiation from dipole magnet (400 nm to 500 nm)
- Two different systems
 - Fast-gated intensified camera (FGC)
 - KALYPSO system

⁷B. Kehrer et al., IPAC'15 (MOPHA037).

... and vice versa

⁸A. Andersson et al., EPAC'06 (TUPCH090).

... and vice versa

• D_x , β_x , ϵ_x from AT & LOCO, FBSF⁸ from OpTaliX

⁸A. Andersson et al., EPAC'06 (TUPCH090).

... and vice versa

D_x, β_x, ε_x from AT & LOCO, FBSF⁸ from OpTaliX
 Retrieve bunch size

⁸A. Andersson et al., EPAC'06 (TUPCH090).

... and vice versa

- D_x , β_x , ϵ_x from AT & LOCO, FBSF⁸ from OpTaliX • Retrieve bunch size
 - Deconvolution and Gaussian fit / RMS calculation

⁸A. Andersson et al., EPAC'06 (TUPCH090).

... and vice versa

- D_x , β_x , ϵ_x from AT & LOCO, FBSF⁸ from OpTaliX
- Retrieve bunch size
 - Deconvolution and Gaussian fit / RMS calculation
 - Fit function: f_{fit} = f_{Gauss} * f_{FBSF}

⁸A. Andersson et al., EPAC'06 (TUPCH090).

... and vice versa

- D_x , β_x , ϵ_x from AT & LOCO, FBSF⁸ from OpTaliX
- Retrieve bunch size
 - Deconvolution and Gaussian fit / RMS calculation
 - Fit function: $f_{fit} = f_{Gauss} * f_{FBSF} \rightarrow More$ stable and faster

⁸A. Andersson et al., EPAC'06 (TUPCH090).

Silicon sensor

Silicon sensor

■ No fast shutter / gate → Single bunch, but turn-by-turn

- Silicon sensor
- No fast shutter / gate \rightarrow Single bunch, but turn-by-turn
- No mechanical components \rightarrow No delays

- Silicon sensor
- No fast shutter / gate → Single bunch, but turn-by-turn
- No mechanical components → No delays
- Data analysis similar to FGC⁹

- Silicon sensor
- No fast shutter / gate → Single bunch, but turn-by-turn
- No mechanical components \rightarrow No delays
- Data analysis similar to FGC⁹

⁹B. Kehrer et al., IPAC'19 (WEPGW016).

Courtesy: Paul Schütze

Multiple detector systems at different places along the storage ring

¹⁰B. Kehrer et al., IPAC'16 (MOPMB014)

- Multiple detector systems at different places along the storage ring
- Phase space studies require synchronous measurements

¹⁰B. Kehrer et al., IPAC'16 (MOPMB014)

- Multiple detector systems at different places along the storage ring
- Phase space studies require synchronous measurements
- Trigger distribution by hardware synchronisation scheme
 - → Taking inherent setup delays into account¹⁰

¹⁰B. Kehrer et al., IPAC'16 (MOPMB014)

- Multiple detector systems at different places along the storage ring
- Phase space studies require synchronous measurements
- Trigger distribution by hardware synchronisation scheme → Taking inherent setup delays into account¹⁰

Synchronous measurements with 2 KALYPSO + Schottky diodes¹¹

¹¹M. Brosi et al., IPAC'19 (WEPTS015).

Synchronous measurements with 2 KALYPSO + Schottky diodes¹¹

¹¹M. Brosi et al., IPAC'19 (WEPTS015).

Synchronous measurements with 2 KALYPSO + Schottky diodes¹¹

¹¹M. Brosi et al., IPAC'19 (WEPTS015).

Synchronous measurements with 2 KALYPSO + Schottky diodes¹¹

¹¹M. Brosi et al., IPAC'19 (WEPTS015).

Synchronous measurements¹²

- KALYPSO for horizontal bunch size
- Schottky diode for CSR

Karlsruhe Institute of Technology

Synchronous measurements¹²

- KALYPSO for horizontal bunch size
- Schottky diode for CSR

Synchronous measurements¹²

- KALYPSO for horizontal bunch size
- Schottky diode for CSR

- Long time range
 and
- good temporal resolution

Synchronous measurements¹²

- KALYPSO for horizontal bunch size
- Schottky diode for CSR

- Long time range
 and
- good temporal resolution
- ✓ Systematic studies of longitudinal phase space

 Investigate micro-bunching instability by studies of the longitudinal phase space

- Investigate micro-bunching instability by studies of the longitudinal phase space
- Time-resolved measurements of different bunch parameter
 - CSR intensity
 - Longitudinal bunch profile
 - Energy spread

- Investigate micro-bunching instability by studies of the longitudinal phase space
- Time-resolved measurements of different bunch parameter
 - CSR intensity
 - Longitudinal bunch profile
 - Energy spread
- Detector systems with single-turn resolution
 - KAPTURE
 - Fast-gated camera
 - KALYPSO

- Investigate micro-bunching instability by studies of the longitudinal phase space
- Time-resolved measurements of different bunch parameter
 - CSR intensity
 - Longitudinal bunch profile
 - Energy spread
- Detector systems with single-turn resolution
 - KAPTURE
 - Fast-gated camera
 - KALYPSO
- Detector systems synchronised on single-turn base
 - → First steps towards phase space reconstruction

- Investigate micro-bunching instability by studies of the longitudinal phase space
- Time-resolved measurements of different bunch parameter
 - CSR intensity
 - Longitudinal bunch profile
 - Energy spread
- Detector systems with single-turn resolution
 - KAPTURE
 - Fast-gated camera
 - KALYPSO
- Detector systems synchronised on single-turn base
 - → First steps towards phase space reconstruction
- Challenge
 - Fast data analysis
 - Potential feedback → Talk of Tobias Boltz (2016/09/26 11:30)

Thank you for your attention!

Backup

Fast-gated intensified camera (FGC)

- Setup at visible light diagnostics port¹³
- Combination of sweeping and gating
 - Galvo mirror sweeps light over CCD sensor during illumination
 - Camera gate acts as pulse picker
 - → Single turn image of one bunch

¹³P. Schuetze et al., IPAC'15 (MOPHA039).

Fast-gated intensified camera (FGC)

(xd 400

¹³P. Schuetze et al., IPAC'15 (MOPHA039).

19 2019/09/25 Benjamin Kehrer - Diagnostics of longitudinal bunch instabilities at KARA

Fast-gated intensified camera (FGC)

- Setup at visible light diagnostics port¹³
- Combination of sweeping and gating
 - Galvo mirror sweeps light over CCD sensor during illumination
 - Camera gate acts as pulse picker → Single turn image of one bunch
- Limited number of data points: Trade-off between resolution and time range

beforehand of a measurement

¹³P. Schuetze et al., IPAC'15 (MOPHA039).

Fast-gated intensified camera: data analysis

- Measured profile: convolution of bunch profile and FBSF
- FBSF determined by optics simulation (OpTaliX)
- Fit function: convolution of Gaussian with FBSF

KALYPSO: Data analysis

- Same ansatz as for FGC
- Fit function: $f_{fit} = f_{Gauss} * f_{FBSF}$
- Good representation of the profile
- Drawback: Too slow for productive use
 - → >100.000 profiles per file or even continouous streaming...

KALYPSO: Data analysis

- Same ansatz as for FGC
- Fit function: $f_{fit} = f_{Gauss} * f_{FBSF}$
- Good representation of the profile
- Drawback: Too slow for productive use
 - → >100.000 profiles per file or even continouous streaming...

