KIT | KIT-Bibliothek | Impressum | Datenschutz

Composition Analysis of cosmic-rays at IceCube Observatory, using Graph Neural Networks

Koundal, Paras 1; IceCube Collaboration
1 Institut für Astroteilchenphysik (IAP), Karlsruher Institut für Technologie (KIT)

Abstract (englisch):

The IceCube Neutrino Observatory, located at the South Pole, is a multi-component detector that detects high-energy particles from astrophysical sources. Cosmic Rays (CRs) are charged particles from these astrophysical accelerators. CRs and CR-induced air-showers furnish us with the possibility to discern the fundamental properties and behavior of such sources. When coupled to the IceTop surface array, IceCube affords unique three-dimensional detection and cosmic-ray analysis in the transition region from galactic to extragalactic sources. This work tries to improve the estimation of CR primary mass on a per-event basis in the mentioned energy range. The work benefits from using the full in-ice shower footprint and additional composition-sensitive air-shower parameters, in addition to global shower-footprint parameters already used in an earlier work. A Graph Neural Network (GNN) based implementation uses the full in-ice shower footprint. Described using nodes and edges, graphs allow us to efficiently represent relational data and learn hidden representations of input data to obtain better model accuracy. Mapping in-ice IceCube detectors, DOMs(Digital Optical Module), as a graph emerges as a natural solution. ... mehr


Zugehörige Institution(en) am KIT Institut für Astroteilchenphysik (IAP)
Publikationstyp Vortrag
Publikationsdatum 01.02.2022
Sprache Englisch
Identifikator KITopen-ID: 1000143576
HGF-Programm 51.13.04 (POF IV, LK 01) Kosmische Strahlung Technologien
Veranstaltung Workshop on Machine Learning for Cosmic-Ray Air Showers (2022), Newark, DE, USA, 31.01.2022 – 03.02.2022
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page