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Abstract

We discuss a time-harmonic inverse scattering problem for a nonlinear Helmholtz equa-
tion with compactly supported inhomogeneous scattering objects that are described by a
nonlinear refractive index in unbounded free space. Assuming the knowledge of a nonlinear
far field operator, which maps Herglotz incident waves to the far field patterns of corre-
sponding solutions of the nonlinear scattering problem, we show that the nonlinear index
of refraction is uniquely determined. We also generalize two reconstruction methods, a fac-
torization method and a monotonicity method, to recover the support of such nonlinear
scattering objects. Numerical results illustrate our theoretical findings.
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Keywords: Inverse scattering, nonlinear Helmholtz equation, uniqueness, factorization method, mono-

tonicity method

Short title: Nonlinear inverse medium scattering

1 Introduction

The linear Helmholtz equation is used to model the propagation of sound waves or electromag-
netic waves of small amplitude in inhomogeneous isotropic media in the time-harmonic regime
(see, e.g., [9]). However, if the magnitudes are large, then intensity-dependent material laws
might be required, and nonlinear Helmholtz equations are often more appropriate. A promi-
nent example are Kerr-type nonlinear media (see, e.g., [3, 31] for the physical background).
Optical Kerr effects are studied in various applications from laser optics (see, e.g., [1, 6]) both
from a theoretical and applied point of view. In this theoretical study we consider an inverse
medium scattering problem for a class of nonlinear Helmholtz equations that covers for instance
generalized Kerr-type nonlinear media of arbitrary order.

To begin with, we discuss the well-posedness of the direct scattering problem. We consider
compactly supported scatterers that are described by a nonlinear refractive index, which we basi-
cally assume to be well approximated by a linear refractive index at low intensities. Rewriting the
scattering problem in terms of a nonlinear Lippmann-Schwinger equation we use a contraction
argument together with resolvent estimates for the linearized problem to establish the existence
and uniqueness of solutions for incident waves that are sufficiently small relative to the size of
the nonlinearity. Here it is important to note that the parameters in nonlinear material laws
are usually extremely small (see, e.g., [3, p. 212]), which means that this assumption does not
rule out incident fields of rather large intensity. As a byproduct we also give a priori estimates
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for the solution of the nonlinear scattering problem as well as estimates for the linearization
error, which are instrumental for the rest of the work. The main reason for considering incident
waves that are small relative to the size of the nonlinearity here is that we later use linearization
techniques to solve the corresponding inverse problem. However, we note that a more general
existence result for the direct scattering problem that avoids any smallness assumption on the
incident field has recently been established in [7] (see also [13, 30]).

We define a nonlinear far field operator that maps densities of Herglotz incident fields to
the far field patterns of the corresponding solutions of the direct scattering problem. In the
linear case such far field operators are used to describe the scattering process for infinitely many
incident fields, and their properties have been widely studied (see, e.g., [9]). Similar to [29]
(see also [26] for the linear case) we derive a factorization of this operator into three simpler
operators. Here it is important to note that only the second operator in this factorization is
nonlinear. We derive estimates for the corresponding linearization error.

Restricting the discussion to a class of generalized Kerr-type nonlinearities of arbitrary order,
we then turn to the associated inverse scattering problem. We show that the knowledge of the
nonlinear far field operator uniquely determines the nonlinear refractive index. This generalizes
earlier results for the inverse medium scattering problem for nonlinear Helmholtz equations
from [11, 21]. In comparison to these works we consider a less regular and more general class
of nonlinear refractive indices. Our proof relies on linearization to determine the terms in the
generalized Kerr-type nonlinearity recursively, and it uses the classical uniqueness result for the
corresponding linear inverse medium scattering problem (see, e.g., [4, 32, 33, 34]). Recently, a
uniqueness proof that avoids the use of the linear result has been established for a more regular
class of power-type nonlinearities than considered here in [10, 28, 15]. Earlier uniqueness results
for semilinear elliptic inverse problems have, e.g., been obtained in [18, 19, 20, 40]. Furthermore,
inverse scattering problems for nonlinear Schrödinger equations, which are closely related to
the nonlinear Helmholtz equations considered in this work, have been studied using different
techniques than those applied in this work in [14, 35, 36, 37, 38, 39].

We also generalize two popular methods for shape reconstruction for inverse scattering prob-
lems, the factorization method and the monotonicity method, to the nonlinear scattering prob-
lem. A related factorization method has been discussed in [29] for a class of weakly scattering
objects and for scattering objects with small nonlinearity of linear growth. In comparison to
this work we consider a larger class of nonlinearities without any smallness assumption on the
nonlinearity, but on the other hand we assume that the incident fields are sufficiently small
relative to the size of the nonlinearity. For linear scattering problems the factorization method
has originally been developed in [22, 23, 24] (see also [8] and the monographs [5, 26]). Using
estimates for the linearization error we show that the inf-criterion from [24] can be extended to
the nonlinear case considered in this work. However, since the far field operator is nonlinear,
the efficient numerical implementation of this criterion using spectral theory that is used for the
linear scattering problem no longer applies. Instead we have to solve a nonlinear constrained
optimization problem for each sampling point to decide whether it belongs to the support of
the nonlinear scatterer or not. This leads to a numerical scheme that is considerably more time
consuming than the traditional scheme for the linear case.

The situation is similar for the nonlinear monotonicity method. For linear scattering prob-
lems monotonicity based reconstruction methods have been proposed in [2, 12, 16, 17]. Using
linearization techniques we show that the method can be extended to the nonlinear case consid-
ered in this work. Again the tools from spectral theory that have been used for the numerical
implementation of the monotonicity criteria in [2, 12] are not available for the nonlinear scattering
problem. However, we show that there is a close connection between the nonlinear monotonicity
based shape characterization and the inf-criterion for the nonlinear factorization method, which
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we exploit to implement the nonlinear monotoncity based reconstruction method in terms of a
similar constrained optimization problem as for the nonlinear factorization method.

We consider a numerical example with a scattering object that is described by a third-order
nonlinear refractive index using optical coefficients for glass from [3]. Since the nonlinear part
of the refractive index is extremely small, we work with incident fields of very high intensity
such that there is a significant nonlinear contribution in the scattered field. The forward solver,
which is based on the same fixed point iteration for the nonlinear Lippmann-Schwinger equation
that we use to analyze the direct scattering problem, as well as the reconstruction methods work
well. This suggests that the smallness assumptions on the intensity of the incident fields that
we have to make in our theoretical results is not too restrictive.

The article is organized as follows. In Section 2 we introduce the nonlinear scattering prob-
lem, and we establish existence and uniqueness of solutions for the direct scattering problem.
In Section 3 we turn to the inverse scattering problem to recover the nonlinear refractive in-
dex from observations of the corresponding nonlinear far field operator. Focusing on a class of
generalized Kerr-type nonlinearities, we show that this inverse problem has a unique solution.
In Sections 4 and 5 we derive and analyze a nonlinear factorization method and a nonlinear
monotonicity method for reconstructing the support of nonlinear scatterers. In Section 6 we
provide numerical examples.

2 The nonlinear scattering problem

The nonlinear wave equation

∂2ψ

∂t2
(t, x)−∆ψ(t, x) = h(x, ψ(t, x)) , (t, x) ∈ R× R

d ,

is used to model the interaction of acoustic or electromagnetic waves with a compactly supported
inhomogeneous penetrable scattering object with nonlinear response in d-dimensional free space
for d = 2, 3. In the following we restrict the discussion to nonlinearities of the form

h(x, ψ(t, x)) = k2q(x, |ψ(t, x)|)ψ(t, x) , (t, x) ∈ R× R
d ,

where q : Rd ×R → R is real-valued. Specifying a wave number k > 0, the time-periodic ansatz

ψ(x, t) = e−iktu(x) , (x, t) ∈ R
d × R ,

gives the nonlinear Helmholtz equation

∆u+ k2u = −k2q(x, |u|)u , x ∈ R
d .

Denoting by n2 := 1+ q the associated nonlinear refractive index, we make the following general
assumptions throughout this work.

Assumption 2.1. The nonlinear contrast function q ∈ L∞(Rd × R) shall satisfy

(i) supp(q) ⊆ D × R for some bounded open set D ⊂ R
d,

(ii) q(x, 0) = 0 for a.e. x ∈ R
d,

(iii) and there exist q0 ∈ L∞(Rd) with ess inf q0 > −1 and supp(q0) ⊆ D, and a parameter α > 0
such that for any z1, z2 ∈ C with |z1|, |z2| ≤ 1,

∥∥q( · , |z1|)z1 − q( · , |z2|)z2 − q0(z1 − z2)
∥∥
L∞(Rd)

≤ Cq(|z1|α + |z2|α)|z1 − z2| . (2.1)
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For later reference we note that (2.1) implies

∥∥q( · , |z|)z − q0z
∥∥
L∞(Rd)

≤ Cq|z|1+α for any z ∈ C , |z| ≤ 1 . (2.2)

Example 2.2. An example for a nonlinear material law that satisfies Assumption 2.1 is the
generalized Kerr-type material law

q(x, |z|) = q0(x) +

L∑

l=1

ql(x)|z|αl x ∈ R
d , z ∈ C , (2.3)

for q0, . . . , qL ∈ L∞(Rd) with support in D, where the lowest order term satisfies ess inf q0 > −1,
and the exponents fulfill 0 < α1 < · · · < αL < ∞. In this case condition (2.1) is satisfied for
α = α1 and Cq =

∑L
l=1 ‖ql‖L∞(D). For the special case when L = 1 and α1 = 2 this gives the

well-known Kerr nonlinearity (see, e.g., [3, 31]). ♦

We suppose that the wave motion is caused by an incident field ui satisfying the linear
Helmholtz equation

∆ui + k2ui = 0 in R
d . (2.4a)

The scattering problem that we consider consists in determining the total field u = ui +us such
that

∆u+ k2n2( · , |u|)u = 0 in R
d , (2.4b)

where the scattered field us satisfies the Sommerfeld radiation condition

lim
r→∞

r
d−1
2

(∂us
∂r

(x)− ikus(x)
)

= 0 , r = |x| , (2.4c)

uniformly with respect to all directions x/|x| ∈ Sd−1.

Remark 2.3. Throughout this work (nonlinear) Helmholtz equations are to be understood in
the strong sense. For instance, u ∈ H2

loc(R
d) is a solution to (2.4b) if and only if it satisfies

the equation weakly almost everywhere in R
d. Elliptic regularity results show that ui is smooth

throughout R
d, and that u and thus also us are smooth in R

d \D. In particular the radiation
condition (2.4c) is well-defined. As usual we call a solution to a (nonlinear) Helmholtz equation
on an unbounded domain that satisfies the Sommerfeld radiation condition a radiating solution. ♦

Next we show that the scattering problem (2.4) is equivalent to the problem of solving the
nonlinear Lippmann-Schwinger equation

u(x) = ui(x) + k2
∫

D
Φk(x− y)q(y, |u(y)|)u(y) dy , x ∈ D , (2.5)

in L∞(D). Here Φk is the outgoing free space fundamental solution to the Helmholtz equation,

i.e., for x, y ∈ R
d, x 6= y, we have Φk(x − y) = (i/4)H

(1)
0 (k|x − y|) if d = 2 and Φk(x − y) =

eik|x−y|/(4π|x − y|) if d = 3. The arguments that we use to prove this are the same as in the
linear case (see, e.g., [25, Thm. 7.12]).

Lemma 2.4. If u ∈ H2
loc(R

d) is a solution of (2.4), then u|D is a solution of (2.5). Conversely,
if u ∈ L∞(D) is a solution of (2.5) then u can be extended to a solution u ∈ H2

loc(R
d) of (2.4).

Proof. Let u ∈ H2
loc(R

d) be a solution of (2.4). Then q( · , |u|)u|D ∈ L∞(D), and the volume
potential v := k2Φk ∗ (q( · , |u|)u) ∈ H2

loc(R
d) is a radiating solution of

∆v + k2v = −k2q( · , |u|)u in R
d (2.6)
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(see, e.g., [25, Thm. 7.11]). Accordingly, us−v is a radiating solution of ∆(us−v)+k2(us−v) = 0
in R

d. Thus v = us (see, e.g., [9, p. 24]), which proves the first part.
Conversely, let u ∈ L∞(D) be a solution of (2.5). Defining v := k2Φk ∗ (q( · , |u|)u) in R

d, we
find that u = ui + v in D. Moreover, v ∈ H2

loc(R
d) satisfies (2.6), and if we extend u by ui + v

to all of Rd, then u solves (2.4).

In the following we consider this problem for more general source terms and study radiating
solutions v ∈ H2

loc(R
d) of

∆v + k2v = −k2q( · , |v + f |)(v + f) in R
d , (2.7)

where f ∈ L∞(D). In this situation, f represents the incident field and v the corresponding
scattered field. As in Lemma 2.4 we find that this is equivalent to the problem of solving the
nonlinear integral equation

v(x) = k2
∫

D
Φk(x− y)q(y, |v(y) + f(y)|)(v(y) + f(y)) dy , x ∈ D , (2.8)

in L∞(D).

Remark 2.5. In the linear case, i.e., when q = q0, the scattering problem (2.7) reduces to

∆v0 + k2v0 = −k2q0(v0 + f) in R
d , (2.9)

and the corresponding linear Lippmann-Schwinger equation reads

v0(x) = k2
∫

D
Φk(x− y)q0(y)(v0(y) + f(y)) dy , x ∈ D . (2.10)

We note that I − k2Φk ∗ (q0 · ) is an isomorphism on L2(D) (see [25, Thm. 7.13] for the corre-
sponding result in the case when D is a ball BR(0)) as well as on L∞(D). For the latter we
recall that k2Φk ∗ (q0 · ) maps L∞(D) into H2(BR(0)) for BR(0) containing D, which embeds
continuously into L∞(D). In particular we have

∥∥(I − k2Φk ∗ (q0 · )
)−1

g
∥∥
L2(D)

≤ CLS,2‖g‖L2(D) , g ∈ L2(D) , (2.11a)
∥∥(I − k2Φk ∗ (q0 · )

)−1
g
∥∥
L∞(D)

≤ CLS,∞‖g‖L∞(D) , g ∈ L∞(D) . (2.11b)

Accordingly, the unique solution v0 of (2.10) is given by

v0 =
(
I − k2Φk ∗ (q0 · )

)−1(
k2Φk ∗ (q0f)

)
in D , (2.12)

and we denote by V0 the linear operator that maps f to v0. The solution v0 can be extended by
the right hand side of (2.10) to a radiating solution of (2.9) in all of Rd, which we also denote
by v0 = V0f . For later reference we note that (2.11) implies

‖V0f‖L2(D) ≤ CV0,2‖f‖L2(D) , f ∈ L2(D) , (2.13a)

‖V0f‖L∞(D) ≤ CV0,∞‖f‖L∞(D) , f ∈ L∞(D) , (2.13b)

where CV0,∞ = k2CLS,∞‖Φk‖L1(B2R(0))‖q0‖L∞(D) and CV0,2 = k2CLS,2‖Φk‖L1(B2R(0))‖q0‖L∞(D).
Here and in the following R > 0 is chosen such that D ⊆ BR(0). ♦
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In Proposition 2.6 below we establish well-posedness of (2.7). Writing

Uδ :=
{
v ∈ L∞(D)

∣∣ ‖v‖L∞(D) ≤ δ
}
, δ > 0 ,

we show that for any f ∈ Uδ with δ > 0 sufficiently small there exists a unique solution v of (2.8)
in L∞(D) such that the difference w := v − v0 with v0 from (2.12) satisfies w ∈ Uδ. We call
this v the unique small solution of (2.8). Denoting by V the nonlinear operator that maps f
to v, we shall see that V is Fréchet-differentiable at zero and V ′(0) = V0. The mere existence of
such an operator is well-known, see for instance, [7, Thm. 1.2], [13, Thm. 1], or [30, Thm. 1].

Proposition 2.6. Suppose that Assumption 2.1 is satisfied. There exists δ > 0 such that for
any given f ∈ Uδ the nonlinear integral equation (2.8) has a unique solution v = V (f) ∈ L∞(D)
satisfying v − V0f ∈ Uδ, and there exists a constant1 C > 0 such that, for all such f ,

‖V (f)‖L∞(D) ≤ C‖f‖L∞(D) , (2.14a)

‖V (f)‖L2(D) ≤ C‖f‖L2(D) , (2.14b)

‖V (f)− V0f‖L∞(D) ≤ C‖f‖1+α
L∞(D) , (2.14c)

‖V (f)− V0f‖L2(D) ≤ C‖f‖αL∞(D)‖f‖L2(D) . (2.14d)

Remark 2.7. The proof of Proposition 2.6 below shows that the upper bound δ > 0 has to
be such that the product Cqδ > 0, where Cq is the upper bound on the nonlinearity from
Assumption 2.1, is sufficiently small. This means that there is a tradeoff between the size of the
nonlinearity and the intensity of the incident fields and scattered fields that are covered by this
well-posedness result. ♦

Proof of Proposition 2.6. For any given f ∈ L∞(D) let v0 := V0f ∈ L∞(D) as in (2.12). Then,
v ∈ L∞(D) solves (2.8) if and only if w := v − v0 satisfies

w − k2Φk ∗ (q0w) = k2Φk ∗
(
qN ( · , |w + v0 + f |)(w + v0 + f)

)
in D ,

where qN := q − q0 denotes the nonlinear part of the contrast function. This is equivalent to w
being a fixed point of the nonlinear map G : L∞(D) → L∞(D),

G(w) :=
(
I − k2Φk ∗ (q0 · )

)−1
(
k2Φk ∗

(
qN ( · , |w + v0 + f |)(w + v0 + f)

))
. (2.15)

Using (2.11b), Young’s inequality, (2.2), and (2.13b) we have for any f ∈ Uδ and w ∈ Uδ that

‖G(w)‖L∞(D) ≤ CLS,∞

∥∥k2Φk ∗
(
qN ( · , |w + v0 + f |)(w + v0 + f)

)∥∥
L∞(D)

≤ k2CLS,∞‖Φk‖L1(B2R(0))

∥∥qN ( · , |w + v0 + f |)(w + v0 + f)
∥∥
L∞(D)

≤ k2CLS,∞‖Φk‖L1(B2R(0))Cq‖w + v0 + f‖1+α
L∞(D)

≤ k2CLS,∞‖Φk‖L1(B2R(0))Cq

(
δ + (CV0,∞ + 1)δ

)1+α
.

Here, R > 0 was chosen such that D ⊆ BR(0). Similarly, applying (2.1) we obtain for any f ∈ Uδ

and w1, w2 ∈ Uδ that

‖G(w1)−G(w2)‖L∞(D)

≤ k2CLS,∞‖Φk‖L1(B2R(0))Cq

(
‖w1 + v0 + f‖αL∞(D) + ‖w2 + v0 + f‖αL∞(D)

)
‖w1 − w2‖L∞(D)

≤ k2CLS,∞‖Φk‖L1(B2R(0))Cq 2
(
δ + (CV0,∞ + 1)δ

)α‖w1 − w2‖L∞(D) .

1Throughout C denotes a generic constant, the values of which might change from line to line.
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Choosing δ > 0 such that Cqδ > 0 is sufficiently small, we find that

‖G(w)‖L∞(D) ≤ δ , ‖G(w1)−G(w2)‖L∞(D) ≤ 1

2
‖w1 − w2‖L∞(D) .

So G : Uδ → Uδ is a contraction, and Banach’s fixed point theorem yields the existence of a
uniquely determined fixed point w ∈ Uδ of G such that v = V (f) := w + V0f solves (2.8).

It remains to show (2.14a)–(2.14d). This follows from (2.15), (2.11b), Young’s inequality,
and (2.2) because

‖V (f)− V0f‖L∞(D) = ‖G(V (f)− V0f)‖L∞(D)

=
∥∥(I − k2Φk ∗ (q0 · )

)−1
(
k2Φk ∗

(
qN ( · , |V (f) + f |)(V (f) + f)

))∥∥
L∞(D)

≤ k2CLS,∞‖Φk‖L1(B2R(0))

∥∥qN ( · , |V (f) + f |)(V (f) + f)
∥∥
L∞(D)

≤ k2CLS,∞‖Φk‖L1(B2R(0))Cq‖V (f) + f‖1+α
L∞(D)

≤ k2CLS,∞‖Φk‖L1(B2R(0))Cq

(
‖V (f)− V0f‖L∞(D) + ‖V0f + f‖L∞(D)

)α‖V (f) + f‖L∞(D) .

(2.16)

Hence, (2.13b) yields

‖V (f)‖L∞(D) ≤ CV0,∞‖f‖L∞(D)

+ k2CLS,∞‖Φk‖L1(B2R(0))Cq

(
δ + (CV0,∞ + 1)δ)α

(
‖V (f)‖L∞(D) + ‖f‖L∞(D)

)
.

Given that Cqδ > 0 is sufficiently small as in the first part of the proof we thus obtain (2.14a).
Therewith, (2.16) shows (2.14c). Finally, using (2.15), (2.11a), Young’s inequality, and (2.2) we
get

‖V (f)− V0f‖L2(D)

= ‖G(V (f)− V0f)‖L2(D)

=
∥∥(I − k2Φk ∗ (q0 · )

)−1
(
k2Φk ∗

(
qN ( · , |V (f) + f |)(V (f) + f)

))∥∥
L2(D)

≤ k2CLS,2‖Φk‖L1(B2R(0))

∥∥qN ( · , |V (f) + f |)(V (f) + f)
∥∥
L2(D)

≤ k2CLS,2‖Φk‖L1(B2R(0))Cq‖|V (f) + f |1+α‖L2(D)

≤ k2CLS,2‖Φk‖L1(B2R(0))Cq‖V (f) + f‖αL∞(D)‖V (f) + f‖L2(D) .

Proceeding as before this implies (2.14b) when Cqδ > 0 is sufficiently small, and thus also (2.14d).

After extending the right hand side of (2.8) to all of R
d, Proposition 2.6 guarantees the

existence of a unique small radiating solution of the generalized scattering problem (2.7) for
any f ∈ L∞(D) that is sufficiently small. We denote this extension by v = V (f) as well. In
particular, Proposition 2.6 tells us that for all L∞(D)-small incoming waves ui we have a unique
small solution u = ui + V (ui|D) of the nonlinear forward problem (2.4). Here small means
that ‖V (ui|D)− V0(u

i|D)‖L∞(D) ≤ δ with δ > 0 from Proposition 2.6. Substituting the far field
asymptotics of the fundamental solution (see, e.g., [9, p. 24 and p. 89]) into the extension of the
integral representation (2.8) to all of Rd, we obtain the following result.

Proposition 2.8. Suppose that Assumption 2.1 is satisfied, let δ > 0 be as in Proposition 2.6,
and let f ∈ Uδ. Then the extension of the unique solution v = V (f) ∈ Uδ of (2.8) to all of Rd,
has the asymptotic behavior

v(x) = Cde
ik|x||x| 1−d

2 v∞(x̂) +O(|x|− d+1
2 ) , |x| → ∞ ,
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uniformly in all directions x̂ := x/|x| ∈ Sd−1, where

Cd = eiπ/4/
√
8πk if d = 2 and Cd = 1/(4π) if d = 3 .

The far field pattern v∞ = (V (f))∞ ∈ L2(Sd−1) is given by

v∞(x̂) = k2
∫

D
q
(
y, |v(y) + f(y)|

)(
v(y) + f(y)

)
e−ikx̂·y dy , x̂ ∈ Sd−1 . (2.17)

In the following we will we restrict the discussion to incident fields that are superpositions
of plane waves. We define the Herglotz operator H : L2(Sd−1) → L2(D),

(Hψ)(x) :=

∫

Sd−1

ψ(θ)eikx·θ ds(θ) , x ∈ D , (2.18)

and we note that its adjoint H∗ : L2(D) → L2(Sd−1) satisfies

(H∗φ)(x̂) =

∫

D
φ(y)e−ikx̂·y dy , x̂ ∈ Sd−1 . (2.19)

The operators H and H∗ are compact. Observing that

‖Hψ‖L∞(D) ≤ ω
1/2
d−1‖ψ‖L2(Sd−1) , (2.20)

where ωd−1 denotes the area of the unit sphere, we define

D(F ) :=
{
ψ ∈ L2(Sd−1)

∣∣ ‖ψ‖L2(Sd−1) ≤ δ/ω
1/2
d−1

}
,

where δ > 0 is as in Proposition 2.6. Then any f = Hg with g ∈ D(F ) satisfies f ∈ Uδ, and the
unique small radiating solution v = V (Hg) of (2.7) has the far field pattern v∞ = (V (Hg))∞.
Introducing the nonlinear far field operator F : D(F ) ⊆ L2(Sd−1) → L2(Sd−1) by

F (g) := (V (Hg))∞ , (2.21)

we obtain from (2.17) that

F (g) = H∗
(
k2q( · , |v +Hg|)(v +Hg)

)
.

These facts are summarized as follows.

Proposition 2.9. Suppose that Assumption 2.1 holds, and let g ∈ D(F ). Then the far field
pattern of the unique small radiating solution V (f) of (2.7) with f = Hg satisfies

F (g) = H∗T (Hg) , (2.22)

where T : D(T ) ⊆ L2(D) → L2(D) is defined by

T (f)(x) = k2q
(
x, |V (f)(x) + f(x)|

)
(V (f)(x) + f(x)) , x ∈ D . (2.23)

Here D(T ) := H(D(F )).

Remark 2.10. In the linear case when q = q0, the far field operator F0 : L2(Sd−1) → L2(Sd−1)
is given by

F0g := (V0Hg)
∞ .
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The factorization (2.22) reads

F0g = H∗T0Hg , g ∈ L2(Sd−1) ,

where T0 : L
2(D) → L2(D) is defined by

T0f := k2q0(f + V0f) . (2.24)

Then (2.2) implies that, for any f ∈ D(T ),

‖T (f)− T0f‖L2(D) = k2
∥∥q( · , |V (f) + f |)(V (f) + f)− q0(V0f + f)

∥∥
L2(D)

≤ k2
∥∥q( · , |V (f) + f |)(V (f) + f)− q0(V (f) + f)

∥∥
L2(D)

+ k2‖q0(V (f)− V0f)‖L2(D)

≤ k2Cq

∥∥|V (f) + f |1+α
∥∥
L2(D)

+ k2‖q0‖L∞(D)‖V (f)− V0f‖L2(D) .

Applying (2.14d) and (2.14a)–(2.14b) gives

‖T (f)− T0f‖L2(D) ≤ k2Cq‖V (f) + f‖αL∞(D)‖V (f) + f‖L2(D) + C‖f‖αL∞(D)‖f‖L2(D)

≤ C‖f‖αL∞(D)‖f‖L2(D) .
(2.25)

Similarly, using (2.14c) and (2.14a), we find that, for any f ∈ D(T ),

‖T (f)− T0f‖L∞(D) ≤ C‖f‖α+1
L∞(D) . (2.26)

♦

3 Uniqueness for the inverse scattering problem

In this section we restrict the discussion to generalized Kerr-type nonlinearities q as in (2.3). We
show that the knowledge of the nonlinear far field operator uniquely determines the associated
nonlinear refractive index. A related result has recently been established for a different class of
real analytic nonlinearities in [11].

Theorem 3.1. For j = 1, 2 let

q(j)(x, |z|) = q
(j)
0 (x) +

L∑

l=1

q
(j)
l (x)|z|αl x ∈ R

d , z ∈ C , j = 1, 2 , (3.1)

be a generalized Kerr-type nonlinearity, where q
(j)
0 , . . . , q

(j)
L ∈ L∞(Rd) with support in D, the

lowest order term satisfies ess inf q
(j)
0 > −1, and the exponents fulfill 0 < α1 < · · · < αL < ∞.

If the associated nonlinear far field operators satisfy F (1) = F (2), then q(1) = q(2).

Proof. By linearization around zero we first show that q
(1)
0 = q

(2)
0 in (3.1). We consider factor-

izations of the far field operators F (j) = H∗T (j)(H), j = 1, 2, as in Proposition 2.9, where H
and H∗ are the Herglotz operator and its adjoint from (2.18) and (2.19), and the operator T (j) is

as in (2.23) with q replaced by q(j). Furthermore, we denote by T
(j)
0 the bounded linear operator

from (2.24) with q0 replaced by q
(j)
0 . Then (2.26) shows that T (j)(f) = T

(j)
0 f + O(‖f‖α1+1

L∞(D))

as ‖f‖L∞(D) → 0. Recalling (2.20), we obtain from F (1) = F (2) that

F
(1)
0 = H∗T

(1)
0 H = H∗T

(2)
0 H = F

(2)
0 ,
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where F
(j)
0 is the linear far field operator corresponding to the contrast function q

(j)
0 , j = 1, 2.

The uniqueness of solutions to the inverse medium scattering problem for the linear Helmholtz

equation (see, e.g., [25, Thm. 7.28] or [4, 32, 33, 34]) implies that q
(1)
0 = q

(2)
0 =: q0. In particular

we conclude that T
(1)
0 = T

(2)
0 =: T0.

To prove the theorem by induction, we now assume q
(1)
l = q

(2)
l =: ql for l = 0, . . . ,m − 1,

where m ∈ {1, . . . , L}. The nonlinear Lippmann-Schwinger equation (2.8) gives, for f ∈ Uδ and
j = 1, 2,

V (j)(f) = k2Φk ∗ q(j)
(
· , |V (j)(f) + f |

)
(V (j)(f) + f) in D .

Here, V (j)(f) stands for the solution map V (f) from Proposition 2.6 with q replaced by q(j).
Setting α0 := 0 and using (3.1) we obtain that

V (1)(f)− V (2)(f)

= k2Φk ∗
(
q(1)( · , |V (1)(f) + f |)(V (1)(f) + f)− q(2)( · , |V (2)(f) + f |)(V (2)(f) + f)

)

= k2Φk ∗
(m−1∑

l=0

ql

(
|V (1)(f) + f |αl(V (1)(f) + f)− |V (2)(f) + f |αl(V (2)(f) + f)

))

+ k2Φk ∗
( L∑

l=m

(
q
(1)
l |V (1)(f) + f |αl(V (1)(f) + f)− q

(2)
l |V (2)(f) + f |αl(V (2)(f) + f)

))

(3.2)

in D. Applying Lemma A.1 and (2.14a) we find that, for l = 1, . . . ,m− 1,

∣∣|V (1)(f) + f |αl(V (1)(f) + f)−|V (2)(f) + f |αl(V (2)(f) + f)
∣∣

≤ C
(
|f |+ |V (1)(f)|+ |V (2)(f)|

)αl
∣∣V (1)(f)− V (2)(f)

∣∣

≤ C‖f‖αl

L∞(D)

∣∣V (1)(f)− V (2)(f)
∣∣ .

(3.3)

Accordingly,

m−1∑

l=0

ql

(
|V (1)(f) + f |αl(V (1)(f) + f)− |V (2)(f) + f |αl(V (2)(f) + f)

)

= q̃f,m−1

(
V (1)(f)− V (2)(f)

)
,

where q̃f,m−1 ∈ L∞(Rd) is given by

q̃f,m−1 := q0+

m−1∑

l=1

ql
|V (1)(f) + f |αl(V (1)(f) + f)− |V (2)(f) + f |αl(V (2)(f) + f)

V (1)(f)− V (2)(f)
1V (1)(f)6=V (2)(f) .

We note that q̃f,m−1 is supported in D and (3.3) implies that

‖q̃f,m−1 − q0‖L∞(D) ≤ C‖f‖α1

L∞(D) . (3.4)

Hence, for f ∈ Uδ such that ‖f‖L∞(D) is sufficiently small, we conclude from (2.11b) that the
operator I − k2Φk ∗ (q̃f,m−1 · ) : L∞(D) → L∞(D) is invertible with a uniform bound for the
operator norm of the inverse (see, e.g., [27, Thm. 10.1]). Denoting

R(f) :=

L∑

l=m

(
q
(1)
l |V (1)(f) + f |αl(V (1)(f) + f)− q

(2)
l |V (2)(f) + f |αl(V (2)(f) + f)

)
(3.5)
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we find from (3.2), Young’s inequality, and (2.14a) that

∥∥V (1)(f)− V (2)(f)
∥∥
L∞(D)

=
∥∥(I − k2Φk ∗ (q̃f,m−1 · )

)−1
(k2Φk ∗R(f))

∥∥
L∞(D)

≤ C‖k2Φk ∗R(f)‖L∞(D)

≤ C‖Φk‖L1(B2R(0))‖R(f)‖L∞(D)

≤ C
(
‖V (1)(f) + f‖αm+1

L∞(D) + ‖V (2)(f) + f‖αm+1
L∞(D)

)

≤ C‖f‖αm+1
L∞(D) .

(3.6)

Here, R > 0 was chosen such that D ⊆ BR(0).
Next we want to use (3.6) in order to deduce q1m = q2m. Set wf := V (1)(f) − V (2)(f). By

assumption we know that the far field of wf vanishes whenever f is a sufficiently small Herglotz
wave, i.e., when f ∈ Uδ ∩ R(H) with δ > 0 as in Proposition 2.6. Moreover, we find as in the
proof of Lemma 2.4 that (3.2) implies

∆wf + k2(1 + q̃f,m−1)wf = −k2R(f) in R
d ,

in particular ∆wf + k2wf = 0 in R
d \ BR(0) and wf is radiating. So Rellich’s lemma (see,

e.g., [9, Lmm. 2.12]) gives wf = 0 in R
d \ BR(0). Now let v ∈ H2(BR(0)) be any solution of

∆v + k2(1 + q0)v = 0 in BR(0). Then, for all f ∈ Uδ ∩R(H),

0 =

∫

∂BR(0)

(
wf

∂v

∂ν
− v

∂wf

∂ν

)
ds

=

∫

BR(0)

(
wf∆v − v∆wf

)
dx

=

∫

BR(0)

(
wf

(
−k2(1 + q0)v

)
− v

(
−k2(1 + q̃f,m−1)wf − k2R(f)

))
dx

=

∫

BR(0)
v
(
k2R(f) + k2(q̃f,m−1 − q0)wf

)
dx

=

∫

D
v
(
k2R(f) + k2(q̃f,m−1 − q0)wf

)
dx .

In the last equality we used that R(f) and q̃f,m−1− q0 are supported in D by our assumption on
the nonlinear contrast function. In (3.6) we found that ‖wf‖L∞(D) ≤ C‖f‖αm+1

L∞(D), and combining

this with (3.4) gives

0 =

∫

D
v R(f) dx+O

(
‖f‖αm+α1+1

L∞(D)

)
as ‖f‖L∞(D) → 0 . (3.7)

Next we identify the leading order term in R(f). Using Lemma A.1 and (2.14a), (2.14c) we
obtain that, for j = 1, 2,

∣∣|V (j)(f) + f |αm(V (j)(f) + f)− |V0f + f |αm(V0f + f)
∣∣

≤ C
(
|f |+ |V (j)(f)|+ |V0f |

)αm
∣∣V (j)(f)− V

(j)
0 f

∣∣

≤ C‖f‖αm+α1+1
L∞(D) .

(3.8)

Similarly, we find that, for j = 1, 2 and l = m+ 1, . . . , L,

∣∣|V (j)(f) + f |αl(V (j)(f) + f)
∣∣ ≤ C‖f‖αm+1+1

L∞(D) . (3.9)
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Substituting (3.5) into (3.7), and applying (3.8)–(3.9) gives

0 =

∫

D
v
(
q(1)m − q(2)m

)
|V0f + f |αm(V0f + f) dx+O

(
‖f‖αm+α1+1

L∞(D)

)
+O

(
‖f‖αm+1+1

L∞(D)

)
.

as ‖f‖L∞(D) → 0. Hence, for all f ∈ Uδ ∩R(H),

0 =

∫

D
v
(
q(1)m − q(2)m

)
|V0f + f |αm(V0f + f) dx .

Setting f = f1 + tf2 for f1, f2 ∈ Uδ ∩R(H) and differentiating with respect to t gives

0 =

∫

D
v
(
q(1)m − q(2)m

)
Z(f1, f2) dx ,

where

Z(f1, f2) :=
(
1 +

αm

2

)
|V0f1 + f1|αm(V0f2 + f2)

+
αm

2
|V0f1 + f1|αm−2(V0f1 + f1)

2 (V0f2 + f2) .

Since if1 ∈ Uδ ∩R(H), too, we even get

0 =

∫

D
v
(
q(1)m − q(2)m

)(
Z(f1, f2) + Z(if1, f2)

)
dx

= (2 + αm)

∫

D
v
(
q(1)m − q(2)m

)
|V0f1 + f1|αm(V0f2 + f2) dx .

(3.10)

Next we recall that the span of all total fields f+V0f that correspond to radiating solutions V0f
of the linear scattering problem (2.9) with Herglotz incident fields f = Hg, g ∈ L2(Sd−1), is
dense in the space of solutions to the linear Helmholtz equation in

∆ṽ + k2(1 + q0)ṽ = 0 in BR(0)

with respect to the L2(BR(0))-norm where D ⊂ BR(0) (see [25, Thm. 7.24], where this result
has been shown for plane wave incident fields instead of Herglotz incident fields). Since f1, f2 ∈
Uδ ∩ R(H) have been arbitrary in (3.10), we get for all solutions v, ṽ ∈ H2(BR(0)) of ∆v +
k2(1 + q0)v = 0 in BR(0) that

0 =

∫

D
vṽ

(
q(1)m − q(2)m

)
|V0f1 + f1|αm dx .

This gives (q
(1)
m − q

(2)
m )|V0f1 + f1|αm = 0 for any f1 ∈ Uδ ∩ R(H) (see, e.g., [25, Thm. 7.27] or

[4, 32, 33, 34]). From this we infer (q
(1)
m − q

(2)
m )(V0f1 + f1) = 0 for any f1 ∈ Uδ ∩R(H) and thus

∫

D
(q(1)m − q(2)m )(V0f1 + f1)(V0f2 + f2) dx = 0

for any given f1, f2 ∈ Uδ ∩R(H). The density result used above shows q
(1)
m − q

(2)
m = 0 a.e. in D,

and thus q
(1)
m = q

(2)
m . So the claim is proven by induction.
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4 The nonlinear factorization method

In this section we discuss a generalization of the factorization method to recover the shape of a
nonlinear scattering object from observations of the corresponding nonlinear far field operator.
We consider general nonlinear contrast functions q ∈ L∞(Rd × R) as in Section 2, but here we
make the following slightly stronger assumptions.

Assumption 4.1. Let D be open and Lipschitz bounded such that R
d \D is connected. Then

the nonlinear contrast function q ∈ L∞(Rd × R) shall satisfy Assumption 2.1, and

(i) supp(q) ⊆ D × R,

(ii) supp(q0) = D with q0 ≥ q0,min > 0 a.e. in D for some q0,min > 0,

(iii) the wave number k2 is such that the homogeneous linear transmission eigenvalue problem
to determine v,w ∈ L2(D), (v,w) 6= (0, 0) with

∆v + k2v = 0 in D , v = w on ∂D ,

∆w + k2(1 + q0)w = 0 in D ,
∂v

∂ν
=

∂w

∂ν
on ∂D ,

(see, e.g., [25, Def. 7.21]) has no nontrivial solution.

A factorization method for nonlinear weakly scattering objects and for scattering objects
with small nonlinearity of linear growth has already been discussed in [29]. In constrast to this
work, we consider a larger class of nonlinear refractive indices without any smallness assumption
on the a priori unknown nonlinearity, but we assume that the incident fields that are used for
the reconstruction are small relative to the size of the nonlinearity.

Let δ > 0 be as in Proposition 2.6. We consider the nonlinear far field operator F from (2.21)
with the factorization F = H∗T (H) from Proposition 2.9. The next theorem is a nonlinear
version of the abstract inf-criterion of the factorization method to describe the range of H∗ in
terms of F . This result has been established in [29, Thm. 2.1]. The proof is essentially the same
as in the linear case (see, e.g., [25, Lmm. 7.33]).

Theorem 4.2. Let X and Y be Hilbert spaces, ρ > 0, and let

F : D(F) := {g ∈ X | ‖g‖X ≤ ρ} ⊆ X → X

be a nonlinear operator. We assume that F = H∗T (H), where H : Y → X is a compact linear
operator and T : D(T ) ⊆ Y → Y with D(T ) = H(D(F)) satisfies

‖T (Hg)‖Y ≤ C∗‖Hg‖Y

and
|〈T (Hg),Hg〉Y | ≥ c∗‖Hg‖2Y

for all g ∈ D(F) with ‖g‖X ≤ ρ and some c∗, C∗ > 0. Then, for any φ ∈ X, φ 6= 0, and
any 0 < ρ̃ ≤ ρ,

φ ∈ R(H∗) ⇐⇒ inf

{∣∣∣〈F(g), g〉X
〈g, φ〉2X

∣∣∣
∣∣∣∣ g ∈ D(F) ⊆ X , ‖g‖X = ρ̃ , 〈g, φ〉X 6= 0

}
> 0 . (4.1)
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Proof. Let 0 6= φ = H∗ψ ∈ R(H∗) for some ψ ∈ Y . Then ψ 6= 0, and for any g ∈ D(F) ⊆ X
with ‖g‖X = ρ̃ ≤ ρ and 〈g, φ〉X 6= 0 we find that

|〈F(g), g〉X | = |〈H∗T (Hg), g〉X | = |〈T (Hg),Hg〉Y | ≥ c∗‖Hg‖2Y
=

c∗
‖ψ‖2Y

‖Hg‖2Y ‖ψ‖2Y ≥ c∗
‖ψ‖2Y

|〈Hg, ψ〉Y |2

=
c∗

‖ψ‖2Y
|〈g,H∗ψ〉X |2 =

c∗
‖ψ‖2Y

|〈g, φ〉X |2

Thus we have found a positive lower bound for the infimum in (4.1).
Now let 0 6= φ 6∈ R(H∗). We first show that the subspace {Hg | g ∈ X , 〈g, φ〉X = 0} is dense

in R(H). Let ψ ∈ R(H) such that 0 = 〈Hg, ψ〉Y = 〈g,H∗ψ〉X for all g ∈ X with 〈g, φ〉X = 0.
That means H∗ψ ∈ span{φ}, and because φ 6∈ R(H∗), we conclude that H∗ψ = 0. Therefore
ψ ∈ R(H) ∩ N (H∗), i.e., ψ = 0, and we have shown that {Hg | g ∈ X , 〈g, φ〉X = 0} is dense
in R(H). Since Hφ/‖φ‖2Y ∈ R(H), we can find a sequence (g̃n)n ⊆ {g ∈ X | 〈g, φ〉X = 0} such
that Hg̃n → −Hφ/‖φ‖2X . Setting ĝn := g̃n + φ/‖φ‖2X this yields 〈ĝn, φ〉X = 1 and Hĝn → 0
as n→ ∞. Thus, we define gn := ρ̃ ĝn/‖ĝn‖X ∈ D(F) to obtain

∣∣∣〈F(gn), gn〉X
〈gn, φ〉2X

∣∣∣ =
|〈T (Hgn),Hgn〉Y |

|〈gn, φ〉X |2 ≤ C∗‖Hgn‖2Y
|〈gn, φ〉X |2 =

C∗‖Hĝn‖2Y
|〈ĝn, φ〉X |2 → 0 as n→ ∞ ,

i.e., the infimum in (4.1) is zero.

Next we show that the operator T from Proposition 2.9 satisfies the assumptions in Theo-
rem 4.2.

Proposition 4.3. Suppose that Assumption 4.1 holds, and let δ > 0 be as in Proposition 2.6.
Then there are constants c∗, C∗, C > 0 such that

‖T (f)‖L2(D) ≤ C∗

(
1 + ‖f‖αL∞(D)

)
‖f‖L2(D) , (4.2a)

|〈T (f), f〉L2(D)| ≥ c∗
(
1− C‖f‖αL∞(D)

)
‖f‖2L2(D) (4.2b)

for all f ∈ Uδ.

Proof. Let f ∈ Uδ. We first note that (2.24) and (2.13a) show that

‖T0f‖L2(D) ≤ k2‖q0‖L∞(D)(1 + CV0,2)‖f‖L2(D) .

Combining this with (2.25) gives

‖T (f)‖L2(D) ≤ ‖T0f‖L2(D) + ‖T (f)− T0f‖L2(D)

≤ k2‖q0‖L∞(D)(1 + CV0,2)‖f‖L2(D) + C‖f‖αL∞(D)‖f‖L2(D)

≤ C∗

(
1 + ‖f‖αL∞(D)

)
‖f‖L2(D)

for some C∗ > 0.
Next let S0 : L

2(D) → L2(D) be defined by

S0ψ :=
1

k2q0
ψ − Φk ∗ ψ .

It has been shown in [25, Thm. 7.32] that S0 is an isomorphism with T0 = S−1
0 , which can be

seen using (2.24) and (2.12) as follows. Let h ∈ L2(D), then

S0T0h =
1

k2q0
T0h− Φk ∗ (T0h) = (I + V0)h− Φk ∗

(
k2q0(h+ V0h)

)

= h+
(
I − k2Φk ∗ (q0 · )

)
(V0h)− k2Φk ∗ (q0h) = h .
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If k2 is not an interior transmission eigenvalue then it follows from [25, Lmm. 7.35] and the
arguments used in the proof of [25, Thm. 7.30] that there exists a constant c∗ > 0 such that

|〈T0f, f〉L2(D)| = |〈S−1
0 f, f〉L2(D)| ≥ c∗‖f‖2L2(D) for all f ∈ R(H) .

Accordingly, combining this with (2.25) gives

∣∣〈T (f), f〉L2(D)

∣∣ ≥
∣∣〈T0f, f〉L2(D)

∣∣−
∣∣〈T (f)− T0f, f〉L2(D)

∣∣

≥
(
c∗ − C‖f‖αL∞(D)

)
‖f‖2L2(D) ≥ c∗

(
1− C‖f‖αL∞(D)

)
‖f‖2L2(D) .

Combining (4.2) with (2.18) and applying Hölder’s inequality gives the following corollary.

Corollary 4.4. Suppose that Assumption 4.1 holds. Then there are constants c∗, C∗, C > 0 such
that

‖T (Hg)‖L2(D) ≤ C∗

(
1 + Cω

α/2
d−1‖g‖αL2(Sd−1)

)
‖Hg‖L2(D) , (4.3a)

|〈T (Hg),Hg〉L2(D)| ≥ c∗
(
1− Cω

α/2
d−1‖g‖αL2(Sd−1))

)
‖Hg‖2L2(D) (4.3b)

for all g ∈ D(F ).

The following result can be shown analogously to [26, Thm. 4.6].

Proposition 4.5. For any z ∈ R
d we define the test function φz ∈ L2(Sd−1) by

φz(x̂) := e−ikz·x̂ , x̂ ∈ Sd−1 .

Then z ∈ D if and only if φz ∈ R(H∗).

Combining the results above, we obtain the main result of this section.

Theorem 4.6. Suppose that Assumption 4.1 holds, and let δ > 0 be as in Proposition 2.6.
Let C > 0 be the constant in (4.3b), and let

ρ := min

{
δ

ω
1/2
d−1

,
1

ω
1/2
d−1

( 1

2C

)1/α
}

Then, for any 0 < ρ̃ ≤ ρ and z ∈ R
d,

z ∈ D ⇐⇒ inf

{∣∣∣
〈F (g), g〉L2(Sd−1)

〈g, φz〉2L2(Sd−1)

∣∣∣
∣∣∣∣ g ∈ L2(Sd−1) , ‖g‖L2(Sd−1) = ρ̃ , 〈g, φz〉L2(Sd−1) 6= 0

}
> 0 .

(4.4)

Proof. By Proposition 4.5 we know that z ∈ D is equivalent to φz ∈ R(H∗), which, by Theo-
rem 4.2, is in turn equivalent to the condition on the right hand side of (4.4) provided that the
nonlinear far field operator F admits the factorization F = H∗T (H) for T as in Theorem 4.2.
This has been shown in Proposition 4.6 and Corollary 4.4. Note that our choice of ρ guarantees
the existence of the far field operator (see Proposition 2.6) as well as the coercivity estimate in
Proposition 4.6 (see Corollary 4.4).

We will comment on a numerical implementation of this criterion in Section 6 below. For
numerical implementations in the linear case we refer, e.g., to [23, 26].
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5 The nonlinear monotonicity method

In this section we consider general nonlinear contrast functions q ∈ L∞(Rd ×R) as in Section 4,
but we waive the assumption on k2 not being a transmission eigenvalue.

Assumption 5.1. Let D be open and Lipschitz bounded such that R
d \ D is connected. Then

the nonlinear contrast function q ∈ L∞(Rd × R) shall satisfy Assumption 2.1, and

(i) supp(q) ⊆ D × R,

(ii) supp(q0) = D with 0 < q0,min ≤ q0 ≤ q0,max <∞ a.e. in D for some q0,min, q0,max > 0.

Given any open and bounded subset B ⊆ R
d, we define the associated probing operator

PB : L2(Sd−1) → L2(Sd−1) by
PBg := k2H∗

BHBg ,

where HB : L2(Sd−1) → L2(B) and H∗
B : L2(B) → L2(Sd−1) are given as in (2.18) and (2.19)

with D replaced by B. Accordingly, we find that for all g ∈ L2(Sd−1),

〈PBg, g〉L2(Sd−1) = k2
∫

B
|Hg|2 dx = k2

∫

B

∣∣∣∣
∫

Sd−1

eikθ·xg(θ) ds(θ)

∣∣∣∣
2

dx . (5.1)

The operator PB is bounded, compact, and self-adjoint.

Theorem 5.2. Suppose that Assumption 5.1 holds, and let δ > 0 be as in Proposition 2.6.
Let B ⊆ R

d be open and bounded, and let

ρ := min

{
δ

ω
1/2
d−1

,
1

ω
1/2
d−1

( k2q0,min

2C

) 1
α

}
,

where C > 0 is the constant from (2.25) and δ > 0 is as in Proposition 2.6. For any 0 < ρ̃ ≤ ρ
the following characterization of D holds.

(a) If B ⊆ D, then there exists a finite dimensional subspace V ⊆ L2(Sd−1) such that, for
all β ≤ q0,min

2 ,

β〈PBg, g〉L2(Sd−1) ≤ Re
(
〈F (g), g〉L2(Sd−1)

)
for all g ∈ V⊥ with ‖g‖L2(Sd−1) = ρ̃ .

(b) If B 6⊆ D, then there is no finite dimensional subspace V ⊆ L2(Sd−1) and no β > 0 such
that

β〈PBg, g〉L2(Sd−1) ≤ Re
(
〈F (g), g〉L2(Sd−1)

)
for all g ∈ V⊥ with ‖g‖L2(Sd−1) = ρ̃ .

Proof. We consider the factorization of the far field operator F = H∗T (H) as in (2.22). Accord-
ingly, the linear far field operator corresponding to the contrast function q0 satisfies F0 = H∗T0H,
and we obtain from (2.25) that, for all g ∈ D(F ),

Re

(∫

Sd−1

g F (g) ds

)
= Re

(∫

Sd−1

g F0g ds

)
+Re

(∫

Sd−1

g (F − F0)(g) ds

)

≥ Re

(∫

Sd−1

g F0g ds

)
− C‖Hg‖αL∞(D)‖Hg‖2L2(D) .
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Applying [12, Thm. 3.2] with q1 = 0 and q2 = q we find that there exists a finite dimensional
subspace V ⊆ L2(Sd−1) such that, for all g ∈ D(F ) ∩ V⊥,

Re

(∫

Sd−1

g F (g) ds

)
≥ k2

∫

D
q0|Hg|2 dx− C‖Hg‖αL∞(D)

∫

D
|Hg|2 dx

≥ k2
(
q0,min −

Cω
α/2
d−1

k2
‖g‖αL2(Sd−1)

)∫

D
|Hg|2 dx .

Assuming that ‖g‖L2(Sd−1) = ρ̃ we obtain that

Re

(∫

Sd−1

g F (g) ds

)
≥ k2

q0,min

2

∫

D
|Hg|2 dx .

Moreover, if B ⊆ D and β ≤ q0,min

2 , then

β

∫

Sd−1

gPBg ds = k2β

∫

B
|Hg|2 dx ≤ k2

q0,min

2

∫

D
|Hg|2 dx ,

which shows part (a).
We prove part (b) by contradiction. Let B 6⊆ D, β > 0, and assume that

β〈PBg, g〉L2(Sd−1) ≤ Re
(
〈F (g), g〉L2(Sd−1)

)
for all g ∈ V⊥

1 with ‖g‖L2(Sd−1) = ρ̃ (5.2)

for some 0 < ρ̃ ≤ ρ and a finite dimensional subspace V1 ⊆ L2(Sd−1). Using (2.25) we find that

Re

(∫

Sd−1

g F (g) ds

)
= Re

(∫

Sd−1

g F0g ds

)
+Re

(∫

Sd−1

g (F − F0)(g) ds

)

≤ Re

(∫

Sd−1

g F0g ds

)
+ C‖Hg‖αL∞(D)‖Hg‖2L2(D) .

Applying the monotonicity relation (3.3) in [12, Cor. 3.4] with q1 = 0 and q2 = q, shows that
there exists a finite dimensional subspace V2 ⊆ L2(Sd−1) such that

Re

(∫

Sd−1

g F0g ds

)
≤ k2

∫

D
q0|V0Hg|2 dx for all g ∈ V⊥

2 . (5.3)

Combining (5.2)–(5.3), we obtain for Ṽ := V⊥
1 + V⊥

2 that, for all g ∈ Ṽ ⊥ with ‖g‖L2(Sd−1) = ρ̃,

k2β‖Hg‖2L2(B) ≤ k2
∫

D
q0|V0Hg|2 dx+ C‖Hg‖αL∞(D)‖Hg‖2L2(D)

≤ k2q0,max

∫

D
|V0Hg|2 dx+ C‖Hg‖αL∞(D)‖Hg‖2L2(D) .

Applying [12, Thm. 4.5] with q1 = 0 and q2 = q, this implies that there exists a constant C̃ > 0
such that, for all g ∈ Ṽ⊥ with ‖g‖L2(Sd−1) = ρ̃,

k2β‖Hg‖2L2(B) ≤
(
C̃k2q0,max + C‖Hg‖αL∞(D)

)
‖Hg‖2L2(D)

≤
(
C̃k2q0,max + Cω

α/2
d−1‖g‖αL2(D)

)
‖Hg‖2L2(D) .

(5.4)

In the following we denote by PV : L2(Sd−1) → L2(Sd−1) the orthogonal projection onto V.
Using [12, Lmm. 4.4] we obtain as in the proof of [12, Thm. 4.1] a sequence (g̃m)m∈N ⊆ L2(Sd−1)
such that ‖g̃m‖L2(Sd−1) = ρ/2, and

‖Hg̃m‖L2(B) ≥ m
(
‖Hg̃m‖L2(D) + ‖PV g̃m‖L2(Sd−1)

)
, m ∈ N .
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Therefore, gm := g̃m−PV g̃m ∈ V⊥ and by rescaling g̃m we can assume without loss of generality
that ‖gm‖L2(Sd−1) = ρ̃ ≤ ρ. Accordingly, if ‖H‖ ≤ 1, then

‖Hgm‖L2(B) ≥ ‖Hg̃m‖L2(B) − ‖HB‖‖PV g̃m‖L2(Sd−1)

> m‖Hg̃m‖L2(D) +m‖PV g̃m‖L2(Sd−1) − ‖HB‖‖PV g̃m‖L2(Sd−1)

≥ m‖Hgm‖L2(D) +
(
m(1− ‖H‖) − ‖HB‖

)
‖PV g̃m‖L2(Sd−1)

≥ m‖Hgm‖L2(D)

for all m ∈ N such that m ≥ ‖HB‖/(1 − ‖H‖). On the other hand, if ‖H‖ > 1, then

‖Hgm‖L2(B) ≥ ‖Hg̃m‖L2(B) − ‖HB‖‖PV g̃m‖L2(Sd−1)

> m‖Hg̃m‖L2(D) +m‖PV g̃m‖L2(Sd−1) − ‖HB‖‖PV g̃m‖L2(Sd−1)

≥ m

2‖H‖‖Hg̃m‖L2(D) +m‖PV g̃m‖L2(Sd−1) − ‖HB‖‖PV g̃m‖L2(Sd−1)

≥ m

2‖H‖‖Hgm‖L2(D) +
(m
2

− ‖HB‖
)
‖PV g̃m‖L2(Sd−1)

≥ m

2‖H‖‖Hgm‖L2(D) .

for all m ∈ N with m ≥ 2‖HB‖. This contradicts (5.4), and we have shown part (b).

Remark 5.3 (Numerical implementation of Theorem 5.2). Considering for any z ∈ R
d a probing

domain B = Bε(z) that is a ball of radius ε > 0 around z, the identity (5.1) gives

〈PBg, g〉L2(Sd−1) = k2
∫

Bε(z)

∣∣∣∣
∫

Sd−1

eikθ·zeikθ·(x−z)g(θ) ds(θ)

∣∣∣∣
2

dx

= k2|Bε(z)|
∣∣∣
∫

Sd−1

eikθ·zg(θ) ds(θ)
∣∣∣
2
+O

(
k3ε|Bε(z)|‖g‖2L2(Sd−1)

)

= k2|Bε(z)| |〈g, φz〉L2(Sd−1)|2 +O
(
k3ε|Bε(z)|‖g‖2L2(Sd−1)

)
,

uniformly with respect to z ∈ R
d. Here we used that |eit − 1| ≤ |t| for t ∈ R.

If z ∈ D, then part (a) of Theorem 5.2 implies that there is a finite dimensional subspace
V ⊆ L2(Sd−1) such that for all β ≤ q0,min

2 and for all g ∈ V⊥ with ‖g‖L2(Sd−1) = ρ̃,

Re
(
〈F (g), g〉L2(Sd−1)

)

β〈PBg, g〉L2(Sd−1)

=
Re

(
〈F (g), g〉L2(Sd−1)

)

βk2|Bε(z)||〈φz , g〉L2(Sd−1)|2 +O
(
k3ε|Bε(z)|‖g‖2L2(Sd−1)

) ≥ 1 , (5.5)

i.e.,
Re

(
〈F (g), g〉L2(Sd−1)

)

|〈φz , g〉L2(Sd−1)|2 +O
(
kε‖g‖2

L2(Sd−1)

) ≥ k2β|Bε| , (5.6)

as ε→ 0. This shows that for any fixed g ∈ V⊥ with ‖g‖L2(Sd−1) = ρ̃ and 〈g, φz〉L2(Sd−1) 6= 0 we
can choose ε > 0 sufficiently small such that

Re
(
〈F (g), g〉L2(Sd−1)

)

|〈φz , g〉L2(Sd−1)|2
≥ k2β|Bε|

2
.

Similarly, if z /∈ D, then part (b) of Theorem 5.2 says that there is no finite dimensional sub-
space W ⊆ L2(Sd−1) and no β > 0 such that (5.5)–(5.6) hold for all g ∈ W⊥ with ‖g‖L2(Sd−1) = ρ̃
as ε→ 0.

18



Assuming that φz /∈ V, this says that

z ∈ D ⇐⇒ inf

{
Re

(
〈F (g), g〉L2(Sd−1)

)

|〈φz , g〉L2(Sd−1)|2
∣∣∣∣ g ∈ V⊥ , ‖g‖L2(Sd−1) = ρ̃ , 〈g, φz〉L2(Sd−1) 6= 0

}
> 0 .

(5.7)
This is closely related to the inf-criterion from the nonlinear factorization method in (4.4).
For the monotonicity criterion we have to exclude the finite dimensional subspace V⊥, and we
assumed that φz /∈ V in the derivation of (5.7), while for the factorization method we had to
assume that k2 is such that the homogeneous linear transmission eigenvalue problem has no
nontrivial solution. ♦

In Section 6, we will use (5.7) to implement the nonlinear monotonicity based reconstruction
method. However, since the finite dimensional subspace V⊥ that has to be excluded is a priori
unknown, we will neglect this constraint. For a numerical implementation in the linear case we
refer to [12].

6 Numerical examples

In this section we comment on a numerical implementation of the shape characterizations in
Theorems 4.6 and 5.2. We consider the two-dimensional case only, i.e., d = 2.

Let D ⊆ R
2 be open and Lipschitz bounded such that D ⊆ BR(0) for some R > 0 sufficiently

large and R
2 \D is connected. We consider at third-order Kerr-type nonlinear material law that

is given by
q(x, |z|) := q0(x) + q1(x)|z|2 , x ∈ R

2 , z ∈ C , (6.1)

where q0, q1 ∈ L∞(R2) with support in D and ess inf q0 > −1. Accordingly, the scattering
problem (2.4) consists in determining u = ui + us such that

∆u+ k2
(
1 + q0 + q1|u|2

)
u = 0 in R

2 ,

and us satisfies the Sommerfeld radiation condition. This fits into the framework of the previous
sections.

We evaluate approximate solutions of this nonlinear scattering problem using a fixed point
iteration for the nonlinear Lippmann-Schwinger equation

us(x) = k2
∫

D
Φk(x− y)q(x, |ui(y) + us(y)|)(ui(y) + us(y)) dy , x ∈ [−R,R]2 ,

as in the proof of Proposition 2.6. Denoting the solution to the linear problem by

us0 :=
(
I − k2Φk ∗ (q0 · )

)−1(
k2Φk ∗ (q0ui)

)
on [−R,R]2 , (6.2)

the fixed point iteration determines the difference w := us − us0. Starting with the initial
guess w0 = 0 on [−R,R]2 we evaluate, for ℓ = 0, 1, 2, . . .,

wℓ+1 :=
(
I−k2Φk ∗ (q0 · )

)−1
(
k2Φk ∗

(
q1|wℓ+u

s
0+u

i|2(wℓ+u
s
0+u

i)
))

on [−R,R]2 . (6.3)

We have seen in the proof of Proposition 2.6 that this fixed point iteration converges whenever
the product ‖q1‖L∞(D)‖ui‖L∞(D) is sufficiently small (see Remark 2.7). In our numerical example
below we stop the fixed point iteration when

‖wℓ+1 − wℓ‖L∞([−R,R]2)

‖wℓ+1‖L∞([−R,R]2)
< ε (6.4)
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for some tolerance ε > 0, and we denote the final iterate by wε ≈ w. Accordingly, an approxi-
mation for the far field pattern u∞ can be evaluated using Proposition 2.8 by

u∞ε (x̂) = k2
∫

D

(
q0(y)+q1(y)|wε(y)+u

s
0(y)+u

i(y)|2
)(
wε(y)+u

s
0(y)+u

i(y)
)
e−ikx̂·y dy , x̂ ∈ S1 .

In (6.2) and in each step of the fixed point iteration (6.3) we have to solve a linear Lippmann-
Schwinger integral equation. For this purpose we use the simple cubature method from [41,
Sec. 2].

Next we turn to the inverse scattering problem. We consider an equidistant grid of points

△ = {zij = (ih, jh) | − J ≤ i, j ≤ J} ⊆ [−R,R]2 (6.5)

with step size h = R/J in the region of interest [−R,R]2. For each zij ∈ △ we approximate a
solution to the minimization problem

Minimize

∣∣∣∣
〈F (g), g〉L2(S1)

〈g, φzij 〉2L2(S1)

∣∣∣∣ subject to ‖g‖L2(S1) = ρ̃ and 〈g, φzij 〉L2(S1) 6= 0 (6.6)

for the nonlinear factorization method (see Theorem 4.6), and

Minimize
Re

(
〈F (g), g〉L2(S1)

)

|〈φzij , g〉L2(S1)|2
subject to ‖g‖L2(S1) = ρ̃ and 〈g, φzij 〉L2(S1) 6= 0 (6.7)

for the nonlinear monotonicity method (see Theorems 5.2 and Remark 5.3).
We use a composite trapezoid rule on an equidistant grid of points

{(cos φm, sinφm) | φm = 2πm/M , m = 0, . . . ,M − 1} ⊆ S1 , M ∈ N , (6.8)

to approximate the inner products in (6.6) and (6.7), and we discretize the densities g ∈ L2(S1)
using a truncated Fourier series expansion

g(cos(t), sin(t)) =

N/2−1∑

n=−N/2

ĝn
1√
2π
eint , t ∈ [0, 2π) , N/2 ∈ N . (6.9)

Accordingly, we minimize (6.6) and (6.7) with respect to the finite dimensional vector of Fourier
coefficients [ĝ−N/2, . . . , ĝN/2−1]

⊤ ∈ C
N . From our theoretical results in Theorems 4.6 and 5.2

(see also Remark 5.3), we expect the values of the minima in (6.6) and (6.7) to be close to zero
when z ∈ R

2 \D, and significantly larger than zero when z ∈ D.
In each grid point zij ∈ △ we approximate solutions of (6.6) and (6.7) using the interior

point method provided by Matlab’s fmincon. To find an appropriate initial guess g
(0)
ij at each

sampling point zij ∈ △, we first perform a preliminary global search and evaluate

g
(0)
ij := argminp,ℓ,z

∣∣∣∣
〈F (gp,ℓ,z), gp,ℓ,z〉L2(S1)

〈gp,ℓ,z, φzij 〉2L2(S1)

∣∣∣∣ (6.10)

for the optimization problem (6.6) and

g
(0)
ij := argminp,ℓ,z

Re
(
〈F (gp,ℓ,z), gp,ℓ,z〉L2(S1)

)

|〈φzij , gp,ℓ,z〉L2(S1)|2
(6.11)
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Figure 6.1: Nonlinear factorization method: Exact shape of the scattering object (left), initial

guess I
(0)
fac (center), final result Ifac (right).

Figure 6.2: Nonlinear monotonicity method: Exact shape of the scattering object (left), initial

guess I
(0)
mon (center), final result Imon (right).

for the optimization problem (6.7). Here, gp,ℓ,z ∈ L2(S1) is given by

gp,ℓ,z(cos(t), sin(t)) = ρ̃ ip
1√
2π
eiℓte−ik(z1 cos(t)+z2 sin(t)) ,

and the minimization in (6.10) and (6.11) is over p = 0, 1, ℓ = −N/2, . . . , N/2 − 1, and
z = (z1, z2) ∈ △. The densities gp,ℓ,z generate shifted Herglotz incident fields (Hgℓ)(x − z),
where gℓ has just one active Fourier mode.

For each zij ∈ △ we denote the values of the final result of the optimization by Ifac(zij)
for (6.6) and Imon(zij) for (6.7). Color coded plots of these indicator functions should give a
reconstruction of the support D of the scattering object.

Example 6.1. We consider a kite shaped scattering object D as shown in the left plot in
Figure 6.1 and in the left plot in Figure 6.2. The coefficients in the Kerr-type nonlinear material
law in (6.1) are determined to be

q0 =

{
1.16 in D ,

0 in R
2 \D ,

and q1 =

{
2.5 · 10−22 in D ,

0 in R
2 \D .

These coefficients correspond to fused silica (see table 4.1.2 on p. 212 in [3] with q0 = n20 − 1
and q1 = χ(3)). For the wave number in the exterior we choose k = 1, and the norm constraint
in (6.6) and (6.7) is set to ρ̃ = 3.0× 1010.
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A simple rescaling argument shows that we can equivalently work with

uresc := u/τ , q1,resc := τ2q1 , and ρ̃resc := ρ̃/τ for any τ > 0 .

In the numerical implementation we choose τ = 3.0 × 1010, i.e., q̃1resc = 0.261D and ρ̃resc = 1.
We use a sampling grid △ as in (6.5) with R = 5 and J = 20, i.e., the step size in each direction
is h = 0.25. Furthermore, we choose M = 256 quadrature nodes in (6.8), N = 16 Fourier modes
in (6.9), and for the tolerance in (6.4) we choose ε = 10−5. We compute the starting guess for
the optimization (6.6) and (6.7) for each sampling point zij ∈ △ as in (6.10) or (6.11). The
corresponding values of the cost functional in (6.6) and (6.7) for each grid point zij ∈ △ are

denoted by I
(0)
fac (zij) and I

(0)
fac (zij), respectively. Color coded plots of I

(0)
fac and I

(0)
mon are shown

in Figure 6.1 (center) and Figure 6.2 (center), respectively. These give already a reasonable
reconstruction of the location of the nonlinear scattering object. The dashed lines indicate the
exact geometry of the scatterer.

Then we approximate solutions to the optimization problems (6.6) and (6.7) for each sam-
pling point zij ∈ △ using Matlab’s fmincon algorithm. These approximations are denoted
by Ifac(zij) and Imon(zij), respectively. Color coded plots of the indicator functions Ifac and Imon

for the nonlinear factorization method and for the nonlinear monotonicity method are shown
in Figure 6.1 (right) and Figure 6.2 (right), respectively. Again the dashed lines indicate the
exact geometry of the scatterer. The results obtained by the two methods are of similar qual-
ity. A significant improvement of the reconstruction is observed when compared to the initial
guesses. The shape of the support of the scattering object is nicely recovered. ♦

Conclusions

We have discussed a direct and inverse scattering problem for a class of nonlinear Helmholtz
equations in unbounded free space. Assuming that the intensities of the incident waves are suffi-
ciently small relative to the size of the nonlinearity, we have established existence and uniqueness
of solutions to the direct and inverse scattering problem. Our analysis relies on linearization
techniques and estimates for the linearization error. We have also considered extensions of
two shape reconstruction techniques for the inverse scattering problem, and we have provided
numerical examples.
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A Appendix: A useful estimate

In Lemma A.1 below we show a simple estimate that is used in the proof of Theorem 3.1, but
that we have not been able to find in the literature.

Lemma A.1. Let a, b ∈ C and α > 0. Then,
∣∣|a|αa− |b|αb

∣∣ ≤ 2(|a| + |b|)α|a− b| .

Proof. Without loss of generality we can assume that |a| ≥ |b| > 0. Then t := b/a ∈ C

satisfies 0 < |t| ≤ 1, and we are left to show that
∣∣1− |t|αt

∣∣ ≤ 2(1 + |t|)α|1− t| . (A.1)
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If
∣∣1 − |t|αt

∣∣ ≤ |1 − t| or |t| = 1, then (A.1) is clearly satisfied. Hence, we assume from
now on without loss of generality that

∣∣1 − |t|αt
∣∣ > |1 − t| and 0 < |t| < 1. This implies

that 0 < Re(t) ≤ |t|, and accordingly

∣∣1− |t|αt
∣∣2

|1− t|2 =
1− 2|t|α Re(t) + |t|2α+2

1− 2Re(t) + |t|2 ≤ 1− 2|t|α+1 + |t|2α+2

1− 2|t|+ |t|2 =

(
1− |t|α+1

)2

(1− |t|)2 .

Therefore, it suffices to show that

1− |t|1+α

1− |t| ≤ 2(1 + |t|)α .

Let n := ⌊α⌋ and β := α− n. Then,

(1 + |t|)n =

n∑

ℓ=0

(
n

ℓ

)
|t|ℓ ≥

n∑

ℓ=0

|t|ℓ =
1− |t|n+1

1− |t| ,

and 2(1 + |t|)β ≥ 1 + |t|β. Accordingly,

2(1 + |t|)α =
1 + |t|β − |t|n+1 − |t|n+β+1

1− |t| ≥ 1− |t|α+1

1− |t| .
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