
Ginkgo - A Math Library designed for Platform Portability

Terry Cojean?, Yu-Hsiang Mike Tsai?, and Hartwig Anzt?†

?Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
†Innovative Computing Lab, University of Tennessee, USA

Abstract

In an era of increasing computer system diversity, the portability of software from one system to another plays a central role.
Software portability is important for the software developers as many software projects have a lifetime longer than a specific
system, e.g., a supercomputer, and it is important for the domain scientists that realize their scientific application in a software
framework and want to be able to run on one or another system. On a high level, there exist two approaches for realizing platform
portability: 1) implementing software using a portability layer leveraging any technique which always generates specific kernels
from another language or through an interface for running on different architectures; and 2) providing backends for different
hardware architectures, with the backends typically differing in how and in which programming language functionality is realized
due to using the language of choice for each hardware (e.g., CUDA kernels for NVIDIA GPUs, SYCL (DPC++) kernels to targeting
Intel GPUs and other supported hardware, ...). In practice, these two approaches can be combined in applications to leverage
their respective strengths. In this paper, we present how we realize portability across different hardware architectures for the
Ginkgo library by following the second strategy and the goal to not only port to new hardware architectures but also achieve good
performance. We present the Ginkgo library design, separating algorithms from hardware-specific kernels forming the distinct
hardware executors, and report our experience when adding execution backends for NVIDIA, AMD, and Intel GPUs. We also
present the performance we achieve with this approach for distinct hardware backends.

Keywords: Porting to GPU accelerators; Platform Portability; Performance portability; AMD; NVIDIA; Intel

1. Introduction

When surveying the research software landscape, we can
identify some software products that have been successful for
several decades ([1, 2]). On the other hand, some libraries are
successful for a while, and then fade out. When investigating5

the source of decline for some products, it is often that the jump
from one hardware architecture to the next was too big, and the
product failed to keep up with the development of other soft-
ware and hardware ecosystems.1 In that sense, the lack of soft-
ware portability and the lack of flexibility to embrace future10

hardware designs is a time bomb that limits the lifetime of soft-
ware.

The lack of platform portability becomes even more critical
as we see an explosion of diversity in hardware architectures
employed in supercomputers. In the last century, the hardware15

development was mostly incremental, as it was driven by the
clock frequency increase of the processors ([3]). During that
time, the software developers usually succeeded in transferring
to newer chip technologies by applying minor modifications
or by simply leveraging the “free lunch” ([4]) that came with20

higher operating frequency. That said, the move from single-
core processors to multi-core processors in the early 21st cen-
tury was incremental enough to be mastered by many software

1Another reason is often the lack of resources for sustained software devel-
opment, but here we refrain from addressing the topic of under-funding the field
of research software engineering.

products that did not embrace platform portability as a central
design principle. This is partly because using pragmas and the25

OpenMP language allowed for a smooth transition. In addition,
only the performance—not the functionality—of software was
endangered when ignoring multi-threaded or multi-core hard-
ware capacity. In fact, single-threaded software remains func-
tional and can still achieve acceptable performance. However,30

at least since the rise of many-core accelerators (e.g., GPUs)
and the adoption of special function units and lightweight ARM
processors for supercomputing, software libraries can no longer
ignore the hardware changes. As a consequence, the lack of
platform portability for emerging and future hardware technol-35

ogy is among the main threats to the sustainability of a given
software product.

In the design of the GINKGO [5] open-source software li-
brary, we have the burden and privilege to start from scratch,
and to apply the lessons learned in other software projects. In40

this paper, we first recall in Section 2 on different levels of
portability before we detail in Section 3 how we develop GINKGO
with platform portability as a central design principle. We present
in Section 4 and Section 5 our strategy for adopting new hard-
ware architectures and report our experiences in porting to new45

backends, namely AMD GPUs and Intel GPUs. In Section 6
we present a brief performance evaluation on how architecture-
native backends perform in comparison to using platform porta-
bility layers. We conclude by summarizing our central findings
in Section 7.50

Preprint submitted to Parallel Computing Journal (PARCO) December 15, 2022

2. Platform Portability

There are at least two dimensions to platform portability.
One aspect is the mapping of a parallel algorithm onto differ-
ent sets of hardware which relates to scheduling techniques and
parallel programming representations such as task graphs. An-55

other aspect is the expression of algorithms or basic building
blocks (kernels) in an ecosystem that allows for the efficient ex-
ecution on specific hardware architectures. We will here focus
on this second dimension of performance portability.

2.1. The Levels of Portability60

There are multiple levels of platform portability. Depend-
ing on the use case, platform targets, and objectives, some ap-
plications may find it sufficient to restrict themselves to a spe-
cific portability level. The first distinct level is no portabil-
ity, where the code compiles and runs for only one type of65

high-performance computing (HPC) system. The same sort
of hardware and compute capabilities are expected. Another
option is to support partial software portability. An applica-
tion using such a model will be dependent on some platform
model abstraction. For example, the model could expect any70

CPU type combined with one or more accelerators, either from
AMD or NVIDIA. In such a case, a hybrid programming ap-
proach featuring a CPU programming model like OpenMP is
combined with an accelerator programming model like HIP to
ensure portability (and possibly good performance) on the ma-75

chine. As a more advanced case, one might consider full soft-
ware portability, where the application can execute and run on
any type of platform, including hypothetical future machines
that might feature field-programmable gate arrays (FPGAs). In
this case, a practical example is the SYCL programming model,80

which features compiler backends that support some FPGAs,
all mainstream HPC accelerators, and ARM-based hardware.
Finally, and especially important for HPC applications, there
is the level of performance portability, which means that the
code will not only compile and run on target platforms, but85

it will also achieve high efficiency by providing performance
close to the machine’s total capabilities. To achieve perfor-
mance portability, one needs good software design practices
(e.g., code portability) and full command and understanding of
the problems inherent in computing unit granularity vs. prob-90

lem granularity. The latter requires using specific program-
ming techniques to fully express an application’s parallelism
and scheduling to spread the workload, dynamically, depend-
ing on the machine hardware’s computing units.

2.2. Writing Performance Portable Applications95

Ignoring efforts that are likely doomed to fail, as they are
based on a permanent redesign to reflect the changes in hard-
ware architecture, one can identify two different approaches to
enable cross-platform portability and readiness for future hard-
ware architectures.100

Relying on a Portability Layer The idea behind a porta-
bility layer is that the user writes the code once in a high-level
language, and the code is then automatically transformed into

a source code tailored for a specific architecture and its ecosys-
tem before being executed thanks to an abstraction. This idea105

was already applied to software performance portability at the
assembly level by using preprocessor macros [6]. For the more
modern problem of expressing parallel algorithms on a variety
of architectures including accelerators, the portability layer en-
abling such systems can take very different shapes. They range110

from using tailored high level languages [7], [8], macro-based
systems [9], or C++-lambda based like Kokkos [10], RAJA [11]
or SYCL [12]. Also advanced, compiler-based strategies are
becoming popular, maybe most notably in the SYCL program-
ming ecosystem [12] or OpenCL [13] which both rely on the115

SPIR-V intermediate representation. In addition, modern com-
pilers themselves help architecture portability with recent fea-
tures such as multi-level transformations. These are proposed
in LLVM with the MLIR [14] or SPIRAL [8], and offer the op-
portunity to run compiler passes at a coarser granularity than a120

few assembly instructions.
Relying on a portability layer removes the burden of plat-

form portability from the library developers and allows them
to focus exclusively on the development of sophisticated algo-
rithms. This convenience comes at the price of a strong depen-125

dency on the portability layer, and moving to another program-
ming model or portability layer is usually extremely difficult
or even impossible. Furthermore, relying on a portability layer
naturally implies that the performance of algorithms and ap-
plications is determined by the quality and hardware-specific130

optimization of the portability layer. This performance penalty
may not always be insignificant, as portability layers usually
have a wide user base, and dramatic changes to the interface,
logic, or kernel design of the portability layer would likely re-
sult in the failure of some applications that rely on the portabil-135

ity layer [15], [16], [17]. Hence, performance portability layers
should avoid modifying the design or hardware coverage, which
can limit the opportunities to heavily optimize kernels for a new
hardware architecture.

Performance Portability as a Library Design In this ap-140

proach, the hardware-specific kernels are written separately for
the different types of hardware targeted. Standards are a good
example of this portability strategy. The standards define an
API and a set of functionalities, the respective kernels are then
realized in the hardware-tailored languages. Many standards145

have been successfully adopted by vendors such as for linear
algebra the BLAS standard [18], [19], but also for distributed
communications with the MPI standard [20]. Libraries that
cannot entirely rely on a standard (or become one), can real-
ize portability themselves by acknowledging the principles of150

controlling the interfaces, isolating dependencies, and thinking
portable [21]. Several libraries are using this model effectively,
like deal.II [1] or PETSc [22]. To use this model, a library
must be designed with modularity and extensibility in mind.
Only a library design that relies on the separation of concerns155

between the parallel algorithm and the different hardware back-
ends can allow such a feature. The different backends need to
be managed and interacted with thanks to a specific interface
layer between algorithms and kernels. However, the price for
the higher performance potential is high: the library developers160

2

have to synchronize several hardware backends, monitor and re-
act to changes in compilers, tools, and build systems, and adopt
new hardware backends and programming models. The effort
of maintaining multiple hardware backends and keeping them
synchronized usually results in a significant workload that can165

easily exceed the developers’ resources. However, unlike the
first approach, this supports hand-written optimized kernels for
each hardware architecture. In addition, the abstraction and ker-
nel development being focused on a single product allows for
a more consumer-specific kernel design and performance opti-170

mization. In consequence, libraries following this path can ap-
ply much more aggressive hardware-specific optimization and
often achieve higher performance. One reason is that the set
of kernels is usually much smaller than what portability lay-
ers provide as the hardware-specific backends, because only the175

kernels required by the library’s core algorithms are included.
A second reason is that a library has more freedom to phase out
support for a specific hardware architecture. This can usually be
justified because the dependency on a library is generally much
looser than the dependency on a portability layer, and applica-180

tions “just” need to find a new library that provides the same
functionality, while the much deeper dependency on a portabil-
ity layer virtually prohibits moving to an alternative portability
layer.

A Hybrid Approach for Platform Portability The two185

strategies for achieving platform portability presented are not
necessarily exclusive, and the usage of a hybrid model can be
more efficient. This is to some extent leveraged in some recent
developments of the Ginkgo library (Section 4 and other re-
cent developments) but can also be seen in other libraries such190

as PETSc [22] or Trilinos [2]. Another example of a hybrid
approach is the C++ standard library which is rapidly becom-
ing a performance portability vector itself. On the one hand
are vendors such as NVIDIA and Intel implementing hardware-
accelerated versions of key algorithms that are accessible through195

different namespaces for targeting accelerators [23], [24]. On
the other hand is C++ increasingly including advanced perfor-
mance portability interfaces such as mdspan [25] or for each

which work similarly to the SYCL, RAJA, or Kokkos libraries.
One reason for adopting such a hybrid approach is that not200

all building blocks are as relevant, performance-critical, or as
complex to optimize as others. For those kernels, relying on a
performance portability layer allows reducing the code main-
tenance and testing complexity as well as focus on the more
performance-critical aspects of the library.205

3. Developing Gingko using Platform Portability as Central
Design Paradigm

GINKGO is an open-source numerical linear algebra library
focusing on sparse computations [5]. Aside from basic build-
ing blocks like sparse matrix-vector multiplication (SpMV) and210

sparse matrix addition (SpGeAM), it features iterative solvers
including a variety of Krylov solvers (BiCG, BiCGSTAB, CG,
CGS, FCG, GMRES, IDR) and sophisticated preconditioners
(sparse approximate inverses, parallel ILU preconditioners, and

threshold ILU preconditioners). GINKGO is developed by ac-215

knowledging platform portability as a central design principle.
This becomes apparent in the visualization of the software ar-
chitecture radically separating the library core from the hardware-
specific kernels, see Figure 1. All classes, library logic, and
generic algorithm skeletons are accumulated in the library “core”220

which, however, is useless without the driver kernels available
in the distinct hardware backends. We note that the “reference”
backend contains sequential CPU kernels used to validate the
correctness of the algorithms and as a reference implementation
for the unit tests realized using the googletest[26] framework.225

The “OpenMP” backend contains kernels for multicore archi-
tectures that are parallelized using OpenMP. The “CUDA” and
“HIP” backends are heavily optimized GPU backends written
in the hardware-native language: CUDA for NVIDIA GPUs,
HIP for AMD GPUs [27]. Given the significant level of sim-230

ilarity between the “CUDA” and the “HIP” executor, a shared
folder (omitted in the visualization for simplicity) contains ker-
nels that are up to architecture-specific parameter configura-
tions identical for the AMD and the NVIDIA GPUs, respec-
tively [28]. Collecting those kernels in a folder included by235

the backends reduces code duplication and maintenance efforts.
The latest addition is the “DPC++” backend tailored towards
Intel GPUs but usable also on other architectures supporting
DPC++ code [29]. In opposition to the other backends that are
already in production mode, the “dpc++” backend is currently240

under heavy development as also the technical details about In-
tel’s future discrete GPUs are still unknown. During library
configuration, the user decides which backends to compile. In
GINKGO, we have chosen to use for each target architecture
the vendor’s native language. While languages like OpenACC245

or OpenMP offload can be used to target GPUs from different
vendors, features like sub-warp operations which are critical for
the performance of the CUDA and HIP backends would not be
usable and this would impact the obtained performance.

The “executor” allows the selection of the target architec-250

ture. The respective kernels are then chosen during execution
via dynamic polymorphism. This is possible as the executor
is a central class in GINKGO that provides all important prim-
itives for allocating/deallocating memory on a device, trans-
ferring data to other supported devices, and basic intra-device255

communication (e.g., synchronization). The chosen executor is
also the library feature that orchestrates the interplay between
the core library and the backends. An executor always has a
master executor which is a CPU-side executor capable of al-
locating/deallocating space in the main memory. This concept260

is convenient when considering devices such as CUDA or HIP
accelerators, which feature their own separate memory space.
Although implementing a GINKGO executor that leverages fea-
tures such as unified virtual memory (UVM) is possible via the
interface, to attain higher performance, we manage all copies by265

direct calls to the underlying APIs [30]. This removes the bur-
den of having to manage the memory from the GINKGO users
but allows us to instruct explicit memory transfers in the places
we want them to happen.

270

3

Figure 1: Overview of the GINKGO library design.

1 # i n c l u d e <iostream >
2 # i n c l u d e <ginkgo/ginkgo.hpp >
3
4 i n t main()
5 {
6 / / I n s t a n t i a t e a CUDA e x e c u t o r
7 a u t o omp = gko:: OmpExecutor :: create ();
8 a u t o ex = gko:: CudaExecutor :: create(0, omp);
9 / / Read d a t a

10 a u t o A = gko::read <gko:: matrix ::Csr <>>(std::cin , ex);
11 a u t o b = gko::read <gko:: matrix ::Dense <>>(std::cin , ex);
12 a u t o x = gko::read <gko:: matrix ::Dense <>>(std::cin , ex);
13 / / C r e a t e t h e s o l v e r f a c t o r y
14 a u t o factory =
15 gko:: solver ::Cg <>::build()
16 .with_preconditioner(
17 gko:: preconditioner ::Jacobi <>:: build().on(ex))
18 .with_criteria(
19 gko::stop:: Iteration :: build().with_max_iters (20u)
20 .on(ex),
21 gko::stop:: ResidualNormReduction <>:: build()
22 .with_reduction_factor (1e-15).on(ex))
23 .on(ex);
24 / / Gene ra te t h e s o l v e r and s o l v e t h e sys tem
25 factory ->generate(give(A))->apply(lend(b), lend(x));
26 / / W r i t e r e s u l t
27 write(std::cout , lend(x));
28 }

Listing 1: A minimal usage example of GINKGO to solve a linear system. The
system is solved by a CG method enhanced with a block-Jacobi preconditioner.
Everything is ran on a CUDA-capable device thanks to the use of a CudaExecutor

Listing 1 shows a simple GINKGO use-case. In this exam-
ple, we read the system parameters from the standard input in
lines 10-12 before creating a CG solver factory preconditioned
by a Block Jacobi preconditioner in lines 14-23. Using the two275

criteria, the iterative process will stop either after 20 iterations
or when the residual norm was reduced by 15 orders of magni-
tude. In line 25, a concrete solver instance is generated using
these factory parameters for the specific matrix A before solving
the system thanks to the apply() method. Finally, the solution280

is printed. Lines 7-8 show how GINKGO can be set to run on
specific hardware. In this example, a CudaExecutor was cho-
sen. Replacing all instances of the variable ex in the code by
omp would make the code run on the CPU using OpenMP in-
stead.285

4. Adopting AMD GPUs

Even though GINKGO is developed with platform portabil-
ity as a central design principle, it initially only featured execu-
tors for sequential execution (“Reference”), OpenMP-parallelized
multicore execution (“OpenMP”), and CUDA-based NVIDIA290

GPU execution (“CUDA”). Therefore, the addition of a “HIP”
executor enabling the execution of code on AMD GPUs is the
proof-of-concept test for the executor-based platform portabil-
ity model [28]. Due to GINKGO’s software design for portabil-
ity, adding a new architecture always follows the same work-295

flow: 1) the core library interfaces that manage the backends
such as the executor needs to be manually extended as well as
CMake support, and dummy kernels need to be added to ob-
tain a first compiling backend; 2) one by one, the stub kernels
can be replaced by concrete kernel implementations – in this300

step, we can often rely on automatic vendor-provided porting
tools; 3) once the kernels have been ported, they can be tuned,
specialized or rewritten if needed to obtain better performance.

CMake integration.
When adding an executor based on a new programming305

language, a first step is the integration of the compiler in the
CMake configuration and compilation process. In the adoption
of the HIP ecosystem, we make heavy use of the CMake build
system generator. One way of integrating HIP into the build
process would be to use the hipcc compiler for the entirety of310

the project. We chose a less intrusive approach, by relying on

4

the HIP packages which thanks to modern CMake features al-
lows us to integrate them via CMake’s find package() com-
mand. AMD provides the following important packages for
GINKGO:315

• hip-config.cmake etc.,
included via find package(hip);

• hipblas-config.cmake,
included into a project via find package(hipblas)

(resp. for hipsparse);320

• FindHIP.cmake,
included into a project via find package(HIP).

The last file provides the main macros for creating HIP
projects, and defines a new CMake HIP language to compile the
HIP files. The most important macros are hip add executable()325

and hip add library(), similar to the ones declared in
FindCUDA.cmake file which provided equivalent CUDA func-
tionality until CUDA became a natively-supported CMake lan-
guage in CMake version 3.8.

HIP allows compiling code either for CUDA support or for330

ROCm support. Depending on whether a physical GPU is de-
tected or the environment variable HIP PLATFORM is set to
either nvcc (for ROCm<=4.0) or NVIDIA (for ROCm>4.0),
the code is compiled for CUDA. If HIP PLATFORM is set to
either clang (for ROCm<=4.0) or AMD (for ROCm>4.0), the335

code is compiled for ROCm support. During compilation, the
HIP header libraries bind to either the CUDA libraries or the
ROCm libraries.

Despite providing this convenient feature of supporting both
AMD and NVIDIA architectures via one language, currently,340

several pitfalls exist that require applying customized workarounds.
The hip-config.cmake depends on all the ROCm subcom-
ponents, which implies that compiling the HIP executor for
NVIDIA architectures creates a complicated dependency struc-
ture. Also, while the process of locating the ROCm libraries345

is automated by the main FindHIP.cmake file, the user has to
manually provide the CUDA locations when compiling HIP for
NVIDIA architectures.

Another example of the difficult interoperability between
the HIP language and NVIDIA hardware is the example shown350

in Listing 2. This example works for recent versions of ROCm
with some backward compatibility to ROCm <= 4.0, but older
versions fail. One issue is that the platform names changed in
version 4.1, and two sets of platforms need to be matched for
supporting older ROCm versions.355

In addition, the hip-config.cmake file hard-codes several
AMD device-specific flags which are non-standard for several
HIP targets (i.e., the file sometimes supposes the full project is
compiled with hipcc) which need to be manually removed for
general compilation.360

Finally, FindHIP.cmake struggles with compiling shared
libraries in complex settings but throws an exception on the AMD
backend2. In this case, a workaround is to explicitly set the
property LINKER LANGUAGE of the library to HIP.

2https://github.com/ROCm-Developer-Tools/HIP/issues/1029

We note that AMD and Kitware plan to implement native365

support for HIP in CMake, such integration would likely fix
most of the issues we outlined. Overall, we found that the
code skeleton in Listing 2 is the only one that allows us to suc-
cessfully integrate HIP code as a subcomponent into a com-
plex project featuring also other subcomponents which rely on370

CUDA, OpenMP, and other libraries for most versions of ROCm
including newer ones.

1 # s e t ROCM PATH , HIP PATH , HIPBLAS PATH ,
2 # HIPSPARSE PATH , e t c . t h e p a t h o f t h e
3 # r e s p e c t i v e i n s t a l l a t i o n s i f n o t se t ,
4 i f (HIP_PLATFORM MATCHES "nvcc|nvidia")
5 # ensu re t h e CUDA l i b r a r y can be f o u n d
6 # i n t h e d e f a u l t p a t h o r CUDA PATH i s
7 # s e t (r e q u i r e m e n t o f h i p c c) ,
8 s e t (GINKGO_HIP_NVCC_ARCH_FLAGS ...)
9 e l s e i f (GKO_HIP_AMDGPU AND HIP_PLATFORM MATCHES "hcc|

amd")
10 # On AMD backend , s e t −−amdgpu − t a r g e t
11 # o p t i o n s when s e l e c t i n g s p e c i f i c GPU t a r g e t s
12 f o r e a c h (target ${GKO_HIP_AMDGPU })
13 list(APPEND GINKGO_HIP_AMD_ARCH_FLAGS --amdgpu -

target=${GKO_HIP_AMDGPU })
14 e n d f o r e a c h ()
15 e n d i f ()
16 # s e t CMAKE MODULE PATH and CMAKE PREFIX PATH
17 f i n d p a c k a g e (HIP REQUIRED)
18 f i n d p a c k a g e (hipblas REQUIRED)
19 f i n d p a c k a g e (hipsparse REQUIRED)
20
21 s e t (GKO_HIP_SOURCES path/to/ s o u r c e /files.hip.cpp)
22 set_source_files_properties(${GKO_HIP_SOURCES}
23 PROPERTIES HIP_SOURCE_PROPERTY_FORMAT TRUE)
24 # A l l o p t i o n s must be g i v e n t o HIP ADD LIBRARY
25 h i p a d d l i b r a r y (ginkgo_hip ${GKO_HIP_SOURCES}
26 CLANG_OPTIONS ${GINKGO_HIP_AMD_ARCH_FLAGS}
27 NVCC_OPTIONS ${GINKGO_HIP_NVCC_ARCH_FLAGS })
28
29 i f (HIP_PLATFORM MATCHES "hcc|clang")
30 f i n d p a c k a g e (hip REQUIRED)
31 t a r g e t l i n k l i b r a r i e s (ginkgo_hip hip:: amdhip64)
32 e l s e i f (HIP_PLATFORM MATCHES "nvcc|nvidia")
33 f i n d p a c k a g e (CUDA 9.0 REQUIRED)
34 t a r g e t l i n k l i b r a r i e s (ginkgo_hip
35 ${CUDA_LIBRARIES })
36 e n d i f ()
37
38 t a r g e t l i n k l i b r a r i e s (ginkgo_hip roc:: hipblas
39 roc:: hipsparse)
40 t a r g e t i n c l u d e d i r e c t o r i e s (${HIP_INCLUDE_DIRS}
41 ${HIPBLAS_INCLUDE_DIRS}
42 ${HIPSPARSE_INCLUDE_DIRS })

Listing 2: Schematic example for integrating a HIP module into an
existing CMake project.

Porting CUDA code to HIP via the Cuda2Hip script.
For easy conversion of CUDA code to the HIP language, we

use a script based on the hipify-perl script provided by AMD375

with several modifications to meet our specific needs. First,
the script generates the target filename including the path in
the “hip” directory. Then AMD’s hipify-perl script is invoked
to translate the CUDA kernels to the HIP language, including
the transformation of NVIDIA’s proprietary library functions to380

AMD’s library functions and the kernels launch syntax. Next,
the script changes all CUDA-related header, namespace, type-
and function names to the corresponding HIP-related names.
By default, the script hipify-perl fails to handle namespace def-
initions. For example, the hipify-perl script changes385

5

https://github.com/ROCm-Developer-Tools/HIP/issues/1029

Figure 2: Reorganization of the GINKGO library to provide a HIP backend for
AMD GPUs.

namespace::kernel<<<...>>> (...)

to
namespace::hipLaunchKernelGGL(kernel, ...)

while the correct output would be
hipLaunchKernelGGL(namespace::kernel, ...). In the390

Cuda2Hip script, we correct the namespaces generated by the
hipify-perl script after having applied the hipify-perl script to
all kernels.

Avoiding code duplication. When adding a HIP backend,395

we notice a high level of similarity in both kernel design and
syntax between the CUDA kernels designed for NVIDIA GPUs
and the HIP kernels for AMD GPUs. Thus, the straightforward
addition of a HIP backend would introduce a significant level
of code duplication. For this purpose, we create the “common”400

folder containing all kernels and device functions that are iden-
tical or the CUDA and the HIP executor except for architecture-
specific kernel configuration parameters (such as warp size or
launch bounds). These configuration parameters are not set
in the kernel file contained in the “common” folder but in the405

files located in “cuda” and “hip” that are interfacing these ker-
nels. The CUDA and HIP backends then include the files in
the “common” similar to header files and configure the param-
eters. Obviously, for separating kernel skeletons shared by the
CUDA and HIP executors, the Cuda2Hip script discussed pre-410

viously needs to be extended by identifying hardware-specific
kernel execution parameters, replacing these with variables, and
generating only the kernel call functions in the CUDA and HIP
backends while placing the parameterized kernel skeletons in
the common folder that are then included by the executors.415

Even though this reorganization requires the derivation of so-
phisticated scripts, it pays off as we can avoid code duplication
while still configuring the parameters for optimal kernel perfor-
mance on the distinct hardware backends [28]. The effect on
GINKGO’s code stack is visualized in Section 4 where the left-420

hand side represents the code statistics (lines of code) before
the addition of the HIP executor, and the right-hand side the

reorganized code with a significant portion of the kernel code
ending up in a “common” folder shared by the CUDA executor
and the HIP executor.425

Cooperative groups. CUDA 9 introduced cooperative groups
for flexible thread programming. Cooperative groups provide
an interface to handle thread block and warp groups and ap-
ply the shuffle operations that are used heavily in GINKGO for430

optimizing sparse linear algebra kernels. HIP [31] only sup-
ports block and grid groups with thread rank(), size() and
sync(), but no subwarp-wide group operations like shuffles
and vote operations. As such, the cooperative group interface is
a convenient way to describe parallel operations and ease kernel435

writing.
For enabling platform portability where applicable, the same

ease of kernel writing a small codebase, and preserving the per-
formance of the optimized CUDA kernels, we implement coop-
erative group functionality for the HIP ecosystem. Our imple-440

mentation supports the calculation of size/rank and shuffle/vote
operations inside subwarp groups. We acknowledge that our
cooperative group implementation may not support all features
of CUDA’s cooperative group concept, but all functionality we
use in GINKGO.445

The cross-platform cooperative group functionality we im-
plement with shuffle and vote operations covers CUDA’s native
implementation. HIP only interfaces CUDA’s warp operation
without sync suffix (which refers to deprecated functions), so
we use CUDA’s native warp operations to avoid compiler warn-450

ing and complications on NVIDIA GPUs with compute capa-
bility 7.x or higher. We always use subwarps with contiguous
threads, so we can use the block index to identify the threads’
subwarp id and its index inside the subwarp. We define

Size= Given subwarp size

Rank= tid % Size

LaneOffset= btid % warpsize / Sizec×Size

Mask=∼ 0 >> (warpsize - Size) << LaneOffset

455

where tid is local thread id in a thread block such that Rank
gives the local id of this subwarp, and∼ 0 is a bitmask of 32/64
bits, same bits as lane mask type, filled with 1 bits according
to CUDA/AMD architectures, respectively. Using this defini-
tion, we can realize the cooperative group interface, for exam-460

ple for the shfl xor, ballot, any, and all functionality:

subwarp.shfl xor(data, bitmask)= shfl xor(data, bitmask, Size)

subwarp.ballot(pred)= (ballot(pred) & Mask) >> LaneOffset

subwarp.any(pred)= (ballot(pred) & Mask) != 0

subwarp.all(pred)= (ballot(pred) & Mask) == Mask

Note that we use the ballot operation to implement any
and all operations. The original warp ballot returns the an-
swer for the entire warp, so we need to shift and mask the bits to465

access the subwarp results. The ballot operation is often used
in conjunction with bit operations like the population count
(popcount), which are provided by C-style type-annotated in-
trinsics popc[ll] in CUDA and HIP. To avoid any issues

6

with the 64bit-wide lane masks on AMD GPUs, we provide a470

single function popcnt with overloads for 32 and 64 bit inte-
gers as well as an architecture-agnostic lane mask type that
provides the correct (unsigned) integer type to represent a (sub)warp
lane mask. Experimental results have shown that GINKGO’s
custom platform portable cooperative group implementation is475

highly competitive to the vendor-provided functionality, see Fig-
ure 3 [28].

5. Adopting Intel GPUs

Intel is the vendor who is expected to provide one of the
three US Exascale machines, named Aurora, and hosted at Ar-480

gonne National Laboratory which will feature Intel discrete GPUs.
To program these new architectures, Intel is focusing on the
SYCL programming framework [12], which was extended with
several programming features allowing both better kernel per-
formance and usability. The new additions in Intel’s DPC++485

language comprise, but are not limited to, features such as Uni-
fied Shared Memory (USM, which allows direct memory trans-
fer control) as well as the concept of subgroups, a CUDA-warp
equivalent. Many of the Intel extensions part of DPC++ were
released as part of the SYCL 2020 specification.3 The Intel490

extensions are packaged into the DPC++ compiler [29], which
is part of the Intel oneAPI framework4. GINKGO started the
portability effort to the new Intel oneAPI platform to target fu-
ture Intel hardware. Intel also supports OpenMP offloading for
programming its GPUs. Since the oneAPI framework seems495

to be centered around DPC++, and this programming model
seems more adapted for high-performance programming (sub-
groups, USM, and other features), we have chosen this new lan-
guage to target Intel GPUs.

500

CMake integration. At the time of writing, the only way
the authors found to integrate DPC++ into our framework is to
use the DPC++ compiler for the whole compilation process of
our library (e.g., with the CMake option
CMAKE CXX COMPILER=dpcpp). This usage model means that505

the CMake integration effort is minimal, but on the other hand,
there is no proper CMake isolation of the DPC++ submodule,
which prohibits compiling any other GINKGO submodule at the
same time, except for Reference.

510

Adding a DPC++ Executor to GINKGO. Like SYCL,
DPC++ is a C++ single-source heterogeneous programming frame-
work targeting the full range of device programming APIs, such
as OpenCL, CUDA, or Intel oneAPI Level Zero. A core con-
cept of these frameworks is the use of command queues which515

are objects able to schedule kernels on devices with specific
execution contexts. By default, SYCL and DPC++ execute
kernels asynchronously, and only the destruction of the queue
object synchronizes with the device. Memory copies are all

3The release happened on March 4, 2021, see https://www.khronos.

org/registry/SYCL
4https://www.oneapi.com/

implicit thanks to SYCL providing a specific buffer type for520

registering data, together with the access mode specification of
these data inside kernels thus SYCL is a task-based program-
ming language. Another key aspect of DPC++ is that (like
SYCL) it aims at being compilable on most existing devices,
ranging from NVIDIA to AMD GPUs, Intel FPGAs, GPUs,525

and general-purpose processors.
This usage model of standard SYCL/DPC++ does not fit

well with the GINKGO framework, as GINKGO handles devices
via the Executor model (which can be either a CPU or an ac-
celerator). On the other hand, a new DPC++ executor should530

be able to target any device type. For this purpose, we have de-
cided to add an optional device selection to our DPC++ execu-
tor constructor which allows specifying whether the user wants
to target a GPU or a CPU (or any other device type). In addi-
tion, we decided that a DPC++ executor always comes with a535

CPU executor to manage the host-side data (as it is needed for
GPUs). We acknowledge that this can result in redundant data
in case the DPC++ executor targets a CPU device.

Another aspect important to consider when creating a DPC++
executor for GINKGO is the “subgroup” concept DPC++ intro-540

duces to represent a SIMD lane on CPUs or a warp/wavefront
on GPUs. Depending on the architecture, the subgroup size

can differ dramatically, from a size of 1 on some simple devices
to 4 or 8 for powerful CPUs, to 16, 32, or 64 on some GPUs.
While this concept is not completely new – GINKGO already545

uses warp size 32 for NVIDIA GPUs and wavefront sizes 64 for
AMD GPUs – it can heavily affect performance or even cause
errors if selecting the subgroup size inappropriate for a given
hardware architecture. To resolve this, in GINKGO, we precom-
pile kernels for all possible subgroup sizes (from 1 to 64, in550

powers of two increments), and dynamically select at runtime
the kernel version which fits best to the selected DPC++ device.

Since GINKGO executors need to provide synchronization
features, we have decided that one executor is represented by
one DPC++/SYCL queue object which exists during the whole555

lifetime of the executor. This object is automatically managed
thanks to a unique ptr. The DPC++ queue primitive
wait and throw() can be used for explicit synchronization.
A specific aspect of a DPC++ queue is that, by default, no exe-
cution order is guaranteed for the objects submitted to it, since it560

operates asynchronously. This means that when executing three
tasks on the same queue, 1) copy: host→ GPU, 2) a GPU ker-
nel, 3) copy: GPU→ host, there is no guarantee that the three
operations will be executed in this order. To ensure the right ex-
ecution order, DPC++ introduces the queue property in order565

which can be used. Another solution to this problem is given by
manually synchronizing after every DPC++ queue operation.

Finally, to allow explicit memory management, we rely on
the new DPC++ concept of Unified Shared Memory, which can
be used via the functions for the explicit memory (de)allocation570

(sycl::malloc device(), sycl::free()). When using mem-
ory allocated via these functions, the memory copies can be
controlled manually via the DPC++ queue itself using the func-
tion queue.memcpy(). The limitation of this concept is that it
can not handle settings where another non-DPC++ GINKGO ex-575

ecutor (or device) is used in an application (for example, a HIP

7

https://www.khronos.org/registry/SYCL
https://www.khronos.org/registry/SYCL
https://www.oneapi.com/

0

20

40

60

80

100

120

Size = 32 Size = 4 Size = 32 (HIP) Size = 4 (HIP)

Reduction Kernel: Legacy vs Cooperative Group on V100

Int (Legacy)
Int (Coop)
Long (Legacy)
Long (Coop)
Float (Legacy)
Float (Coop)
Double (Legacy)
Double (Coop)

ns

0

50

100

150

200

250

300

350

Size = 64 Size = 4

Reduction Kernel: Legacy vs Cooperative
Group on RadeonVII

Int (Legacy)
Int (Coop)
Long (Legacy)
Long (Coop)
Float (Legacy)
Float (Coop)
Double (Legacy)
Double (Coop)

ns

Figure 3: GINKGO’s cooperative groups vs. legacy functions for different data types on V100 (left) and RadeonVII (right) [28].

enhanced device). In this case, DPC++ can not directly use the
queue.memcpy() function to copy data to the other executor.
To resolve the challenge of copying data from the DPC++ ex-
ecutor to another (non-CPU) executor, we use the workaround580

of creating a temporary copy on the master executors running
on the CPU and controlling the execution of the DPC++ execu-
tor and the other device executor, respectively.

Kernel programming

1 # i n c l u d e <CL/sycl.hpp >
2
3 template < i n t subgroup_size >
4 [[intel:: reqd_sub_group_size(subgroup_size)]]
5 v o i d reduce(f l o a t *a, sycl::nd_item <3> i) {
6 a u t o subgroup = i.get_sub_group ();
7 a u t o local_data = a[i.get_local_id (2)];
8 #pragma unroll
9 f o r (i n t bitmask = 1; bitmask < subgroup_size;

10 bitmask <<= 1) {
11 c o n s t a u t o remote_data =
12 subgroup.shuffle_xor(local_data , bitmask);
13 local_data = local_data + remote_data;
14 }
15 a[i.get_local_id (2)] = local_data;
16 }
17
18 i n t main() {
19 sycl::queue q{}; / / g e t d e f a u l t d e v i c e ’ s queue
20 f l o a t *dev_A;
21 f l o a t A[32]; / / m i s s i n g : p o p u l a t e d a t a
22 dev_A = sycl:: m a l l o c d e v i c e < f l o a t >(32, q);
23 q.memcpy(dev_A , A, 32 * s i z e o f (f l o a t)).wait();
24 q. s ub m i t ([&](sycl:: handler &cgh) {
25 cgh.parallel_for(
26 sycl::nd_range <3>(sycl::range <3>(1, 1, 32),
27 sycl::range <3>(1, 1, 32)),
28 [=](sycl::nd_item <3> i) {
29 reduce <8>(dev_A , i);
30 });
31 }).wait();
32 q.memcpy(A, dev_A , 32 * s i z e o f (f l o a t)).wait();
33 }

Listing 3: Minimal example of a DPC++ kernel call featuring a
subgroup based reduction.

Listing 3 showcases a minimal DPC++ example for setting585

up and running a subgroup-based reduction. We only omit in
this code the generation of the data the kernel operates on. The
code is composed of two parts, lines 3-16 are device-side func-
tions that handle the reduction on a subgroup. The template

parameter reflects the subgroup size (line 3) to allow the com-590

piler to unroll the loop in line 9. The second part in lines 18-33
is the main function containing data management as well as the
kernel invocation. In some detail, we first use a default queue,
which will access the default device (line 19) and can be used
for data management as well as submitting tasks. Lines 22-595

23 reflect the DPC++ Unified Shared Memory usage, where
initially the device-side memory is allocated before copying
this data from the host to the device. Line 32 similarly copies
back the data to the host before kernel completion. Lines 24-
31 show the creation and submission of a task that operates600

in a “parallel-for” fashion (line 25). The task initially selects
its nd range parameter with both the global (line 26) and lo-
cal, or workgroup level, (line 27) dimensions. Since the global
and workgroup dimensions are identical, this implies that only
one workgroup is instantiated which then processes the whole605

kernel range. The kernel executed by this “parallel-for” is the
lambda function defined in lines 28-30 which only calls the re-
duction kernel on the device data at each respective “item” of
the parallel for. Note that in this program, we always call the
function wait() of the queue to ensure proper ordering of the610

operations (we could also use the DPC++ property “in order” of
the queue). Lines 3-16 present the reduction kernel. On line 4,
the keyword intel::reqd sub group size is used to notify
that this function targets a subgroup with a size depending on
the template parameter (in this example the subgroup size is 8,615

see line 29). In summary, the code will create one workgroup
containing four subgroups each composed of 8 elements. Line 6
then accesses this subgroup and stores the representation object.
All subgroups can then execute a standard reduction in lines 9-
15, which is based on subgroup.shuffle xor (line 12).620

Custom porting script based on DPCT
Similar to AMD, Intel provides a tool that converts CUDA

code to the DPC++ language. This “DPC++ Compatibility Tool”
(DPCT5) intends to make porting existing CUDA kernels to the
oneAPI ecosystem a simple and convenient step. However, at625

the time of writing, the oneAPI ecosystem is still in its early

5https://software.intel.com/content/www/us/en/develop/

documentation/intel-dpcpp-compatibility-tool-user-guide/

top.html

8

https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/intel-dpcpp-compatibility-tool-user-guide/top.html

Figure 4: Example of a CUDA code (left) and the DPCT-converted code (right) which uses static and dynamic shared memory.

Figure 5: Conversion of the same CUDA code (left) to DPC++ (right) as in Figure 4 via the improved DPCT containing our modifications. The CUDA code is also
adapted by the script (before conversion only) with the addition of a new host function to force DPCT to create a more consistent output.

stages, and the conversion tool has several flaws that require
manual fixes. In addition, the tool in some cases requires man-
ual involvement of the programmer as the tool cannot be made
general to work for all cases (in these cases a warning is printed630

by DPCT). In the context of developing a DPC++ backend for
GINKGO, we enhanced DPCT with several additions and er-
ror fixes – some of them customized to the GINKGO library
design, some of them useful for any code conversion. Even
though DPCT is at the time of writing still under development,635

we want to list some of these changes and modifications we
introduced to customize this tool to our purpose.6 We show a

6Our porting script can be accessed online https://github.

com/ginkgo-project/ginkgo/blob/develop/dev_tools/oneapi/

convert_source.sh.

concrete example for converting a CUDA code using dynamic
and shared memory to DPC++ via the DPCT in Figure 4, and
an intermediate version which is improved thanks to some tech-640

niques used by our script in Figure 5.
We observe in Figure 4 that, by default, DPC++ code has

a very different structure and aspect than the CUDA equiva-
lent, and also creates some subtle errors. One error concerns
the static shared memory type which was based on a template645

parameter in the left (CUDA) code but becomes evaluated to
the underlying data type (float) in this example on the right
(DPC++) code (lines 29 and 33). In addition, there are inconsis-
tencies compared to the CUDA code that are confusing at first
glance. One such issue concerns the grid and block representa-650

tion that is used in DPC++ (lines 17-18): the dimension which
always moves in DPC++ is the right-most one, or “z” index,

9

https://github.com/ginkgo-project/ginkgo/blob/develop/dev_tools/oneapi/convert_source.sh
https://github.com/ginkgo-project/ginkgo/blob/develop/dev_tools/oneapi/convert_source.sh
https://github.com/ginkgo-project/ginkgo/blob/develop/dev_tools/oneapi/convert_source.sh

whereas it is the left-most one in CUDA, or “x” index. Simi-
larly, DPC++ uses a different concept of global and local range
(line 29), where the global range is grid×block. In addition, the655

DPC++ kernel code is partly embedded in the main host func-
tion (the lambda function in the right part, lines 30-34), whereas
there is a strict separation in CUDA.

The modifications we apply to DPCT as a workaround for
these issues are shown in Figure 5. The main difference is that660

instead of calling DPCT on the original CUDA file, we gener-
ate a temporary CUDA file that uses a properly templated ex-
tra host function to invoke the kernel itself (lines 11-18 on the
left side). In addition, we also create a placeholder GET QUEUE

(line 20, left) which we pass as cudaStream t in the new host665

function (line 29, left). These two changes allow DPCT to
generate better and more structured DPC++ code on the right
side, where the main host function (lines-36-43, right) looks
indeed similar to the original CUDA code. The GET QUEUE

placeholder can be replaced with our executor’s queue acces-670

sor by our script (line 42, right), and DPCT properly converts
the new cudaStream t parameter in the new host function to
a sycl::queue object. Note that we now need to reverse the
dim3 grid and block descriptions before using them (lines 26-
27, right), which we realize via our custom dim3 interface.675

Overall, we advertise the following improvements that our
custom conversion script provides compared to the plain DPCT
tool:

• As previously detailed, we generate an intermediate CUDA
host function which invokes the kernel with the correct680

configurations to keep a code structure that is more simi-
lar to CUDA (see Figures 4 and 5);

• To generate a code which is similar to CUDA, we intro-
duce a DPC++ kernel interface layer, that abstracts the
differences to a CUDA or HIP kernel such as:685

– We create a DPC++ dim3 type to keep the CUDA
kernel configuration and kernel call syntax consis-
tent across the distinct executors;

– We implemented our own cooperative group envi-
ronment as this functionality is currently not directly690

supported in DPC++;

– As DPC++ kernels need to access the kernel call
configuration, we forward this information through
the interface;

• We automatically comment out in the original CUDA695

code any sync() functions as these would cause prob-
lems in the DPC++ conversion, which are then correctly
replaced by our script;

• We disable some of the template instantiations (especially
calling a macro which takes as parameter another macro700

and other arguments) as these would cause DPCT errors.

• As static cast<Type>(kernel-index) in templated
kernels fails to be converted correctly, we fix these ex-
pressions;

• We automatically convert the GINKGO CUDA-specific705

namespaces, variable names, types, . . . to equivalent names
containing DPC++ (e.g., in Figure 5 there are still several
mentions of CUDA remaining);

• We also automatically move the generated DPC++ kernel
file into the correct GINKGO location.710

6. Performance Survey

Name Description Prog. Lang. Release Theo. BW (GB/s)
NVIDIA V100 Discrete HPC CUDA 2017 920
NVIDIA A100 (40 GB) Discrete HPC CUDA 2020 1555
AMD RadeonVI Discrete consumer HIP 2019 1024
AMD MI100 Discrete HPC HIP 2020 1228.8
Intel Gen. 9 Integrated DPC++ 2015 41.6

Table 1: List of the GPU architectures which we consider in the performance
evaluation. The last column reports the theoretical bandwidth.

GINKGO aspires to not only provide platform portability,
but also a satisfying level of performance portability. A good in-
dicator to assess whether this goal is achieved is to quantify the
performance GINKGO achieves on different hardware architec-715

ture relative to the hardware-specific performance bounds. We
acknowledge that the Reference executor is designed to check
the correctness of the algorithms and provide a reference solu-
tion for the unit tests and that GINKGO’s primary focus is on
high-performance accelerators. Thus, we limit the performance720

analysis to the CUDA executor running on high-end NVIDIA
GPUs, the HIP executor running on high-end AMD GPUs, and
the DPC++ executor running on Intel integrated GPUs. It is
important to relate GINKGO’s performance to the hardware-
specific performance bounds. Thus, before providing perfor-725

mance results for GINKGO’s routines, we present in Figure 6,
Figure 7, and Figure 8 the results of the mixbench [32] and
BabelStream [33] open source benchmarks. Table 1 lists the
GPU hardware architectures we use in the performance evalu-
ation along with a short architecture description. We note that730

not all architectures are high-end server-line GPUs. The AMD
RadeonVII is a consumer-line GPU, the Intel Gen. 9 GPU is an
embedded GPU, however already supporting the DPC++ exe-
cution model. In the performance evaluation, we use CUDA v.
11.0 for the NVIDIA GPUs, ROCm v. 3.8 for the AMD GPUs,735

and DPC++ v. 2021.1-beta10 for the Intel GPUs. We report the
performance of Ginkgo using double precision arithmetic in all
functionality.7

The bandwidth analysis for the NVIDIA V100 ad NVIDIA
A100 GPUs reveals a significant peak bandwidth improvement740

from the NVIDIA V100 GPU (peak bandwidth 860 GB/s) to
the NVIDIA A100 GPU (peak bandwidth 1,400 GB/s), see the
top row in Figure 6. At the same time, the bandwidth for small
and moderate-sized data reads is higher on the V100 GPU. For
the arithmetic performance, we note that the benchmark does745

not leverage the tensor cores on the V100 or the A100 GPU.

7GINKGO supports IEEE single precision, double precision, single com-
plex, and double complex and can be extended for other value types.

10

1

10

100

1000

10−1 100 101 102 103 104

Array Size (MB)

G
B

/s

Function
Add
Copy
Dot
Mul
Triad

1

10

100

1000

10−1 100 101 102 103 104

Array Size (MB)

G
B

/s

Function
Add
Copy
Dot
Mul
Triad

100

500

1000

5000

10000

20000

50000

10−1 100 101 102

Flops/byte

G
F

lo
ps

/s Type
double
float
half

100

500

1000

5000

10000

20000

50000

10−1 100 101 102

Flops/byte

G
F

lo
ps

/s Type
double
float
half

Figure 6: Performance evaluation of the NVIDIA V100 GPU (left) and the NVIDIA A100 GPU (right) using the BabelStream benchmark (top) and the mixbench
benchmark (bottom).

1

10

100

1000

10−1 100 101 102 103

Array Size (MB)

G
B

/s

Function
Add
Copy
Dot
Mul
Triad

1

10

100

1000

10−1 100 101 102 103

Array Size (MB)

G
B

/s

Function
Add
Copy
Dot
Mul
Triad

100

500

1000

5000

10000

20000

50000

10−1 100 101 102

Flops/byte

G
F

lo
ps

/s Type
double
float
half

100

500

1000

5000

10000

20000

50000

10−1 100 101 102

Flops/byte

G
F

lo
ps

/s Type
double
float
half

Figure 7: Performance evaluation of the AMD RadeonVII GPU (left) and the AMD MI100 GPU (right) using the BabelStream benchmark (top) and the mixbench
benchmark (bottom).

11

1

10

100

1000

10−1 100 101 102 103

Array Size (MB)

G
B

/s

Function
Add
Copy
Dot
Mul
Triad

Figure 8: Performance evaluation of the Intel Gen. 9 GPU using the Babel-
Stream benchmark.

For the general GPU cores, the peak performance of the A100 is
for IEEE754 double precision and single precision about 1.2×
the V100 performance. For IEEE754 half precision, the perfor-
mance improvements are larger, approaching almost 2.5×, see750

the bottom row in Figure 6.
The two AMD GPU architectures we consider are compa-

rable in their measured bandwidth: 850 GB/s for the AMD
RadeonVII GPU vs 1,000 GB/s for the AMD MI100 GPU, see
the top row in Figure 7. At the same time, they significantly755

differ in their arithmetic performance, see the bottom row in
Figure 7.

At the time of writing the mixbench benchmark does not
provide a DPC++ version for the execution on Intel GPUs. Thus,
in Figure 8, we only report the bandwidth performance of the760

considered Intel Gen. 9 GPU. We note that the performance
for the dot kernel is about 10% below the maximum achievable
bandwidth. For the other operations, the bandwidth plateaus for
array sizes exceeding 100 MB at a rate of 35 GB/s.

6.1. Ginkgo SpMV performance765

We first investigate the performance GINKGO’s sparse matrix-
vector product kernels (SpMV) kernels achieve on the distinct
executors. For this, we use matrices from the complete Suite
Sparse Matrix Collection [34] as a benchmark and run a set
of heavily tuned sparse matrix-vector product kernels on the770

distinct architectures. All computations use double precision
arithmetic. The distinct SpMV kernels differ in terms of how
they store the sparse matrix and which processing strategy they
apply [35]. In general, we may expect a performance peak of
(memory bandwidth) / (8byte/entry + 4 byte/entry + 4 byte/en-775

try) * 2 ops/entry = (memory bandwidth) / 8 for the COO SpMV
kernels, and (memory bandwidth) / 6 for the CSR kernel. For
a better evaluation, we report the performance relative to the
theoretical peak bandwidth for the machine, see Table 1.

In Figure 9 we report the performance of different SpMV780

kernels taken from either GINKGO or the vendor library (NVIDIA
cuSPARSE [36]) on the NVIDIA V100 GPU (left) and NVIDIA
A100 GPU (right). Each dot represents one combination of
SpMV kernel and test matrix. We cannot identify a clear win-
ner in the performance graphs, which is expected as the distinct785

kernels differ in their efficiency for the distinct problem char-
acteristics. However, we can identify the GINKGO kernels to
be competitive to the cuSPARSE SpMV kernels. The maxi-
mum performance numbers achieved are around 135 GFLOP/s
and 220 GFLOP/s on the NVIDIA V100 and NVIDIA A100790

GPUs, which amount to between 80 and 90% of the theoretical
machine bandwidth. We notice that this performance difference
exceeds the expectations based on the bandwidth improvements
of 1.5× but remains close to the machine limits.

In Figure 10, we present performance results obtained from795

running SpMV benchmarks on AMD hardware, the AMD Radeon-
VII GPU (left), and the AMD MI100 GPU (right). We use the
same experimental setup and again include both SpMV routines
from the vendor library (hipSPARSE [31]) and from GINKGO.
For both architectures, there is no clear performance winner,800

but we recognize GINKGO’s SpMV kernels being highly com-
petitive to the vendor library hipSPARSE. We observe that the
GINKGO and hipSPARSE CSR SpMV kernels achieve up to
110 GFLOP/s on the AMD RadeonVII GPU and up to 138
GFLOP/s on the AMD MI100 GPU, or about 60 to 70% of805

the machine theoretical bandwidth. We advertise that the roc-
SPARSE library may provide higher performance than hipSPARSE,
but we report the performance of the latter since our library fo-
cuses on the portable HIP layer. Furthermore, we acknowledge
that the hardware and software stack for the AMD MI100 GPU810

is still under active development, and further performance in-
creases can be expected.

Figure 11 presents the performance results we obtain from
running the GINKGO SpMV on the Intel Gen. 9 GPU. As ex-
pected from the significantly lower bandwidth, the SpMV per-815

formance is only a fraction of the performance achieved on
AMD and NVIDIA performance, which is expected given the
embedded design of the Gen. 9 GPU. However, with a peak
of 5 GFLOP/s for the GINKGO CSR SpMV kernel, the perfor-
mance is close to the bandwidth-induced theoretical peak. We820

also note that the GINKGO SpMV generally outperforms the
Intel MKL CSR SpMV.

6.2. Ginkgo solver performance
Next, we assess the performance GINKGO’s Krylov sub-

space solvers achieve on recent hardware architectures from825

AMD, NVIDIA, and Intel using the respective hardware-native
executors. For the performance evaluation, we select 10 test
matrices that are different in size and origin to cover a wide
spectrum of applications. We note that all Krylov solvers we
consider are memory-bound and that the performance is hence830

limited by the memory bandwidth. All solvers are run for 10,000
iterations to account for machine noise. The GINKGO solvers
employ the GINKGO COO SpMV for generating the Krylov
subspace. Like in the SpMV results, we report the performance
relative to the theoretical GPU memory bandwidth.835

As the CUDA executor was developed as GINKGO’s first
high-performance GPU backend, we report in Figure 12 the
performance of a subset of GINKGO’s Krylov solvers on the
NVIDIA V100 GPU (left) and the newer NVIDIA A100 GPU
(right). We observe that on both V100 and A100 architectures,840

the results are between 60 and 80% of the peak bandwidth.

12

Figure 9: Performance of the GINKGO and cuSPARSE SpMV on the NVIDIA V100 GPU (left) and the NVIDIA A100 GPU (right).

Figure 10: Performance of the GINKGO and hipSPARSE SpMV on the AMD RadeonVII GPU (left) and the AMD MI100 GPU (right).

Figure 11: Performance of the GINKGO SpMV and the Intel MKL SpMV on
the Intel Gen. 9 GPU.

On the A100, the first three matrices benefit from some cache
effects (namely, the orthogonalization) which allows them to
reach above 90% of the peak performance.

Even though originally focused on NVIDIA GPU execution845

via the CUDA executor, we can from the similarity in architec-
ture design expect the algorithms to achieve high-efficiency val-
ues also on the AMD architectures. In Figure 13 we report the
GINKGO Krylov solver performance on the AMD Radeon VII
GPU (left) and the AMD MI100 GPU (right). These results are850

obtained using the HIP executor designed for AMD backends.

Aside from the hardware-specific parameter configurations, the
HIP kernels invoked by the Krylov solvers are very similar to
the CUDA kernels used by the CUDA executor. The evalua-
tion on the AMD RadeonVII GPU reveals the same problem-855

specific performance variation that we observed in the CUDA
backend evaluation. On both RadeonVII and MI100 architec-
tures, the solvers can reach more than 50% of the theoretical
bandwidth. We acknowledge that the HIP executor achieves a
smaller fraction of the theoretical performance bound, however,860

these results are in line with the SpMV performance observed
in Figure 10.

The results in Figure 14 reveal the actual performance re-
sults being between 30 and 50% of the theoretical bandwidth
on the Intel Gen. 9 GPU. This may be attributed to GINKGO’s865

DPC++ executor being in his early stages, and the oneAPI ecosys-
tem still being under development. We, again, note that the Intel
Gen. 9 GPU is an integrated GPU, and not expected to achieve
high performance. The purpose of this exercise is rather to show
the validity of GINKGO’s design, and the technology readiness870

for the Intel high-end GPU platform to come.

7. Summary and Outlook

In this paper, we elaborate on how GINKGO tackles plat-
form portability by separating the numerical core from the hardware-

13

Figure 12: Krylov solver performance of the GINKGO CUDA backend on the NVIDIA V100 GPU (left) and the NVIDIA A100 GPU (right).

Figure 13: Krylov solver performance of the GINKGO HIP backend on the AMD RadeonVII GPU (left) and the AMD MI100 GPU (right).

Figure 14: Krylov solver performance of the GINKGO DPC++ backend on the
Intel Gen. 9 GPU.

specific backends. We discuss how we adopt the execution875

space to NVIDIA GPUs via the CUDA language, AMD GPUs
via the HIP language, and Intel GPUs via the DPC++ language.
We also report performance results for running basic sparse
linear algebra operations and complete Krylov solvers on the
newest hardware architectures from these vendors, and demon-880

strate GINKGO’s performance portability and identify GINKGO’s
sparse matrix-vector product being highly competitive or even
outperforming the vendor libraries.

Acknowledgments This work was supported by the US Ex-
ascale Computing Project (17-SC-20-SC), a collaborative effort885

of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration. This work was per-
formed on the HoreKa supercomputer funded by the Ministry
of Science, Research and the Arts Baden-Württemberg and by
the Federal Ministry of Education and Research.890

References

[1] D. Arndt, W. Bangerth, T. C. Clevenger, D. Davydov, M. Fehling,
D. Garcia-Sanchez, G. Harper, T. Heister, L. Heltai, M. Kronbichler,
R. M. Kynch, M. Maier, J.-P. Pelteret, B. Turcksin, D. Wells, The
deal.II Library, Version 9.1, Journal of Numerical Mathematics 27 (4)895

(2019) 203–213. doi:10.1515/jnma-2019-0064.
URL https://dealii.org/deal91-preprint.pdf

[2] The Trilinos Project Team, The Trilinos Project WebsiteAccessed on
2021/09/03 (2020).
URL https://trilinos.github.io900

[3] R. R. Schaller, Moore’s Law: Past, Present, and Future, IEEE Spectr.
34 (6) (1997) 52–59. doi:10.1109/6.591665.
URL https://doi.org/10.1109/6.591665

[4] H. Sutter, The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software, Dr. Dobb’s Journal 30 (3) (2005) 202–210.905

URL http://www.gotw.ca/publications/concurrency-ddj.

htm

[5] H. Anzt, T. Cojean, Y.-C. Chen, G. Flegar, F. Göbel, T. Grützmacher,
P. Nayak, T. Ribizel, Y.-H. Tsai, Ginkgo: A High Performance Numerical
Linear Algebra Library, Journal of Open Source Software 5 (52) (2020)910

2260. doi:10.21105/joss.02260.
URL https://doi.org/10.21105/joss.02260

14

https://dealii.org/deal91-preprint.pdf
https://dealii.org/deal91-preprint.pdf
https://dealii.org/deal91-preprint.pdf
https://doi.org/10.1515/jnma-2019-0064
https://dealii.org/deal91-preprint.pdf
https://trilinos.github.io
https://trilinos.github.io
https://doi.org/10.1109/6.591665
https://doi.org/10.1109/6.591665
https://doi.org/10.1109/6.591665
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
https://doi.org/10.21105/joss.02260
https://doi.org/10.21105/joss.02260
https://doi.org/10.21105/joss.02260
https://doi.org/10.21105/joss.02260
https://doi.org/10.21105/joss.02260

[6] P. J. Brown, Levels of Language for Portable Software, Communica-
tions of the ACM 15 (12) (1972) 1059–1062. doi:10.1145/361598.

361624.915

URL https://doi.org/10.1145/361598.361624

[7] A. Sidelnik, S. Maleki, B. L. Chamberlain, M. J. Garzar’n, D. Padua,
Performance Portability with the Chapel Language, in: 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, 2012. doi:
10.1109/ipdps.2012.60.920

URL https://doi.org/10.1109/ipdps.2012.60

[8] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Puschel, J. C. Hoe, J. M. F. Moura, Spiral: Extreme
Performance Portability, Proceedings of the IEEE 106 (11) (2018) 1935–
1968. doi:10.1109/jproc.2018.2873289.925

URL https://doi.org/10.1109/jproc.2018.2873289

[9] A. Gray, K. Stratford, A Lightweight Approach To Performance Porta-
bility With Targetdp, The International Journal of High Performance
Computing Applications 32 (2) (2016) 288–301. doi:10.1177/

1094342016682071.930

URL https://doi.org/10.1177/1094342016682071

[10] H. Carter Edwards, C. R. Trott, D. Sunderland, Kokkos: Enabling many-
core performance portability through polymorphic memory access pat-
terns, J. Parallel Distrib. Comput. 74 (12) (2014) 3202–3216. doi:

10.1016/j.jpdc.2014.07.003.935

URL https://doi.org/10.1016/j.jpdc.2014.07.003

[11] D. Beckingsale, R. Hornung, T. Scogland, A. Vargas, Performance
Portable C++ Programming with RAJA, in: Proceedings of the 24th Sym-
posium on Principles and Practice of Parallel Programming, PPoPP ’19,
Association for Computing Machinery, New York, NY, USA, 2019, p.940

455–456. doi:10.1145/3293883.3302577.
URL https://doi.org/10.1145/3293883.3302577

[12] Khronos Group, SYCL programming framework, https://www.

khronos.org/sycl/, accessed on 2021/09/03 (2014).
[13] Khronos Group, OpenCL programming framework, https://www.945

khronos.org/opencl/, accessed on 2021/09/03 (2009).
[14] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,

R. Riddle, T. Shpeisman, N. Vasilache, O. Zinenko, Mlir: Scaling com-
piler infrastructure for domain specific computation, in: 2021 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO),950

2021, pp. 2–14. doi:10.1109/CGO51591.2021.9370308.
[15] T. Deakin, S. McIntosh-Smith, J. Price, A. Poenaru, P. Atkinson, C. Popa,

J. Salmon, Performance Portability across Diverse Computer Architec-
tures, in: 2019 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), 2019. doi:10.1109/955

p3hpc49587.2019.00006.
URL https://doi.org/10.1109/p3hpc49587.2019.00006

[16] A. Poenaru, W.-C. Lin, S. McIntosh-Smith, A Performance Analysis of
Modern Parallel Programming Models Using a Compute-Bound Appli-
cation, in: Chamberlain, Bradford L. and Varbanescu, Ana-Lucia and960

Ltaief, Hatem and Luszczek, Piotr (Ed.), High Performance Computing,
Springer International Publishing, Cham, 2021, pp. 332–350.

[17] J. Sewall, S. J. Pennycook, D. Jacobsen, T. Deakin, S. McIntosh-
Smith, Interpreting and Visualizing Performance Portability Metrics, in:
2020 IEEE/ACM International Workshop on Performance, Portability965

and Productivity in HPC (P3HPC), 2020, pp. 14–24. doi:10.1109/

P3HPC51967.2020.00007.
URL https://doi.org/10.1109/P3HPC51967.2020.00007

[18] C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh, Basic Linear
Algebra Subprograms for Fortran Usage, ACM Trans. Math. Softw. 5 (3)970

(1979) 308–323. doi:10.1145/355841.355847.
URL https://doi.org/10.1145/355841.355847

[19] C. L. Lawson, Background, Motivation and a Retrospective View of the
BLAS, in: Proceedings of the Ninth SIAM Conference on Parallel Pro-
cessing for Scientific Computing, PPSC 1999, San Antonio, Texas, USA,975

March 22-24, 1999, SIAM, 1999.
[20] MPI Forum, MPI: A Message-Passing Interface Standard, Tech. rep.,

University of Tennessee, USA (1994).
[21] J. D. Mooney, Developing Portable Software, Information Technol-

ogy, Kluwer Academic Publishers, nil, pp. 55–84. doi:10.1007/980

1-4020-8159-6_3.
URL https://doi.org/10.1007/1-4020-8159-6_3

[22] R. T. Mills, M. F. Adams, S. Balay, J. Brown, A. Dener, M. G. Kne-

pley, S. E. Kruger, H. Morgan, T. Munson, K. Rupp, B. F. Smith,
S. Zampini, H. Zhang, J. Zhang, Toward Performance-Portable PETSc for985

GPU-Based Exascale Systems, CoRR abs/2011.00715 (2020). arXiv:

2011.00715.
URL https://arxiv.org/abs/2011.00715

[23] NVIDIA Corporation, libcu++: the NVIDIA C++ Standard Library,
https://nvidia.github.io/libcudacxx/, accessed on 2021/06/19990

(2020).
[24] Intel Corporation, oneDPL, https://software.intel.com/

content/www/us/en/develop/tools/oneapi/components/

dpc-library.html, accessed on 2021/06/19 (2021).
[25] D. S. Hollman, B. A. Lelbach, H. C. Edwards, M. Hoemmen, D. Sun-995

derland, C. R. Trott, mdspan in C++: A Case Study in the Integration
of Performance Portable Features into International Language Standards,
in: 2019 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2019. doi:10.1109/p3hpc49587.
2019.00011.1000

URL https://doi.org/10.1109/p3hpc49587.2019.00011

[26] Google Inc., Googletest, https://google.github.io/

googletest/, accessed on 2021/09/03 (2008).
[27] Y. M. Tsai, T. Cojean, H. Anzt, Sparse linear algebra on AMD and

NVIDIA GPUs–the race is on, in: International Conference on High Per-1005

formance Computing, Springer, Cham, 2020, pp. 309–327.
[28] Y. M. Tsai, T. Cojean, T. Ribizel, H. Anzt, Preparing Ginkgo for AMD

GPUs–A Testimonial on Porting CUDA Code to HIP, arXiv preprint
arXiv:2006.14290 (2020).

[29] B. Ashbaugh, A. Bader, J. Brodman, J. Hammond, M. Kinsner, J. Penny-1010

cook, R. Schulz, J. Sewall, Data Parallel C++: Enhancing SYCL Through
Extensions for Productivity and Performance, in: Proceedings of the In-
ternational Workshop on OpenCL, IWOCL ’20, Association for Comput-
ing Machinery, New York, NY, USA, 2020. doi:10.1145/3388333.

3388653.1015

URL https://doi.org/10.1145/3388333.3388653

[30] H. Anzt, T. Cojean, G. Flegar, F. Goebel, T. Gruetzmacher, P. Nayak,
T. Ribizel, Y.-H. Tsai, E. S. Quintana-Orti, Ginkgo: A Modern Linear
Operator Algebra Framework for High Performance Computing, arXiv
preprint arXiv:2006.16852 (2020).1020

[31] AMD Corporation, HIP: C++ Heterogeneous-Compute Interface
for Portability, https://github.com/ROCm-Developer-Tools/HIP,
accessed on 2021/09/03 (2016).

[32] E. Konstantinidis, Y. Cotronis, A quantitative roofline model for GPU ker-
nel performance estimation using micro-benchmarks and hardware metric1025

profiling, Journal of Parallel and Distributed Computing 107 (2017) 37 –
56. doi:https://doi.org/10.1016/j.jpdc.2017.04.002.
URL http://www.sciencedirect.com/science/article/pii/

S0743731517301247

[33] Evaluating Attainable Memory Bandwidth of Parallel Programming1030

Models via BabelStream, Int. J. Comput. Sci. Eng. 17 (3) (2018) 247–262.
[34] SuiteSparse Matrix Collection, https://sparse.tamu.edu, accessed

on 2019/03/29 (2019).
[35] H. Anzt, T. Cojean, C. Yen-Chen, J. Dongarra, G. Flegar, P. Nayak, S. To-

mov, Y. M. Tsai, W. Wang, Load-Balancing Sparse Matrix Vector Prod-1035

uct Kernels on GPUs, ACM Transactions on Parallel Computing (TOPC)
7 (1) (2020) 1–26.

[36] NVIDIA Corporation, CUDA Toolkit, https://developer.nvidia.
com/cuda-zone, accessed on 2021/09/03 (2007).

15

https://doi.org/10.1145/361598.361624
https://doi.org/10.1145/361598.361624
https://doi.org/10.1145/361598.361624
https://doi.org/10.1145/361598.361624
https://doi.org/10.1145/361598.361624
https://doi.org/10.1109/ipdps.2012.60
https://doi.org/10.1109/ipdps.2012.60
https://doi.org/10.1109/ipdps.2012.60
https://doi.org/10.1109/ipdps.2012.60
https://doi.org/10.1109/ipdps.2012.60
https://doi.org/10.1109/jproc.2018.2873289
https://doi.org/10.1109/jproc.2018.2873289
https://doi.org/10.1109/jproc.2018.2873289
https://doi.org/10.1109/jproc.2018.2873289
https://doi.org/10.1109/jproc.2018.2873289
https://doi.org/10.1177/1094342016682071
https://doi.org/10.1177/1094342016682071
https://doi.org/10.1177/1094342016682071
https://doi.org/10.1177/1094342016682071
https://doi.org/10.1177/1094342016682071
https://doi.org/10.1177/1094342016682071
https://doi.org/10.1177/1094342016682071
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1016/j.jpdc.2014.07.003
https://doi.org/10.1145/3293883.3302577
https://doi.org/10.1145/3293883.3302577
https://doi.org/10.1145/3293883.3302577
https://doi.org/10.1145/3293883.3302577
https://doi.org/10.1145/3293883.3302577
https://www.khronos.org/sycl/
https://www.khronos.org/sycl/
https://www.khronos.org/sycl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/p3hpc49587.2019.00006
https://doi.org/10.1109/p3hpc49587.2019.00006
https://doi.org/10.1109/p3hpc49587.2019.00006
https://doi.org/10.1109/p3hpc49587.2019.00006
https://doi.org/10.1109/p3hpc49587.2019.00006
https://doi.org/10.1109/p3hpc49587.2019.00006
https://doi.org/10.1109/p3hpc49587.2019.00006
https://doi.org/10.1109/P3HPC51967.2020.00007
https://doi.org/10.1109/P3HPC51967.2020.00007
https://doi.org/10.1109/P3HPC51967.2020.00007
https://doi.org/10.1109/P3HPC51967.2020.00007
https://doi.org/10.1109/P3HPC51967.2020.00007
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1007/1-4020-8159-6_3
https://doi.org/10.1007/1-4020-8159-6_3
https://doi.org/10.1007/1-4020-8159-6_3
https://doi.org/10.1007/1-4020-8159-6_3
https://doi.org/10.1007/1-4020-8159-6_3
https://arxiv.org/abs/2011.00715
https://arxiv.org/abs/2011.00715
https://arxiv.org/abs/2011.00715
http://arxiv.org/abs/2011.00715
http://arxiv.org/abs/2011.00715
http://arxiv.org/abs/2011.00715
https://arxiv.org/abs/2011.00715
https://nvidia.github.io/libcudacxx/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-library.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-library.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-library.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-library.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/dpc-library.html
https://doi.org/10.1109/p3hpc49587.2019.00011
https://doi.org/10.1109/p3hpc49587.2019.00011
https://doi.org/10.1109/p3hpc49587.2019.00011
https://doi.org/10.1109/p3hpc49587.2019.00011
https://doi.org/10.1109/p3hpc49587.2019.00011
https://doi.org/10.1109/p3hpc49587.2019.00011
https://doi.org/10.1109/p3hpc49587.2019.00011
https://google.github.io/googletest/
https://google.github.io/googletest/
https://google.github.io/googletest/
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1145/3388333.3388653
https://doi.org/10.1145/3388333.3388653
https://github.com/ROCm-Developer-Tools/HIP
http://www.sciencedirect.com/science/article/pii/S0743731517301247
http://www.sciencedirect.com/science/article/pii/S0743731517301247
http://www.sciencedirect.com/science/article/pii/S0743731517301247
http://www.sciencedirect.com/science/article/pii/S0743731517301247
http://www.sciencedirect.com/science/article/pii/S0743731517301247
https://doi.org/https://doi.org/10.1016/j.jpdc.2017.04.002
http://www.sciencedirect.com/science/article/pii/S0743731517301247
http://www.sciencedirect.com/science/article/pii/S0743731517301247
http://www.sciencedirect.com/science/article/pii/S0743731517301247
https://sparse.tamu.edu
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone

	Introduction
	Platform Portability
	The Levels of Portability
	Writing Performance Portable Applications

	Developing Gingko using Platform Portability as Central Design Paradigm
	Adopting AMD GPUs
	Adopting Intel GPUs
	Performance Survey
	Ginkgo SpMV performance
	Ginkgo solver performance

	Summary and Outlook

