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In this paper, we present Ginkgo, a modern C++ math library for scientific high performance computing.
While classical linear algebra libraries act on matrix and vector objects, Ginkgo’s design principle abstracts
all functionality as “linear operators,” motivating the notation of a “linear operator algebra library.” Ginkgo’s
current focus is oriented towards providing sparse linear algebra functionality for high performance GPU
architectures, but given the library design, this focus can be easily extended to accommodate other algorithms
and hardware architectures. We introduce this sophisticated software architecture that separates core algo-
rithms from architecture-specific backends and provide details on extensibility and sustainability measures.
We also demonstrate Ginkgo’s usability by providing examples on how to use its functionality inside the
MFEM and deal.ii finite element ecosystems. Finally, we offer a practical demonstration of Ginkgo’s high
performance on state-of-the-art GPU architectures.
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Fig. 1. Ginkgo library architecture separating the core containing the algorithms from architecture-specific

backends.
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1 INTRODUCTION
With the rise of manycore accelerators, such as graphics processing units (GPUs), there is an
increasing demand for linear algebra libraries that can efficiently transform the massive hardware
concurrency available in a single compute node into high arithmetic performance. At the same
time, more and more application projects adopt object-oriented software designs based on C++.
In this paper, we present the result from our effort toward the design and development of

Ginkgo [14], a next-generation, high performance sparse linear algebra library for multicore and
manycore architectures. The library combines ecosystem extensibility with heavy, architecture-
specific kernel optimization using the platform-native languages CUDA (for NVIDIA GPUs), HIP
(for AMD GPUs), and OpenMP (for general-purpose multicore processors, such as those from
Intel, AMD or ARM). The software development cycle that drives Ginkgo ensures production-
quality code by featuring unit testing, automated configuration and installation, Doxygen1 code
documentation, as well as a continuous integration and continuous benchmarking framework.
Ginkgo is an open source effort licensed under the BSD 3-clause.2
The object-oriented Ginkgo library is constructed around two principal design concepts. The

first principle, aiming at future technology readiness, is to consequently separate the numerical
algorithms from the hardware-specific kernel implementation to ensure correctness (via comparison
with sequential reference kernels), performance portability (by applying hardware-specific kernel
optimizations), and extensibility (via kernel backends for other hardware architectures), see Figure 1.
The second design principle, aiming at user-friendliness, is the convention to express functionality

1http://www.doxygen.nl/
2https://opensource.org/licenses/BSD-3-Clause
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Fig. 2. Ginkgo’s class hierarchy showcasing the main namespaces (colored boxes) and classes (gray boxes)

for Ginkgo.

in terms of linear operators: every solver, preconditioner, factorization, matrix-vector product, and
matrix reordering is expressed as a linear operator (or composition thereof).
The rest of the paper is organized as follows. In Section 2, we leverage a simple use case to

motivate the design choices underlying Ginkgo, and elaborate on the concept of linear operators,
memory management, hardware-specific kernel optimization, and event logging. Section 3 provides
additional details on Ginkgo’s current solvers, realizations for the sparse matrix-vector product
(SpMV) kernel, and preconditioner capabilities. Section 4 elaborates on how the design allows for
easy extension, so that users can contribute new algorithmic technology or additional hardware
backends. As many applications are in desperate need for high performance sparse linear algebra
technology, Section 5 showcases the usage of Ginkgo as a backend library in scientific applications,
and also reviews Ginkgo’s integration into the extreme-scale Software Development Kit (xSDK).
In Section 6, we describe how Ginkgo’s design and development cycle promotes sustainable
software development; and in Section 7, we offer representative performance results indicating
Ginkgo’s competitiveness for sparse linear algebra on high-end GPU architectures. We conclude
in Section 8 with a summary of the paper and the potential of the library design becoming a role
model for future developments.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: December 2022.
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2 AN OVERVIEW OF GINKGO’S DESIGN
Figure 2 displays Ginkgo’s rich class hierarchy together with its main namespaces and classes.
To better understand the role of each object, this section introduces Ginkgo’s interface using a
minimal, concrete example as a starting point, and gradually presenting more advanced abstractions
that demonstrate Ginkgo’s high composability and extensibility. These abstractions include:

• the LinOp and LinOpFactory classes which are used to implement and compose linear
algebra operations,

• the Executor classes that allow transparent algorithm execution on multiple devices; and
• other utilities such as the Criterion classes, which control the iteration process, as well as
the memory passing decorators that allow fine-grained control of how memory objects are
passed between different components of the library and the application.

2.1 Ginkgo usage example
Figure 3 illustrates the specific flowchart Ginkgo uses to solve a linear system, highlighting the
interactions between Ginkgo’s classes. In the program code for this example given in Listing 1, the
system matrix A, the right-hand side b, and the initial solution guess x, are initially read from the
standard input using Ginkgo’s ‘read’ utility (lines 10–12). Next, the program creates a factory for a
CG Krylov solver preconditioned with a block-Jacobi scheme (lines 14–16). The solver is configured
to stop either after 20 iterations or having improved the original residual by 15 orders of magnitude
(lines 17–20). (Stopping criteria are further discussed in Section 2.5.) The system matrix is bound to
the iterative solver, which is used to solve the system with the right-hand side and initial guess.
The initial guess is overwritten with the computed solution (line 24). Solvers (and more generally
LinOp and LinOpFactory) are discussed in detail in Section 2.2. Finally, the solution is printed to
the standard output (line 26).

1 #include <iostream >
2 #include <ginkgo/ginkgo.hpp >
3
4 int main()
5 {
6 // Instantiate a CUDA executor
7 auto omp = gko:: OmpExecutor :: create ();
8 auto exec = gko:: CudaExecutor :: create(0, omp);
9 // Read data
10 auto A = gko::read <gko:: matrix ::Csr <>>(std::cin , exec);
11 auto b = gko::read <gko:: matrix ::Dense <>>(std::cin , exec);
12 auto x = gko::read <gko:: matrix ::Dense <>>(std::cin , exec);
13 // Create the solver factory
14 auto solver_factory =
15 gko:: solver ::Cg <>::build()
16 .with_preconditioner(gko:: preconditioner ::Jacobi <>::build().on(exec))
17 .with_criteria(
18 gko::stop:: Iteration ::build().with_max_iters (20u).on(exec),
19 gko::stop:: ResidualNormReduction <>::build()
20 .with_reduction_factor (1e-15)
21 .on(exec))
22 .on(exec);
23 // Create the solver from the factory and solve the system
24 solver_factory ->generate(gko::give(A))->apply(gko::lend(b), gko::lend(x));
25 // Write result
26 write(std::cout , gko::lend(x));
27 }

Listing 1. A minimal example that uses Ginkgo to solve a linear system. The system matrix, right-hand side,

and the initial solution guess are read from the standard input. The system is solved on an NVIDIA-enabled

GPU using the CG method enhanced with a block-Jacobi preconditioner. Two stopping criteria are combined

to limit the maximum number of iterations and set the desired relative error. The solution is written to the

standard output.

Ginkgo supports execution on GPU and CPU architectures using different backends (currently,
CUDA, HIP, and OpenMP). To accommodate this, when creating an object, the user passes an

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: December 2022.
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Fig. 3. Flowchart providing an alternative view of the code example shown in Listing 1. All object interactions

are represented by arrows. The colors correspond to the type of the objects following the color convention in

Figure 2.

instance of an Executor in order to specify where the data for that object should be stored and the
operations on that data should be performed. The particular example in Listing 1 creates a CUDA
Executor (line 7) that employs the first GPU device (the one returned by the cudaGetDevice()
method). Since CUDA GPU accelerators are controlled by the CPU, an OpenMP Executor is needed
to orchestrate the execution on the GPU. (Section 2.3 describes the executors model in more detail.)

Ginkgo avoids expensive memory movement and copies. At the same time, sharing data between
different modules in the code might cause unexpected results (e.g., one module changes a matrix
used by a solver in a different module, which causes that solver to tackle the wrong system). Ginkgo
resolves the dilemma by allowing both shared and exclusive (unique) ownership of the objects.
This comes at the price of some verbosity in argument passing: in most cases, plain arguments
cannot be passed directly, but have to be wrapped in special “decorator” functions that specify in
which “mode” they are passed (shared, copied, etc.).

The minimal example in Listing 1 already utilizes two of the decorator functions, gko::give and
gko::lend, both in line 23. The first one, gko::give(A), causes the caller to yield the ownership of
matrix A to the solver, leaving the caller’s version of A in a valid, but undefined state (e.g., accessing
any of its methods is not defined, but the object can still be de-allocated or assigned to). The second
decorator, appearing twice, in gko::lend(x) and gko::lend(b), “lends” objects x and b to the
solver by temporarily passing ownership to it until the control flow returns from apply back to the
caller. This is a special ownership mode that is only used when the callee does not need permanent
ownership of the object. Different ownership modes, as well as their relation to std::move are
discussed in Section 2.4.

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: December 2022.
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2.2 LinOp and LinOpFactory

2.2.1 Motivation. Ginkgo exposes an application programming interface (API) that allows to
easily combine different components for the iterative solution of linear systems: solvers, matrix
formats, preconditioners, etc. The API enables running distinct iterative solvers and enhancing the
solvers with different types of preconditioners. A preconditioner can be a matrix or even another
solver. Furthermore, the system matrix does not need to be stored explicitly in memory, but can
be available only as a function that is applied to a vector to compute a matrix-vector product
(matrix-free). The objective of providing a clean and easy-to-use interface mandates that all these
special cases are uniformly realized in the API.
The central observation that guides Ginkgo’s design is that the operations and interactions

between the solver, the system matrix, and the preconditioner can be represented as the application
of linear operators:
(1) The major operation that an iterative solver performs on the system matrix A is the mul-

tiplication with a vector (realized as a Matrix-Vector product, or MV). This operation can
be viewed as the application of the induced linear operator 𝐿𝐴 : 𝑧 ↦→ 𝐴𝑧. In some cases,
multiplication with the transpose is also needed, which is yet another application of a linear
operator 𝐿𝐴𝑇 : 𝑧 ↦→ 𝐴𝑇𝑧.

(2) The solver itself solves a system 𝐴𝑥 = 𝑏, which is the application of the linear operator
𝑆𝐴 : 𝑏 ↦→ 𝐴−1𝑏 (= 𝑥). Here, the term “solver” is not used to denote a function 𝑓 that takes
𝐴 and 𝑏 as inputs and produces 𝑥 , but instead a function with the system matrix 𝐴 already
fixed (that is, 𝑆𝐴 = 𝑓 (𝐴 , ·)).

(3) The application of the preconditioner𝑀 , as in 𝑣 = 𝑀−1𝑢, can be viewed as the application of
the linear operator 𝑃𝑀 : 𝑢 ↦→ 𝑀−1𝑢 (= 𝑣).

There are several remarks that have to be made regarding the observations above. First, in the
context of numerical computations, with finite precision arithmetic, the term “linear operator”
should be understood loosely. In fact, none of the previous categories strictly satisfy the linearity
definition of the linear operator: 𝐿(𝛼𝑥 + 𝛽𝑦) = 𝛼𝐿(𝑥) + 𝛽𝐿(𝑦), where 𝛼, 𝛽 are scalars and 𝑥,𝑦

denote vectors. Instead, they are just approximations of the linear operators that satisfy the formula
𝐿(𝛼𝑥 + 𝛽𝑦) = 𝛼𝐿(𝑥) + 𝛽𝐿(𝑦) + 𝐸, where the error term 𝐸 = 𝐸 (𝐿, 𝛼, 𝛽, 𝑥,𝑦) is the result of one or
more of the following effects:
(1) rounding errors introduced by storing non-representable values in floating-point format;
(2) rounding errors introduced by finite-precision floating-point arithmetic;
(3) instability and inaccuracy of the method used to apply the linear operator to a vector; and
(4) inexact operator application, e.g. only few iterations of an iterative linear solver.
The data layout and the implementation of any linear operator is internal to that operator, and

the interface does not expose implementation details. For example, a direct solver could store its
matrix data in factored form, as two triangular factors (e.g., 𝐴 = 𝐿𝑈 ) and implement its application
as two triangular solves (with 𝐿 and𝑈 ). In contrast, an iterative solver could just store the original
system matrix, and the entire implementation of the method could be a part of the linear operator
application. Nonetheless, both operators can still expose the same public interface.

2.2.2 LinOp. In coherence with the observations in Section 2.2.1, the central abstraction in
Ginkgo’s design is the abstract class (interface) LinOp, which represents the mathematical concept
of a linear operator. All concrete linear operators (solvers, matrix formats, preconditioners) are
instances of LinOp. Furthermore, this generic operator 𝐿 exposes a pure virtual method apply(b, x)
that is overridden by a concrete linear operator with an implementation that computes the result
𝑥 = 𝐿(𝑏) with conformal dimensions for 𝐿, 𝑥 and 𝑏, where vectors are interpreted as dense matrices

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: December 2022.
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of dimension 𝑛 × 1. This design enables that a single interface can be leveraged to compute an MV
with different matrix formats, the application of distinct types of preconditioners, the solution of
linear systems using various solvers, or even the application of a user-defined linear operator.
Using the LinOp abstraction, an iterative solver can be implemented via references to other

LinOps that represent the system matrix and the preconditioner. The solver does not have to be
aware of the type of the matrix or the preconditioner — it is sufficient to know that they are both
conformal with the LinOp interface. This means that the same implementation of the solver can
be configured to integrate various preconditioners and matrices. Furthermore, the linear operator
abstraction can also be used to compose “cascaded” solvers where the preconditioner can be replaced
by another, less accurate solver, or even to create matrix-free methods by supplying a specialized
operator as the system matrix, without explicitly storing the matrix.

2.2.3 LinOpFactory. LinOp exposes a uniform interface to different types of linear algebra
operations. A missing piece in the puzzle is how these LinOps are created in the first place. For
example, in order to solve a system with a matrix 𝐴 represented by the linear operator 𝐿𝐴, an
operation has to be provided which, given the operator 𝐿𝐴, creates a solver operator 𝑆𝐴. Similarly, to
create a preconditioner 𝑃𝐴 for a matrix 𝐴, an operator that maps 𝐿𝐴 to 𝑃𝐴 is needed. These are both
examples of higher-order (non-linear) functions that map linear operators to other linear operators
(in this case Σ : 𝐿𝐴 ↦→ 𝑆𝐴 and Φ : 𝐿𝐴 ↦→ 𝑃𝐴). Ginkgo provides an abstract class LinOpFactory that
represents mappings such as Σ and Φ. Concretely, the class LinOpFactory provides an abstract
method generate(LinOp) which, given a linear operator from the domain of the mapping, returns
the corresponding LinOp from its input.
The linear operators constructed by using operator factories are usually solvers and precon-

ditioners. For example, in order to construct a BiCGSTAB solver operator that solves a problem
with the system matrix 𝐴, represented by the operator 𝐿𝐴, one would first create a BiCGSTAB
factory (which implements the LinOpFactory interface and represents the operator 𝑆); and then
call generate on 𝑆 , passing the operator 𝐿𝐴 as input, to obtain a BiCGSTAB operator 𝑆𝐴, with the
system matrix, 𝐴.
Some factories are designed to be combined with other factories. For instance, to create an

iterative refinement solver, which uses CG preconditioned with Jacobi as the inner solver, one
would create an iterative refinement factory 𝑆 , and as the inner solver factory, pass a CG factory
constructed with a Jacobi factory as the preconditioner factory. Then, when calling the generate
method on 𝑆 with the system matrix represented by a linear operator 𝐿𝐴, this linear operator is
propagated to the CG and Jacobi factories, to create CG and Jacobi operators with the system matrix
𝐴.

Instead of using LinOpFactory, an alternative (and more obvious) approach would have been
to just use the constructor of LinOp to provide all the “component” linear operators. However,
this alternative presents the drawback that the “type” of the operator cannot be decoupled from
its data. To illustrate this, consider the scenario of a solver 𝑆 which tackles a linear system using
the LU factorization; and then invokes two triangular solvers on the resulting 𝐿 and 𝑈 factors.
There are multiple algorithms for the solution of the triangular systems, which in Ginkgo are
represented by different linear operators. Thus, the operators to use should somehow be passed
as input parameters to the solver 𝑆 . The problem is that they cannot be constructed outside of 𝑆 ,
since their factors are not known at that point. LinOpFactory provides an elegant solution to this
problem, since instead of a LinOp, the solver 𝑆 can be provided with linear operator factories, which
are then used to construct the triangular solver operators once the factors 𝐿 and𝑈 are known.

2.2.4 Re-visiting the example. After the previous elaboration on LinOp and LinOpFactory, it is
timely to re-visit the example in Listing 1. The objects A, b and x in lines 9–11 are LinOp objects

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: December 2022.
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that store their data as “matrices” in CSR (compressed sparse row [28]) and dense matrix formats,
respectively. Calling the method apply on these objects has the effect of calculating the matrix-
vector product using that data. The solver_factory object (defined in lines 13–21), is actually
a compound LinOpFactory used to create a solver with the CG method. In this particular case,
the CG solver is preconditioned with a block-Jacobi method (specified by providing a block-Jacobi
factory as the preconditioner factory to the CG factory).
All the work actually occurs in line 23. First, the CG factory solver_factory is used to gen-

erate a linear operator object representing the CG solver by calling the generate method. Since
solver_factory has a block-Jacobi factory set as the preconditioner factory, the solver_factory’s
generatemethod invokes generate on the block-Jacobi factory; and the system matrix A is passed
as input argument, which has the effect of generating a block-Jacobi preconditioner operator for
that matrix. Then, the resulting linear operator is immediately used to solve the system by applying
it on b. This will have the effect of iterating the CG solver preconditioned with the generated
block-Jacobi preconditioner operator on the system matrix A, thus solving the system.

2.2.5 Linear operator algebra. Traditional linear algebra libraries, such as BLAS [27] and LA-
PACK [9], use vectors and matrices as basic objects, and provide operations such as matrix products
and the solution of linear systems on these objects as functions. In contrast, Ginkgo achieves
composability and extensibility (cf. Section 4) by treating linear operations as basic objects, and
providing methods to manipulate these operations in order to express the desired complex operation.
This is the principle guiding the design of Ginkgo, which motivates the title of this paper: while
other libraries can be characterized as “linear algebra libraries”, Ginkgo’s algebra is performed on
linear operators, making it a “linear operator algebra library”.

While the current focus of Ginkgo is on the iterative solution of sparse linear systems, other types
of operations on linear operators also fit into Ginkgo’s concept of LinOp and LinOpFactory. For
example, a matrix factorization 𝐴 = 𝑈𝑉 can be viewed as a linear operator factory Ψ : 𝐿𝐴 ↦→ 𝐹𝑈 ,𝑉 ,
where the linear operator 𝐹𝑈 ,𝑉 : 𝑏 ↦→ 𝑈𝑉𝑏 stores the two factors 𝑈 and 𝑉 , and provides public
methods to access the factors.

2.3 Executors for transparent kernel execution on different devices
An appealing feature of Ginkgo is the ability to run code on a variety of device architectures
transparently. In order to accommodate this functionality, Ginkgo introduces the Executor class at
its core. In consequence, the first task a user has to do when using Ginkgo is to create an Executor.

The Executor specifies the memory location and the execution space of the linear algebra objects
and represents computational capabilities of distinct devices. Currently, four executor types are
provided:

• CudaExecutor for CUDA-enabled GPUs;
• HipExecutor for HIP-enabled GPUs;
• OmpExecutor for OpenMP execution on multicore CPUs; and
• ReferenceExecutor for sequential execution on CPUs (used for checking correctness).

Each of these executors implements methods for allocating/deallocating memory on the device
targeted by that executor, copying data between executors, running operations, and synchronizing
all operations launched on the executor. These executors are single GPU, but the Ginkgo library
can be integrated into a distributed MPI setting and make use of fast kernels. In addition, several
new executors are being worked on and will come in the near future: DPC++ executors and MPI
executors. We currently also investigate the potential of a generic GPU executor that automatically
selects the right executor according to the hardware available.
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Listing 1 illustrated the use of Executor. Combined with the gko::clone(Executor, Object)
utility function, the Executor class makes it straight-forward to move all data and operations to a
host OpenMP executor, as in Listing 2. That code creates an gko::OmpExecutor object for execution
on the CPU (line 1). Next, a CUDA executor representing a GPU device with ID 0 is created (line 2);
and the system matrix data is read from a file and allocated on the gko::CudaExecutor’s device
memory (line 4). Finally, the function gko::clone creates a copy of A on the gko::OmpExecutor,
that is, in the platform’s main memory (line 6).

1 auto omp = gko:: OmpExecutor :: create ();
2 auto cuda = gko:: CudaExecutor :: create(0, omp);
3 // As in previous example , A is allocated on a CUDA device
4 auto A = gko::read <gko:: matrix ::Csr <>>("data/A.mtx", cuda);
5 // copy A to an OpenMP -capable device
6 auto A_copy = gko::clone(omp , A);
7 // All subsequent operations triggered from A_copy will use executor omp
8

Listing 2. Copy of a matrix in CSR format from a CUDA device to a CPU through the OmpExecutor.

In order to allow a transparent execution of operations on multiple executors, the kernels in
Ginkgo have separate implementations for each executor type, organized into several modules,
see Figure 1 and Figure 4 for the code distribution, respectively. The core module contains all class
definitions and non-performance critical utility functions that do not depend on an executor. In
addition, there is a module for each executor, which contains the kernels and utilities specific for
that executor. Each module is compiled as a separate shared library, which allows to mix-and-match
modules from different sources. This paves the road for hardware vendors to provide their own
proprietary modules: they only have to optimize their module, make it available in binary form,
and users can then link it with Ginkgo. We note that the similarities between HIP and CUDA allow
the usage of common template kernels that are identical in kernel design but are compiled with
architecture-specific parameters to either the HipExecutor or the CudaExecutor. This strategy
reduces code replication and favors productivity and maintainability [30].

Ginkgo contains dummy kernel implementations of all modules that throw an exception when-
ever they are called. This allows a user to deactivate certain modules if no hardware support is
available or to reduce compilation time. In general, during the configuration step, Ginkgo’s auto-
matic architecture detection activates all modules for which hardware support has been detected.

The Executor design allows switching the target device where the solver in Listing 1 is executed
through a one-line change that replaces the executor used for it. In addition, if one of the arguments
for the apply method is not on the same executor as the operator being applied, the library will
temporarily move that argument to the correct executor before performing the operation, and
return it back once the operation is complete. Even though this is done automatically, the user
may attain higher performance by explicitly moving the arguments in order to avoid unnecessary
copies (in the case, for example, of repeated kernel invocation).

2.4 Memory management
Libraries have to specify several key memory management aspects: memory allocation, data
movement and copy, and memory deallocation. In contrast to traditional libraries such as BLAS and
LAPACK, which leave memory management to the user, Ginkgo allocates/deallocates its memory
automatically, using the C++ “Resource Acquisition Is Initialization” (RAII3) concept combined
with the native allocation/deallocation functions of the executor (cf. Section 2.3). Alternatively, to
eliminate unnecessary allocations and data copies, Ginkgo’s matrix formats can be configured to
use raw data already allocated and managed by the application by using Array views.

3https://en.cppreference.com/w/cpp/language/raii
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Fig. 4. Code distribution among different modules in Ginkgo develop version 1.3.0. The entire code base in

this release is 9.0 MB (represented by the entire figure). The top level rectangles represent different top-level

directories; these are: the core (1.5 MB) module, examples (1.2 MB), the reference module (1.2 MB), the HIP
and CUDA modules (1.1 MB each), the include directory with the core module’s public headers (916 KB), the

omp module (748 KB), the common directory which contains shared HIP and CUDA kernels (472 KB) and

the doc (260 KB) and benchmark (252 KB) directories. The first rectangles in the core, CUDA, HIP, omp and

reference modules represent unit tests for these modules, which amount to 668, 464, 460, 372 and 752 KB,

respectively.

A more difficult problem is to realize data movement and copies between different entities of the
application (e.g., functions and other objects). The memory management has to not only protect
against memory leaks or invalid memory deallocations, but also avoid unnecessary data copies.
The problem is usually solved by specifying a well-defined owner for each object, responsible for
deallocating the object once it is no longer needed.
For simple C++ types, this behavior is enabled via the use of parameter qualifiers: Parameters

are passed by-value and thus copied unless explicitly declared as references (which is when they
are passed by-reference without copying). The C++11 standard added move semantics as a third
alternative where an input parameter that is either explicitly (using std::move) or implicitly (by
not having a name) designated a temporary value may move its internal data into the function
without copying, leaving it in a valid but unspecified state. However, trying to pass polymorphic
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Fig. 5. Different ways of passing polymorphic objects as parameters in Ginkgo:

gko::clone, gko::lend, gko::give, gko::share together with the lifetime of the passed object.

objects by-value would lead to object slicing [3]. In Ginkgo, we avoid these issues with polymorphic
types like Executor and LinOp by always passing and returning them as pointers. To this goal, we
use the smart pointer types std::unique_ptr and std::shared_ptr, which were added in the
C++11 standard. They provide safe resource management using RAII while still providing (almost)
the same semantics as raw pointers. Ginkgo uses pointers for parameters and return types in three
different contexts, where we say that a function parameter is used in a non-owning context if the
object will only be used during the function call, and in an owning context if the object needs to
be accessible even after the function call completed. Figure 5 shows the different ways to pass a
polymorphic object as a parameter in Ginkgo.
Functions that only need to modify a polymorphic object in a non-owning context take this

object as a raw pointer parameter T*. To simplify the interaction with smart pointers, Ginkgo
provides the overloaded gko::lend function which returns the underlying raw pointer for both
smart and raw pointers. This decorator function allows for a concise and uniform way to pass
polymorphic objects to functions without ownership transfer. “Lending” an object can be compared
with normal by-reference semantics for value types. When by-value semantics are necessary, we
can explicitly pass a copy using gko::lend(gko::clone(·)).
Functions that need to receive a polymorphic object in an owning context take this object as

a std::shared_ptr<T>. We can pass an object to such a parameter in three ways: gko::clone
creates a copy of the current object to be passed to the function (by-value), gko::give specifies that
the object will not be used afterwards and can thus be moved into the function (move semantics)
and gko::share specifies that the ownership should be shared with the function (by-reference).
Note that the gko::share annotation can usually be left out, since all owning smart pointers in C++
already provide conversions to std::shared_ptr.
Functions that create new instances of a polymorphic object return a std::unique_ptr<T>,

while access to already existing objects is provided with std::shared_ptr<const T> to allow the
objects to be used in both owning and non-owning contexts.

The overloaded decorator functions gko::clone, gko::lend, gko::give and gko::share pro-
vide a uniform interface for all types of smart and raw pointers, while still ensuring type safety.
For example, calling gko::give with a non-owning pointer will fail to compile and output an
appropriate error message.

2.5 Control of the iteration process
Virtually all iterative methods include the concept of a “stopping criterion” that evaluates whether
the current approximation to the solution of the linear systems is accurate enough. To facilitate
controlling the iteration process, Ginkgo provides a collection of stopping criteria. All of them
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are implementations of the base Criterion class, which specifies what type of information can be
passed to the stopping criterion. A concrete criterion provides an implementation of the check()
method that verifies if its condition has been met and, therefore, the iteration process has to be
stopped.
The stopping criteria are initially generated from criterion factories (created by the user) by

passing the system matrix, right-hand side, and an initial guess. In addition, during the iteration
process, information can be updated when calling the check() function with the new iteration
count, residual, solution or residual norm.

Currently, three basic stopping criteria are provided in Ginkgo:

• The Time criterion, which automatically stops the iteration process after a certain amount of
time;

• the Iteration criterion, which stops the iteration process once a certain iteration count has
been reached; and

• the ResidualNormReduction criterion, which stops the iteration process once the initial
relative residual norm has been reduced by the certain specified amount.

Additionally, Ginkgo provides a Combined criterion, which can be used to combine multiple
criteria together through a logical–OR operation (|), so that the first subcriterion that is fulfilled
stops the iteration process. This is illustrated in lines 16–19 of Listing 1. This design implies some
stopping criteria may detain the iteration process before “convergence” is reached, in particular the
Time and Iteration criteria. Ginkgo provides a stopping_status class, which can be inspected
to find out which criterion stopped the iteration process.
The Criterion class hierarchy is designed to avoid negative impact on the performance, and

may even improve it. For example, in case an iterative method is applied with multiple right-hand
side vectors, the stopping_status is evaluated for each right-hand side individually, skipping
vector updates in subsequent iterations for those right-hand side vectors where convergence has
been achieved.

Also, all operations required to control the iteration process can be handled inside the Criterion
classes. The consequence is that, for most solvers, the residual norm and related operations are
computed only when using the ResidualNormReduction criterion. Therefore, the user can combine
a solver with a simple stopping criterion to make it more lightweight or choose a more precise but
more expensive stopping criterion. In summary, Ginkgo’s design of stopping criteria tries to honor
the C++ philosophy of “only paying for what you use”.

2.6 Event logging
Another utility that is provided to users in Ginkgo is the logging of events with the purpose to
record information about Ginkgo’s execution. This covers many aspects of the library, such as
memory allocation, executor events, LinOp events, stopping criterion events, etc. For ease of use,
the event logging tools provide different forms of output formats, and allow the usage of multiple
loggers at once. As with the rest of Ginkgo, this tool is designed to be controllable, extensible, and
as lightweight as possible. To offer support for all those capacities, the Logger infrastructure follows
the visitor and observer design patterns [23]. This design implies a minimal impact of logging on
the logged classes and allows to accommodate any logger.

The following four loggers are currently provided in Ginkgo:

• the Stream logger, which logs the events to a stream (e.g., file, screen, etc.);
• the Record logger, which stores the events in a structure which has a history of all received
events that the user can retrieve at any moment;
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• the Convergence logger is a simple mechanism that stores the relative residual norm and
number of iterations of the solver on convergence; and

• the PAPI SDE logger uses the PAPI Software Defined Events backend [25] in order to enable
access to Ginkgo’s internal information through the PAPI interface and tools.

Almost every class in Ginkgo possesses multiple corresponding logging events. The logged
classes are: Executor, Operation, PolymorphicObject, LinOp, LinOpFactory and Criterion.
The user has the freedom to choose whether he/she wants to log all events or select only some of
them. When an event is not selected for logging by the user, as a result of the implementation of
the logging facilities, the event is not propagated and generates a “no-op”.

3 USING GINKGO AS A LIBRARY
3.1 Solver
Currently, Ginkgo provides a list of Krylov solvers (BICG, BiCGSTAB, CG, CGS, FCG, GMRES) for
the iterative solution of sparse linear systems, fixed-point methods, and direct solvers for sparse
triangular systems such as those that appear in incomplete factorization preconditioning. In order
to generate a solver, a solver factory (of type LinOpFactory) must first be created, where solver
control parameters, such as the stopping criterion, are set. The concrete solver is then generated
by binding the system matrix to the solver factory. This allows to generate multiple solvers for
distinct problems with the same solver settings, e.g. in time-stepping methods. Except for Iterative
Refinement (IR), where the internal solver can be chosen, all iterative solvers have the option to
attach a preconditioner of the class LinOp. Furthermore, all solvers implement the abstract LinOp
interface, which not only simplifies the solver usage, but also allows to use the same notation for
calling solvers, preconditioners, SpMV, etc. This allows the user to compose iterative solvers by
choosing another iterative solver as a preconditioner.

3.2 Preconditioner
Ginkgo allows any solver to be used as a preconditioner, i.e., to cascade Krylov solvers. Additionally,
Ginkgo features diagonal scaling preconditioners (block-Jacobi) as well as incomplete factorization
(ILU-type) preconditioners. As any of the other solvers, preconditioners are generated through a
LinOpFactory and implement the abstract class LinOp.
The block-Jacobi preconditioners can switch between a “standard” mode and an “adaptive

precision” mode [15]. In the latter case, the memory precision is decoupled from the arithmetic
precision, and the storage format for each inverted diagonal block is optimized to preserve the
numerical properties while reducing the memory access cost [22].

The ILU-based preconditioners can be generated by interfacing vendor libraries, via the ParILU
algorithm [19], or via a variant known as the ParILUT algorithm [13] that dynamically adapts the
sparsity pattern of the incomplete factorization to the problem characteristics [18].

For the application of an ILU-type preconditioner, Ginkgo leverages two distinct solvers: one for
the lower triangular matrix 𝐿 and one for the upper triangular matrix 𝑈 . The default choices are
the direct lower and upper triangular solvers but the user can change this to use iterative triangular
solves.
In Listing 3 we illustrate how an ILU preconditioner can be customized in almost all aspects.

In this case, we select a CGS solver for solving the upper triangular system by first creating the
factory in lines 18–23 and then attaching it to the preconditioner factory in lines 26–28. Instead
of relying on the internal generation of the incomplete factors, we generate them ourselves in
lines 13–15. Afterwards, we generate the ILU preconditioner in line 29. In the end, we employ the
now already generated preconditioner in line 40 with a BiCGSTAB solver.
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1 #include <iostream >
2 #include <ginkgo/ginkgo.hpp >
3
4 int main()
5 {
6 // Instantiate a CUDA executor
7 auto cuda = gko:: CudaExecutor :: create(0, gko:: OmpExecutor :: create ());
8 // Read data
9 auto A = gko::read <gko:: matrix ::Csr <>>(std::cin , cuda);
10 auto b = gko::read <gko:: matrix ::Dense <>>(std::cin , cuda);
11 auto x = gko::read <gko:: matrix ::Dense <>>(std::cin , cuda);
12 // Generate ILU(0) factorization
13 auto ilu_factorization =
14 gko:: factorization ::ParIlu <>::build().on(cuda)
15 ->generate(A);
16 // Create a custom upper solver factory
17 auto upper_solver_factory =
18 gko:: solver ::Cgs <>::build()
19 .with_criteria(
20 gko::stop:: ResidualNormReduction <>::build()
21 .with_reduction_factor (1e-5)
22 .on(cuda))
23 .on(cuda);
24 // Create an ILU preconditioner factory with a CGS upper solver
25 auto ilu_factory =
26 gko:: preconditioner ::Ilu <gko:: solver ::LowerTrs <>, gko:: solver ::Cgs <>>::build()
27 .with_u_solver_factory(gko::share(upper_solver_factory))
28 .on(cuda);
29 auto ilu_prec = ilu_factory ->generate(gko::share(ilu_factorization));
30 // Create the solver factory with ILU preconditioning
31 auto solver_factory =
32 gko:: solver ::Bicgstab <>::build()
33 .with_criteria(
34 gko::stop:: ResidualNormReduction <>::build()
35 .with_reduction_factor (1e-15)
36 .on(cuda),
37 .with_generated_preconditioner(gko::share(ilu_prec))
38 .on(cuda);
39 // Create the solver from the factory and solve the system
40 solver_factory ->generate(gko::give(A))->apply(gko::lend(b), gko::lend(x));
41 // Write result
42 write(std::cout , gko::lend(x));
43 }
44

Listing 3. An example of creating a CG solver with ILU preconditioning with an iterative solver for the upper

triangular factor.

4 USING GINKGO AS A FRAMEWORK
As described in Section 2, Ginkgo provides a set of generic linear operators, including various
general matrix formats, popular solvers, and simple preconditioners. However, sparse linear alge-
bra often includes problem-specific knowledge. This means that, in general, a highly-optimized
implementation of a generic algorithm will still be outperformed by a carefully crafted custom
algorithm employing application-specific knowledge. To tackle this, Ginkgo promotes extensibility
so that users can develop their own implementation for specific functionality without needing to
modify Ginkgo’s code (or recompile it).

Domain-specific extensions can be elaborated as part of the application that uses them, or even
bundled together to create an ecosystem around Ginkgo. Currently, this is possible for all linear
operators, stopping criteria, loggers, and corresponding factories. Adding custom data types also
requires only minor changes in a single header file and a recompilation. The only extension that
requires more significant efforts is the addition of new architectures and executors. This involves
modifying a key portion of Ginkgo as it requires the addition of specialized implementations of all
kernels for the new architecture and executor.

In contrast to the previous section, where Ginkgo is used as a library and the application is built
around it, this section describes how Ginkgo can be used as a framework in which the application
inserts its own custom components to work in harmony with Ginkgo’s built-in technology.
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4.1 Utilities supporting extensibility
Ginkgo’s facilities for memory management (e.g., automatic allocation and deallocation, or trans-
parent copies between different executors) are designed to simplify its use as a library. As a result,
the implementation burden is then shifted to the developers of these facilities, which are either
the developers of Ginkgo or, in case the application using Ginkgo needs custom extensions, the
developers of that application. To alleviate the burden and help developers focus on their algorithms,
Ginkgo provides basic building blocks that handle memory management and the implementation
of interfaces supported by the component being developed.

4.1.1 Array. Most components in Ginkgo have some sort of associated data, which should
be stored together with its executor. When copying a component, its data should also be copied,
possibly to a different executor. When the object is destroyed, the data should be deallocated with it.
Doing this manually for every class introduces a large amount of boilerplate code, which increases
the effort of developing new components, and can lead to subtle memory leaks. In addition, different
devices have different APIs for memory management, so a separate version would have to be written
for each executor.
To handle these issues in a single point in code, while removing some of the burden from the

developer, Ginkgo provides the Array class. This is a container which encapsulates fixed-sized
arrays stored on a specific Executor. It supports copying between executors and moving to another
executor. In addition, it leverages the RAII idiom4 to automatically deallocate itself from the memory
when it is no longer needed.

1 auto omp = gko:: OmpExecutor :: create ();
2 auto cuda = gko:: CudaExecutor :: create(0, omp);
3 using arr = gko::Array <int >;
4
5 arr x(cuda , {1, 2, 3, 4}); // an array of integers on the GPU
6 arr cpu_x(omp , x); // a copy of x on the CPU
7 arr z(omp , 10); // an uninitialized array of 10 integers on the CPU
8
9 z = x; // copy x from the GPU to z (on the CPU)
10 z.set_executor(cuda); // move z to the GPU
11
12 auto d[] = {1, 2, 3, 4};
13 auto d_arr = arr::view(omp , 4, d); // use existing data
14
15 auto size = x.get_num_elems (); // get the size of x
16 auto x_data = x.get_data (); // get raw pointer to x's data
17 // Note that x_data [0] would cause a segmentation fault if called from the CPU.
18 // Memory used for x, cpu_x and z is automatically deallocated.
19 // d_arr does not try to deallocate the memory.

Listing 4. Usage examples of the Array class.

Listing 4 shows some common usage examples of arrays. Lines 5–7 display several ways of
initializing the Array: using an initializer list, copying from an existing array (from a different
executor), or allocating a specified amount of uninitialized memory. The last constructor will only
allocate the memory, without calling the constructors on individual elements, which remains the
responsibility of the caller. While this is not the usual behavior in C++, properly parallelizing the
construction of the elements in multi- and manycore systems is a non-trivial task. Nevertheless,
the elements of the arrays used in Ginkgo are mostly trivial types, so there is usually no need to
call the constructor in the first place.

Lines 9–10 shown in Listing 4 illustrate how the assignment operator can be used to copy arrays
and how the executor of the array can be changed via the set_executormethod. The combination
of the assignment operator and the RAII idiom usually means that classes using arrays as building
blocks do not require user-defined destructors or assignment operators, since the ones synthesized

4https://en.cppreference.com/w/cpp/language/raii
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by the compiler behave as expected (in particular, this is true for all of Ginkgo’s linear operators,
stopping criteria, and loggers).
Lines 12–13 show that Array can also be used to store data in a non-owning fashion in a view,

i.e., the data will not be de-allocated when the Array is destroyed. This feature is particularly useful
when using Ginkgo to operate on data owned by the application or another library.

Finally, raw data stored in the Array can be retrieved as shown in Lines 15–17. The get_data
method will return a raw pointer on the device where the array is allocated, so trying to dereference
the pointer from another device will result in a runtime error.

4.1.2 Introduction to mixins. Most components in Ginkgo expose a rich collection of utility
functions, usually related to conversion, object creation, and memory movement. These utilities
are usually trivial to implement, and do not differ much between components. However, they still
require that the developer implements them, which steers the focus away from the actual algorithm
development. Ginkgo addresses this issue by usingmixins [2]. Since those are neither well-known by
the community5 nor well-supported in languages commonly used in high performance computing
(e.g., C, C++, Fortran), this subsection provides a simple example where mixins are leveraged to
reduce boilerplate code. The remaining parts of Section 4 introduce mixins provided by Ginkgo
when extending certain aspects of its ecosystem.

As a toy example, assume there is an interface Clonable, which consists of a single method clone
exposed to create a clone of an object. This method is useful if the object that should be cloned
is only available through its base class (i.e., the static type of the object differs from its dynamic
type). A common example where this is used is the prototype design pattern [26]. Obviously, the
implementation of the clone method should just create a new object using the copy constructor.
Listing 5 is an example implementation of such a hierarchy consisting of three classes A, B and C.
Classes A and B directly implement Clonable, while C indirectly implements it through B.

1 struct Clonable {
2 virtual ~Clonable () = default;
3 virtual std::unique_ptr <Clonable > clone() const = 0;
4 };
5
6 struct A : Clonable {
7 std::unique_ptr <Clonable > clone() const override {
8 return std::unique_ptr <Clonable >(new A{*this});
9 }
10 };
11
12 struct B : Clonable {
13 std::unique_ptr <Clonable > clone() const override {
14 return std::unique_ptr <Clonable >(new B{*this});
15 }
16 };
17
18 struct C : B {
19 std::unique_ptr <Clonable > clone() const override {
20 return std::unique_ptr <Clonable >(new C{*this});
21 }
22 };

Listing 5. An example hierarchy implementing clonable without the use of mixins.

The implementation of the clone method is almost identical in all classes, so it represents a
good candidate for extraction into a mixin. Mixins are not supported directly in C++, so their
implementation is handled via inheritance, usually coupled with the Curiously Recurring Template
Pattern (CRTP) [20]. Nevertheless, using inheritance in this context should not be viewed as
establishing a parent–child relationship between the mixin and the class inheriting from it, but
instead as the class “including” the generic implementations provided by the mixin. Listing 6 shows
the implementation of the same hierarchy using the EnableCloning mixin designed to provide a
5The only mixin known to the authors is std::enable_shared_from_this from the C++ standard library.
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generic implementation of the clone method. The mixin relies on the knowledge of the type of
the implementer to call the appropriate constructor, which is provided as a template parameter.
The base interface implemented by the mixin is also passed as a template parameter to allow
indirect implementations, as is the case in class C. Once the mixin is set up, any class that wishes to
implement Clonable can just include the mixin to automatically get a default implementation of
the interface, making the class cleaner, and removing the burden of writing boilerplate code.

1 struct Clonable {
2 virtual ~Clonable () = default;
3 virtual std::unique_ptr <Clonable > clone() const = 0;
4 };
5
6 template <typename Implementer , typename Base = Clonable >
7 struct EnableCloning : Base {
8 std::unique_ptr <Clonable > clone() const override {
9 return std::unique_ptr <Clonable >(
10 new Implementer {* static_cast <const Implementer *>(this)});
11 }
12 };
13
14 struct A : EnableCloning <A> {};
15
16 struct B : EnableCloning <B> {};
17
18 struct C : EnableCloning <C, B> {};
19

Listing 6. An example hierarchy implementing clonable using the EnableCloning mixin.

Ginkgo uses mixins to provide default implementations, or parts of implementations of poly-
morphic objects, linear operators, various factories, as well as a few of other utility methods. To
better distinguish mixins from regular classes, mixin names begin with the “Enable” prefix.

4.2 Creating new linear operators
The matrix structure is one of the most common types of domain-specific information in sparse
linear algebra. For example, the discretization of the 1D Poisson’s differential equation with a
3-point stencil results in a tridiagonal matrix with a value 2 for all diagonal entries and −1 in the
neighboring diagonals. This special structure enables designing a matrix format which only needs
to store the two values on and below/above the diagonal. Such compact matrix formats require
far less memory than general ones, which directly translates into performance gains in the SpMV
computation.
We adopt the example of the stencil matrix to demonstrate how to implement a custom matrix

format. The code structure is shown in Listing 7. The actual implementations of the OpenMP, CUDA,
and reference kernels are not shown here for brevity as they do not use any important features of
Ginkgo. A full implementation is available in Ginkgo’s custom-matrix-format example, which
is included in Ginkgo’s source distribution6.

Line 1 includes the EnableLinOp mixin, which implements the entire LinOp interface except the
two apply_implmethods. These methods are called inside the default implementation of the apply
method to perform the actual application of the linear operator. The default implementation of apply
contains additional functionalities (executor normalization, argument size checking, logging hooks,
etc.). Thus, by using the two-stage design with apply and apply_impl, the implementers of matrix
formats do not have to worry about these details. Line 2 includes the EnableCreateMethod mixin,
which provides a default implementation of the static create method. The default implementation
will forward all the arguments to the StencilMatrix’ constructor, allocate and construct the matrix
using the new operator, and return a unique pointer (std::unique_ptr) to the constructed object.

6https://github.com/ginkgo-project/ginkgo
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The constructor itself is defined in lines 4–8. Its parameters are the executor where the matrix
data should be located and operations performed, the size of the stencil, and the three coefficients of
the stencil. The executor and the size are handled by EnableLinOp, and the coefficients are stored
in an Array (defined in line 55) located on the executor used by the matrix.

Linear operators provide two variants of the apply method. The “simple” version performs the
operation 𝑥 = 𝐴𝑏 and the “advanced” version for 𝑥 = 𝛼𝐴𝑏+𝛽𝑥 . Both of them are often used in linear
algebra, and can be expressed in terms of each other: A “simple” application is just an “advanced”
one with 𝛼 = 1 and 𝛽 = 0. The “advanced” application can be expressed in terms of other operations,
namely by combining the original 𝑥 vector and the result of the “simple” application using the
scal and axpy BLAS routines (called scale and add_scaled in Ginkgo). In general, specialized
versions result in superior performance. Thus, Ginkgo provides both of them separately. However,
for the sake of brevity, this example implements the “advanced” version in terms of the “simple”
one (lines 14–42).
The remainder of the code (lines 15–57) contains the implementation structure of the “simple”

application. The input parameters contain the input vector b and the vector x where the solution
will be stored. Each input and solution vector is represented by one column of a linear operator. To
accommodate future extensions (e.g., sparse matrix–sparse vector multiplication), both x and b are
general linear operators. However, the only type supported by this example (and all of Ginkgo’s
built-in operators) is matrix::Dense. Downcasting these vectors to matrix::Dense is realized in
lines 15–16 using the gko::as utility, which throws an exception if one of them is not in fact a
dense matrix.

The implementation of the apply operation depends on the hardware architecture. The Reference
version uses a simple sequential CPU implementation; the OpenMP version relies on a parallel
implementation based onOpenMP; and the CUDA andHIP versions launch a CUDAkernel and aHIP
kernel, respectively. To support all four implementations, Ginkgo defines the Operation interface.
An object that implements this interface is passed to the executor’s run method, which will select
the appropriate implementation depending on the executor (lines 40–41). Thus, StencilMatrix has
to define a class (called stencil_operation in this example, lines 18–39) which implements the
Operation interface and encapsulates the four implementations. The implementations are placed
into the four overloads of the runmethod: the reference version in lines 23–25; the OpenMP version
in lines 26–28; the CUDA version in lines 29–31; and the HIP version in lines 32–34. References to
the required data also have to be passed to stencil_operation so that the implementation can
access it. For the purpose of this example, the run method is embedded into the class definition,
but these can be separated as the library sees fit to support different backends, or the framework
provided by Ginkgo to manage operations can be reused to emulate the multi-backend setup shown
in Section 2.3.
The new matrix format can be used instead of the CSR format in the example in Listing 1 by

changing the definition of A in line 9 as shown in line 59 of Listing 7, and placing the definition of
𝐴 after the definition of b. In addition, lines 14–15 defining the preconditioner have to be removed,
since the block-Jacobi preconditioning requires additional functionalities of the matrix format.7

Matrix formats are not the only linear operators that can be extended. A similar approach can be
used to define new solvers and preconditioners.

7StencilMatrix would have to define conversion to matrix::Csr for block-Jacobi preconditioning to work.
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1 class StencilMatrix : public gko:: EnableLinOp <StencilMatrix >,
2 public gko:: EnableCreateMethod <StencilMatrix > {
3 public:
4 StencilMatrix(std::shared_ptr <const gko::Executor > exec ,
5 gko:: size_type size = 0, double left = -1.0,
6 double center = 2.0, double right = -1.0)
7 : gko:: EnableLinOp <StencilMatrix >(exec , gko::dim <2>{size}),
8 coefficients(exec , {left , center , right}) {}
9
10 protected:
11 using vec = gko:: matrix ::Dense <>;
12 using coef_type = gko::Array <double >;
13
14 void apply_impl(const gko::LinOp *b, gko::LinOp *x) const override {
15 auto dense_b = gko::as<vec >(b);
16 auto dense_x = gko::as<vec >(x);
17
18 struct stencil_operation : gko:: Operation {
19 stencil_operation(const coef_type &coefficients , const vec *b,
20 vec *x)
21 : coefficients{coefficients}, b{b}, x{x} {}
22
23 void run(std::shared_ptr <const gko:: ReferenceExecutor >) const override {
24 // Reference kernel implementation
25 }
26 void run(std::shared_ptr <const gko:: OmpExecutor >) const override {
27 // OpenMP kernel implementation
28 }
29 void run(std::shared_ptr <const gko:: CudaExecutor >) const override {
30 // CUDA kernel implementation
31 }
32 void run(std::shared_ptr <const gko:: HipExecutor >) const override {
33 // HIP kernel implementation
34 }
35
36 const coef_type &coefficients;
37 const vec *b;
38 vec *x;
39 };
40 this ->get_executor ()->run(
41 stencil_operation(coefficients , dense_b , dense_x));
42 }
43
44 void apply_impl(const gko::LinOp *alpha , const gko::LinOp *b,
45 const gko::LinOp *beta , gko::LinOp *x) const override {
46 auto dense_b = gko::as<vec >(b);
47 auto dense_x = gko::as<vec >(x);
48 auto tmp_x = dense_x ->clone();
49 this ->apply_impl(b, gko::lend(tmp_x));
50 dense_x ->scale(beta);
51 dense_x ->add_scaled(alpha , gko::lend(tmp_x));
52 }
53
54 private:
55 coef_type coefficients;
56 };
57
58 // using the matrix format:
59 auto A = StencilMatrix :: create(exec , b->get_size ()[0], -1.0, 2.0, -1.0);

Listing 7. Example implementation of a user-defined matrix format specialized for 3-point stencil matrices.

4.3 Creating new stopping criteria
Implementing new stopping criteria requires a deeper understanding of the concept than that
explained in Section 2.5. To accommodate higher generality, a criterion is allowed to maintain
state during the execution of a solver (e.g., a criterion based on a time limit may need to record
the point in time when the solver was started). On the other hand, a linear operator may invoke a
solver multiple times, every time its apply method is called. As a consequence, the same criterion
cannot be reused for multiple runs, as the state from the previous invocation may interfere with a
subsequent run. The solution is to prevent users from directly instantiating criteria. Instead, the
user instantiates a criterion factory, which is then used by the solver to create a new criterion
instance every time the solver is invoked. When creating the criterion, the solver will pass basic
information about the system being solved, which includes the system matrix, the right-hand side,
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the initial guess, and optionally the initial residual. During its execution, the solver will call the
criterion’s check method to decide whether to stop the process. This method receives a list of
parameters that includes the current iteration number, and optionally one or more of the following:
the current residual, the current residual norm, and the current solution. Based on this information,
the criterion decides, separately for each right-hand side, whether the iteration process should be
detained.

Currently, Ginkgo includes conventional stopping criteria for iterative solvers based on iteration
count, execution time or residual thresholds, as well as mechanisms to combine multiple criteria.
Nevertheless, users may achieve tighter control of the iteration process by defining their own
stopping criteria. Listing 8 offers a sample stopping criterion based on the number of iterations
which, even though already available in Ginkgo as gko::stop::Iteration, is simple enough to
show in full as part of this paper.

As mentioned in Section 2.5, all stopping criteria, including custom ones, should implement the
Criterion interface. In addition to the check method, the interface provides various other utility
methods which facilitate memory management. To reduce the volume of boiler-plate code needed
for new stopping criteria, Ginkgo provides the EnablePolymorphicObject mixin. This mixin
inherits an interface supporting memory management (in this case Criterion), and implements
utility methods related to it (line 2). For the mixin to work properly, the class being enabled has to
provide a constructor with an executor as its only parameter (lines 21–23).

Creating a criterion factory can be simplified by using the CREATE_FACTORY_PARAMETERS, FACTO-
RY_PARAMETER and ENABLE_CRITERION_FACTORY macros. The first one creates a member type
parameters_type, which contains all of the parameters of the criterion (lines 4–6). Each parameter
is defined using the FACTORY_PARAMETER macro, which adds a data member of the requested name
and default value, as well as a utility method “with_<parameter name>” that can be used when
constructing the factory to set the parameter. In this case, the only parameter is the maximum
number of iterations (line 5). Finally, the ENABLE_CRITERION_FACTORY macro creates a factory
member type named Factory that uses the parameters to create the criterion. The macro also adds
a data member parameters_which holds those parameters (line 7). When used to instantiate a new
criterion, the factory will pass itself, as well as an instance of parameters_type, to the constructor
of the criterion. This constructor is defined in lines 25–29.

Finally, the implementation of the criterion logic is comprised inside the checkmethod (lines 10–
19). The current state of the solver is passed via the Updater object. This particular criterion uses
the Updater::num_iterations property to check whether the limit on the number of iterations
has been reached (line 13). If this is not the case, the criterion returns false, indicating to the solver
that iterative process should continue (line 14). Otherwise, the stopping statuses of all columns
are set (line 16), and the one_changed property is set to true to indicate that at least one of the
statuses changed (lines 14–17). Finally, once the iteration process for all right-hand sides has been
completed, the criterion returns true. The stoppingId and the setFinalized flags are additional
descriptors that may be used to retrieve additional details about the event that stopped the iteration
process.
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1 class Iteration
2 : public gko:: EnablePolymorphicObject <Iteration , gko::stop::Criterion > {
3
4 GKO_CREATE_FACTORY_PARAMETERS(parameters , Factory) {
5 gko:: size_type GKO_FACTORY_PARAMETER(max_iters , 0);
6 };
7 GKO_ENABLE_CRITERION_FACTORY(Iteration , parameters , Factory);
8
9 public:
10 bool check(gko::uint8 stoppingId , bool setFinalized ,
11 gko::Array <stopping_status > *stop_status , bool *one_changed ,
12 const gko::stop:: Updater &updater) override {
13 if (updater.num_iterations_ < parameter_.max_iters) {
14 return false;
15 }
16 this ->set_all_statuses(stoppingId , setFinalized , stop_status);
17 *one_changed = true;
18 return true;
19 }
20
21 explicit Iteration(std::shared_ptr <const gko::Executor > exec)
22 : gko:: EnablePolymorphicObject <Iteration , gko::stop::Criterion >(
23 std::move(exec)) {}
24
25 explicit Iteration(const Factory *factory ,
26 const gko::stop:: CriterionArgs &args)
27 : gko:: EnablePolymorphicObject <Iteration , Criterion >(
28 factory ->get_executor ()),
29 parameters_{factory ->get_parameters ()} {}
30 };

Listing 8. An example of a stopping criterion that stops the iteration proces once a certain iteration limit is

reached.

4.4 Executors and extending Ginkgo to new architectures
The executor is a central class in Ginkgo that provides all important primitives for allocating/deal-
locating memory on a device, transferring data to other supported devices, and basic intra-device
communication (e.g., synchronization). An executor always has a master executor which is a
CPU-side executor capable of allocating/deallocating space in the main memory, this executor can
be either the serial ReferenceExecutor or the OmpExecutor, which are both CPU-side only. This
concept is convenient when considering devices such as CUDA or HIP accelerators, which feature
their own separate memory space. Although implementing a Ginkgo executor that leverages
features such as unified virtual memory (UVM) is possible via the interface, in order to attain higher
performance we decided to manage all copies by direct calls to the underlying APIs.
Support for new devices (e.g., optimized versions of the library for different architectures, new

accelerators or co-processors, new programming models) in a heterogeneous node can be added to
Ginkgo by creating new executors for those devices. This requires 1) creating a new class which
implements the Executor interface; 2) adding kernel declarations in all Ginkgo classes with kernels
for the new executor; 3) extending the internal gko::Operation to execute kernel operations on
the new executor; and 4) implementing kernels for all Ginkgo classes on the new architectures.
Although this is an involved process and implies modifications in multiple parts of Ginkgo, the
process has been successfully executed to extend Ginkgo to support a new HIP executor. Thanks to
Ginkgo’s design, most changes to Ginkgo’s base classes transfer to gko::Executor and its related
gko::Operation classes. In addition, although most matrix formats, solvers, preconditioners,
and utility functions rely on kernels that need to be implemented to support a new execution
space, a good first step is to declare all kernels as GKO_NOT_IMPLEMENTED. This allows to obtain a
compiling first version featuring the new executor with kernels throwing an exception when called.
The required kernel implementations can then be progressively added without endangering the
successful compilation of the software stack.
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5 USING GINKGOWITH EXTERNAL LIBRARIES
In this section, we describe and demonstrate how to interface Ginkgo from other libraries. Specifi-
cally, we showcase the usage of Ginkgo’s solver and preconditioner functionality from the deal.ii
[8] and MFEM [10] finite element software packages.

5.1 Using Ginkgo as a solver
To use Ginkgo as a solver in an external library, one must first adapt the data structures of the
external library to Ginkgo’s data structures. We accomplish this by borrowing the raw data from
the external library’s data structures; next operate on this data - e.g. solve a linear system; and then
return the result back to the application in the original data format.

1 #include <deal.II/lac/ginkgo_solver.h>
2 #include <deal.II/lac/sparse_matrix.h>
3 #include <deal.II/lac/vector.h>
4 #include <deal.II/lac/vector_memory.h>
5
6 #include "../ testmatrix.h"
7 #include "../ tests.h"
8
9 #include <iostream >
10 #include <typeinfo >
11
12 int main()
13 {
14 // Set solver parameters
15 SolverControl control (200, 1e-6);
16
17 const unsigned int size = 32;
18 unsigned int dim = (size - 1) * (size - 1);
19
20 // Setup a simple matrix
21 FDMatrix testproblem(size , size);
22 SparsityPattern structure(dim , dim , 5);
23 testproblem.five_point_structure(structure);
24 structure.compress ();
25 SparseMatrix <double > A(structure);
26 testproblem.five_point(A);
27
28 Vector <double > f(dim);
29 f = 1.;
30 Vector <double > u(dim);
31 u = 0.;
32
33 // Instantiate a Reference executor. Change this as needed.
34 auto ref = gko:: ReferenceExecutor :: create ();
35
36 // Create a ginkgo preconditioner.
37 auto jacobi = gko:: preconditioner ::Jacobi <>::build().on(ref);
38
39 // Use ginkgo to solve the system on a reference executor using the CG solver
40 // with jacobi preconditioning.
41 // Note that this is an additional constructor that takes in a created
42 // LinOpFactory object and hence is generic.
43 GinkgoWrappers ::SolverCG <> solver(control , "reference", jacobi);
44
45 // Solves the system and copies the data back to deal.ii's solution variable.
46 solver.solve(A, u, f);
47 }

Listing 9. Usage of Ginkgo’s solver capabilities in a deal.ii application. The code snippet only shows the

solution step and assumes that the system matrix and right-hand side are available from deal.ii.

The key aspect of the library interfacing is the adoption of Ginkgo’s data structures and formats.
As shown in the previous sections, Ginkgo possesses several data format implemented and was
designed to be easy to extend, which makes this step easier. The Ginkgo library’s gko::Dense
vector/matrix representation format assumes row-major storage. For all Ginkgo formats, padding
can be set and controlled. A critical step for performance is that the adoption of Ginkgo’s LinOps
does not necessarily come at the price of extra copies : if access to the underlying raw pointer
is possible, then Ginkgo can transparently reuse this raw pointer as well in its data formats in a
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“non-owning” mode, where no memory deallocation will be done. This functionality is provided
transparently to all of Ginkgo’s data structures thanks to using the gko::Array as the base building
block.

1 #include "mfem.hpp"
2
3 int main() {
4
5 .
6 . // Setup the finite element space and assemble the linear
7 . // and bilinear forms `a`.
8 .
9
10 OperatorPtr A;
11 Vector B, X;
12 a->FormLinearSystem(ess_tdof_list , x, *b, A, X, B);
13
14 // Solve the linear system with CG + ILU from Ginkgo.
15
16 // Instantiate a Reference executor.
17 auto ref = gko:: ReferenceExecutor :: create ();
18 // Setup the preconditioner.
19 auto ilu_precond =
20 gko:: preconditioner ::Ilu <gko:: solver ::LowerTrs <>,
21 gko:: solver ::UpperTrs <>>::build()
22 .on(ref);
23
24 // Create the solver object with convergence parameters.
25 GinkgoWrappers :: CGSolver ginkgo_solver("reference", 1, 2000, 1e-12, 0.0,
26 ilu_precond.release ());
27
28 // The solve method internally converts the MFEM objects to Ginkgo 's
29 // objects if necessary , computes the solution and returns the solution.
30 ginkgo_solver.solve (&(( SparseMatrix &)(*A)), X, B);
31
32 // Get solution back to MFEM
33 a->RecoverFEMSolution(X, *b, x);
34
35 .
36 . // Clean up
37 .
38 }

Listing 10. Usage of Ginkgo’s solver capabilities in a MFEM application.

Listings 9 and 10 showcase the exploitation of Ginkgo functionality in deal.ii and MFEM
applications. Our main objective is to expose Ginkgo’s functionalities to the external libraries
while maintaining an uniform interface within those libraries. The interfaces preserve the libraries’
own solver interface, and take the executor determining the execution space as the only additional
parameter. All data movement is handled automatically and remains transparent to the user.

5.2 Using Ginkgo’s preconditioners
Ginkgo provides a multitude of preconditioners on both the CPU and the GPU. An example of
such a preconditioner is the block-jacobi preconditioner. To accomodate the use of Ginkgo’s
preconditioners in deal.ii or MFEM, an additional constructor for each of the concrete solver
classes has been provided which takes in a gko::LinOpFactory as an argument. In the most
general case this can be taken to be any generic linear operator factory with an overloaded apply
implementation to serve as a preconditioner.

5.3 Interoperability with xSDK
Ginkgo is a part of the extreme-scale Scientific Software Development Kit (xSDK [5]), a software
stack that comprises some of the most important research software libraries and that is available
on all US leadership computing facilities. Ginkgo is included in the xSDK release 0.5.0 [4] which is
available as a Spack metapackage.
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Within the xSDK effort, interoperability examples with MFEM and deal.ii showcase the LinOp
concept of Ginkgo, and the use of Ginkgo as a solver using partial assembly of the finite element
operator within MFEM.

6 SOFTWARE SUSTAINABILITY EFFORTS
An important aspect of the Ginkgo library is its orientation towards software sustainability, ease
of use, and openness to external contributions. Aside from Ginkgo being used as a framework for
algorithmic research, its primary intention is to provide a numerical software ecosystem designed for
easy adoption by the scientific computing community. This requires sophisticated design guidelines
and high quality code. With these goals in mind, Ginkgo follows the guidelines and policies of the
xSDK and the Better Scientific Software (BSSw [6]) initiative. In order to facilitate easy adoption,
Ginkgo is open source with a modified BSD license, which does not restrict commercial use of the
software. The main repository is publicly available on github and only prototype implementations
of ongoing research are kept in a private repository. The github repository is open to external
contributions through a peer-review concept and uses issues for bug tracking and to bolster
development efforts. A Continuous Integration (CI) system realizes the automatic synchronization
of repositories, and the compilation and testing of the distinct branches. The CI is also setup to
ensure quality of the library in terms of memory leaks, threading issues, detection of bugs thanks
to static code analyzers, etc. The configuration and compilation processes are facilitated with
CMake. The testing is realized using Google Test [7] and comprises a comprehensive list of unit
tests ensuring the library’s functionality. A feature spearheading sustainable high performance
software development is Ginkgo’s Continuous Benchmarking (CB) framework. This component
of Ginkgo’s ecosystem automatically runs performance tests on each code change; archives the
performance results in a public git repository; and allows users to investigate the performance
via an interactive web tool, the Ginkgo Performance Explorer8 [11]. Finally, the documentation
is automatically kept up-to date-with the software, and multiple wiki pages containing examples,
tutorials, and contributor guidelines are available.

7 EXPERIMENTAL EVALUATION
7.1 Experimental setup
In the performance evaluation, we consider two GPU-centric HPC nodes from different hardware
vendors: The AMD node is integrated into the Tulip Early Access System (EAS) for the Frontier
Exascale machine, and consists of 2 AMD EPYC 7742 64-cores processors and 4 AMD MI100
GPUs. The MI100 GPU features 32 GB HBM2 memory accessible at of 1.23 TB/s (according to the
specifications), and has a theoretical peak of 11.54 (double precision) TFLOP/s. The NVIDIA node
is integrated into the HAICORE supercomputer, and consists of two Intel Xeon Gold 6248R 24
cores processors and four NVIDIA Volta A100 accelerators. The NVIDIA A100 GPUs each have a
theoretical peak of 9.7 (double-precision) TFLOP/s and feature 40 GB of high-bandwidth memory
(HBM2). The board specifications indicate a memory bandwidth of 1.6 TB/s for this accelerator. We
run all our experiments on a single GPU. In all experiments, we the GCC 9 compiler, CUDA 11.0.194
and HIP with the ROCm 4.0.20496 software stack. We note that we do not intend this to be a
performance-focused paper, and therefore refrain from showing a comprehensive performance
evaluation, but only show selected performance results that are representative for the common
usage of Ginkgo.

8https://ginkgo-project.github.io/gpe/
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Solver BiCGSTAB CG CGS FCG GMRES
Time per iteration (𝜇𝑠) 1.26 1.28 1.00 1.45 1.51

Table 1. Overhead of the main Ginkgo solvers measured by averaging 10.000 solver runs, each doing 1.000

iterations.

7.2 The cost of runtime polymorphism
Relying on static and dynamic polymorphism largely simplifies code maintenance and extendability.
A common concern when using these C++ features is the runtime overhead induced by runtime
polymorphism. Due to Ginkgo’s design, multiple runtime polymorphisms are evaluated at different
levels. For example, calling the SpMV apply() functionality goes through 3 polymorphism forks:
Format selection, Executor selection, and Kernel variant selection. Solvers undergo a similar process,
except that during each iteration they call multiple kernels: an SpMV, possibly a preconditioner, etc.
An important aspect to note is that the cost of polymorphism can be mitigated if polymorphic jumps
are consistent, since the branching can be predicted and the same instructions will be properly
cached.

To evaluate the performance impact of the multiple runtime polymorphism branches, in Table 1
we first measure the overhead for all Ginkgo’s solvers. The results there are obtained using a
matrix of size 1, with an initial solution 𝑥 = 0 and the right-hand side (𝑏) set to 1. We only use the
stopping criterion Iteration to ensure the solver is ran the correct amount of time. This allows
running the full solver algorithm executing all runtime polymorphism branches with negligible
kernel execution time. We report results for 1,000 solver iterations averaged over 10,000 solver
runs. Table 1 shows that the time per iteration is at most 1.5𝜇𝑠 for any of the solvers.

Fig. 6. Performance profile comparing the runtime of Ginkgo’s SpMV kernels with the vendor libraries on

the AMD MI100. The plain names represent the Ginkgo kernels, the “hipsp_” names refer to the vendor

implementations in AMD’s hipSPARSE library.
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Fig. 7. Performance profile comparing the runtime of Ginkgo’s SpMV kernels with the vendor libraries

on the NVIDIA A100. The plain names represent the Ginkgo kernels, “cusp_” labels refer to the vendor

implementations in NVIDIA’s cuSPARSE library.

7.3 SpMV kernel performance
We next evaluate the performance of the SpMV kernel for all matrices available in the Suite
Sparse Matrix Collection [1, 28] on the AMD MI100 and the NVIDIA A100 GPU [29]. For this
purpose, we compare the performance profile of the SpMV kernels available in the Ginkgo library
with their counterparts available in the NVIDIA cuSPARSE and the AMD hipSPARSE libraries. We
evaluate hipSPARSE instead of rocSPARSE since usage as a portability layer supersedes performance
considerations. Using a performance profile allows to identify the test problem share (y-axis) for a
maximum acceptable slowdown compared to the fastest algorithm (x-axis). This graph summarizes
two important aspects of SpMV algorithms: 1) by considering the values for 𝑥 = 1.0, we identify
the share of problems for which each algorithm is the overall fastest; and 2) by looking further, for
example at 𝑥 = 1.75, we can derive for which portion of the problem share each algorithm is able
to perform with at most 1.75 times slowdown compared to the overall fastest results. Ideally one
would reach 100% for as little 𝑥 as possible. Thus, the slope is reflecting how well an SpMV kernel
generalizes: it is often acceptable to be a little slower than the fastest algorithm for a specific test
case if the algorithm achieves good performance for a wide range of problems.
The performance profiles shown in Figures 6 and 7 reveal that Ginkgo’s kernels are at least

competitive, and in some cases superior to the vendor libraries.

7.4 Ginkgo solver performance
Prior to evaluating the performance of Ginkgo’s Krylov solvers, we point out that Krylov solvers
operating with sparse linear systems are memory-bound algorithms. For this reason, we initially
assess the bandwidth efficiency of the implementations of the different Krylov solvers. Concretely,
we select the COO matrix format for the SpMV kernel, and run the Krylov solvers without any
preconditioner. In Table 2 we list the target Krylov solvers along with their average memory access
volume per iteration. The formula for the GMRES algorithm is more involved as we implement a
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Solver Access Volume Per Iteration
BiCGSTAB 15.5 · 𝑛 ·𝑉𝑇 + 𝑛𝑛𝑧 ·𝑉𝑇 + 2 · 𝑛𝑛𝑧 · 𝐼𝑇
CG 18 · 𝑛 ·𝑉𝑇 + 𝑛𝑛𝑧 ·𝑉𝑇 + 2 · 𝑛𝑛𝑧 · 𝐼𝑇
CGS 14.5 · 𝑛 ·𝑉𝑇 + 𝑛𝑛𝑧 ·𝑉𝑇 + 2 · 𝑛𝑛𝑧 · 𝐼𝑇
FCG 21 · 𝑛 ·𝑉𝑇 + 𝑛𝑛𝑧 ·𝑉𝑇 + 2 · 𝑛𝑛𝑧 · 𝐼𝑇
GMRES (5/2 ·𝑘 + 21/2+ 14/𝑘) ·𝑛 ·𝑉𝑇 + (1+ 1/𝑘) · (𝑛𝑛𝑧 ·𝑉𝑇 + 2 ·𝑛𝑛𝑧 · 𝐼𝑇 )

Table 2. Memory access volume of a full run of the distinct solver. Here𝑉𝑇 is the value type size in bytes (e.g.,

for double it is 8 bytes); 𝐼𝑇 is value type for the index type; and 𝑖𝑡𝑒𝑟 is the number of iterations the solver

does. In GMRES, 𝑘 is the Krylov dimension (or restart iteration setting).

variant enhanced with restart. The formulas are made with assumptions for simplifications such as
in terms of caching, such that they can underestimate the memory access volume.

For the experimental evaluation, we run 10,000 solver iterations on 10 different but representative
test matrices from the Suite Sparse collection. For GMRES, we set the restart parameter to 100. In
Figures 8 and 9, we visualize the memory bandwidth usage of the different Krylov solvers for both
a A100 GPU executing CUDA code and an AMD MI100 GPU executing HIP code. In each graph
we indicate the experimental peak bandwidth achieved by a reference stream triad9 bandwidth
benchmark [21]. For the STREAM triad bandwidth benchmark, the MI100 reaches 980.5 GB/s
whereas the A100 reaches 1399.2 GB/s, although the theoretical bandwidth of the MI100 is 1.23 TB/s
whereas it is 1.6 TB/s for the A100. The bandwidth performance analysis reveals that the algorithms
are achieving bandwidth rates in the range of 350 to 500 GB/s on the MI100 machine and 900 to
1200 TB/s on the A100 machine. This means that the Ginkgo solver performance reaches about
50% of the STREAM bandwidth on the MI100 GPU, whereas it achieves between 64% and 85% on
the A100 GPU, depending on solvers and test matrix combination. On the A100, the GMRES solver
matches or even exceeds the STREAM bandwidth for the small test matrices. A deeper investigation
reveals that for these test matrices, the vectors are small enough to be cached during the Modified
Gram-Schmidt orthogonalization process. Indeed, for the three matrices in with less than 1.5 million
rows, between 3 and 4 Krylov basis vectors can be kept in the A100 L2 cache of 40MB, whereas for
the next larger (Cube_Coup_dt0) with more than 2.1 million rows, only 2 vectors can be stored in
cache.
To better understand the performance discrepancy between A100 and MI100, in Table 3 we

provide detailed bandwidth results on both machines for key operations. The machines show
different behaviors: the A100 GPU achieves bandwidth rates consistent across all operations,
reaching between 1.33 and 1.4 TB/s. The MI100 GPU on the other hand reaches around 1 TB/s
for four of the five benchmarks, but the bandwidth drops by 30% to 720 GB/s for the dot product
exhibiting a global reduction pattern. The relatively poor performance for global reductions on the
AMD GPU may be one aspect to the lower relative performance of the Ginkgo solvers on the MI100
GPU. A second aspect is that we employ Ginkgo’s COO SpMV kernel inside the Krylov solvers, a
kernel that makes heavy use of atomics for the vector updates. Unlike the A100 performance, the
MI100 performance suffers heavily under atomic collisions. Ultimately, we also have to accept that
the MI100 GPU and the accompanying ROCm software stack has not yet reached the maturity level
of NVIDIA’s counterpart, leaving significant room for further improvement. A final aspect worth
mentioning is that the MI100 can enter throttling mode when overheating which could explain
some performance discrepancies.

9𝑎[𝑖 ] = 𝑏 [𝑖 ] + 𝛼𝑐 [𝑖 ]

ACM Trans. Math. Softw., Vol. 1, No. 1, Article . Publication date: December 2022.



:28 H. Anzt et al.

Fig. 8. Memory efficiency of Ginkgo’s Krylov solvers on NVIDIA A100. The matrices are sorted by number of

rows.

Fig. 9. Memory efficiency of Ginkgo’s Krylov solvers on the AMD MI100. The matrices are sorted by number

of rows.

7.5 Ginkgo preconditioner performance
Ginkgo provides both (block-Jacobi type) preconditioners based on diagonal scaling and (ILU type)
incomplete factorization preconditioners. Ginkgo’s ILU preconditioner technology is spearheading
the community, including ParILUT, the first threshold-based ILU preconditioner for GPU archi-
tectures [18]. This preconditioner approximates the values of the preconditioner via fixed-point
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Operation A100 performance (GB/s) MI100 performance (GB/s)
Copy 1390.702 995.791
Mul 1389.095 1000.932
Add 1399.518 981.627
Triad 1399.171 980.516
Dot 1327.195 720.551

Table 3. Stream bandwidth results from [21] on the A100 and MI100 machines for key operations.

Fig. 10. Time-to-solution comparison between standard ILU preconditioning (NVIDIA’s cuSPARSE) and

Ginkgo’s ParILUT for solving anisotropic flow problems on two NVIDIA GPU generations. The GMRES solver

is taken from the Ginkgo library.

iterations while dynamically adapting the sparsity pattern to the matrix properties [13]. Depending
on the matrix characteristics, this preconditioner can significantly accelerate the solution process
of linear system solves; see Figure 10.
Advanced techniques for the ILU preconditioner generation are complemented with fast tri-

angular solvers, including iterative methods [12, 24] and the approximation of the inverse of the
triangular factors via a sparse matrix (incomplete sparse approximate inverse preconditioning [17]).
The block-Jacobi preconditioner available in Ginkgo outperforms its competitors by automat-

ically adapting the memory precision to the numerical requirements, therewith reducing the
memory access time of the memory-bound preconditioner application [15, 22]. The inversion of the
diagonal block is realized via a heavily-tuned batched variable size Gauss-Jordan elimination [16];
see Figure 11.

8 CONCLUSIONS AND PERSPECTIVES
Ginkgo is a modern C++-based sparse linear algebra library for GPU-centric HPC architectures.
The library design is embracing platform portability as a central design principle, and the software
development is guided by sustainability, productivity, and performance. Rigorous unit testing, the
existence of application examples and benchmarking functionality, and the use of a Linear Operator
abstraction aim at fostering user acceptance. In this paper, we have presented the Ginkgo library
design and functionality usage, including the integration into the deal.ii and MFEM finite element
ecosystems. We also demonstrated the high performance of Ginkgo on high-end GPU architectures.
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Fig. 11. Performance of the block-Jacobi preconditioner generation on the NVIDIA A100 GPU. The precondi-

tioner generation includes the Gauss-Jordan elimination featuring pivoting, the condition number calculation

and exponent range analysis, the storage format optimization, the format conversion, and the preconditioner

storage in GPU main memory. The Different bars for each size represent the distinct memory precision

scenarios and the scenarios where the performance data includes the automatic precision detection based on

the block condition number and exponent range.

Future work will focus on enhanced work-sharing capabilities and the integration into application
projects. We will also continue to enhance the Ginkgo functionality with the addition of advanced,
application-specialized preconditioning techniques. The design of the Ginkgo library benefits from
the lessons learned in other software projects, and we are positive that the sustainability aspects
presented in this work will serve as inspiration for future software development projects.
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A REPRODUCE THE RESULTS OF THIS PAPER
To ensure full result reproducibility, we next explain how to generate and analyze the Ginkgo
solver performance in term of bandwidth for an A100 platform. More precisely, we detail how to
reproduce Figure 8, and potentially Figure 9 by only changing platform and adapting some of the
following instructions. We assume that the code is benchmarked on a standard machine using
slurm and modules. If that is not the case, some extra adaptation will be needed. For additional
help in reproducing these experiments please send a mail to mailto:ginkgo.library@gmail.com or
mailto:terry.cojean@kit.edu.

The main steps are as follows:
(1) Install ssget and prefetch the matrices from the suitesparse collection
(2) Download and build Ginkgo
(3) Prepare the experiment scripts and run the experiments
(4) Publish the experiments to github and generate the plots using the online Ginkgo Performance

Explorer.

A.1 Fetching the matrices
First of all, a tool is required for benchmarking: https://github.com/ginkgo-project/ssget.

This tool is a bash script simplifying the download of test matrices from the SuiteSparse matrix
collection. The script can be placed anywhere in the PATH but line 39 (ARCHIVE_LOCATION) has
to be configured, this is where the matrices will be stored. On some platforms, this can be another
location with faster read access during jobs. For example, on a machine like Summit, this would
typically be somewhere in $MEMBERWORK/<project>/.....
The matrices used for the experiments can be pre-downloaded, as this saves some node time.

First, let’s create a small files containing the SuiteSparse matrices ID we use for the experiments.
This should create a file with one number per line, which we will later reuse to run the experiments,
as shown is Listing 11:

1 printf '%s\n' 1903 2276 1398 2380 2573 2659 2548 2547 2266 1403 >
2 %$HOME/TOMS -gko -reproduce/matrices.list

Listing 11. Create a file with relevant matrix IDs

Then, we can fetch each of those matrices, see Listing 12.
1 for i in $(cat $HOME/TOMS -gko -reproduce/matrices.list); do
2 ssget -f -i $i
3 done

Listing 12. Download the relevant SuiteSparse matrices to reproduce the experiments.

A.2 Building Ginkgo
Afterwards, Ginkgo can be cloned, configured and built according the steps in Listing 12. All paths
can be adapted as needed. The <path> to specify where to build ginkgo_build needs to be adapted.
Again, the precise path can depend on whether the platform has a specific fast-access directory
within jobs. We reuse these variables throughout this document.

1 ginkgo_source=$HOME/TOMS -gko -reproduce/ginkgo
2 ginkgo_build=<path_to_build >/TOMS -gko -reproduce/ginkgo -build
3 module load gcc/9 cuda /11.0 cmake git
4 # For every new session , the previous setup is required
5 git clone https :// github.com/ginkgo -project/ginkgo.git ${ginkgo_source}
6 --branch master
7 mkdir -p ${ginkgo_build} && cd ${ginkgo_build}
8 cmake -DGINKGO_BUILD_CUDA=on -DGINKGO_BUILD_HIP=OFF -DGINKGO_BUILD_OMP=off
9 -DGINKGO_BUILD_EXAMPLES=off -DGINKGO_BUILD_TESTS=on -DGINKGO_DEVEL_TOOLS=off
10 -DCMAKE_C_COMPILER=$(which gcc) -DCMAKE_CXX_COMPILER=$(which g++)
11 -DCMAKE_CUDA_HOST_COMPILER=$(which g++) -DGINKGO_CUDA_ARCHITECTURES=Ampere
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12 ${ginkgo_source}
13 # Compilation can happen either directly or through a job depending on the
14 # system policies.
15 srun --gres=gpu:1 --time =1:00:00 --partition=<a100 > --export=ALL make -j10
16 make -j10 # afterwards , ensure everything is compiled
17 make test
18 # Everything should run without failure. If cuda tests fail logging
19 # in again might solve some issue , this could be due to the hardware
20 # restrictions on summit after 4 hours of login time.

Listing 13. Download and build the Ginkgo software to reproduce the experiments.

A.3 Prepare the experiment scripts and run the benchmarks
Listing 14 simply creates a file for launching the experiments, namely a benchmark_ginkgo.sh we
can later use in the slurm job submission system.

1 cat > ${ginkgo_source }/ benchmark_ginkgo.sh << EOF
2 #!/bin/bash
3 #SBATCH --exclusive
4 #SBATCH --gres=gpu:1
5 #SBATCH --time =6:00:00
6 #SBATCH --partition=<a100 >
7 #SBATCH --export=ALL
8
9 cd ${ginkgo_build }/ benchmark
10 make -j10
11 chmod +x run_all_benchmarks.sh
12 export MATRIX_LIST_FILE=$HOME/TOMS -gko -reproduce/matrices.list
13 export SOLVERS_PRECISION =1e-200
14 export SYSTEM_NAME=A100_solvers
15 export EXECUTOR=cuda
16 export BENCHMARK=solver
17 export FORMATS="coo"
18 exec ./ run_all_benchmarks.sh

Listing 14. Generate the script required for launching the Ginkgo benchmarks

To launch the benchmarks themselves, the following command can be used, see Listing 15:
1 sbatch ${ginkgo_source }/ benchmark_ginkgo.sh

Listing 15. Launch the Ginkgo benchmarking job

A.4 Publish the results and generate the plots
The benchmark experiments generate json files, each containing the performance and convergence
results for one of the test matrices. For analyzing the results, any tool able to process the json
format can be used.

In this section, we describe how Ginkgo’s Performance Explorer (GPE10) can be used to generate
the plots in the paper. First, we need to publish the experiment results into a Github repository
which will be then linked as source input for the GPE. For this, we can simply fork the ginkgo-
data repository. To do so, we can go to the github repository and use the forking interface: https:
//github.com/ginkgo-project/ginkgo-data/tree/TOMS-interface

Once that is completed, we clone the TOMS-interface branch, push all results to the server, and
access the GPE for plotting the results. The detailed steps are shown in Listing 16.

1 git clone https :// github.com/<username >/ginkgo -data.git
2 ${ginkgo_build }/ benchmark/ginkgo -data --branch TOMS -interface
3 rm -rf ${ginkgo_build }/ benchmark/ginkgo -data/data/{ A100_solvers ,MI100_solvers}
4 rsync -rtv ${ginkgo_build }/ benchmark/results/
5 ${ginkgo_build }/ benchmark/ginkgo -data/data/
6 cd ${ginkgo_build }/ benchmark/ginkgo -data/data/
7 # The following updates the main `.json` files with the list of data
8 module load python /3.7.0
9 ./build -list . > list.json
10 ./ agregate < list.json > agregate.json
11 git config --local user.name "<Name >"

10https://ginkgo-project.github.io/gpe/
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12 git config --local user.email "<email >"
13 git commit -am "Ginkgo Reproduced solver data"
14 git push

Listing 16. Publish the results and generate summary files to a Github benchmark repository.

For generating the plots in the GPE, the following steps are needed:
(1) Access the GPE: https://ginkgo-project.github.io/gpe/
(2) Update data root URL, from https://raw.githubusercontent.com/ginkgo-project/ginkgo-data/

master/data to https://raw.githubusercontent.com/<username>/ginkgo-data/TOMS-interface/
data

(3) Click on the arrow to load the data, select the Result Summary entry above. The first few
entries under this should be A100(cuda).

(4) Click on select an example to choose a plotting script, and update the url from https://raw.
githubusercontent.com/ginkgo-project/ginkgo-data/master/plots to https://raw.githubusercontent.
com/<username>/ginkgo-data/TOMS-interface/plots

(5) Again Click on the arrow next to the URL to load everything
(6) Select the plot “Solver bandwidth performance” script
(7) The results should be available in the tab “plot” on the right side. The script can be edited

directly if needed.
(8) Note that the black line is using previously generated BabelStream TRIAD results. This can

also be changed/adapted by compiling and running BabelStream by following the instructions
listed here: https://github.com/UoB-HPC/BabelStream

A.5 Generate results and plots for a MI100 platform
The generation of the equivalent performance results for the MI100 GPU requires only small
adaptations to the workflow.

On Ginkgo’s side, very few changes are required. The main change concerns the build step, where
all CUDA variables need to be removed, and -DGINKGO_BUILD_HIP=on should be used instead. In
addition, in the benchmarking script benchmark_ginkgo.sh, the variable EXECUTOR=hip needs to
be exported as well.
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