KIT | KIT-Bibliothek | Impressum | Datenschutz

Efficient Exploration of Microstructure-Property Spaces via Active Learning

Morand, L. ; Link, N.; Iraki, T.; Dornheim, J. ORCID iD icon 1; Helm, D.
1 Institut für Angewandte Materialien – Computational Materials Science (IAM-CMS), Karlsruher Institut für Technologie (KIT)

Abstract:

In materials design, supervised learning plays an important role for optimization and inverse modeling of microstructure-property relations. To successfully apply supervised learning models, it is essential to train them on suitable data. Here, suitable means that the data covers the microstructure and property space sufficiently and, especially for optimization and inverse modeling, that the property space is explored broadly. For virtual materials design, typically data is generated by numerical simulations, which implies that data pairs can be sampled on demand at arbitrary locations in microstructure space. However, exploring the space of properties remains challenging. To tackle this problem, interactive learning techniques known as active learning can be applied. The present work is the first that investigates the applicability of the active learning strategy query-by-committee for an efficient property space exploration. Furthermore, an extension to active learning strategies is described, which prevents from exploring regions with properties out of scope (i.e., properties that are physically not meaningful or not reachable by manufacturing processes).


Verlagsausgabe §
DOI: 10.5445/IR/1000143601
Veröffentlicht am 10.03.2022
Originalveröffentlichung
DOI: 10.3389/fmats.2021.824441
Scopus
Zitationen: 10
Web of Science
Zitationen: 10
Dimensions
Zitationen: 13
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Materialien – Computational Materials Science (IAM-CMS)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2296-8016
KITopen-ID: 1000143601
Erschienen in Frontiers in Materials
Verlag Frontiers Media SA
Band 8
Seiten Art.-Nr.: 824441
Nachgewiesen in Web of Science
Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page