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Abstract
Time series data generated by manufacturing machines during processing is widely used in mass part production to assess if 
processes run without errors. Systems that make use of this data use machine learning approaches for flagging a time series 
as a deviation from normal behaviour. In single part production, the amount of data generated is not sufficient for learning-
based classification. Here, methods often focus on global signal variance but have trouble finding anomalies that present as 
local signal deviations. The referencing of the process states of the machine is usually performed by state indexing which, 
however, is not sufficient in highly flexible production plants. In this paper, a system that learns granular patterns in time 
series based on mean shift clustering is used for detecting processing segments in varying machine conditions. An anomaly 
detection then finds deviating patterns based on the previously identified processing segments. The anomalies can then be 
labeled by a human-in-the-loop approach for enabling future anomaly classification using a combination of machine learning 
algorithms. The method of anomaly detection is validated using an industrial machine tool and multiple test series.

Keywords Anomaly detection · Pattern recognition · Condition monitoring

1 Introduction

Machine failures represent an important cost factor in the 
current production landscape. One approach to avoiding 
unplanned downtime is to monitor the condition of these 
machines using computer-aided approaches [1, 2]. Since 
heterogeneous machines of different ages are often used, it 
is not possible to use standardized data acquisition methods 
and even the retrofitting of sensors is often too expensive. 
This leads to the necessity of machine-specific approaches 
to condition monitoring. However, since relevant machines 
are controlled numerically (NC) or by programming logic 
(PLC) and generate time series data during the execution of 
processes, it is possible to access this data across machines. 
In the machining context, a machine workflow usually con-
sists of several sub-processes, which can also be repeated 
across different processes and machines. As an example, the 
forward movement of the cutter head of a milling machine is 

given, which will appear in a wide variety of work processes 
and different parts.

The use of these recurring patterns makes it possible to 
introduce generic condition monitoring across machines 
and processes by identifying anomalies in the associated 
time series segments. In the following sections, an anomaly 
detection system is presented which identifies deviations in 
time series based on threshold values. However, since the 
calculations are not performed on complete signals but on 
a priori calculated, simpler sub-sequences of the superordi-
nate time series, such a slightly modified, threshold-based 
approach clearly distinguishes itself from standard methods 
which commonly use global threshold crossings or state-
based indexing to identify anomalies.

This distinction is twofold: first, in the reduced intra-
cluster variance for sub-process clusters which helps to 
detect anomalies at much higher granularity, and secondly 
in the form of easy adaptability to different machine types as 
data on sub-processes can be shared easier than full process 
time-series. This aids in generating value in a brownfield 
setting, where only the set of signals available across all dif-
ferent machines can be considered. Additionally, the system 
is designed to be expandable, allowing for scalability with 
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larger sets of sensors shared across the machines the system 
is attuned to.

2  State of the art

A variety of different approaches to anomaly detection in 
time series exist in the literature and can be roughly clas-
sified into different categories. A comprehensive overview 
is presented by Cook et al. [3]. Tree-based methods can 
be used for tool wear detection [4] and Liu, et al. [5] use 
an ensemble of binary isolation trees for computationally 
effective detection of anomalies without explicit compu-
tation of densities or distances. Sliding window-based 
approaches [6], as well as deep learning [7] and neural 
networks in the form of autoencoders [8] and long-short-
term-memory-based approaches [9] [10], are also appli-
cable to the problem. In general, approaches deal with 
a wide range of use cases, which is why a direct trans-
fer to modified problems is often not straightforward. In 
the domain of monitoring machining operations, several 
reviews of the state of the art and future directions in the 
field exist [2, 11]. Graß et al. presented the GADPL algo-
rithm [12], which clusters and segments time series and 
machine parameters and applies dissimilarity measures 
to then detect anomalies. This allows for unsupervised 
detection of deviations in machine behaviour but relies 
on domain knowledge to segment the time series. Further 
unsupervised approaches include the UFAN architecture 
introduced by [13], who used data from different machines 
to be able to monitor an entire fleet, which is achieved 
using a generative adversarial network for low-dimension-
ality feature generation in combination with a one-class 
extreme learning machine (ELM) classifier. Jove et al. 
[14] implement an anomaly detection for industrial control 
loops in an unsupervised manner by mapping data to two-
dimensional space and then setting limits in this space. 
Among other approaches, principal component analysis, 
beta Hebbian learning and curvilinear component analysis 
are applied, with Beta Hebbian learning performing the 
best out of these approaches. Other approaches in pre-
dictive maintenance also focus on feature extraction [15] 
(FRESH), with the features then being possible to use as 
high-quality input to supervised machine learning models, 
provide high accuracy but the need for labeled training 
data, which might not always be available. Theumer et al. 
[16] detect point and collective anomalies using sliding 
windows and autoencoders respectively. Machine learn-
ing based algorithms are also popular in the context of 
wear detection of machine tools [17]. Axinte and Gindy 
[18] show how spindle power can act as an often readily 
available data source for identifying anomalies in differ-
ent machining processes. They showed that spindle power 

is sensitive enough for anomaly detection in continuous 
processes such as drilling and turning, but not sensitive 
enough to detect deviations in milling processes. How-
ever, spindle power is not assessed on a sub-sequence 
level, which could lead to higher sensitivity regarding the 
detection of deviations. Indeed, Wang et al. [19] showed 
that there is a correlation between tool wear and spindle 
power when specific frequencies are considered. Addition-
ally, some methods work in a sub-process-based context 
like the approach presented in the following but are not 
directly transferable due to partially different baseline con-
ditions. A potential approach for such sub-process-based 
anomaly detection was presented by Zhou et al. [20], who 
use supervised learning to detect different skills of a robot 
based on multimodal time series data for the identification 
of anomalous events. To recognize individual robot skills, 
the sticky hierarchical Dirichlet process (sHDP) by Fox 
et al. [21] is used in combination with hidden Markov 
models. The HMM learned in this way can then be used to 
compute the probability for a given sequence of observa-
tions (time series values), which, when combined with the 
membership of particular robot skills, allows a conclusion 
to be drawn about the presence of an anomaly. However, 
in the present case, since many different subprocesses 
within the time series often occur at low frequencies, 
supervised learning of parameters of a model is difficult. 
In addition, due to machine wear, anomalies occur as tem-
porally extended slow changes from expected values of 
the time series, which means that consistent assignments 
to processes are not always possible. Another approach 
based on time series segmentation followed by anom-
aly detection was presented by Zhang et al. [22]. Here, 
anomalies in high-frequency signals are detected by first 
segmenting them and then examining them for anomalies 
using a combination architecture of a Recurrent Neural 
Network for feature extraction and a convolutional neural 
network-based autoencoder. Signals are considered utiliz-
ing two different window sizes in different granularity to 
enable fast classifications. For the present application, the 
approach is only partly transferable, because the window-
based segmentation of the time series does not provide a 
clear division into actual processes, which makes the clear 
assignment of anomalies to subprocesses of a work process 
on machine tools potentially difficult.

In Table  1, a subset of these papers and respective 
approaches are rated according to the focus on the follow-
ing prerequisites for the use case at hand:

• Cyclicality (Cyc.): The method assumes recurring pat-
terns in the data and integrates this property.

• Predictive (Pred.): Model focuses on predicting anom-
alies in the future. Points are also given if the model 
focuses on predictive maintenance.
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• On-line training (onl.): Model can be trained on-line.
• Real-time (RT.): The model can identify anomalies in 

streaming data.
• Unsupervised (Unsup.): The model does not rely on 

labeled training data
• Model-based (Mb.): The system needs a model of the 

machinery.

Points are awarded based on whether the approach focuses 
on implementing the individual properties. The compari-
son shows that without adaption, the individual approaches 
are not fully transferable to the use case and no single 
approach covers all the targeted properties at once.

3  Approach

A machining process of a machine can also nearly be 
described by the variables defined in the controller. For 
example, in the case of a milling machine, these include 
values for the position of the milling head or tool center 
point (TCP), the spindle current, or the feed rate. Figure 1 
displays such a signal, extracted from a machining center 
performing different milling tasks.

By comparing the target values for these parameters 
with the actual measured values, it is possible to detect 
anomalies. This can be achieved, for example, by com-
paring measured values at certain time indices using a 
definition of the range of actual values allowed for a pro-
cess. However, this has the disadvantage that permitted 
thresholds must be defined on a process-specific basis. It 
is often the case, however, that a single machining pro-
cess consists of different sub-processes, some of which 
may occur again in other processes or other parts. The 
presented approach uses this transferability and therefore 
presents itself in two steps: 

1. Extraction of process-describing patterns from available 
time series and retrieval during machine operation.

2. Anomaly detection for indirect tool condition monitor-
ing.

This has the advantage that patterns can be extracted auto-
matically from available time-series data, thus bypassing 
the process-specific manual matching of target and actual 
values. In this way, the system can detect anomalies based 
on the machining sequence being run and not based on 
generally applicable intervention limits. It should be noted 
however that process differentiation does not need to group 
all processes of a similar nature into one cluster. As an 
example, when feed velocities differ, different sub-pro-
cesses can be grouped into different process clusters based 
on the different feed velocities. This leads to a much more 
granular distinction of processes which helps anomaly 
detection due to less intra-cluster variance but comes at 
the disadvantage of needing more process cycles for train-
ing data collection.

Based on these properties, the approach is heterogene-
ously applicable to different machines. With the additional 
availability of sensor data, this can also be integrated to 
enable more precise detections.

Table 1  Rating of different 
approaches regarding properties 
necessary for the use case at 
hand

Method Cyc. Pred. Onl. RT. Unsup. Mb.

Axinte et al. 2004 - - + unk. unk. ++ ++
GADPL + ++ unk. - - ++ - -
FRESH 0 ++ - unk. 0 ++
UFAN - - 0 - + ++ - -
Jove et al. [14] - - - - + ++ - -
Zhou et al. [20] ++ ++ - - - - - 0

Fig. 1  Example for different signals generated by machine tool: posi-
tion (black) can act as a reference while other signals (blue) can be 
compared for anomaly detection
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For the application of the approach, it is necessary to 
enable standardized access to the data in the controller, 
which can be achieved by implementing an OPC UA server 
in combination with intelligent parameter identification [23].

3.1  Pattern recognition

To recognize recurring sub-processes, it is necessary to 
divide existing time series into sub-sequences. Utilizing 
these sub-sequences, reference sub-signals can be gener-
ated, which can later be searched for in the on-line data. 
The splitting of the machine tool position time series into 
sub-sequences works by segmenting the provided input time 
series based on the detection of local minima. Using this 
criterion, sub-sequences as shown in Fig. 2 are generated.

These sub-sequences do not necessarily represent entire 
processes, but rather processing segments (sub-processes) 
that can reappear across different processing procedures. 
Afterward, the time series sub-sequences based on the posi-
tion signal are grouped with the respective signals across 
other channels (such as currents, torque, etc.), based on the 
timestamp the splits in the position signal appear. If the posi-
tion segment appears again, clusters can be generated across 
these other channels. An approach for clustering these sig-
nals was previously presented using Mean-Shift Clustering 
in [24], subsequently, the approach was extended by exten-
sive data pre-processing, involving smoothing of the posi-
tional time series and offset corrections to further improve 
the matching with previously appearing positional signals 
of the same type.

To enable re-detection of these positional signals in 
on-line data, a sliding buffer on the on-line data is used, 
matching positional signals in the offline database to sig-
nals appearing in the data stream. To reduce matching time, 
the patterns in the offline database are matched at different 
positions in the signal buffer using the mean absolute error 
[23]. Using iterative calculations of the distance between 
the offline patterns and the signal in the buffer in combina-
tion with stopping distance calculations for individual offline 

patterns early if the distance increases above a specified 
threshold leads to pattern matching that can be applied for 
streaming data. Once a pattern is re-detected, the respective 
clustering of the other channels (torque, current, ...) can then 
be used to make a comparison to the respective signal that 
appears in parallel to the on-line position signal.

3.2  Anomaly detection

The anomaly detection now employed is based on a com-
parison of the identified pattern references (e.g. torque) with 
the signals during the operation of the machine.

The reference patterns identified in the pattern recogni-
tion are generated by a modification of the arithmetic mean 
adapted to the different pattern lengths.

where Ck is the cluster for pattern k, x̄k,t is the cluster mean 
of Cluster k at timestep t, xi,k,t is the data point i of Cluster 
k at timestep t, Tk is the number of timesteps available for 
cluster k.

Thus the within-cluster-variance (Eq. 1) can be calcu-
lated for each individual data point of the respective cluster 
and then be used to calculate tolerance limits for this refer-
ence pattern. The limits can for example be calculated by 
using the standard deviation of the cluster members (Eq. 2), 
which acts as an easy but extendable approach for identify-
ing deviations:

The parameter � can be used to manually weight the standard 
deviation of a sample.

The disadvantage of this generic approach is that in areas 
of low signal variance, threshold values are very close to 
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Fig. 2  Segmentation of posi-
tional time series into sub-
sequences using local minima. 
The figure shows the position 
of the tool head over time, 
local minima that mark the 
segmentation into sub-processes 
are marked. The resulting sub-
sequences representing process 
segments are shown to the right
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actually observed (and thus clustered) signal values. An 
example of this problem is demonstrated in the visualization 
in Fig. 2, where low and high variance regions exist within 
a time series. This complicates the choice of a parameter � . 
In addition, it is visible that in areas with large gradients, 
signal trajectories are laterally close to the boundaries, mak-
ing anomaly detection susceptible to shifts.

To overcome these problems, a modified approach for the 
calculation of the tolerance range is used.

Increasing the spacing of the tolerance range in areas with 
high signal gradients in lateral direction, the calculation of 
the upper and lower threshold values is implemented by 
moving maxima and minima. Two parameters tb and tf  are 
used to define the window size for the moving calculation, 
which results in a hull curve of the signal as follows:

The calculation of the adjusted tolerance range taking into 
account the waveform is carried out based on these upper 
and lower thresholds according to the following rule:

xU
k,t

 and xL
k,t

 denote the previously formed hull curves, which 
result from the sliding maxima and minima over the respec-
tive clustered signal values. �1, �2, �3 denote hyperparameters 
which determine the influence of the corresponding varia-
bles with �1 weighted value Pk

99
 corresponds to the 99th per-

centile of the difference between the hull curve and the rep-
resentative for cluster k. This is used to form a wider 
tolerance range in the case of noisy signals since the value 
of Pk

99
 is larger here. Using �2 , the distance of the upper value 

of the envelope from the lower value can be weighted and 
included in the calculation. Finally, the intra-cluster variance 
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Ck
 is included in the calculation of the tolerance band via 

weighting parameter �3 , which can be used alternatively or 
in combination with Pk

99
 for the inclusion of the noise.

Figure  3 shows the formation of the tolerance band 
according to these rules for two different parameter combi-
nations, while the tolerance range for a full signal, which has 
not been divided into individual sub-sequences, is shown to 
emphasize local changes due to stronger noise.

If the system detects a previously occurring pattern as 
described at the beginning of the chapter, a comparison is 
made with the previously stored reference. It is therefore 
checked whether the observed value lies outside the toler-
ance range formed for the associated cluster (Fig. 4).

For certain anomalies, movement away from normal val-
ues begins to appear over a prolonged period, which requires 
additional care, as extracted sub-sequences are usually short 
and such anomalies may therefore not be detected straight 
away. To solve this issue, time series are marked specifically 
during training, which helps with detecting such transient 
anomalies later on.

3.3  Human‑in‑the‑loop

After an anomaly has been detected, labeling is carried 
out by integrating a human component so that, upon re-
occurrence, anomalies can be classified cluster-depend-
ently, and thus across processes, since the anomalies are 
considered on a sub-sequence basis independently of the 
higher-level signal and the associated processing procedure, 
as we assume that anomalies such as blowholes that appear 
in specific sub-processes present similarly independent of 
the individual machining process. This labeling extends the 
unsupervised system so that classical supervised machine 
learning approaches can be used. Additionally, such labeling 
in combination with the prior partitioning of signals into 
sequences independent of the originally performed machin-
ing process circumvents a common problem in the context 
of error detection in production scenarios: Since similar 

Fig. 3  Global pattern variance 
causes problems in specific 
regions. simply relying on a 
single calculated intra-cluster 
variance does not leave room 
for deviations in regions where 
larger deviations would occur 
more frequently
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training data is usually required to train a classifier, it is 
necessary to generate such data at a high cost. In addition, a 
classifier trained in this way can only be applied to new data 
if it has a similar structure to the training data. This ensures 
that many conventional systems can only be used in a very 
process-specific way. However, by separating the signal from 
the actual process, it is now possible to reuse similar pat-
terns across processes for anomaly detection, which simpli-
fies data acquisition.

4  Evaluation

For Validation of the previously described system in Brown 
Field applications, milling tests were carried out at the 
wbk Institute of Production Science, Karlsruhe, Germany 
on a DMG 6-axis milling center. The 13 individual signals 
extracted are shown in Table 2.

The pattern recognition system detected multiple differ-
ent machining segments during the process. The subsequent 
anomaly detection should then be able to detect anomalies 
occurring in the milling process based on these segments. 
As part of the test series, 10 individual milling tests were 
carried out for fine machining. Three repetitive machining 
segments (circular pocket, oblong hole, rectangular pocket, 
see Fig. 5 were performed for each test. As anomalies, arti-
ficially introduced blowholes/pores, realized via additional 
holes (1–3 mm diameter) were introduced into the work-
piece. Furthermore, wear is to be recognized and detected 
in case of increased tool life. S235JR in 200 × 20 mm was 
used as workpiece material. The lubrication was realized by 
a minimum quantity lubrication (MQL). A short overview 
on the validation methodology is shown in Fig. 6.

By pattern recognition, 40 sub-sequences were detected 
as part of the milling process. These present as specific pat-
terns in the X, Y and Z milling head position signals. With 
the respective clustered other signals, the thresholds are cal-
culated as described in chapter 3. Different Anomalies are 
detected when these thresholds are crossed.

Fig. 4  Visualization of custom 
thresholds TrU

k
 and TrL

k
 for differ-

ent moving maximum window 
sizes and coefficient combina-
tions �

1

, �
2

, �
3

 for a complete time 
series: tb = tf = 5, �

1

= 0.05, �
2

= �
3

= 0
 

(Top), tb = tf = 20, �
1

= 0.05,

�
2

= 0.02, �
3

= 0 (Bottom). 
Depending on the chosen parame-
ters, the sensitivity of the anomaly 
detection can be controlled

Fig. 5  CAD model of the validation workpiece. The individual 
shapes were milled repeatedly while blowholes were artificially real-
ized through drilled pores in some of the pockets for the later pro-
cesses

Table 2  Extracted signals from DMG 6-axis milling machine

Signal name Axes Use for algorithm

Milling head position X, Y, Z Subsequence clustering
Milling head position Rotation –
Spindle position – –
Current X, Y, Z, rotation Anomaly detection
Spindle current - Anomaly detection
Torque X, Y, Z, rotation Anomaly detection



Production Engineering 

1 3

Figure 7 shows the time series segment belonging to the 
detection of tool wear, occurring in milling process 5. As 
the live data comes from one of the later milling processes, 
some tool wear is expected, which can result in shifts in the 
signal. Tool wear presents as a large series of data points 
crossing the thresholds. When this happens, the offset due 
to extended tool life and wear is too large and no longer 
falls inside the acceptance limits. Here, tool maintenance is 
recommended to avoid anomaly detection from finding such 
anomalies too often. The anomalous event is detected within 
the spindle current signal and presents as the crossing of the 
threshold that was calculated from the training data. The 
detection of tool wear depends on the training data used. If 
tool wear is already present during training, it is more dif-
ficult to detect later on, as additional variance is introduced. 
Note that to give more insight into the training data, the 
thresholds are shown calculated for each individual cluster 
member—the true threshold is therefore calculated by taking 
their mean. It is important to note that the splitting of the 
time series into these segments allows for these thresholds 
to be calculated on a local level.

This presents a significant advantage compared to 
approaches that define such thresholds globally, as even 
slight variations that do disguise on a global level can be 
identified, as is the case in Fig. 7. Due to the way the thresh-
olds are calculated, when fast changes in the signal occur, 
the thresholds still have sufficient distance to the signals.

The detected tool wear anomaly is shown in further detail 
in Fig. 8. In addition to the overall offset, multiple crossings 
are detected especially at the start of the sequence. As later 
in the sequence the offset itself does not cause the detection 
of an anomaly but keeps very close to the thresholds, the 
previous crossings are likely caused by the offset itself, and 
unlikely due to point anomalies such as a blowhole.

Other anomalies tend to appear differently. Figure 9 dis-
plays a detected blowhole anomaly. Here, the threshold is 
crossed more sharply and for a shorter periods of time. Even 
though the offset from the tool wear is still present (and 
another tool wear anomaly is detected before the blowhole 
anomaly), the threshold is violated in the upward direction 
by the sharp rise in current. The local threshold calcula-
tion allowed for the fitting of tighter thresholds, leading to 
the detection of this anomaly, that would have likely been 
lost when only using global signal variance for threshold 
calculation.

5  Conclusion

By splitting time series data into simple sub-sequences based 
on the tracked position of the machine over time and con-
necting respective signal sequences that appear across other 
channels to this sub-sequences, the presented system allows 
for the detection of anomalies independently of global sig-
nal variance and across different processes. With the use 
of custom thresholds, the effect of signals varying in noise 
and magnitude can be compensated. To further enhance the 
system, a human-in-the-loop approach is taken after anoma-
lies are detected, which allows for the classification of an 
anomaly should it appear again in the same form and enables 
a process independent collection of training data. The sys-
tem was validated in an experimental setting using milling 
processes that presented with and without anomalies. Two 
types of anomalies were detected by the system. Blowholes/
pores and tool wear were identified in a milling test car-
ried out after training on three repeated identical milling 
processes. Anomalies were validated manually. However, 
a larger validation experiment is needed to test the robust-
ness to the varying presentation of similar anomalies. This 
would also confirm that the detection of the blowholes/pores 
would be reliable in cases where no tool wear is present at 
the same time. Further investigations are planned to apply 
the approach to other production machines, such as joining 
units in assembly stations or highly flexible handling robots. 
Larger validation series could also aid in identifying if other 
methods of calculating signal thresholds should be explored, 
especially after assessing the sensitivity of the current cal-
culation to the introduced parameters. Especially in flexible 
brownfield applications, the presented intelligent anomaly 
detection approach based on existing data streams from the 
control unit is shown to provide significant added value for 
sustainable overall equipment effectiveness improvement.

Fig. 6  Validation of anomaly detection. Training using three non-
anomalous processes, followed by different tests on anomalous pro-
cesses. Results were then analyzed manually
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Fig. 7  One of the detected 
anomalies (tool wear). The top 
two plots show the respective 
reference sub-sequences for 
the x and y-axis in the position 
signal that are used to cluster 
the other signals. The bottom 
plot shows the live signal at the 
timestamps belonging to the 
detected reference signals. The 
thresholds are plotted for each 
cluster member without taking 
a mean to show how much 
variance is present in the train-
ing data. As the thresholds are 
crossed at multiple points, an 
anomaly is detected
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