KIT | KIT-Bibliothek | Impressum | Datenschutz

High-Resolution Kinoform X-Ray Optics Printed via 405 nm 3D Laser Lithography

Sanli, U. T. ; Messer, T. 1; Weigand, M.; Lötgering, L.; Schütz, G.; Wegener, M. 1,2; Kern, C. 1,2; Keskinbora, K.
1 Institut für Angewandte Physik (APH), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)

Abstract:

Efficient focusing of X-rays is essential for high-resolution X-ray microscopy. Diffractive X-ray optics called kinoforms offer the highest focusing efficiencies in theory. However, they have long remained unavailable due to their challenging nanofabrication. Recently, various X-ray optic geometries including kinoforms have been realized using 3D laser lithography at near-infrared wavelengths. As the smallest features (period) of the kinoform determines the resolving power, there is a natural drive to find ways to fabricate kinoforms with ever smaller features. Here, a custom-built 3D laser lithography setup with an excitation wavelength of 405 nm is used, which allows to half the smallest period of the kinoforms compared to previous work. A 40% improvement in scanning transmission X-ray microscopy image resolution, that is, a cutoff resolution of 145 nm, and an efficiency of 7.6% at 700 eV is achieved. A reconstructed pixel size of 18.5 nm, reaching the limit imposed by the design of the microscopy set-up, is demonstrated through ptychographic imaging of a magnetic sample which has a strongly reduced contrast mechanism. Moreover, X-ray lenses manufactured by 405 nm 3D laser lithography have the potential to become much less expensive than X-ray lenses made by other means.


Verlagsausgabe §
DOI: 10.5445/IR/1000143617
Veröffentlicht am 10.03.2022
Originalveröffentlichung
DOI: 10.1002/admt.202101695
Scopus
Zitationen: 7
Web of Science
Zitationen: 5
Dimensions
Zitationen: 7
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Physik (APH)
Karlsruhe School of Optics & Photonics (KSOP)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 2365-709X
KITopen-ID: 1000143617
HGF-Programm 43.32.02 (POF IV, LK 01) Designed Optical Materials
Erschienen in Advanced Materials Technologies
Verlag John Wiley and Sons
Band 7
Heft 9
Seiten Art.-Nr.: 2101695
Vorab online veröffentlicht am 24.02.2022
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page