KIT | KIT-Bibliothek | Impressum | Datenschutz

Hybridization from Guest-Host Interactions Reduces the Thermal Conductivity of Metal-Organic Frameworks

Decoster, M. E.; Babaei, H.; Jung, S. S.; Hassan, Z. M. 1; Gaskins, J. T.; Giri, A.; Tiernan, E. M.; Tomko, J. A.; Baumgart, H.; Norris, P. M.; McGaughey, A. J. H.; Wilmer, C. E.; Redel, E. 1; Giri, G.; Hopkins, P. E.
1 Institut für Funktionelle Grenzflächen (IFG), Karlsruher Institut für Technologie (KIT)

Abstract:

We experimentally and theoretically investigate the thermal conductivity and mechanical properties of polycrystalline HKUST-1 metal–organic frameworks (MOFs) infiltrated with three guest molecules: tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F$_{4}$-TCNQ), and (cyclohexane-1,4-diylidene)dimalononitrile (H$_{4}$-TCNQ). This allows for modification of the interaction strength between the guest and host, presenting an opportunity to study the fundamental atomic scale mechanisms of how guest molecules impact the thermal conductivity of large unit cell porous crystals. The thermal conductivities of the guest@MOF systems decrease significantly, by on average a factor of 4, for all infiltrated samples as compared to the uninfiltrated, pristine HKUST-1. This reduction in thermal conductivity goes in tandem with an increase in density of 38% and corresponding increase in heat capacity of ∼48%, defying conventional effective medium scaling of thermal properties of porous materials. We explore the origin of this reduction by experimentally investigating the guest molecules’ effects on the mechanical properties of the MOF and performing atomistic simulations to elucidate the roles of the mass and bonding environments on thermal conductivity. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000143622
Veröffentlicht am 11.03.2022
Originalveröffentlichung
DOI: 10.1021/jacs.1c12545
Scopus
Zitationen: 28
Web of Science
Zitationen: 25
Dimensions
Zitationen: 27
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Funktionelle Grenzflächen (IFG)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2021
Sprache Englisch
Identifikator ISSN: 0002-7863, 1520-5126, 1943-2984
KITopen-ID: 1000143622
HGF-Programm 43.33.11 (POF IV, LK 01) Adaptive and Bioinstructive Materials Systems
Erschienen in Journal of the American Chemical Society
Verlag American Chemical Society (ACS)
Band 144
Heft 8
Seiten 3603–3613
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page