
SMILE - Smart eMaIl Link Domain
Extractor

Mattia Mossano(B), Benjamin Berens, Philip Heller, Christopher Beckmann,
Lukas Aldag, Peter Mayer, and Melanie Volkamer

Karlsruhe Institute of Technology, Karlsruhe, Germany
{mattia.mossano,benjamin.berens,philip.heller,christopher.beckmann,

lukas.aldag,peter.mayer,melanie.volkamer}@kit.edu

Abstract. Phishing over email continues to be a significant threat, as
such messages still end up in users’ inboxes. Several studies showed that
users rarely check the URL in the statusbar before clicking a link and that
they have difficulties reading URLs. To support users, we propose SMILE
(Smart eMaIl Link domain Extractor), a novel approach that provides
the relevant information to distinguish between legitimate and phishing
emails checking the links in them. Once applied, SMILE modifies all
links in an email to contain the domain and top-level-domain of the
URL behind them, e.g., “Click here” in an legitimate Amazon email is
modified to “Click here [amazon.com]”.

Keywords: Anti-phishing intervention · User support · URL analysis

1 Introduction

Phishing is still a growing threat, e.g., the Anti Phishing Working Group [6]
shows that in 2020 the number of phishing websites doubled. Despite improved
phishing detection tools, phishing emails still reach people’s email inboxes. While
there are various types of phishing emails, we focus on those containing danger-
ous links that could download malware or take victims to phishing webpages.
Simple phishing emails can be detected through sender address or typos, but this
is not the case for sophisticated attacks. Yet, all phishing emails with links can be
identified through the URL behind each link. However, [23] showed that most
people are not aware of this and [3] demonstrated that people have problems
reading URLs correctly.

We propose SMILE, Smart eMaIl Link domain Extractor. SMILE checks the
HTML code of an email to detect links and modifies them only to contain what
we call a “SMILE-string”. These strings are then the only clickable elements
in the respective email. They can be the domain and top-level-domain (TLD)
of the URL behind a link, an IP address, or include some subdomains (e.g.,
sites.google.com). This paper presents the SMILE concept and its working.

c© The Author(s) 2022
S. Katsikas et al. (Eds.): ESORICS 2021 Workshops, LNCS 13106, pp. 403–412, 2022.
https://doi.org/10.1007/978-3-030-95484-0_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-95484-0_23&domain=pdf
https://doi.org/10.1007/978-3-030-95484-0_23

404 M. Mossano et al.

2 Related Works

There are various solutions to provide tool based anti-phishing support to users.
Tools can, e.g., analyse and operate on malicious emails/websites content [1,16,
25], work on the DNS side [4,7,10] or identify malicious websites with machine
learning [2,8,12]. They either block or warn users if the risk is above a predefined
threshold. Yet, there is no 100% guarantee for detection. SMILE differs from
them as it helps users to identify phishing emails, not block the latter.

Researchers have proposed in [5,18,20,22] two different solutions to support
users to analyse emails URLs. In [18,20,22], the authors show a tooltip just-
in-time and just-in-place with the URL behind links. Some parts of SMILE,
namely the SMILE-string resolution and SMILE special cases (see Sect. 5), are
based on [20,22]. In [5], the authors propose a chat-bot that helps users to decide
the legitimacy of a link through text interactions. SMILE advantage over them
is placing the relevant information (and only that) whenever an email is opened.

Valve’s videogame digital distribution service, STEAM, employs a SMILE-
like security feature on their forum. In [21] there are some examples of the
forum text formatting, however, we found no official documentation explaining
this security feature. Thus, we conducted some tests on their platform, shown in
the Appendix (Fig. 3). Valve adds domain and TLD of the URL after the link
itself, between square parenthesis, as normal text with darker font colour and
smaller character size. The feature only applies to textual links but only those
where the text is a URL which does not start with http/https. SMILE modifies
textual links (with and without protocol), image links, short URLs, and moves
the clickable element to the SMILE-string.

3 Background on Link-Types

Our interest are links in emails. Thus, we focus on the four ways to create them:

– Anchor-Element, also known as a-tag
– Form-Element, that can send data to a link given by the “action” attribute
– Formaction-Attribute, special form-elements with the “formaction” attribute
– Area-Element, enable areas in a (possibly transparent) image to be clickable

We would like to make these remarks: (1) The term “link” usually indicates
only anchor-elements, but we use it for all four for simplicity. (2) Links can
be created with JavaScript, but the common web mail services and clients [15]
block it [9]. Thus, we do not consider it further. (3) From the users’ point of
view, form-elements and formaction-attributes are indistinguishable.

There are three link-types for anchor-element, form-element, and formaction-
attribute: Image, URL-like, and Misc (e.g., “Click here”). Area-tag is only appli-
cable for the link-type Image (as we consider its usage in the email context).

In summary, SMILE needs to cope with ten different situations (= 3 anchor-
elements + 3 form-elements + 3 formaction-attributes + 1 area-element).

SMILE - Smart eMaIl Link Domain Extractor 405

4 SMILE: General Idea

The general idea underlying SMILE is to enhance the transparency of every
email link by substituting them with easy-to-read versions whenever the email
is opened without further user action. After applying SMILE, the email con-
tains textual links with the SMILE-string. This can be the domain and the
TLD of the original link URL, an IP address, or include some subdomains (e.g.,
sites.google.com). The SMILE-string only provides the minimum information
required to decide on a URL legitimacy (i.e., no automated URL analysis). Note,
the statusbar is left untouched and it shows the entire URL on mouse-hover.

Our design principle has four motivations: (1) substituting every link at once
saves time, as users do not have to check them independently (e.g., as with a
tooltip). (2) Only placing the SMILE-string, instead of the URL, reduces the
efficacy of phishing URLs with misplaced legitimate domains. (3) The relevant
security indicator (SMILE-string) is in the email body, i.e., just-in-place, as
recommended in [18]. (4) Limited information prevents conflicts/overlap with
other tools, e.g., the solution in [22]: users wanting more information can combine
SMILE with other tools. An example of an email modified by SMILE is shown
in Fig. 1.

Toggle Function. SMILE might make complex emails unreadable. Thus, we
implemented a toggle function to undo all substitutions on demand.

(a) Without SMILE (b) With SMILE

Fig. 1. Link in email, without and with SMILE.

5 SMILE: Algorithm

A high-level description of the algorithm is depicted in Fig. 2. Note, the credit for
the processes described in “Resolve SMILE-string” (short URL service, redirects,
IP-address, legitimate TLDs recognition and punycode) and “Resolve special case
SMILE-string” (programmed tooltips and dangerous files at cloud services) goes
to the authors of [20,22]. However, differently from TORPEDO, SMILE: (1)
only shows the SMILE-string, not the entire URL, (2) adds the SMILE-string
to the email text, not in a tooltip, (3) substitutions are situation based, and (4)
substitutions are shown whenever the email is opened, not only on mouse-hover.

Identify Link-Type. First, SMILE searches for a link and identifies the link-
type (see Sect. 3 for the different link-types).

406 M. Mossano et al.

Fig. 2. Flow chart showing the algorithm behind SMILE.

Resolve SMILE-String. SMILE extracts the URL from the link and checks if
it points to a known short URL service or a known redirect service. In these cases,
the URL is meaningless to the user to determine whether it is a phishing one or
not. SMILE resolves the final destination, if needed by repeatedly applying this
step. Then, the resolved URL is set as actual URL.

For the short URL service, SMILE loads the headers of the service to check
the target location following the HTTP 3xx server response. This can be a
privacy issue, as it allows the link owner to get the user IP address Therefore,
the users can configure SMILE to not send any request and to show domain and
TLD of the short URL service.

For the redirects, SMILE resolves the URL from the path of the actual URL
applying rules that recognise the structure used by known redirect services.
For example, from google.de/url?url=https%3A%2F%2Fexample.com%2Fdocs
to https://example.com/docs.

Afterwards, SMILE checks whether the URL is an IP address, i.e., IPv4 or
IPv6. In this case, the SMILE-string is the complete IP address and SMILE
stops processing it.

In case the URL is not an IP address, SMILE deduces from it the SMILE-
string by extracting the domain. The information regarding actual TLDs and
domains comes from the Mozilla Foundation’s Public Suffix list [17] using the
solution in the “publicsuffixlist.js” GitHub project [13].

Finally, SMILE checks the extracted SMILE-string for specific characters in
the Unicode character space. This check is to prevent homographic techniques,
i.e., using similar-looking characters from other character spaces in the domain
or TLD, e.g., using a Cyrillic “e” for the domain “google.de”. SMILE replaces
non-ASCII characters in the SMILE-string with puny code, e.g., xn–googl-7of.de.
This approach is already used in many programs, e.g., Google Chrome 51+ [11].

Resolve Special Case SMILE-String. SMILE addresses three special cases:
(1) programmed tooltips, (2) dangerous files at cloud services and (3) website
creation and hosting tools.

In the first case, the tooltip contains the legitimate URL for the link and is
meant to distract users from the actual URL in the statusbar. If users do not
know that a tooltip is not expected in a context, they can mistakenly consider
the URL in the tooltip as a legitimate location, thus clicking on a fraudulent link.
SMILE checks for programmed tooltips and blocks them from being displayed.

In the second case, phishers would store dangerous files at a cloud service
and provide a link to them in the email. In this case, the SMILE-string alone

https://example.com/docs

SMILE - Smart eMaIl Link Domain Extractor 407

might be misleading to users. Therefore, SMILE checks for the URL structure
of well known cloud service providers (e.g., Dropbox, Google Drive, OneDrive).
It then adds a warning before the SMILE-string link: “[Only click if you were
expecting this email, as you are redirected to a cloud service:]”.

In the third case, SMILE checks for well known website creation and hosting
tools, e.g., Google Sites, Microsoft Azure. The SMILE string is then extended
with the subdomain (e.g., sites.google.com) and a warning is added before the
SMILE-string link: “[Only click if you were expecting this email, as you are
redirected to a webpage that could have been set up by anyone:]”.

Apply Situation Specific Substitution + Normalise Visuals. Each of the
10 situations identified in Sect. 3, is treated differently by SMILE:

– Image link-type. A link including an image as its first and only child. SMILE
disable the link and adds the phrase “Image link:” above the image, followed
by the SMILE-string between square parenthesis.

– URL-like link-type. A textual link appearing to be a URL. SMILE detects
specific patterns (i.e., http, https, www, /) or a specific structure (i.e.,
domain.tld). Thus, SMILE works both on extended URLs, e.g., https://www.
amazon.co.uk, and reduced ones, e.g., amazon.co.uk. In this case, SMILE sub-
stitutes the text content of the element with the SMILE-string.

– Misc link-type. Links whose content is neither an image nor URL-like, e.g.,
“Click here”. To preserve the information in the misc type text, SMILE keeps
the text but disables the link, i.e., it is just normal email text. SMILE adds
the SMILE-string between square brackets as a new link right after this text.

These three link-types cover 9 of the 10 situations. The last situation are
maps with clickable areas over images. SMILE adds a list of links above the
image, analogously to the Image link-type described above. The map is then
removed from the image to disable the clickable parts. This approach loses the
original image area contextual information, but introduces a clear list of links.

Note that links created through form-elements and formaction-attributes
(Sect. 3) do not show the URL behind them on mouse-hover. Without SMILE,
the only way to check their URL is inspecting the HTML code of the webpage.
However, since every SMILE-string is an anchor-element textual link, users can
check their URL on mouse-hover, accessing otherwise hidden information.

Code examples in HTML for each of the ten situations are provided in the
Appendix (Table 2). Examples of the substitutions can be seen in Table 1.

SMILE also normalises the font visuals. For example, it applies a minimum
font size to prevent a too small to read SMILE-string and it checks for enough
contrast with the background colour to make the SMILE-string easily legible.

6 Discussion

SMILE can work on both the receiving email server (central approach) or the
email client, i.e., the software or app used by the user (local approach).

Central Approach. No user installation is required and SMILE is also available
on mobile devices. However, the toggle function is either not available or users

https://www.amazon.co.uk
https://www.amazon.co.uk

408 M. Mossano et al.

Table 1. Examples of SMILE substitutions. Note, SMILE also works on buttons and
button-like links, i.e., images of buttons and CSS modified anchor-elements.

Without SMILE With SMILE

A
n
ch

or
,
F
or

m
,
F
or

m
ac

ti
on

Im
ag

e
U
R
L
-L

ik
e

M
is
c

Without SMILE With SMILE

A
re
a

have to install an extension. Moreover, the DKIM authentication method has
issues, as it uses digital signatures over the email body and any alteration leads to
a client-side failed check. A workaround is for the server to perform the DKIM
check and pass it on to the user, e.g., by changing the subject. End-to-end
encryption mechanisms, e.g., PGP or S/MIME, can be used, but SMILE would
not work, as the email text would not be accessible (i.e., encrypted).

Local Approach. DKIM authentication, end-to-end encryption and toggle
function work. However, SMILE needs to be adapted to various email clients
as an extension (i.e., add-on). Note, Outlook, Apple Mail and mobile clients
require specific solutions.

As future work, we plan an evaluation of the SMILE concept, i.e., its effec-
tiveness in different settings (e.g., mobile and desktop) as well as its performance
in comparison to the tooltip proposed in [22]. This could be conducted in two
ways: in a non-interactive environment and in an interactive environment. Both
approaches have been used in the past (e.g., [14,19,22,24] used a non-interactive
environment and [5,22] used an interactive one). We believe both options to be
worthwhile, as each can potentially show different aspects. Hence, we plan to
evaluate SMILE in both ways. Furthermore, we want to check SMILE in the
real world to see how much the toggle function is required.

7 Conclusion

We propose SMILE, a new security intervention supporting users while detecting
phishing emails. SMILE has various advantages over existing approaches: (1) it
displays the relevant information immediately, not only on mouse-hover. (2) It
only shows the SMILE-string, thwarting obfuscation techniques like subdomain-
as-domain (e.g., google.com.domain.com). (3) It can work centrally (i.e., on the
receiving email server) or locally (i.e., in the email client). As future work, we

SMILE - Smart eMaIl Link Domain Extractor 409

plan to conduct user studies to get empirical evidence of these advantages and
to evaluate SMILE usability.

Acknowledgements. This work was supported by funding from the topic Engi-
neering Secure Systems of the Helmholtz Association (HGF), by KASTEL Security
Research Labs, by the Federal Ministry of Education and Research (BMBF) and the
Baden-Württemberg Ministry of Science as part of the Excellence Strategy of the Ger-
man Federal and State Governments, and by the Google Faculty Research Award 2019
for the Link-centric Phishing Warnings for Online Email Clients project.

Appendix

Table 2. Examples in html code for every substitution situation. The formaction
attribute for the input and button is optional. If no formaction attribute is given, the
action attribute of the form is used.

Without SMILE With SMILE

Anchor
-Image

↪→

Image Link: [example.org
]

↪→
↪→

Anchor
-URL-Like

https://sub.exa�
mple.org/path↪→

[example.org</�
a>
]

↪→
↪→

Anchor
-Misc

Start
Now↪→

Start Now [<a class="button"
href="https://example.org/">example.org]↪→

Form
-Image

<form action="https://sub.example.com/path"
method="POST">↪→

<button type="submit"></button></form>↪→

<form action="https://sub.example.com/path"
method="POST">Image Link: [<button↪→
type="submit">example.org</button>]
<img

src="./example.png" /></form>↪→

Form
-URL-Like

<form action="https://sub.example.com/path"
method="POST">↪→

<button
type="submit">https://sub.example.org/path</button>↪→

<input value="https://example.org/"
type="submit"/></form>↪→

<form action="https://sub.example.com/path"
method="POST">↪→

[<button type="submit">example.org</button>]
[<input value="example.org" type="submit"/>]</form>

Form
-Misc

<form action="https://sub.example.com/path"
method="POST">↪→

<button type="submit">Submit Now</button>
<input value="Submit Now" type="submit"/></form>

<form action="https://sub.example.com/path"
method="POST">↪→

Submit Now [<button
type="submit">example.org</button>]↪→

Submit Now [<input value="example.org"
type="submit"/>]</form>↪→

Formaction
-Image

<form action="https://sub.example.com/path"
id="form1"></form>↪→

<button type="submit"
formaction="https://example.com/path"↪→

form="form1"><img src="./example.png"
/></button>↪→

<form action="https://sub.example.com/path"
id="form1"></form>↪→

Image Link: [<button type="submit"
formaction="https://example.com/path"↪→

form="form1">example.org</button>]
↪→

Formaction
-URL-Like

<form action="https://sub.example.com/path"
id="form1"></form>↪→

<input type="submit" form="form1"
value="https://page1.example.co.uk/path1"↪→

formaction="https://page1.example.co.uk/path1"�
/>
<button type="submit"

formaction="https://page2.example.de/path2"↪→
form="form1">https://page2.example.de/</button>

<form action="https://sub.example.com/path"
id="form1"></form>↪→

<input value="example.co.uk" type="submit" form="form1"
formaction="https://page1.example.co.uk/path1"

/>↪→
<button formaction="https://page2.example.de/path2"

type="submit" form="form1">example.de</button>

Formaction
-Misc

<form action="https://sub.example.com/path"
id="form1"></form>↪→

<input type="submit" form="form1" value="Submit Now"
formaction="https://page1.example.co.uk/path1"/>↪→

<button type="submit" form="form1"
formaction="https://page2.example.de/path2"
>Submit Now</button>

↪→
↪→

<form action="https://sub.example.com/path"
id="form1"></form>↪→

Submit Now [<input value="example.co.uk"
type="submit" form="form1"
formaction="https://page1.example.co.uk/path1" />]

↪→
↪→
Submit Now [<button type="submit" form="form1"

formaction="https://page2.example.de/path2">
example.de</button>]

↪→
↪→

Area
-Image

<map name="map�
">
<area shape=".." coords=".."

href="https://example1.com/">↪→
<area shape=".." coords=".."

href="https://example2.com/"></map>↪→

Area Link: [example1.com]
↪→

Area Link: [example2.com]
↪→

410 M. Mossano et al.

Fig. 3. Tests of Valve’s STEAM forum formatting of links. The substitution is added
only for some of them. T31, 32 and 33 use the “spoiler” function, that allows to obscure
some of the text, then visible only through mouse-hover.

References

1. Afroz, S., Greenstadt, R.: PhishZoo: detecting phishing websites by looking at
them. In: International Conference on Semantic Computing, pp. 368–375 (2011).
https://doi.org/10.1109/ICSC.2011.52

2. Al-Janabi, M., de Quincey, E., Andras, P.: Using supervised machine learning
algorithms to detect suspicious URLs in online social networks. In: International
Conference on Advances in Social Networks Analysis and Mining, pp. 1104–1111
(2017). https://doi.org/10.1145/3110025.3116201

3. Albakry, S., Vaniea, K., Wolters, M.K.: What is this URL’s destination? Empirical
evaluation of users’ URL reading. In: Conference on Human Factors in Computing
Systems (CHI), pp. 1–12 (2020). https://doi.org/10.1145/3313831.3376168

4. Ali, M., Nelson, J., Shea, R., Freedman, M.J.: Blockstack: a global naming and
storage system secured by blockchains. In: USENIX Annual Technical Conference
(USENIX ATC), pp. 181–194 (2016). https://www.usenix.org/conference/atc16/
technical-sessions/presentation/ali

5. Althobaiti, K., Vaniea, K., Zheng, S.: Faheem: explaining URLs to people using a
Slack bot. In: Symposium on Digital Behaviour Intervention for Cyber Security,
pp. 1–8 (2018). https://vaniea.com/papers/aisb2018.pdf

6. APWG: Phishing activity trends report, 4th quarter 2020 (2021). https://docs.
apwg.org/reports/apwg trends report q4 2020.pdf

7. Bin, S., Qiaoyan, W., Xiaoying, L.: A DNS based anti-phishing approach. In: 2010
Second International Conference on Networks Security, Wireless Communications
and Trusted Computing, pp. 262–265 (2010). https://doi.org/10.1109/NSWCTC.
2010.196

8. Chiew, K.L., Chang, E.H., Sze, S.N., Tiong, W.K.: Utilisation of website logo for
phishing detection. Comput. Secur. 54, 16–26 (2015). https://doi.org/10.1016/j.
cose.2015.07.006

9. Englehardt, S., Han, J., Narayanan, A.: I never signed up for this! Privacy impli-
cations of email tracking. Proc. Priv. Enhancing Technol. 2018(1), 109–126 (2018)

10. Gastellier-Prevost, S., Gonzalez Granadillo, G., Laurent, M.: A dual approach to
detect pharming attacks at the client-side. In: 4th IFIP International Conference
on New Technologies, Mobility and Security, pp. 1–5 (2011). https://doi.org/10.
1109/NTMS.2011.5721063

https://doi.org/10.1109/ICSC.2011.52
https://doi.org/10.1145/3110025.3116201
https://doi.org/10.1145/3313831.3376168
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali
https://www.usenix.org/conference/atc16/technical-sessions/presentation/ali
https://vaniea.com/papers/aisb2018.pdf
https://docs.apwg.org/reports/apwg_trends_report_q4_2020.pdf
https://docs.apwg.org/reports/apwg_trends_report_q4_2020.pdf
https://doi.org/10.1109/NSWCTC.2010.196
https://doi.org/10.1109/NSWCTC.2010.196
https://doi.org/10.1016/j.cose.2015.07.006
https://doi.org/10.1016/j.cose.2015.07.006
https://doi.org/10.1109/NTMS.2011.5721063
https://doi.org/10.1109/NTMS.2011.5721063

SMILE - Smart eMaIl Link Domain Extractor 411

11. Google: Internationalized Domain Names (IDN) in Google Chrome (2021). https://
chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/idn.md

12. Hajgude, J., Ragha, L.: Phish mail guard: phishing mail detection technique by
using textual and URL analysis. In: 2012 World Congress on Information and
Communication Technologies, pp. 297–302 (2012). https://doi.org/10.1109/WICT.
2012.6409092

13. Hill, R.: Public suffix list (2020). https://github.com/gorhill/publicsuffixlist.js
14. Lastdrager, E., Gallardo, I.C., Hartel, P., Junger, M.: How effective is anti-

phishing training for children? In: Thirteenth Symposium on Usable Privacy
and Security (SOUPS), pp. 229–239 (2017). https://www.usenix.org/conference/
soups2017/technical-sessions/presentation/lastdrager

15. Litimus Email Analytics: Email client market share (2021). https://
emailclientmarketshare.com/

16. Marchal, S., Armano, G., Grondahl, T., Saari, K., Singh, N., Asokan, N.: Off-
the-hook: an efficient and usable client-side phishing prevention application. IEEE
Trans. Comput. 66, 1717–1733 (2017). https://doi.org/10.1109/TC.2017.2703808

17. Mozilla: Public Suffix List (2020). https://publicsuffix.org/
18. Petelka, J., Zou, Y., Schaub, F.: Put your warning where your link is: improv-

ing and evaluating email phishing warnings. In: Conference on Human Factors
in Computing Systems (CHI), pp. 1–15 (2019). https://doi.org/10.1145/3290605.
3300748

19. Reinheimer, B., et al.: An investigation of phishing awareness and education over
time: when and how to best remind users. In: Sixteenth Symposium on Usable
Privacy and Security (SOUPS), pp. 259–284 (2020). https://www.usenix.org/
conference/soups2020/presentation/reinheimer

20. SecUSo: TORPEDO-Webextension (2021). https://github.com/SecUSo/TORPE
DO-Webextension

21. Valve: Text formatting (2021). https://steamcommunity.com/comment/Recomme
ndation/formattinghelp

22. Volkamer, M., Renaud, K., Reinheimer, B., Kunz, A.: User experiences of TOR-
PEDO: TOoltip-poweRed Phishing Email DetectiOn. Comput. Secur. 71, 100–113
(2017). https://doi.org/10.1016/j.cose.2017.02.004

23. Wash, R.: How experts detect phishing scam emails. In: Proceedings of the ACM on
Human-Computer Interaction, pp. 1–28 (2020). https://doi.org/10.1145/3415231

24. Wen, Z.A., Lin, Z., Chen, R., Andersen, E.: What. Hack: engaging anti-phishing
training through a role-playing phishing simulation game. In: Conference on
Human Factors in Computing Systems (CHI), pp. 1–12 (2019). https://doi.org/
10.1145/3290605.3300338

25. Zhou, Y., Zhang, Y., Xiao, J., Wang, Y., Lin, W.: Visual similarity based anti-
phishing with the combination of local and global features. In: 13th International
Conference on Trust, Security and Privacy in Computing and Communications,
pp. 189–196 (2014). https://doi.org/10.1109/TrustCom.2014.28

https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/idn.md
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/idn.md
https://doi.org/10.1109/WICT.2012.6409092
https://doi.org/10.1109/WICT.2012.6409092
https://github.com/gorhill/publicsuffixlist.js
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/lastdrager
https://www.usenix.org/conference/soups2017/technical-sessions/presentation/lastdrager
https://emailclientmarketshare.com/
https://emailclientmarketshare.com/
https://doi.org/10.1109/TC.2017.2703808
https://publicsuffix.org/
https://doi.org/10.1145/3290605.3300748
https://doi.org/10.1145/3290605.3300748
https://www.usenix.org/conference/soups2020/presentation/reinheimer
https://www.usenix.org/conference/soups2020/presentation/reinheimer
https://github.com/SecUSo/TORPEDO-Webextension
https://github.com/SecUSo/TORPEDO-Webextension
https://steamcommunity.com/comment/Recommendation/formattinghelp
https://steamcommunity.com/comment/Recommendation/formattinghelp
https://doi.org/10.1016/j.cose.2017.02.004
https://doi.org/10.1145/3415231
https://doi.org/10.1145/3290605.3300338
https://doi.org/10.1145/3290605.3300338
https://doi.org/10.1109/TrustCom.2014.28

412 M. Mossano et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	SMILE - Smart eMaIl Link Domain Extractor
	1 Introduction
	2 Related Works
	3 Background on Link-Types
	4 SMILE: General Idea
	5 SMILE: Algorithm
	6 Discussion
	7 Conclusion
	References

