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“Biology enables, Culture forbids.”
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Kurzfassung

Monoklonale Antikörper (mAbs) und andere biologische Therapien kommen Millionen
von Patienten zugute, die unter schwerwiegenden Krankheiten leiden. Das Spektrum
der therapeutischen Bereiche, in denen Biologika eingesetzt werden, umfasst die Onkolo-
gie, die Hämatologie, Entzündungskrankheiten und neuerdings auch Infektionskrankheiten
wie die Coronavirus-Disease 2019 (COVID-19). Die Herstellung und Materialbereitstel-
lung für präklinische und klinische Studien ist ein wichtiger Baustein in der Entwicklung
eines therapeutischen Antikörpers. MAbs und komplexe Antikörperformate werden in
Zellkulturprozessen, dem sogenannten Upstream Processing (USP), hergestellt. Das an-
schließende Downstream Processing (DSP) zielt darauf ab, das Zielprotein aus der het-
erogenen Zellkulturflüssigkeit abzutrennen und zu reinigen. Das DSP von mAbs basiert
auf dem Plattformkonzept. Aufgrund der strukturellen Ähnlichkeiten der verschiedenen
mAb-Produkte erfolgt deren Aufreinigung in einer standardisierten Abfolge von Prozesss-
chritten mit antikörperspezifischer Anpassung von Prozessparametern. Hier wird häufig
die Kationenaustauschchromatographie (CEX) als Polishing-Schritt eingesetzt, da sie in
der Lage ist, produktbezogene Verunreinigungen, wie Größen- und Ladungsvarianten des
mAb-Produkts, zu entfernen. Die Adsorption von Proteinen an chromatographischen Me-
dien hängt von der Zusammensetzung der mobilen Phase, der Ligandenstruktur und der
Struktur des Zielproteins ab. Während die präparative Chromatographie eine einzigartige
Selektivität bei der Abreicherung von produkt- und prozessbedingten Verunreinigungen bi-
etet, widerspricht die komplexe und zeitaufwändige Prozessentwicklung der ursprünglichen
Idee des Plattformkonzepts. Das Streben nach einer standardisierten Aufreinigung ver-
schiedener Antikörperprodukte wird zusätzlich durch bispezifische und multispezifische
Antikörperformate erschwert, die die strukturelle Heterogenität der biopharmazeutischen
Entwicklungspipelines erhöhen. Aufgrund der unbekannten Beziehungen zwischen Pro-
teinstruktur und Adsorptionsverhalten stützen sich aktuelle Entwicklungsstrategien für
die präparative Chromatographie auf Hochdurchsatz-Experimente (HTE) und statistische
Versuchsplanung (DoE).

Miniaturisierte HTE-Methoden ermöglichen die Untersuchung eines großen Parameter-
raums innerhalb eines kurzen Zeitrahmens, aber ihre Vergleichbarkeit mit dem Produk-
tionsmaßstab ist begrenzt. In den frühen Phasen der DSP-Entwicklung schränkt der
ständige Mangel an Zeit und Proteinmaterial den Einsatz experimenteller Methoden weiter
ein. In vielen Fällen sind DoE-Studien in Verbindung mit empirischer Response-Surface-
Modellierung nicht in der Lage, die hochgradig nichtlinearen Beziehungen in der präpar-
ativen Chromatographie zu erfassen. Aufgrund der Vielzahl von Parametern, die sich
potenziell auf die Produktqualität auswirken können, werden die in DoE-Studien unter-
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Kurzfassung

suchten Prozessparameter häufig auf der Grundlage von Expertenwissen und einer unzure-
ichenden Datenmenge ausgewählt. Eine falsche Auswahl von Prozessparametern kann zu
unnötigen Experimenten führen, die die Prozessentwicklung verzögern, oder schlimmer, zu
einem schlecht kontrollierten Herstellungsprozess, der nicht in der Lage ist, eine konstante
Produktqualität zu gewährleisten.

Mit der Quality by Design (QbD) Initiative fordern die Zulassungsbehörden ein klares Ver-
ständnis der Zusammenhänge zwischen Prozessparametern und Produktqualität. Die U.S.
Food and Drug Administration (FDA) und andere Aufsichtsbehörden unterstützen aus-
drücklich die Verwendung mathematischer Modelle zur Entwicklung gut verstandener Her-
stellungsprozesse, die eine robuste Produktqualität und eine effiziente Marktversorgung er-
möglichen. In den letzten Jahren wurden computergestützte Methoden auf der Grundlage
von Homologiemodellierung, quantitativen Struktur-Eigenschafts-Beziehungen (QSPR),
maschinellem Lernen und mechanistischer Chromatographiemodellierung entwickelt, um
vielseitige Aufgaben in der biopharmazeutischen Forschung und Entwicklung zu unter-
stützen. Mechanistische Chromatographiemodelle sind in der Lage, nichtlineare Beziehun-
gen zwischen Prozessparametern und kritischen Qualitätsattributen (CQAs) vorherzu-
sagen. Die Proteinstruktur ist jedoch die eigentliche Ursache für die Funktionalität eines
biologischen Arzneimittels. Diese Arbeit zielt darauf ab die Zusammenhänge zwischen
der Proteinstruktur und dem makroskopischen Prozessverhalten zu verstehen, um die
strukturbasierte Vorhersage von CQAs für eine verbesserte Herstellung von biologischen
Arzneimitteln zu ermöglichen.

Die vorliegende Arbeit besteht aus fünf Manuskripten, die sich mit der Erstellung von
strukturbasierten und mechanistischen Modellen für die rationalisierte DSP Entwicklung
von therapeutischen Antikörpern befassen. Dies erfordert ein verbessertes Verständnis der
Beziehungen zwischen der Proteinstruktur und den makroskopischen Parametern der Ad-
sorptionsisotherme. Lernalgorithmen sollen mit einem umfassenden Datensatz trainiert
und validiert werden, der strukturelle Deskriptoren und Isothermenparameter von ther-
apeutischen Antikörpern enthält, die für biopharmazeutische Entwicklungspipelines re-
präsentativ sind. Es sollen effiziente Methoden zur Modellkalibrierung, -validierung und
in silico Prozesscharakterisierung entwickelt werden, die den QbD-Richtlinien gerecht
werden. Die Kombination von Homologiemodellierung, QSPR-Modellierung und mech-
anistischer Chromatographiemodellierung in einem holistischen in silico-Werkzeug soll
den Weg von der Aminosäuresequenz des Antikörperkandidaten zu einem robusten Pro-
duktionsprozess weisen. Das erste Manuskript dieser Arbeit untersuchte den Einfluss
von Aminosäuresubstitutionen in der Complementary Determining Region (CDR) eines
IgG1 mAb auf sein Elutionsverhalten in der präparativen CEX Chromatographie. Die
Aminosäuresubstitutionen wurden eingeführt, um die biophysikalischen Eigenschaften des
mAb zu beeinflussen, indem oberflächenexponierte hydrophobe und geladene Bereiche
verändert wurden. Zusätzliche positiv geladene Gruppen in den CDR der leichten Kette
(L) und der schweren Kette (H) der mAb-Varianten führten zu einem erhöhten Reten-
tionsvolumen bei der linearen Salzgradientenelution im Vergleich zum ursprünglichen
Antikörper. Die Substitution von Tryptophan durch Lysin in der H-CDR3 erhöhte die
Ladungsheterogenität des Produkts und führte zu einer signifikanten Erhöhung des Elu-
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tionspoolvolumens. Eine multiskalige in silico-Analyse, bestehend aus Homologiemod-
ellierung, Proteinoberflächenanalyse und mechanistischer Chromatographiemodellierung,
entschlüsselte die qualitativen Zusammenhänge zwischen Struktureigenschaften und Pa-
rametern der Steric Mass Action Isotherme (SMA). Die gewonnenen Erkenntnisse über
die Bindungsorientierung und die Proteinadsorption an starke CEX-Medien bilden das
theoretische Fundament für QSPR-Modelle, die Isothermenparameter auf der Grundlage
von Antikörperstrukturinformationen vorhersagen.

Im zweiten Manuskript wurde eine QSPR Modellierungsmethode zur Vorhersage von Stoi-
chiometric Displacement Model (SDM) Parametern von therapeutischen mAbs vorgestellt.
Das Modell nutzt Proteindeskriptoren, die aus Homologiemodellen abgeleitet wurden und
experimentelle Daten mehrerer Antikörperformate, einschließlich IgG1 mAbs, IgG4 mAbs,
Fabs sowie bispezifische Antikörper, um Chromatogramme von zwei mAbs vorherzusagen,
die aus dem Trainingsdatensatz entfernt wurden. Die Berücksichtigung von zwei diskreten
Konformationen bei der Homologiemodellierung von IgG4 mAbs lieferte eine mögliche
Erklärung für Split-Peak-Chromatogramme. Mit Hilfe der Gaußprozess-Regression wurde
eine quantitative Beziehung zwischen den Proteindeskriptoren und den makroskopischen
Parametern der SDM-Isotherme hergestellt. Durch rekursive Feature-Eliminierung wur-
den Proteindeskriptoren innerhalb der variablen Region von mAbs identifiziert, die für
die Vorhersage der thermodynamischen Gleichgewichtskonstante relevant sind. Im Gegen-
satz dazu, war der charakteristische Ladungsparameter der SDM-Isotherme hauptsäch-
lich von der Gesamtnettoladung der untersuchten Antikörper abhängig. Die ersten bei-
den Manuskripte zeigten, wie Homologiemodellierung, QSPRs und mechanistische Model-
lierung die Frühphasen-Entwicklung für ein neues Biopharmazeutikum unterstützen kön-
nen, auch ohne anfängliches Prozesswissen und Proteinmaterial für Laborversuche. Die
Manuskripte drei, vier und fünf bilden eine Publikationsreihe, die darauf abzielt, die Ver-
wendung der mechanistischen Chromatographiemodellierung als QbD-Werkzeug in der
Spätphasen-Entwicklung zu fördern. Daher werden in den folgenden Manuskripten opti-
mierte Methoden zur Modellkalibrierung, -validierung und -anwendung vorgestellt.

Im dritten Manuskript wurde eine Methode für die Kalibrierung von multikomponen-
ten SMA Chromatographiemodellen entwickelt. Die mechanistische Modellierung ist eine
vielversprechende Technologie für die digitale Bioprozessentwicklung, aber die komplexe
und zeitaufwändige Modellkalibrierung hemmt noch immer ihre Anwendung in der bio-
pharmazeutischen Industrie. Für die in silico-Prozesscharakterisierung und andere kom-
plexe DSP-Anwendungen müssen Kalibrierungs- und Validierungstechniken zu einer Mod-
ellsicherheit führen, die den Anforderungen des QbD-Konzepts gerecht wird. In dieser
Studie wurde eine pH-abhängige, multikomponenten SMA-Isotherme verwendet, um einen
CEX-Chromatographieprozess zu modellieren, der drei mAb-Ladungsvarianten sowie eine
Aggregatspezies beinhaltet. Die Modellkalibrierungsmethode basierte auf der systema-
tischen Reduktion unbekannter Modellparameter durch Anwendung grundlegender Ken-
ntnisse über präparative Chromatographie in Kombination mit der inversen Schätzung
von Modellparametern unter Verwendung repräsentativer Experimente. Die Parameter,
die den linearen Bereich der SMA-Isotherme definieren, wurden anhand einer Reihe von
linearen Gradientenelutionsversuchen ohne Fraktionssammlung bestimmt, was den ana-
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lytischen Aufwand für die Quantifizierung der Ladungs- und Größenvarianten drastisch
reduzierte. Außerdem konnten mit dieser Methode lokale Minima bei der heuristischen
Schätzung der übrigen Modellparameter vermieden werden. Die Anreicherung der Aggre-
gatspezies im Ausgangsmaterial reduzierte die Modellunsicherheit für diese niedrig konzen-
trierte Verunreinigung. Die Modellvalidierung wurde unter Prozessbedingungen durchge-
führt, die außerhalb der vorgesehenen Parameterbereiche des CEX-Prozesses lagen. Mit
dieser Arbeit wurde eine standardisierte Methode zur Kalibrierung von mechanistischen
Chromatographiemodellen eingeführt, die in einem industriellen Umfeld eingesetzt werden
kann.

Als Alternative zu experimentellen Scale-Down Modellen (ScDM) wurde im vierten Manu-
skript das zuvor vorgestellte mechanistische Chromatographiemodell als digitale Repräsen-
tation des Prozesses im Produktionsmaßstab validiert. Experimentelle ScDMs von Chro-
matographieprozessen ermöglichen eine wirtschaftliche Prozesscharakterisierung und Ur-
sachenforschung im Labormaßstab. Die Vergleichbarkeit zwischen ScDM Säulen und
größeren Maßstäben hängt jedoch von systemspezifischen Dispersionseffekten, der Vari-
abilität der Ligandendichte sowie der Variabilität in der Zusammensetzung des Feed-
Materials und der Beladungsdichte ab. Darüber hinaus verlangen die Aufsichtsbehörden,
dass mathematische Modelle die Auswirkungen der Prozessvariabilität erfassen, die bei
der Herstellung im Großmaßstab zu erwarten sind, wenn das Modell zur Festlegung einer
Kontrollstrategie für den kommerziellen Herstellungsprozess verwendet wird. Der Ver-
gleich zwischen simulierten und gemessenen Chromatogrammen und Elutionspooldaten
vom Labor- bis zum Produktionsmaßstab ermöglichte die frühzeitige Identifizierung von
Unterschieden zwischen den Maßstäben, z. B. Systemdispersionseffekte oder Variabil-
ität der Ionenkapazität. Es wurde eine mehrstufige Modellvalidierungsmethode einge-
führt, um die Modellqualität zu messen und die Grenzen des Modells in verschiedenen
Maßstäben zu verstehen. Das experimentelle ScDM und das in silico-Modell wurden mit
Hilfe des identischen statistischen Äquivalenztestverfahrens als repräsentative Darstellung
des Produktionsmaßstabs validiert. Das mechanistische Chromatographiemodell umging
die Limitierungen des experimentellen ScDM, indem es die Auswirkungen von Betthöhe,
Beladungsdichte, Feed-Zusammensetzung und Eigenschaften der mobilen Phase erfasste.
Die Ergebnisse zeigen die Anwendbarkeit mechanistischer Chromatographiemodelle als
mögliche Alternative zu konventionellen ScDM-Ansätzen und ermöglichen ihre Verwen-
dung für komplexe Aufgaben in der Spätphasen-Entwicklung.

Das fünfte und letzte Manuskript demonstriert die Anwendung des zuvor veröffentlichten
mechanistischen Chromatographiemodells auf die Prozesscharakterisierung (PCS) eines
Aufreinigungsschritts. Studien zur Prozesscharakterisierung stellen die umfangreichsten
und zeitaufwändigsten Arbeitspakete während der DSP-Entwicklung eines mAbs dar. Im
Allgemeinen besteht das Ziel der PCS in der Identifizierung von Korrelationen zwischen
Prozessparametern und CQAs, was die Etablierung einer robusten Prozesskontrollstrate-
gie ermöglichen soll. Aufgrund der Komplexität der präparativen Chromatographie und
einer Vielzahl von potenziell kritischen Prozessparametern erfordert eine traditionelle PCS
auf der Grundlage statistischer DoEs Dutzende von Laborexperimenten sowie zeitinten-
sive Offline-Messungen. Die in dieser Arbeit vorgestellte Modellierungsmethode deckt die
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Hauptaufgaben traditioneller PCS-Studien nach den QbD-Prinzipien ab, einschließlich der
Bewertung der Kritikalität von 11 Prozessparametern und der Festlegung ihrer Kontroll-
bereiche. Die Analyse der Auswirkungen eines multivariaten Samplings von Prozessparam-
etern auf das Aufreinigungsergebnis ermöglichte die Identifizierung der Edge-of-Failure.
Die experimentelle Validierung der in silico-Ergebnisse erforderte etwa 75% weniger Exper-
imente im Vergleich zu einer rein auf Laborexperimenten basierenden PCS. Monte-Carlo-
Simulationen wurden unter Berücksichtigung der gemessenen Varianzen der Prozessparam-
eter und der Zusammensetzung des Feed-Materials im Produktionsmaßstab eingesetzt, um
die Fähigkeit des Prozesses abzuschätzen, die Akzeptanzkriterien für CQAs und Prozes-
sausbeute zu erfüllen. Der hier vorgestellte Arbeitsablauf ermöglicht die Implementierung
digitaler Zwillinge als QbD-Werkzeug für eine verbesserte Entwicklung biopharmazeutis-
cher Herstellungsprozesse.

In der vorliegenden Arbeit wurden mehrere Hindernisse auf demWeg von der Primärstruk-
tur zur Etablierung eines robusten Downstream-Prozesses beseitigt. Die multiskalige
Modellierung mehrerer Biologika in der CEX-Chromatographie führte zu einem tiefen
Verständnis der zugrundeliegenden Adsorptionsmechanismen. Die vorgestellten QSPR-
Modelle zur Vorhersage von SDM-Isothermen Parametern ermöglichten einen frühen Start
der Prozessentwicklung, bevor Proteinmaterial für Laborexperimente zur Verfügung steht.
Um die Lücke zwischen der Frühphasen- und Spätphasen-Entwicklung zu schließen, kön-
nen erste Chromatographiemodelle, die auf Proteinstrukturinformationen aufbauen, mit
Hilfe experimenteller Daten weiter verfeinert werden. Im Kontext der QbD-Richtlinien tra-
gen standardisierte und wissenschaftlich fundierte Methoden zur Modellkalibrierung, Vali-
dierung und in silico-Prozesscharakterisierung zu einer effizienteren und wirtschaftlicheren
DSP-Entwicklung bei und erhöhen gleichzeitig die Prozessrobustheit und Produktqual-
ität. Die in dieser Arbeit vorgestellten Werkzeuge haben das Potenzial, die Akzeptanz
gegenüber der mechanistischen Modellierung in der Industrie und bei den Aufsichtsbehör-
den zu erhöhen.
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Abstract

Monoclonal antibodies (mAbs) and other biological therapies benefit millions of patients
fighting severe conditions. The spectrum of therapeutic areas in which biologics can be
used includes oncology, hematology, inflammatory diseases, and more recently, infectious
diseases such as corona virus disease 2019 (COVID-19). Manufacturing and material sup-
ply for pre-clinical and clinical trials forms a major building block in the development of
a therapeutic antibody. MAbs and complex antibody formats are produced in cell cul-
ture processes, the so-called upstream processing (USP). Subsequently, the downstream
processing (DSP) aims to capture and purify the target protein from the highly hetero-
geneous cell culture fluid. The DSP of mAbs is based on the platform concept. Due to
the structural similarities of different mAb products their downstream processing is per-
formed in a standardized sequence of unit operations with antibody-specific adaption of
process conditions. Here, cation exchange (CEX) chromatography is frequently employed
as a polishing step due to its ability to remove product related impurities, such as size-
and charge variants of the mAb product. Protein adsorption to chromatographic resins
depends on mobile phase conditions, the ligand structure, and the structure of the tar-
get protein. While preparative chromatography offers an unparalleled selectivity towards
the removal of product- and process-related impurities, the complex and time-consuming
process development contradicts the original idea of the platform concept. The pursuit
of a standardized purification of different antibody products is further complicated by
bispecific and multispecific antibody formats that increase the structural heterogeneity
of biopharmaceutical development pipelines. Due to the unknown relationships between
protein structure and adsorption behavior, development strategies for preparative chro-
matography must rely on high-throughput experimentation (HTE) and statistical design
of experiments (DoE).

Miniaturized HTE methods enable the investigation of a large parameter space within a
short time frame, but their comparability to manufacturing-scale is limited. During the
early phases of DSP development, constant shortage of time and protein material further
constrains the use of experimental methods. In many cases, wet-lab DoE studies coupled
with empirical response surface modeling are not able to capture the highly nonlinear
relationships encountered in preparative chromatography. Due to the multitude of pa-
rameters that could potentially affect product quality, the process parameters screened in
DoE studies are often selected based on subject matter expertise. Incorrect selection of
process parameters could lead to unnecessary experimentation delaying process develop-
ment, or even worse, to a poorly understood manufacturing process incapable of delivering
a constant product quality.
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Abstract

With the Quality by Design (QbD) initiative, regulatory authorities have been demanding
a clear understanding of correlations between process parameters and product quality.
The U.S. Food and Drug Administration (FDA) and other regulatory agencies specifically
encourage the use of mathematical models to develop well-understood manufacturing pro-
cesses that enable robust product quality and efficient market supply. During the last
years, computational tools based on homology modeling, quantitative structure-property
relationships (QSPR), machine learning, and mechanistic chromatography modeling were
developed to support various tasks in biopharmaceutical research and development. Mech-
anistic chromatography models are capable of predicting non-linear relationships between
process parameters and critical quality attributes (CQAs). However, the protein structure
is the ultimate root cause for the functionality of a biological drug. This work intends to
close the gap between protein structure and macroscopic process behavior to enable the
structure-based prediction of CQAs for an improved manufacturing of biological drugs.

The present work consists of five manuscripts that focus on the development of structure-
based and mechanistic models for the rationalized DSP of therapeutic antibodies. This
demands an increased understanding of the relationships between protein structure and
macroscopic adsorption isotherm parameters. Machine learning models should be trained
and tested with a data set that includes structural descriptors and adsorption isotherm
parameters of a diverse set of therapeutic antibodies representative for biopharmaceutical
development pipelines. Efficient model calibration, validation, and process characteri-
zation methods for mechanistic models should be developed that cope with the QbD
guidelines. A combination of homology modeling, QSPR modeling, and mechanistic chro-
matography modeling into a common multiscale in silico framework should guide the
path from the amino acid sequence of the antibody candidate to a robust manufacturing
process. The first manuscript of this thesis elucidated the influence of amino acid substi-
tutions in the complementarity-determining region (CDR) of a full-length IgG1 mAb on
its elution behavior in preparative CEX chromatography. The amino acid substitutions
were introduced to affect biophysical properties of the mAb by modifying surface-exposed
hydrophobic and charged patches. Additional positively charged groups in the light chain
(L) and heavy chain (H) CDR of mAb variants resulted in an increased retention volume
in linear salt gradient elution compared to the original antibody. Substitution of trypto-
phan with lysine in the H-CDR3 increased charge heterogeneity of the product leading to
a significant increase of elution pool volume. A multiscale in silico analysis, consisting
of homology modeling, protein surface analysis, and mechanistic chromatography mod-
eling revealed qualitative relationships between structural descriptors and macroscopic
parameters of the steric mass-action (SMA) adsorption isotherm. The insights gained into
binding orientation and protein adsorption to strong CEX media provide the theoreti-
cal basis for QSPR models that predict isotherm model parameters based on antibody
structure information.

The second manuscript introduced a QSPR modeling method for prediction of stoichio-
metric displacement model (SDM) isotherm parameters of therapeutic mAbs. The model
leverages protein descriptors derived from homology models and experimental data of
multiple antibody formats, including IgG1 mAbs, IgG4 mAbs, Fabs, as well as bispecific
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antibodies, to predict chromatograms of two mAbs that were removed from the train-
ing data set. Consideration of two discrete conformations during homology modeling of
IgG4 mAbs gave a possible explanation for split-peak chromatograms. Gaussian process
regression was used to build quantitative relationships between protein descriptors and
macroscopic SDM isotherm parameters. Recursive feature elimination identified protein
descriptors within the variable region of mAbs relevant for prediction of the thermody-
namic equilibrium constant. In contrast, the characteristic charge parameter of the SDM
isotherm was mainly depending on the overall net charge of investigated antibodies. The
first two manuscripts showed how homology modeling, QSPRs, and mechanistic model-
ing can support early-stage development of a new biological entity without initial process
knowledge and protein material for wet-lab experiments. Manuscripts three, four, and five
form a publication series, which aims to foster the adoption of mechanistic chromatog-
raphy modeling as QbD-tool in late-stage biopharmaceutical development. Therefore,
the manuscripts introduce straightforward methods for model calibration, validation, and
application.

In the third manuscript, a novel method for the calibration of multicomponent SMA chro-
matography models was developed. While mechanistic modeling is a promising technology
for digital bioprocess development, the complex and time-consuming model calibration still
inhibits its application in the biopharmaceutical industry. For in silico process charac-
terization and other demanding late-stage DSP applications, calibration and validation
techniques must result in a model certainty that meets the requirements of the QbD
concept. In this study, a multicomponent, pH-dependent SMA isotherm was used to
model a CEX chromatography process including three mAb charge variant, as well a high
molecular weight species. The model calibration method was based on the systematic re-
duction of unknown model parameters by applying fundamental knowledge on preparative
chromatography in combination with the inverse estimation of model parameters using a
representative set of wet-lab experiments. Parameters defining the linear region of the
SMA isotherm were estimated using a set of linear gradient elution experiments without
fraction collection, which drastically reduced the analytical efforts for quantification of
mAb charge- and size-variants. Further, this methodology avoided local minima during
the heuristic estimation of the remaining model parameters. Enrichment of the aggregate
species in the loading material reduced model uncertainty for this low-concentrated im-
purity. Model validation was performed at laboratory-scale at process conditions beyond
the intended operating ranges of the purification process. This work introduced a stan-
dardized method for calibration of mechanistic chromatography models that can be used
economically and efficiently in an industrial setting.

As an alternative to experimental scale down models (ScDM), the fourth manuscript val-
idated the previously presented mechanistic chromatography model as a digital represen-
tation of the large-scale manufacturing process. Experimental ScDMs of chromatography
processes enable an economic process characterization and root cause investigation at
laboratory-scale. However, the comparability between ScDM columns and larger scales
depends on system-specific dispersion effects, resin variability, as well as variability in
feed composition and loading density. Additionally, regulatory authorities require that
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mathematical models capture the effects of process variability anticipated at large-scale
manufacturing if the model is used to establish a control strategy for the commercial man-
ufacturing process. Comparison between simulated and measured chromatograms and elu-
tion pool data ranging from laboratory- to manufacturing-scale allowed early identification
of differences between scales, e.g. system dispersion effects or ionic capacity variability. A
multi-stage model validation approach was introduced to measure the model quality and
to understand the model’s limitations across scales. The experimental ScDM and the in
silico model were qualified against large-scale data using the identical statistical equiva-
lence testing procedure. The mechanistic chromatography model avoided limitations of the
ScDM by capturing effects of bed height, loading density, feed composition, and mobile
phase properties. The results demonstrate the applicability of mechanistic chromatog-
raphy models as a possible alternative to conventional ScDM approaches enabling their
application to advanced tasks in late-stage DSP development.

The fifth and final manuscript demonstrates the application of the previously published
mechanistic chromatography model to the in silico process characterization (PCS) of a
monoclonal antibody polishing step. Process characterization studies represent the most
comprehensive and time-consuming work-packages during the downstream process devel-
opment of a mAb. In general, the aim of a PCS is the identification of correlations between
process parameters and product quality enabling the definition of a robust process control
strategy. Due to the complexity of preparative chromatography and a plethora of poten-
tially critical process parameters, a traditional PCS based on statistical DoEs requires
dozens of wet-lab experiments as well as off-line analytical measurements. The model-
ing workflow presented in this study covered the main tasks of traditional PCS studies
following the QbD principles, including criticality assessment of 11 process parameters
and establishment of their proven acceptable ranges (PARs) of operation. Analyzing ef-
fects of multi-variate sampling of process parameters on the purification outcome allowed
identification of the edge-of-failure. Experimental validation of in silico results demanded
approximately 75% less experiments compared to a purely wet-lab based process charac-
terization study. Monte-Carlo simulation, considering the measured variances of process
parameters and loading material composition at manufacturing-scale, was used to estimate
the capability of the process to meet the acceptance criteria for critical quality attributes
and key performance indicators. The proposed workflow enables the implementation of
digital process twins as QbD tool for improved development of biopharmaceutical manu-
facturing processes.

The present thesis removed several roadblocks on the way from the primary structure to
establishing a robust downstream process. Multiscale modeling of a diverse set of bio-
logics in CEX chromatography led to a deep understanding of the underlying adsorption
mechanisms. The presented QSPR models for prediction of SMA adsorption isotherm
parameters enabled an early start of process development before protein material for wet-
lab experiments is available. To close the gap between early- and late-stage development,
initial chromatography models built on protein structure information can be further re-
fined using experimental data that is collected during the product life cycle. In the light
of the QbD concept, standardized and scientifically sound methods for model calibration,
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validation, and in silico process characterization contribute to a more efficient and eco-
nomic DSP development, while increasing process robustness and product quality. The
tools introduced in this thesis have the potential to increase the acceptance of mechanistic
modeling by industry and regulatory agencies.
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1 Introduction

The biopharmaceutical industry is constantly developing novel treatment options for pa-
tients fighting severe conditions. The spectrum of biological therapies includes recom-
binant proteins, such as insulin, monoclonal antibodies (mAbs), and fusion proteins, as
well as advanced therapy medicinal products (ATMP), such as gene therapies or oncolytic
viruses. Biologics represent a key growth factor for the pharmaceutical industry. From
1999 to 2009, an average of four biologics per year reached market entry. Only a decade
later, in 2019 alone, 20 of 53 drugs approved by the US Food and Drug Administration
(FDA) were biologics, including nine monoclonal antibodies (mAbs) or antibody-drug
conjugates (ADCs) [1]. Researchers harness the specificity on mAbs to address multiple
disease targets, including oncology, hematology, and inflammatory diseases. This broad
applicability to multiple therapeutic areas made mAbs a highly profitable class of thera-
peutics. The global mAb market exceeded US$98 billion in sales in 2017 and is expected
to reach US$130-200 billion by 2022 [2]. At the current time, the number of mAbs inves-
tigated in clinical studies is still rising [3, 4].

Manufacturing and material supply for pre-clinical and clinical trials form a major building
block in biopharmaceutical product development and is often referred to as Chemistry,
Manufacturing and Controls (CMC) [5]. MAbs and complex biologics are produced in cell
culture processes. After harvesting the cell culture, the subsequent downstream processing
(DSP) transforms the heterogeneous cell culture fluid into a concentrated and pure drug
product [6]. Due to similar structural characteristics and process behavior of different
mAb candidates, large-scale purification is based on the so-called platform process [7,
8]. Here, a standardized sequence of orthogonal separation mechanisms is applied to
multiple mAbs and adaptation of process conditions is reduced to a minimum. Common
DSP platform processes include 2-3 chromatographic unit operations. While the platform
concepts enables fast and efficient process development, the increasing structural diversity
of the biopharmaceutical product portfolio challenges the existing development workflows.
Especially protein adsorption to chromatography resins is affected by the protein structure,
which can complicate manufacturing of novel antibody formats under standardized process
conditions. Besides technical challenges, the costs demanded to bring a new biological
entity to the market drastically increased during the last years [5]. Adjusted for inflation,
costs per market entry increased from US$1.6 billion US dollar in 2007 [9] to US$3.1 billion
in 2020 [10]. In parallel, the average Phase I to approval success rate dropped from 30% to
12%. Here, CMC costs account for 13% to 17% of the total R&D budget from pre-clinical
development to regulatory approval [5].

The above mentioned challenges led to the development of novel technologies for improved
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and more economic bioprocesses. For the optimization and characterization of chromatog-
raphy processes, industry relies on high-throughput experimentation [11, 12] and design
of experiments (DoE) coupled with empirical response surface modeling [13, 14]. Minia-
turization and automation via robotic liquid-handling stations enables parallel screening
of multiple process conditions demanding comparably low quantities of protein material
[15, 16]. Multiple companies are currently exploring continuous bioprocessing and process
intensification for improved equipment utilization rates, reduced facility footprints, accel-
erated cycle-times, lower production costs, and lower investment costs [17–20]. Single-use
technologies, including disposable filtration and chromatography devices, have the poten-
tial to save cleaning and validation costs, as well as buffer consumption, and facility space
[21].

Independent of new manufacturing technologies, biopharmaceutical industry is currently
adopting model-based tools to address challenges caused by the increased number of mAbs
entering CMC development [22, 23]. With the Quality by Design (QbD) initiative [24,
25], regulatory authorities support the application of mathematical modeling to achieve
high product quality by understanding the fundamental correlations between process pa-
rameters and quality attributes. For the downstream processing of biologics, mechanistic
chromatography modeling represents a versatile technology for development tasks ranging
from in silico process optimization to model-guided process control [26, 27]. In the light
of the global ongoing pandemic of coronavirus disease 2019, Cardillo et al. highlighted
that in silico tools have the potential to cut vaccine CMC development timelines in half
[28]. While mechanistic modeling is a powerful technology to support the development
of single unit operations, novel in silico tools must enable transfer of process knowledge
from existing mAbs to new products entering the development phase [29]. In this con-
text, modeling techniques based on artificial intelligence (AI) are currently limited by the
vast amount of data that is needed to train artificial neural networks or other supervised
learning algorithms. During the last years, quantitative structure-property relationship
(QSPR) models have been developed to predict product stability or process behavior of
mAbs based on protein structure models or the amino acid sequence [30]. QSPR models
leverage machine learning algorithms to correlate structural characteristics of the target
molecules with a measurable property, e.g. elution behavior in preparative chromatogra-
phy [30, 31]. The following sections will provide a fundamental overview on therapeutic
antibodies and protein structure prediction of mAbs. Furthermore, a theoretical introduc-
tion to mechanistic modeling of preparative chromatography and QSPR modeling will be
given.

1.1 Monoclonal Antibodies

In order to describe protein adsorption to chromatographic resins, it is helpful to un-
derstand the structural characteristics of the target proteins. In the present thesis, all
investigated molecules are mAbs or complex antibody formats. Immunoglobulins (Ig)
are divided in the classes IgA, IgD, IgE, IgG, and IgM. The ability of IgG to interact
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with the neonatal Fc receptor located on endothelial cells inhibits their catabolism, which
leads to comparably long biological half-life times of >20 days [32, 33]. Hence, IgG form
the framework for the development of therapeutic antibodies [34]. Fig. 1.1 (A) shows a
schematic representation of an IgG1 mAb. The roughly Y-shaped mAbs have a molecu-
lar weight of approximately 150 kDa. MAbs consist of four peptide chains, two identical
heavy chains (HC) and the two light (LC) chains, which are interconnected via disul-
fid bonds within the hinge region. Proteolytic digestion of antibodies results in different
fragments, the fragment variable (Fv), the fragment antigen binding (Fab), and the frag-
ment crytallizable (Fc) [35, 36]. The first 110 aminoacids of both chains form the variable
regions (VH and VL) [34]. Fig. 1.1 (B) depicts the conformational structure of a ther-
apeutic Fab including the Fv region (Idarucizumab, [37]). Each variable chain contains
three hypervariable peptide stretches, the complementarity-determining regions (CDRs)
responsible for antigen-binding. Approximately 5% of the primary structure of human
IgG are responsible for antigen specificity, while the remaining 95% are conserved [38].

Fab

Hinge

Variable regions

FcFc

Constant regions

Carbohydrates

VL

VH CH1

CL

CH2 CH3

(A) (B)

Fv

Figure 1.1: (A): Schematic representation of an IgG1 monoclonal antibody structure.
(B): Conformational structure of the Fab antibody derivative Idarucizumab, reversal agent
for Dabigatran [37], PDB=4YGV. The heavy chain is colored in blue and the light chain
in red, respectively. CDRs are depicted in brighter colors and are located in the upper
part of (B).

Depending on their abundance in the human serum, IgGs are further divided in four sub-
classes (IgG1, IgG2, IgG3, and IgG4) with structurally differing Fc regions [39]. Interac-
tion between the constant Fc region and different Fcγ receptors elicits antibody-dependent
cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) [40]. The
impact of structural differences between Fc regions of IgG subclasses on effector functions
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determines their selection as structural backbone for a potential therapeutic antibody
[41, 42]. With 79%, IgG1 mAbs represent the majority of regulatory approved antibody
therapeutics [2]. Compared to other subclasses, IgG1 shows the most efficient interaction
with the immune system’s effector functions. IgG4 mAbs are often selected as structural
backbone when immune effector functions are undesired [43], e.g. for receptor inhibition
without cell depletion [44].

Figure 1.2 shows schematic representations of therapeutic antibody formats that are rel-
evant for the present thesis. While the majority of approved therapeutic antibodies are
IgG1, IgG4, and IgG2 mAbs, novel and more complex antibody derivatives are currently
entering the market and clinical pipelines of biopharmaceutical organizations. Multispe-
cific antibody formats represent a promising opportunity for the treatment of cancer [45–
47]. Bispecific T-cell engagers that bind a surface target antigen on a cancer cell and a
T-cell receptor can redirect cell lysis towards cancer cells. [48]. Figure 1.2 depicts two
different bispecific antibody formats. Knob-into-hole formats contain complementary mu-
tations within the the CH3 domain that improve generation of heavy-chain hetero-dimers
[49]. In contrast, the bispecificity of the IgG-scFv format does not result from heterodimer-
ization of the heavy chain. For IgG-scFv antibodies, two Fv fragments are connected via
flexible linker peptides to the Fc region of an IgG mAb [50]. While bispecific antibodies
show promising results in clinical investigations, their structural complexity can lead to
an increased number of product related impuritites that need to be removed during the
manufacturing process [51, 52].

The function of proteins, including mAbs, is defined by their three-dimensional structure
[53]. Therefore, a full-grown research field has formed around the prediction of protein
structures based on the amino acid sequence [54–57]. In recent years, deep learning led
to important advances in the field of protein structure prediction. During the CASP14
(Critical Assessment of Structure Prediction) challenge 2020, Deepmind’s AI-based Al-
phaFold2 system [54, 58] outperformed other tools of the structure prediction community,
setting new benchmarks for prediction accuracy for the majority of the target structures
[59]. Due to the size of mAbs and the abundance of template structures in the Protein
Data Bank (PDB), structure prediction of antibodies is mostly conducted via homology
modeling. Homology modeling describes the construction of a protein structure model
based on the amino acid sequence of the target and an experimentally determined tem-
plate structure that is selected from the PDB based on sequence similarity to the target
protein [60]. From a theoretical perspective, homology modeling is based on the following
observations [60]:

1. The protein structure is uniquely determined by its amino acid sequence. Therefore,
the sequence should enable structure predictions [60, 61].

2. From an evolutionary perspective, the structure changes much slower than the re-
spective amino acid sequence. Hence, distantly related sequences fold into similar
structures [60, 62, 63].
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With currently over 4000 mAb Fv structures within the PDB and other data bases [64,
65], homology modeling is the ideal method to predict antibody structures supporting
discovery, design, and development of therapeutic mAbs [66–68]. The prediction of the
hyper-variable CDR loops represents the most challenging part of antibody homology
modeling. Recent studies propose loop prediction methods based on a combination of
sequence similarity, geometry matching, and the clustering of database structures [66,
69]. The resulting antibody structure models give atomic-level insights into the antibody-
antigen interaction enabling model-guided improvement of antibody-affinity [70–72]. Fur-
ther, structural descriptors derived from antibody homology models can be used to build
mathematical models that support the development of a stable product formulation [67,
73] or the prediction of process behavior in preparative chromatography [30, 74].

Fab

IgG Knob-into-hole bispeci�c mAb IgG-scFv

Figure 1.2: Schematic representation of therapeutic antibody formats investigated in this
thesis. Variable regions are colored green, or red/green for bispecific antibody formats.
Linker sequences within bispecific formats are depicted in blue and the knob-into-hole
region within the bispecific Fc is colored brown. Carbohydrates are colored purple.
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1.2 Preparative Chromatography for Antibody Purification

The goal of biopharmaceutical downstream processing is the separation of a target pro-
tein from a heterogeneous mixture of impurities. Depletion of process- and product re-
lated impurities is crucial for the safety and efficacy of biological drugs [75]. Due to its
unique selectivity and variety of separation mechanisms, adsorption chromatography is
the workhorse for the preparative purification of biologics. In general, liquid-solid chro-
matography systems consist of a liquid mobile phase that is transported through a solid
stationary phase. The components in the mobile phase interact with the stationary phase
to different degrees, which leads to the separation of the components [76, 77]. Multi-
ple adsorption mechanisms are exploited for the separation of biologics, including affinity
chromatography (AC), ion-exchange chromatography (IEX), and hydrophobic interaction
chromatography (HIC). The so-called mixed-mode chromatography (MMC) is based on a
combination of at least two different interaction mechanisms between the stationary phase
and the components in the mobile phase [78].

In AC, proteins or polypeptides are separated based on a highly specific and reversible
interaction with a ligand [79]. For conventional IgG formats, Protein A affinity chromatog-
raphy is commonly employed as initial capture step [6, 7, 80]. The Protein A ligand is
immobilized on the stationary phase. Protein A originates from Staphylococcus aureus
and displays a high affinity towards the Fc region of IgG at neutral pH [81]. Thus, the
harvested cell culture fluid containing the mAb product is loaded on the Protein A column
at a mobile phase pH of 6-8. While the antibodies are bound to the resin, process related
impurities, such as host cell protein (HCP), DNA, endotoxins, and cell culture media are
removed in the flow-through and wash step. Optimized wash steps have the potential to
disrupt HCP-mAb interactions, leading to an improved HCP depletion while the target
mAb is bound to the Protein A ligand [82, 83]. A low pH-shift of the mobile phase to
pH 2.5-4 [7, 84] leads to repulsive effects between the ligand and mAb Fc region, which
induces the elution.

HIC and IEX chromatography separate molecules based on electrostatic and hydropho-
bic interaction with the chromatographic ligands, respectively. IEX, HIC, and MMC are
often applied as the so-called polishing chromatography after the initial capture step via
Protein A chromatography [6, 7]. HIC enables efficient removal of mAb size variants,
including high molecular weight species (HMW) and other polar impurities [85]. Adsorp-
tion of proteins to HIC ligands is mediated by the reorganization of the water structure
on hydrophobic surfaces of the ligand and protein [86, 87] . Therefore, protein binding
to HIC resins is performed at high salt concentrations. This often results in comparably
high salt concentrations in the elution pool that can complicate the integration of HIC
in a process sequence with CEX or AEX chromatography. AEX resins have positively
charged ligands bound to their surface [88]. For the purification of mAbs with an iso-
electric point (pI) above 7.5, AEX and multi-modal HIC-AEX is frequently performed in
flow-through or weak partitioning mode. In flow-through mode, the target protein does
not interact with the resin due to the positive protein net charge at a mobile phase pH
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below the pI. In contrast to the product, negatively charged impurities, including DNA,
HCP, and leached Protein A, bind to the resin and are removed during column regenera-
tion [6, 89]. Weak partitioning chromatography describes an isocratic separation method
at mobile phase conditions where the target protein shows a stronger interaction with the
AEX resin compared to flow-through mode. Consequently both, acidic and basic impuri-
ties can be depleted during weak partitioning chromatography, although at the cost of a
reduced step yield [90–92]. The tight operating window demanded for weak partitioning
chromatography can be determined via automated batch-binding screenings at robotic
liquid handling stations [90]. CEX resins have negatively charged groups immobilized on
their surface. Selectivity towards product-related impurities such as deamidated, oxidized,
N-terminally truncated mAb variants, and HMW species makes CEX chromatography one
of the most widely used techniques in the DSP platform. For mAb purification, CEX is
predominantly applied in bind-and-elute mode. Here, the positively charged product ad-
sorbs to the CEX media due to the acidic pH of the load solution, while the negatively
charged impurities are removed in the load and wash fraction [6, 93]. Subsequently, elution
can be induced by an increased counter-ion concentration or an increased pH value, dis-
placing the product from the adsorbent or decreasing the proteins net charge. Impurities
with a higher positive charge as the target protein, e.g. mAb aggregates, can be removed
during column regeneration. Typical CEX media can reach dynamic binding capacities
of approximately 100 g/LResin in bind-elute mode [94]. For a more efficient and economic
DSP, Liu et al. [95] proposed the method of overloaded isocratic CEX chromatography at
loading densities of up to 1000 g/LResin. These extreme loading densities intend to exceed
the breakthrough of the mAb product. Separation is achieved by the potentially delayed
breakthrough of the impurities compared to the target protein [95]. CEX chromatography
is considered as one of the most difficult to develop unit operations in the DSP platform.
The main reason is the unique relationship between the structure of an antibody and its
adsorption behavior to the CEX ligand. Parameters that affect the success of the sepa-
ration problem are mobile phase conditions during loading, wash, and elution phase, as
well as peak collection criteria and the chromatographic media [93]. Bench-scale experi-
mentation and high-throughput methods are still state-of-the-art for the optimization of
mobile phase conditions and resin selection [96], as well as for the identification robust
operating conditions [14]. Mathematical models are currently gaining interest among bio-
pharmaceutical development organizations due to their potential to complement or even
substitute wet-lab experimentation [16, 97].
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1.3 Mechanistic Chromatography Modeling

Mechanistic chromatography models are mathematical representations of the macroscopic
phenomena within a chromatography column. During the last years, the biopharmaceuti-
cal industry worked on the implementation of mechanistic modeling in their development
workflows to perform in silico experimentation. In multiple case studies, mechanistic
models enabled computer-guided process optimization [98, 99], scale-up [27], root-cause
investigation [100], or robustness analysis [101]. Compared to wet-lab DoE studies, sim-
ulations based on mechanistic models can reduce protein material and time demanded
for the early stages of process development [102]. Besides potential economic benefits of
mechanistic modeling, regulatory authorities support mathematical models to elucidate
the relationships between process parameters and product quality [24, 25, 103].

The multitude of mechanistic chromatography models that can be found in literature dif-
fer in their complexity, ranging from simple one-dimensional column models [104, 105]
to computational fluid dynamic simulations considering spatial inhomogeneities in the
packed-bed due to channeling and wall-effects [106]. The general classification and termi-
nology of mechanistic models described in this thesis follows the books of Schmidt-Traub et
al. [76] and Guiochon et al. [77]. Fig. 1.3 depicts the fundamental phenomena in adsorp-
tion chromatography, including fluiddynamic, thermodynamic, and kinetic effects. Here,
the ideal equilibrium model [104, 105] is the simplest model, only considering the con-
vective transport applied by the system pump and protein adsorption to the stationary
phase. The equilibrium dispersive model further considers peak broadening effects caused
by eddy diffusion and mass transfer resistance. The frequently employed transport dis-
persive model lumps film and pore diffusion effects in a single effective mass transfer
resistance. The general rate model considers all effects depicted in Fig. 1.3, including
pore diffusion along the radial dimension of the adsorber particle. The introduction of
an additional radial dimension makes the general rate model the computationally most
demanding chromatography model presented in the following sections.
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Convective transport

Axial dispersion

Film mass transfer

Pore di�usion

Protein adsorption

Figure 1.3: Fundamental mechanisms in adsorption chromatography
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1.3.1 Differential Mass Balance for Chromatography

The majority of mechanistic chromatography models described in literature are based
on the differential mass balance of a compound for an infinitesimally thin slice of the
chromatography column [104, 105, 107]. Fig. 1.4 visualizes the fluxes of component i
entering and exiting the column slice. Here, the column packing and consequently all
column properties are assumed to be radially homogeneous. Further, wall effects are
neglected leading to a constant flow velocity within the column cross-section. Hence, the
chromatography column is simplified to a single dimension x following the longitudinal
axis of the column. A recent study by Benner et al. [97] could confirm that wall effects
on peak broadening are negligible for column diameters > 5 mm.

∆x∆x∆x

Ni,x     ci,xNi,x     ci,xNi,x     ci,x

Ni,x - Ni,x+∆x

Ni,x+∆x     ci,x+∆x

cs,i

Figure 1.4: Mass balance in a column slice

The mass balance in the column slice depicted in Fig. 1.4 defines that the accumulation
of component i in the stationary phase is equal to the difference between the amount of
component i entering and the amount of i exiting the slice. The flux Ni,x of component i
at the inlet of a column slice of thickness ∆x is

Ni,x = εS

(
uintci −Dax

∂ci
∂x

) ∣∣∣∣
x,t

, (1.1)

where ε is the column porosity of the packed bed and S = πdc
2/4 the cross-sectional area of

the column with the diameter dc. uint is the mobile phase velocity in the interstitial volume,
ci the mobile phase solute concentration, and Dax is the axial dispersion coefficient. In
preparative chromatography, the axial dispersion coefficient Dax comprises deviations of
the fluid mechanics from plug flow. Thus, Dax is affected by local non-homogeneities of the
packed bed that lead to differences in fluid velocities on a mesoscopic scale, the so-called
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eddy diffusion [108]. The flux at the outlet x+ ∆x follows as

Ni,x|x+∆x = εS

(
uintci −Dax

∂ci
∂x

) ∣∣∣∣
x+∆x,t

. (1.2)

The accumulation rate in the slice is defined as

Ni,x|x+∆x −Ni,x = S∆x

(
ε
∂ci
∂t

+ (1− ε)∂cs,i
∂t

) ∣∣∣∣
x̄

, (1.3)

where cs,i is the concentration of component i in the stationary phase and x̄ is the average
value of x. Insertion of Eqs. 1.1 and 1.2 in Eq. 1.3 results in the differential balance for
component i the mobile phase:

εS

(
uintci −Dax

∂ci
∂x

) ∣∣∣∣
x,t

− εS
(
uintci −Dax

∂ci
∂x

) ∣∣∣∣
x+∆x,t

(1.4)

= S∆x

(
ε
∂ci
∂t

+ (1− ε)∂cs,i
∂t

) ∣∣∣∣
x̄

(1.5)

When making ∆x tend towards 0 and assuming constant axial dispersion Dax and velocity
uint along the x-axis, Eq. 1.4 can be rewritten as

∂ci
∂t

= −uint
∂ci
∂x

+Dax
∂2ci
∂x2

− 1− ε
ε

∂cs,i
∂t

. (1.6)

The term on the left-hand side of the differential mass balance Eq. 1.6 accounts for accumu-
lation of component i in the mobile phase. On the right-hand side, the first term describes
the convective transport, the second term the diffusion, and the last term acoounts for
accumulation of i in the stationary phase.

1.3.2 Ideal Model

The ideal model is the simplest chromatography model and assumes permanent equi-
librium between stationary phase and mobile phase [76, 77, 104, 105]. Further, axial
dispersion, mass transfer resistance and adsorption kinetic effects are neglected. There-
fore, the concentration of component i in the interstitial volume equals the concentration
in the pore phase. With Dax = 0, Eq. 1.6 can be simplified to

∂ci
∂t

= −u∂ci
∂x
− 1− εt

εt

∂qi
∂t
, (1.7)

where qi is the concentration of component i adsorbed to the stationary phase. The total
porosity εt is the sum of the interstitial and the particle porosity εp:

εt = ε+ εp(1− ε), (1.8)

and the effective velocity u of components penetrating the pore space is given as

u =
ε

εt
uint. (1.9)
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The ideal model found numerous applications in the development of chromatography
processes. An analytical solution of the ideal model was derived for simulated moving
bed (SMB) chromatography allowing the calculation of concentration profiles within the
columns [109]. Further, the ideal model can be used to explain fundamental phenomena
in multi-component chromatography, including displacement effects [76, 110].

1.3.3 Equilibrium Dispersive Model

In contrast to the ideal model, the equilibrium dispersive model considers band broadening
effects with one additional model parameter, the so-called apparent dispersion coefficient
Dapp,i. The apparent dispersion coefficient Dapp,i lumps peak broadening effects caused
by axial dispersion with other mass transfer effects that might occur, including film mass
transfer or pore diffusion [76, 111]. The model is based on the assumption that the
concentrations of component i in the liquid and the pore phase are identical. Therefore,
a differential equation for the pore phase is not demanded for the formulation of the
equilibrium dispersive model [76]. The apparent dispersion coefficient depends on the
interstitial fluid velocity and for non-linear adsorption isotherms also on the concentration
of the solute. With the introduction of the total porosity εt and effective velocity u, the
apparent dispersion coefficient Dapp can be rearranged to

D̃app,i =
ε

εt
Dapp =

u

uint
Dapp. (1.10)

When inserting the apparent dispersion coefficient given in Eq. 1.10 the equilibrium dis-
persive model follows as

∂ci
∂t

= −u∂ci
∂x

+ D̃app,i
∂2ci
∂x2

− 1− εt
εt

∂qi
∂t
. (1.11)

Previous work showed that the predictive power of the equilibrium dispersive model is
comparable to models of higher complexity when applying it to the simulation of highly
efficient columns (Plate number N >>100) [112, 113].

1.3.4 Transport Dispersive Model

With the pore phase, the transport dispersive model shown in Eq. 1.12 introduces an
additional phase between the interstitial volume and the adsorber surface. Therefore, the
transport dispersive model considers two independent band broadening effects. Firstly,
the effective mass transfer coefficient keff,i accounts for film diffusion between intersti-
tial volume and the pore volume, as well as for pore diffusion within the particle phase.
Secondly, the axial dispersion coefficient Dax considers peak broadening effects caused by
eddy diffusion as a result of the packing quality. After introducing the concentration of
the pore volume cp,i and the particle radius rp in Eq. 1.11, the transport dispersive models
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can be derived as

∂ci
∂t

= −u
ε

∂ci
∂x

+Dax
∂2ci
∂x2

− 1− ε
ε

(
3

rp
keff,i (ci − cp,i)

)
. (1.12)

The corresponding pore model in Eq. 1.13 assumes a uniformal concentration in the mobile
phase of the particles with the particle porosity εp. Thus, the change of concentration in
the pore phase cp,i is the difference between the concentration on the particle surface and
the concentration of component i adsorbed to the stationary phase qi:

∂cp,i
∂t

=
3

rp

keff,i
εp

(ci − cp,i)−
1− εp
εp

∂qi
∂t
. (1.13)

Due to its balance between low computational cost and sufficiently high level of detail,
the transport dispersion model is widely used in industrial and academic case studies for
simulating ion exchange chromatography processes [114–116].

1.3.5 General Rate Model

The general rate models represent the most detailed class of continuous chromatography
models [76]. Here, mass transport effects are considered by at least two separate model
parameters. kfilm,i incorporates film diffusion effects in the particle boundary layer. Dpore,i

lumps mass transfer inside the macro pores following Fick’s law of diffusion, with surface
or micro-pore diffusion in the solid phase [76, 77]. Modeling of pore diffusion demands the
introduction of an additional dimension r ∈ [0, rp] along the particle radius. The transport
dispersive model in Eq. 1.12 is used as column model after substituting keff,i with kfilm,i.
Eq. 1.14 describes the mass transfer in the boundary layer of the particle.

∂cp,i
∂t

(x, rp, t) =
1

Dpore,i

kfilm,i
εp

(ci(x, t)− cp,i(x, rp, t)). (1.14)

Within the particle pores, the concentration change of component i along the particle
radius r can be expressed as

∂cp,i
∂t

(x, r, t) = Dpore,i

(
∂2cp,i
∂r2

+
2

r

∂cp,i
∂r

)
− 1− εp

εp

∂qi
∂t

(x, r, t). (1.15)

Both, concentration and loading gradients vanish at the center of the particle (r = 0):

∂cp,i
∂r

∣∣∣∣
r=0

=
∂qi
∂r

∣∣∣∣
r=0

= 0. (1.16)
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1.3.6 Adsorption Isotherms for Ion Exchange Chromatography

The present thesis resolves around model-based development tools for CEX chromatogra-
phy processes in bind-elute mode. Therefore, consideration of protein adsorption is crucial
for the simulation of process behavior. In IEX chromatography, charged groups on the
proteins interact with ligands that are covalently bonded to the stationary phase. Multiple
parameters are known to affect the electrostatic interaction between protein and ligand,
including counterion concentration and pH of the mobile phase, ligand structure and ionic
capacity of the stationary phase, and protein-specific attributes. The commonly employed
steric mass-action (SMA) isotherm developed by Brooks and Cramer [117] accounts for
the steric hindrance of salt counterions upon protein binding in multi-component equi-
libria. The following derivation of the SMA isotherm follows thermodynamic framework
of protein adsorption described by Mollerup [118, 119]. For monovalent counterions in
ion-exchange chromatography, the equilibrium of a protein P and a counterion S on a
ligand L can be described as [117, 120, 121]

P + νiLS ⇀↽ νiS + PLνi , (1.17)

where νi is the stoichiometric coefficient of component i and PLνi is the protein-ligand
complex. In thermodynamic equilibrium it must hold that

∆G =
∑
i

νiµi = 0. (1.18)

Here, µi is the chemical potential. ∆G is the Gibbs energy change given as

∆G = ∆G0 +RT lnKeq, (1.19)

where ∆G0 is the standard Gibbs energy change, Keq denotes the thermodynamic equi-
librium constant, R is the universal gas constant, and T the temperature. The chemical
potential is given by the sum of ideal contribution µidi and excess contribution µexcessi

accounting for non-ideal behavior [119, 122, 123]:

µi ≡ µ0
i +RT ln ai = µidi + µexcessi . (1.20)

ai are the activities and µ0
i are the standard state chemical potentials of pure components.

Further, the ideal chemical potentials µidi are given by

µidi = µ0
i +RT ln ci −RT ln c. (1.21)

When assuming similar excess potentials in both phases, the activities can be replaced by
mole fractions xi = ci/c. IEX chromatography is performed in aqueous solution, which
further leads to the assumption that the solution molarity c is similar in both phases.
Consequently, Eqs. 1.17-1.21 result in the stoichiometric displacement-model (SDM) [124,
125]

Keq =
qi
cp,i

(
cs
qs

)νi
. (1.22)
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Where cp and cs are the protein and counterion concentrations in the fluid phase, re-
spectively. qs is the concentration of counterion bound to the stationary phase. Due to
electroneutrality, the sum of charges on the resin surface must be zero, leading to

qs = Λ−
n∑
j=1

νjqj . (1.23)

Λ is the total ionic capacity of the stationary phase, which can be determined experimen-
tally [126]. Insertion of Eq. 1.23 in Eq. 1.22 results in

Keq =
qic

νi
s(

Λ−
∑n

j=1 νjqj

)νi
cp,i

. (1.24)

The SDM given in Eq. 1.24 is commonly used for simulating IEX chromatography. How-
ever, the SDM is only applicable for linear loading conditions, which are of limited rel-
evance for industrial purification tasks. With the introduction of the SMA isotherm,
Brookes and Cramer [117] extended the SDM isotherm towards non-linear loading condi-
tions. Fig. 1.5 visualizes protein adsorption in IEX chromatography according to the SMA
model. In Eq. 1.25, the steric shielding parameter σi considers the ligands on the resin
surface that are sterically hindered by protein domains not contributing to the adsorption
mechanism.

Keq =
qic

νi
s(

Λ−
∑n

j=1 (νj + σj) qj

)νi
cp,i

. (1.25)

The mobile phase pH affects the protein net charge and consequently its retention be-
havior in IEX chromatography. Hence, it is crucial to add a pH-dependency to the SMA
model given in Eq. 1.25. Hunt et al. [115] introduced empirical pH-dependencies for the
characteristic charge νi and the thermodynamic equilibrium keq constant:

Keq,i(pH) = Keq0,ie
Keq1,ipH+Keq2,ipH

2
, (1.26)

νi(pH) = ν0,i + pHν1,i, (1.27)

where Keq0,i, Keq1,i, Keq2,i are regression coefficients that can be determined by fitting
the equilibrium constant against the mobile phase pH. ν0,i, ν1,i are regression coefficients
that that can be determined by fitting the characteristic charge against the mobile phase
pH. Industrial case studies could successfully apply the empirical pH-dependencies given
in Eqs. 1.26-1.27 within a limited pH-range. Nonetheless, their empirical nature prohibits
extrapolation beyond the pH-range explored for model calibration. In contrast, the mech-
anistic pH-dependencies developed by Schmidt et al. [127] and Kluters et al. [128] consider
the protein net-charge calculated based on the primary structure [129]:

νi(pH) =
∑
i

− N−i
1 + 10pKa,i−pH

+
∑
i

N+i

1 + 10pH−pKa,i
. (1.28)
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N−i is the number of acidic amino acids and N+i the number of basic amino acids. pKa,i

is the acid dissociation constant of respective amino acid i. Effects of the ionic strength
on pKa values can be considered using the Davies equation [130]. The pH-dependency of
the equilibrium constant results from inserting the protein charge model in Eq. 1.28 into
the fundamental Eqs. 1.17-1.21 [118, 120, 127, 128]:

lnKeq,i(pH) = νi(pH)
∆G◦

s

RT
−

∆G◦
p,i

RT
, (1.29)

where ∆G◦
s is the standard state Gibbs energy change of the counterion upon adsorption

and ∆G◦
p,i is the protein-specific standard state Gibbs energy change of adsorption. In

contrast to empirical models, the mechanistic pH-dependencies in Eqs. 1.28-1.29 could
allow extrapolation. However, model calibration is complex due to the high number of
model parameters. The applied charge model in Eq. 1.28 neglects the individual position
of a charged amino acid in the tertiary structure and potential effects on the respective
pKa values.
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Figure 1.5: Idealized adsorption of a monoclonal antibody on a cation exchange chro-
matography resin according to the steric-mass action isotherm developed by Brooks &
Cramer [117].
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1.4 Quantitative Structure-Property Relationships

The development of preparative chromatography processes for the purification of biolog-
ics often begins with brute-force experimental methods. Scholars in the field of protein
chromatography aim for an a priori prediction of retention times or adsorption model
parameters based on protein structure information [31, 131–133]. Analyzing the rela-
tionships between chromatographic behavior and protein structure can help identify pro-
tein domains that mediate adsorption mechanisms. In general, the so-called quantitative
structure-property/activity relationships (QSPR/QSAR) are mathematical models that
correlate the molecular structure information of a compound with a quantifiable physical
property or biological activity [134, 135]. The fundamental assumption of QSPR model-
ing is that molecules with a similar structure show similar physicochemical properties and
functions [136]. Hence, QSPR models are equally relevant to small molecules and biologics,
which makes them applicable to a wide spectrum of research areas, including medicinal
chemistry [137], antibody drug discovery [138], biopharmaceutical process development
[74], and formulation development [139].

In contrast to mechanistic models, QSPRs are empirical models that demand a significant
amount of experimental data for training and validation. Due to their empirical nature,
QSPRs are often applied to problems where physic-based models are not available. From
a practical perspective, Mitchell et al. [134] defined QSPR model building as a two-stage
process:

1. The molecular structures, typically given as molecular graphs or connection tables,
must be converted into a vector of descriptors, usually denoted by the symbol x [134].
Descriptor vectors for the QSPR/QSAR modeling of proteins can be derived from
their amino acid sequences or corresponding 3D protein structures [140–143]. When
experimentally determined protein structures are not available, homology modeling
can be applied to predict the protein structure based on the amino-acid sequence
(Details given in Section 1.1).

2. The second part aims to empirically determine a function that maps between the
descriptor vectors (x) and the measurable property of the molecules (y) [144]. This
mapping function can be based on simple (multi-)linear regression, or more advanced
machine learning algorithms, including support vector regression, Gaussian process
regression, random forest, k-nearest neighbors, or artificial/deep neural networks [31,
134, 144]. The selection of a machine learning algorithm for QSPR modeling is a
non-trivial task. The most relevant factors are size and distribution of experimental
data, linearity and complexity of the chemical problem, and internal correlations of
the descriptor data set [134].

The two building blocks for QSPR modeling listed above are closely interconnected. Not
all descriptors derived from the protein structure must be relevant for the mapping func-
tion between feature vector x and property of interest y. Especially for large proteins,
including mAbs, the feature vector x can consist of hundreds of columns, including global,
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as well as, local, topographical and shape-specific descriptors for each protein domain
[142]. Furthermore, the determination of the property of interest y is limited by experi-
mental constraints and an finite number of molecules that is available for model training.
To avoid over-determination of the machine learning model, the so-called feature selection
aims to reduce the dimensionality of the QSPR problem by selecting descriptors that are
relevant for the prediction of the property of interest [134, 145, 146]. For feature selection,
an individual feature or a subset of features is compared to labeled training data. The
ranking and filtering of features based on simple measures, e.g. regression coefficients
(R2) or mutual information, gives first insights into the relationships between individual
descriptors and the property of interest. Individual feature ranking is often used as base-
line method due to its simplicity, low computational costs, and high interpretability of the
found correlations [147]. Features selected via individual ranking can be used as input
for the computationally more expensive Wrapper methods. In general, Wrapper methods
are based on training and cross-validating a learning machine to evaluate the relevance of
a subset of features. The frequently employed recursive feature elimination starts train-
ing a machine learning model with all available features and progressively eliminates the
least relevant ones [147]. In the final step of QSPR modeling, the predictive power of the
trained machine learning model must be validated against an external molecule that was
not included in the training or cross-validation data set [148].
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1.5 Research Proposal

Monoclonal antibodies (mAbs) and bispecific antibody (bsAb) formats have the ability
to address unmet medical needs, resulting in their importance for the pharmaceutical in-
dustry. Downstream processing (DSP) of mAbs relies on the so-called platform concept,
where different mAb candidates are purified using a standardized sequence of unit opera-
tions and with product-specific adaption of process conditions. The increasing structural
complexity of novel antibody formats challenges the development of purification processes
following the platform paradigm. Cation exchange chromatography has been identified as
a development-intensive unit operation, where minimal differences in the primary struc-
ture of mAbs have a significant impact on their manufacturability. Due to the unknown
relationships between protein structure and process behavior, development strategies for
preparative chromatography have to rely on high-throughput experimentation (HTE) and
statistical design of experiments (DoE).

While miniaturized HTE methods enable investigation of a large experimental space within
a short time frame, their comparability to manufacturing-scale can be limited. With the
Quality by Design (QbD) initiative, regulatory authorities demand a clear understanding
of the correlations between process parameters and product quality. Process understand-
ing provided by mechanistic chromatography modeling exceeds the empirical correlations
given by HTE and DoE studies. In addition, quantitative structure-property relationship
modeling (QSPR) opens up the possibility to predict process behavior of biologics based
on their protein structure. However, the transfer of digital technologies from academia to
industry is slow. Additional research around model building and model application needs
to increase the acceptance of mechanistic and QSPR modeling in industry.

The ultimate goal of the present research proposal is the development of multiscale mod-
eling tools bridging the gaps between the antibody structure and a robust downstream
process. This includes the investigation of QSPR models for the prediction of adsorption
model parameters. Due to experimental limitation, QSPR models for CEX chromatog-
raphy have been limited to smaller model proteins and the prediction of retention times.
In addition, model calibration, validation, and application methods should be established
that cope with the quality standards defined by regulatory authorities. Integration of
homology modeling, statistical modeling, and mechanistic chromatography modeling into
a common multiscale in silico framework could guide the path from the primary structure
of the antibody candidate to the process model of the final unit operation.

Cation exchange chromatography (CEX) is frequently employed as polishing step to sepa-
rate a mAb from its process- and product-related impurities. Protein adsorption to CEX
media is driven by the structural characteristics of the mAb. Hence, optimal operat-
ing conditions have to be identified for each antibody candidate by conducting laborious
high-throughput or bench-scale experiments. While mechanistic chromatography mod-
eling may allow to partially replace experiments with computer simulations, the initial
hurdle of model calibration demands experimental data for each molecule. Thus, the first
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part of this thesis aims to elucidate fundamental relationships between protein structural
properties of biologics and their adsorption model parameters. QSPRs could be developed
to predict adsorption model parameters based protein descriptors derived from homology
models.

The complex and experimentally extensive model calibration complicates the use of mech-
anistic models in industry. To apply mechanistic chromatography models to real-world
tasks in biopharmaceutical process development, it is crucial to ensure adequate model
certainty in a limited amount of time. Therefore, the second part of this work is devoted
to the development of a straightforward model calibration method based on fundamental
knowledge on preparative chromatography and a standardized set of experiments.

In the light of the QbD initiative, regulatory authorities propose the use of mechanistic
modeling to ensure robust product quality by understanding the fundamental physical
phenomena of the manufacturing process. If models are used to establish a control strat-
egy of the manufacturing process, predictions must capture scaling effects and process
variability anticipated during routine manufacturing. Therefore, the last part of this the-
sis aims to develop methods for model validation and subsequent application for in silico
process characterization. Besides increased process understanding, novel methods for in
silico process characterization should reduce the number of wet-lab experiments without
taking additional risk, or guide the design of experimental studies required for regulatory
approval.
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1.6 Outline

Chapter 2 investigates qualitative relations between single amino acid substitutions in the
variable region of monoclonal antibodies and their elution behavior in preparative cation
exchange chromatography. QSPR models introduced in Chapter 3 enable the prediction
of adsorption isotherm parameters based on protein structure models of mAbs. Chapter 4
proposes a method for the calibration of mechanistic cation exchange chromatography
models using a standardized set of experiments. In Chapter 5, the previously calibrated
mechanistic model is applied to the in silico scale up of the unit operation, including
clinical-manufacturing of the therapeutic mAb. Ultimately, Chapter 6 allows the in silico
process characterization following the QbD concept.

Chapter 2: Modeling the impact of amino acid substitution in a mon-
oclonal antibody on cation exchange chromatography

D. Saleh, R. Hess, M. Ahlers-Hesse, N. Beckert, M. Schönberger, F. Rischawy, G.
Wang, J. Bauer, M. Blech, S. Kluters, J. Studts, J. Hubbuch

This article investigates the influence of amino acid substitutions in the CDR of a full-
length IgG1 mAb on its process behavior in preparative CEX chromatography. Single
amino acid substitutions within the investigated mAb resulted in an additional positive
charge in the light chain (L) and heavy chain (H) CDR, respectively. The mAb variants
showed an increased retention volume in linear gradient elution compared to the wild type
antibody. Further, the substitution of tryptophan with lysine in the H-CDR3 increased
charge heterogeneity of the product. A multiscale in silico analysis, consisting of homology
modeling, protein surface analysis, and mechanistic chromatography modeling increased
understanding of the adsorption mechanism. The results elucidate the qualitative rela-
tionships between the structure of mAbs and their SMA adsorption isotherm parameters.

Biotechnology and Bioengineering, 2021, 10.1002/bit.27798

Chapter 3: Quantitative structure-property relationships for the pre-
diction of adsorption isotherm parameters of therapeutic antibodies
in cation exchange chromatography

D. Saleh, R. Hess, M. Ahlers-Hesse, F. Rischawy, G. Wang, S. Kluters, J. Grosch, J.
Studts, J. Hubbuch

In this manuscript, quantitative structure-property relationship (QSPR) models were
trained for the prediction of SDM parameters of mAbs. By combining homology modeling,
QSPR modeling, and mechanistic modeling, the multiscale modeling method leads from
the amino acid sequence of a therapeutic mAb to digital twin of the unit operation. The
training and validation data set included SDM parameters and structural descriptors of a
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diverse set of IgG1, IgG4, and bispecific antibody formats at varying pH conditions. The
relationships between protein structural descriptors and SDM parameters increased the
understanding of protein-surface interaction in strong CEX chromatography. Based on the
developed multiscale modeling framework, the first in silico studies for DSP development
can be performed before protein material for wet-lab experiments are available.

Manuscript in preparation

Chapter 4: Straightforward method for calibration of mechanistic
cation exchange chromatography models for industrial applications

D. Saleh, G. Wang, B. Müller, F. Rischawy, S. Kluters, J. Studts, J. Hubbuch

To support the application of mechanistic modeling in industry, this article introduces a
standardized method for the calibration of multicomponent, pH-dependent SMA isotherm
models. In the case investigated, the method was applied to an antibody polishing step in-
cluding four protein species. The developed strategy combined well-established theories of
preparative chromatography and allowed a systematic reduction of unknown model param-
eters. The model was validated beyond the operating ranges of the final unit-operation,
enabling its application to advanced tasks in late-stage downstream process development.
Further, the achieved model certainty meets the demands of process development strate-
gies following the QbD concept.

Biotechnology Progress, 2020, 10.1002/btpr.2984

Chapter 5: Cross-scale quality assessment of a mechanistic cation ex-
change chromatography model

D. Saleh, G. Wang, B. Müller, F. Rischawy, S. Kluters, J. Studts, J. Hubbuch

In this article, the previously calibrated mechanistic model was validated as digital twin
of the large-scale unit operation. Based on chromatograms and elution pool data ranging
from laboratory- to manufacturing-scale, the proposed modeling workflow enabled early
identification of differences between scales, e.g. system dispersion effects or ionic capacity
variability. A multi-stage model qualification approach was introduced to measure the
model quality and to understand the model’s limitations across scales. The mechanistic
chromatography model avoided limitations of the SDM by capturing effects of bed height,
loading density, feed composition, and mobile phase properties. The results demonstrate
the applicability of mechanistic chromatography models as a possible alternative to con-
ventional development approaches based on experimental scale-down models (SDM).

Biotechnology Progress, 2021, 10.1002/btpr.3081
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1.6 Outline

Chapter 6: In silico process characterization for biopharmaceutical
development following the Quality by Design concept

D. Saleh, G. Wang, F. Rischawy, S. Kluters, J. Studts, J. Hubbuch

In the light of the ObD initiative, this final manuscript explores mechanistic chromatog-
raphy models for the in silico process characterization of a mAb manufacturing processes.
The proposed modeling workflow covered the main-tasks of traditional PCS studies fol-
lowing the QbD principles, including criticality assessment of process parameters and
establishment of their proven acceptable ranges (PARs) of operation. Analyzing effects of
multi-variate sampling of process parameters on the purification outcome allowed identi-
fication of the edge-of-failure. Validation of in silico results demanded less experimental
efforts compared to traditional PCS approaches. Stochastic simulation, considering the
measured variances of process parameters and loading material composition, was used to
estimate the capability of the process to meet the acceptance criteria for critical quality
attributes and key performance indicators. The proposed workflow enables the implemen-
tation of digital process twins as QbD tool for improved development of biopharmaceutical
manufacturing processes.

Biotechnology Progress, 2021, 10.1002/btpr.3196
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Abstract

A vital part of biopharmaceutical research is decision making around which lead candi-
date should be progressed in early-phase development. When multiple antibody candidates
show similar biological activity, developability aspects are taken into account to ease the
challenges of manufacturing the potential drug candidate. While current strategies for
developability assessment mainly focus on drug product stability, only limited informa-
tion is available on how antibody candidates with minimal differences in their primary
structure behave during downstream processing. With increasing time-to-market pressure
and an abundance of mAbs in development pipelines, developability assessments should
also consider the ability of mAbs to integrate into the downstream platform.

This study investigates the influence of amino acid substitutions in the complementarity-
determining region (CDR) of a full-length IgG1 mAb on the elution behavior in preparative
cation exchange (CEX) chromatography. Single amino acid substitutions within the in-
vestigated mAb resulted in an additional positive charge in the light chain (L) and heavy
chain (H) CDR, respectively. The mAb variants showed an increased retention volume
in linear gradient elution compared to the wild type antibody. Further, the substitution
of tryptophan with lysine in the H-CDR3 increased charge heterogeneity of the product.

25



Modeling the Impact of Amino Acid Substitutions

A multiscale in silico analysis, consisting of homology modeling, protein surface analy-
sis, and mechanistic chromatography modeling increased understanding of the adsorption
mechanism. The results reveal the potential effects of lead optimization during antibody
drug discovery on downstream processing.

2.1 Introduction

In recent years, the number of mAbs investigated in clinical studies has steadily increased
[3, 4]. Manufacturing and material supply for pre-clinical and clinical trials form a ma-
jor building block in biopharmaceutical product development and is often referred to as
Chemistry, Manufacturing and Controls (CMC). A recent cost evaluation performed by
Farid et al. (2020) [5] predicted that CMC activities represent 13-17% of the total R&D
budget from pre-clinical trials to regulatory approval. Their calculation considered costs
caused by 92% of candidates that fail during pre-clinical and clinical development [5]. Bio-
pharmaceutical organizations strive to streamline development by using computer-aided
sequence optimization tools in drug discovery that increase the likelihood of successful
CMC programs within a strict timeframe [73, 149, 150]. Current strategies for developa-
bility assessment rely on in silico techniques to predict aggregation propensities, solubility
issues, or long-term stability of the mAb product [73, 151]. Compared to stability aspects
in formulation development, how single amino acid substitutions in lead candidates may
affect developability of the downstream process (DSP) is poorly understood.

Industrial DSP of biopharmaceuticals relies heavily on chromatographic separation tech-
niques. For the purification of mAbs, preparative cation exchange (CEX) chromatography
is frequently employed as a polishing step [6, 7, 152]. CEX chromatography allows the
removal of process related impurities, including DNA, host cell proteins, endotoxins, or
leached Protein A [6, 95]. Due to its high selectivity towards protein charge, CEX chro-
matography can also separate an antibody from its product related impurities, e.g. size
or charge variants. Despite the favorable properties regarding impurity removal, CEX
chromatography remains one of the most development-intensive unit operations in the
downstream process. The comparably strong effect of a mAb’s structural characteristics
on elution behavior in CEX chromatography demands an adaption of process conditions
for each product. Therefore, a significant body of research has focused on understanding
the relationship between protein structure properties and adsorption behavior. Adsorp-
tion in protein chromatography can be investigated using molecular dynamic simulations
[131, 153]. Monte Carlo simulations performed by Zhou et al. (2004) [154] showed that
antibodies tend to have a “head-on” fragment antibody (Fab)2 binding orientation on neg-
atively charged surfaces and an “end-on” fragment crystallizable (Fc) binding orientation
on positively charged surfaces, at high surface charge density and low salt concentration.
In multimodal (MM) systems, the chromatographic behavior and binding orientation of
model proteins [155–157] and mAbs [158] depends on ligand structure and surface prop-
erties of the molecule. Further, Robinson et al. (2020) [159] showed that the domain
contribution of mAbs in MM chromatography is affected by the mobile phase pH value.

26



2.1 Introduction

In contrast to qualitative analysis, quantitative structure-property relationship (QSPR)
models correlate structural descriptors with chromatographic behavior by applying math-
ematical models. QSPRs based on the crystal structure of non-mAb proteins allowed the
prediction of protein retention times [160] and adsorption isotherm parameters [31] in ion
exchange chromatography. Robinson et al. [30] applied QSPR modeling to the purification
of homologous Fab variants on MM resins. Kittelmann et al. introduced an orientation
sensitive QSPR approach for model proteins [132] and mAbs [133] in IEX chromatogra-
phy. A comprehensive study performed by Ishihara et al. (2005) [74] investigated the
elution behavior of 28 mAbs in Protein A affinity and CEX chromatography. For CEX
chromatography, the salt concentrations at peak maximum correlated with the surface
positive charge distribution of the heavy chain variable region [74]. To the best of our
knowledge, results on how substituting residues within the adsorption relevant surface of
a full-length mAb would influence CEX chromatography have not been published yet.

In contrast to structure-based modeling techniques, mechanistic models describe the phys-
ical effects in chromatography columns on a macroscopic level. During the last years,
mechanistic chromatography modeling became a state of the art technology in biophar-
maceutical DSP development. Possible applications of mechanistic models are process
optimization [26, 161], model-guided scale-up [27, 97], in silico robustness analysis [101,
162, 163], or root cause investigation [100]. The process understanding provided by mech-
anistic chromatography models enables in silico DSP development in line with the Quality
by Design (QbD) concept [164]. Chromatography models consist of partial differential
equations describing mass transport and protein adsorption phenomena. For IEX chro-
matography, the adsorption can be modeled using the stoichiometric displacement model
(SDM) [124]. The SDM is based on the electrostatic equilibrium theory and formulates
the multipoint binding of proteins under consideration of displacement effects. Brooks
and Cramer (1992) [117] extended the SDM towards the steric mass-action (SMA) model
to cover the shielding effects of bound protein on the resin surface.

Previous work has demonstrated the predictive power of SMA models, even when extrapo-
lating beyond the experimental conditions applied for model calibration [165]. Despite the
proven predictive power and the mechanistic nature of the SMA model, it is not clear which
structural characteristics of mAbs influence adsorption model parameters. For example,
Rüdt et al. (2015) [166] built a SDM model for an Fc fusion protein and correspond-
ing aggregates by assuming constant characteristic charge values for both protein species.
Other authors [116, 166] reported differing characteristic charge parameters for mAb size
and charge variant, due to altering numbers of charged groups interacting with the resin.
Furthermore, it is unclear if steric shielding is exclusively a function of the chromato-
graphic ligands blocked by the adsorbed protein or if it further considers non-adsorptive
or repulsive effects [31]. Due to the missing correlations between adsorption isotherm
parameters and structural characteristics of multi-domain proteins such as mAbs, the pre-
ferred practice for model calibration often involves curve fitting to experimental data [114,
165, 167]. Substitution of single charged amino-acid side chains in the adsorption relevant
region of full-length mAbs could elucidate the correlations between protein structure and
macroscopic adsorption model parameters.
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The aim of the present work is to gain a deeper understanding of the binding mechanism of
mAbs in preparative CEX chromatography. Therefore, multiple purification experiments
were performed for a full-length IgG1 mAb, and two variants differing in a single amino
acid within the CDR. An additional positive charge in the L- and H-CDR of the mutated
mAbs increased their retention volume during linear salt gradient elution (LGE). Poten-
tial effects of amino acid substitutions on the developability of the CEX unit operation
were investigated in chromatography runs at low and high loading densities. Homology
modeling and protein surface analysis identified exposed mAb regions that mediate the
adsorption process. The data set enabled the estimation of SMA model parameters for
the three mAbs. The identified effects of amino acid substitutions on adsorption model
parameters could support model calibration and QSPR modeling.

2.2 Methods

2.2.1 Process Conditions and mAbs

The mAb polishing step was performed on the strong CEX resin POROS XS (Thermo
Fisher Scientific, Waltham, USA). Column specific parameters and the equations used for
their calculation are listed in Table 2.1. Tracer injections with blue dextran and 1 M
sodium chloride (both Sigma-Aldrich, St. Louis, USA) enabled the calculation of the
interstitial volume, Vint and total liquid volume, Vt, respectively. The ionic capacity Λ
was determined by acid-base-titration [126]. Column characterization experiments were
conducted as triplicates. Chemicals used in this study were of pharmaceutical grade. All
buffers were prepared with deionized water and filtered with a 0.2 µL sterile filter. Column
experiments were performed on the preparative chromatography system ÄKTA Avant 25
controlled via Unicorn 7 (both Cytiva, Uppsala, Sweden). Sodium acetate buffer at pH 5.25
was used for all preparative CEX experiments. The column was equilibrated at pH 5.25
and a counterion concentration of 0.05 M sodium. Buffer exchange of protein samples into
the equilibration buffer resulted in defined loading conditions. During gradient elution,
counter-ion concentration increased from 0.05 M to 0.50 M sodium. The loading density
was 1 g/LResin for LGEs in the linear region of the adsorption isotherm and 30 g/LResin
for high loading density runs. Samples applied for low and high loading experiments had
protein concentration of 1 g/L and 3 g/L, respectively. Loading densities were adjusted
via the applied sample volume, considering the 10.68 mL column volume. 1 M and 0.1 M
sodium hydroxide were used for column regeneration and storage, respectively.

The three model proteins used in this study are IgG1 mAbs expressed in Chinese hamster
ovary (CHO) cells (Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany).
The mAbs were captured via Protein A affinity chromatography. Two mutants (M1 and
M2) with additional positively charged groups in the CDRs were derived from a corre-
sponding wild type (WT) antibody. Surface charge of M1 was increased by substitution of
serine with lysine in the L-CDR3. For M2, a tryptophan in the H-CDR3 was substituted
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Table 2.1: Experimentally determined system- and column-specific model parameters.

Parameter Symbol Value Unit Equation Reference

Length L 136 mm

Diameter d 10 mm

Column Volume V 10.68 mL V = π d
2

4 L

Bead radius rp 25 µm [114]

Interstitial porosity εcol 0.41 - εcol = Vint
V [114]

Total porosity εt 0.78 - εt = Vt
V [114]

Particle porosity εp 0.63 - εp = Vt−Vint
V−Vint

[114]

Axial dispersion Dax 0.14 mm2/s Dax =
uLs2NaCl

(2Vt)2
[115]

Ionic capacity Λ 0.49 M Λ = cNaOHVNaOH
V (1−εt) [114, 126]

with lysine. The amino acid substitutions were introduced to affect the biophysical prop-
erties of the mAb via modification of surface-exposed hydrophobic and charged patches.
This methodology can reveal possible effects of mAb lead optimization on CMC properties
in upstream, downstream and formulation development.

2.2.2 Homology Modeling and Protein Surface Analysis

Full-length homology models of investigated mAbs were built in Maestro BioLuminate 3.7
(Schrödinger, Munich, Germany) following the method developed by Zhu et al. (2014) [69].
Separate templates for light and heavy chains were selected based on sequence identity
of framework regions. For WT, M1, M2 the framework region templates were 3SO3 &
3T2N (pdb accession codes) for heavy and light chains, respectively. Comparably low
sequence identity (<40%) between available templates and the 14 residues long H-CDR3
demanded an ab initio structure prediction using the Prime method [66]. Following the
method developed by Zhu et al. (2014) [69], all structures were prepared accordingly
before starting loop prediction. Structure preparation included the assignment of polar
hydrogen positions, protonation states, and energy minimization using the OPLS3e force
field [168]. Surface patches and protein descriptors were calculated within BioLuminate,
at pH 5.25 [142, 169].

2.2.3 Mechanistic Chromatography Modeling

The simulation software ChromX (GoSilico GmbH, Karlsruhe, Germany) was used for
mechanistic chromatography modeling. The transport dispersive model in Eq. 2.1 was
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applied as column model [114, 170]. In Eq. 2.1, the change of the concentration ci(x, t) is
a function of the convective mass transport in the interstitial volume of the packed bed
with the superficial velocity u. Further, the model considers axial dispersion Dax effects
and interfacial mass transfer between the interstitial volume defined by the bed porosity
εcol and the particle pores. Film diffusion effects in the particle boundary layer and pore
diffusion in the particle phase are expressed by the effective mass transfer parameter keff,i.
Eq. 2.2 represents the accumulation of mass in the pore volume ci and the stationary phase
qi. Danckwerts’ boundary conditions are given in Eqs. 2.3 and 2.4.

∂ci(x, t)

∂t
= − u

εcol

∂ci(x, t)

∂x
+Dax

∂2ci(x, t)

∂x2

− 1− εcol
εcol

(
3

rp
keff,i (ci(x, t)− cp,i(x, t))

) (2.1)

∂cp,i(x, t)

∂t
=

3

rp

keff,i
εp

(ci(x, t)− cp,i(x, t))−
1− εp
εp

∂qi(x, t)

∂t
(2.2)

∂ci
∂x

(0, t) =
u(t)

εcolDax
(ci(0, t)− cin,i(t)) (2.3)

∂ci
∂x

(L, t) = 0 (2.4)

Protein adsorption is modeled using the SMA isotherm [117]. Eq. 2.5 shows the kinetic
form of the SMA isotherm modified by Hahn et al. (2016) [167], where qi and cp,i denote
the protein concentration in the solid and liquid phase of the particle, respectively. The
SMA model formulates the equilibrium binding behavior of the protein considering the
salt concentration in the pore phase cs, the ionic capacity of the resin Λ and protein
specific model parameters. The protein characteristic charge νi accounts for the number
of charges interacting with the resin, while steric shielding σi considers the number of
functional groups on the resin blocked by the protein due to steric hindrance. Additionally,
the constants keq,i = kads,i/kdes,i and kkin,i = 1/kdes,i comprise adsorption and desorption
rates of the modeled proteins.

kkin,i
∂qi
∂t

= keq,i

Λ−
k∑
j=1

(νj + σj) qj

νi

cp,i − qicνis (2.5)
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qsalt = Λ−
k∑
j=1

νjqj (2.6)

Estimation of protein-specific model parameters is the first step, before a mechanistic
model can be applied to real-world tasks in DSP development. The Yamamoto method
enabled the analytical solution of νi and keq,i using a set of LGEs at differing salt gradient
slopes. Eq. 2.7 describes the linear relationship between the normalized gradient slope
GH and the elution salt concentration cs,i of component i at diluted loading conditions
[74, 166, 171–173]. Eqs. 2.8 and 2.9 lead to the calculation of the normalized gradient
slope GH, where cs,initial is the salt concentration at the gradient begin, cs,final is the salt
concentration at the gradient end, and VG is the gradient length in mL. The isotherm pa-
rameters defining the non-linear region of the SMA isotherm, kkin,i and σi, were estimated
using the inverse method developed by Hahn et al. (2016a; 2016b) [114, 167].

log(GH) = (νi + 1)log(cs,i)− log (keq,iΛ
νi(νi + 1)) (2.7)

g =
cs,final − cs,initial

VG
(2.8)

GH = g(Vcol − εtVcol) (2.9)
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2.3 Results

2.3.1 Process Behavior and Protein Surface Analysis

The aim of the present study was to analyze effects of single amino acid substitutions in
the CDR of a mAb on process behavior in CEX chromatography. The two mutants M1
and M2 had an additional positively charged group in the CDR compared to the WT
mAb. Details on amino acid substitutions are given in Section 2.2.1. An identical set
of preparative CEX experiments was performed for three mAb variants. In this section,
results of LGE experiments under low loading conditions (1 g/LResin) are compared to
the in silico analysis of corresponding homology models. Figure 2.1 (D)-(F) show LGE
experiments at a gradient length of 20 column volumes (CV) and mobile phase pH 5.25.
The wild type antibody eluted first, followed by the mutants M1 and M2 with additional
positively charged amino acid side chains in the CDR. WT, M1 and M2 eluted at a
sodium counter-ion concentration of 0.336 M, 0.416 M and 0.433 M during salt gradient
elution, respectively. Beside the delayed retention volume, similar peak shapes could
be observed for the WT and M1. In contrast, M2 showed an increased elution pool
volume compared to WT and M1, caused by a distinct pre-peak with shoulder. Results of
analytical chromatography (HP-CEX) indicated that the pre-peak of M2 was caused by
an increased charge heterogeneity of the loading material (data not shown).
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Figure 2.1: Protein surface analysis and elution behavior in CEX chromatography at
1 g/LResin loading density. Predicted Fv homology models: (A) WT with tryptophan
in HC and serine in LC; (B) M1 with tryptophan in HC and lysine in LC; (C) M2 with
lysine in HC and serine in LC. The solvent-exposed surface is shown as mesh, and positively
charged patches close to H-CDR3 (purple) and L-CDR3 (dark green) are marked in blue.
(D), (E) and (F) show the respective CEX chromatograms of LGE experiments conducted
on POROS XS at pH 5.25, with 20 CV gradient length, and a flow velocity of 200 cm/h.
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The visible effect of point mutations in the CDRs on the elution behavior during CEX
chromatography demanded a thorough investigation of structural characteristics causing
these phenomena. Homology models were calculated for the three IgG1 mAbs using the
workflow described in Section 2.2. Antibody structure predictions in Figure 2.1 (A)-(C)
confirmed that the substituted side chain residues were solvent-exposed. Due to identical
Fc regions, protein surface analysis was performed for the Fab only, while the pI and net
charge calculations were based on full-length homology models. Table 2.2 compares pI
values obtained via capillary isoelectric focusing (cIEF) with in silico predicted pI values
and protein descriptors. Both, in silico and wet-lab experiments, could not measure sig-
nificant differences between pI values of the three mutants. Model based net charge of
the full-length IgG1 mutants at pH 5.25 increased to 50 from 48. The number of positive
charges per CDR increased to 7 from 6 for the mutated mAbs at pH 5.25. Additionally,
compared to WT, point mutations increased the sum energy of positive surface patches
larger than 30 Å2 in the CDRs by 20% and 28% for M1 and M2, respectively. Protein
surface analysis in Figure 2.1 visualizes the additional positively charged patches in the
CDR of mutated mAbs. Due to the high degree of solvent-exposure, all depicted surface
patches could potentially be involved in the adsorption process. For M1, serine was sub-
stituted with lysine, adding a positive patch in a neutral region of the wild type mAb.
Beside the differences in positive surface charges, ab initio H-CDR3 loop prediction via
the Prime method [66] resulted in similar conformations for WT and M1. In contrast, the
substitution of tryptophan with lysine in M2 influenced the predicted conformation of the
H-CDR3, increasing solvent-exposure compared to WT and M1.

Table 2.2: Molecular descriptors and pI values obtained via in silico prediction and cIEF
measurements. *:In silico descriptors were calculated based on homology models at pH
5.25.

pI* [-] pI [-] Net charge* Formal charge CDR*
Positive patch en-
ergy
CDR* [kcal/mol]

Method In silico cIEF In silico In silico In silico
WT 9.2 8.9 48 6 499
M1 9.2 8.9 50 7 599
M2 9.2 8.9 50 7 638

2.3.2 Chromatography Modeling

Homology modeling and protein surface analysis provided insights into the structural prop-
erties of the mAbs leading to differences in their chromatographic behavior. Mechanistic
chromatography modeling aims to increase process understanding on a macroscopic level
by describing the physical effects in the chromatographic system. This section investi-
gates the effects of changes in the protein structure on macroscopic adsorption model
parameters.
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System and column characterization was crucial for the following estimation of protein-
specific model parameters. All results and respective methods of column characterization
and are listed in Table 2.1. POROS XS is a perfusion resin, with comparably low mass
transfer resistance. Therefore, keff,salt was approximated with rP /3 = 0.0083 mm/s.[174]
For protein species, the penetration correlation [175] enabled calculation of effective mass
transfer parameters keff,i depending on the hydro-dynamic radii of the mAbs and the
linear flow rate. Identical hydrodynamic radii of 73 Å were computed based on full-length
homology models resulting in an keff,i of 0.0013 mm/s for WT, M1 and M2. Predictions
of the height and width of elution peaks at low loading conditions validated assumptions
regarding the mass transfer of protein.

Multiple lab-scale experiments for each mAb allowed the estimation of SMA model param-
eters. Table 2.3 summarizes resulting isotherm parameters. Five LGE experiments were
conducted at 1 g/LResin loading density and altering gradient lengths between 10 CV and
30 CV. At each gradient slope, the WT eluted first followed by M1 and M2. Figure 2.2
visualizes the Yamamoto correlation (Eq. 2.7), which enabled the analytical solution of the
characteristic charge νi and equilibrium constant keq,i based on the five LGE experiments
per mAb. The parallel regression lines in Figure 2.2 resulted in comparable characteristic
charge νi. In addition, the predicted and measured net charges and pI values of the ho-
mology models in Table 2.2 did not show a considerable difference between the molecules.
In contrast to νi, the equilibrium constants keq,i of the mutants M1 and M2 in Table 2.3
increased to approximately 8- and 23-fold compared to the WT, respectively. The charac-
teristic charge νi and the equilibrium constant keq,i have a similar effect on the retention
volume during LGE elution at low loading densities. Thus, the equilibrium constant keq,i
was the parameter affected by the addition of positively charged groups in the CDR and
caused the shifts in retention volume.

Steric shielding σi and kinetic kkin,i, the remaining model parameters defining the non-
linear region of the SMA isotherm, were estimated using the inverse method introduced
by Hahn et al. [167]. Here, the model output was fitted to the UV signal at 280 nm
wavelength of the high load LGE runs in Figure 2.3. Similar to keq,i, the kinetic parameter
kkin,i increased for the mutated mAbs. The shielding parameters in Table 2.3 show that
the substitution of tryptophan with lysine in M2 reduced σi by 28% compared to the WT.
The single protein species defined for WT and M1 was able to describe peak shapes and
retention volumes at 30 g/LResin loading density. For M2, the increased concentration
of acidic charge variants demanded the consideration of additional protein species. Two
acidic peak groups (APG1 and APG2) of M2 were defined based on the peak-to-peak ratios
measured at the low loading density LGE experiments. The relative input composition of
M2 Main, M2 APG1, and M2 APG2 was 67%, 16%, and 17%, respectively. Single amino
acid substitutions could not affect the characteristic charge parameters of WT, M1, and
M2 in a magnitude that would describe the differences in retention volume. Thus, the
characteristic charge νi of the M2 charge variants APG1 and APG2 was assumed to be
equal to the characteristic charge of the M2 main species.

For all three molecules, the transport-dispersive SMA model could describe the UV sig-
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Figure 2.2: Model calibration for the linear region of the SMA isotherm. Yamamoto
method for LGE experiments with 10, 15, 20, 25, 30 CV gradient length at pH 5.25 on
the strong CEX media POROS XS. Slope and intercept of linear regressions enabled the
calculation of characteristic νi and keq,i equilibrium constant, respectively. R2 > 0.98 for
all linear regressions.

Table 2.3: SMA Isotherm parameters of WT, M1 and M2 at pH 5.25 on POROS XS.
Acidic charge variants of M2 were lumped in two acidic peak groups (APG) based on their
retention time in preparative chromatography.

νi [-] keq,i [-] kkin,i [sMν ] σi [-]
WT 11.7 0.08 4.58E-05 53
M1 11.6 0.65 3.41E-04 51
M2 Main 11.9 1.82 4.09E-04 38
M2 APG1 11.3 0.65 1.05E-04 38
M2 APG2 11.3 0.15 2.74E-04 38

nal. This indicates that the selected model captured relevant physical effects within the
chromatographic system. The comparison of isotherm parameters in Table 2.3 with struc-
tural descriptors in Table 2.2 shows that macroscopic adsorption model parameters are
directly affected by single amino acid substitutions and the resulting protein structure.
Besides the identified effects on mechanistic model parameters, amino acid substitutions
influenced process performance at both, low- and high loading densities. Retention times,
charge heterogeneity, and elution pool volumes in preparative column experiments dif-
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fered between the three mAb variants. Thus, lead optimization can potentially affect
preparative purification using CEX chromatography.
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Figure 2.3: Comparison of simulated and measured chromatograms of the CEX process
under non-linear loading conditions. LGE experiments on POROS XS at 30 g/LResin
loading density, with 30 CV gradient length, and a flow velocity of 200 cm/h. The blue
dashed lines indicate simulated sum signals. Solid lines represent experimental data. (A)
= WT. (B) = M1. For WT and M1 a single protein species was simulated. (C) = M2.
Three protein species were considered in the simulation of the M2 process. Green and
cyan dashed lines are simulations of acidic charge variants of M2.
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2.4 Discussion

During the last years, a significant body of research has focused on the development
of in silico tools for the reduction of aggregation propensity, improvement of solution
properties, and optimization of biological activity of therapeutic mAbs [73, 149, 176].
Optimization of protein stability has been shown to be associated with additional favorable
CMC properties, e.g. increased expression titers during upstream processing [73, 149].
The present study aimed to investigate the effects of single amino acid substitutions in
full-length mAbs on the process behavior during preparative CEX chromatography.

Previous work indicated that mAbs bind with their Fab first to strong CEX media [74,
154]. In this work, modification of CDR residues that contribute to positive patches on
the mAb surface proved the vital role of the Fab and CDR in antibody adsorption on
strong CEX media. An identical set of preparative CEX experiments with three mAb
variants differing in a single amino acid showed a correlation between the sum positive
patch energy of the CDR and retention time during gradient elution. Independent of
CDR loop confirmations, the substitution of tryptophan with lysine in the H-CDR3 of
M2 increased the elution salt concentration by 32%. This resulted in comparably high
salt concentrations in the product pool. The final salt concentration in the product pool
needs to be considered in designing the process sequence, when combining CEX with other
chromatographic modalities for mAb polishing. Thus, exchange of a single charged amino
acid during lead optimization has the potential to affect resin selection and process design
during downstream processing. Despite differences in patch energies and CEX retention
times, pI values and net charges of the homology model did not differ significantly between
investigated mAbs. While this may seem trivial due to the minimal variation in primary
structure, it is important to notice that the experimental pI value is often considered as
initial binding strength indicator for the development of ion exchange chromatography
processes. Previous studies could show that solvent-exposed charges on the mAb sur-
face are relevant for protein adsorption in ion exchange and mixed mode chromatography
[74, 158, 177]. In this study, targeted amino-acid substitutions within the protein-resin
interaction surface emphasized that inhomogeneous charge distribution affects chromato-
graphic behavior of proteins with almost identical net charges. Therefore, local and global
molecule properties should be considered equally in the design of IEX chromatography
processes, especially for large multi-domain molecules such as mAbs. Nonetheless, the
unraveled correlations and binding orientation are only valid for the investigated strong
CEX media. In contrast to our data, Müller-Späth et al. (2008) [178] separated mAbs
with differing numbers of C-terminal lysine using an analytical weak CEX media at pH
6.3. Their data suggests that the Fc part of mAbs contributes to protein adsorption on
weak CEX media. Consequently, protein adsorption is equally dependent on the molecule
structure and the chromatographic ligand. Future studies are required to shed light on the
correlations between antibody structure and process behavior in other chromatographic
unit operations.

Beside the shift in retention volume, the substitution of tryptophan with lysine in the
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H-CDR3 of M2 had a significant effect on the percentage of acidic charge variants and
the resulting elution profiles in Figure 2.1 and Figure 2.3. Interestingly, ab initio H-CDR3
structure prediction using Prime method [66] resulted in an increased solvent-exposure of
the M2 H-CDR3 compared to the WT and M1 mAbs (Figure 2.1). Recently, Lan et al.
(2020) [179] reported an anomalous charge variant profile of an IgG1 mAb in analytical
CEX chromatography caused by two discrete conformational states of the H-CDR3. Their
analytical and molecular modeling investigation revealed a pH-dependent equilibrium be-
tween “open” and “closed” conformational states of the H-CDR3. Further, their work
identified a neighboring tryptophan residue in the LC showing reduced solvent-exposure
at lower pH values. Previous work underlined that aromatic and hydrophobic groups have
a stabilizing effect on CDR loop conformation [68]. Therefore, it can be assumed that the
substitution of tryptophan with lysine in M2 destabilized the energetically favored loop
conformation and increased solvent-exposure of the H-CDR3 (Figure 2.1). Charge het-
erogeneity is a common feature of therapeutic mAbs, which does not necessarily influence
their efficacy [179, 180]. However, when comparing the results to previous work [181],
the distinct peak shoulder in the chromatograms of M2 is uncommon for IgG1 mAbs in
preparative CEX chromatography. When applying identical UV based collection criteria
to the three mAb variants, the elution pool volume of M2 increases by 33% compared
to WT and M1. Due to limited tank capacities in manufacturing facilities and processing
time related to the subsequent product concentration via ultrafiltration/diafiltration, the
high elution pool volume represents an undesired CMC property. Hence, the substitution
of potentially stabilizing, aromatic groups within the H-CDR3 should be avoided during
lead optimization. Based on these findings, mAb candidates with favorable CMC prop-
erties can be selected for a streamlined process development. Alternatively, a qualitative
prediction of protein adsorption based on the sequence may allow an early estimation of
experimental efforts necessary for developing polishing chromatography. In case a mAb
shows a high likelihood for unfavorable CMC properties in CEX chromatography, e.g. in-
creased elution pool volumes or high salt concentration in the elution pool, a broad resin
screening with differing chromatographic modalities can be planned early during process
development. For a holistic DSP developability assessment, additional unit operations
should be added to the multiscale modeling workflow. However, our results indicate that
CEX chromatography is sensitive to minimal changes in the primary structure of mAbs.
For other unit operations in common DSP platforms, e.g. filtration steps, Protein A
affinity chromatography, or anion exchange chromatography in flow-through mode, amino
acid substitutions during lead optimization are less likely to have significant effects on the
process performance. Thus, the developed in silico workflow supports one of the most de-
velopment intensive unit operations in our DSP platform. Future work should investigate
how the identified correlations integrate into a holistic CMC developability assessment
combining upstream, downstream and formulation parameters.

The results in section 2.3.2 confirmed a relationship between mAb structure and adsorption
model parameters. Due to the semi-mechanistic nature of the commonly applied SMA
adsorption model, an interpretation of model parameters is challenging, especially for
multi-domain molecules such as mAbs. The multi-component SMA adsorption model
[117] is an extension of the stoichiometric-displacement concept developed by [124]. Here,
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the characteristic charge describes multipoint binding of proteins on charged surfaces.
In Section 2.3.2, introduction of two additional charges per mAb could not increase the
characteristic charge parameters of M1 and M2 in a magnitude that describes the shift
in retention time. When comparing the constant νi parameters to constant pI values and
protein net charges in Table 2.2, the characteristic charge can be assumed to describe
the average number of positive patches on the protein surface interacting with the resin.
In contrast to the characteristic charge, the equilibrium constant keq,i was significantly
increased by the introduction of positively charged groups within the adsorption-mediating
region on the protein surface. Therefore, keq,i may define the strength of the anisotropic
adsorption reaction, depending on positive patches in mAb CDR. Substitution of the
tryptophan residue in M2 reduced the steric shielding parameter σi. Reduction of σi could
have been caused by a combination of two effects. Firstly, the conformational change of the
H-CDR3 could have reduced the number of ligands blocked by the protein. Additionally,
it has been observed that the steric shielding parameter can also describe repulsive effects
on the resin surface [31]. Thus, substitution of the aromatic tryptophan residue could
have influenced hydrophobic interactions with the resin backbone leading to a reduced
σM2 compared to σWT .

The knowledge gained on structural dependencies of model parameters could support the
selection of plausible boundary conditions for model parameter estimation, which is cru-
cial for avoiding local minima [163]. Despite the influence of amino acid substitutions on
adsorption model parameters, the dataset is still limited to three variants of a monoclonal
antibody. When increasing size and structural heterogeneity of the mAb data set, the
found correlations could enable QSPR modeling for the prediction of SMA parameters.
Conventional QSPR approaches for developability assessment correlate structural prop-
erties with specific performance indicators or quality attributes of the biopharmaceutical
[138, 182]. A structure-based prediction of adsorption model parameters could lead to a
full digital representation of the unit operation enabling the simulation of an unlimited
number of process conditions before material for wet-lab CMC activities is available.

2.5 Conclusion

Our results demonstrate that sequence optimization of mAb candidates can influence
downstream processing. Single amino acid substitutions in the CDR had a significant
impact on retention volumes and elution profiles during preparative CEX chromatography.
The findings enable a relative classification of mAb candidates in weak, medium, and
strong adsorption to CEX media based on the number of positively charged amino acid side
chains in the CDR. Substitution of tryptophan with lysine destabilized the H-CDR3 loop
conformation, leading to an increased charge heterogeneity and broadened elution profiles
in CEX chromatography. The identified relationship between mAb primary structure and
CMC properties may support the selection of mAb candidates that integrate into common
downstream platforms. Further, a structure-based estimation of mAb elution behavior in
CEX chromatography could be used to plan initial experiments during early-phase DSP
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development. Effects of amino acid substitutions on semi-mechanistic adsorption model
parameters underline the possibility of building QSPR models that support the calibration
of mechanistic chromatography models. Our results could promote a paradigm shift in
DSP development from a strictly generic platform process to a more flexible process design
driven by the structural characteristics of the mAb.
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Abstract

The development of preparative chromatography processes for purification of monoclonal
antibodies (mAbs) is challenged by an unprecedented speed-to-market pressure and the
increasing structural complexity of novel antibody formats. This study presents a mul-
tiscale in silico model consisting of homology modeling, quantitative structure-property
relationships (QSPR), and mechanistic chromatography modeling leading from the amino
acid sequence of a mAb to the digital twin of a cation exchange chromatography (CEX)
process. The model leverages the mAbs’ structural characteristics and experimental data
of a diverse set of therapeutic antibodies to predict elution profiles of two mAbs that were
removed from the training data set. The QSPR modeling procedure identified protein
descriptors within the variable region of mAbs that are relevant for adsorption to strong
CEX media. Consideration of two discrete conformational states of IgG4 mAbs enabled
prediction of split-peak chromatograms. The presented multiscale model has the potential
to support process optimization during early stage development before protein material
for experimental studies is available.
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3.1 Introduction

Monoclonal antibodies (mAbs) and bispecific antibody formats (bsAbs) are intriguing
treatment options for a wide spectrum of therapeutic areas, including oncology, hematol-
ogy, inflammatory diseases [1, 45], and more recently for passive immunization or treat-
ment of infectious diseases, including Coronavirus Disease 2019 (COVID-19) [183]. Bio-
pharmaceutical companies strive to accelerate process development of biologics to bring
potentially life-saving medicines to patients as quickly as possible. In the light of the ongo-
ing Coronavirus pandemic, Kelley [184] proposed a CMC development plan that shortened
the time from lead identification to start of phase 1 clinical investigation from 12 to 6
months. This strategy combines novel technologies with a drastically templated platform
process and a strict parallelization of CMC work packages [184]. While enabling an early
start of phase 1 clinical studies, the development plan designed by Kelley results in a higher
business risk caused by missing experimental studies during early-stage development. The
biopharmaceutical industry demands novel methods supporting process development at
pandemic-pace, while achieving highest product quality and robust material supply for
clinical investigations.

Due to structural similarities of different mAb products, their large-scale purification is
based on the so-called platform process [7, 8]. This platform process consists of a stan-
dardized sequence of orthogonal separation mechanisms and the adaptation of process
conditions is reduced to a minimum. While enabling an efficient and rapid process devel-
opment for most molecules, the increasing structural complexity of antibody formats as
well as the poorly understood adsorption mechanisms in preparative chromatography chal-
lenge a downstream processing under standardized process conditions. For cation exchange
(CEX) chromatography, a previous study of our group revealed that single substitutions
in the amino acid sequence of full-length mAbs affect elution behavior and the resulting
optimal operating conditions that must be identified during early-stage development [185].
Luo et al. reported split-peak elution profiles of IgG2 and IgG4 mAbs in CEX chromatog-
raphy caused by reversible self-association [186] and histidine-protonation-based charge
variants [187]. Multiple authors propose to increase process understanding by using mech-
anistic models as digital twins of the manufacturing process [23, 28, 188]. Mechanistic
chromatography models consist of a set of partial differential equations that describe mass
transport and thermodynamic adsorption phenomena within the chromatography column
on a macroscopic level. In silico screening of process conditions via mechanistic model-
ing enables efficient process optimization for the increasing number of mAbs entering the
development phase. For ion exchange chromatography (IEX), the semi-mechanistic steric
mass-action (SMA) isotherm [117, 118] is frequently employed for the design [27], opti-
mization [98], and characterization [116] of antibody polishing steps. As a simplification
of the SMA model, the stoichiometric displacement model (SDM) allows simulation of
protein adsorption and desorption under diluted loading conditions [124, 125]. In the light
of the Quality by Design (QbD) initiative [24], regulatory authorities support the use of
mechanistic models to increase product quality by understanding the fundamental rela-
tionships between process parameters and quality attributes [103, 164]. Despite successful
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case studies and regulatory initiatives, the cumbersome model calibration can negate the
potential benefits of mechanistic modeling for industrial application. Mechanistic model
parameters are not directly measurable and are often determined via curve fitting to ex-
perimental data [114]. Especially during the early phases of DSP development, protein
material and time for model calibration are limited. Further, the experiments demanded
for the determination of SMA and SDM parameters, e.g. experiments under diluted load-
ing conditions and fraction collection with a high number of analytical samples, are not
performed during traditional development workflows. Understanding the relationships be-
tween the protein structure of therapeutic antibodies and their macroscopic adsorption
isotherm parameters could support a model calibration demanding less experiments.

The inability of current model-based development approaches to transfer process knowl-
edge from existing mAb products to a new biological entity (NBE) led to an increased
interest in machine learning and AI-based methods for bioprocessing [23, 29, 189, 190].
Quantitative structure-property relationship (QSPR) models are powerful tools for the
a priori prediction of process behavior based on empirical relationships between protein
structure descriptors and a target property. When process understanding and experimen-
tal data is limited, QSPR models give initial insights into the developability of mAb candi-
dates during early-stage development [191]. For the DSP of proteins, QSPRs allowed the
prediction of protein retention times in IEX [160] and mixed mode chromatography [30].
Further, Kittelmann et al. [132, 133] introduced QSPR models capable of predicting bind-
ing orientations of mAbs and model proteins in IEX chromatography. For mAbs in CEX
chromatography, Ishihara et al. found a correlation between the elution salt concentration
and positively charged patches in the heavy chain variable region [74]. Multiscale models
use QSPRs to connect protein structure properties with macroscopic model parameters.
In contrast to the prediction of single quality attributes and elution salt concentrations,
QSPR models for the prediction of isotherm parameters could lead to a digital twin of the
unit operation that enables in silico process development before protein material for ex-
perimental studies is available. Ladiwala et al. [31] built a QSPR model for the prediction
of SMA isotherm parameters of small model proteins. Noteworthy, their multiscale model
enabled the prediction of entire IEX chromatograms based on physicochemical descriptors
derived form experimentally determined protein structures [31]. However, experimentally
determined protein structures of full-length mAbs are not available during early-stage
process development. Further, the binding orientation and adsorption mechanism of large
multi-domain proteins, such as mAbs, are not fully understood.

The goal of the present study is a multiscale in silico model that leads from the amino
acid sequence of a therapeutic antibody to the mechanistic chromatography model of
the corresponding CEX unit operation. The multiscale model combines mAb homology
modeling, QSPRs, and mechanistic chromatography modeling to predict macroscopic ad-
sorption isotherm parameters. Antibody-specific descriptors are derived from homology
models built for a diverse set of full-length antibodies. The experimental data set for
training and validation of the QSPR model consists of 21 mAbs and corresponding Fabs,
including IgG1, IgG4, and two different bispecific antibody formats. Protein descriptors
of IgG4 mAbs are calculated based on two discrete protein conformations, the typical Y-
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shape and a closed, self-associated λ-shape where one Fab-arm is oriented towards the Fc
portion [192]. SDM parameters are determined at three mobile phase pH conditions for
all IgG1 and IgG4 mAbs, which aims to increase the understanding of adsorption mecha-
nisms of different antibody formats in preparative CEX chromatography. QSPR modeling
is than used to build an empirical relationship between the molecular descriptors and the
macroscopic SDM parameters. Here, the initial feature selection aims to identify regions
on the protein surface that affect SDM parameters, and thus also affect process behavior
in CEX chromatography. External validation of the multiscale model is achieved by pre-
dicting chromatograms of two molecules not included in the training data. QSPRs coupled
with mechanistic models can predict process behavior based on the amino acid sequence
without performing additional experiments during early-stage DSP development.

3.2 Methods

3.2.1 Antibodies and Homology Modeling

A set of 21 therapeutic Fab (n=1), IgG1 mAbs (n=10), IgG4 mAbs (n=5), and bsAbs
(n=5) was used to train and test a QSPR model for the prediction of SDM isotherm pa-
rameters. Additionally, enzymatic fragmentation of IgG1 and IgG4 mAbs was performed
following the protocol by Andrew et al. [193] to further increase size and structural diver-
sity of the data set. All proteins were expressed in Chinese hamster ovary cells (Boehringer
Ingelheim GmbH & Co. KG, Biberach, Germany). Full-length homology models of in-
vestigated mAbs and complex antibody formats were built in Maestro BioLuminate 3.7
(Schrödinger, Munich, Germany) following the method developed by Zhu et al. (2014)
[69]. Template structures for full-length homology models are given in Fig. 3.1. The mAb
crystal structure with the PDB entry 1HZH [194] was used as Fc-template for IgG1 mAbs
and bAbs. Due to the recently discovered conformational diversity of IgG4, two different
Fc-templates were used for the homology modeling of each IgG4 mAb [192]. The PDB
entry 5DK3 [195] was used as Y-shaped template, while 6GFE [192] was used as template
for the λ-shaped IgG4 conformation. Fig 3.1 shows exemplary homology models for each
antibody format, including the two conformations of IgG4 mAbs. Further, two different
bispecific antibody formats were included in the data set, one knob-in-hole format (n=2)
with two different Fabs, and one appended IgG(H)-scFv format (n=3). For the variable
regions, separate templates for light and heavy chains were selected based on sequence
identity of framework regions. All structures were prepared following the method de-
veloped by Zhu et al. [66] before starting descriptor calculation. Structure preparation
included the assignment of polar hydrogen positions, protonation states, and energy min-
imization using the OPLS3e force field [168]. Movement of heavy atoms during energy
minimization was limited to a maximum root-mean-square-deviation of 0.3 Å between the
initial homology model and the energy minimized structure.

Surface patches and protein descriptors were calculated within BioLuminate, at pH con-
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ditions of the respective chromatography experiments [142, 169]. The descriptor set con-
sisted of 166 parameters, including 135 global and 31 local descriptors per region. Protein
descriptors calculated for the entire antibody structure were defined as global descrip-
tors. Additionally, local descriptors were defined for 30 individual regions of the antibody.
These regional mAb descriptors were organized in a topological hierarchy with six levels
of detail, ranging from the overall mAb structure to local descriptors for each CDR loop.
The descriptors were calculated via physical models or parameterized empirical models,
including patch potential energy analysis with size- and value-dependent binning. Further,
structure specific characteristics, which were describing the shape or scalar values of the
different regions, were calculated within BioLuminate. The 135 global descriptors plus
31 local descriptors for 30 individual mAb regions resulted in a vector containing 1065
features per full-length mAb [142].

3.2.2 Process Conditions

All molecules were captured via Protein A affinity chromatography and further polished
using the strong CEX resin POROS XS (Thermo Fisher Scientific, Waltham, USA). Col-
umn characterization experiments were conducted as triplicates. Column dimensions and
column-specific model parameters are listed in Tab. 3.1. Chemicals used in this study were
of pharmaceutical grade. All buffers were prepared with deionized water and filtered with a
0.2 µm sterile filter. Preparative CEX experiments were performed on an ÄKTA Avant 25
controlled using Unicorn 7 (both Cytiva, Uppsala, Sweden). Tracer injections with blue
dextran and 1 M sodium chloride (both Sigma-Aldrich, St. Louis, USA) enabled the cal-
culation of the interstitial volume, Vint and total liquid volume, Vt, respectively. The ionic
capacity Λ was determined by acid-base-titration [126].

An identical set of preparative CEX experiments in bind-elute mode was performed for
all 21 molecules and corresponding Fabs of IgG1/IgG4 mAbs. Linear salt gradient elution
(LGE) runs were conducted at gradient lengths ranging from 10 CV to 30 CV, at
three different mobile phase pH values, pH 5.00, pH 5.25, and pH 5.50. The counterion
concentration increased from 50 mM to 500 mM sodium during gradient elution. The
LGEs were conducted in the linear region of the adsorption isotherm, at a loading density
of 1 g/LResin, allowing for the calculation of the characteristic charge νi and the equilibrium
constant keq,i at varying pH conditions using the Yamamoto method described in the
following section. 1 M and 0.1 M sodium hydroxide were used for column regeneration
and storage, respectively.

3.2.3 Mechanistic Chromatography Modeling

The simulation software ChromX was used for mechanistic chromatography modeling
(GoSilico GmbH, Karlsruhe, Germany). The transport dispersive model in Eq. 3.1 was
selected as column model [114, 170]. Here, the change of the concentration ci(x, t) in
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the mobile phase depends on convective mass transport in the interstitial volume of the
packed bed with the superficial velocity u. Peak broadening effects are described by
axial dispersion Dax and interfacial mass transfer between the interstitial volume and the
particle phase. The effective mass transfer parameter keff,i lumps film diffusion effects
in the particle boundary layer and pore diffusion in the particle phase. Eq. 3.2 describes
accumulation of component i in the pore volume cp,i. Danckwerts’ boundary conditions
are given in Eqs. 3.3 and 3.4.

∂ci(x, t)

∂t
= − u

εcol

∂ci(x, t)

∂x
+Dax

∂2ci(x, t)

∂x2

− 1− εcol
εcol

(
3

rp
keff,i (ci(x, t)− cp,i(x, t))

) (3.1)

∂cp,i(x, t)

∂t
=

3

rp

keff,i
εp

(ci(x, t)− cp,i(x, t))−
1− εp
εp

∂qi(x, t)

∂t
(3.2)

∂ci
∂x

(0, t) =
u(t)

εcolDax
(ci(0, t)− cin,i(t)) (3.3)

∂ci
∂x

(L, t) = 0 (3.4)

Protein adsorption is modeled using the stoichiometric displacement model [124, 125].
Eq. 3.5 shows the kinetic form of the SDM isotherm, where qi and cp,i denote the protein
concentration in the solid and liquid phase of the particle, respectively. The SDM describes
the equilibrium binding behavior of the protein considering the salt concentration in the
pore phase cs, the ionic capacity of the resin Λ, and protein specific parameters. The
protein characteristic charge νi accounts for the number of charges interacting with the
resin, while the constants keq,i = kads,i/kdes,i and kkin,i = 1/kdes,i comprise adsorption and
desorption rates of the modeled proteins.

kkin,i
∂qi
∂t

= keq,iq
νi
saltcp,i − qic

νi
s (3.5)

qsalt = Λ−
k∑
j=1

νjqj (3.6)
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The aim of the multiscale modeling workflow was the prediction of a mAb’s SDM pa-
rameters, characteristic charge νi and the equilibrium constant keq,i, which are the model
parameters defining the linear region of the SMA isotherm. To generate training and test-
ing data, the Yamamoto method was used for the analytical solution of νi and keq,i using
a set of LGEs at differing salt gradient slopes for all therapeutic antibodies at varying
mobile phase pH values. Eq. 3.7 describes the linear correlation between the normalized
gradient slope GH and the elution salt concentration cs,i of component i at diluted load-
ing conditions [74, 166, 172, 173, 196]. Eqs. 3.8 and 3.9 allow to the calculation of the
normalized gradient slope GH, where cs,initial is the salt concentration at the gradient
begin, cs,final is the salt concentration at the gradient end, and VG is the gradient length
in mL.

log(GH) = (νi + 1)log(cs,i)− log (keq,iΛ
νi(νi + 1)) (3.7)

g =
cs,final − cs,initial

VG
(3.8)

GH = g(Vcol − εtVcol) (3.9)

3.2.4 Quantitative Structure-Property Relationship Modeling

The QSPR is the central building block of the multiscale model and connects molecular-
level protein descriptors x with macroscopic adsorption isotherm parameters y. The QSPR
modeling workflow consisted of feature selection, machine learning via Gaussian process
regression (GPR), and model validation. Machine learning and visualization was per-
formed with Python 3.8.10 including scikit-learn [197]. Before feature selection, the data
set was split into training and test data using two different sampling techniques. In the
first section of this manuscript, 20% of the overall data was randomly removed from the
data set for model validation. For external validation in the second part of the manuscript,
all isotherm parameters and descriptors associated with a single mAb at different process
conditions, fragmentation states, and conformations were removed from the training data
set. To avoid over-determination of the GPR, a two-staged feature selection was used to
identify protein descriptors x relevant for prediction of isotherm parameters y. Firstly, a
filter method was employed to reduce the computational costs of the subsequent recursive
feature elimination (RFE). The filter method removed descriptors based on low variance
and low mutual information [198, 199] between individual descriptors x and isotherm pa-
rameters y of the training data set. The dimensionality of the remaining descriptor set
was further reduced using RFE as supervised feature selection method [146]. During each
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iteration of the RFE, 30 GPR models were trained using a 5-fold cross validation with 6
repetitions using a sub-set of 80% of the training data. After each iteration, the feature
with the weakest contribution to the GPR model was removed from the descriptor vector
x [200]. The optimal number of features used to train the final GPR model was deter-
mined via a scoring function considering the mean absolute error (MAE) calculated during
cross-validation and the log-marginal-likelihood (LML) [201] obtained from corresponding
GPR models.

Gaussian process regression was used for supervised learning due to its probabilistic nature
and wide variety of kernel functions [202]. The general aim of the machine learning method
is the prediction of an isotherm parameter y based on a high-dimensional vector x of
protein descriptors. A Gaussian process can be defined as generalization of a Gaussian
distribution over a vector space to a function space of infinite dimensions [203]. The GPR
relies on Bayesian inference, assuming a prior probability distribution for the values of the
function y(x) and updates the probability distribution in the presence of observed data to
yield a posterior probability distribution. Following Obrezanova et al. [204], the Bayesian
update rule is

P (y(x)|D) ∝ P (Y |y(x), X)P (y(x)) (3.10)

where D = {X,Y } is the training data, P (y(x)|D) describes the posterior distribution,
P (y(x)) is the prior, and P (Y |y(x), X) is the likelihood. The covariance of the prior was
specified by addition of three sub-kernels: a linear term; a non-linear Matérn class kernel;
and a white noise kernel [197, 202]. The GPR was fitted by optimizing the hyperparameters
Θ of the kernel functions to maximize the LML with the L-BFGS-B algorithm [205].
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3.3 Results & Discussion

In this manuscript, a QSPR model is used for a priori prediction of elution behavior of
mAbs in preparative CEX chromatography. SDM isotherm parameters were determined
based on experimental data for a diverse set of therapeutic antibodies, including IgG1
mAbs, IgG4 mAbs, Fabs and bsAbs. Protein descriptors were derived from the corre-
sponding homology models calculated based on the amino acid sequence. For external
validation, data of an IgG1 and an IgG4 mAb was removed separately from the QSPR
training set. The predicted SDM isotherm parameters were used to simulate entire chro-
matograms and validated with experimental chromatograms. The developed multiscale
modeling pipeline bridged the gap between the protein structure of mAbs and their macro-
scopic elution behavior.

3.3.1 QSPR Modeling for the Prediction of SDM Isotherm Parameters

For the training and testing data set, SDM model parameters were determined based
on CEX experiments at bench-scale. All purification experiments were performed on
the identical chromatography column with the strong CEX media POROS XS and an
inner diameter of 1 cm, at a linear flow rate of 200 cm/h. Tab. 3.1 shows experimentally
determined column-specific parameters necessary for mechanistic modeling. The measured
column porosities, ionic capacity, and axial dispersion coefficient were in accordance with
values found in literature [114, 163, 174].

Table 3.1: Experimentally determined column-specific model parameters of the POROS
XS CEX chromatography column.

Parameter Symbol Value Unit Equation Reference

Length L 136 mM

Diameter d 10 mM

Column Volume V 10.68 mL V = π d
2

4 L

Bead radius rp 25 µm [114]

Interstitial porosity εcol 0.39 - εcol = Vint
V [114]

Total porosity εt 0.77 - εt = Vt
V [114]

Particle porosity εp 0.62 - εp = Vt−Vint
V−Vint

[114]

Axial dispersion Dax 0.14 mm2/s Dax =
uLs2NaCl

(2Vt)2
[115]

Ionic capacity Λ 0.41 M Λ = cNaOHVNaOH
V (1−εt) [114, 126]
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The thermodynamic equilibrium constant keq,i and characteristic charge νi of 21 mAbs
were determined experimentally using the Yamamoto method as described in Eqs. 3.7-
3.9. IgG1 and IgG4 mAbs were further digested with Papain to increase the structural
diversity of the training data set. Thus, for the 10 IgG1 and the 5 IgG4 mAbs, SDM
isotherm parameters were determined for full-length molecules and corresponding FAbs
at pH 5.00, pH 5.25, and pH 5.50 respectively. For 5 bsAb and the single Fab, SDM
isotherm parameters were only determined for full-length molecules at pH 5.25. The
resulting distributions of measured parameters in the training and testing data are shown
in Fig. 3.1. For reasons of clarity, values of the equilibrium constant are shown as their
natural logarithm ln(keq,i). Equilibrium constants keq,i in the overall data set ranged from
-6.34 to 3.23. Characteristic charge parameters νi ranged from 3.8 for a single Fab at
pH 5.5 to 13.9 for a bispecific mAb of the IgG(H)-scFv format at pH 5.25. In comprison,
Hunt et al. [115] reported characteristic charge parameters are typically ranging between
5 and 20 for mAbs on strong (SO3) and weak (COO) CEX resins. For full-length IgG1 and
IgG4 mAbs investigated in this work, characteristic charge parameters had values between
6.2 and 11.79, while νi parameters of corresponding Fabs were reduced by approximately
40%. Thus, the bimodal distribution observable in Fig. 3.1 (A) results from fragmentation
of IgG1 and IgG4 mAbs. All mAbs had theoretical pI values above the investigated pH
conditions of pH 5.00 to pH 5.50. Hence, the data in Fig. 3.1 suggests a relationship
of the characteristic charge νi with the molecular weight and net charge of investigated
antibodies. In general, keq,i and νi parameters increased with decreasing mobile phase pH.

A B

νi keq,i

Figure 3.1: Distributions of SDM parameters in the test and training set. Characteristic
charge νi (A) and equilibrium constant keq,i (B) were determined via the Yamamoto
method for 21 IgG1 mAbs, IgG4 mAbs, Fabs, and bsAbs at mobile phase pH conditions
of pH 5.00, pH 5.25, and pH 5.5.

LGE experiments used for parameter estimation were performed under diluted loading
conditions of 1 g/LResin. Noteworthy, all IgG4 molecules showed a distinct split-peak
elution behavior similar to the results reported by Luo et al. [187]. An exemplary split-
peak chromatogram of one IgG4 investigated in this study is shown in Fig. 3.5 (B). When
collecting one of the peaks and repeating the identical experiment, the split-peak elution
behavior was observed again. Double elution peaks where only observed for full-length
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IgG4 mAbs and not visible for corresponding Fabs. In order to understand underlying
adsorption phenomena, the Yamamoto method was applied separately to both elution
peaks of full-length mAbs. This resulted in two pairs of equilibrium constant keq,i and
characteristic charge νi for each IgG4 molecule and mobile phase pH. Both parameters,
keq,i and νi, affect retention times in gradient elution experiments. Interestingly, keq,i
values were comparable for both peaks of each IgG4 molecule. In contrast, characteristic
charge parameters νi of early eluting species were 8% to 23% lower compared to the second
peak, and thus caused the shift in retention volume.

A recent study performed by Blech et al. [192] revealed that IgG4 mAbs can adopt multiple
conformational states coexisting in a dynamic equilibrium, including the typical Y-shaped
conformation and a self-associated λ-conformation where one Fab is directed towards the
Fc-portion of the mAb. Further, Blech et al. reported the x-ray crystal structure off
the intact, full-length IgG4 mAb in its λ-conformation (PDB=6GFE) [192]. Based on
the two published structure templates 5DK3 and 6GFE, it was possible to consider the
conformational diversity of IgG4 mAbs during homology modeling and the subsequent
descriptor calculation. Exemplary homology models of a IgG4 in Y- and λ-conformations
are depicted in Fig. 3.2 (D) and (E), respectively. Global and local descriptors were derived
from homology models of the 21 full-length antibodies and used as independent variables x
in the subsequent GPR QSPR modeling workflow. Global descriptors, such as the surface
net charge, of identical IgG4 mAbs in different conformations changed significantly due to
the reduced solvent accessible surface area (SASA) of the self-associated λ-conformation
compared to the open Y-conformation. In contrast, local descriptors associated with the
variable region of individual IgG4 mAbs were not affected by conformational diversity.
Due to the lower protein net charge of λ-conformations and lower measured νi parameters
of the early eluting peak, we hypothesize that the split-peak phenomenon is caused by
the reversible, conformational diversity of IgG4 mAbs as reported by Blech et al. [192].
Thus, the early eluting peak represents the IgG4 λ-conformation and the second peak
the Y-conformation. To build a predictive QSPR model, SDM parameters y of the first
peak were combined with protein descriptors x of the λ-conformation and SDM isotherm
parameters of the second peak were combined with descriptors of the Y-conformation.
The hypothesis was tested in the second result section, by an external validation including
the prediction of an unknown IgG4 split-peak chromatogram.
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A B

C

D E

Figure 3.2: Template structures for homology modeling of full-length IgG1, IgG4 mAbs
and bsAbs. (A) displays the IgG1 mAb template, a modified version of the PDB entry
1HZH [194]. 1HZH was also used as source structure for both bsAbs formats, the ap-
pended IgG(H)-scFv (B) and the knob-in-hole format (C). Two discrete conformations
were considered for the homology modeling of IgG4 mAbs. (D) = IgG4 Y-conformation
(PDB=5DK3) [195]. (E) = IgG4 λ-conformation (PDB=6GFE) [192]
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The QSPR models depicted in Fig. 3.3 represent the central building block of the multiscale
modeling pipeline. Gaussian process regression was selected as machine learning algorithm
that maps between the descriptor vector x and the macroscopic adsorption isotherm pa-
rameters y. The two-stage feature selection aimed to avoid over-determination of the GPR
model. Results of the feature elimination can give deeper insights into binding orienta-
tion and dependencies of SDM isotherm parameters on protein structure descriptors. The
initial filtering method removed descriptors from the normalized feature vector x show-
ing < 0.01 variance across the training data set. Subsequently, assessment of the mutual
information between descriptors x and isotherm parameters y in the training set resulted
in the elimination of 97% of the 1065 descriptors. Global descriptors, such as the net
charge, the hydrodynamic radius, and the total aromatic SASA, shared the highest mutual
information with the characteristic charge parameter νi. The thermodynamic equilibrium
constant keq,i shared the highest mutual information with global as well as local, charge
and aggregation propensity estimating descriptors associated with the framework region
(FR) and the complementarity-determining regions (CDR). 15-20 descriptors remained
for the second level of feature selection based on RFE. Fig. 3.3 (A) and (B) depicts the
protein structural descriptors selected during supervised feature elimination. During each
iteration of RFE, a multivariate GPR was trained, cross-validated, and the feature with
the lowest permutation importance was removed until the optimal number of features was
reached. Based on the MAE of the GPR cross-validation, n=5 descriptors was determined
as optimal number of features to train the final GPR models for characteristic charge
and equilibrium constant. When comparing the changes of cross-validation MAEs of both
SDM isotherm parameters in Fig. 3.3 (A) and (B), the model prediction for the equilibrium
constant is 50% less accurate compared to the characteristic charge. Further, Fig. 3.3 (B)
indicates that the predictive power of the GPR model for keq,i significantly decreases when
removing descriptors estimating the sum positive surface patch energy in the heavy-chain
CDRs and the FR atomic contact energy descriptor. Based on the selected descriptors,
it can be assumed that the variable region of mAbs is involved in protein adsorption and
"Fab-first" is the preferred binding orientation.

The final predictions of GPR models with a 20% randomly selected test set are plotted in
Fig. 3.3 (C) and (D). Comparably high correlation coefficients of R2 > 0.99 as well as the
uniformly dispersed residuals of training and testing data, indicate an adequate accuracy
of the model predictions for both SDM isotherm parameters. The comparably wide 95%
confidence intervals in the testing set of keq,i suggest a higher prediction uncertainty of the
equilibrium constant compared to the characteristic charge parameter. Further, the keq,i
test predictions with the furthest distance to the ideal prediction line also had the widest
95% CIs. This indicates that the GPR model could successfully estimate the posterior
probability distribution of y(x) based on the underlying data that was used for model
training. The higher model uncertainty of keq,i compared to νi could be a consequence
of inaccurate predictions of CDR loop conformations during homology modeling and sub-
sequent calculation of local descriptors. The QSPR model for the characteristic charge
parameter was exclusively trained with global protein descriptors, which are less depen-
dent on the challenging prediction of hyper-flexible CDR loop structures. Recent advances
in protein structure prediction based on deep neural networks [54] could possibly improve
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homology models for mAb CDRs and resulting multiscale model predictions. However,
the predictive power of the QSPR models in Fig. 3.3 is sufficient for simulation of elution
profiles, as shown in the following section.

A B

C D

νi

ν i

keq,i

k eq
,i

νi

ν i

k eq
,i

Figure 3.3: Recursive feature elimination and QSPR model for prediction of SDM pa-
rameters of mAbs on POROS XS at pH 5.00, 5.25, and 5.50. (A) and (B) show the results
of feature selection for characteristic charge νi and equilibrium constant keq,i respectively.
The corresponding QSPR models for the prediction of νi (C) and keq,i (D) of a randomly
selected test set representing 20% of the overall data.
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The ability to calculate probability distributions on model predictions is a main benefit
of Gaussian process regression as machine learning method for QSPR modeling. This
is especially relevant for multiscale modeling tasks as presented in this work, where the
propagation of model uncertainty from homology to mechanistic modeling could affect
prediction accuracy. Feature selection and QSPR modeling revealed quantitative relation-
ships between the structure of therapeutic antibodies and their macroscopic adsoprtion
model parameters. These relationships were also suggested by a previous work of our
group, where single amino acid substitution in the CDR of mAbs had an significant im-
pact on keq,i parameters [185]. The three IgG1 mAbs with single amino acid substitution
were also included in the present data set of 21 mAbs, increasing the predictive power of
the QSPR model for keq,i. It is important to consider that the random sampling method
applied in Fig. 3.3 potentially included identical molecules in training and testing data
sets, but at differing process conditions or fragmentation states. Therefore, the trained
GPR model in Fig. 3.3 could be used to simulate process behavior of a mAb at an un-
known mobile phase pH in the range of pH 5.00 to pH 5.50, if an initial experiment at a
different pH value was already performed. The following chapter explores the possibility
to predict entire chromatograms of a new antibody candidate without conducting initial
experiment during early-stage process development.

3.3.2 External Validation and Prediction of Chromatograms

For external validation, all data points associated with a specific mAb product must be
removed from the training and cross-validation data set. Consequently, for one IgG1 and
one IgG4 mAb, all model parameters at varying pH values, fragmentation states, and
conformations were removed from the training data set. Fig. 3.4 shows the QSPR mod-
els for the prediction of νi and keq,i with individually selected testing data for the IgG1
(Fig. 3.4 A and B) and the IgG4 mAb (Fig. 3.4 C and D). Similar to the randomly sampled
QSPR model, the QSPR models in Fig. 3.4 enabled an acceptable prediction accuracy for
both isotherm parameters. However, the wider CIs of equilibrium constants in Fig. 3.4
compared to the ones in Fig. 3.3 indicate that predictions for unknown mAbs are more
challenging compared to isotherm parameters of mAbs that were already investigated at
differing pH conditions, conformations, or fragmentation states. The ultimate goal of
the multiscale modeling workflow is the simulation of elution profiles. Fig. 3.5 compares
measured CEX chromatgrams with simulations based on the chromatography model built
with SDM parameters predicted for the IgG1 and IgG4 mAbs shown in Fig. 3.4. For
both, IgG1 and IgG4 split-peak, accurate predictions of UV curves were achieved. Two
protein species were considered for simulation of the IgG4 elution profile in Fig. 3.5 (B).
The first peak represents the self-associated IgG4 λ-conformation that showed a reduced
theoretical surface charge compared to the Y-conformation that elutes in the second peak.
The dynamic equilibrium between λ- and Y-conformation discovered by Blech et al. [192]
could explain why the split-peak phenomenon is reproducible when collecting the peaks
separately and repeating the experiment [186, 187]. Due to the semi-mechanistic nature of
the SDM isotherm, model predictions are not limited to mobile phase conditions applied
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in wet-lab experiments shown in Fig. 3.5. Hence, the model could be used to test varying
gradient slopes, pH values, or step elution salt concentrations to define an initial process
design space before protein material is available. In contrast to the mechanistic chromatog-
raphy model, the GPR-based QSPR model is based on empirical relationships between
protein descriptors x and macroscopic isotherm parameters y. Therefore, extrapolations
towards molecule formats not included in the training set are not feasible. Continuous
improvement of QSPR predictions can be achieved by retraining the GPR model when a
new biological entity enters the developmental phase.

Coupling of homology modeling, QSPRs, and mechanistic modeling led from the amino
acid sequence to an initial mechanistic model allowing prediction of elution profiles at vary-
ing mobile phase conditions in gradient and step elution mode. In 2005, Ladiwala et al.
[31] introduced the first multiscale QSPR model enabling the prediction of chromatograms
based on descriptors derived from published crystal structures. To the best of our knowl-
edge, the present work is the first to predict macroscopic isotherm parameters based on
protein descriptors derived from mAb homology models. This is crucial for applications
in biopharmaceutical industry, since experimentally determined x-ray crystal structures of
full-length molecules are not available during product development. Currently the QSPR
model is limited to the linear region of the SMA isotherm. An extension towards the
non-linear region would demand additional wet-lab experiments at higher loading den-
sity. Nonetheless, νi and keq,i are typically estimated via multiple time-consuming LGE
experiments at low loading densities, which are not performed during traditional process
development workflows. A non-linear SMA isotherm model could be achieved by combin-
ing the presented QSPR model with inverse model calibration using a single experiment
at higher loading densities [167]. Additionally, fraction analysis with off-line analytical
measurements could be used to include charge- and size-variants of the mAb.

58



3.3 Results & Discussion
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Figure 3.4: External validation of the QSPR model for one IgG1 and one Ig4 mAb. The
upper plots show the QSPR models for the prediction of characteristic charge νi (A) and
equilibrium constant keq,i (B) of a full-length IgG1 mAb and corresponding Fab at pH 5.00,
5.25, and 5.50. The identical method was applied in (C) and (D) showing QSPR models
for prediction of SDM parameters of a full-length IgG4 mAb in Y- and λ-conformation
and corresponding Fab.
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Figure 3.5: Measured and predicted chromatograms of IgG1 (A) and IgG4 (B) mAb on
POROS XS at pH 5.25, 10 CV gradient slope, 200 cm/h linear flow rate. The correspond-
ing SDM isotherm parameters for the model prediction are shown in Fig 3.4. Two protein
species representing the Y-conformation and the λ-conformation were used to simulate the
IgG4 split peak phenomenon.
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3.4 Conclusion

The present study introduced a multiscale model leading from the amino acid sequence of
a therapeutic antibody to the mechanistic model of its preparative CEX chromatography
process. The data set included IgG1 mAbs, IgG4 mAbs, FAbs, and bispecific antibody
formats at different pH conditions. Two molecules, one IgG1 and one IgG4, were individ-
ually removed from the training data set for external validation. The GPR-based QSPR
model predicted the SDM isotherm parameters of the test set molecules with an accuracy
that enabled the simulation of CEX chromatograms. Good agreement between simulated
and measured chromatograms was observed for both test molecules. Noteworthy, the
multiscale model could predict complex split-peak elution curves of the IgG4 mAb by
considering two discrete conformations coexisting in a dynamic equilibrium. The closed
λ-conformation of the IgG4 mAb had a reduced positive surface charge and characteristic
charge νi compared to the Y-conformation leading to an early elution during gradient
elution experiments. The two-staged feature selection method via regression-based filter-
ing and recursive feature elimination effectively avoided over-fitting. Further, the final
protein descriptors selected for GPR modeling gave insights into relationships between
antibody structure and macroscopic adsorption isotherm parameters. QSPR models for
the prediction of the thermodynamic equilibrium constant were highly dependent on local
charge-specific descriptors in the variable region of the mAb.

The gained knowledge on antibody adsorption to CEX resins could be used to select mAb
candidates that integrate into the DSP platform. During early-stage process development,
the multiscale model allows simulation of different process conditions and elution modes
before protein material is available. Thus, early in silico optimization based on mechanistic
modeling coupled with QSPR modeling could reduce the experimental burden and shorten
the time from antibody drug discovery to start of phase 1 clinical investigations. GPR
was identified as suitable machine learning method for prediction of macroscopic model
parameters. In general, the multiscale modeling method could be extended to other target
properties relevant for CMC development. Adding parameters defining the non-linear
region of the SMA isotherm, e.g. steric shielding, could further increase the relevance of
the applied multiscale modeling workflow for chromatography modeling. If sufficient data
is available, the model could further be used for prediction of mAb charge heterogeneity,
aggregation propensity, or process behavior in other unit operations of the DSP platform.
If the fundamental relationships between antibody structure and process behavior are
uncovered across the entire DSP platform, wet-lab experiment for CMC development
could be reduced to a minimum.
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Abstract

Mechanistic modeling of chromatography processes is one of the most promising tech-
niques for the digitalization of biopharmaceutical process development. Possible applica-
tions of chromatography models range from in silico process optimization in early phase
development to in silico root cause investigation during manufacturing. Nonetheless, the
cumbersome and complex model calibration still decelerates the implementation of mecha-
nistic modeling in industry. Therefore, the industry demands model calibration strategies
that ensure adequate model certainty in a limited amount of time. This study introduces
a directed and straightforward approach for the calibration of pH-dependent, multicom-
ponent steric mass-action (SMA) isotherm models for industrial applications. In the case
investigated, the method was applied to a monoclonal antibody (mAb) polishing step in-
cluding four protein species. The developed strategy combined well-established theories of
preparative chromatography (e.g. Yamamoto method) and allowed a systematic reduction
of unknown model parameters to 7 from initially 32. Model uncertainty was reduced by
designing two representative calibration experiments for the inverse estimation of remain-
ing model parameters. Dedicated experiments with aggregate-enriched load material lead
to a significant reduction of model uncertainty for the estimates of this low-concentrated
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product related impurity. The model was validated beyond the operating ranges of the
final unit-operation, enabling its application to late-stage downstream process develop-
ment. With the proposed model calibration strategy, a systematic experimental design is
provided, calibration effort is strongly reduced and local minima are avoided.

4.1 Introduction

Preparative chromatography is essential for the downstream processing (DSP) of bio-
pharmaceuticals. Conventional purification platforms for monoclonal antibodies (mAb)
contain two to three chromatographic unit operations [6, 7]. In the light of the Quality by
Design (QbD) guidelines [24], high product quality has to be ensured by understanding
the complex elution behavior observed in nonlinear chromatography [164]. The physical
understanding provided by mechanistic models meets this demand for an in-depth process
knowledge. During the last years, academia and industry showed great effort to realize an
in silico DSP development based on mechanistic chromatography modeling. Numerous
publications presented successful applications of mechanistic models for process optimiza-
tion,[16, 98, 114, 163] process characterization [101, 162, 206], root-cause investigation
[100], and for the development of process control strategies [207]. Nonetheless, the indus-
try is still cautious with the implementation of mechanistic modeling in DSP development.
Technically, the bottleneck is the time-consuming and complex model calibration.

Model calibration can be achieved using miniaturized high-throughput[208–210] or lab-
scale experiments. For the stoichiometric displacement model (SDM), linear gradient
elution (LGE) experiments under diluted load conditions enable the estimation of the
proteins characteristic charge and the equilibrium constant [74, 117, 173, 211, 212]. Rüdt
et al. [166] introduced the so-called combined Yamamoto method for the simultaneous
estimation of isotherm and mass transfer parameters. Wang et al. [190] proposed to
estimate the SDM parameters using artificial neural networks. Sequence and structural
information allow the calculation of SDM parameters for model proteins [31] and mAb [74].
Regarding nonlinear binding conditions, the shielding parameter of the steric mass-action
(SMA) isotherm can be determined by frontal analysis using the correlation developed by
Osberghaus et al. [171]. A successful application of the techniques mentioned above for
multi-component systems in the nonlinear region of the adsorption isotherm has –to the
best of our knowledge- not yet been published.

In recent publications and industrial applications, the estimation of model parameters us-
ing the inverse method is the preferred practice [114, 167, 171], which is based on fitting
the model output to experimental data. This iterative procedure enables the simultaneous
estimation of multiple parameters without prior knowledge on the parameter value and
is not limited to linear load conditions. Additionally, the computational effort and the
success of the inverse model calibration depends on the number of model parameters to
be estimated, the experiments chosen, and the optimization algorithm. Industry-relevant
chromatography models, being able to describe pH-dependent and multicomponent sys-
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tems, can lead to ill-posed estimation problems [213, 214] with dozens of model parameters
unknown. Their simultaneous estimation by curve fitting can result in local minima and
unreasonable parameter estimates. Briskot and coworkers were aware of this problem and
proposed to use principles of Bayesian statistics for model calibration based on a small set
of experiments with limited variation [165, 214]. Recently, Rischawy et al. [163] introduced
principles of good modeling practice (GMoP) for industrial ion-exchange chromatography.
The GMoP approach mitigated the risks related to the inverse model calibration by pa-
rameter subset selection, evaluation of confidence intervals, visual sensitivity analysis, and
model validation across multiple scales.

In the presented work, a novel straightforward model calibration strategy was proposed
for the calibration of multicomponent SMA models within industrial operating ranges.
A case study showed this strategy circumventing the pitfalls of an entirely curve fitting
based model calibration method. A representative lab-scale data set consisting of multiple
linear gradient elution experiments (LGE) in the linear region and two experiments in
the nonlinear region of the adsorption isotherm was used to calibrate a mechanistic chro-
matography model consisting of a lumped rate model and a pH-dependent SMA isotherm.
The application of the inverse method was kept to a minimum and enabled the parameter
estimation for the mAb subspecies and the parameters in the nonlinear region of the SMA
isotherm. Dedicated experiments for low-concentrated product related impurities further
reduced model uncertainty and ensured the model’s predictive power. Comprehensive val-
idation of the calibrated model was achieved using twelve experiments beyond calibration
space. The present study aims to streamline the existing calibration techniques towards a
standardized method for building CEX chromatography models with a predictive power
fulfilling the requirements of advanced applications in biopharmaceutical process develop-
ment.

4.2 Model Design

4.2.1 Mathematical Model

The transport dispersive model is a commonly applied column model for the simulation of
preparative ion exchange chromatography [99, 116, 167, 190]. The system is of convection
diffusion reaction type and describes the macroscopic transport of component i through
the column. The change of the concentration ci(x, t) described in Eq. 4.1 depends on the
convective mass transport in the interstitial volume of the packed bed with the superficial
velocity u. Dax denotes the axial dispersion coefficient and describes the peak broadening
effect caused by molecular diffusion in the interstitial volume. The interfacial mass transfer
between the interstitial volume and the particle pores depends on the column porosity εcol,
the component specific effective mass transfer coefficient keff,i and the particle radius rp.
In the lumped rate model, film diffusion effects in the particle boundary layer and the pore
diffusion in the particle phase are combined to keff,i. Eq. 4.2 describes the accumulation
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of mass in the pore volume ci and the stationary phase qi. The model is complemented
with the Danckwerts boundary conditions in Eqs. 4.3 and 4.4.

∂ci(x, t)

∂t
= − u

εcol

∂ci(x, t)

∂x
+Dax

∂2ci(x, t)

∂x2

− 1− εcol
εcol

(
3

rp
keff,i (ci(x, t)− cp,i(x, t))

) (4.1)

∂cp,i(x, t)

∂t
=

3

rp

keff,i
εp

(ci(x, t)− cp,i(x, t))−
1− εp
εp

∂qi(x, t)

∂t
(4.2)

∂ci
∂x

(0, t) =
u(t)

εcolDax
(ci(0, t)− cin,i(t)) (4.3)

∂ci
∂x

(L, t) = 0 (4.4)

The protein adsorption to the resin is modeled with the SMA isotherm [117]. Eq. 4.5
shows the kinetic form of the SMA isotherm modified by Hahn et al. [167], where qi and
cp,i denote the concentration in the solid and liquid phase of the particle, respectively. The
SMA isotherm formulates the equilibrium binding behavior of the protein in consideration
of the counter-ion concentration in the pore phase cs and the ionic capacity of the resin λ.
Adsorption behavior depends on protein specific parameters. νi accounts for the proteins
characteristic charge interacting with the resin. The steric shielding σi considers the
number of functional groups on the resin blocked by the protein due to steric hindrance.
Adsorption and desorption rates are considered by the constants keq,i = kads,i/kdes,i and
kkin,i = 1/kdes,i, respectively. In this formulation, keq,i has a strong influence on the
retention time of the elution peak, while kkin,i affects the peak width [167].

kkin,i
∂qi
∂t

= keq,i(pH)

Λ−
k∑
j=1

(νj(pH) + σj) qj

νi(pH)

cp,i − qicνi(pH)
s (4.5)

qsalt = Λ−
k∑
j=1

νj(pH)qj (4.6)

66



4.2 Model Design

For industrial application, the introduction of pH-dependent isotherm parameters is es-
sential. pH-dependencies within the SMA isotherm framework can be approximated em-
pirically [115] or mechanistically [127–129]. In this study, the pH-dependencies of the
characteristic charge νi and the equilibrium constant keq,i were approximated with the
regression models developed by Hunt et al. [115], Eqs. 4.7 and 4.8. The regression models
are assumed to be sufficiently accurate for the process relevant pH range of pH 5.8 ± 0.3
used in this study.

keq,i(pH) = keq0,ie
keq1,ipH+keq2,ipH

2
, (4.7)

νi(pH) = ν0,i + pHν1,i, (4.8)

4.2.2 Estimation of Model Parameters

Figure 4.1 shows the model calibration strategy introduced in this work leading to a mul-
ticomponent, pH-dependent SMA chromatography model. Following the GMoP concept
[163], the model calibration experiments were designed according to the requirements of
future applications. Process parameters, such as mobile phase pH, salt concentration, and
loading density were selected based on the final unit operation enabling the model to be
applied to in silico process characterization studies in late-stage DSP development. In
the first step, fundamental knowledge on preparative chromatography was used for the
a priori estimation of the effective mass transfer parameter keff,i, and the linear SMA
isotherm parameters νi and keq,i. For calibration experiments used for inverse parameter
estimation, fractions were collected with a volume of 0.5 CV. It is important to notice,
that non-ideal elution behavior [215] could be encountered during high load density exper-
iments depending on the protein and the selected chromatography resin. The presented
calibration approach leads to an early identification of unusual peak shapes enabling model
discrimination. However, model complexity has to be selected based on the requirements
of the following applications. The model’s predictive power for yield, elution volume and
purity are the key requirements for performing in silico process characterization. There-
fore, peak shapes above the 3000 mAU measurement limit were neglected during inverse
parameter estimation. Estimation of HMW isotherm parameters was facilitated using an
aggregate enriched load material combined with the Yamamoto method. This method
circumvented model uncertainty arising from the inverse estimation of very low concen-
trated product related impurities (<0.4%). For antibody products with a higher HMW
content in the load material, or a more sensitive HMW quantification method, it could
be sufficient to estimate HMW parameters using the inverse method. In the last step,
the pH-dependency of νi and keq,i of the monomer and HMW species was derived from
LGEs under load conditions in the linear range of the adsorption isotherm. In the inves-
tigated case study, the pH-dependency of all monomeric charge variants was calculated
based on Yamamoto correlations of the single monomer species at two pH values around
the set-point pH 5.8.
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Multicomponent
SMA model at fixed pH

SDM for monomer 
and HMW species

Yamamoto correlation at 
set-point pH

𝑣௜ & 𝑘௘௤,௜

Three LGEs per species

Inverse estimation of the 
remaining parameters

𝑘௞௜௡,௜ & 𝜎௜

Two experiments with 
fraction analysis

Yamamoto correlations at 
pH 5.8 ± 0.3

𝑣௜ 𝑝𝐻  & 𝑘௘௤,௜(𝑝𝐻)

Three LGEs per pH and 
species

Method:

Obtained parameters:  

Number of experiments:

pH-dependent SMA model

Figure 4.1: Calibration strategy for multicomponent, pH-dependent SMA chromatogra-
phy models.

The Yamamoto correlation allows the estimation of νi and keq,i using a set of LGEs at
different salt gradient slopes. Eq. 4.9 shows the linear relationship between the normalized
gradient slope GH and the elution salt concentration cs,i at the peak maximum of com-
ponent i in the linear range of the adsorption isotherm [74, 166, 171–173]. The UV signal
at 280 nm wavelength was approximated to an exponentially modified Gauss function for
the determination of the peak maxima and the corresponding elution salt concentration.
Eqs. 4.10 and 4.11 lead to the calculation of the normalized gradient slope GH where
cs,initial is the salt concentration at the gradient begin, cs,final is the salt concentration at
the gradient end and VG is the gradient length in mL.

log(GH) = (νi + 1)log(cs,i)− log (keq,iΛ
νi(νi + 1)) (4.9)

g =
cs,final − cs,initial

VG
(4.10)

GH = g(Vcol − εtVcol) (4.11)

The nonlinear isotherm parameters kkin,i, σi were estimated using the inverse method im-
plemented in the ChromX software environment by Hahn et al. [114, 167]. Linear isotherm
parameters of the charge isoforms were estimated inversely with boundaries derived from
the Yamamoto correlation. The estimation of an unknown parameter set p̄ solves the least
square optimization problem

min
p̄

∑
j

m(tj)−
∑
i≥1

ci (L, tj ; p̄) ai

2

(4.12)
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where m(tj) is the UV measurement of the chromatogram at point tj , given in mAU.
The molar or mass concentration ci(L, tj) at the outlet of the column with the length L
is transformed into absorbance units with the scaling factor ai. The scaling factor was
calculated according to Beer’s law under consideration of the extinction factor and UV
cell path length. Parameter uncertainty and confidence ellipsoids were calculated based
on the covariance matrix according to Rischawy et al. [163].

4.3 Material and Methods

4.3.1 Resin, Buffers and Protein

The mAb polishing step was performed on the strong cation exchanger POROS 50 HS
(Thermo Fisher Scientific, Waltham, USA). Tracer injections with blue dextran and 1
M sodium chloride (both Sigma-Aldrich, St. Louis, USA) enabled the calculation of the
interstitial volume and total liquid volume, respectively. The ionic capacity λ was de-
termined by acid-base-titration [114, 126]. Tracer injections and acid-base-titration were
conducted as triplicates. All column specific parameters and the equations used for their
calculation are listed in Table 4.2. Chemicals used in this study were of pharmaceutical
grade. All buffers were prepared with deionized water and filtered with a 0.2 µm sterile
filter. Table 4.1 shows pH values and counter-ion concentrations of the buffers and load
materials used for the calibration (C1-C8) and validation experiments (V1-V12). For col-
umn regeneration and storage, 1 M and 0.1 M sodium hydroxide were used, respectively.
The model protein (Boehringer Ingelheim GmbH & Co. KG, Biberach, Germany) is an
IgG1 monoclonal antibody expressed in stably transfected Chinese hamster ovary (CHO).
mAb1 was captured via Protein A affinity chromatography. Titration of the acidic Pro-
tein A eluate to pH 5.5, pH 5.8 or pH 6.1 using 1 M acidic acid resulted in the CEX load
material. For the calibration experiments C6-C8, a load material with enriched aggregate
content was used.
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4.4 Results

4.3.2 Instruments and Software

Calibration and validation experiments were performed on the preparative chromatogra-
phy system ÄKTA Avant 25. The system was controlled via Unicorn 7 (both GE Health-
care, Uppsala, Sweden). The NanoDropTM 2000c (Thermo Fisher Scientific, Waltham,
USA) spectrophotometer was used for offline UV measurements. Analytical high perfor-
mance size exclusion chromatography (HPSEC) and strong cation exchange chromatog-
raphy (HPSCX) were carried out at the high performance liquid chromatography system
Waters Alliance 2695. Analytical chromatograms were integrated in the Empower Soft-
ware (all Waters, Eschborn, Germany). All computational work was performed on a cus-
tom workstation (Lenovo, Stuttgart, Germany) with an Intel® Xeon® Platinum 8160T
CPU (48 logical threads) and 128 GB of installed memory (RAM). The chromatography
simulation software ChromX (GoSilico GmbH, Karlsruhe, Germany) was used for inverse
parameter estimation and process simulation.

4.3.3 Analytical Methods

HPSEC measurements of the collected fractions allowed the quantification of HMW and
monomer species. Protein samples were injected on the 30 cm TSKgel® G3000SWXL
column (Tosoh Bioscience, Griesheim, Germany). The mobile phase of the isocratic sep-
aration was a 200 mM L-Arginin,100 mM sodium phosphate buffer at pH 6.8. Charge
variants were quantified via HPSCX measurements. Fractions were analyzed on a 25 cm
ProPacTM SCX-10 column (Waters, Eschborn, Germany). The charge isoforms were sep-
arated in a linear salt gradient from 0 mM to 100 mM KCl. The heterogenic charge
pattern was divided in one acidic peak group (APG), one basic peak group (BPG) and
the main peak (Main). In order to stay consistent with the mass balance for all simulated
protein species, the relative percentage of the charge isoforms was calculated based on the
monomer concentration obtained from HPSEC analysis.

4.4 Results

4.4.1 System and Column Characterization

Results of the system and column characterization experiments are listed in Table 4.2.
System dead volumes were determined by tracer injections with an empty column with
0 mm bed height. Consequently, the dead volume of the column-inlet and –outlet tubing
was considered in the calculation of the column porosities and the ionic capacity. The
NaCl tracer experiments allowed the calculation of the axial dispersion coefficient using
the equation shown in Table 4.2 [77, 115, 175], where s denotes for the variance of the
conductivity peak. This correlation is based on the assumption that pore diffusion is not
limiting and the peak broadening is primarily caused by axial dispersion [115, 163].
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Table 4.2: System and column specific parameters.

Parameter Symbol Value Unit Equation Reference

Length L 157 mm

Diameter d 10 mm

Column Volume V 12.33 mL

Bead radius rp 25 µm

Interstitial porosity εcol 0.41 εcol = Vint
V [114]

Total porosity εt 0.73 εt = Vt
V [114]

Particle porosity εp 0.53 εp = Vt−Vint
V−Vint

[114]

Axial dispersion Dax 0.17 mm2/s Dax =
uLs2NaCl

(2Vt)2
[115]

Ionic capacity Λ 0.292 M Λ = cNaOHVNaOH
V (1−εt) [114, 161]

4.4.2 Model Calibration at Set Point pH

A LGE with a process relevant load density (C1), one step elution experiment (C2),
and LGEs under load conditions in the linear range of the adsorption isotherm (C4, C7)
were selected for the model calibration of the transport-dispersive SMA model at pH 5.8.
All isotherm parameters at pH 5.8 are listed in Table 4.3. The effective mass transfer
parameters keff,i were calculated based on the penetration correlation, under consideration
of the molecular weight [77, 216]. Identical hydrodynamic radii of the charge isoforms
lead to identical mass transfer rates of keff,APG,Main,BPG = 0.00147 mm/s. A molecular
weight of 300 kDa for a dimeric HMW species was assumed resulting in keff,HMW =
0.00117 mm/s. The resulting simulations allowed the accurate prediction of peak widths
and heights for the LGEs C4 and C7 in the linear range of the adsorption isotherm
(Chromatograms not shown). Mass transfer for the small salt ion was assumed to be not
limiting. Therefore, keff,salt was approximated with rp/3 resulting in 0.00833 mm/s.

The estimation of νi and keq,i started with the lumped monomer and the HMW species
using the LGE experiments at pH 5.8 (C4, C7) shown in Figure 4.4. The load material
applied in C4 was representative for the process feed material, containing 0.4% HMW.
Thus, C4 allowed the estimation of νmono and keq,mono while the HMW species remained
undetectable in the UV signal of the chromatograms. The parameters νi and keq,i of the
charge isoforms were estimated using the inverse method. νmono and keq,mono allowed the
definition of physical plausible boundary conditions for the inverse estimation problem,
±50% of νmono and log10(keq,mono). Parameters defining the nonlinear region of the SMA
isotherm, kkin,i and σi of the three charge isoforms, were estimated without initial guess.
The inverse estimation was performed using the LGE at 45 g/L (C1) and step elution at
10 g/L load density (C1) shown in in Figure 4.2. The simulated sum signal in Figure 4.2
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matched with the UV measurement curve. Further, the model could describe the distinct
displacement effects of the charge isoforms observed in the LGE at 45 g/L load density.
The simulation of the step elution experiment described the elution order of weak to strong
interacting species (APG<Main<BPG) resulting in the tailing shape of the elution peak.

Table 4.3: SMA isotherm parameters at pH 5.8 and confidence intervals in %.
Parameter APG Main BPG HMW
νi[−] 7.38 ± 0.3% 7.50 ± 0.1% 7.70 ± 4.9% 11.08 ± 0.7%
keq,i[−] 1.45 ± 0.7% 1.41 ± 0.3% 1.69 ± 10.7% 1.86 ± 0.3%
kkin,i[sM

ν ] 8.08E-06 ± 17.7% 1.00E-04 ± 4.3% 5.00E-04 ± 74.1% 3.4E-05 ± 3.5%
σi[−] 128.6 ± 1.8% 56.3 ± 2.6% 107.1 ± 6.0% 0

Figure 4.2: Model calibration of the SMA model at pH 5.8. Dashed lines show measure-
ment data. C1: LGE at 45 g/L load density. The simulation exceeds the saturated UV
measurement signal. C2: step elution at 10 g/L load density. The absolute concentration
of the charge variants (scatter plot) is shown in mAU . Both experiments were used for
the inverse estimation of model parameters. Process conditions are listed in Table 4.1.

Additional LGE experiments were performed for the model calibration for the low con-
centrated HMW impurities. Initial HMW parameters were estimated by fitting the model
output to the fraction data of experiments C1 and C2. The initial parameters were able to
describe the calibration experiments. However, large confidence intervals of the HMW es-
timates resulted in unreliable predictions of the product purity for validation experiments.
Consequently, additional calibration experiments with HMW enriched load material were
performed (C7). In order to obtain representative HMW load material, containing ag-
gregates with physicochemical properties comparable to the normal process feed, a HMW
enrichment experiment was performed on the CEX column also used for model calibra-
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tion. The final experiment consisted of two consecutive salt steps for the elution of a first
monomer fraction and a HMW enriched fraction. The obtained load material was applied
for the LGEs C6-C8. Due to the elevated HMW content of 39.2%, a separate HMW peak
could be detected in the UV trace of the LGE chromatograms, allowing the calculation of
νHMW and keq,HMW using the Yamamoto correlation. kkin,HMW was estimated inversely.
Shielding effects were neglected for the HMW species (σHMW = 0), due to the comparably
low load density.

Figure 4.3 shows the confidence ellipsoids of the HMW estimates before and after perform-
ing LGE experiments with HMW enriched material (C7). All dimensions of the confidence
space could be reduced significantly by conducting the dedicated experiments for HMW pa-
rameter estimation. Figure 4.3 also shows a reduction of the negative correlation between
νHMW and keq,HMW after determining these parameters using the Yamamoto method.

Figure 4.3: Ellipsoids visualizing the 95% confidence space for HMW isotherm param-
eters. Confidence space before (grey) and after (red) conducting calibration experiments
with HMW enriched load material. (A) Aerial view, (B) x-y view.

4.4.3 Estimation of pH-dependent Model Parameters

For the introduction of the pH-dependency to the SMA isotherm, three additional protein
specific parameters had to be estimated for each protein species. The Yamamoto method
allowed the estimation of the pH-dependent model parameters for the monomer and HMW
species (Table 4.4). The pH range of pH 5.8 ±0.3 covers the parameter space investigated
in future robustness analysis. LGEs with altering slopes and load material were conducted
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at pH 5.5, 5.8 and 6.1 (C3-C8). Figure 4.4 (A) shows the resulting Yamamoto correlations
for monomer and HMW with R2 values > 0.99. The characteristic charge νi and the
equilibrium constant keq,i of the lumped monomer and HMW species were derived from the
slope and intercept of the Yamamoto correlation using the equations given in chapter 2.2.
νi and keq,i are plotted in Figure 4.4 (B) and (C). Within the investigated pH range, the
assumed linear pH-dependency for the characteristic charge could be verified. The slopes
of the linear approximations differed between the monomer and HMW species. For the
equilibrium constant, the empirical pH model was able to describe the keq,i values obtained
from the Yamamoto method. Due to the high structural similarity between charge variants,
the slope parameters ν1,monomer, keq,1,monomer and keq,2,monomer were assumed to be equal
for APG, Main and BPG species. Intercepts ν1,i and keq,0,i of the charge variants were
taken from the model at set point pH 5.8. This method was developed by Rischawy et al.
[163] and ensures the model to be unbiased at set point pH by forcing the pH-dependent
equation to cross the initial parameter values for charge and equilibrium.
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Figure 4.4: Calibration of the pH-dependent CEX model. Yamamoto correlations (A)
for LGE experiments with 10 CV, 20 CV and 30 CV gradient length at pH 5.5, 5.8 and
6.1, for monomer (C3-C5) and HMW (C6-C8). Process conditions are listed in Table 4.1.
pH-dependencies of the characteristic charge (B) and equilibrium constant (C) for the
monomer and HMW species were obtained from the Yamamoto correlation
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Table 4.4: Protein specific model parameters for the pH-dependent SMA model. pH-
dependent parameters were determined from Figure 4.4 and Eqs. 4.7, 4.8, and 4.9. For
a clear representation of model parameters at pH 5.8, the pH was normalized to zero.
pH 5.5 = -0.3, pH 5.8 = 0, pH 6.1 = 0.3.

Parameter APG Main BPG HMW
νpH5.8,i[−] 7.38 7.50 7.70 10.97
ν1,i[−] -1.44 -1.44 -1.44 -6.77
keq,pH5.8,i[−] 1.45 1.41 1.69 1.86
keq,1,i[−] -4.26 -4.26 -4.26 -5.39
keq,2,i[−] 2.19 2.19 2.19 5.59

4.4.4 Model Validation

In the light of the GMoP concept introduced by Rischawy et al. [163], a thorough model
validation was performed using twelve additional experiments (V1-V12). Process condi-
tions for model validation were selected beyond the range of future process characteriza-
tion studies. Model validation results are shown in Figure 4.5. The validation set includes
LGEs and step elution experiments at pH 5.5, 5.8, and 6.1 under low (1 g/L), moderate
(10 g/L) and high load (45 g/L) conditions. Simulated elution and regeneration peaks
during the step elution and high load LGE experiments exceed the measurement signal,
due to the saturated UV sensor at 3000 mAU . The measurement signal below 3000 mAU
revealed that all experiments at pH 5.8 (V1-V6) were predicted with a satisfactory accu-
racy. Further, step elution experiments at moderate load conditions and LGEs at high
load conditions at pH 5.5 (V7-V9) and pH 6.1 (V10-V12) were performed for the vali-
dation of the pH-dependent model. Visual comparison of simulation and measurement
data shows that validation experiments were well reproduced by the model. Peak shapes
in V4 and V12 indicate an elution behavior, which cannot be described with the SMA
isotherm. Further, the delayed desorption of protein during the isocratic elution in V9
was overestimated by the simulation. Nonetheless, simulations of validation experiments
met the demanded accuracy for future application of the model during in silico process
characterization studies.
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Figure 4.5: Model validation. Predictions of V1-V12 using the pH-dependent mechanistic
model. Dashed lines show measurement data. Process conditions are listed in Table 4.1.
Validation experiments V1-V6 were conducted at set point pH 5.8, V7-V9 at pH 5.5, and
V10-V12 at pH 6.1.
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4.5 Discussion

4.5.1 Model Calibration

The presented model calibration workflow includes fundamental parameter estimation
techniques for the determination of the effective mass transfer coefficient and the linear
SMA isotherm parameters νi and keq,i. Nonlinear isotherm parameters were estimated
by inverse parameter estimation. The Yamamoto method enabled the estimation of all
pH-dependent isotherm parameters using solely LGEs under linear load conditions. The
effective mass transport parameters of the protein species could be validated by visual
comparison of simulation and measurement data of the 1 g/L LGEs (V5 and V6). Under
linear load conditions, the width and height of the elution peak is mainly depending on
the mass transfer effects, while the retention time depends on characteristic charge νi and
the equilibrium constant keq,i. The similar effect of νi and keq,i on the retention time
complicates the estimation problem. Similar correlations can be found in the data of Os-
berghaus et al. [171], Briskot et al. [165], and Rischawy et al. [163]. In the present study,
multiple combinations of νi and keq,i were able to describe the Chromatograms of the
LGEs C3-C8 (data not shown). Multiple solutions indicate an ill-posed estimation prob-
lem [213]. Possible reasons for ill-posed estimation problems are over-parameterization,
parameter correlation, inappropriate model selection, limitations in experimental informa-
tion, parameters with little or no influence on observable parameters, and inappropriate
initial parameter guesses [214]. The initial and direct calculation of νi and keq,i using the
Yamamoto method addressed these problems by ensuring reasonable estimation bound-
aries and initial guesses located close to the global optimum of the estimation problem.
This procedure did also reduce the computational effort for the inverse estimation of the
remaining isotherm parameters. Experiments C1 and C2 were designed from a frequen-
tists point of view, increasing the probability of precise estimates for the kinetic parameter
kkin,i and the shielding σi. kkin,i and σi define the non-linear region of the SMA isotherm.
Visual inspection of the fraction data in C1 showed that the comparably high load den-
sity of 45 g/L provoked distinct displacement or competitive binding effects of the charge
isoforms. These effects are mainly caused by differing adsorption (keq,i = kads,i/kdes,i)
and desorption rates (kkin,i = 1/kdes,i) of the charge isoforms and the amount of ligands
occupied by the respective charge isoform. Further, the retention time of the UV elution
peak in C1 depends on the occupied ligands on the resin surface, causing a high sensitivity
for the estimation of the shielding parameter σi. The step elution experiment C2 at mod-
erate load density (10 g/L) was conducted at a salt elution concentration of 30 mM less
compared to the set-point condition. As a result, the elution peak showed an increased
tailing behavior compared to runs at higher salt concentration. Thus, C2 contains ad-
ditional information on the desorption behavior of the protein facilitating the estimation
of kkin,i. All obtained parameters were located in physically reasonable ranges and were
consistent with values found in literature [114, 115]. In contrast to Hahn et al. [114], the
present calibration technique resulted in differing shielding values σi for the monomeric
charge isoforms. A possible mechanistic explanation for this phenomenon are altering
binding orientations of the APG, Main, and BPG species caused by their changing charge

79



Straightforward Model Calibration

distributions on the protein surface. Additionally, it has been shown that the shielding
parameter also describes repulsive effects [31]. Therefore, shielding parameters could differ
between charge isoforms of a mAb.

The subsequent introduction of the pH-dependency was based on the LGEs C3, C5, C6,
and C8. The estimates were divided in two subsets by splitting the calibration workflow
in: 1. SMA model parameters, 2. pH-dependent model parameters. The Yamamoto based
estimation of pH-dependent parameters was performed without inverse curve fitting and
therefore reduced the computational effort. This approach mitigated the risk of over-
fitting and ensured physical plausible estimates. Another benefit of this technique is the
early identification of effects not covered by the selected model. In the present study, the
selected pH-model [115] could describe the pH-dependency of the equilibrium constant
and the characteristic charge within the investigated pH range. However, the applied
model does not allow extrapolation beyond this pH range due to its empirical nature.
Mechanistic pH-dependencies as proposed by Schmidt et al. [127] are designed to cover a
broader pH range. The increased number of model parameters in this type of model also
requires an increased number of experiments for model calibration.

The pH-dependency of the HMW’s characteristic charge showed a differing slope compared
to the monomeric species (Figure 4.4). A possible reason could be the complex structure
and differing binding orientation of the antibody aggregates. The unique pH-dependency
of the HMW species was identified using the Yamamoto method with enriched HMW load
material. HMW enrichment via preparative CEX under mild salt elution conditions at
pH 5.8 resulted in representative mAb aggregates. Stress induced antibody aggregation
can lead to HMW species with differing physicochemical properties depending on the
aggregation inducing treatment [217, 218] and was therefore not performed. Compared
to the inverse calibration of the HMW species, this procedure significantly reduced the
model uncertainty for the prediction of the product purity.

The presented model calibration procedure itself can be completed in a relatively short
time frame, typically within one day, and is consistent with the fundamental principles
of preparative chromatography. Two experiments with fraction analysis and LGEs under
linear load conditions were needed for achieving a high model certainty. This model
lends itself to advanced applications in DSP development, including model-based process
characterization and scale-up. Due to the straightforward protocol, this model calibration
workflow has the potential to debottleneck the daily work of chromatography modelers
and making chromatography modeling accessible for applications in the biopharmaceutical
industry.

4.5.2 Model Validation

The model was validated by visual comparison of simulation and measurement data of
twelve additional experiments under varying process conditions. The representative cali-
bration experiments C1 and C2 at load conditions in the non-linear range of the adsorption
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isotherm enabled the prediction of validation experiments at pH 5.8. The LGEs at 45 g/L
load density and differing pH values (C1, V7 ,V10) revealed the strong influence of the
pH on retention volume, elution volume, peak shape and the displacement effects of the
charge variants. The consideration of charge variants was found to be essential for accurate
modeling of the CEX elution profile, which is in good agreement with recent publications
[163, 165]. The pH-dependency used in the presented model was found to be suitable to
describe the elution, competitive binding and displacement effects within the investigated
pH range. Although the estimation of the pH-dependent parameters was solely based
on LGEs at 1 g/L load density, the model is able to predict all LGEs and step elution
experiments at pH 5.5 and pH 6.1 with high load density conditions. Assuming identical
pH-dependencies for different charge isoforms was valid within the investigated pH range.
The overestimated desorption of protein during the elution step of V9 is most likely related
to the constant kinetic kkin,i and shielding parameters σi of the subspecies. In contrast to
νi and keq,i = kads,i/kdes,i the non-linear isotherm parameters σi and kkin,i = 1/kdes,i are
assumed to be pH-independent. Therefore, the selected model considers pH-dependent
changes in the adsorption rate while the protein desorption rates are constant for all pH
values. Further, possible changes in the binding orientation are not described due to the
constant σi parameter. An introduction of pH- dependencies for kkin,i and σi could fur-
ther improve the models ability to describe step elution experiments at different pH values.
Additionally, the selected SMA isotherm was not able to describe parts of the peak shapes
in V4 and V12 (Figure 4.5). Using Mollerup’s generalized ion-exchange isotherm [215],
it might be possible to describe the complex elution behavior in V4 and V12. However,
all possible extensions to the selected model would increase the number of parameters to
estimate and the complexity of the model calibration process, without gaining additional
benefit for future applications of this model.

4.6 Conclusion

The present study introduced a straightforward and rapid workflow for the calibration
of pH-dependent and multicomponent SMA chromatography models. The selection of
representative process conditions allowed model calibration using only two experiments
with offline fraction analysis. Fundamental knowledge on preparative chromatography en-
abled the systematic reduction of unknown model parameters and avoided pitfalls, such
as ill-posed estimation problems, which can be related to a model calibration completely
based on curve fitting. Multiple LGEs and the Yamamoto correlation led to the early
elimination of the estimation problem caused by the parameter correlation of the charac-
teristic charge and equilibrium constant. Thus, the estimation of the remaining isotherm
parameter using the inverse method could be simplified. Comparably small confidence
intervals, resulting in a small confidence region of the model prediction, indicate that the
chosen experiments were representative and well suited for solving the estimation problem.
The model uncertainty of the HMW species was reduced by performing dedicated cali-
bration experiments with HMW enriched load material. This procedure may be essential
for model-based process characterization when considering the importance of modeling
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low-concentrated product related impurities for the prediction of the product purity. The
subsequent introduction of the pH-dependency was entirely based on LGEs under load
conditions in the linear range of the adsorption isotherm. Nonetheless, the final model
enabled predictions of step elution and gradient elution experiments at process relevant,
increased load densities, and different mobile phase conditions. The obtained accuracy of
the model prediction fulfills the requirements of advanced applications in DSP develop-
ment, such as model-guided scale-up and in silico process characterization studies. Having
the ability to calibrate complex chromatography models within hours not only debottle-
necks in silico process development but has also the potential to increase the acceptance
of mechanistic modeling in the biopharmaceutical industry.
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Abstract

Cation exchange chromatography (CEX) is an essential part of most monoclonal anti-
body (mAb) purification platforms. Process characterization and root cause investiga-
tion of chromatographic unit operations are performed using scale down models (ScDM).
ScDM chromatography columns typically have the identical bed height as the respective
manufacturing-scale, but a significantly reduced inner diameter. While ScDMs enable pro-
cess development demanding less material and time, their comparability to manufacturing-
scale can be affected by variability in feed composition, mobile phase and resin properties,
or dispersion effects depending on the chromatography system at hand. Mechanistic mod-
els can help to close gaps between scales and reduce experimental efforts compared to
experimental ScDM applications.

In this study, a multicomponent steric mass-action (SMA) adsorption model was applied
to the scale-up of a CEX polishing step. Based on chromatograms and elution pool
data ranging from laboratory- to manufacturing-scale, the proposed modeling workflow
enabled early identification of differences between scales, e.g. system dispersion effects or
ionic capacity variability. A multi-stage model qualification approach was introduced to
measure the model quality and to understand the model’s limitations across scales. The
experimental ScDM and the in silico model were qualified against large-scale data using the
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identical state of the art equivalence testing procedure. The mechanistic chromatography
model avoided limitations of the ScDM by capturing effects of bed height, loading density,
feed composition, and mobile phase properties. The results demonstrate the applicability
of mechanistic chromatography models as a possible alternative to conventional ScDM
approaches.

5.1 Introduction

Over the last decade, ever-rising numbers of monoclonal antibodies (mAbs) in development
pipelines increased the demand for novel technologies accelerating mAb process develop-
ment [3, 4, 184]. Multiple publications highlighted the potentialities of in silico process
models for rapid and rationalized bioprocess development [16, 188]. However, there is so
far no consensus within the biopharmaceutical industry on how to apply digital process
models to real-world tasks.

Cation exchange chromatography (CEX) is a frequently employed polishing step for the
downstream processing (DSP) of mAbs. Its selectivity towards protein charge allows the
depletion of high molecular weight species (HMW) and other product and process re-
lated impurities [6, 95]. HMW removal is of high importance because antibody aggregates
may cause an immune response towards the monomeric drug [75]. An in-depth process
understanding is crucial for robust process performance and consistent product quality.
Development of CEX processes is typically based on a high number of small-scale ex-
periments. Resin selection and process optimization can be performed using automated
batch-binding screenings [11, 219] and miniaturized column processes [12, 208, 220, 221].
Automation, parallelization, and miniaturization are of high value for early stage pro-
cess development, where a large number of process conditions are screened for numerous
mAb candidates. Late-stage work packages, such as process characterization, rely on
bench-scale experiments using a scale-down model (ScDM) column representative for the
respective manufacturing-scale unit operation. The ScDM, as a physical representation of
the manufacturing process, enables effect analysis of process parameters on critical quality
attributes (CQA) and key performance indicators (KPI). Hakemeyer et al. [13] described
key elements to be considered in ScDM design, ranging from impurity levels in load ma-
terial to the use of sound engineering principles for scaling. In order to keep key process
parameters such as residence time and separation distance constant, ScDM columns typi-
cally have identical bed heights as the respective manufacturing-scale unit operation, but
a reduced inner diameter. Furthermore, miniaturized columns for robotic liquid handling
stations are currently explored as ScDM for chromatographic unit operations [97]. Reduc-
tion of column diameter enables a fast and resource-saving development. However, the
effectiveness of the purification is not exclusively affected by column dimensions. Vari-
ability of input material composition and impurity levels, may impact the comparability
between a ScDM and its respective large-scale unit operation. Consequently, statistical
ScDM qualification demands numerous bench-scale experiments with varying input ma-
terial. Additional effects caused by dispersion in different chromatography systems, resin
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lot-to-lot variability [222, 223] and manual column packing procedures [224, 225] may
further lead to systematic differences between scales.

In order to follow the Quality by Design (QbD) concept [24], biopharmaceutical companies
are working on process models to generate an in-depth process understanding [97, 164,
226–228]. Mechanistic chromatography models are mathematical representations of the
physical effects occurring in the chromatographic system [118, 229]. They consist of partial
differential equations, describing macroscopic transport through the column, mass trans-
port within the stationary phase, and adsorption of protein to the resin. For mechanistic
modeling of mAbs and other proteins in ion exchange chromatography, the SMA adsorp-
tion isotherm is frequently used in academic and industrial case studies [97, 117, 128, 163,
165, 171, 230]. The SMA isotherm describes the multipoint binding of proteins to the resin
under consideration of a protein’s characteristic charge, the thermodynamic equilibrium
of the adsorption process, and steric shielding effects. Multiple studies have demonstrated
successful application of mechanistic models for the scale-up of chromatography processes
[27, 221, 231]. Benner et al. [97] used mechanistic modeling to explain systematic offsets
between large-scale processes and an experimental ScDM based on miniaturized columns
for robotic liquid handling stations. The scientific explanation for scaling effects enabled
them to utilize the miniaturized system for a parallelized and material saving process
characterization study [97]. Ladwig et al. [226] published a mechanistic model describing
pH and excipient concentrations for an ultrafiltration and diafiltration (UF/DF) unit op-
eration of a mAb purification process. Similar to the experimental ScDM approach, the
mechanistic UF/DF model was qualified against large-scale data validating the model’s
capability to reduce experimental efforts during process development [226]. Beside the
capability of explaining scaling effects, the physical principles of mechanistic chromatog-
raphy models allow the reduction of experimental effort by in silico experimentation at
manufacturing-scale.

Successful application of mechanistic models in bioprocess development and manufacturing
requires clear guidelines for model development, qualification, and application. As a first
building block, we recently introduced a standardized workflow for model calibration to
build the quality into the model by applying both, engineering and statistic principles
[181]. The subsequent model validation at calibration-scale included twelve experiments
with operating conditions beyond the calibration space of the final unit operation. The
present study aims to propose the other part of the model quality system with respect
to qualifying the mechanistic chromatography model from laboratory- to manufacturing-
scale. A multi-stage evaluation using statistical criteria and engineering knowledge was
introduced and applied to measure the quality of model prediction and to understand the
model’s limitations. Six CQAs and KPIs were derived from the predicted chromatograms
and corresponding cutting criteria and compared to the wet-lab purification outcomes.
Comparable to the experimental ScDM, qualification of the mechanistic model against
manufacturing-scale enabled rational evaluation of model predictions for CQAs and KPIs.
Direct benchmarking of the mechanistic model against the experimental ScDM showed
the benefits and perils of both techniques.
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5.2 Modeling

This section gives an overview on the mechanistic model and complementation necessary
for model-guided scale-up. Additional details about model discrimination, model param-
eters and the model calibration strategy can be found in our previous publication [181].
Protein-specific model parameters were kept constant for all simulations and are listed in
Table 5.1. Simulation and inverse parameter estimation was performed using the ChromX
software (GoSilico, Karlsruhe, Germany). Depending on the large-scale chromatography
system, pre-column dispersion was approximated by simulating a continuous stirred-tank
reactor (CSTR) at the column inlet. Assuming ideal mixing within the CSTR, the change
of concentration ci(t) of component i in Eq. 5.1 is a function of residence time defined by
the reactor length LCSTR and superficial velocity u.

∂ci(x, t)

∂t
= − u

LCSTR
(cin,i(t)− ci(t)) (5.1)

The transport dispersive model was selected as column model, due to multiple successful
case studies for the simulation of ion exchange chromatography systems [99, 114, 116, 167,
190]. Eq. 5.2 describes the macroscopic transport of component i through the chromatog-
raphy column. The change of the concentration ci at position x in time t is a function
of convective mass transport in the interstitial volume, peak broadening caused by axial
dispersion Dax, and mass transfer from the interstitial volume into the pore phase of the
particle with the radius rp. Further, mass transfer between the interstitial volume and the
particle pores is affected by the interstitial porosity εcol and the effective mass transfer
coefficient keff,i. The accumulation of mass in the pore phase ci and the stationary phase
qi is described in Eq. 5.3. The Danckwerts’ boundary conditions are given in Eqs. 5.4
and 5.5.

∂ci(x, t)

∂t
= − u

εcol

∂ci(x, t)

∂x
+Dax

∂2ci(x, t)

∂x2

− 1− εcol
εcol

(
3

rp
keff,i (ci(x, t)− cp,i(x, t))

) (5.2)

∂cp,i(x, t)

∂t
=

3

rp

keff,i
εp

(ci(x, t)− cp,i(x, t))−
1− εp
εp

∂qi(x, t)

∂t
(5.3)

∂ci
∂x

(0, t) =
u(t)

εcolDax
(ci(0, t)− cin,i(t)) (5.4)
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∂ci
∂x

(L, t) = 0 (5.5)

Linear flow rates ranged from 155 cm/h to 360 cm/h between investigated scales, de-
manding the introduction of flow dependencies for the axial dispersion coefficient Dax

[232] and effective mass transfer parameter keff,i. The penetration correlation allowed
the direct calculation keff,i for monomer and HMW species at relevant flow rates under
consideration of their hydrodynamic radii [77, 216]. Within the investigated range, flow
dependencies for Dax and keff,i could be approximated using linear regression, Eqs. 5.6
and 5.7. Experimental validation of Dax and keff parameters was performed via pulse
injections at low loading conditions with dextran and protein, respectively [181].

Dax(u) = Dax0 + uDax1 (5.6)

keff (u) = keff0,i + ukeff1,i (5.7)

Protein adsorption is simulated using the semi-mechanistic SMA adsorption model [117].
The SMA model formulates the equilibrium binding behavior of the protein in considera-
tion of the salt concentration in the pore phase cs, the ionic capacity of the resin Λ and
the proteins characteristic charge νi. Eq. 5.8 shows the kinetic form of the SMA isotherm
modified by Hahn et al. [167], where keq,i = kads,i/kdes,i and kkin,i = 1/kdes,i describe ad-
sorption and desorption rates of component i, respectively. In addition, the steric shielding
parameter σi denotes the number of functional groups on the resin surface blocked by the
protein. νi and keq,i, the SMA parameters defining the linear region of the adsorption
isotherm, were estimated using the Yamamoto method at differing pH values [166, 211].
Inverse estimation [167] of the remaining isotherm parameters kkin,i and σi was facilitated
by designing two experiments representative for the final unit operation. Firstly, a linear
gradient elution experiment at 45 g/L loading density contained distinct information on
steric shielding and competitive binding effects of the four protein species. Secondly, a
step elution experiment at 10 g/L loading density and a counter ion concentration below
the set point condition increased the sensitivity for estimating the desorption rate defining
kkin,i parameter.

kkin,i
∂qi
∂t

= keq,i(pH)

Λ−
k∑
j=1

(νj(pH) + σj) qj

νi(pH)

cp,i − qicνi(pH)
s (5.8)
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qsalt = Λ−
k∑
j=1

νj(pH)qj (5.9)

The introduction of pH-dependent isotherm parameters is crucial for industrial applica-
tions. For the identical mAb polishing step, our previous work showed significant effects
on the purification outcome when varying the mobile phase pH between pH 5.5 and pH 6.1
[181]. Eqs. 5.10 and 5.11 show the empirical pH dependencies of the characteristic charge
νi and the equilibrium constant keq,i developed by Hunt et al. [115]. This model was found
to be sufficient for the process relevant pH range of pH 5.8 ±0.3 used in this study [181].

keq,i(pH) = keq0,ie
keq1,ipH+keq2,ipH

2
, (5.10)

νi(pH) = ν0,i + pHν1,i, (5.11)

Table 5.1: Protein specific model parameters for the pH-dependent SMA model. Details
regarding the model calibration procedure are described in our previous publication [181].
For a clear representation of model parameters at pH 5.8, the pH was normalized to zero.
pH 5.5 = -0.3, pH 5.8 = 0, pH 6.1 =0.3.

Parameter APG Main BPG HMW
keff0,i [mm/s] 1.4E-3 1.4E-3 1.4E-3 1.2E-3
keff1,i [-] 4.7E-05 4.7E-05 4.7E-05 3.3E-05
νpH5.8,i [-] 7.38 7.50 7.70 10.97
ν1,i [-] -1.44 -1.44 -1.44 -6.77
keq,pH5.8,i [-] 1.45 1.41 1.69 1.86
keq,1,i [-] -4.26 -4.26 -4.26 -5.39
keq,2,i [-] 2.19 2.19 2.19 5.59
kkin,i[sM

ν ] 8.08E-06 1.00E-04 5.00E-04 3.4E-05
σi [-] 128.6 56.3 107.1 0

5.3 Material and Methods

5.3.1 CEX Unit Operation

The mAb used in this study is an IgG1 monoclonal antibody expressed in stably trans-
fected Chinese hamster ovary (CHO) cells (Boehringer Ingelheim GmbH & Co. KG,
Biberach, Germany). The mAb was captured via Protein A affinity chromatography and
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further polished using anion exchange chromatography in flow-through mode. The pre-
sented mechanistic model describes the subsequent CEX unit operation using the strong
CEX resin POROS 50 HS (Thermo Fisher Scientific, Waltham, USA). The process was
performed at constant pH 5.8 in bind-elute mode and at a maximal loading density of
45 g/L. The column was equilibrated at a counter-ion concentration of 87 mM Na+, with
the same buffer applied to the wash phase after column loading. Subsequently, elution
was induced at a counter-ion concentration of 247 mM Na+. For column regeneration and
storage, 1 M and 0.1 M NaOH were applied.

Charge variant and HMW concentrations in the elution pool were quantified using analyt-
ical CEX chromatography and analytical size exclusion chromatography, respectively. In
order to stay consistent with the mass balance for all simulated protein species, the rela-
tive percentage of the charge isoforms was calculated based on the monomer concentration
obtained from HPSEC analysis. Acidic (APG), neutral (Main) and basic charge variants
(BPG), as well as HMW species were considered as CQAs. Process step yield and elution
volume were defined as KPIs and quantified using protein concentration determined via
absorbance at 280 nm and gravimetric volume measurement. Details about the model
calibration strategy and model validation, as well as analytical chromatography methods,
are presented in the previous publication of our group [181].

5.3.2 In silico Scale-up and Model Qualification

Figure 5.1 summarizes scales investigated in this study, ranging from the 12.3 mL col-
umn used for model calibration to the 441 L manufacturing-scale column. Additional
information about system- and column-specific properties is listed in Table 5.2. Model-
guided scale-up started with the technical investigation and model development for large-
scale chromatography systems. If necessary, system dispersion was simulated by adding
a CSTR at column-inlet. Details about system-specific effects considered for simulations
of each scale are given in Section 5.4.1. For model qualification, the predictive power of
the mechanistic model was evaluated across scales. The model was applied to multiple
chromatography runs at 200 L 2000 L and 12000 L scale. Simulations considered rele-
vant input parameters, such as bed height, flow rate, load material composition, loading
density, buffer and resin variability. In the present work, simulations captured the effects
of real variances during large-scale experimentation. In contrast, model validation in our
previous publication included experiments at challenging operating conditions far beyond
the intended set-point condition [181].
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Figure 5.1: Summary of column scales for the CEX unit operation. The mechanistic
model was calibrated at bench-scale and applied to 200 L, 2000 L and 12000 L scales. For
a clear representation of results, the shown purification scales are named according to the
bioreactor volume of preceding cell culture processes. SDM = Scale down model, CV =
Column volume

Model qualification consisted of three consecutive stages:

• Investigation of the correlation between predicted and measured CQAs and KPIs
across scales: Calculate linear correlation coefficients (R2) and normalized root-
mean-square error of predictions (NRMSEP)

• Testing the statistical significance of the linear correlation: Perform t-test on the
slope and intercept of linear regression

• Qualification against manufacturing-scale data using a two one-sided t-tests (TOST)

For scale-independent qualification of the mechanistic model, correlations between pre-
dicted and measured values for CQAs and KPIs were evaluated using linear regression
and statistical hypothesis testing. t-tests were performed on both, slope and intercept of
the linear regression. The tested hypothesis for slope and intercept were one and null,
respectively. The NRMSEP given in Eqs. 5.12 and 5.13 was calculated for quantification
of the models’ predictive power across scales.
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RMSEP =

√∑T
t=1(ŷt − yt)2

T
(5.12)

NRMSEP =
RMSEP

ymax − ymin
100% (5.13)

In the final step, the predictive capability of the in silico model was compared to the exper-
imental ScDM. Following state of the art practices in DSP development, the experimental
ScDM column had the identical bed height as the respective manufacturing process and
an inner diameter of 1 cm. To evaluate the comparability between ScDM and large-scale,
ScDM experiments were performed in triplicate with multiple load materials obtained
from different large-scale runs. In contrast, mechanistic model simulations considered the
variability in the input material, loading density and mobile phase properties for each of
the chromatographic cycles. Experimental ScDM and mechanistic model were qualified
against large-scale data using the identical equivalence testing procedure [13, 226].

• Step 1- Calculation of the equivalence acceptance criteria (EAC) based on the sample
mean ± 3 standard deviations (SD) of historical large-scale runs.

• Step 2- Equivalence test: A TOST was performed according to Schuirmann [233]
using Python 3.8.2. For both, ScDM and in silico model, the 90% confidence interval
(CI) for the difference in means to large-scale data was compared to the EAC limits.
The model was defined as equivalent to the large-scale unit-operation if p-values
were below the significance level of α = 0.05.

• Step 3- Visualization and qualification: The 90% CIs of ScDM and in silico model
difference in means were visualized and compared to the EAC. Model and large-scale
unit operation were considered “equivalent”, if the 90% CI on the difference in means
fell entirely within the EAC. The model was “equivalent in sample mean only”, if the
90% CI overlapped with one or both EAC. The model “failed to be equivalent”, if
the difference in means was located outside the EAC and the 90% CI on overlapped
with EAC. When the 90% CI on the difference fell entirely outside the EAC, the
model was ranked “not equivalent” [13].

5.4 Results and Discussion

In this work, a mechanistic cation exchange chromatography model calibrated at bench-
scale, was applied to chromatography runs of multiple large-scales, including 2000 L pilot
and 12000 L manufacturing-scale. The following chapters describe the approach for the
simulation of large-scale systems. Consideration of system dispersion and variations in
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ionic capacity between scales enabled the successful qualification of the mechanistic model
across scales. For 12000 L manufacturing-scale, mechanistic model predictions and exper-
imental ScDM results were compared considering the most relevant CQAs and KPIs.

5.4.1 Simulation of System-specific Effects

Table 5.2 shows system and column specific parameters and considerations for simulation
of the investigated large-scale chromatography processes. The mechanistic model pre-
sented in this study was calibrated at a column bed height of 157 mm. Protein specific
mass transfer parameters and SMA adsorption model parameters estimated in our previ-
ous publication were applied to simulations of large-scale experiments (Table 5.1) [181].
200 L, 2000 L, and 12000 L scale experiments were conducted at differing linear flow rates
compared to calibration-scale, demanding the introduction of flow dependent mass trans-
fer parameters. Details about flow dependencies and parameters are given in Section 5.2,
Table 5.1.

Table 5.2: System and column specific parameters applied for the simulation of 200 L,
2000 L and 12000 L scales. *Porosities were determined at calibration-scale and kept
constant across scales.
Parameter Symbol Calibration 200 L 2000 L 12000 L Unit
Bed height L 157 300 200 295 mm
Diameter d 10 140 600 1380 mm
Column Volume V 0.0123 4.62 56.6 441 L
Bead radius rp 25 25 25 25 µm
Interstitial porosity* εcol 0.41 0.41 0.41 0.41 -
Total porosity* εt 0.73 0.73 0.73 0.73 -
Particle porosity* εp 0.53 0.53 0.53 0.53 -
Ionic capacity Λ 0.292 0.310 0.310 0.292 M
Flow rate u 188 360 240 206 cm/h
Flow rate during elution uelution 188 360 240 155 cm/h
Axial dispersion
y-intercept Dax0 0.0501 0.0501 0.0501 0.0501 mm2/s

Axial dispersion slope Dax1 0.2499 0.2499 0.2499 0.2499 mm
CSTR length LCSTR - 79 - - mm

Visual inspection of the conductivity signal at column outlet was the first step of in silico
scale-up. This procedure allowed identification and correction of dead volumes and system
dispersion effects before simulating protein elution at a new scale. When the salt simulation
followed the trend of the conductivity signal, the simulated elution peak was compared to
UV measurement data. If further systematic offsets in peak width and retention time were
observed, additional evaluation of the elution peak discrepancy was necessary. Variability
of resin lot and manual column packing were identified as the most probable root causes for
the observed differences between scales causing small variations that were lumped into the
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ionic capacity. Alternatively, an increased mass transfer resistance resulting in a decreased
value for keff could also describe the broadened peak shape. However, a scale-dependent
change of keff is considered less likely compared to variations in ionic capacity, which is a
well-known phenomenon in industrial protein chromatography. The direct measurement
of ionic capacity using acid-base titration is frequently used for model calibration [114].
However, this potentially harmful procedure is inapplicable to large-scale chromatography
columns that are used in compliance with good manufacturing practice (GMP). Further,
ionic capacity is normalized to resin backbone volume. Hence, ionic capacity is correlated
to column packing density, which complicates the reproduction of acid-base titration of
different resin lots in small-scale. Therefore, ionic capacity had to be estimated by applying
the inverse method developed by Hahn et al. using a single chromatogram of one scale
[167]. The inverse method enabled prediction of all further chromatography runs and all
other process outputs at the respective scales. The estimated increase in ionic capacity
for 200 L and 2000 L scale was in the range of 6% compared to the calibration-scale. The
observed variance in ionic capacity is considered plausible, as the manufacturer specifies
the dynamic binding capacity of lysozyme on POROS 50 HS in a range between 57.0 g/L
and 75.3 g/L [94].

Figure 5.2 depicts simulations of an exemplary 200 L scale chromatogram with and without
the final corrections necessary for prediction of conductivity and UV signal. The 200 L
scale conductivity signal at column outlet showed a distinctive curvature caused by an
increased system dispersion. Compared to other scales, the 200 L scale system was not
flushed with high salt buffer before starting step elution. Mixing of wash and elution buffer
within the bubble trap led to a comparably slow increase of the conductivity signal. Back-
mixing within the bubble trap of the 200 L scale system was approximated by simulating a
CSTR at the column inlet. As a result, the simulation of the conductivity signal followed
the trend of the measured conductivity signal at column-outlet. Further, the slowly in-
creasing salt concentration during step elution and the estimated ligand density corrected
retention time and width of the simulated protein peak. System dispersion in 2000 L and
12000 L scale chromatography systems could be neglected, because the large-scale systems
were pre-flushed with elution buffer. The pre-flush led to a steep increase of the conduc-
tivity signal and the corresponding salt simulation (Figure 5.3). Consequently, simulated
and measured elution volumes in 2000 L and 12000 L scale were smaller compared to 200 L
scale, shown in Figure 5.4.
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Figure 5.2: Step elution run on the 200 L scale column. Dashed lines show measurement
data and solid lines are mechanistic model predictions. A: Dispersive effects outside the
column were neglected during the step elution and ligand density was equal to calibration
scale, Λ = 0.292 M. B: CSTR in front of the column simulates dispersion caused by
the bubble trap, Λ = 0.292 M. C: Pre-column CSTR and estimated ligand density, Λ =
0.310 M.
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Figure 5.3: Prediction of elution profiles of 2000 L pilot and 12000 L manufacturing-scale.
Dashed lines show measurement data and solid lines are mechanistic model predictions.
A: 2000 L pilot-scale, B: 12000 L manufacturing-scale.
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5.4.2 Cross-scale Qualification of the Mechanistic Model

This chapter evaluates the predictive power of the mechanistic model across scales. Main
differences between scales were column volume, bed height, and flow rate (Table 5.2). It is
important to notice, that all shown chromatography runs were conducted on the set point.
Consequently, only small variation in process parameters occurred and their effect on
CQAs and KPIs was small compared to the previous model validation at calibration-scale
[181]. The small variation of model inputs and outputs further challenged the predictive
capabilities and accuracy of the model. Multiple chromatographic cycles were simulated
for each scale. Simulations accounted for all variations in load composition, loading den-
sity, and mobile phase pH and salt concentrations. In Figure 5.4, model predictions for
CQAs and KPIs of the CEX purification are correlated to the respective measurement
data. Investigation of correlation plots are the state of the art procedure in industrial
chromatography modeling. However, a decision purely based on these correlation plots is
considered too subjective. Hence, linear regression and statistical criteria were introduced
for further evaluation of model quality (Table 5.3).

Table 5.3: Regression and t-test results for cross-scale model qualification.
R2 NRMSEP [%] slope intercept ps,1 pi,0

APG 0.95 7 1.04 -1.21 0.54 0.58
Main 0.95 8 0.98 0.86 0.77 0.81
BPG 0.97 12 0.93 0.15 0.15 0.56
HMW 0.65 49 0.97 0.07 0.89 0.09
Yield 0.05 37 0.13 86.12 0.00 0.00
Elution volume 0.97 8 0.94 0.19 0.07 0.01

The very first stage of model qualification is to evaluate R2 and NRMSEP, since a high
R2 value means the given variances are well covered by the linear regression and a low
NRMSEP means the regression line is close to the optimal expectation. In this stage, with
R2 > 0.95 and NRSMEP < 12%, the model’s predictive power for the charge variants
(APG, Main, and BPG) and the elution volume were confirmed and the qualification is
considered as completed successfully. Qualification via R2 and NRSEMP is considered the
case one scenario. Elution volume measurements ranged from 1.4 CV to 2.7 CV. Compared
to other CQAs and step yield, the elution volume mainly depended on scale effects, as
shown in Figure 5.4. For simulations of 200 L scale experiments, a pre-column CSTR was
added resulting in a larger elution volume compared to other scales. Elution volume of
200 L and 2000 L scale was also increased by a 6% higher ionic capacity compared to
12000 L manufacturing-scale. Further, the model accounted for the effect of differing bed
heights on the elution volume. 2000 L scale was performed on a column with 200 mm
bed height, leading to a higher elution volume compared to 12000 L scale with 295 mm
bed height. It should be noted that model parameters were estimated on a small-scale
column with a 157 mm bed height. Also the model validation presented in our previous
publication was performed at a bed height of 157 mm [181]. Thus, the prediction of large-
scale runs with increased bed heights further confirmed the plausibility of the estimated
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model parameters.

Figure 5.4: Cross-scale analysis of mechanistic model predictions for CQAs and KPI of
the CEX unit operation at 200 L, 2000 L and 12000 L full manufacturing-scale. Solid lines
show linear regression for the respective CQA/KPI across scales.
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For HMW species with both mediocre R2=0.65 and the NRMSEP=49%, a second case
scenario is described. The distribution of data around the regression line is explained by
the very low HMW level in the input material of approximately 0.4% and the elution pool
ranging from 0.14% to 0.28%. Furthermore, total errors of 0.07% in HMW concentrations
can originate from analytical method variability and/or different sample handling schemes
between scales. In the second scenario, the slope and intercept of the regression line were
taken into account being both close to the expectation of being 1 and 0, respectively.
The results of a t-test with an error-probability of 5% confirmed the slope and intercept
being not significantly different from the expectation. The trust in the model prediction
is strengthened by these results from second stage model qualification. Additionally, a
systematic shift of HMW concentrations along the y-axis in Figure 5.4 (D) indicates that
the mechanistic model overestimated HMW concentrations for all investigated scales. This
over estimation is most likely caused by differences in material and sample handling be-
tween manufacturing and process development laboratories. Specifically, the impact of
freeze and thaw on mAb aggregate formation is a well know phenomenon and is the most
probable root cause for the observed model offset in the <0.1% range.

The process step yield is considered a third case scenario as neither R2 and NRMSEP,
nor slope and intercept of linear regression support a belief in model prediction. The
t-test for slope and intercept of the regression (p <0.05) rejects the hypothesis, that
correlations in slope and intercept are significant. Measured yields across scales ranged
from 97.8% to 99.7%. The observed variance is located within method variability of
protein concentration and gravimetric volume measurements of the elution pools. For the
investigated experiments, process parameters most likely had no measurable effect on the
step yield. Therefore, the model’s predictive power of yield is seemingly low and required
a direct comparison between the model prediction and the manufacturing-scale outcomes
in the final stage of model qualification as presented in the subsequent section.

5.4.3 Comparison of Mechanistic Model with Experimental ScDM

Equivalence between a process model and its respective full-scale unit operation is the fun-
damental requirement for applying the model to process characterization studies in late
stage DSP development. The TOST is currently the state of the art equivalence testing
approach for ScDM qualification [13, 226]. In Figure 5.5, the in silico model was qualified
against manufacturing-scale data using the TOST qualification scheme described in sec-
tion 5.3.2. ScDM qualification results are presented as a benchmark for mechanistic model
performance. The data included 10 clinical manufacturing runs with two CEX cycles per
harvest. The ScDM was limited to six load materials of clinical manufacturing runs, with
three lab-scale experiments per load material. Further, ScDM experiments were conducted
with all process parameters at set point conditions. In contrast, the mechanistic model
can be seen as a digital twin of the manufacturing-scale process, considering variations in
feed composition, column length, as well as mobile phase pH and salt concentration.
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Figure 5.5: Equivalence test comparing large-scale results to mechanistic model predic-
tion and experimental ScDM data. Visual representation of TOST analysis. The zero
line represents the mean of 20 chromatography cycles for clinical manufacturing. p-values
were < 0.05 for all shown CQAs and KPIs. EAC were defined as large-scale mean ±3 SD
of the respective CQA or KPI.

The visualization of TOST analysis in Figure 5.5 qualifies in silico model and experimen-
tal ScDM for all investigated CQAs and KPIs. The 90% CIs of model predictions were
located within the acceptance criteria. Therefore, in silico model and experimental ScDM
were equivalent to the large-scale unit operation. ScDM results and mechanistic model
predictions for APG, Main, BPG concentrations and elution volume were located close to
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the mean value of large-scale runs. In contrast, both models consistently overestimated
HMW concentrations. The overestimation of HMW concentration was most likely caused
by differing sample handling schemes as discussed in the previous chapter. Comparable
sample handling procedures for ScDM and model calibration experiments in small-scale
resulted in similar HMW values for ScDM and mechanistic model predictions. In silico
predictions for CQAs led to broader CIs compared to the experimental ScDM. This ob-
servation was caused by the consideration of load material composition in all simulations,
while the experimental ScDM was limited to six load materials. For example, the percent-
age of APG species in clinical manufacturing load materials varied between 30.4% and
35.5%, while the ScDM only included load materials with 32.1% to 34.1% APG content.
The ScDM sample mean of yield was located within the EAC, but the error bars indicate
a higher variance compared to in silico prediction. This variance was caused by analytical
variability of protein concentration and gravimetric volume measurements of the elution
pool during ScDM experimentation.

The TOST equivalence test is an objective method for model qualification. However, it is
difficult to evaluate the true predictive capabilities of the mechanistic model by comparing
mean values. Therefore, control charts in Figure 5.6 compare measured and predicted
results of five 12000 L manufacturing runs with two CEX cycles per harvest. Input data
from batch records was used for modeling every chromatographic cycle. Consideration of
these input parameters allowed the mechanistic model to predict the trend of CQAs as
a function of the run number. Additionally, the mechanistic model enabled quantitative
predictions for yield and elution volume within the EAC.

The data shown in this section qualifies the mechanistic model as an in silico representation
of the 12000 L scale unit operation for charge variants, HMW species, step yield and elution
volume. Thus, the mechanistic model could be applied to process characterization studies
for late stage DSP development. Further, the mechanistic model avoided limitations of
the experimental ScDM by capturing the minimal effect of process parameter variation
on the purification outcome. With a loading density of 45 g/L and a column bed height
of 300 mm, a single ScDM experiment consumed more protein than the entire model
calibration process on the 157 mm column. It is important to notice, that the presented
model is limited to the six CQAs and KPIs. Additional CQAs, such as fragments, host
cell protein or leached Protein A concentrations need to be added to the in silico model
of the CEX unit operation if required.
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Figure 5.6: Control charts for CQAs and KPIs of 12000 L scale CEX purification runs.
Load composition and mobile phase properties of each simulation were adapted according
to the inputs of the respective chromatography cycle.
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5.5 Conclusion

In the presented case study, a mechanistic model calibrated at bench-scale enabled the
prediction of chromatography runs in multiple larger scales. In silico experimentation
increased process understanding and allowed explanation of offsets between investigated
scales. Consideration of scale dependent effects, such as pre-column dispersion and vary-
ing ionic capacities was found to be essential for accurate prediction of large-scale CEX
processes. All investigated large-scale runs were performed at set-point conditions with
only minimal variance of input parameters. The relatively small effect of loading density,
input material composition, and mobile phase pH and salt concentration variability on
the purification outcome challenged model accuracy. Nonetheless, the consideration of
these relatively small input variations together with scale-specific features allowed accu-
rate predictions of CQAs and KPIs across all scales from laboratory to manufacturing-
scale. The predictive power across different column dimensions confirmed the physical
relevance of the previously estimated model parameters [181]. For manufacturing-scale,
model performance was directly benchmarked against the experimental ScDM. The main
purpose of qualifying an experimental ScDM is to use it in subsequent process character-
ization studies. Both, ScDM and mechanistic model were successfully qualified against
manufacturing-scale using well-established equivalence testing procedures. Additionally,
the mechanistic model could describe the run-to-run trend of CQAs and KPIs. Therefore,
the application of a thoroughly calibrated and validated mechanistic model for process
characterization purposes can be considered as a scientifically sound and suitable comple-
mentation to experimental approaches.

This work presents a systematic framework for qualification of mechanistic chromatogra-
phy models prior to their applications to late stage biopharmaceutical process develop-
ment. Rules provided allow a more objective and gradual decision-making. However, the
definition of model quality criteria is a complex task involving deep technical understand-
ing, statistics, and understanding of the pharmaceutical quality system.
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Abstract

With the Quality by Design (QbD) initiative, regulatory authorities demand a consis-
tent drug quality originating from a well-understood manufacturing process. This study
demonstrates the application of a previously published mechanistic chromatography model
to the in silico process characterization (PCS) of a monoclonal antibody polishing step.
The proposed modeling workflow covered the main tasks of traditional PCS studies fol-
lowing the QbD principles, including criticality assessment of 11 process parameters and
establishment of their proven acceptable ranges (PARs) of operation. Analyzing effects
of multi-variate sampling of process parameters on the purification outcome allowed iden-
tification of the edge-of-failure. Experimental validation of in silico results demanded
approximately 75% less experiments compared to a purely wet-lab based process char-
acterization study. Stochastic simulation, considering the measured variances of process
parameters and loading material composition, was used to estimate the capability of the
process to meet the acceptance criteria for critical quality attributes and key performance
indicators. The proposed workflow enables the implementation of digital process twins as
QbD tool for improved development of biopharmaceutical manufacturing processes.
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6.1 Introduction

The biopharmaceutical industry is under an unprecedented pressure to implement tech-
nologies for rapid process development. Main reasons are rising numbers of monoclonal
antibodies (mAbs) in development [3, 4] and strongly accelerated development timelines
[184]. While achieving a short time-to-market timeline, mAb manufacturers have to en-
sure high product quality by following the Quality by Design (QbD) concept. The QbD
concept demands a consistent product quality originating from an intrinsic quality built
into the design and the control of the manufacturing process. In recent years, regulatory
authorities and biopharmaceutical organizations formulated clear concepts for the imple-
mentation of QbD in pharmaceutical development [25, 103, 234].Yu et al. [25] listed the
key elements for a development strategy that complies with the QbD concept:

• A quality target product profile (QTPP) for the identification of critical quality
attributes (CQAs) of the drug product

• Identification of critical material attributes (CMAs) and critical process parameters
(CPPs) potentially effecting CQAs

• Measuring the effect of CPPs and CMAs on CQAs

• Development of a control strategy

• Process capability and continual improvement.

Development workflows comprising the above listed QbD elements make use of general
process knowledge and statistical design of experiments (DoE) for the characterization
of a unit operation [13, 14, 235]. For many process steps, including preparative chro-
matography, it is not feasible to include all controllable process parameters in a DoE
study. Even on small-scale systems [97], it is challenging to screen hundreds of process
conditions when considering the subsequent analytical bottleneck. Therefore, process pa-
rameters have to undergo a risk-based criticality assessment considering their potential
impact on CQAs before designing an experimental process characterization study (PCS)
[13, 14]. Risk-based decision trees for process parameter classification are able to reduce
the dimensionality of DoE studies, and thus reduce the experimental burden for process
development. However, parameter criticality assessment can be influenced by subjective
decision-making caused by the lack of experimental data at this development stage. As
a result, incorrectly classified process parameters could lead to avoidable experimental
effort, or worse, to a poorly understood control strategy. Further, PCS approaches based
on DoE are limited to regression models correlating CPPs to CQAs with a limited amount
of data points per CPP.

In the ICH Q8/Q9/Q10 (R2) documents [24], regulatory authorities propose the use of
mathematical models to support bioprocess development and manufacturing. These mod-
els include mechanistic models describing the physical phenomena within a unit operation,
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which can be used to predict process outcomes under varying conditions [24]. Digitaliza-
tion initiatives in biopharma industry and academia identified mechanistic chromatogra-
phy modeling as a promising tool for in silico development of downstream processes (DSP)
[16, 22, 23, 164]. After overcoming the initial hurdle of model calibration [114, 165, 171,
181, 190], mechanistic chromatography models show a broad applicability to bioprocess
development, including process optimization [161], robustness analysis [101, 162, 206], or
scale-up [27, 97]. Recently, Andris et al. [236] developed a mechanistic model for the
separation of antibody-drug conjugates. Their work allowed the characterization of a de-
sign space, revealing the relevance of digital process twins in the light of QbD. For ion
exchange chromatography, Jakobsson et al. [162] used mechanistic modeling to design a
robust pooling strategy under consideration of model uncertainty. A mechanistic mod-
eling study performed by Close et al. [101] identified robust operating conditions for a
hydrophobic interaction chromatography process, where resin and loading material had
a considerable impact on process performance. Following the QbD concept, Rischawy
et al. [163] used mechanistic modeling for the identification of CPPs for a cation ex-
change chromatography step applied to the polishing of a bispecific mAb. Shekhawat et
al. [227] developed a model that improved understanding around resin fouling in Protein
A chromatography. The here mentioned mechanistic modeling studies increased process
understanding or solved specific problems regarding process robustness. However, as de-
scribed earlier, regulatory authorities defined clear perspectives on the implementation of
QbD in process development and the related tasks. To the best of our knowledge, it is
still to be shown how mechanistic models could be applied to a process characterization
study addressing the essential QbD elements.

Our previous publications introduced a quality system for mechanistic chromatography
modeling in biopharmaceutical process development. The selection of representative ex-
periments for model calibration ensured adequate model certainty with minimal resources
[181]. This mechanistic model was validated against data of multiple scales, including
clinical manufacturing-scale [237]. As a sequel of this publication series, the mechanis-
tic model is applied to the process characterization of a cation-exchange chromatography
(CEX) step. Simulations are performed at manufacturing-scale avoiding limitation of ex-
perimental scale-down model studies. The in silico strategy aims to fulfill the fundamental
tasks of a PCS following the QbD concept. This includes criticality assessment of process
parameters and measuring their effect on CQAs and key performance indicators (KPIs).
Further, simulations provide the database to identify proven acceptable ranges (PARs)
for process parameters as part of the control strategy. An experimental design is derived
from mechanistic model predictions to reduce the experimental effort compared to wet-lab
driven DoE approaches. As a last element, Monte-Carlo simulation allows the calcula-
tion of process capability under consideration of CPP, KPP, KMA, and CMA variances
measured during clinical manufacturing. The presented methodology generates in-depth
process understanding following the QbD concept, while debottlenecking experimental
limitation of DoE approaches. Mechanistic modeling for in silico process characterization
can improve decision-making in DSP development, assuring product quality throughout
the entire value chain.

105



In silico Process Characterization

6.2 Modeling

Details about model discrimination, model parameters, the model calibration strategy,
and scale-dependent considerations can be found in our previous publications [181, 237].
Protein-specific model parameters are listed in Table 6.1. This section gives an overview
on the mechanistic model and complementations necessary for model-guided scale-up. The
one dimensional (1D) transport dispersive model was selected as column model, due to
multiple successful case studies for the simulation of ion exchange chromatography systems
[99, 114, 116, 167, 190]. Eq. 6.1 describes the macroscopic transport of component i
through the chromatography column. The change of the concentration ci at position
x in time t is a function of convective mass transport in the interstitial volume, peak
broadening caused by axial dispersion Dax, and mass transfer from the interstitial volume
into the pore phase of the particle with the radius rP . Further, mass transfer between the
interstitial volume and the particle pores is affected by the interstitial porosity εcol and
the effective mass transfer coefficient keff,i. The accumulation of mass in the pore phase
cp,i with the particle porosity εp and the stationary phase qi is described in Eq. 6.2. The
Danckwerts’ boundary conditions are given in Eqs. 6.3 and 6.4.

∂ci(x, t)

∂t
= − u

εcol

∂ci(x, t)

∂x
+Dax

∂2ci(x, t)

∂x2

− 1− εcol
εcol

(
3

rp
keff,i (ci(x, t)− cp,i(x, t))

) (6.1)

∂cp,i(x, t)

∂t
=

3

rp

keff,i
εp

(ci(x, t)− cp,i(x, t))−
1− εp
εp

∂qi(x, t)

∂t
(6.2)

∂ci
∂x

(0, t) =
u(t)

εcolDax
(ci(0, t)− cin,i(t)) (6.3)

∂ci
∂x

(L, t) = 0 (6.4)

Linear flow rates ranged from 155 cm/h to 360 cm/h between investigated scales, de-
manding the introduction of flow dependencies for the axial dispersion coefficient Dax

and effective mass transfer parameter keff,i. The penetration correlation allowed the di-
rect calculation keff,i for monomer and HMW species at relevant flow rates, respectively
[175, 216]. Within the investigated range, flow dependencies for Dax and keff could be
approximated using linear regression according to Eq. 6.5 and 6.6.
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Dax(u) = Dax0 + uDax1 (6.5)

keff (u) = keff0,i + ukeff1,i (6.6)

Protein adsorption is simulated using the semi-mechanistic SMA adsorption model [117].
The multicomponent SMA model formulates the equilibrium binding behavior of the pro-
tein in consideration of the salt concentration in the pore phase cs, the ionic capacity of
the resin Λ, and the proteins characteristic charge νi. Eq. 6.7 shows the kinetic form of the
SMA isotherm modified by Hahn et al. [167], where keq,i = kads,i/kdes,i and kkin,i = 1/kdes,i
describe adsorption and desorption rates of component i, respectively. In addition, the
steric shielding parameter σi denotes the number of functional groups on the resin surface
blocked by the protein.

kkin,i
∂qi
∂t

= keq,i(pH)

Λ−
k∑
j=1

(νj(pH) + σj) qj

νi(pH)

cp,i − qicνi(pH)
s (6.7)

qsalt = Λ−
k∑
j=1

νj(pH)qj (6.8)

The introduction of pH-dependent isotherm parameters is crucial for industrial applica-
tions. Eqs. 6.9 and 6.10 show the empirical pH dependencies of the characteristic charge
νi and the equilibrium constant keq,i developed by Hunt et al. [115] This model was found
to be sufficient for the process relevant pH range of pH 5.8 ±0.3 used in this study [181].

keq,i(pH) = keq0,ie
keq1,ipH+keq2,ipH

2
, (6.9)

νi(pH) = ν0,i + pHν1,i, (6.10)

6.3 Material and Methods

6.3.1 CEX unit operation

The investigated protein is an IgG1 mAb expressed in stably transfected Chinese hamster
ovary cells (Boehringer Ingelheim GmbH & Co. KG, Biberach, Germany). The mAb was
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Table 6.1: Protein specific model parameters for the pH-dependent SMA model. Details
regarding the model calibration procedure are described in our previous publication.36
For a clear representation of model parameters at pH 5.8, the pH was normalized to zero.
pH 5.5 = -0.3, pH 5.8 = 0, pH 6.1 =0.3.

Parameter APG Main BPG HMW
keff0,i [mm/s] 1.4E-3 1.4E-3 1.4E-3 1.2E-3
keff1,i [-] 4.7E-05 4.7E-05 4.7E-05 3.3E-05
νpH5.8,i [-] 7.38 7.50 7.70 10.97
ν1,i [-] -1.44 -1.44 -1.44 -6.77
keq,pH5.8,i [-] 1.45 1.41 1.69 1.86
keq,1,i [-] -4.26 -4.26 -4.26 -5.39
keq,2,i [-] 2.19 2.19 2.19 5.59
kkin,i[sM

ν ] 8.08E-06 1.00E-04 5.00E-04 3.4E-05
σi [-] 128.6 56.3 107.1 0

captured via Protein A affinity chromatography and further polished using anion exchange
chromatography in flow-through mode. The presented mechanistic model describes the
subsequent CEX unit operation using the strong CEX resin POROS 50 HS (Thermo Fisher
Scientific, Waltham, USA). The process was performed at constant pH 5.8 in bind-elute
mode and at a maximal load density of 45 g/LResin. The column was equilibrated at a
counter-ion concentration of 87 mM Na+, with the same buffer applied to the wash phase
after column loading. Subsequently, elution was induced at a counter-ion concentration
of 247 mM Na+. For column regeneration and storage, 1 M and 0.1 M NaOH were
applied respectively. Selected experiments from wet-lab PCS studies were used to validate
the most critical relationships between process parameters and CQAs/KPIs. Bench-scale
experiments were performed on an Äkta Avant 25 (Cytiva, Uppsala, Sweden) using an
experimental ScDM column with a bed height of 300 mm and an inner diameter of 10 mm.

Charge variant and HMW concentrations in the elution pool were quantified using ana-
lytical CEX chromatography and analytical size exclusion chromatography, respectively.
Acidic (APG), neutral (Main) and basic peak groups (BPG), as well as HMW species
were considered as CQAs. Process step yield and elution volume were defined as KPIs
and quantified using protein concentration determined via absorbance at 280 nm and
gravimetric volume measurement. Details of the model calibration and validation, as well
as analytical chromatography methods, are presented in one of our previous publications
[181].

6.3.2 In silico PCS Workflow

This chapter describes the methodology of an in silico process characterization follow-
ing the QbD concept. The PCS workflow consisted of three major building blocks: (1)
process parameter criticality assessment and establishment of PARs; (2) identification
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and validation of the edge-of-failure; (3) calculation of process capabilities. Protein- and
system-specific mechanistic model parameters were kept constant and were obtained from
our previous publications [181, 237]. Only process parameters were varied during in silico
sampling. All simulations were performed at manufacturing-scale, under consideration
of system and column dimensions. Before starting in silico experimentation, the applied
mechanistic model was validated as digital representation of the real-world process. Model
validation must consider the intended purpose of the model and its potential impact on
the control strategy at manufacturing-scale. Small-scale experiments validated that the
model captures the impact of process parameter variation on the purification outcome
[181]. Model validation across scales showed that the model captures relevant system
effects and proofed equivalence between the mechanistic model and manufacturing-scale
[237]. Based on this previously published validation strategy, it is reasonable to use the
model for in silico process characterization.

One-factor-at-a-time sampling
Acceptance criteria for 

CQAs and KPIs 

Parameter criticality 
assessment

PAR definition / Control 
strategy

Multi-variate sampling

Monte-Carlo method

Process capability 
assessment Continual improvement

Identification of the 
edge-of-failure

All process parameters

Validation with wet-lab 
data

Figure 6.1: In silico process characterization of a unit operation for monoclonal antibody
purification.

Figure 6.1 depicts the three different parameter-sampling methods. Initially, a one-factor-
at-a-time sampling (OFAT) scheme enabled criticality assessment of process parameters
and definition of proven acceptable ranges (PAR). During OFAT sampling, one parame-
ter was sampled in a wide range around its intended set point, while the other process
parameters were kept constant. The loading density was sampled below its upper limit of
45 g/LResin. Following the decision tree in Figure 6.2, process parameters were ranked as
non-KPP, CPP, KPP, CMA or KMA based on their effect on CQAs and KPIs.

• non-KPP: Process parameter does not affect a CQA or KPP

• CPP: Critical process parameter affects at least one CQA

• KPP: Key process parameter affects at least one KPI and not affects CQAs

• CMA: Critical material attribute affects at least one CQA

• KMA: Key material attribute affects at least one KPI and not affects CQAs
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Process parameter /
material attribute

CPP/CMA KPP/KMA non-KPP

Examples:

NOR

PAR

UAC

LAC

Impact process 
performance, KPI

Impact product 
quality, CQA

Yes

No

NoYes

Figure 6.2: Decision tree for model-guided criticality assessment of process parameters
and establishment of their PARs. UAC = Upper acceptance criterion, LAC = Lower
acceptance criterion

Subsequently, the same data obtained from OFAT sampling allowed definition of PARs
for all investigated process parameters. The establishment of PARs is a fundamental part
of the control strategy and represents the main goal of a PCS. According to the European
Medicines Agency (EMA) and ICH Q8 R2 guideline [24, 238], the PAR is defined as
the operating range of a process parameter for which the unit operation will produce a
drug substance meeting the relevant quality criteria. When all process parameters are
kept constant, but one parameter varies within its PAR, all CQAs and KPIs measured in
the elution pool must be located within their predefined acceptance criteria (AC). Thus,
OFAT sampling of input parameters is a suitable method for the establishment of PARs.
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As presented in Figure 6.2, the intersection of ACs and the curve obtained via in silico
sampling defined the lower and upper boundary of the PAR. If a process parameter did
not cause CQAs or KPIs to violate the AC, the entire in silico screened parameter range
of this process parameter was defined as PAR.

Process parameters ranked as CPPs and KPPs were analyzed in subsequent multi-parametric
sampling studies. The multi-parametric sampling study represented the second building
block of the in silico PCS. Here, CPPs and KPPs were varied jointly to study the worst-
case operating scenarios. This procedure enabled the identification of the edge-of-failure
under consideration of the AC. Historical wet-lab experiments at process conditions around
the edge-of-failure were used to validate the in silico findings.

In a last step, the process capability of the unit operation was calculated based on stochas-
tic simulation (Monte-Carlo simulation), as described in Figure 6.3. Therefore, probability
functions of process parameters and loading material composition were calculated based
on 20 chromatographic cycles at clinical manufacturing-scale. Subsequently, 1000 simu-
lations were performed using random samples of the previously determined probability
function as model input. The resulting CQA and KPI distributions were then plotted and
compared to the AC. The standard deviations σ̂ obtained from in silico generated CQA
and KPI distributions enabled calculation of the corresponding process capabilities cpl and
cpu for the lower and upper AC (LAC and UAC), respectively,

cpl =
Mean− LAC

3σ̂
, (6.11)

cpu =
UAC −Mean

3σ̂
, (6.12)

cpk = min(cpl; cpu). (6.13)

For each CQA or KPI, the overall process capability cpk was defined as the minimum of
cpl and cpu. When only an LAC or an UAC was defined, the overall process capability
could be simplified to cpk = cpl or cpk = cpu.
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Figure 6.3: Monte-Carlo simulation for the calculation of process capability. The stochas-
tic simulation procedure considered loading material compositions and input parameter
distributions resulting in the calculation of process capabilities for six CQAs and KPIs.
Exemplary input and output distributions are shown.
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6.4 Results and Discussion

In the following chapters, a previously published mechanistic chromatography model was
applied to the in silico PCS of a CEX unit operation [181, 237]. The multi-stage modeling
workflow aimed to fulfill essential tasks of process characterization following the QbD
concept. This includes CPP identification and PAR definition. Multi-parametric effects on
the purification outcome were identified and validated with wet-lab experiments. Monte-
Carlo simulation allowed the determination of process capability under consideration of
real CPP, KPP, CMA, and loading material composition variability.

6.4.1 Parameter Criticality Assessment and Control Strategy

Before starting characterization of a unit operation, process parameters must be classified
according to their impact on CQAs and KPIs. The mechanistic chromatography model
enabled effect analysis of process parameters following an OFAT sampling scheme. Ta-
ble 6.2 lists the results of the parameter criticality assessment following the decision tree
in Figure 6.2. in silico investigation of one process parameter consisted of 50 simulations,
with equidistant steps in a wide range around the set-point condition. While one param-
eter was varied, all other process parameters were kept on the set point. Five process
parameters were ranked as CPPs or CMAs, showing effects on at least one CQA. Salt
concentration in the equilibration/wash buffer was ranked as KMA, since it only affected
the KPI step yield. All remaining process parameters were ranked as non-KPPs and did
not affect CQAs or KPIs within the screened parameter ranges.

Mobile phase pH and salt concentrations were amongst the process parameters showing
the strongest impact on CQAs and KPIs. Thus, Figure 6.4 highlights the effects of mobile
phase conditions during equilibration/wash and elution on the purification result. The
non-linear correlation between elution pH and HMW concentration was identified as the
most considerable effect. The mechanistic model predicted that an elution buffer with
pH above pH 5.9 results in HMW levels violating the upper AC. Typically, the initial
criticality-assessment of process parameters is based on failure mode and effect analysis
(FMEA). The FMEA allows a risk-ranking depending on initial experiments and available
data from process development, historical knowledge from different mAbs at comparable
process steps, and process understanding of subject matter experts. A validated mecha-
nistic model could be used to support a knowledge-based FMEA. The effects of potential
CPPs and KPPs identified via FMEA on CQAs and KPIs are then screened in a DoE ap-
proach. The in silico OFAT screening allowed a rationalized identification of critical input
parameters without experimental limitations. Process understanding leveraged from 550
simulations was used to generate the parameter classifications given in Table 6.2. Such
a number of experiments containing similar amount of information cannot be screened
economically in wet-lab.
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Table 6.2: Criticality assessment of in silico screened process parameters of the CEX
unit operation. Process parameters were classified according to the decision tree depicted
in Figure 6.2.

Process parameter Unit Tested range Effect on
CQA

Effect on
KPI

Classification

pH elution buffer pH 5.5 - 6.1 Yes Yes CMA

Salt elution buffer mM Na+ 230 - 265 Yes Yes CMA

Flow rate elution cm/h 100 - 350 Yes Yes CPP

pH equilibration/
wash buffer

pH 5.5 - 6.1 Yes Yes CMA

Loading density g/LResin 22.5 - 45 Yes Yes CPP

Salt equilibration/
wash buffer

mM Na+ 74 - 99 No Yes KMA

Flow rate loading cm/h 100 - 350 No No non-KPP

pH load pH 5.5 - 6.1 No No non-KPP

Salt load mM Na+ 62 - 85 No No non-KPP

Flow rate wash cm/h 100 - 350 No No non-KPP

Column length mm 270 - 330 No No non-KPP
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Figure 6.4: Criticality assessment of process parameters via in silico OFAT sampling.
Each sub-figure contains the information of 50 simulations at varying process conditions.
The figure shows effects of mobile phase conditions during elution and wash phase on
CQAs and KPIs.
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Following the methodology described in section 6.3.2, upper and lower limits for PARs (not
presented in numbers) were directly derived from the intersection of simulated data and
predefined AC in Figure 6.4. PARs can be established using wet-lab data obtained from
OFAT or DoE studies. Due to experimental limitations, data evaluation is often limited to
first- or second-degree regression modeling. The data in Figure 6.4 reveals how the non-
linear correlations between CQAs and CPPs affect the establishment of PARs. Simple
regression modeling based on a small number of experiments would result in different
PARs. The in silico established PARs could be used as part of the control strategy during
commercial manufacturing. From a regulatory perspective, the process understanding
obtained via OFAT sampling based on mechanistic modeling represents a Level 3 control
strategy [25]. The process control assures product quality meeting the specifications when
a single process parameter deviates within its PAR. Further, the effect of deviating process
parameters on CQAs and KPIs is well-understood enabling the possibility to adapt controls
upstream in the process chain. Potentially, the mechanistic model could be applied to a
Level 1 control strategy, substituting traditional testing of the intermediate product. In
this case, continual generation of in silico data would enable automated adjustment of
process parameters assuring a consistent product quality within the AC [25]. Application
of mechanistic models as soft-sensors in a Level 1 control strategy could be useful for
continuous manufacturing [17, 239], when the adoption of process analytical technology
(PAT) is not feasible.

The applied mechanistic model considered large-scale column dimensions and proper-
ties. Further, the model was validated against manufacturing-scale data. Consequently,
the mechanistic model enabling in silico PAR definition was representative to the final
manufacturing-scale. Traditional DoE approaches rely on scale-down experimentation.
The ICH guidelines support the establishment of PARs using small-scale experimentation.
However, all simplifications and assumptions made during ScDM experimentation must
be justified during approval process. A pure in silico PCS is currently not recommended
if not all CQAs are fully covered by the mechanistic model. Therefore, the following
section focuses on a minimal amount of wet-lab experiments for validating the relevant
correlations between process parameters and CQAs and KPIs.

6.4.2 Identification and Validation of the Edge-of-failure

In the previous section, in silico OFAT screening enabled classification of process param-
eters and establishment of PARs. This chapter aims to validate the identified effects of
process parameters on CQAs and KPIs using experimental data obtained from previous
wet-lab PCS experiments. Here, the minimal number of experiments demanded for vali-
dation of in silico results was compared to the experimental effort of an entirely wet-lab
based PCS. The multi-variate sampling investigated effects on step yield and aggregate
concentration.

Amongst the investigated parameters, mobile phase properties showed the strongest im-
pact on HMW removal and step yield. Mechanistic model predictions showed that an
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increased counter ion concentration and mobile phase pH during the wash phase caused
an early desorption of protein, negatively affecting step yield. Both process parameters,
wash salt concentration and wash pH, were simultaneously varied in silico using a para-
metric sweep study consisting of 400 simulations. As a result, Figure 6.5 (A) shows step
yield as a function of mobile phase conditions during the wash phase. The edge-of-failure
was defined as the cutting curve of the surface function calculated based on in silico results
and the AC for step yield. Set-point conditions for wash salt and pH conditions are located
in the center of x- and y-axis, respectively. Therefore, the contour plot reveals that step
yield cannot fall below the AC when varying only one factor at a time. When increasing
both, salt and pH during wash above set-point conditions the step yield drops from >98%
to a minimum of 77% within the investigated parameter space. Elution of protein during
the wash phase resulted in non-linear correlations between process parameters and step
yield, which would be difficult to cover using an experimentally limited DoE approach
coupled with empirical response surface modeling. The selection of wet-lab experiments
at conditions close to the edge-of-failure (scatter plot in Figure 6.5) validated that a si-
multaneous increase of salt concentration and pH during the wash phase would result in a
violation of the AC for step yield. Instead of conducting wet-lab experiments in the entire
parameter space, in silico identification of the edge-of-failure enabled a reduction of the
experimental design to process conditions relevant for proofing process robustness.

The identical methodology was applied to mobile phase conditions during the elution
phase and their effect on HMW concentration in the elution pool. Figure 6.5 (B) depicts
HMW concentration as a function of elution salt concentration and elution pH. Compared
to elution salt concentration, the elution pH had a strong impact on the HMW levels in
the product. Again, wet-lab experiments around the edge-of-failure could validate the
correlations obtained using in silico data. With targeted experiments close to the in silico
determined edge-of-failure, the total number of wet-lab experiments was reduced from 35
to 9 compared to the traditional DoE-based PCS. The contour plot in Figure 6.5 (B)
supports the finding of the previous OFAT analysis, that elution pH 5.7 could be a more
robust set point, showing an increased distance to the edge-of-failure compared to pH 5.8.
The true capability of the process to deplete HMW species in the desired quantity demands
further in silico analysis considering material and process parameter variability.
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Figure 6.5: Effect of mobile phase conditions on step yield (A) and HMW removal (B).
Scatter plots show the results of wet-lab experiments performed at process conditions close
to the edge-of-failure (green = within AC, red = outside AC). Red contours represent
the edge-of-failure, as the cutting line of model prediction and AC. Each contour plot is
calculated based on 400 simulations at varying process conditions.
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6.4.3 Process Capability and Continual Improvement

Following the QbD elements described by Yu et al. [25], process capability and continual
improvement represents the final building block of the in silico PCS. Process capability
cpk describes the ability of the purification process to achieve CQAs and KPIs located
within the AC under consideration of the intrinsic process variability. As depicted in Fig-
ure 6.3, Monte-Carlo simulation enabled calculation of process capabilities. Feed stream
and process parameter variability was used as model input. The input distributions were
obtained from 20 CEX chromatography cycles at clinical manufacturing-scale. Variance in
load composition and mobile phase properties were approximated with Gaussian probabil-
ity functions. The input variance of the loading density was described by an asymmetric
Gaussian function, with a maximum of 45 g/LResin. 1000 samples were taken from the
distributions calculated based on manufacturing-scale data. The intended mobile phase
pH value of the unit-operation was pH 5.8 for all chromatographic phases. Although a
pH range of pH 5.8±0.1 is well controllable, simulations in Figure 6.4 suggest that pH 5.7
is a more robust set point for HMW removal. Therefore, both elution pH scenarios were
evaluated using the Monte-Carlo method. Figure 6.6 and Figure 6.7 show the resulting
distribution of CQAs and KPIs for pH 5.8 and 5.7, respectively.

The comparison between Figure 6.6 and Figure 6.7 reveals that a reduction of the elution
pH from pH 5.8 to pH 5.7 increases process capability for HMW removal when consid-
ering the intrinsic variance of the CEX unit operation. The capability of the process to
achieve an HMW concentration below the AC increased from 0.43 to 1.54. Assuming nor-
mal distribution of model outputs, the probability for an HMW concentration be located
outside the AC reduced to 0.0004% from 19.4%. The adaption of the elution set point
pH had no negative effect on process capabilities of other CQAs and KPIs. Consequently,
Monte-Carlo simulation could support the decision to shift the set point pH from pH 5.8
to pH 5.7.

Despite the simplification of assuming normal distribution for the majority of CPPs, KPIs,
CMAs, and KMAs as model input, step yield and elution volume showed an asymmetric
distribution at pH 5.7. These trends underline the importance of considering non-linear
correlations in preparative chromatography. Similar to the loading material compositions,
charge variant concentrations in the elution pool were found to be normally distributed.
Process capabilities for charge variants ranged between 0.92 and 1.23. A cpk = 1 corre-
sponds to a distance of 3 sigma between the mean output value and the AC, resulting
in a 0.27% probability for a CQA or KPI to be located outside the AC. Probabilistic
simulation using mechanistic modeling is a simple and effective way to estimate process
capabilities before a sufficient amount of real data from commercial manufacturing cam-
paigns is available. Here, adaption of the set point pH based on Monte-Carlo simulation
improved process robustness with regards to aggregate removal and reduced the risk of
an out of specification (OOS) event. During the product lifecycle, input distributions
for CMAs, KMAs, CPPs. and KPPs can be continuously updated and fed-back into the
mechanistic model. This procedure would allow an early identification of root-causes for
process variability enabling an adjustment of the control strategy if needed.
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Figure 6.6: Monte-Carlo simulation of the CEX unit operation at pH 5.8 during elution
phase. Dashed red lines indicate acceptance criteria. Each data point represents a sim-
ulation at 12000 L manufacturing-scale. Measurement data of 20 clinical manufacturing
runs was used to simulate the variance of load material composition, loading density, pH,
and salt concentrations of the different chromatographic phases
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Figure 6.7: Monte-Carlo simulation of the CEX unit operation at pH 5.7 during elution
phase. Dashed red lines indicate acceptance criteria. Each data point represents one
simulation at 12000 L manufacturing-scale. Measurement data of 20 clinical manufacturing
runs was used to simulate the variance of load material composition, loading density, pH,
and salt concentrations of the different chromatographic phases
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6.5 Conclusion

In the present study, a mechanistic chromatography model was applied to the process
characterization of mAb polishing step. The in silico methodology fulfilled the essential
elements of the QbD concept. OFAT sampling allowed classification of process parameters
and establishment of PARs. Wet-lab studies derived from in silico screening can lead to a
significantly reduced experimental effort compared to purely DoE driven PCS studies. Cal-
culation of process capability considering a posteriori variabilities of feed stream materials
and process parameters at manufacturing-scale enabled the identification of a robust set
point condition. In this study, in silico PCS results were complemented with experimental
data, which reduced the overall impact of mechanistic modeling on the control strategy.
When relying exclusively on in silico predictions, considering the effects of parameter un-
certainty on model predictions will further increase the trust in the final control strategy.
Considering the complexity of polishing chromatography steps compared to other unit
operations in mAb purification processes and the related experimental efforts that must
be invested for their characterization, the here presented in silico techniques have the
potential to debottleneck process development timelines. While accelerating development
and disrupting experimental constraints, mechanistic modeling generated a deep process
understanding ensuring consistent product quality in the light of QbD. This work repre-
sents a possible concept for the application of digital process twins to QbD related tasks in
biopharmaceutical process development, with the focus on preparative chromatography.
The proposed methods could further enable the in silico process characterization of other
unit operations when validated mechanistic models are available.
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7 Conclusion & Outlook

The present thesis removed several roadblocks on the path from the primary structure of a
therapeutic antibody to a robust downstream process. Protein surface analysis and QSPR
modeling were identified as powerful tools to support candidate selection and process op-
timization with a minimal amount of experimental information. The gained knowledge on
relationships between protein structure and process behavior could promote a paradigm
shift in DSP development from a strictly generic platform process to a more flexible pro-
cess design driven by the structural characteristics of antibody candidates. To close the
gap between early- and late-stage DSP development, initial chromatography models built
on protein structure information can be further refined using experimental data that is
collected during the product life cycle. Here, the standardized and straightforward meth-
ods for model calibration, validation, and application could increase the acceptance of
mechanistic modeling by industry and regulatory agencies.

The first part of this thesis demonstrated that sequence optimization of mAb candidates
can influence their downstream processing. Single amino acid substitutions in the CDR
had a significant impact on retention volumes and charge heterogeneity during prepara-
tive CEX chromatography. The identified relationship between mAb structure and CMC
properties may support selection of mAb candidates that integrate into common down-
stream platforms. Further, initial experiments during early-phase DSP development could
be planed based on a structure-based prediction of the binding strength of a mAb in CEX
chromatography. Effects of amino acid substitutions on semi-mechanistic adsorption model
parameters underlined the potential of building QSPR models that support the calibration
of mechanistic chromatography models.

Based on this knowledge and data collected for a diverse set of over twenty biologics,
QSPR models were built for the prediction of SDM parameters using structural descriptors
derived from homology models. Consideration of two conformational states of IgG4 mAbs
allowed for the prediction of split-peak elution profiles CEX chromatography. Coupling of
homology modeling, machine learning, and mechanistic modeling led from the amino acid
sequence to an initial process model that could be used for in silico process optimization.
The addition of parameters defining the non-linear region of the SMA isotherm could
further increase the impact of the applied multiscale modeling workflow for early-stage
process development

To support technology transfer from academia to industry, this thesis introduced a straight-
forward and rapid method for the pH-dependent, multicomponent SMA chromatography
models. The selection of representative process conditions allowed model calibration using
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only two experiments with offline fraction analysis. Fundamental knowledge on prepar-
ative chromatography systematically reduced the number of unknown model parameters
and avoided local minima during parameter estimation. The comparably small confidence
intervals did not only indicate that the chosen experiments were well suited for solving the
estimation problem, but they also fulfill the requirements of advanced applications in DSP
development. Thus, the final chapters explored possible application scenarios in late-stage
DSP that could support the regulatory approval of a commercial manufacturing process.

In silico experimentation at manufacturing-scale has been identified as a suitable alterna-
tive to experimental scale-down models traditionally used for development of chromatog-
raphy processes. The mechanistic model could describe the run-to-run trend of CQAs and
KPIs, due to the consideration of scale dependent effects, as well as minimal variances of
input parameters, such as loading density, material composition, and mobile phase pH and
salt concentration. Thus, the model was not only valid for process conditions beyond the
intended operating ranges, but it could also capture the impact of variances anticipated
during the routine production of the biologic. Simulating larger scales further improved
the understanding of system- and-column specific properties that potentially affect elution
profiles and product quality.

The workflow for in silico process characterization presented in the final chapter of this
work demonstrated how mechanistic chromatography modeling can reduce experimental
efforts during late-stage DSP development. Following the QbD principles, OFAT and mul-
tivariate sampling studies with thousands of simulations were able to reveal the nonlinear
correlations between process parameters and CQAs. Calculation of process capabilities
based on Monte-Carlo simulations was identified as a useful method for the a priori es-
timation of process robustness at manufacturing-scale. While accelerating development,
mechanistic modeling increased process understanding ensuring consistent product quality
and economic production.

The theoretical understanding and computational tools provided by this thesis are already
in use to streamline the development of safe and effective biological drugs. Correlating
protein structural data with mechanistic model parameters and purification outcomes may
be the most promising, if not the only feasible, approach to build models that efficiently
use existing information to give an a priori prediction on a mAbs’ process behavior.
The presented methods focused on CEX chromatography, due to the high experimental
efforts that need to be invested for process optimization and characterization of this unit
operation. In addition, CEX chromatography is a critical factor for product quality and
is mechanistically well understood. Future work should extend the multiscale modeling
techniques to other purification steps in the DSP platform, including AC, HIC, and MMC.
If the fundamental relationships between antibody structure and process behavior are
revealed across the entire DSP platform, the vision of a holistic digital transformation of
DSP development could become a reality.
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Abbreviations

AC Affinity Chromatography
ADC Antibody-Drug Conjugate
AI Artificial Intelligence
APG Acidic Peak Groups
bsAb bispecific Antibody
BPG Basic Peak Groups
CDR Complementarity-Determining Region
CEX Cation Exchange Chromatography
CHO Chinese Hamster Ovary
cIEF Capillary Isoelectric Focusing
CMA Critical Material Attribute
CMC Chemistry, Manufacturing and Controls
COVID-19 Coronavirus-Disease 2019
CPP Critical Process Parameter
CSTR Continuous Stirred-Tank Reactor
CV Column Volume
CQA Critical Quality Attributes
DoE Design of Experiments
DSP Downstream Processing
EAC Equivalence Acceptance Criteria
EMA European Medicines Agency
Fab Fragment antigen binding
Fc Fragment crystallizable region
FDA Food and Drug Administration
FMEA Failure Mode and Effect Analysis
FPLC Fast Protein Liquid Chromatography
Fv Fragment variable region
FR Framework Region
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GMoP Good Modeling Practice
GMP Good Manufacturing Practice
GPR Gaussian Process Regression
GRM General Rate Model
HC Heavy Chain
HCCF Harvested Cell Culture Fluid
HCP Host Cell Protein
HETP Height of an Equivalent Theoretical Plate
HIC Hydrophobic Interaction Chromatography
HMW High Molecular Weight Impurities
HPSCX High Performance Size Exclusion Chromatography
HPSEC High Performance Strong Cation Exchange Chromatography
HTE High-Throughput Experimentation
HTS High-Throughput Screening
IEX Ion-Exchange Chromatography
IgG Immunoglobulin G
KMA Key Material Attribute
KPI Key Performance Indicator
KPP Key Process Parameter
LAC Lower Acceptance Criteria
LC Light Chain
LGE Linear Gradient Elution
LHS Liquid Handling Station
LML Log-Marginal-Likelihood
LMW Low Molecular Weight Impurities
mAb Monoclonal Antibody
MAE Mean Absolute Error
MSE Mean Square Error
NBE New Biological Entity
OFAT One-Factor-at-a-Time Sampling
RMSEP Root Mean Square Error
NRMSEP Normalized Root Mean Square Error of Prediction
PAR Proven Acceptable Range
PAT Process Analytical Technologies
PCS Process Characterization Study
PDB Protein Data Bank
pI Isoelectric Point
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QbD Quality by Design
QSAR Quantitative Structure-Activity Relationship
QSPR Quantitative Structure-Property Relationship
RFE Recursive Feature Elimination
RMSEP Root Mean Square Error of Prediction
SASA Solvent Accessible Surface Area
SD Standard Deviation
SDM Stoichiometric Displacement Model
ScDM Scale-Down Model
SMA Steric Mass-Action
TDM Transport-Dispersive Model
TOST Two One-Sided t-Test
UF/DF Ultrafiltration and Diafiltration
UAC Upper Acceptance Criteria
UPLC Ultra High Performance Liquid Chromatography
USP Upstream Processing
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Symbols

ai Activity M

ci Bulk phase concentration of species i M

cp,i Pore phase concentration of species i M

cs,i Stationary phase concentration of species i M

csalt Salt concentration in mobile phase M

d Column diameter cm

Dapp Apparent dispersion coefficient mm2

s

Dax Axial dispersion coefficient mm2

s

Dpore Pore diffusion coefficient mm2

s

G Gibbs free energy -
G0 Standard Gibbs free energy -
h Ionic hydration number -
kads Adsorption coefficient -
kdes Desorption coefficient -
keff Mass transfer coefficient mm

s

Keq or keq Equilibrium constant of isotherm -
kfilm Film diffusion coefficient mm

s

kkin Kinetic coefficient -
L Column length cm

LCSTR Reactor Length of CSTR cm

N Plate number -
Ni Molar flux of species i mol

s

pKa,i Acid Dissociation Constant
qi Stationary phase concentration of species i M

r Radius mm

rp Particle radius of adsorbent mm

R Ideal gas constant J
kg·K

S Cross Sectional Area mm2

t Time dimension s

T Temperature K
u Effective velocity mm

s

uint Interstitial velocity mm
s

ε Column porosity -
εt Total porosity -
εp Particle porosity -
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Λ Ionic capacity M

ν Characteristic charge -
µ Chemical potential -
µ0 Standard chemical potential -
σ Shielding parameter -
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