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A multi-level stochastic collocation method
for Schrodinger equations with a random potential*
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Abstract. We propose and analyze a numerical method for time-dependent linear Schrédinger equations with
uncertain parameters in both the potential and the initial data. The random parameters are dis-
cretized by stochastic collocation on a sparse grid, and the sample solutions in the nodes are ap-
proximated with the Strang splitting method. The computational work is reduced by a multi-level
strategy, i.e. by combining information obtained from sample solutions computed on different re-
finement levels of the discretization. We prove new error bounds for the time discretization which
take the finite regularity in the stochastic variable into account, and which are crucial to obtain
convergence of the multi-level approach. The predicted cost savings of the multi-level stochastic
collocation method are verified by numerical examples.

Key words. Uncertainty quantification, splitting methods, Strang splitting, Schrédinger equation, sparse grids,
stochastic collocation method, multi-level method

AMS subject classifications. 65M12, 65M15, 656M70, 65D05, 65C20, 35Q41

1. Introduction. In recent years the influence of uncertain parameters on the behaviour
and the simulation of partial differential equations (PDEs) has received increasing attention.
A central goal of uncertainty quantification is to understand these influences in any PDE oc-
curing in real-life phenomena. An important example is the time-dependent linear Schrédinger
equation which describes the evolution of the wave function of a quantum-mechanical system.
The wave function is the key to compute observables such as, e.g., positions and momenta, or
the probability to find the system in a given subset of the state space. Since solving the full
molecular Schrédinger equation is typically impossible, the classical approach is to use the
Born-Oppenheimer approximation to separate the slow motion of the heavy nuclei from the
fast dynamics of the electrons. This leads to a lower-dimensional Schrédinger equation for the
nuclei on an electronic energy surface; cf. [19, I1.2.]. The potential of the reduced equation,
however, is obtained by a number of approximations and simplifications, and is thus affected
by a significant degree of uncertainty. Additional uncertainties arise from the fact that the
initial state of the system can only be measured with limited accuracy. A reliable numerical
treatment of these uncertainties in numerical simulations is desirable and necessary.

From all non-intrusive methods for uncertainty quantification, the arguably most studied
classes are stochastic collocation methods and Monte Carlo type methods — at least from the
numerical analyst’s point of view. Both of these classes rely on sample solutions obtained
from solving the same deterministic PDE with different values of the parameters. From
these sample solutions one may derive, e.g., expectations, variances, higher-order moments
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2 T. JAHNKE, B. STEIN

or other statistical quantities of the solution. In the case of stochastic collocation methods,
one may even obtain a surrogate for the unknown solution itself via a generalised polynomial
chaos approximation or interpolation. Non-intrusive methods have the advantage that any
suitable traditional numerical method can be used to solve the deterministic PDEs, and that
parallelization is trivial because the sample solutions are uncoupled. Stochastic collocation
schemes are discussed, e.g., in [2, 22, 20, 28]. One of the most important extensions of the
standard Monte Carlo approach are Multi-Level Monte Carlo methods [7, 6, 8]. These methods
use information obtained from sample solutions computed on different refinement levels of the
discretization, which decreases the computational work significantly under certain conditions.
For stochastic collocation methods such a multi-level procedure has been introduced and
developed in [25, 26, 12]. In these references it was shown that multi-level stochastic collocation
(MLSC) methods need much lower computational costs than standard collocation methods if
a high accuracy is desired and the regularity of the solution with respect to the parameters is
rather low. The method we propose in this work is closely related to [25].

The multi-index stochastic collocation approach from [10, 9] is perhaps the most important
extension of MLSC. This approach computes an estimator based on mixed difference operators
in all individual spatiotemporal and stochastic dimensions. This is more general than in the
MLSC method described here, where the refinement in the stochastic dimensions is determined
by a single parameter (and the temporal discretisation, too). By solving a simplified knapsack
problem, a quasi optimal multi-index set for the difference operators is selected based on profits
computed from a priori work and error bounds. Another extension of MLSC is presented in
[17], where the approach from [25] was extended in such a way that the adaptive (spatial)
mesh refinement is allowed to vary with the samples. This allows an optimization of the
computational work in each stochastic collocation point which was shown to be superior
to strategies which are only adaptive in the spatial or stochastic discretisation, but ignore
properties of individual samples.

Many stochastic and deterministic PDEs or ODEs can be decomposed into two or more
parts which can be solved numerically with significantly lower computational costs than the en-
tire problem. Splitting methods exploit this property and provide a family of time-integrators
which are both efficient and easy to implement. The accuracy, stability, and the geometric
properties of splitting methods have been thoroughly analyzed in a large number of papers;
examples in the context of the linear Schrodinger equation are, e.g., [1, 5, 11, 14, 18, 19, 21]
and references therein. Applying splitting methods to PDEs with uncertain parameters is
straightforward if a non-intrusive method is chosen to deal with the randomness. Moreover,
error bounds for the full discretization are readily obtained by combining the available error
bounds for splitting methods and for the space discretization with the known convergence
results for non-intrusive methods. This is not true for multi-level stochastic collocation meth-
ods, because here convergence of the method used for computing the sample solutions does not
imply convergence of the multi-level approximation. To obtain convergence of the multi-level
method, certain conditions must be fulfilled, which are required to combine the information
computed on different levels. These conditions involve a stronger norm with respect to the
random parameters, and for splitting methods and other time-integrators, these conditions
cannot be verified with standard results from the literature.
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A MULTI-LEVEL STOCHASTIC COLLOCATION METHOD FOR SCHRODINGER EQUATIONS 3

Goals and results. We propose and analyze a multi-level stochastic collocation method
on sparse grids for time-dependent linear Schrédinger equations with an uncertain potential
and uncertain initial data. We assume that the dimension of the state space is moderate,
but that the parameter set which models the uncertainty can be high-dimensional. The
sample solutions at the nodes of the sparse grid are computed with time discretization by
the Strang splitting method. This yields a method which is efficient and easy to implement.
The focus of our work, however, is on the convergence analysis. We prove new error bounds
for the time discretization, which are the cornerstone to verify conditions for convergence
of the multi-level stochastic collocation method. The main challenge is the fact that the
linear Schrodinger equation is neither elliptic nor parabolic, such that typical solutions have
only finite regularity. Our work is the first convergence analysis for a multi-level stochastic
collocation method with time discretization by a splitting method. Splitting methods within
the framework of stochastic Galerkin methods — which are not the subject of our paper — have
been analyzed, e.g., in [16, 27, 4].

Structure of this paper. In Section 2 the problem setting is introduced. The Strang splitting
method and stochastic collocation methods on sparse grids are reviewed in Subsections 3.1 and
3.2, respectively. In Subsection 3.3 we explain how the techniques can be combined to obtain a
single-level method. This approach is then extended to a multi-level version in Subsection 4.1.
In particular, conditions for convergence of the multi-level stochastic collocation method are
formulated; cf. Assumptions 2 and 3. In Subsection 4.2 we present our main result (Theorem 3)
and show that the conditions for convergence can be verified with this theorem. Since the
proof is rather long and technical, it is postponed to Section 7. The efficiency of the method
is discussed in Section 5 and the computational savings are confirmed by numerical examples
in Section 6.

2. Linear Schrodinger equations with random data. We consider the parametric linear
Schrédinger equation

(218)  Qult,z,y) = idult,a,y) +iV (@, yult,zy),  te[0,T], TP, yeT,

with solution u: [0, T] x TP xT' — C, where T is the length of the time interval, T” = (R/Z)?
denotes the D-dimensional torus, I' is some compact parameter set and V (-,y) € L>(TP) is
a bounded real-valued potential. With no loss of generality we assume that I' = [—1,1]%. The
solution u = u(t,z,y) depends on the temporal variable ¢, the spatial variable x, and on a
parameter vector y which accounts for uncertainty in the potential V and the initial data wuy.
These uncertainties are caused, e.g., by modelling or measurement errors.

The focus of this paper is on the t- and y-discretizations, whereas no discretization in
x is made. The space discretization of (2.1) can be carried out with standard methods,
which is briefly addressed in the context of the numerical experiments in Section 6. Most
of the time, the spatial variable x will be hidden in our notation: instead of denoting the
solution by u = u(t,x,y), we consider u(t,y) : z — u(t,z,y) as an element in the Hilbert
space X = L2(TP). With this convention, (2.1) can be formulated as a parameter-dependent
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4 T. JAHNKE, B. STEIN

abstract Cauchy problem

(2.2a) dwu(t,y) = iAu(t,y) +iV(y)u(t,y), tel0,T], yeT,
(22b) U(O,y) = uO(y)a Yy e F:

with solution w: [0,7] x I' = X. The operator
H(y.) = A+V(y): H(T") —» X

is self-adjoint for every y, € I" by the Kato-Rellich theorem [15, Chapter V.4.1, Theorem 4.3].
Hence, iH (1, ) generates a strongly continuous unitary group (e*(#+)),cg by Stone’s theorem
[24, Chapter 1.10, Theorem 10.8], which means that for every y,, (2.2) has a unique solution
u(t,y,) = " W)yg(y,) with constant norm. Throughout we assume that ||ug(y)||x = 1 for
all y, such that ||u(t,y)||x =1 for all ¢ and all y.

The following assumption on the parameter space is made henceforth.

Assumption 1. The variable y € I' corresponds to a realization of a random variable Y ~
U(—1,1)% with uniform probability density o(y) = zid.

This assumption is made in order to use a particular error estimate for the sparse grid inter-
polation which is given in Subsection 3.2. Our results could also be adapted to other choices
of I" and o. In particular, every bounded probability density ¢ on I' = [—1, 1]¢ can be handled,
since it defines a weaker norm. If ¢ is also bounded from below, then the induced norms are
even equivalent. Problems with, e.g., different probability measures and different abscissas in
each direction could also be treated. The requirement that I' is compact, however, is essential.

3. Discretization of time and of the parameter set.

3.1. Time discretization with the Strang splitting method. In this subsection we con-
sider (2.2) without uncertainty or, equivalently, for a fized vector y = y, € I'. In this case,
a very popular and widely used method to approximate the solution is the Strang splitting
method

(31) aﬂ(y*) = (bT(y*)an*l(y*) = eiTV(y*)/2eiTAeiTV(y*)/2ﬂnfl(y*)v n= 17 27 R

which successively computes approximations , (yx) = u(tn, y«) at times ¢, = nT with a given
step-size T > 0; see, e.g., [1, 5, 11, 14, 18, 19, 21] and references therein. Note that u,(y.) =
O (y.)uo(yx) for n € Ng with the notation ®9(y,) = Id and ®%(ys) = D, (ys)(Pr(yx))" L.
The Strang splitting is a time-reversible second-order method with a unitary numerical flow.
This method is particularly efficient when combined with a pseudo-spectral method for space
discretization, because then e™® can be computed by means of the Fast Fourier transform:;
see, e.g., Section I1.1.3 in [19].

The accuracy of the Strang splitting was analyzed, e.g., in [19, I11.3.2] and in a more
general setting in [14, Section 2-3]. In these references, the following error bounds are shown.
Here and below, the commutator of two operators A and B is denoted by [A, B] = AB — BA,
and || - ||x is the usual norm of X = L2(TP).

Theorem 1. Let y = y, € T be fized and let u(t,y,) = eH@)ug(y,) be the exact solution
of (2.2).

This manuscript is for review purposes only.
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A MULTI-LEVEL STOCHASTIC COLLOCATION METHOD FOR SCHRODINGER EQUATIONS 5

(i) If V(ys) € L®(TP) and if the commutator bound
(3.2) IV (), Alwlx < Cllwl| g o),
holds for all w € H*(TP), then there is a constant Cy such that
(3.3) 7@ w — @ rw||x < Crr?l|wl| g ey

for every w € HY(TP). If in addition uo(yx) € H'(TP), then there is a constant Co
such that

(34) ) = o) x < Cotr s (s, ) oo

foralln € No witht, = nt € [0,T]. The constants Cy and Cy depend on ||V (ys) || o (0]
and on C from (3.2), but not on 7.
(ii) Suppose that the assumptions from part (i) hold. If the commutator bound

(3.5) TV (yx)s AL, Alwllx < Cllwl 2oy,
holds for all w € H*(TP), then there is a constant Cy such that
(3.6) e w — @rwx < Crrlllw] g2 (ro),

for every w € H*(TP). If in addition ug(ys) € H?*(TP), then there is a constant Cy
such that

(3.7) u(tn, ) = PFuo(y:)|lx < Catt? Jmax [[u(s, g)llcre).
for alln € No witht, = nt € [0,T]. The constants C1 and Cy depend on ||V (ys) || oo (o)
and on the constants in the commutator bounds (3.2) and (3.5), but not on 7.

The inequalities (3.3) and (3.6) are bounds for the local error, i.e. for the error after only
one time-step. The global error after many time-steps is estimated in (3.4) and (3.7). The
convergence rate in part (ii) is higher: (3.7) yields second order convergence with respect to
7, whereas (3.4) yields only convergence with order one. On the other hand, the assumptions
in part (ii) are stronger.

Remark 1. The commutator bounds are related to the spatial reqularity of the potential
V(ye). If V(ys) € W22(TP), then the commutator

(A, V(y)]w = (AV(ye))w + 2VV (y) - Vw + V(ye) Aw — V (y,) Aw
= (AV(yx))w +2VV (y,) - Vw

is only a first-order differential operator — it involves second-order derivatives of V (y4), but
only first-order derivatives of the function w to which the commutator is applied. Hence, the
commutator bound (3.2) holds with a constant which depends on ||V (ys)|ly2.00(rp). In a similar
way, it can be checked by a tedious but straightforward calculation that the double commutator
[[A, V(y)], Al is only a second-order differential operator if V(y) € WH(TP), because the

fourth-order derivatives cancel; cf. [19, page 99]. As a consequence, the commutator bound

(3.5) holds with a constant which depends on ||V (y)|ly 4.0 (10)-

This manuscript is for review purposes only.
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6 T. JAHNKE, B. STEIN

3.2. Sparse grid discretization of the parameter set. The Strang splitting allows us to
compute accurate approximations ®"ug(yy) ~ et ¥y (y,) to the solution of (2.2) for every
single y, € T'. However, this is not enough, since our goal is to approximate y — u(t,,y) for
all values of y simultaneously. The principle of stochastic collocation is to compute ®”ug(y;) ~
u(tn,y;) for finitely many vectors yi,...,y, € I', and then to use these values to construct
an interpolant. But since the dimension d of the parameter space I' = [—1,1]¢ is typically
not small, one has to choose the collocation points y,...,y, carefully to avoid the curse
of dimension, i.e. the effect that for a fixed accuracy the number of nodes n has to grow
exponentially in d. We use sparse grids to choose y1,...,y, in order to alleviate the curse of
dimension to a certain extent.

The following description of the interpolation process follows the presentation in [23,
Sec. 2.1]. Let Pp,,(X) = P, ® X, where P,,, is the space of univariate polynomials on
[—1,1] with complex coefficients and degree not larger than m;. For any index ¢ € N, let

Y. ,yfm € [—1,1] be a set of abscissas and let
m;
(3.8) Qi: C([-1,1], X) = P,,,.(X), Z w(yh) i (y
be the corresponding interpolation operator. Here, 63., j=1,...,m;, are the Lagrange poly-
nomials corresponding to the abscissas y, ... ,yfni. The index ¢ determines the accuracy of

the interpolation, while m; is the corresponding number of nodes actually used by ;. The
mapping ¢ — m; is called growth rule.
In the multivariate setting the full tensor product interpolation formula corresponding to

a multi-index i = (i1, ...,iq) € N¢ is given by
mil mid
Quu=(Qn® - @Qiw= ) > wly, ..y @ L)
a=l jg=1

for w € C([-1,1]4, X). Clearly, m;, m;, - - - m;, function evaluations of w are necessary to com-
pute Qjw. The sparse grid interpolation with level parameter £ is now defined via Smolyak’s
formula

(3.9) A, dyw =Y (—1)HH (z fd_l |i‘)in, w e C(]-1,1)4, X),

iEIg

where T, = {i € N? | £ +1 < |i| < £+ d}. The nodes of the sparse grid are all points where w
is evaluated, i.e.

{(y;i;...,y;g): i€y, jee{l,...,my} ke {1,...,d}.}
More points and hence more accurate approximations are obtained with a larger value of /.

The notation A(¢, d) is often used in the literature, but in the following sections, A(¢, d) will
be denoted by Q, (without indicating the dimension) in order to express its relation to the

This manuscript is for review purposes only.
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A MULTI-LEVEL STOCHASTIC COLLOCATION METHOD FOR SCHRODINGER EQUATIONS 7

one-dimensional constituents @;;. The number of points needed to evaluate Quw = A(¢, d)w
is denoted by 7.

Now the collocation points y1,...,y;, of the stochastic collocation method are simply
chosen to be the nodes (3.2) of a sparse grid with a suitable enumeration. These nodes,
however, depend on the abscissas yé, which can be chosen in several ways. We decide for the
Clenshaw-Curtis abscissas

, m(j—1) .
(310) y; — — COS <7’nz—1> y J = 17 ceey My,

for i > 1 and yjl = 0 with the usual weights, and with growth rule
(3.11) my =1, m; =271 41, i>1.

This choice implies that the abscissas for ); are a subset of the abscissas for ();+1 and hence the
corresponding grids are nested. In [3, Prop. 6], it was shown that the corresponding sparse grid
interpolation operator Q, = A(¢,d) is actually interpolatory whenever the one-dimensional
interpolation grids are nested, which is not clear from the definition (3.9) itself.

For k € Ny we consider spaces of continuously differentiable functions given by

mix

Ck (FaX) = {w: I'—-X ‘ 8;’[0 € C(F’X)7 j = (jla-"ujd) € Ng’ ‘j|oo < k}
with norm

W| ok . = max || w , Wl or.x) = sup [|[w(y)| x.
I ||lex(l“,X) |J.|00SkH Y ”C(F,X) 0] r,.x) yeFH €l

These spaces are typically used to establish error bounds for interpolation on sparse grids, see
e.g. [3] and [23]. Note that C*. (T, X) is larger than the classical function space C*(T', X),

m

which is defined with [j|; < k instead of |jlo < k . Let I denote the identity operator. For

w e CF. (I, X) with k € N, Eq. (3.28) in [23] yields the bound
C ky\d 2de—kt
(I = Qo)wlcrx) < m(c(l +29)(+ 1727 wller (r x)
(3.12) < C(k,d)(£ + 1)%227 % jw|| (r.X)"

One may also obtain a version of (3.12) where accuracy is expressed in terms of the number
of nodes 77 = 7y in the sparse grid. In [3], the estimate

(3.13) I(7 = Qo)wllew x) < Ok, )y~ (og(m) * D w]l x5

was given. Slightly better (but more complicated) estimates were stated in [23, Sec. 3.1.1].

3.3. Single-level stochastic collocation method. The sparse grid discretization of " can
now be combined with the time discretization from 3.1. This yields the following stochastic
collocation method.

1. Choose a level parameter £ € N, = 1, and compute the nodes y1,...,y, € I' of the
associated sparse grid. Choose N € N and set the step-size to 7 = T'/N.

This manuscript is for review purposes only.
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8 T. JAHNKE, B. STEIN

2. For every j=1,...,n and every n =1,..., N compute approximations

un(yj) = 7 (y5)uo(yy) ~ u(tn,y;)

with the Strang splitting.
3. For every n = 1,..., N compute the interpolation polynomial Q,®"uy of the data
(yj,un(y;)), j =1,...,n. This yields an approximation to y — u(ty,y).
The step-size 7 = T/N determines the accuracy of the temporal approximations, whereas
the accuracy of the y-approximations depends on the level parameter ¢ from the previous
subsection.

4. Multi-level stochastic collocation with Strang splitting. The single-level stochastic
collocation method can be used to approximate y +— u(t,,y) at every time point t,. In
situations where a very accurate approximation is sought-after or where the regularity in y is
low such that a very fine sparse grid is required, the efficiency can be improved considerably
by multi-level stochastic collocation methods — at least if certain conditions are met. Such
methods have been proposed and analyzed in [25, 26, 12]. For more recent works containing
remarkable extensions of the approach consider [10, 9, 17].

In the next subsection, we briefly outline how to construct such a multi-level method for
(2.2). We closely follow the presentation in [25], where an elliptic problem was considered.

4.1. The multi-level method and conditions for convergence. In the previous section,
the sparse grid interpolation operator on level £ was denoted by Qp, and the number of nodes
by 1. Because of (3.13), however, we will henceforth index the interpolation operator by the
number of points of the sparse grid, i.e. we use the notation 9, instead of Q,. Moreover, we
pretend that Q, could be defined for arbitrary n € N, although this is actually only true if n
is the number of nodes of a sparse grid.

Assume for simplicity that only an approximation at the final time 7" is supposed to be
computed; approximations at several times are discussed in Remark 2 below. Given a set of
collocation points y1,...,y, € I' and a number NV € N, the numerical solution at T' =ty = N7
computed with step-size 7 = T'/N is denoted by

The upper index “(SL)” stands for single-level, referring to the fact that only a single point set
{yq: ¢ =1,...,n} and a single step-size 7 are used to compute u%STL ). In contrast, multi-level
collocation is based on computations with several different step-sizes and point sets.

Choose Ny € N, set 79 = T/Np, and 7; = 2777 for j € Ny, such that (7)jen, is a
decreasing sequence of step-sizes. Each of these step-sizes induces a numerical flow &, and a
number of time-steps IN; = 27 Ny to reach the final time 7" = 7;N;. For simplicity, the notation

N.
Ur, = O/ ug = u(T,-)

is used henceforth. As ug = ugp(y), w(T,y) and &, = ®,(y) depend on y, the approximations
qusf ) = u%sf ) (y) and ur, = ur,(y) are functions in y as well, but the argument “(y)” will often

be omitted to improve readability.

This manuscript is for review purposes only.
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A MULTI-LEVEL STOCHASTIC COLLOCATION METHOD FOR SCHRODINGER EQUATIONS 9

Assumption 2. Suppose that there exists constants o, Cp > 0 such that
|u(T, ") = urllcr x) < Crj

for all 7 € Ny.

Let (1¢)een, be an increasing (but not necessarily strictly increasing) sequence of integers,
and let Q,, be an interpolation operator based on 7, nodes. According to (3.13) we expect that
Qi is more accurate than Qy, if 9,41 > 1. On the other hand, the cost of one evaluation of
Qy, is proportional to n,. The following assumption is very similar to the assumptions made
in [25].

Assumption 3. There exist constants Cr,Cy, B, > 0 and an index k € N such that the
following holds:

(4.12) o= Quollex) < Comlollex oy Jor all v e Chiy (I X),
(4.1b) Ur, = (I)gjug e CF. (I, X) for all j € Ny,
(4.1¢c) [, ”CII:ﬂX(FJ() < C*TO for all j € Ny,
(4.1d) tr;yy — tr HCr’EiX(FvX) < C’*TfJrl for all j € Ny.

After these preparations we are in a position to formulate the multi-level stocastic collo-
cation (MLSC) method. We set u, , = 0 and start with the telescoping sum

J

N.
(4.2) Up, = Z<UTJ’ —Ur;_,), Ur, = P77 ug.
j=0

In practice, only an interpolation of each u,; can be computed, not u,; itself. The most obvious
approach would be to interpolate every difference under the sum with the same interpolation
operator. In order to reach a given accuracy, however, it is much more efficient to balance the
two errors caused by time-integration and interpolation in a near-optimal way. If j increases,
then (4.1d) implies that the difference u,, —u,,_, decreases and can thus be interpolated with
a coarser (but cheaper) interpolation operator. Conversely, a more accurate interpolation has
to be used for the summands with small j, but for those terms, the time-integration is less
costly. This suggests to define the multi-level approximation uSML) by

J
(ML) _ _ SL) SL
(4‘3) Uy - Z Q”J—j [UTJ Uy 1 - Z ( £7J 3T %J )Jv"'jfl) ’
=0

Jj=0

<

Next, the sequence (7;);en, has to be specified. Applying the triangle inequality to the
global error yields

(T, ) — uS"™ o x) < (T, ) = ury o) + e, — w8 llorx) = (T) + (1D).

We show that for a suitable choice of (7;);en,, the error components (I) and (II) converge at
the same rate, which implies convergence of the multi-level approximation.

This manuscript is for review purposes only.
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The term (I) = [|u(T,-) — ur,|lc(r,x) is the error of the time discretization with the
splitting method. By Assumption 2 there are parameters a, C7 > 0 independent of 7; such
that (I) < Cp7§. From (4.2) and Assumption 3, we may estimate the stochastic collocation
error as

<

]~

[(ury = try_y) = Qn,_, (ry — ufjfl)Hc(FX Z Cuny 2y
=0 i=

Choosing a sequence (7)) en, With

_ -1 o4 —
(4.4) s < Cr((J+1)CrC) " g ?
yields (II) < Cp7§, such that the error contribution from (II) and (I) is basically the same.
It follows that

(4.5) |u(T,-) — UJ HC(F X) <2Cr7§,

which means that the multi-level approximation converges as J — oco. However, the conver-
gence relies on the somewhat abstract Assumptions 2 and 3. The next step is to verify these
assumptions for the Strang splitting applied to (2.2).

Remark 2. In exactly the same way approximations at the times 19, 279,370,...,No1o =T
could be computed. However, the efficiency of the multi-level method comes from the fact that
some approrimations are made with a rather large step-size 7; < 7. If No is rather large
and thus even the mazimal step-size 1o = T /N is rather small, then the efficiency is typically
reduced.

4.2. Verification of the conditions for convergence. Theorem 1 yields the pointwise
error bound

N; o
(4.6) [T’ yx) = ur (g)l x = 1u(T 4) — P uo(ys) | x < C7j

for every single y, with & = 1 or a = 2, depending on the spatial regularity of the initial data
and the potential. Extending this result to an error bound in || - [[¢(r x) is straightforward if
the regularity assumptions in Theorem 1 hold uniformly in y, which will be shown below.

For functions v: I' — X which admit a holomorphic extension to a complex polyellipse it
can be shown that [|v — Qv x) < O(n, "), but for functions of finite regularity, as in our
case, the error estimate (3.13) contains a logarithmic factor log(n,)* with E = (k+2)(d—1)+1.
To the best of our knowledge, it is not really possible to include this factor into the construction
of the multi-level method and into the analysis in Section 5.1. To get around this problem
one can simply use that log(n,)¥ < Cn, for a constant C' which depends on k and d, but not
on 1. Hence, the estimate (4.1a) in Assumption 3 holds with u = k — 1. Of course, the loss
of one order of convergence is often way too pessimistic.

The main challenge is to prove that the remaining parts of Assumption 3 are true. Accord-
ing to (4.1b) it has to be shown that the numerical solution has a certain degree of smoothness
with respect to y. In order to confirm (4.1d) the difference between two appoximations with
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different step-sizes has to be bounded in the stronger norm. Such a result cannot be deduced
from the classical pointwise error bound (4.6). The larger k, the faster is the convergence of
the sparse grid interpolation in (4.1a) (since we can choose p = k — 1), but the stronger are
the conditions (4.1b), (4.1c), and (4.1d).

Our main result is Theorem 3 below. It implies in particular that Assumptions 2 and 3
hold if the initial data and the potential are sufficiently regular. The corresponding conditions
are now formulated in detail.

Assumption 4. Let ug € C*. (T, H*(TP)) for some k € Np.

m

Assumption 5. Let V € CF. (T, W2>(TP)) for some k € Ny.

m.

Assumption 5 means that
(4.7) ”a;a;nV”C(F,LOO(TD)) <C, rfi <s, |m|e <k

holds for s = 2. Replacing V(y.) in Remark 1 by 0;"V (y) and using that partial derivatives
with respect to = and y are independent shows that (4.7) implies the commutator bound

(4.8) 110,°V, Alwllor.x) < Cllwller,mr ey,  |Imle <k

for all w € C(I', H'(TP)). Assumption 4 and the commutator bound (4.8) are generalizations
of the assumptions made in part (i) of Theorem 1. We will show that this is sufficient to verify
(4.1c) and (4.1d) in Assumption 3 for 5 = 1. In order to obtain § = 2 in (4.1c) and (4.1d),
more regularity is required, i.e. Assumption 5 has to be replaced by the following one.

Assumption 6. Let V € Ck. (I, W4°°(TD)) for some k € Ny.

m.

Assumption 6 implies Assumption 5 and, as in Remark 1, the commutator bound
(4.9) 1[0V, A, Alwllor,x) < Cllwller,m2rry), im|o <k

for all w € C(T', H*(TP)), which is a generalization of (3.5).

Assumption 4, 5, and 6 can be easily checked in practice, because these assumptions
concern the given initial data and the given potential. In contrast, the abstract conditions
(4.1b), (4.1¢), and (4.1d) refer to the numerical solution, which is not known a priori.

Theorem 2. Suppose that Assumption 4 and Assumption 5 hold for some k € Ny. Then,
the classical solution of the initial value problem (2.2) has the reqularity

ue CH[0,T),CEL (T, X)) N C([0,T), CE (T, H*(TP))).

The proof of Theorem 2 is based on classical techniques from semigroup theory and can be
found in the supplementary material, Section SM1. A consequence of Theorem 2 is that

(s) _
(4.10) My = e, lut, Mer @ msrry)

is well-defined for s € {1,2}.
We are now ready to state our main results. The proofs are quite long and therefore
postponed to later sections.
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419 Theorem 3. Let 0 < 7 < 1 and set t, = nt. Let H(y) = A+ V(y) such that the exact
120 solution of (2.2) is u(t,y) = e Wygy(y).
421 (i) If Assumption 4 and Assumption 5 are true with the same k € Ny, then ®Tuy €

422 Ck. (T, X) for all n. Moreover, there is a constant C such that

133 lu(ty,-) — (I)Z“O”Cgix(r,x) < C’M]gl)T for  t,=n7t€0,T]

425 with M,gl) defined by (4.10). The constant C depends on T and on the constants in
426 (4.8) and (4.7) with s = 2.

427 (ii) If, in addition, Assumption 6 is true with the same k € Ny, then there is a constant
428 C such that

138 |lu(tn, ) — CDZUOHC,&X(F,X) < CM;§2)72 for t, =n7 €[0,7]

431 with M,gm defined by (4.10). The constant C depends on T and on the constants in
432 (4.9) and (4.7) with s = 4.

433 The proof of Theorem 3 is given in Section 7. Choosing k = 0 shows that Assumption 2 holds
134 with « = 8 =1 1n case (i) and « = 8 = 2 in case (ii).
435 Verification of (4.1b), (4.1c), and (4.1d). Applying Theorem 3 with n = N;, 7 = 7; =
436 T/Nj and t,, = T verifies (4.1b) and yields the bound

1 (T, ) = uryllexrx) < CMP7)

439 with 8 =1 in case (i) and 8 = 2 in case (ii). With TjﬁH + Tf =(1+ 25)Tf+1 it follows that

140 [trs o = urller o x) < My = () ller @ xy + ulTs) —urlior. 0 x)
e (8) B
445 < CMk- (1+ 2ﬁ)7j+1

443 such that (4.1d) is true. Moreover, the estimate

0

5 MO
lur o 0x) < llury = (T, Mge, o) + (T lorrx) < (CMé '+ ) 7

446 shows that (4.1c) holds for a sufficiently large C..
447 5. Efficiency of the multi-level approximation.

448 5.1. Computational costs for a given accuracy. Here we consider the computational cost

449 required to achieve a desired accuracy ¢ with the MLSC method. This analysis relies on the

450 convergence rates from Assumptions 2 and 3.

451 In the rest of this section we use the following notation: It holds a < b if and only if a < Cb
2 for some constant C' which is independent of the step-size 7, the number of interpolation points

3 n, the level j, and the accuracy . Similarly, we have a =< b if and only if a = Cb for some

I constant C' with the same properties.

5 Let Cj denote the cost of “evaluating” u,; — ur,_, at a sample y. Since the number of

456 time steps of the splitting method is N; = T'/7;, it is natural to assume the following.
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A MULTI-LEVEL STOCHASTIC COLLOCATION METHOD FOR SCHRODINGER EQUATIONS 13

Assumption 7. C; < ijl.
The total computational cost of the MLSC approximation (4.3) is defined as

J
1) T e
j=0

The following result quantifies the cost which is needed to achieve an accuracy of € with the
MLSC method.

Theorem 4. Suppose that Assumption 4 — 7 hold and assume that o > min{S, u}. Then,
for given e < e, there exists J € Ny and a sequence (nj)}lzo of real numbers such that

ML
(5.2) la(T, ) = uf™llewx) < €
and simultaneously
6_5, p < B,
O < el log(e)| T E, =,
_1_p=B
N uw> .

The sequence (773')3‘]:0 is explicitly given by

(5.3) ni—; = (2C1C, max{ry , 1}S(J)) /1= /=i BN/ (+) =i — 0 .. ],

where y
S(J) = Z 9= (B—n)/(p+1)
§=0
Proof. The proof is the same as in [25, Thm. 4.2]. [ |

In Subsection 4.2 we have seen that Theorem 3 yields o = 5 = 1 (under Assumption 4 and
5) or a = § = 2 (under Assumption 4 and 6). In both cases the requirement « > min{g, u}

is satisfied. For o = 8 = 2, Theorem 4 implies that ||u(T,-) — u(JML)HC(F’X) < ¢ holds with

1
gk, p<2,
CMD < { ez [log(e)|2, p=2,
5_%, w> 2.

The optimal choice for n;_; gives in general only a real number, not an integer. In
practice, however, the interpolation operators Q,,, are only available for certain integer levels
£ corresponding to m = my, the number of interpolation points on that level. To determine
a practicable family (ﬁj)}'fzo as a replacement for (nj)jzo, one could simply choose the next
integer 7); = my(;) for which an interpolation operator (and hence an associated sparse grid)
is available, i.e.

(5.4) n; =min{mg: £ € N, n; <my}, j=0,...,J.
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This choice may not lead precisely to the cost estimate from Theorem 4, but in practice one
often observes that the cost behaves nearly as predicted. However, one should be aware of the
fact that the sequence (my)gen usually grows exponentially in case of nested point sequences,
see e.g. (3.11) for the growth rule which is usually applied with Clenshaw-Curtis points. Hence,
7; might be up to twice as large as 7; in some cases, which could be crucial if the stochastic
dimensions d is large, or if very accurate solutions (and hence large values of 1) are required.
In such cases, the simple choice (5.4) could severely influence the cost behaviour of the MLSC
method. This is the main reason why other strategies to determine (ﬁj)}'lzo are discussed in
[25, Rem. 6.1, 6.3]. In our numerical experiments, we will also use the strategy described as
“up/down” in their article.

In some applications the goal is not to approximate the wave function wu itself, but rather
a quantity of interest. Typical quantities of interest in case of a single particle are its position

(5.5) P: X - RP, u z|u(z)|?dz,
™D

or the probability that the particle is located in a set S C TP,
(5.6) Ms: X - R,  ur— / Ju(z)|*dz.
S

For continuously Fréchet differentiable observables x(u) of the wave function u, the rate of
convergence is at least as good as for the wave function itself, and Theorem 4 is true if
lu(T,-) — uf]ML)]]C(F, x) is replaced by the corresponding expected error in the quantity of
interest. We omit the details.

5.2. Comparison with single level collocation methods. Under the assumptions of The-
orem 4, the error of the single-level collocation method can be bounded by

(T, ) = w2 || < Crrd + Crllurllex i x)ni"

T, Tk

for any admissible 7, € N and 7. > 0. To make both contributions equal to £/2 (or ¢, since

1
we ignore constants anyway), one can choose 7, ~ e and N« ~ & #. The computational cost
to achieve the total error ¢ is then bounded by

(5.7) oL = T o cmuma,

Tx

To compare this with Theorem 4, we consider the quotient CE(ML) /CE(SL) which indicates
the cost reduction of the multi-level approach compared to the single-level approach. By
Theorem 4 and (5.7), we have

1

ga, p<p,

CE(ML) . 1 1+1
(5.8) G~ 8‘*6\ log(e)|""#, p=p,
© gan, w>p.
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Note that only the decay rate in € and p is meaningful in the above discussion of the cost
savings, because constants which appear in CE(ML) and CE(SLE have been ignored.

For a = 8 = 2 we observe that the cost reductions are ea = e3 for low regularity (u < 2),
&téllog(e)\?’/2 for p = 2 and 5«1% — ¢ for higher regularity (u > 2). Clearly, the savings are
most noticeable if the regularity p of the solution is rather low (and hence generally more levels
are required) and the tolerance is small. Figure 1 below gives a picture of this situation (dark
blue is best, yellow means “no savings”). Note that (5.8) considered as a function in p and ¢
has a discontinuity at 4 = 8 = 2 due to the logarithmic term. Since this case corresponds to
a null set, however, we have plotted (5.8) only for x> 2 and p < 2 for better visibility.

10°

107

Figure 1. Cost reduction (5.8) of the multi-level approach

6. Numerical experiments. For the following numerical tests we consider the equation

(6.1a) Owu(t,z,y) = %(ﬁu(t,x,y) +iV(z,y)u(t, x,y), tel0,T], zeT, yel,
(6.1b) u(0,z,y) = uo(zx,y), zeT, yel.
Recall that the random variables Y7, ..., Yy which correspond to the parameters y1, ..., yq are

uniformly distributed on [—1, 1] by Assumption 1.

In order to study the convergence of the MLSC method we compare the final approxi-
mation at time 7" with a reference solution wuef(7, -, ). Now we explain how such a reference
solution may be obtained. In order to simplify the corresponding formulas, the factor 1/2 in
front of the second derivative was introduced in (6.1a). This factor was missing in (2.1) but
does not affect the preceding analysis substantially.

Reference solution. If we replace the torus T by R and assume that the potential is a
polynomial of degree 2 with representation

(6.2) V(z,y) = —v(y)(z — k(y))* —1(y),

This manuscript is for review purposes only.
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16 T. JAHNKE, B. STEIN

then a family of solutions to the linear Schrodinger equation is given by parametrized Gaus-
sians

(6.3a) u(t,z,y) = Gpr(w(tmy))
(6‘3b) with w(tv T, y) = %C(tv y) (.%' - Q(ta y>)2 + ip(t, y) (.I' - Q(t7 y)) + if(ta y)v

cf. [19, Sec. I1.4.1]. The functions p(t,y),q(t,y) € R and C(t,y),&(t,y) € C are related via
the four ODEs

(6.4a) oq(t,y) = p(t,y),

(6.4b) aip(t,y) = —2v(y)(q(t, y) — £(y)),

(6.4c) (L, y) = IC(;’ v) + %p(t, y)? —v(w)(q(t,y) — w(y)* —(y),
(6.4d) 0iC(t,y) = —C(t,y)* — 2v(y),

supplied with initial values. If the imaginary part of C(t,y) is strictly positive for ¢ = 0,
then this is the case for all ¢, such that |u(¢,-,y)| is a real Gaussian. However, neither the
potential (6.2) nor the solution (6.3) are periodic in space, and thus this construction does
not seem to be compatible with the PDE (6.1) on the torus. But the complex Gaussian (6.3)
decays exponentially, and as long as it is almost zero outside the interval [—L, L] for all ¢
and y, the error caused by imposing periodic boundary conditions at +L is negligible; cf. [19,
p. 75]. Hence, (6.3) provides highly accurate solutions to the Schrédinger equation on the
torus if the interval [—L, L] is sufficiently large. For the same reason, one can expect that the
error bounds from Theorem 3 remain true although the underlying assumptions are, strictly
speaking, not met.

In order to obtain a reference solution to (6.1)—(6.2) with initial data ug(x, y) = exp(w(0, z,y)),}

Nyef = 10.000 (pseudo-)random vectors 4!, ..., yNer € T were drawn from the joint distribu-
tion of Y ~ U((—1,1)%). For each y/ the ODE system (6.4) was solved with a Dormand-Prince
method with relative error tolerance set to 10710, This approach was chosen in order to keep
the reference solution independent of the concepts used for the MLSC method (splitting, sparse
grids, collocation). Since we focus on the error induced by discretizing the parameter set I’
and time, however, we have used the same space discretization for the reference solution and
for the MLSC method, namely Fourier collocation with M = 20 grid points. Computations
were made on the time interval [0, 1] and the spatial domain [—3m, 37] with periodic boundary
conditions. All errors were computed at the endpoint t = T" = 1 of the time interval.

Two-dimensional example. As a first test, we chose the following parametrization in d = 2
dimensions. For y = (y1,y2) € T the potential (6.2) with

v =14tz s =g (1450 +m) . A0 =14 G +aR)

and noise parameter § = % was used. The initial values at time ¢t = 0 were set to

o .
(0(0, v),4(0,9), p(0,), (0, y)) = (1 + Zyg +1i,—2 + dyiy3, 2, 1) :
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which defines u(0,z,y) via (6.3).

Since the potential and the initial data are smooth enough, Theorem 3 can be applied with
a = B = 2, which justifies Assumption 2 and 3. In order to illustrate Theorem 4, however, the
values of u and of the product C;C, had to be determined numerically, because the optimal
choice of ny_; in (5.3) relies on these values and on the maximal step-size 79 = 0.1. Our
numerical data confirmed Assumption 2 with Cr = 1.23 and a = 1.96, and, after setting
B = a, Assumption 3 with y = 1.80 and C' = C;C, = 8.78. The values of p and C' were
obtained by extrapolating from error diagrams of the quantities in Assumption 3. Only 3 or 4
levels are usually required to observe good values for the constants and rates. For details, we
refer to [25, Sec. 6]. The value av = 1.96 agrees very well with the order 2 expected according
to Theorem 3(ii). In this example the “up/down” rounding strategy was used.

In (4.5) and in (5.2) the error is measured in the norm || - [|¢(r x) with X = L*(TP). In
the numerical tests, this norm has to be replaced by its discrete counterpart

M

Nyt (6T ML ; ) /2 ML

r;l:al;( <MZ’U§] )(T7xk7yj) _Uref(T,.’L’k7yj)‘2) ~ HUS )(T77) _uref(T7'7')||C(F,X)
k=1

where zp, k = 1,..., M are the Fourier collocation points in the spatial domain. The fact
that I" is bounded implies the bound Hw||L3(F7X) < lwller,x) for every w € C(T', X), with L2
denoting the L? space with weight p. For this reason, we have also computed the error in the
discrete norm

67T Nref M (ML) ' | 1/2
<N fM ZZ”U’J (T’xk’y ) _uref<T7xk7yj)‘2>
Jj=1k=1

In Figure 2 these two alternatives are indicated by “error in C(I", X)” and “error in LZ(I‘, X).
Moreover, we have investigated two other types of error, namely the error in the expected value

(6.5) B[ (T, )) = M (T, )]
in the quantity of interest My defined in (5.6) and the error
(6.6) E[P(uf™(1.)) ~ Pluse(T))]|

in the quantity of interest P defined in (5.5). In Figure 2 these two errors are denoted by
“error in Myp” and “error in P”, respectively. Of course, (6.5) and (6.6) must also be replaced
by a suitable discretization in the numerical examples. It can be shown that (6.5) is not larger
than HuSML) (T,-) = weet(T, *)[|cr,x)- For (6.6) the situation is more complicated because the
functional P is nonlinear. In most situations, however, it is to be expected that (6.6) is much

smaller than ||uf]ML)(T, ) = ure(T', )|l c(r, x)» because applying P can be seen as an averaging
which usually cancels a lot of contributions to the error.
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Figure 2(b) confirms that the error in || - [|o(r x) stays indeed below the tolerance ¢, and
that same is true for the other three types of error. Since 2 = 8 > u = 1.80, we expect from
Theorem 4 that the computational cost scales as e~ /#. Figure 2(a) shows, however, that the
CPU time of the method (blue circles) scales rather as e~*/#obs (blue line) with the slightly
smaller value piohs = 1.544. For comparison, we included the theoretical slope e~ 1/#=1/ of
the single-level stochastic collocation method from (5.7), too.

103 s 1071
1 Y.. —@—cost (CPU time in s)
1 ] slope e—1/Habs
9 - -~ slope e~ 1/n 1073 -
o | eelelll T slope e—1/2
10° --=--slo —1/p—1/x
i pe €
] A 1075
1 10—7 N
10! R error in C(T, X)
y —e—error in L2(T', X)
B -9 | e
i 10 —»—error in Mry
) ] —4—error in P
| 7 I tolerance e
107
]_00 T T T T T T T T T T T T T T T T T T T
104 1073 102 1071 104 1073 1072 1071
9 3
(a) Cost vs. error (b) Error vs. €

Figure 2. Validation of the MLSC method in the two-dimensional example (u = 1.80, wops = 1.544).

In the iterative process of finding the correct value of J from Theorem 4 described in [25,
Sec. 6.3], one has to compute the multi-level approximations M) for all J = 0,...,J—1, too.
This is included in the CPU time depicted in Figure 2(a), but was not included in the cost
from Theorem 4. This could explain why slightly more effort than expected is necessary for
smaller tolerances £. On the other hand, one can reuse most of the approximations computed
for J between 0 and J — 1 for the multi-level approximation uSML). Another effect which
contributes to the slightly worse cost behaviour which we observe is the crude overestimation
of the quantity 77_; explained in the text below equation (5.4).

Ten-dimensional example. To check the performance of the method in d = 10 dimensions,

we considered the quadratic potential (6.2) with

1) 1 0 0
v =14 g2 s =g (14 50n+m) . 0 = 1+ s +a8)
for y = (y1,...,y10) € I', and with noise parameter § = %. The initial values at time t = 0
were

o .
(C(O> y)7 Q(Oa y)7p(01 y)a 5(07 y)) = <1 + Zyg +1, -2+ 6y§y37 2+ 5:’-/107 1) .
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The remaining parameters were the same as in the two-dimensional example before.
This time, we apply the multi-level approach to approximate the functional P from (5.5)
of the solution instead of the solution itself. Thus, our goal is now to achieve

ML . ML
E[P(u(T,-)) — P(u§™)]| <& instead of  [Ju(T,-) — ™o x) < e
The procedure to achieve this is very similar, and we refer to [25, Sec. 4.3] for details. Ap-
proximating the functional P with a given accuracy is typically easier than approximating
the solution itself, but the challenge here is the large dimension of the parameter set I'. The

10% 5 .
i \'\‘ —e— cost (CPU time in s) 107+
i \'\ slope =1/ Hobs i
103 BN N - - - slope e~ 1/k 102 E
L SN slope e—1/2 |
) i - sloPe g /pu-1/a 10_3 é
10° 4 s = i
| 1074 E
| (
101 e . ]
] 10 E —e— error in P
| A i tolerance e
109 —,— 10~6 —
10-4 1073 1072 10-* 10~ 1073 1072 1071
g S
(a) Cost vs. error (b) Error vs. €

Figure 3. Validation of the MLSC method in the ten-dimensional example (1 = 1.268, pops = 1.654).

P-analogues of Assumptions 2 and 3 were confirmed numerically with constants and param-
eters u = 1.268, C' = C1C, = 1.361, Cr = 0.0055 and « = 2. This time, we use the rounding
strategy which always rounds down, because we expect that the overhead of rounding up in
this dimension would be too large.

Figure 3(a) shows that the computational costs (blue circles) scale as g~ 1/kobs with Lhobs =
1.654 (blue line). This is significantly better than expected, because Theorem 4 states that
the computational costs grow proportional to e~'/# (black dashed) when & — 0. Figure 3(b)
shows that the error in the observable P stays below the tolerance for all €. Thus the results
agree with the theoretical statement from Theorem 4.

7. Proof of Theorem 3. In order to prove part (ii) of Theorem 3 a bound for the local
error (Lemma 8) and a stability result (Lemma 9) are combined to show the global error
bound. For part (i), Lemma 8 is replaced by Lemma 7. Since both lemmas can be shown
with essentially the same procedure, we only prove Lemma 8. The proof of Lemma 7 is easier
and can be found in Section SM2 of the supplementary materials.

In Theorem 3 the error is measured in the norm || - ”Cfﬂ L(T,X) which involves multiple
derivatives with respect to y. For this reason, multivariate versions of the product rule and
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20 T. JAHNKE, B. STEIN

the chain rule will play an important role in the proof. In order to formulate these auxiliary
results, the following notation is introduced.

7.1. Notation. Let k& € Ny be the integer from Theorem 3, and set

(7.1) n=0,...,1,....d,....d).

Let m = kd and M = {1,...,m}. For a subset S C M with |S| elements we define

oISl olS|
dy® Hjes Yy, '
This notation is well-defined, because for sufficiently smooth functions the order of the deriva-

tives can be interchanged. Note that by definition maximal number of partial derivatives in
each spatial direction depends on 1 and hence on k. In the special case S = M we have

am om ok ok

OyM "~ Oy Oy, OYF OyE

The power set of a set S C M is denoted by P, the power set without the empty set by P2,
and the set of partitions of S into non-empty subsets by II(S). The complement S¢ of S C M
is always understood as the complement in M, i.e. S¢= M\ S.

Example 5. Let m = 3 and M = {1,2,3}. Then the five elements of IL(M) are the follow-

mng.

Partitions with one block:  {{1,2,3}}
Partitions with two blocks: {{1},{2,3}}, {{2},{1,3}}, and {{3},{1,2}}
Partitions with three blocks: {{1},{2},{3}}

Note that the empty set () also has exactly one partition, namely O itself.

The multivariate product rule may now be stated in the form

9I5| aITlf gls\Tlg
(7.2) a5 = 2 S oar
0y TePpPS Oy" Oy '

for a set S C M, whereas the multivariate chain rule (also known as Faa di Bruno’s formula)
is given by

olsl ~ dlBlg
(7.3) a5 9W) = > e 11 55

well(S) Bem Yy

where |7| is the number of “blocks” in the partition 7. Proofs of these equations together
with examples can be found in [13].
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694 Example 6. The power set of S = {1,2,3} is
695 (7.4) P = {@,{1}, {2},{3},{1,2}, {1,3},{2,3},{1,2,3}},

697 and hence the multivariate product rule (7.2) reduces to

698 783 (f ) — f . 4839 ﬁ . 829 ﬁ . 829 87“)0 . 329

' 0y1 Oy2 Oy3 g 0y10y20yz  Oy1 Oy20yz  Oya 0y10ys  Oys Oy1 Oy
2f g 0f 0 0 o9 5f
700 0y10y2 Oys  Oy10ys Oya  0Oy20y3z Oy1 Oy Oy2 0y3 g

701 Fach term is related to one of the sets in (7.4). The multivariate chain rule (7.3) yields

e N gt 63g(y)

702 901 00a O 8y3f(g(y)) =f (g(y))iay1 s 00

. " dgy) Pgly)  g(y) Pgly)  Ig(y) azg(y))
v +f (g(y”( dyr  Oy2dys | Oys  OynOys | Oys Oy 0w

99(y) 99(y) 99(y)
oy Oya  Oys

704 +"(9(y)

706 Fach term corresponds to one of the partitions from Example 5. For example, the partition
707 m={{2},{1,3}} has two blocks, i.e. |7| =2, and we obtain

6‘3'9 9g(y) = Pg(y)
708 ™) = " (9w)), Il57= :
0 sen O Oy>  Oy1 Oys
710 With this notation the commutator bounds (4.8) and (4.9) read
. alsl
1 (7.5) H[ L 7A:| leC(RX) < Cllwillor,m ey, SePY,
e lSIV(y) < M
Hi (76) H |:A, |: 595 ,A}j| UJQHC(F,X) < CHw?HC(F,HQ(TD))? SePr.

14 Assumption 6 and the relations (7.1) with m = kd imply that (7.5) and (7.6) hold for all
715wy € C(T, HY(TP)) and wy € O(T', H?(TP)).
716 V(y) is a multiplication operator and thus

ne o (n.7) 0,V V)] =0,  j=1,....d yeTl.

718 The same is also true for higher derivatives of V(Y').
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7.2. Local error.

Lemma 7. Let v € C*. (T, H?(T)). Under the assumptions of Theorem 3 (i) the error

m
after one time-step is bounded by

(7.8) |70 — eiTH(y)U”CIIfﬂX(F,X) < 01007—2H’UHCfﬂiX(RHl(TD))'

The constant Ci,. depends only on the constants on the right-hand side of (4.7) and (4.8),
but not on T.

The proof of Lemma 7 is given in Section SM2 of the supplementary materials.

Lemma 8. Let v € C¥. (T, H*(T)). Under the assumptions of Theorem 3 (i) the error

m
after one time-step is bounded by

(7.9) |70 — eiTH(y)UHCl’fﬂx(F,X) < Cloc73||U”cr';ix(r,H2(1rD))'

The constant Ci,. depends only on the constants on the right-hand side of (7.5) and (7.6),
but not on T.

Proof of Lemma 8. Throughout we abbreviate

o ot
oyM  oyk oyk

We only prove that

ID(®rv) — D(™ W) o x) < Clocm’0llcn . (0 mr2(ro))

since the procedure for differential operators with lower order than D is completely analogous.

In Step 1 of the proof an expansion of Du(t,y) = DelH Wy (1) in powers of 7 is derived.
Its representation is modified in Step 2. In Step 3 a corresponding expansion of D(®,v) is
obtained. The Step 4, the difference between the two expansions is analyzed, and it is shown
that all terms of O(7) and O(7?) cancel.

Step 1. For the exact solution u(t,y) = ¢ ®y(y), we have

WV (y) 95 lu(t,y)

ODulty) = iH(y)Dult.y) +i 3 —5 57—

SepM

and the variation-of-constants formula yields

~ . IV (y) 0¥ lu(r,y)
TiH : T—r)iH )
Du(r,y) = e HODy(y) + i /0 o(T=7) (y)SE;M T i

Using this expression again for the term with u(r,y) in the integrand, this yields

(7.10) Du(r,y) =" WDu(y) + Y | L(S)+ Y L(S.T)
SepM TePs
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with
T ) aISIV(y) ) alSC\v(y)
11 I — ] (r—r)iH(@y)Y Y \J) riH(y)Y “\J)
(7.11) () =i [ e Sl iy,
T i) PV W) i TV (1) 95V (v, y)
—i2 (r—m)iH(y)Y Y \I) (r—v)iH(y) s
(7.12) I(S,T) =i ; /0 e 3y e o 95T vdr.

Note that formally I;(S) = O(r) and that I»(S,T) = O(7?).

Step 2. In order to compare (7.10) with a corresponding representation of D(®,v) in Step
4, the integrals I1(S) and I3(S,T) have to be approximated by suitable quadrature formulas.
The integral I1(S) is approximated by the trapezoidal rule, i.e.

T S Se
L(S) =i / Wit IV W) i) 9 o)
0

oy’ oys°
. . 1517/ (1) 915l NSV () g 050 (y)
~ 11 TlH(y)a (y) 'U(y) Y TIH(y)iy = o
(7.13) 5 (e 08 o T o © oy I (S).

Abbreviating the integrand inside I;(S) by h(r), the error of the trapezoidal rule can be
expressed in Peano form as

iT 7 ir3 1 "
E= 5(11(0) + h(T)) - 1/0 hs)ds = == [ 0(1 = )" (or)d0.

Hence, to obtain an error of order 72, it has to be shown that h is twice continuously differ-
entiable with bounded second derivative. To check the required regularity of the integrand,
we compute

oh iH
T e(rer)iH (y)
" 1€

2 .
Oh _ (rr)iH() [H( )

15V (y) () 9 10(y)
g V\Jg riH(y) Y “\J)
ays 7H(y) € aySc )

i

o =

alsly ) als¢ly
;y) ’ H(y) erlH(y) Sgy) )
Ay Ay

These terms are bounded by (7.5), (7.6), and (7.7). The approximation (7.13) is of accuracy
O(7?), and hence we may replace I1(S) by IT(S) in the following.
Now consider the second integral, Io(S,T). After setting

(r.0) = i@ V) ot 91V (y) 8 Tuwy)
g\r, 8yS ayT aySC\T
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we obtain
T):i2//grud1/dr
0 0
1/ir\?
515 9(0,0) + 29(7,0) + g(7,7))
_1/ir ﬂH(y)a‘S'V( ) IV (y) 919\ T lu(y)
T2\ 2 yS oyT QyS\T
() 0V > it 0TIV () 05T o(y)
2 yS ayT aySC\T
2 |5\ || |SAT|
2 6yT 3yS \T
(7.15) = I7(5,T).

The very last term in (7.14) will be treated by yet another variation-of-constants formula to
replace

05" lu(r, y)
JySAT

TiH (y) a|SC\T\ v (y)

(7.16) 5T

by e + O(1),

at least if SUT # M (or equivalently |S| 4+ |T| # m). The quadrature formula I5'(S,T)
for the triangle {(r,v): 0 < r < 7, 0 < v < r} integrates constant functions exactly,
and since it can be checked that the integrand has the required regularity, it follows that

I(S,T) = I5)(S,T) + O(r%). Combining the above observations, we arrive at
(7.17) Du(r,y) =" HWDy(y) + >~ (I?(S) + > I5(S, T)> +O(r).
SepM Tepse

Step 3. Now a corresponding expansion has to be derived for the numerical solution. We
have

5] 1521 51 151y
(7.18) D(@)= Y O7®(y) 97 W) _ g (1 Duy) + >y 9 ‘@;(y),@ (v)

S 5e o

sepm O dy S dy

and, utilizing (7.2) and (7.3),
oSl AITlesVW) . 9IS\Tle3V W)
= e
Oy* Teps oy" OyS\T
o\ Iml+o] 8'B'V a'C\V
(7.19) =2 > > (3 Il =2~ H
TePS nell(T) oll(S\T) Benw

The crucial terms are those of O(7) and (9(7‘2), whereas higher-order terms can be neglected.
In order to identify the terms with || 4 |o| < 2, we define the set P2, as the set P2 without
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S. Separating the terms with 7"= () and T' = S yields

(7.20)

with

f(5,T) =

oSld_ ATV (y)  9s\Tly
oyS Z (%)2 ayT( )(I)T P S\T(y)
TePS, Y
1.,. o 3' |V 8|C|V y
+ > 2"[ 1 Hac()@ +0(7%)
c€ll(S) Ceo Ceo
lo|<2
= Z (7) f(S,T)+ (7) [CI)T 9y + 9y O | +0O(17)
TePS,
MV (y) o IV () 1 9TV (y) 05\TV(y) 19TV (y) 95TV ()
8yT T 8yS\T 27 8yT ayS\T 2 3yT &yS\T

T

The equality (7.20) follows from the fact that every partition o € II(S) with || = 2 consists
of an arbitrary subset ) C T'C S and its complement in S. If we go through all such subsets
T and notice that T is also the complement of S\ T', we have counted each partition o € II(.S)
with |o| = 2 twice. Hence the factor 1/2 appears in the second and third term in the definition
of f(S,T).

Before we substitute (7.20) into (7.18), we have to deal with some set-theoretic consider-
ations. In fact, S € PM and T € P2, is equivalent to saying that 7 € PM and M D S D T.
Hence, for any

A set S O T can be written in a unique way as S = S’ UT with S’ € PI".

function f, we have the identity

o N =Y Y fSurT) =

SePM TePs,

TePM 5'ePl® SePM Teps©

Y > ATUS,S).

The last step is changing the names of T' and S’ to S and 7. In our case, we have

(7.21)
|S| |T| 1 S| IT| 151! 7
HTUS,S) = 07Vl g V) | 1g OPVI) V()  107VIy) 07 V(Y 4
oy® oyT 2 oyS oyT 2" 0yS 9yT
By substituting these formulas into (7.18), we obtain the expansion
17' a‘SC\Tlv(y)
D(®rv) = - (y Y ) TUs s g
SePM Tepsc
ISV (y) aISIV(y) 915 (y)
7.22 AN o | . 003,
( ) +S§M(2) [ 8y5’ 8y5 8y$’c + (7- )
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Step 4. Now we subtract (7.17) from (7.22). The local error bound (3.6) implies

@00 — €™l x) < CT3vollo sz (roy)
for vg € C(I', H*(TP)). Hence, replacing the numerical flow ®, by the exact flow e ¥) does
not spoil the accuracy. By carefully comparing the terms in (7.22) and (7.21) with the ones

n (7.17), (7.13) and (7.15), we obtain
(7.23) ID(®,0) = D(™HWv)[|er x) < CT°

for a constant C' which depends only on the constants on the right-hand side of (4.7) and
(4.8), but is independent of 7. All the O(73)-terms and hence also in the constant C' contain
ancﬁn (r,2(TDy) as a factor. [ ]

7.3. Stability and global error. In order to pass from the local error to the global error,
the following stability result is required.

Lemma 9. Let v € C*. (I, X). Under the assumptions of Theorem 3 (i) the estimate

(7.24) [2roller, rx) < (L+ CsanT)l|vllcr, 0 x) < exp(CsanT)l[vllck, 0 x)

holds for all step-sizes T € (0,2]. The constant Cgap is independent of T, but depends on k
and on [|Vl|cr (p peo(rpy)-

Proof. First, we observe that

I8ld (y o= ISly(y
D@ ey < 3 | L) )
oy Ay
SepM Cc(T,X)
I51d . (y
(7.25) + Z 85() vlles @ x)s
orx)  gepmll Y
with || || = || [lor,8(x))- For S # 0, (7.19) yields

8' |c1>

oIBlYV oIy
I 25 I 5

Bem ay Ceo Yy

Z Z Z (g)lwlﬂal

TePS mell(T) oll(S\T)

Since V € CF. (T, L>(TP)) and ||®,| < 1, the norm on the right-hand side can be bounded

mix
by some constant C' which only depends on |[V||cr (p peo(rp))- Thus, sorting after powers of

T, we obtain
T 7\2 T\ IS
| §C<§+(§) 4o+ (3) '),

which is bounded by C|S|7/2 as long as 7 < 2. Thus, by (7.25),

9"v(y)
oyM

o,
oy’

+ Cirllvlles (- x)
(T, X)

ID(®,0) er.x) < H
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for all 7 < 2 with a constant C%. Of course, the procedure is similar if one considers derivatives
of lower order than k. Hence, we arrive at

[@rvller 0 xy < T+ Crem)lvller. rx)

as long as 7 < 2. |

Proof of Theorem 3. In order to prove part (i) we combine the local error bound (7.8)
and the stability estimate (7.24) to derive the global error bound. This is a typical “Lady
Windermere’s fan” argument. We have

n—1
1@ g — gl cr (1 xy < D [P BreHWinmiztug) — (i HWug) | cr )
=0
n—1
<Y exp(Cataph) | @re T Wins1ysy — lin=dH Wy 1 )
=0 )
n—1
< Z eXp(Ostaij)010(37'2 ||eltn_j_1H(y)U0‘|Cr’f]ix(F7Hl(TD))
=0
eXp(CstabT)n -1 2
7% max ||u(t, -
exp(Catant) — 1 " 1€[0,0m] lett: Mo, o
C
< exp(Cstabtn) loc TM]gl).
C’stab

Note that Cgia, and Cloe are exactly the constants from the stability and local error estimates
(7.24) and (7.8). Replacing (7.8) by (7.9) proves part (ii) of Theorem 3. [ ]
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