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Abstract. We propose and analyze a numerical method for time-dependent linear Schrödinger equations with5
uncertain parameters in both the potential and the initial data. The random parameters are dis-6
cretized by stochastic collocation on a sparse grid, and the sample solutions in the nodes are ap-7
proximated with the Strang splitting method. The computational work is reduced by a multi-level8
strategy, i.e. by combining information obtained from sample solutions computed on different re-9
finement levels of the discretization. We prove new error bounds for the time discretization which10
take the finite regularity in the stochastic variable into account, and which are crucial to obtain11
convergence of the multi-level approach. The predicted cost savings of the multi-level stochastic12
collocation method are verified by numerical examples.13
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1. Introduction. In recent years the influence of uncertain parameters on the behaviour17

and the simulation of partial differential equations (PDEs) has received increasing attention.18

A central goal of uncertainty quantification is to understand these influences in any PDE oc-19

curing in real-life phenomena. An important example is the time-dependent linear Schrödinger20

equation which describes the evolution of the wave function of a quantum-mechanical system.21

The wave function is the key to compute observables such as, e.g., positions and momenta, or22

the probability to find the system in a given subset of the state space. Since solving the full23

molecular Schrödinger equation is typically impossible, the classical approach is to use the24

Born-Oppenheimer approximation to separate the slow motion of the heavy nuclei from the25

fast dynamics of the electrons. This leads to a lower-dimensional Schrödinger equation for the26

nuclei on an electronic energy surface; cf. [19, II.2.]. The potential of the reduced equation,27

however, is obtained by a number of approximations and simplifications, and is thus affected28

by a significant degree of uncertainty. Additional uncertainties arise from the fact that the29

initial state of the system can only be measured with limited accuracy. A reliable numerical30

treatment of these uncertainties in numerical simulations is desirable and necessary.31

From all non-intrusive methods for uncertainty quantification, the arguably most studied32

classes are stochastic collocation methods and Monte Carlo type methods – at least from the33

numerical analyst’s point of view. Both of these classes rely on sample solutions obtained34

from solving the same deterministic PDE with different values of the parameters. From35

these sample solutions one may derive, e.g., expectations, variances, higher-order moments36
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2 T. JAHNKE, B. STEIN

or other statistical quantities of the solution. In the case of stochastic collocation methods,37

one may even obtain a surrogate for the unknown solution itself via a generalised polynomial38

chaos approximation or interpolation. Non-intrusive methods have the advantage that any39

suitable traditional numerical method can be used to solve the deterministic PDEs, and that40

parallelization is trivial because the sample solutions are uncoupled. Stochastic collocation41

schemes are discussed, e.g., in [2, 22, 20, 28]. One of the most important extensions of the42

standard Monte Carlo approach are Multi-Level Monte Carlo methods [7, 6, 8]. These methods43

use information obtained from sample solutions computed on different refinement levels of the44

discretization, which decreases the computational work significantly under certain conditions.45

For stochastic collocation methods such a multi-level procedure has been introduced and46

developed in [25, 26, 12]. In these references it was shown that multi-level stochastic collocation47

(MLSC) methods need much lower computational costs than standard collocation methods if48

a high accuracy is desired and the regularity of the solution with respect to the parameters is49

rather low. The method we propose in this work is closely related to [25].50

The multi-index stochastic collocation approach from [10, 9] is perhaps the most important51

extension of MLSC. This approach computes an estimator based on mixed difference operators52

in all individual spatiotemporal and stochastic dimensions. This is more general than in the53

MLSC method described here, where the refinement in the stochastic dimensions is determined54

by a single parameter (and the temporal discretisation, too). By solving a simplified knapsack55

problem, a quasi optimal multi-index set for the difference operators is selected based on profits56

computed from a priori work and error bounds. Another extension of MLSC is presented in57

[17], where the approach from [25] was extended in such a way that the adaptive (spatial)58

mesh refinement is allowed to vary with the samples. This allows an optimization of the59

computational work in each stochastic collocation point which was shown to be superior60

to strategies which are only adaptive in the spatial or stochastic discretisation, but ignore61

properties of individual samples.62

Many stochastic and deterministic PDEs or ODEs can be decomposed into two or more63

parts which can be solved numerically with significantly lower computational costs than the en-64

tire problem. Splitting methods exploit this property and provide a family of time-integrators65

which are both efficient and easy to implement. The accuracy, stability, and the geometric66

properties of splitting methods have been thoroughly analyzed in a large number of papers;67

examples in the context of the linear Schrödinger equation are, e.g., [1, 5, 11, 14, 18, 19, 21]68

and references therein. Applying splitting methods to PDEs with uncertain parameters is69

straightforward if a non-intrusive method is chosen to deal with the randomness. Moreover,70

error bounds for the full discretization are readily obtained by combining the available error71

bounds for splitting methods and for the space discretization with the known convergence72

results for non-intrusive methods. This is not true for multi-level stochastic collocation meth-73

ods, because here convergence of the method used for computing the sample solutions does not74

imply convergence of the multi-level approximation. To obtain convergence of the multi-level75

method, certain conditions must be fulfilled, which are required to combine the information76

computed on different levels. These conditions involve a stronger norm with respect to the77

random parameters, and for splitting methods and other time-integrators, these conditions78

cannot be verified with standard results from the literature.79
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Goals and results. We propose and analyze a multi-level stochastic collocation method80

on sparse grids for time-dependent linear Schrödinger equations with an uncertain potential81

and uncertain initial data. We assume that the dimension of the state space is moderate,82

but that the parameter set which models the uncertainty can be high-dimensional. The83

sample solutions at the nodes of the sparse grid are computed with time discretization by84

the Strang splitting method. This yields a method which is efficient and easy to implement.85

The focus of our work, however, is on the convergence analysis. We prove new error bounds86

for the time discretization, which are the cornerstone to verify conditions for convergence87

of the multi-level stochastic collocation method. The main challenge is the fact that the88

linear Schrödinger equation is neither elliptic nor parabolic, such that typical solutions have89

only finite regularity. Our work is the first convergence analysis for a multi-level stochastic90

collocation method with time discretization by a splitting method. Splitting methods within91

the framework of stochastic Galerkin methods – which are not the subject of our paper – have92

been analyzed, e.g., in [16, 27, 4].93

Structure of this paper. In Section 2 the problem setting is introduced. The Strang splitting94

method and stochastic collocation methods on sparse grids are reviewed in Subsections 3.1 and95

3.2, respectively. In Subsection 3.3 we explain how the techniques can be combined to obtain a96

single-level method. This approach is then extended to a multi-level version in Subsection 4.1.97

In particular, conditions for convergence of the multi-level stochastic collocation method are98

formulated; cf. Assumptions 2 and 3. In Subsection 4.2 we present our main result (Theorem 3)99

and show that the conditions for convergence can be verified with this theorem. Since the100

proof is rather long and technical, it is postponed to Section 7. The efficiency of the method101

is discussed in Section 5 and the computational savings are confirmed by numerical examples102

in Section 6.103

2. Linear Schrödinger equations with random data. We consider the parametric linear104

Schrödinger equation105

∂tu(t, x, y) = i∆u(t, x, y) + iV (x, y)u(t, x, y), t ∈ [0, T ], x ∈ TD, y ∈ Γ,(2.1a)106

u(0, x, y) = u0(x, y), x ∈ TD, y ∈ Γ,(2.1b)107108

with solution u : [0, T ]×TD×Γ→ C, where T is the length of the time interval, TD = (R/Z)D109

denotes the D-dimensional torus, Γ is some compact parameter set and V (·, y) ∈ L∞(TD) is110

a bounded real-valued potential. With no loss of generality we assume that Γ = [−1, 1]d. The111

solution u = u(t, x, y) depends on the temporal variable t, the spatial variable x, and on a112

parameter vector y which accounts for uncertainty in the potential V and the initial data u0.113

These uncertainties are caused, e.g., by modelling or measurement errors.114

The focus of this paper is on the t- and y-discretizations, whereas no discretization in115

x is made. The space discretization of (2.1) can be carried out with standard methods,116

which is briefly addressed in the context of the numerical experiments in Section 6. Most117

of the time, the spatial variable x will be hidden in our notation: instead of denoting the118

solution by u = u(t, x, y), we consider u(t, y) : x 7→ u(t, x, y) as an element in the Hilbert119

space X = L2(TD). With this convention, (2.1) can be formulated as a parameter-dependent120
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4 T. JAHNKE, B. STEIN

abstract Cauchy problem121

∂tu(t, y) = i∆u(t, y) + iV (y)u(t, y), t ∈ [0, T ], y ∈ Γ,(2.2a)122

u(0, y) = u0(y), y ∈ Γ,(2.2b)123124

with solution u : [0, T ]× Γ→ X. The operator125

H(y?) = ∆ + V (y?) : H2(TD)→ X126127

is self-adjoint for every y? ∈ Γ by the Kato-Rellich theorem [15, Chapter V.4.1, Theorem 4.3].128

Hence, iH(y?) generates a strongly continuous unitary group (eitH(y?))t∈R by Stone’s theorem129

[24, Chapter 1.10, Theorem 10.8], which means that for every y?, (2.2) has a unique solution130

u(t, y?) = eitH(y?)u0(y?) with constant norm. Throughout we assume that ‖u0(y)‖X = 1 for131

all y, such that ‖u(t, y)‖X = 1 for all t and all y.132

The following assumption on the parameter space is made henceforth.133

Assumption 1. The variable y ∈ Γ corresponds to a realization of a random variable Y ∼134

U(−1, 1)d with uniform probability density %(y) = 1
2d

.135

This assumption is made in order to use a particular error estimate for the sparse grid inter-136

polation which is given in Subsection 3.2. Our results could also be adapted to other choices137

of Γ and %. In particular, every bounded probability density %̂ on Γ = [−1, 1]d can be handled,138

since it defines a weaker norm. If %̂ is also bounded from below, then the induced norms are139

even equivalent. Problems with, e.g., different probability measures and different abscissas in140

each direction could also be treated. The requirement that Γ is compact, however, is essential.141

3. Discretization of time and of the parameter set.142

3.1. Time discretization with the Strang splitting method. In this subsection we con-143

sider (2.2) without uncertainty or, equivalently, for a fixed vector y = y? ∈ Γ. In this case,144

a very popular and widely used method to approximate the solution is the Strang splitting145

method146

(3.1) ũn(y?) = Φτ (y?)ũn−1(y?) := eiτV (y?)/2eiτ∆eiτV (y?)/2ũn−1(y?), n = 1, 2, . . . ,147

which successively computes approximations ũn(y?) ≈ u(tn, y?) at times tn = nτ with a given148

step-size τ > 0; see, e.g., [1, 5, 11, 14, 18, 19, 21] and references therein. Note that ũn(y?) =149

Φn
τ (y?)u0(y?) for n ∈ N0 with the notation Φ0

τ (y?) = Id and Φn
τ (y?) = Φτ (y?)(Φτ (y?))

n−1.150

The Strang splitting is a time-reversible second-order method with a unitary numerical flow.151

This method is particularly efficient when combined with a pseudo-spectral method for space152

discretization, because then eiτ∆ can be computed by means of the Fast Fourier transform;153

see, e.g., Section II.1.3 in [19].154

The accuracy of the Strang splitting was analyzed, e.g., in [19, III.3.2] and in a more155

general setting in [14, Section 2-3]. In these references, the following error bounds are shown.156

Here and below, the commutator of two operators A and B is denoted by [A,B] = AB−BA,157

and ‖ · ‖X is the usual norm of X = L2(TD).158

Theorem 1. Let y = y? ∈ Γ be fixed and let u(t, y?) = eitH(y?)u0(y?) be the exact solution159

of (2.2).160
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(i) If V (y?) ∈ L∞(TD) and if the commutator bound161

‖[V (y?),∆]w‖X ≤ C‖w‖H1(TD),(3.2)162
163

holds for all w ∈ H1(TD), then there is a constant C1 such that164

‖eiτH(y?)w − Φτw‖X ≤ C1τ
2‖w‖H1(TD)(3.3)165

166

for every w ∈ H1(TD). If in addition u0(y?) ∈ H1(TD), then there is a constant C2

such that167

‖u(tn, y?)− Φn
τ u0(y?)‖X ≤ C2tnτ max

s∈[0,T ]
‖u(s, y?)‖H1(TD).(3.4)168

169

for all n ∈ N0 with tn = nτ ∈ [0, T ]. The constants C1 and C2 depend on ‖V (y?)‖L∞(TD)170

and on C from (3.2), but not on τ .171

(ii) Suppose that the assumptions from part (i) hold. If the commutator bound172

‖[[V (y?),∆],∆]w‖X ≤ C‖w‖H2(TD),(3.5)173
174

holds for all w ∈ H2(TD), then there is a constant C1 such that175

‖eiτH(y?)w − Φτw‖X ≤ C1τ
3‖w‖H2(TD),(3.6)176

177

for every w ∈ H2(TD). If in addition u0(y?) ∈ H2(TD), then there is a constant C2

such that178

‖u(tn, y?)− Φn
τ u0(y?)‖X ≤ C2tnτ

2 max
s∈[0,T ]

‖u(s, y?)‖H2(TD).(3.7)179
180

for all n ∈ N0 with tn = nτ ∈ [0, T ]. The constants C1 and C2 depend on ‖V (y?)‖L∞(TD)181

and on the constants in the commutator bounds (3.2) and (3.5), but not on τ .182

The inequalities (3.3) and (3.6) are bounds for the local error, i.e. for the error after only183

one time-step. The global error after many time-steps is estimated in (3.4) and (3.7). The184

convergence rate in part (ii) is higher: (3.7) yields second order convergence with respect to185

τ , whereas (3.4) yields only convergence with order one. On the other hand, the assumptions186

in part (ii) are stronger.187

Remark 1. The commutator bounds are related to the spatial regularity of the potential188

V (y?). If V (y?) ∈W 2,∞(TD), then the commutator189

[∆, V (y?)]w = (∆V (y?))w + 2∇V (y?) · ∇w + V (y?)∆w − V (y?)∆w190

= (∆V (y?))w + 2∇V (y?) · ∇w191192

is only a first-order differential operator – it involves second-order derivatives of V (y?), but193

only first-order derivatives of the function w to which the commutator is applied. Hence, the194

commutator bound (3.2) holds with a constant which depends on ‖V (y?)‖W 2,∞(TD). In a similar195

way, it can be checked by a tedious but straightforward calculation that the double commutator196

[[∆, V (y?)],∆] is only a second-order differential operator if V (y?) ∈ W 4,∞(TD), because the197

fourth-order derivatives cancel; cf. [19, page 99]. As a consequence, the commutator bound198

(3.5) holds with a constant which depends on ‖V (y?)‖W 4,∞(TD).199
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6 T. JAHNKE, B. STEIN

3.2. Sparse grid discretization of the parameter set. The Strang splitting allows us to200

compute accurate approximations Φn
τ u0(y?) ≈ eitnH(y?)u0(y?) to the solution of (2.2) for every201

single y? ∈ Γ. However, this is not enough, since our goal is to approximate y 7→ u(tn, y) for202

all values of y simultaneously. The principle of stochastic collocation is to compute Φn
τ u0(yi) ≈203

u(tn, yi) for finitely many vectors y1, . . . , yη ∈ Γ, and then to use these values to construct204

an interpolant. But since the dimension d of the parameter space Γ = [−1, 1]d is typically205

not small, one has to choose the collocation points y1, . . . , yη carefully to avoid the curse206

of dimension, i.e. the effect that for a fixed accuracy the number of nodes η has to grow207

exponentially in d. We use sparse grids to choose y1, . . . , yη in order to alleviate the curse of208

dimension to a certain extent.209

The following description of the interpolation process follows the presentation in [23,210

Sec. 2.1]. Let Pmi(X) = Pmi ⊗ X, where Pmi is the space of univariate polynomials on211

[−1, 1] with complex coefficients and degree not larger than mi. For any index i ∈ N, let212

yi1, . . . , y
i
mi ∈ [−1, 1] be a set of abscissas and let213

(3.8) Qi : C([−1, 1], X)→ Pmi(X), Qiw(y) =

mi∑
j=1

w(yij)`
i
j(y),214

be the corresponding interpolation operator. Here, `ij , j = 1, . . . ,mi, are the Lagrange poly-215

nomials corresponding to the abscissas yi1, . . . , y
i
mi . The index i determines the accuracy of216

the interpolation, while mi is the corresponding number of nodes actually used by Qi. The217

mapping i 7→ mi is called growth rule.218

In the multivariate setting the full tensor product interpolation formula corresponding to219

a multi-index i = (i1, . . . , id) ∈ Nd is given by220

Qiw = (Qi1 ⊗ · · · ⊗Qid)w =

mi1∑
j1=1

· · ·
mid∑
jd=1

w(yi1j1 , . . . , y
id
jd

)(`i1j1 ⊗ · · · ⊗ `
id
jd

)221

for w ∈ C([−1, 1]d, X). Clearly, mi1mi2 · · ·mid function evaluations of w are necessary to com-222

pute Qiw. The sparse grid interpolation with level parameter ` is now defined via Smolyak’s223

formula224

(3.9) A(`, d)w =
∑
i∈I`

(−1)`+d−|i|
(

d− 1

`+ d− |i|

)
Qiw, w ∈ C([−1, 1]d, X),225

where I` = {i ∈ Nd | `+ 1 ≤ |i| ≤ `+ d}. The nodes of the sparse grid are all points where w226

is evaluated, i.e.227 {
(yi1j1 , . . . , y

id
jd

) : i ∈ I`, jk ∈ {1, . . . ,mik}, k ∈ {1, . . . , d}.
}

228
229

More points and hence more accurate approximations are obtained with a larger value of `.230

The notation A(`, d) is often used in the literature, but in the following sections, A(`, d) will231

be denoted by Q` (without indicating the dimension) in order to express its relation to the232
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one-dimensional constituents Qji . The number of points needed to evaluate Q`w = A(`, d)w233

is denoted by η`.234

Now the collocation points y1, . . . , yη of the stochastic collocation method are simply235

chosen to be the nodes (3.2) of a sparse grid with a suitable enumeration. These nodes,236

however, depend on the abscissas yij , which can be chosen in several ways. We decide for the237

Clenshaw-Curtis abscissas238

(3.10) yij = − cos

(
π(j − 1)

mi − 1

)
, j = 1, . . . ,mi,239

for i > 1 and y1
j = 0 with the usual weights, and with growth rule240

(3.11) m1 = 1, mi = 2i−1 + 1, i > 1.241

This choice implies that the abscissas for Qi are a subset of the abscissas for Qi+1 and hence the242

corresponding grids are nested. In [3, Prop. 6], it was shown that the corresponding sparse grid243

interpolation operator Q` = A(`, d) is actually interpolatory whenever the one-dimensional244

interpolation grids are nested, which is not clear from the definition (3.9) itself.245

For k ∈ N0 we consider spaces of continuously differentiable functions given by246

Ckmix(Γ, X) =
{
w : Γ→ X

∣∣∣ ∂jyw ∈ C(Γ, X), j = (j1, . . . , jd) ∈ Nd0, |j|∞ ≤ k
}

247
248

with norm249

‖w‖Ckmix(Γ,X) = max
|j|∞≤k

∥∥∂jyw∥∥C(Γ,X)
, ‖w‖C(Γ,X) = sup

y∈Γ
‖w(y)‖X .250

251

These spaces are typically used to establish error bounds for interpolation on sparse grids, see252

e.g. [3] and [23]. Note that Ckmix(Γ, X) is larger than the classical function space Ck(Γ, X),253

which is defined with |j|1 ≤ k instead of |j|∞ ≤ k . Let I denote the identity operator. For254

w ∈ Ckmix(Γ, X) with k ∈ N, Eq. (3.28) in [23] yields the bound255

‖(I −Q`)w‖C(Γ,X) ≤
C

|C(1 + 2k)− 1|
(C(1 + 2k))d(`+ 1)2d2−k`‖w‖Ckmix(Γ,X)256

≤ C(k, d)(`+ 1)2d2−k`‖w‖Ckmix(Γ,X).(3.12)257
258

One may also obtain a version of (3.12) where accuracy is expressed in terms of the number259

of nodes η = η` in the sparse grid. In [3], the estimate260

(3.13) ‖(I −Q`)w‖C(Γ,X) ≤ C(k, d)η−k(log(η))(k+2)(d−1)+1‖w‖Ckmix(Γ,X)261

was given. Slightly better (but more complicated) estimates were stated in [23, Sec. 3.1.1].262

3.3. Single-level stochastic collocation method. The sparse grid discretization of Γ can263

now be combined with the time discretization from 3.1. This yields the following stochastic264

collocation method.265

1. Choose a level parameter ` ∈ N, η = η` and compute the nodes y1, . . . , yη ∈ Γ of the266

associated sparse grid. Choose N ∈ N and set the step-size to τ = T/N .267
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8 T. JAHNKE, B. STEIN

2. For every j = 1, . . . , η and every n = 1, . . . , N compute approximations268

ũn(yj) = Φn
τ (yj)u0(yj) ≈ u(tn, yj)269270

with the Strang splitting.271

3. For every n = 1, . . . , N compute the interpolation polynomial Q`Φn
τ u0 of the data272

(yj , ũn(yj)), j = 1, . . . , η. This yields an approximation to y 7→ u(tn, y).273

The step-size τ = T/N determines the accuracy of the temporal approximations, whereas274

the accuracy of the y-approximations depends on the level parameter ` from the previous275

subsection.276

4. Multi-level stochastic collocation with Strang splitting. The single-level stochastic277

collocation method can be used to approximate y 7→ u(tn, y) at every time point tn. In278

situations where a very accurate approximation is sought-after or where the regularity in y is279

low such that a very fine sparse grid is required, the efficiency can be improved considerably280

by multi-level stochastic collocation methods – at least if certain conditions are met. Such281

methods have been proposed and analyzed in [25, 26, 12]. For more recent works containing282

remarkable extensions of the approach consider [10, 9, 17].283

In the next subsection, we briefly outline how to construct such a multi-level method for284

(2.2). We closely follow the presentation in [25], where an elliptic problem was considered.285

4.1. The multi-level method and conditions for convergence. In the previous section,286

the sparse grid interpolation operator on level ` was denoted by Q`, and the number of nodes287

by η`. Because of (3.13), however, we will henceforth index the interpolation operator by the288

number of points of the sparse grid, i.e. we use the notation Qη` instead of Q`. Moreover, we289

pretend that Qη could be defined for arbitrary η ∈ N, although this is actually only true if η290

is the number of nodes of a sparse grid.291

Assume for simplicity that only an approximation at the final time T is supposed to be292

computed; approximations at several times are discussed in Remark 2 below. Given a set of293

collocation points y1, . . . , yη ∈ Γ and a number N ∈ N, the numerical solution at T = tN = Nτ294

computed with step-size τ = T/N is denoted by295

u(SL)
η,τ = QηΦN

τ u0.296297

The upper index “(SL)” stands for single-level, referring to the fact that only a single point set298

{yq : q = 1, . . . , η} and a single step-size τ are used to compute u
(SL)
η,τ . In contrast, multi-level299

collocation is based on computations with several different step-sizes and point sets.300

Choose N0 ∈ N, set τ0 = T/N0, and τj = 2−jτ0 for j ∈ N0, such that (τj)j∈N0 is a301

decreasing sequence of step-sizes. Each of these step-sizes induces a numerical flow Φτj and a302

number of time-steps Nj = 2jN0 to reach the final time T = τjNj . For simplicity, the notation303

uτj = Φ
Nj
τj u0 ≈ u(T, ·)304305

is used henceforth. As u0 = u0(y), u(T, y) and Φτ = Φτ (y) depend on y, the approximations306

u
(SL)
η,τ = u

(SL)
η,τ (y) and uτj = uτj (y) are functions in y as well, but the argument “(y)” will often307

be omitted to improve readability.308
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Assumption 2. Suppose that there exists constants α,CT > 0 such that309

‖u(T, ·)− uτj‖C(Γ,X) ≤ CT ταj310311

for all j ∈ N0.312

Let (η`)`∈N0 be an increasing (but not necessarily strictly increasing) sequence of integers,313

and let Qη` be an interpolation operator based on η` nodes. According to (3.13) we expect that314

Qη`+1
is more accurate than Qη` if η`+1 > η`. On the other hand, the cost of one evaluation of315

Qη` is proportional to η`. The following assumption is very similar to the assumptions made316

in [25].317

Assumption 3. There exist constants CI , C?, β, µ > 0 and an index k ∈ N such that the318

following holds:319

‖v −Qη`v‖C(Γ,X) ≤ CIη
−µ
` ‖v‖Ckmix(Γ,X) for all v ∈ Ckmix(Γ, X),(4.1a)320

uτj = Φ
Nj
τj u0 ∈ Ckmix(Γ, X) for all j ∈ N0,(4.1b)321

‖uτj‖Ckmix(Γ,X) ≤ C?τ
β
0 for all j ∈ N0,(4.1c)322

‖uτj+1 − uτj‖Ckmix(Γ,X) ≤ C?τ
β
j+1 for all j ∈ N0.(4.1d)323

324

After these preparations we are in a position to formulate the multi-level stocastic collo-325

cation (MLSC) method. We set uτ−1 = 0 and start with the telescoping sum326

(4.2) uτJ =
J∑
j=0

(uτj − uτj−1), uτj = Φ
Nj
τj u0.327

In practice, only an interpolation of each uτj can be computed, not uτj itself. The most obvious328

approach would be to interpolate every difference under the sum with the same interpolation329

operator. In order to reach a given accuracy, however, it is much more efficient to balance the330

two errors caused by time-integration and interpolation in a near-optimal way. If j increases,331

then (4.1d) implies that the difference uτj −uτj−1 decreases and can thus be interpolated with332

a coarser (but cheaper) interpolation operator. Conversely, a more accurate interpolation has333

to be used for the summands with small j, but for those terms, the time-integration is less334

costly. This suggests to define the multi-level approximation u
(ML)
J by335

(4.3) u
(ML)
J =

J∑
j=0

QηJ−j [uτj − uτj−1 ] =
J∑
j=0

(
u(SL)
ηJ−j ,τj − u

(SL)
ηJ−j ,τj−1

)
.336

Next, the sequence (ηj)j∈N0 has to be specified. Applying the triangle inequality to the337

global error yields338

‖u(T, ·)− u(ML)
J ‖C(Γ,X) ≤ ‖u(T, ·)− uτJ‖C(Γ,X) + ‖uτJ − u

(ML)
J ‖C(Γ,X) = (I) + (II).339

We show that for a suitable choice of (ηj)j∈N0 , the error components (I) and (II) converge at340

the same rate, which implies convergence of the multi-level approximation.341
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The term (I) = ‖u(T, ·) − uτJ‖C(Γ,X) is the error of the time discretization with the342

splitting method. By Assumption 2 there are parameters α,CT > 0 independent of τJ such343

that (I) ≤ CT τ
α
J . From (4.2) and Assumption 3, we may estimate the stochastic collocation344

error as345

(II) ≤
J∑
j=0

∥∥(uτj − uτj−1)−QηJ−j (uτj − uτj−1)
∥∥
C(Γ,X)

≤
J∑
j=0

CIC?η
−µ
J−jτ

β
j .346

347

Choosing a sequence (ηj)j∈N0 with348

(4.4) η−µJ−j ≤ CT
(
(J + 1)CIC?

)−1
ταJ τ

−β
j349

yields (II) ≤ CT ταJ , such that the error contribution from (II) and (I) is basically the same.350

It follows that351

‖u(T, ·)− u(ML)
J ‖C(Γ,X) ≤ 2CT τ

α
J ,(4.5)352353

which means that the multi-level approximation converges as J → ∞. However, the conver-354

gence relies on the somewhat abstract Assumptions 2 and 3. The next step is to verify these355

assumptions for the Strang splitting applied to (2.2).356

Remark 2. In exactly the same way approximations at the times τ0, 2τ0, 3τ0, . . . , N0τ0 = T357

could be computed. However, the efficiency of the multi-level method comes from the fact that358

some approximations are made with a rather large step-size τj ≤ τ0. If N0 is rather large359

and thus even the maximal step-size τ0 = T/N is rather small, then the efficiency is typically360

reduced.361

4.2. Verification of the conditions for convergence. Theorem 1 yields the pointwise362

error bound363

‖u(T, y?)− uτj (y?)‖X = ‖u(T, y?)− Φ
Nj
τj u0(y?)‖X ≤ Cταj(4.6)364365

for every single y? with α = 1 or α = 2, depending on the spatial regularity of the initial data366

and the potential. Extending this result to an error bound in ‖ · ‖C(Γ,X) is straightforward if367

the regularity assumptions in Theorem 1 hold uniformly in y, which will be shown below.368

For functions v : Γ→ X which admit a holomorphic extension to a complex polyellipse it369

can be shown that ‖v−Qη`v‖C(Γ,X) ≤ O(η−µ` ), but for functions of finite regularity, as in our370

case, the error estimate (3.13) contains a logarithmic factor log(η`)
E with E = (k+2)(d−1)+1.371

To the best of our knowledge, it is not really possible to include this factor into the construction372

of the multi-level method and into the analysis in Section 5.1. To get around this problem373

one can simply use that log(η`)
E ≤ Cη` for a constant C which depends on k and d, but not374

on η`. Hence, the estimate (4.1a) in Assumption 3 holds with µ = k − 1. Of course, the loss375

of one order of convergence is often way too pessimistic.376

The main challenge is to prove that the remaining parts of Assumption 3 are true. Accord-377

ing to (4.1b) it has to be shown that the numerical solution has a certain degree of smoothness378

with respect to y. In order to confirm (4.1d) the difference between two appoximations with379
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different step-sizes has to be bounded in the stronger norm. Such a result cannot be deduced380

from the classical pointwise error bound (4.6). The larger k, the faster is the convergence of381

the sparse grid interpolation in (4.1a) (since we can choose µ = k − 1), but the stronger are382

the conditions (4.1b), (4.1c), and (4.1d).383

Our main result is Theorem 3 below. It implies in particular that Assumptions 2 and 3384

hold if the initial data and the potential are sufficiently regular. The corresponding conditions385

are now formulated in detail.386

Assumption 4. Let u0 ∈ Ckmix(Γ, H2(TD)) for some k ∈ N0.387

Assumption 5. Let V ∈ Ckmix(Γ,W 2,∞(TD)) for some k ∈ N0.388

Assumption 5 means that389

‖∂rx∂my V ‖C(Γ,L∞(TD)) ≤ C, |r|1 ≤ s, |m|∞ ≤ k.(4.7)390
391

holds for s = 2. Replacing V (y?) in Remark 1 by ∂my V (y) and using that partial derivatives392

with respect to x and y are independent shows that (4.7) implies the commutator bound393

‖[∂my V,∆]w‖C(Γ,X) ≤ C‖w‖C(Γ,H1(TD)), |m|∞ ≤ k(4.8)394
395

for all w ∈ C(Γ, H1(TD)). Assumption 4 and the commutator bound (4.8) are generalizations396

of the assumptions made in part (i) of Theorem 1. We will show that this is sufficient to verify397

(4.1c) and (4.1d) in Assumption 3 for β = 1. In order to obtain β = 2 in (4.1c) and (4.1d),398

more regularity is required, i.e. Assumption 5 has to be replaced by the following one.399

Assumption 6. Let V ∈ Ckmix(Γ,W 4,∞(TD)) for some k ∈ N0.400

Assumption 6 implies Assumption 5 and, as in Remark 1, the commutator bound401

‖[[∂my V,∆],∆]w‖C(Γ,X) ≤ C‖w‖C(Γ,H2(TD)), |m|∞ ≤ k(4.9)402
403

for all w ∈ C(Γ, H2(TD)), which is a generalization of (3.5).404

Assumption 4, 5, and 6 can be easily checked in practice, because these assumptions405

concern the given initial data and the given potential. In contrast, the abstract conditions406

(4.1b), (4.1c), and (4.1d) refer to the numerical solution, which is not known a priori.407

Theorem 2. Suppose that Assumption 4 and Assumption 5 hold for some k ∈ N0. Then,408

the classical solution of the initial value problem (2.2) has the regularity409

u ∈ C1
(
[0, T ], Ckmix(Γ, X)

)
∩ C

(
[0, T ], Ckmix(Γ, H2(TD))

)
.410411

The proof of Theorem 2 is based on classical techniques from semigroup theory and can be412

found in the supplementary material, Section SM1. A consequence of Theorem 2 is that413

M
(s)
k = max

t∈[0,T ]
‖u(t, ·)‖Ckmix(Γ,Hs(TD))(4.10)414

415

is well-defined for s ∈ {1, 2}.416

We are now ready to state our main results. The proofs are quite long and therefore417

postponed to later sections.418
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12 T. JAHNKE, B. STEIN

Theorem 3. Let 0 < τ ≤ 1 and set tn = nτ . Let H(y) = ∆ + V (y) such that the exact419

solution of (2.2) is u(t, y) = eitH(y)u0(y).420

(i) If Assumption 4 and Assumption 5 are true with the same k ∈ N0, then Φn
τ u0 ∈421

Ckmix(Γ, X) for all n. Moreover, there is a constant C such that422

‖u(tn, ·)− Φn
τ u0‖Ckmix(Γ,X) ≤ CM

(1)
k τ for tn = nτ ∈ [0, T ]423

424

with M
(1)
k defined by (4.10). The constant C depends on T and on the constants in425

(4.8) and (4.7) with s = 2.426

(ii) If, in addition, Assumption 6 is true with the same k ∈ N0, then there is a constant427

C such that428

‖u(tn, ·)− Φn
τ u0‖Ckmix(Γ,X) ≤ CM

(2)
k τ2 for tn = nτ ∈ [0, T ]429

430

with M
(2)
k defined by (4.10). The constant C depends on T and on the constants in431

(4.9) and (4.7) with s = 4.432

The proof of Theorem 3 is given in Section 7. Choosing k = 0 shows that Assumption 2 holds433

with α = β = 1 in case (i) and α = β = 2 in case (ii).434

Verification of (4.1b), (4.1c), and (4.1d). Applying Theorem 3 with n = Nj , τ = τj =435

T/Nj and tn = T verifies (4.1b) and yields the bound436

‖u(T, ·)− uτj‖Ckmix(Γ,X) ≤ CM
(β)
k τβj437

438

with β = 1 in case (i) and β = 2 in case (ii). With τβj+1 + τβj = (1 + 2β)τβj+1 it follows that439

‖uτj+1 − uτj‖Ckmix(Γ,X) ≤ ‖uτj+1 − u(T, ·)‖Ckmix(Γ,X) + ‖u(T, ·)− uτj‖Ckmix(Γ,X)440

≤ CM (β)
k (1 + 2β)τβj+1441

442

such that (4.1d) is true. Moreover, the estimate443

‖uτj‖Ckmix(Γ,X) ≤ ‖uτj − u(T, ·)‖Ckmix(Γ,X) + ‖u(T, ·)‖Ckmix(Γ,X) ≤
(
CM

(β)
k +

M
(0)
k

τβ0

)
τβ0444

445

shows that (4.1c) holds for a sufficiently large C?.446

5. Efficiency of the multi-level approximation.447

5.1. Computational costs for a given accuracy. Here we consider the computational cost448

required to achieve a desired accuracy ε with the MLSC method. This analysis relies on the449

convergence rates from Assumptions 2 and 3.450

In the rest of this section we use the following notation: It holds a . b if and only if a ≤ Cb451

for some constant C which is independent of the step-size τ , the number of interpolation points452

η, the level j, and the accuracy ε. Similarly, we have a h b if and only if a = Cb for some453

constant C with the same properties.454

Let Cj denote the cost of “evaluating” uτj − uτj−1 at a sample y. Since the number of455

time steps of the splitting method is Nj = T/τj , it is natural to assume the following.456
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Assumption 7. Cj . τ
−1
j .457

The total computational cost of the MLSC approximation (4.3) is defined as458

(5.1) C(ML) =
J∑
j=0

ηJ−jCj .459

The following result quantifies the cost which is needed to achieve an accuracy of ε with the460

MLSC method.461

Theorem 4. Suppose that Assumption 4 – 7 hold and assume that α ≥ min{β, µ}. Then,462

for given ε < e−1, there exists J ∈ N0 and a sequence (ηj)
J
j=0 of real numbers such that463

‖u(T, ·)− u(ML)
J ‖C(Γ,X) ≤ ε(5.2)464465

and simultaneously466

C(ML)
ε .


ε
− 1
µ , µ < β,

ε
− 1
µ | log(ε)|1+ 1

µ , µ = β,

ε
− 1
µ
−µ−β

αµ , µ > β.

467

468

The sequence (ηj)
J
j=0 is explicitly given by469

ηJ−j = (2CIC? max{τβ0 , 1}S(J))1/µε−1/µ2−j(β+1)/(µ+1), j = 0, . . . , J,(5.3)470471

where472

S(J) =
J∑
j=0

2−j(β−µ)/(µ+1).473

Proof. The proof is the same as in [25, Thm. 4.2].474

In Subsection 4.2 we have seen that Theorem 3 yields α = β = 1 (under Assumption 4 and475

5) or α = β = 2 (under Assumption 4 and 6). In both cases the requirement α ≥ min{β, µ}476

is satisfied. For α = β = 2, Theorem 4 implies that ‖u(T, ·)− u(ML)
J ‖C(Γ,X) ≤ ε holds with477

C(ML)
ε .


ε
− 1
µ , µ < 2,

ε−
1
2 | log(ε)|

3
2 , µ = 2,

ε−
1
2 , µ > 2.

478

479

The optimal choice for ηJ−j gives in general only a real number, not an integer. In480

practice, however, the interpolation operators Qm are only available for certain integer levels481

` corresponding to m = m`, the number of interpolation points on that level. To determine482

a practicable family (η̃j)
J
j=0 as a replacement for (ηj)

J
j=0, one could simply choose the next483

integer η̃j = m`(j) for which an interpolation operator (and hence an associated sparse grid)484

is available, i.e.485

η̃j = min{m` : ` ∈ N, ηj ≤ m`}, j = 0, . . . , J.(5.4)486487
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14 T. JAHNKE, B. STEIN

This choice may not lead precisely to the cost estimate from Theorem 4, but in practice one488

often observes that the cost behaves nearly as predicted. However, one should be aware of the489

fact that the sequence (m`)`∈N usually grows exponentially in case of nested point sequences,490

see e.g. (3.11) for the growth rule which is usually applied with Clenshaw-Curtis points. Hence,491

η̃j might be up to twice as large as ηj in some cases, which could be crucial if the stochastic492

dimensions d is large, or if very accurate solutions (and hence large values of ηJ) are required.493

In such cases, the simple choice (5.4) could severely influence the cost behaviour of the MLSC494

method. This is the main reason why other strategies to determine (η̃j)
J
j=0 are discussed in495

[25, Rem. 6.1, 6.3]. In our numerical experiments, we will also use the strategy described as496

“up/down” in their article.497

In some applications the goal is not to approximate the wave function u itself, but rather498

a quantity of interest. Typical quantities of interest in case of a single particle are its position499

P : X → RD, u 7→
∫
TD

x|u(x)|2dx,(5.5)500
501

or the probability that the particle is located in a set S ⊂ TD,502

MS : X → R, u 7→
∫
S
|u(x)|2dx.(5.6)503

504

For continuously Fréchet differentiable observables χ(u) of the wave function u, the rate of505

convergence is at least as good as for the wave function itself, and Theorem 4 is true if506

‖u(T, ·) − u
(ML)
J ‖C(Γ,X) is replaced by the corresponding expected error in the quantity of507

interest. We omit the details.508

5.2. Comparison with single level collocation methods. Under the assumptions of The-509

orem 4, the error of the single-level collocation method can be bounded by510

‖u(T, ·)− u(SL)
η∗,τ∗‖ ≤ CT τ

α
∗ + CI‖uτ∗‖Ckmix(Γ,X)η

−µ
∗511

for any admissible η∗ ∈ N and τ∗ > 0. To make both contributions equal to ε/2 (or ε, since512

we ignore constants anyway), one can choose τ∗ h ε
1
α and η∗ h ε

− 1
µ . The computational cost513

to achieve the total error ε is then bounded by514

(5.7) C(SL)
ε h

η∗
τ∗

h ε
− 1
µ
− 1
α .515

To compare this with Theorem 4, we consider the quotient C
(ML)
ε /C

(SL)
ε which indicates516

the cost reduction of the multi-level approach compared to the single-level approach. By517

Theorem 4 and (5.7), we have518

(5.8)
C

(ML)
ε

C
(SL)
ε

h


ε

1
α , µ < β,

ε
1
α | log(ε)|1+ 1

µ , µ = β,

ε
β
αµ , µ > β.

519
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Note that only the decay rate in ε and µ is meaningful in the above discussion of the cost520

savings, because constants which appear in C
(ML)
ε and C

(SL)
ε have been ignored.521

For α = β = 2 we observe that the cost reductions are ε
1
α = ε

1
2 for low regularity (µ < 2),522

ε
1
α | log(ε)|3/2 for µ = 2 and ε

β
αµ = ε

1
µ for higher regularity (µ > 2). Clearly, the savings are523

most noticeable if the regularity µ of the solution is rather low (and hence generally more levels524

are required) and the tolerance is small. Figure 1 below gives a picture of this situation (dark525

blue is best, yellow means “no savings”). Note that (5.8) considered as a function in µ and ε526

has a discontinuity at µ = β = 2 due to the logarithmic term. Since this case corresponds to527

a null set, however, we have plotted (5.8) only for µ > 2 and µ < 2 for better visibility.528

0
6

0.2

0.4

10 0
4

0.6

0.8

10 -2

1

2
10 -4

0 10 -6
10 -3

10 -2

10 -1

10 0

Figure 1. Cost reduction (5.8) of the multi-level approach

6. Numerical experiments. For the following numerical tests we consider the equation529

∂tu(t, x, y) =
i

2
∂2
xu(t, x, y) + iV (x, y)u(t, x, y), t ∈ [0, T ], x ∈ T, y ∈ Γ,(6.1a)530

u(0, x, y) = u0(x, y), x ∈ T, y ∈ Γ.(6.1b)531532

Recall that the random variables Y1, . . . , Yd which correspond to the parameters y1, . . . , yd are533

uniformly distributed on [−1, 1] by Assumption 1.534

In order to study the convergence of the MLSC method we compare the final approxi-535

mation at time T with a reference solution uref(T, ·, ·). Now we explain how such a reference536

solution may be obtained. In order to simplify the corresponding formulas, the factor 1/2 in537

front of the second derivative was introduced in (6.1a). This factor was missing in (2.1) but538

does not affect the preceding analysis substantially.539

Reference solution. If we replace the torus T by R and assume that the potential is a540

polynomial of degree 2 with representation541

V (x, y) = −ν(y)(x− κ(y))2 − γ(y),(6.2)542543
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then a family of solutions to the linear Schrödinger equation is given by parametrized Gaus-544

sians545

u(t, x, y) = exp(w(t, x, y))(6.3a)546

with w(t, x, y) =
i

2
C(t, y)(x− q(t, y))2 + ip(t, y)(x− q(t, y)) + iξ(t, y),(6.3b)547

548

cf. [19, Sec. II.4.1]. The functions p(t, y), q(t, y) ∈ R and C(t, y), ξ(t, y) ∈ C are related via549

the four ODEs550

∂tq(t, y) = p(t, y),(6.4a)551

∂tp(t, y) = −2ν(y)(q(t, y)− κ(y)),(6.4b)552

∂tξ(t, y) =
iC(t, y)

2
+

1

2
p(t, y)2 − ν(y)(q(t, y)− κ(y))2 − γ(y),(6.4c)553

∂tC(t, y) = −C(t, y)2 − 2ν(y),(6.4d)554555

supplied with initial values. If the imaginary part of C(t, y) is strictly positive for t = 0,556

then this is the case for all t, such that |u(t, ·, y)| is a real Gaussian. However, neither the557

potential (6.2) nor the solution (6.3) are periodic in space, and thus this construction does558

not seem to be compatible with the PDE (6.1) on the torus. But the complex Gaussian (6.3)559

decays exponentially, and as long as it is almost zero outside the interval [−L,L] for all t560

and y, the error caused by imposing periodic boundary conditions at ±L is negligible; cf. [19,561

p. 75]. Hence, (6.3) provides highly accurate solutions to the Schrödinger equation on the562

torus if the interval [−L,L] is sufficiently large. For the same reason, one can expect that the563

error bounds from Theorem 3 remain true although the underlying assumptions are, strictly564

speaking, not met.565

In order to obtain a reference solution to (6.1)–(6.2) with initial data u0(x, y) = exp(w(0, x, y)),566

Nref = 10.000 (pseudo-)random vectors y1, . . . , yNref ∈ Γ were drawn from the joint distribu-567

tion of Y ∼ U((−1, 1)d). For each yj the ODE system (6.4) was solved with a Dormand-Prince568

method with relative error tolerance set to 10−10. This approach was chosen in order to keep569

the reference solution independent of the concepts used for the MLSC method (splitting, sparse570

grids, collocation). Since we focus on the error induced by discretizing the parameter set Γ571

and time, however, we have used the same space discretization for the reference solution and572

for the MLSC method, namely Fourier collocation with M = 210 grid points. Computations573

were made on the time interval [0, 1] and the spatial domain [−3π, 3π] with periodic boundary574

conditions. All errors were computed at the endpoint t = T = 1 of the time interval.575

Two-dimensional example. As a first test, we chose the following parametrization in d = 2576

dimensions. For y = (y1, y2) ∈ Γ the potential (6.2) with577

ν(y) = 1 +
δ

3
(y1 + 2y2), κ(y) =

1

2

(
1 +

δ

2
(y1 + y2)

)
, γ(y) = 1 +

δ

3
(y1 + y2

2)578
579

and noise parameter δ = 1
20 was used. The initial values at time t = 0 were set to580 (

C(0, y), q(0, y), p(0, y), ξ(0, y)
)

=

(
1 +

δ

4
y2

2 + i,−2 + δy2
1y

2
2, 2, 1

)
,581
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which defines u(0, x, y) via (6.3).582

Since the potential and the initial data are smooth enough, Theorem 3 can be applied with583

α = β = 2, which justifies Assumption 2 and 3. In order to illustrate Theorem 4, however, the584

values of µ and of the product CIC? had to be determined numerically, because the optimal585

choice of ηJ−j in (5.3) relies on these values and on the maximal step-size τ0 = 0.1. Our586

numerical data confirmed Assumption 2 with CT = 1.23 and α = 1.96, and, after setting587

β = α, Assumption 3 with µ = 1.80 and C = CIC? = 8.78. The values of µ and C were588

obtained by extrapolating from error diagrams of the quantities in Assumption 3. Only 3 or 4589

levels are usually required to observe good values for the constants and rates. For details, we590

refer to [25, Sec. 6]. The value α = 1.96 agrees very well with the order 2 expected according591

to Theorem 3(ii). In this example the “up/down” rounding strategy was used.592

In (4.5) and in (5.2) the error is measured in the norm ‖ · ‖C(Γ,X) with X = L2(TD). In593

the numerical tests, this norm has to be replaced by its discrete counterpart594

Nref
max
j=1

(6π

M

M∑
k=1

|u(ML)
J (T, xk, y

j)− uref(T, xk, y
j)|2
)1/2

≈ ‖u(ML)
J (T, ·, ·)− uref(T, ·, ·)‖C(Γ,X)595

596

where xk, k = 1, . . . ,M are the Fourier collocation points in the spatial domain. The fact597

that Γ is bounded implies the bound ‖w‖L2
%(Γ,X) ≤ ‖w‖C(Γ,X) for every w ∈ C(Γ, X), with L2

%598

denoting the L2 space with weight %. For this reason, we have also computed the error in the599

discrete norm600

( 6π

NrefM

Nref∑
j=1

M∑
k=1

|u(ML)
J (T, xk, y

j)− uref(T, xk, y
j)|2
)1/2

601

≈
(
E
[
‖u(ML)

J (T, ·, ·)− uref(T, ·, ·)‖2X
])1/2

= ‖u(ML)
J (T, ·, ·)− uref(T, ·, ·)‖L2

%(Γ,X).602
603

In Figure 2 these two alternatives are indicated by “error in C(Γ, X)” and “error in L2
%(Γ, X)”.604

Moreover, we have investigated two other types of error, namely the error in the expected value605 ∣∣∣E[MT

(
u

(ML)
J (T, ·)

)
−MT(uref(T, ·))

]∣∣∣(6.5)606
607

in the quantity of interest MT defined in (5.6) and the error608 ∣∣∣E[P(u(ML)
J (T, ·)

)
− P (uref(T, ·))

]∣∣∣(6.6)609
610

in the quantity of interest P defined in (5.5). In Figure 2 these two errors are denoted by611

“error in MT” and “error in P”, respectively. Of course, (6.5) and (6.6) must also be replaced612

by a suitable discretization in the numerical examples. It can be shown that (6.5) is not larger613

than ‖u(ML)
J (T, ·)− uref(T, ·)‖C(Γ,X). For (6.6) the situation is more complicated because the614

functional P is nonlinear. In most situations, however, it is to be expected that (6.6) is much615

smaller than ‖u(ML)
J (T, ·)− uref(T, ·)‖C(Γ,X), because applying P can be seen as an averaging616

which usually cancels a lot of contributions to the error.617
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18 T. JAHNKE, B. STEIN

Figure 2(b) confirms that the error in ‖ · ‖C(Γ,X) stays indeed below the tolerance ε, and618

that same is true for the other three types of error. Since 2 = β > µ = 1.80, we expect from619

Theorem 4 that the computational cost scales as ε−1/µ. Figure 2(a) shows, however, that the620

CPU time of the method (blue circles) scales rather as ε−1/µobs (blue line) with the slightly621

smaller value µobs = 1.544. For comparison, we included the theoretical slope ε−1/µ−1/α of622

the single-level stochastic collocation method from (5.7), too.623

10−4 10−3 10−2 10−1
100

101

102

103

ε

cost (CPU time in s)

slope ε−1/µobs

slope ε−1/µ

slope ε−1/2

slope ε−1/µ−1/α

(a) Cost vs. error

10−4 10−3 10−2 10−1

10−11

10−9

10−7

10−5

10−3

10−1

ε

error in C(Γ, X)

error in L2
%(Γ, X)

error in MT
error in P

tolerance ε

(b) Error vs. ε

Figure 2. Validation of the MLSC method in the two-dimensional example (µ = 1.80, µobs = 1.544).

In the iterative process of finding the correct value of J from Theorem 4 described in [25,624

Sec. 6.3], one has to compute the multi-level approximations u
(ML)

J̃
for all J̃ = 0, . . . , J−1, too.625

This is included in the CPU time depicted in Figure 2(a), but was not included in the cost626

from Theorem 4. This could explain why slightly more effort than expected is necessary for627

smaller tolerances ε. On the other hand, one can reuse most of the approximations computed628

for J̃ between 0 and J − 1 for the multi-level approximation u
(ML)
J . Another effect which629

contributes to the slightly worse cost behaviour which we observe is the crude overestimation630

of the quantity ηJ−j explained in the text below equation (5.4).631

Ten-dimensional example. To check the performance of the method in d = 10 dimensions,632

we considered the quadratic potential (6.2) with633

ν(y) = 1 +
δ

3
(y1 + 2y2), κ(y) =

1

2

(
1 +

δ

2
(y3 + y4)

)
, γ(y) = 1 +

δ

3
(y5 + y2

6)634
635

for y = (y1, . . . , y10) ∈ Γ, and with noise parameter δ = 1
20 . The initial values at time t = 0636

were637 (
C(0, y), q(0, y), p(0, y), ξ(0, y)

)
=

(
1 +

δ

4
y2

7 + i,−2 + δy2
8y

2
9, 2 + δy10, 1

)
.638
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The remaining parameters were the same as in the two-dimensional example before.639

This time, we apply the multi-level approach to approximate the functional P from (5.5)640

of the solution instead of the solution itself. Thus, our goal is now to achieve641

|E[P (u(T, ·))− P (u
(ML)
J )]| ≤ ε instead of ‖u(T, ·)− u(ML)

J ‖C(Γ,X) ≤ ε.642

The procedure to achieve this is very similar, and we refer to [25, Sec. 4.3] for details. Ap-643

proximating the functional P with a given accuracy is typically easier than approximating644

the solution itself, but the challenge here is the large dimension of the parameter set Γ. The

10−4 10−3 10−2 10−1
100

101

102

103

104

ε

cost (CPU time in s)

slope ε−1/µobs

slope ε−1/µ

slope ε−1/2

slope ε−1/µ−1/α

(a) Cost vs. error

10−4 10−3 10−2 10−1
10−6

10−5

10−4

10−3

10−2

10−1

ε

error in P

tolerance ε

(b) Error vs. ε

Figure 3. Validation of the MLSC method in the ten-dimensional example (µ = 1.268, µobs = 1.654).

645

P -analogues of Assumptions 2 and 3 were confirmed numerically with constants and param-646

eters µ = 1.268, C = CIC? = 1.361, CT = 0.0055 and α = 2. This time, we use the rounding647

strategy which always rounds down, because we expect that the overhead of rounding up in648

this dimension would be too large.649

Figure 3(a) shows that the computational costs (blue circles) scale as ε−1/µobs with µobs =650

1.654 (blue line). This is significantly better than expected, because Theorem 4 states that651

the computational costs grow proportional to ε−1/µ (black dashed) when ε→ 0. Figure 3(b)652

shows that the error in the observable P stays below the tolerance for all ε. Thus the results653

agree with the theoretical statement from Theorem 4.654

7. Proof of Theorem 3. In order to prove part (ii) of Theorem 3 a bound for the local655

error (Lemma 8) and a stability result (Lemma 9) are combined to show the global error656

bound. For part (i), Lemma 8 is replaced by Lemma 7. Since both lemmas can be shown657

with essentially the same procedure, we only prove Lemma 8. The proof of Lemma 7 is easier658

and can be found in Section SM2 of the supplementary materials.659

In Theorem 3 the error is measured in the norm ‖ · ‖Ckmix(Γ,X), which involves multiple660

derivatives with respect to y. For this reason, multivariate versions of the product rule and661
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20 T. JAHNKE, B. STEIN

the chain rule will play an important role in the proof. In order to formulate these auxiliary662

results, the following notation is introduced.663

7.1. Notation. Let k ∈ N0 be the integer from Theorem 3, and set664

η = (1, . . . , 1︸ ︷︷ ︸
k

, . . . , d, . . . , d︸ ︷︷ ︸
k

).(7.1)665

666

Let m = kd and M = {1, . . . ,m}. For a subset S ⊆M with |S| elements we define667

∂|S|

∂yS
=

∂|S|∏
j∈S ∂yηj

.668

669

This notation is well-defined, because for sufficiently smooth functions the order of the deriva-670

tives can be interchanged. Note that by definition maximal number of partial derivatives in671

each spatial direction depends on η and hence on k. In the special case S = M we have672

∂m

∂yM
=

∂m

∂yη1 · · · ∂yηm
=

∂k

∂yk1
· · · ∂

k

∂ykd
.673

674

The power set of a set S ⊆M is denoted by PS , the power set without the empty set by PS∗ ,675

and the set of partitions of S into non-empty subsets by Π(S). The complement Sc of S ⊆M676

is always understood as the complement in M , i.e. Sc = M \ S.677

Example 5. Let m = 3 and M = {1, 2, 3}. Then the five elements of Π(M) are the follow-678

ing.679

Partitions with one block: {{1, 2, 3}}680

Partitions with two blocks: {{1}, {2, 3}}, {{2}, {1, 3}}, and {{3}, {1, 2}}681

Partitions with three blocks: {{1}, {2}, {3}}682683

Note that the empty set ∅ also has exactly one partition, namely ∅ itself.684

The multivariate product rule may now be stated in the form685

∂|S|

∂yS
(fg) =

∑
T∈PS

∂|T |f

∂yT
∂|S\T |g

∂yS\T
(7.2)686

687

for a set S ⊆M , whereas the multivariate chain rule (also known as Faà di Bruno’s formula)688

is given by689

∂|S|

∂yS
f(g(y)) =

∑
π∈Π(S)

f |π|(g(y))
∏
B∈π

∂|B|g

∂yB
,(7.3)690

691

where |π| is the number of “blocks” in the partition π. Proofs of these equations together692

with examples can be found in [13].693
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Example 6. The power set of S = {1, 2, 3} is694

PS =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
,(7.4)695

696

and hence the multivariate product rule (7.2) reduces to697

∂3

∂y1 ∂y2 ∂y3
(fg) = f · ∂3g

∂y1 ∂y2 ∂y3
+
∂f

∂y1
· ∂2g

∂y2 ∂y3
+
∂f

∂y2
· ∂2g

∂y1 ∂y3
+
∂f

∂y3
· ∂2g

∂y1 ∂y2
698

+
∂2f

∂y1 ∂y2
· ∂g
∂y3

+
∂2f

∂y1 ∂y3
· ∂g
∂y2

+
∂2f

∂y2 ∂y3
· ∂g
∂y1

+
∂3f

∂y1 ∂y2 ∂y3
· g.699

700

Each term is related to one of the sets in (7.4). The multivariate chain rule (7.3) yields701

∂3

∂y1 ∂y2 ∂y3
f(g(y)) = f ′(g(y))

∂3g(y)

∂y1 ∂y2 ∂y3
702

+f ′′(g(y))

(
∂g(y)

∂y1
· ∂

2g(y)

∂y2 ∂y3
+
∂g(y)

∂y2
· ∂

2g(y)

∂y1 ∂y3
+
∂g(y)

∂y3
· ∂

2g(y)

∂y1 ∂y2

)
703

+f ′′′(g(y))
∂g(y)

∂y1
· ∂g(y)

∂y2
· ∂g(y)

∂y3
.704

705

Each term corresponds to one of the partitions from Example 5. For example, the partition706

π = {{2}, {1, 3}} has two blocks, i.e. |π| = 2, and we obtain707

f |π|(g(y)) = f ′′(g(y)),
∏
B∈π

∂|B|g

∂yB
=
∂g(y)

∂y2
· ∂

2g(y)

∂y1 ∂y3
.708

709

With this notation the commutator bounds (4.8) and (4.9) read710 ∥∥∥[∂|S|V (y)
∂yS

,∆
]
w1

∥∥∥
C(Γ,X)

≤ C‖w1‖C(Γ,H1(TD)), S ∈ PM ,(7.5)711 ∥∥∥[∆, [∂|S|V (y)
∂yS

,∆
]]
w2

∥∥∥
C(Γ,X)

≤ C‖w2‖C(Γ,H2(TD)), S ∈ PM .(7.6)712
713

Assumption 6 and the relations (7.1) with m = kd imply that (7.5) and (7.6) hold for all714

w1 ∈ C(Γ, H1(TD)) and w2 ∈ C(Γ, H2(TD)).715

V (y) is a multiplication operator and thus716

(7.7) [∂yjV (y), V (y)] = 0, j = 1, . . . , d, y ∈ Γ.717

The same is also true for higher derivatives of V (Y ).718
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7.2. Local error.719

Lemma 7. Let v ∈ Ckmix(Γ, H2(T)). Under the assumptions of Theorem 3 (i) the error720

after one time-step is bounded by721

(7.8) ‖Φτv − eiτH(y)v‖Ckmix(Γ,X) ≤ Clocτ
2‖v‖Ckmix(Γ,H1(TD)).722

The constant Cloc depends only on the constants on the right-hand side of (4.7) and (4.8),723

but not on τ .724

The proof of Lemma 7 is given in Section SM2 of the supplementary materials.725

Lemma 8. Let v ∈ Ckmix(Γ, H2(T)). Under the assumptions of Theorem 3 (ii) the error726

after one time-step is bounded by727

(7.9) ‖Φτv − eiτH(y)v‖Ckmix(Γ,X) ≤ Clocτ
3‖v‖Ckmix(Γ,H2(TD)).728

The constant Cloc depends only on the constants on the right-hand side of (7.5) and (7.6),729

but not on τ .730

Proof of Lemma 8. Throughout we abbreviate731

D =
∂m

∂yM
=

∂k

∂yk1
· · · ∂

k

∂ykd
.732

733

We only prove that734

‖D(Φτv)−D(eiτH(y)v)‖C(Γ,X) ≤ Clocτ
3‖v‖Ckmix(Γ,H2(TD))735

since the procedure for differential operators with lower order than D is completely analogous.736

In Step 1 of the proof an expansion of Du(t, y) = DeitH(y)v(y) in powers of τ is derived.737

Its representation is modified in Step 2. In Step 3 a corresponding expansion of D(Φτv) is738

obtained. The Step 4, the difference between the two expansions is analyzed, and it is shown739

that all terms of O(τ) and O
(
τ2
)

cancel.740

Step 1. For the exact solution u(t, y) = eitH(y)v(y), we have741

∂tDu(t, y) = iH(y)Du(t, y) + i
∑
S∈PM∗

∂|S|V (y)

∂yS
· ∂
|Sc|u(t, y)

∂ySc
742

743

and the variation-of-constants formula yields744

Du(τ, y) = eτ iH(y)Dv(y) + i

∫ τ

0
e(τ−r)iH(y)

∑
S∈PM∗

∂|S|V (y)

∂yS
· ∂
|Sc|u(r, y)

∂ySc
dr.745

746

Using this expression again for the term with u(r, y) in the integrand, this yields747

Du(τ, y) = eτ iH(y)Dv(y) +
∑
S∈PM∗

I1(S) +
∑

T∈PSc∗

I2(S, T )

(7.10)748

749
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with750

I1(S) = i

∫ τ

0
e(τ−r)iH(y)∂

|S|V (y)

∂yS
eriH(y)∂

|Sc|v(y)

∂ySc
dr,(7.11)751

I2(S, T ) = i2
∫ τ

0

∫ r

0
e(τ−r)iH(y)∂

|S|V (y)

∂yS
e(r−ν)iH(y)∂

|T |V (y)

∂yT
∂|S

c\T |u(ν, y)

∂ySc\T
dνdr.(7.12)752

753

Note that formally I1(S) = O(τ) and that I2(S, T ) = O
(
τ2
)
.754

Step 2. In order to compare (7.10) with a corresponding representation of D(Φτv) in Step755

4, the integrals I1(S) and I2(S, T ) have to be approximated by suitable quadrature formulas.756

The integral I1(S) is approximated by the trapezoidal rule, i.e.757

I1(S) = i

∫ τ

0
e(τ−r)iH(y)∂

|S|V (y)

∂yS
eriH(y)∂

|Sc|v(y)

∂ySc
dr758

≈ iτ

2

(
eτ iH(y)∂

|S|V (y)

∂yS
∂|S

c|v(y)

∂ySc
+
∂|S|V (y)

∂yS
eτ iH(y)∂

|Sc|v(y)

∂ySc

)
=: I�1 (S).(7.13)759

760

Abbreviating the integrand inside I1(S) by h(r), the error of the trapezoidal rule can be761

expressed in Peano form as762

E =
iτ

2

(
h(0) + h(τ)

)
− i

∫ τ

0
h(s)ds = − iτ3

2

∫ 1

0
θ(1− θ)h′′(θτ)dθ.763

Hence, to obtain an error of order τ3, it has to be shown that h is twice continuously differ-764

entiable with bounded second derivative. To check the required regularity of the integrand,765

we compute766

∂h

∂r
= ie(τ−r)iH(y)

[
∂|S|V (y)

∂yS
, H(y)

]
eriH(y)∂

|Sc|v(y)

∂ySc
,767

∂2h

∂r2
= e(τ−r)iH(y)

[
H(y),

[
∂|S|V (y)

∂yS
, H(y)

]]
eriH(y)∂

|Sc|v(y)

∂ySc
.768

769

These terms are bounded by (7.5), (7.6), and (7.7). The approximation (7.13) is of accuracy770

O(τ3), and hence we may replace I1(S) by I�1 (S) in the following.771

Now consider the second integral, I2(S, T ). After setting772

g(r, ν) = e(τ−r)iH(y)∂
|S|V (y)

∂yS
e(r−ν)iH(y)∂

|T |V (y)

∂yT
∂|S

c\T |u(ν, y)

∂ySc\T
773
774
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we obtain775

I2(S, T ) = i2
∫ τ

0

∫ r

0
g(r, ν)dνdr776

≈ 1

2

(
iτ

2

)2

· (g(0, 0) + 2g(τ, 0) + g(τ, τ))777

=
1

2

(
iτ

2

)2

· eτ iH(y)∂
|S|V (y)

∂yS
∂|T |V (y)

∂yT
∂|S

c\T |v(y)

∂ySc\T
778

+

(
iτ

2

)2

· ∂
|S|V (y)

∂yS
eτ iH(y)∂

|T |V (y)

∂yT
∂|S

c\T |v(y)

∂ySc\T
779

+
1

2

(
iτ

2

)2

· ∂
|S|V (y)

∂yS
∂|T |V (y)

∂yT
∂|S

c\T |u(τ, y)

∂ySc\T
(7.14)780

=: I�2 (S, T ).(7.15)781782

The very last term in (7.14) will be treated by yet another variation-of-constants formula to783

replace784

(7.16)
∂|S

c\T |u(τ, y)

∂ySc\T
by eτ iH(y)∂

|Sc\T |v(y)

∂ySc\T
+O(τ),785

at least if S ∪ T 6= M (or equivalently |S| + |T | 6= m). The quadrature formula I�2 (S, T )786

for the triangle {(r, ν) : 0 ≤ r ≤ τ, 0 ≤ ν ≤ r} integrates constant functions exactly,787

and since it can be checked that the integrand has the required regularity, it follows that788

I2(S, T ) = I�2 (S, T ) +O(τ3). Combining the above observations, we arrive at789

Du(τ, y) = eτ iH(y)Dv(y) +
∑
S∈PM∗

(
I�1 (S) +

∑
T∈PSc∗

I�2 (S, T )

)
+O(τ3).(7.17)790

791

Step 3. Now a corresponding expansion has to be derived for the numerical solution. We792

have793

D(Φτv) =
∑
S∈PM

∂|S|Φτ (y)

∂yS
· ∂
|Sc|v(y)

∂ySc
= Φτ (y)Dv(y) +

∑
S∈PM∗

∂|S|Φτ (y)

∂yS
· ∂
|Sc|v(y)

∂ySc
(7.18)794

795

and, utilizing (7.2) and (7.3),796

∂|S|Φτ

∂yS
=
∑
T∈PS

∂|T |e
iτ
2
V (y)

∂yT
eiτ∆∂

|S\T |e
iτ
2
V (y)

∂yS\T
797

=
∑
T∈PS

∑
π∈Π(T )

∑
σ∈Π(S\T )

(
iτ
2

)|π|+|σ|∏
B∈π

∂|B|V (y)

∂yB
Φτ

∏
C∈σ

∂|C|V (y)

∂yC
.(7.19)798

799

The crucial terms are those of O(τ) and O
(
τ2
)
, whereas higher-order terms can be neglected.800

In order to identify the terms with |π|+ |σ| ≤ 2, we define the set PS∗∗ as the set PS∗ without801

This manuscript is for review purposes only.



A MULTI-LEVEL STOCHASTIC COLLOCATION METHOD FOR SCHRÖDINGER EQUATIONS 25

S. Separating the terms with T = ∅ and T = S yields802

∂|S|Φτ

∂yS
=
∑
T∈PS∗∗

(
iτ
2

)2 ∂|T |V (y)

∂yT
Φτ

∂|S\T |V (y)

∂yS\T
803

+
∑

σ∈Π(S)
|σ|≤2

(
iτ
2

)|σ| [
Φτ

∏
C∈σ

∂|C|V (y)

∂yC
+
∏
C∈σ

∂|C|V (y)

∂yC
Φτ

]
+O(τ3)804

=
∑
T∈PS∗∗

(
iτ
2

)2
f(S, T ) +

(
iτ
2

) [
Φτ

∂|S|V (y)

∂yS
+
∂|S|V (y)

∂yS
Φτ

]
+O(τ3)(7.20)805

806

with807

f(S, T ) =
∂|T |V (y)

∂yT
Φτ

∂|S\T |V (y)

∂yS\T
+

1

2
Φτ

∂|T |V (y)

∂yT
∂|S\T |V (y)

∂yS\T
+

1

2

∂|T |V (y)

∂yT
∂|S\T |V (y)

∂yS\T
Φτ .808

The equality (7.20) follows from the fact that every partition σ ∈ Π(S) with |σ| = 2 consists809

of an arbitrary subset ∅ ( T ( S and its complement in S. If we go through all such subsets810

T and notice that T is also the complement of S \T , we have counted each partition σ ∈ Π(S)811

with |σ| = 2 twice. Hence the factor 1/2 appears in the second and third term in the definition812

of f(S, T ).813

Before we substitute (7.20) into (7.18), we have to deal with some set-theoretic consider-814

ations. In fact, S ∈ PM∗ and T ∈ PS∗∗ is equivalent to saying that T ∈ PM∗ and M ⊇ S ) T .815

A set S ) T can be written in a unique way as S = S′ ∪ T with S′ ∈ PT c∗ . Hence, for any816

function f , we have the identity817 ∑
S∈PM∗

∑
T∈PS∗∗

f(S, T ) =
∑
T∈PM∗

∑
S′∈PTc∗

f(S′ ∪ T, T ) =
∑
S∈PM∗

∑
T∈PSc∗

f(T ∪ S, S).818

The last step is changing the names of T and S′ to S and T . In our case, we have819

f(T ∪ S, S) =

[
∂|S|V (y)

∂yS
Φτ

∂|T |V (y)

∂yT
+

1

2
Φτ

∂|S|V (y)

∂yS
∂|T |V (y)

∂yT
+

1

2

∂|S|V (y)

∂yS
∂|T |V (y)

∂yT
Φτ

]
.

(7.21)

820

821

By substituting these formulas into (7.18), we obtain the expansion822

D(Φτv) = Φτ (y)Dv(y) +
∑
S∈PM∗

∑
T∈PSc∗

(
iτ
2

)2
f(T ∪ S, S) · ∂

|Sc\T |v(y)

∂ySc\T
823

+
∑
S∈PM∗

(
iτ
2

) [
Φτ

∂|S|V (y)

∂yS
+
∂|S|V (y)

∂yS
Φτ

]
· ∂
|Sc|v(y)

∂ySc
+O(τ3).(7.22)824

825
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Step 4. Now we subtract (7.17) from (7.22). The local error bound (3.6) implies826

‖Φτv0 − eiτH(y)v0‖C(Γ,X) ≤ Cτ3‖v0‖C(Γ,H2(TD))827

for v0 ∈ C(Γ, H2(TD)). Hence, replacing the numerical flow Φτ by the exact flow eτ iH(y) does828

not spoil the accuracy. By carefully comparing the terms in (7.22) and (7.21) with the ones829

in (7.17), (7.13) and (7.15), we obtain830

(7.23) ‖D(Φτv)−D(eiτH(y)v)‖C(Γ,X) ≤ Cτ3
831

for a constant C which depends only on the constants on the right-hand side of (4.7) and832

(4.8), but is independent of τ . All the O(τ3)-terms and hence also in the constant C contain833

‖v‖Ckmix(Γ,H2(TD)) as a factor.834

7.3. Stability and global error. In order to pass from the local error to the global error,835

the following stability result is required.836

Lemma 9. Let v ∈ Ckmix(Γ, X). Under the assumptions of Theorem 3 (i) the estimate837

‖Φτv‖Ckmix(Γ,X) ≤ (1 + Cstabτ)‖v‖Ckmix(Γ,X) ≤ exp(Cstabτ)‖v‖Ckmix(Γ,X)(7.24)838
839

holds for all step-sizes τ ∈ (0, 2]. The constant Cstab is independent of τ , but depends on k840

and on ‖V ‖Ckmix(Γ,L∞(TD)).841

Proof. First, we observe that842

‖D(Φτv)‖C(Γ,X) ≤
∑
S∈PM

∥∥∥∥∥∂|S|Φτ (y)

∂yS

∥∥∥∥∥
∥∥∥∥∥∂m−|S|v(y)

∂ySc

∥∥∥∥∥
C(Γ,X)

843

≤ ‖Φτ‖
∥∥∥∥∂mv(y)

∂yM

∥∥∥∥
C(Γ,X)

+
∑
S∈PM∗

∥∥∥∥∥∂|S|Φτ (y)

∂yS

∥∥∥∥∥ · ‖v‖Ckmix(Γ,X),(7.25)844

845

with ‖ · ‖ = ‖ · ‖C(Γ,B(X)). For S 6= ∅, (7.19) yields846 ∥∥∥∥∥∂|S|Φτ

∂yS

∥∥∥∥∥ ≤ ∑
T∈PS

∑
π∈Π(T )

∑
σ∈Π(S\T )

(
iτ
2

)|π|+|σ| ∥∥∥∥∥∏
B∈π

∂|B|V (y)

∂yB
Φτ

∏
C∈σ

∂|C|V (y)

∂yC

∥∥∥∥∥ .847

848

Since V ∈ Ckmix(Γ, L∞(TD)) and ‖Φτ‖ ≤ 1, the norm on the right-hand side can be bounded849

by some constant C which only depends on ‖V ‖Ckmix(Γ,L∞(TD)). Thus, sorting after powers of850

τ , we obtain851 ∥∥∥∥∥∂|S|Φτ

∂yS

∥∥∥∥∥ ≤ C( τ2 +
(
τ
2

)2
+ · · ·+

(
τ
2

)|S| )
,852

853

which is bounded by C|S|τ/2 as long as τ ≤ 2. Thus, by (7.25),854

‖D(Φτv)‖C(Γ,X) ≤
∥∥∥∥∂mv(y)

∂yM

∥∥∥∥
C(Γ,X)

+ Ckτ‖v‖Ckmix(Γ,X)855

856
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for all τ ≤ 2 with a constant Ck. Of course, the procedure is similar if one considers derivatives857

of lower order than k. Hence, we arrive at858

‖Φτv‖Ckmix(Γ,X) ≤ (1 + Ckτ)‖v‖Ckmix(Γ,X)859

as long as τ ≤ 2.860

Proof of Theorem 3. In order to prove part (i) we combine the local error bound (7.8)861

and the stability estimate (7.24) to derive the global error bound. This is a typical “Lady862

Windermere’s fan” argument. We have863

‖Φn
τ u0 − eitnH(y)u0‖Ckmix(Γ,X) ≤

n−1∑
j=0

‖Φj
τ (ΦτeiH(y)tn−j−1u0)− Φj

τ (eitn−jH(y)u0)‖Ckmix(Γ,X)864

≤
n−1∑
j=0

exp(Cstabτj)‖ΦτeiH(y)tn−j−1u0 − eitn−jH(y)u0‖Ckmix(Γ,X)865

≤
n−1∑
j=0

exp(Cstabτj)Clocτ
2‖eitn−j−1H(y)u0‖Ckmix(Γ,H1(TD))866

≤ exp(Cstabτ)n − 1

exp(Cstabτ)− 1
Clocτ

2 max
t∈[0,tn]

‖u(t, ·)‖Ckmix(Γ,H1(TD))867

≤ exp(Cstabtn)
Cloc

Cstab
τM

(1)
k .868

869

Note that Cstab and Cloc are exactly the constants from the stability and local error estimates870

(7.24) and (7.8). Replacing (7.8) by (7.9) proves part (ii) of Theorem 3.871
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