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Abstract
A continuous space-time Galerkin method is newly proposed for the numerical
solution of inverse dynamics problems. The proposed space-time finite element
method is combined with servo-constraints to partially prescribe the motion of
the underlying mechanical system. The new approach to the feedforward control
of infinite-dimensional mechanical systems is motivated by the classical method
of characteristics. In particular, it is shown that the simultaneous space-time dis-
cretization is much better suited to solve the inverse dynamics problem than the
semi-discretization approach commonly applied in structural dynamics. Rep-
resentative numerical examples dealing with elastic strings undergoing large
deformations demonstrate the capabilities of the newly devised space-time finite
element method.
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1 INTRODUCTION

The present work deals with the numerical solution of inverse dynamics problems associated with the feedforward con-
trol of geometrically exact strings. In this specific type of inverse dynamics problem the motion of the system is assumed
to be partially prescribed and the goal is to determine the actuating forces along with the overall motion of the system such
that the partially prescribed motion is realized. In the context of infinite-dimensional models for strings flatness-based
methods have been proposed in References 1-3 to solve the inverse dynamics problem (see References 4,5 for more back-
ground on differentially flat systems). The flatness-based methods typically rely on mechanical modeling assumptions
such as small deformations1,3 or inextensibility.2

Concerning the feedforward control of underactuated finite-dimensional (or discrete) systems, servo-constraints
provide an alternative to flatness-based methods.6,7 For example, servo constraints have been successfully applied to
underactuated mechanical systems such as cranes8-10 and manipulators with passive joints.11-13

In servo-constraint problems the motion of the system is partially specified by appending servo-constraints to
the underlying equations of motion. Accordingly, the motion of servo-constrained discrete systems is governed
by differential-algebraic equations (DAEs). In comparison to systems subject to standard holonomic constraints,
servo-constraints* often lead to an increased index of the corresponding DAEs, see References 14-17 for more background
on the (differentiation) index of DAEs. In this case appropriate index reduction techniques need be applied prior to the
numerical time integration.8,18
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F I G U R E 1 The planar model of an overhead trolley crane

F I G U R E 2 Elastic string (left) as sub-system of a multibody system (right): Cooperative transportation of a rigid body through four
elastic strings actuated by external forces fk

0, k ∈ {1, … , 4}. In the inverse dynamics problem the motion of the rigid body is prescribed and
the goal is to determine the motion of the whole multibody system along with the actuating forces fk

0. The prescribed motion of the rigid body
gives rise to the boundary conditions (trajectory and contact force fk

L) for each string at its point of attachment to the rigid body

A prototypical example for the type of inverse dynamics problems under consideration is the overhead trolley crane
depicted in Figure 1 (see References 8,18 for further details). The mechanical model for the crane has three degrees of free-
dom associated with the generalized coordinates (s, l, 𝜙). Since only two actuating generalized forces (F,M) are present,
the discrete system at hand is underactuated. The goal of the inverse dynamics problem is to determine the control inputs
(F,M) such that the load (point mass m) traces a prescribed trajectory 𝜸. For that purpose typically rest-to-rest maneu-
vers are considered. To realize the prescribed motion of the load, servo-constraints can be appended to the equations of
motion pertaining to the crane. The resulting servo-constraint problem is governed by DAEs with differentiation index
equal to five. Since the inverse dynamics problem is known to be differentially flat,19 the inverse problem is well-posed.

In the present work we extend the notion of servo-constraint problems to the realm of infinite-dimensional systems. In
particular, we focus on the inverse dynamics of elastic strings undergoing finite deformations. This specific problem can
be viewed as sub-problem of the cooperative transportation of a cable-suspended load (rigid body) by means of unmanned
aerial vehicles3,20 (Figure 2). In the inverse dynamics problem of the multibody system the motion of the rigid body is
prescribed and gives rise to prescribed boundary values (trajectory and contact force fk

L) for each string associated with
its attachment point on the rigid body. In essence, the feedforward control of the whole multibody system boils down to
the associated inverse dynamics problem for each elastic string.21

The specific type of inverse dynamics problem for the elastic string entails non-standard space-time boundary condi-
tions: while both the trajectory and the contact force are prescribed at one boundary, the external force acting on the other
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F I G U R E 3 Illustration of the geometrically exact string

boundary is to be determined. As mentioned above, this type of inverse dynamics problem has been previously addressed
in the context of flatness-based methods. It is important to realize that differential flatness of the problem implies that
the inverse dynamics problem at hand is well-posed.

In the present work we newly propose to combine the notion of servo-constraints with a continuous space-time
Galerkin approach to solve the specific space-time boundary value problem (BVP) at hand. In contrast to the previously
developed flatness-based methods, our approach does not necessitate any simplifying modeling assumptions and thus
makes possible to employ (truly nonlinear) geometrically exact strings.22

In contrast to the semi-discretization approach commonly applied in structural dynamics (see, e.g., References 23,24),
the simultaneous space-time discretization approach proves to be the natural choice for the solution of the inverse dynam-
ics problem at hand. A readable account of previous developments in the field of space-time finite elements can be found
in the recent work,25 see also References 26-29.

We further show that the classical method of characteristics (see, e.g., References 30,31) can also be applied to solve the
present space-time BVP. In particular, the method of characteristics provides further insight into the present space-time
BVP, explaining why the simultaneous space-time discretization is much better suited to solve the inverse problem than
the standard semi-discretization approach.

An outline of the rest of the article is as follows. Section 2 contains a summary of the formulation of geometri-
cally exact strings along with the description of the inverse dynamics problem to be solved. In Section 3 the common
semi-discretization approach is addressed and shown to be unsuited for the inverse dynamics problem at hand. The
simultaneous space-time discretization is dealt with in Section 4. In particular, the classical method of characteristics is
dealt with first, and paves the way to the newly proposed space-time finite element approach. After the presentation of
representative numerical investigations in Section 5, conclusions are drawn in Section 6.

2 INVERSE DYNAMICS PROBLEM

2.1 Geometrically exact strings

We focus on elastic strings undergoing finite deformations. An exhaustive account of the underlying geometrically exact
description of strings can be found in the book by Antman.22 To identify material points lying on the reference curve of
the string we make use of the arc-length in the reference configuration s ∈ S = [0,L] ⊂ R (Figure 3). In this connection,
we assume a stress-free reference configuration in which the string has length L.

The placement of material point s ∈ S at time t ∈ T = [0,∞) is characterized by the deformation map r(s, t) ∶ S × T →
Rd, where d ∈ {1, 2, 3} is the spatial dimension. In the sequel it proves convenient to introduce the space-time domain
Ω = S × T ⊂ R2.

Balance of linear momentum gives rise to the underlying equations of motion which take the form of the following
system of partial-differential equations (PDEs)

𝜕sn(s, t) + b(s, t) = (𝜌A)(s)𝜕2
t r(s, t), (1)
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for all (s, t) ∈ Ω. Here, n(s, t) ∶ Ω → Rd represents the contact force at (s, t) ∈ Ω, b(s, t) ∶ Ω → Rd denotes the body force
per unit reference length at (s, t) ∈ Ω and (𝜌A)(s) ∶ S → R+ is the mass density per unit reference length at s. In this
connection, 𝜌 stands for the density per unit reference volume and A refers to the cross-sectional area of the string in the
reference configuration. The body force per unit reference length is given by

b(s, t) = (𝜌A)(s)g, (2)

where g is the vector of gravitational acceleration.
Since the string has no bending stiffness, the contact forces in the string need be oriented tangentially to the string.

That is,

n(s, t) = N(s, t) 𝜕sr(s, t)‖𝜕sr(s, t)‖ . (3)

The tension N(s, t) at (s, t) ∈ Ω is determined by a frame-indifferent constitutive relation of the form

N(s, t) = N̂(𝜈(s, t), s), (4)

where the stretch at (s, t) ∈ Ω is defined by

𝜈(s, t) = ‖𝜕sr(s, t)‖ . (5)

The total actual length of the string follows from

l(t) = ∫S
𝜈(s, t) ds. (6)

Note that the stretch represents the local ratio of the deformed to the reference length of the string. A physically mean-
ingful elastic constitutive law needs to satisfy the restrictions N̂(𝜈, s) → ∞ as 𝜈 → ∞ and N̂(𝜈, s) → −∞ as 𝜈 → 0. In
addition to that, we assume a natural reference configuration, implying N̂(1, s) = 0 (i.e., vanishing tension in the reference
configuration).

Example 1 (Hyperelastic material model). In the present work we apply a hyperelastic constitutive model for a homo-
geneous rope based on the stored energy Û(𝜈) = EA

4
(𝜈2 − 2 ln 𝜈 − 1). This stored energy represents a simple model for

uniaxial rubber-type material behavior. The tension in the string follows from N̂(𝜈) = Û′(𝜈) leading to the constitutive
relationship

N̂(𝜈) = EA
2

(𝜈 − 𝜈−1). (7)

Linearization of the last equation about the natural reference configuration yields the linearized constitutive relationship

N̂lin(𝜈) = EA(𝜈 − 1). (8)

Thus EA can be regarded as axial stiffness in the reference configuration.

2.2 Inverse dynamics of nonlinear strings

We assume that the motion of the elastic string is partially specified at its right boundary at s = L (Figure 4).
That is, the placement of the free end of the string at s = L is specified for all time, leading to the boundary
conditions

r(L, t) = 𝜸(t) and n(L, t) = 0 ∀t ∈ T, (9)
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F I G U R E 4 Illustration of the inverse dynamics problem at hand

where 𝜸(t) ∈ Rd is a prescribed function of time. The goal is now to find the actuating force vector f0(t) ∈ Rd acting on
the left boundary at s = 0 such that the partially prescribed motion of the string is realized. The corresponding boundary
condition can be written as

n(0, t) = f0(t) ∀t ∈ T. (10)

The resulting feedforward control problem gives rise to an initial boundary value problem which can be stated as follows:
find r ∶ Ω → Rd and f0 ∶ T → Rd such that

A𝜌(s)𝜕2
t r(s, t) − 𝜕s (B(s, t)𝜕sr(s, t)) = b(s, t) ∀(s, t) ∈ Ω

B(0, t)𝜕sr(0, t) = f0(t), r(L, t) = 𝜸(t),B(L, t)𝜕sr(L, t) = fL(t) ∀t ∈ T

f0(0) = f0 and r(s, 0) = r0(s), 𝜕tr(s, 0) = v0(s) ∀s ∈ S.

(11)

Here, the two abbreviations

A𝜌(s) = (𝜌A)(s)

B(s, t) = N(s, t)
𝜈(s, t)

(12)

have been introduced. The PDEs (11)1 result from substituting (3) into the equations of motion (1). Note that these PDEs
can be classified as second-order quasilinear hyperbolic system in one dimension for r(s, t) (see Antman22). The nonlin-
earity of (11)1 is reflected in the dependence of B(s, t) on the unknown vector r(s, t), compare (12)2 together with (4) and
(5).

Moreover, (11)2 correspond to the boundary conditions (10) and (9), respectively. Accordingly, if the right end of the
string is free, we have fL(t) = 0. Note, however, that the force vector fL(t) has been introduced to take into account more
general scenarios such as those mentioned in Remarks 1 and 2.

Initial conditions are account for by (11)3, where f0 ∈ Rd and r0, v0 ∈ Rd are prescribed. Feedforward control problems
often deal with rest-to-rest maneuvers. There, the solution of the corresponding equilibrium problem supplies the initial
values f0, r0 and v0 = 0. In the more general case in which the initial configuration of the string is not at rest, the initial
values for the inverse problem can be obtained by solving the corresponding forward dynamics problem.

Remark 1 (Additional point mass). An additional point mass M might be attached to the right boundary of the string (at
s = L). In this case, the last boundary condition in (11)2 would have to be replaced by

fL(t) = M
(

g − 𝜕2
t r(L, t)

)
, (13)

where 𝜕2
t r(L, t) = 𝜸̈(t) and, as before, g denotes the vector of gravitational acceleration.
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F I G U R E 5 The linear-elastic bar

Remark 2 (Multibody system). If the elastic string is a sub-system belonging to the inverse dynamics problem of a multi-
body system such as that shown in Figure 2, the force vector fL(t) in the last boundary condition in (11)2 is a prescribed
function of time (see Reference 21 for further details).

Example 2 (Linear-elastic bar). Concerning small longitudinal deformations about a straight reference configuration,
we recover the model of a linear-elastic bar (Figure 5). Accordingly, consider the one-parameter family of configurations
r𝜀(s, t) = r𝜀(s, t)e, where e is a unit vector and r𝜀 is a power series expansion of the form

r𝜀(s, t) = s + 𝜀u(s, t) + (𝜀2).

Here, r0 = s specifies the placement of material points in the straight reference configuration and d
d𝜀
|||𝜀=0

r𝜀(s, t) = u(s, t)
characterizes small longitudinal displacements. Moreover, the axial strains can be obtained via

𝜀(s, t) = d
d𝜀

||||𝜀=0
𝜕sr𝜀(s, t) = 𝜕su(s, t).

Similarly, the linearized stretch yields 𝜈 = 1 + 𝜕su, so that the linearized constitutive relation (8) can be written as N̂lin =
EA𝜀. Eventually, linearizing the equations of motion (11)1 of the string about the straight reference configuration and
neglecting the body forces yields

𝜌A𝜕2
ttu − EA𝜕2

ssu = 0.

This PDE governs the longitudinal motion of the linear-elastic bar and coincides with the wave equation in one dimension.
The inverse dynamics problem (11) can now be restated for the linear-elastic bar: find u ∶ Ω → R and f ∶ T → R such that

𝜕2
ttu − c2𝜕2

ssu = 0 ∀(s, t) ∈ Ω
EA𝜕su(0, t) = f0(t),u(L, t) = 𝛾(t), 𝜕su(L, t) = 0 ∀t ∈ T
r(s, 0) = s, 𝜕tr(s, 0) = 0 ∀s ∈ S.

(14)

Here, for the sake of clarity and without loss of generality, a free end at s = L is assumed. In (14)1, c stands for the constant
wave propagation speed defined by

c =
√

E
𝜌
. (15)

There exists an analytical solution to problem (14) that will serve as reference for the numerical methods developed in
the sequel.

Remark 3 (Analytical solution). An analytical solution to problem (14) is based on d’Alembert’s formula (see, e.g.,
Reference 32 or 33 (ch. 16)). It can be easily verified that

u(s, t) = Φ(t + c−1s) + Ψ(t − c−1s) (16)

satisfies PDE (14)1. Now, the first boundary condition in (14)2 yields f (t) = EA𝜕su(0, t), where (16) implies

𝜕su(0, t) =
(
Φ′(t) − Ψ′(t)

)
c−1. (17)
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Inserting (16) into the second boundary condition, u(L, t) = 𝛾(t), and subsequently differentiating with respect to time
yields

Φ′(t + c−1L) + Ψ′(t − c−1L) = 𝛾 ′(t). (18)

Similarly, the third boundary condition, 𝜕su(L, t) = 0, gives

Φ′(t + c−1L) − Ψ′(t − c−1L) = 0. (19)

Adding (18) and (19) yields 2Φ′(t + c−1L) = 𝛾 ′(t), while subtracting (19) from (18) yields 2Ψ′(t − c−1L) = 𝛾 ′(t). Evaluating
the last two equations at t = t − c−1L and t = t + c−1L, respectively, leads to

Φ′(t) = 1
2
𝛾 ′(t − c−1L)

Ψ′(t) = 1
2
𝛾 ′(t + c−1L).

(20)

Substituting from (20) into (17), the first boundary condition eventually yields the result

f0(t) =
EA
2c

(
𝛾 ′(t − c−1L) − 𝛾 ′(t + c−1L)

)
, (21)

providing the actuating force at the left boundary of the bar in terms of the prescribed displacement of the right boundary
of the bar.

3 SEQUENTIAL SPACE-TIME DISCRETIZATION

In nonlinear structural dynamics the solution of initial BVPs is commonly performed by applying a sequential space-time
discretization (see, e.g., References 23,24). The so-called method of lines is typically based on a discretization in space by
means of finite elements, followed by a subsequent discretization in time by means of finite differences.

Following this common procedure we show that the inverse dynamics problem under consideration can be transferred
to discrete equations of motion subjected to servo constraints. For related discrete servo-constraint problems we refer to
References 7,8,34.

3.1 Semi-discrete equations of motion

In this section we provide a short outline of the common space discretization of initial BVPs by applying the finite element
method. For that purpose we consider the pure Neumann problem† associated with the initial BVPs (11). Multiplying
(11)1 by a sufficiently smooth test function w(s) ∈ Rd and integrating subsequently over the spatial domain S yields

∫S
w(s) ⋅ A𝜌(s)𝜕2

t r(s, t) ds − ∫S
w(s) ⋅ 𝜕s (B(s, t)𝜕sr(s, t)) ds = ∫S

w(s) ⋅ b(s, t) ds. (22)

Applying integration by parts to the second integral on the left-hand side and taking into account the Neumann boundary
conditions leads to the weak form

∫S
w(s) ⋅ A𝜌(s)𝜕2

t r(s, t) ds + ∫S
𝜕sw(s)B(s, t)𝜕sr(s, t) ds

= ∫S
w(s) ⋅ b(s, t) ds − w(0) ⋅ f0(t) + w(L) ⋅ fL(t). (23)

The weak form can now be discretized in space by applying finite element approximations to the vector-valued test func-
tion w(s) and the trial function r(s, t). We confine our attention to piecewise linear approximations based on Lagrangian
shape functions (cf. Reference 35). The corresponding interpolations read

wh(s) =
p+1∑
i=1

Li(s)wi rh(s, t) =
p+1∑
j=1

Lj(s)qj(t), (24)



8 STRÖHLE and BETSCH

F I G U R E 6 Discretized spatial domain

where Li(s) are linear Lagrangian shape functions related to the mesh sketched in Figure 6. The associated nodal values
wi ∈ Rd of the test function are arbitrary, while qi(t) ∈ Rd denote the nodal position vectors at time t ∈ T. That is, qi(t) =
rh(si, t).

Inserting the finite element approximations into weak form (23) and assuming for simplicity fL(t) = 0 yields the
semi-discrete equations of motion

Mq̈ + fint(q) = fext(t) − BT
0 f0(t). (25)

Here, q(t) is the nodal configuration vector that contains the nodal position vectors at time t ∈ T of the discrete problem
at hand. That is,

q(t) =
⎡⎢⎢⎢⎣

q1(t)
⋮

qp+1(t)

⎤⎥⎥⎥⎦ . (26)

Furthermore, the nodal contributions to mass matrix M, internal force vector fint(q), and external force vector fext(t) are
given by, respectively,

Mij = Id ∫S
Li(s)A𝜌(s)Lj(s) ds

fint
i (q) = ∫S

L′
i(s)B(s, t)𝜕srh(s, t) ds

fext
i (t) = ∫S

Li(s)b(s, t) ds, (27)

where Id is the d × d identity matrix and b(s, t) is given by (2). Matrix B0 in (25) is of Boolean type and essentially links force
f0(t) to the first node lying at the left boundary of the string, accounting for the virtual work contribution 𝛿q ⋅ BT

0 f0(t) =
w1 ⋅ f0(t) emerging from the right-hand side of weak form (23). Here, 𝛿q contains the nodal values wi in analogy to (26).

The semi-discrete equations of motion (25) constitute a system of nonlinear ordinary differential equations (ODEs)
of second-order. In the standard forward dynamics problem the forcing terms fext(t) and f0(t) are prescribed functions of
time and the ODEs (25) can be solved by applying common time-stepping schemes.

Remark 4 (Additional point mass). If an additional point mass M is attached to the right end of the string (Remark 1),
fL(t) = M

(
g − 𝜕2

t r(L, t)
)

has to be taken into account in weak form (23). Correspondingly, in the semi-discrete formula-
tion, the following entries of mass matrix (27)1 and external load vector (27)3 need be modified according to

Mp+1,p+1 ←− Mp+1,p+1 + MId

fext
p+1 ←− fext

p+1 + Mg.

3.2 Servo-constraints

In the inverse dynamics problem stated in Section 2.2, the actuating force f0(t) plays the role of an unknown which
needs be determined by accounting for the partially specified motion of the string at its right boundary. This can be
accomplished by appending servo constraints of the form rp+1(t) = 𝜸(t) to the semi-discrete equations of motion (25). The
servo-constraints can be recast in the form

Cq(t) = 𝜸(t), (28)
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F I G U R E 7 Sketch of the semi-discrete string model subject to servo-constraints

where C is a Boolean matrix extracting from the nodal configuration vector q(t) the entries associated with node p + 1
lying at the right boundary of the discrete string (Figure 6). A sketch of the semi-discrete string model subject to
servo-constraints is depicted in Figure 7.

The discrete servo-constraint problem is governed by the differential equations (25) together with the algebraic
equations (28). Accordingly, the servo-constraint problem gives rise to differential-algebraic equations (DAEs). However,
these DAEs have to be distinguished from the DAEs governing the motion of discrete mechanical systems subject to holo-
nomic constraints. If the constraints were holonomic, the term BT

0 f0 in (25) would correspond to constraint forces with
associated Lagrange multiplier f0 for the enforcement of holonomic constraints‡ B0q(t) = 𝜸(t). Moreover, in the standard
case of holonomic systems the DAEs have (differentiation) index 𝜈d = 3 and are thus amenable to a direct numerical
solution (see, e.g., Reference 37).

Often the DAEs related to servo-constraint problems have index 𝜈d ≤ 57 and can still be integrated numerically by
applying appropriate index reduction techniques.8,18 In contrast, however, the index of the present DAEs turns out to
increase with the number of finite elements used for the space discretization. This is illustrated next with the example of
the linear-elastic bar.

Example 3. In the case of the linear-elastic bar (Example 2), the semi-discrete equations of motion (25) in conjunction
with the servo-constraints (28) boil down to the DAEs

Mijüj + Kijuj = −𝛿i1f0

up+1 = 𝛾. (29)

For simplicity, we consider a lumped mass matrix with entries Mij = Mi𝛿ij. Considering the last two nodes p and p + 1
associated with the p th element (Figure 6), (29) yield

Mpüp + Kp,pup + Kp,p+1𝛾 = 0
Mp+1𝛾̈ + Kp+1,pup + Kp+1,p+1𝛾 = 0. (30)

Here, the summation convention does not apply. Since 𝛾(t) is prescribed, it can be deduced from the last equation that
the displacement of node p is given by

up = −K−1
p+1,p

(
Mp+1𝛾̈ + Kp+1,p+1𝛾

) ≡ up(𝛾̈ , 𝛾). (31)

Consequently,

üp = ap
(
𝛾 (4), 𝛾̈

)
, (32)
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where 𝛾 (n) = dn𝛾∕dtn and function ap follows directly from differentiating (31) twice with respect to time. Repeating this
procedure for the elements p − 1, … , p − n, reveals that

up−n = up−n
(
𝛾 (2n+2), 𝛾 (2n), … , 𝛾

)
, üp−n = ap−n

(
𝛾 (2n+4), 𝛾 (2n+2), … , 𝛾̈

)
. (33)

Setting n = p − 1 leads to

u1 = u1
(
𝛾 (2p), 𝛾 (2p−2), … , 𝛾

)
, ü1 = a1

(
𝛾 (2p+2), 𝛾 (2p), … , 𝛾̈

)
, (34)

so that for i = 1, (29)1 yields

f0 = f0
(
𝛾 (2p+2), 𝛾 (2p), … , 𝛾̈ , 𝛾

)
. (35)

One more time differentiation of the last equation reveals that the time derivative of the algebraic variable f pertaining to
the DAEs (29) can be obtained after 2p + 3 time derivatives of the algebraic constraint (29)2. This implies that the DAEs
(29) have differentiation index 𝜈d = 2p + 3 (cf. References 16,17). It can be shown that this result also holds true in case
of a consistent mass matrix. Accordingly, the index increases with the number p of finite elements used for the space
discretization of the bar.

Remark 5 (Differential flatness). Since all of the unknowns of the DAEs (29) can be expressed in terms of 𝛾 and derivatives
thereof, the present problem enjoys the property of differential flatness.4,5 In particular, the nodal displacement up+1
plays the role of a flat output. Analogous results have been obtained for the articulated mass point systems dealt with in
References 6,34,38. Note that the simple result for the flat output in Example 3hinges on the mass matrix being diagonal.
The situation gets more intricate in case of a consistent mass matrix or higher-order finite elements.

To summarize, the sequential space-time discretization approach to solve the inverse dynamics problem at hand
yields DAEs whose index tends to be excessively high thus hindering a stable numerical solution. In addition to that, the
demands on the smoothness of the prescribed trajectory tend to be excessively high as well.

4 SIMULTANEOUS SPACE-TIME DISCRETIZATION

To circumvent the problems resulting from the sequential space-time discretization outlined in Section 3, we propose a
simultaneous space-time discretization for the solution of the inverse dynamics problem at hand. Our approach is guided
by the classical method of characteristics which is known to be applicable to solve the wave equation.

4.1 Method of characteristics

In this section we apply the method of characteristics to solve the inverse dynamics problem (11). The method of char-
acteristics is based on a geometric interpretation of quasi-linear partial differential equations (see References 30,31,39-41
for more background information).

In a first step we convert the second-order PDEs (11)1 into a system of first-order PDEs. For that purpose we introduce
the velocity space-time field v(s, t) = 𝜕tr(s, t) along with the tangent vector p(s, t) = 𝜕sr(s, t). Now, (11)1 can be rewritten as

A𝜌𝜕tv − 𝜕s(Bp) = b
𝜕tp − 𝜕sv = 0, (36)

where in the last equation the equality of mixed derivatives, 𝜕2
tsr = 𝜕2

str, has been used. We aim at employing the state
vector

z =

[
v

Bp

]
=

[
v
n

]
. (37)
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To this end we make use of the relationship

𝜕t(Bp) = B𝜕tp + 𝜕tBp. (38)

Taking into account that B(s, t) = B̂(r(s, t), s), the last term on the right-hand side of (38) can be rewritten as

𝜕tBp =
(
𝜕pB ⋅ 𝜕tp

)
p. (39)

Substituting from (38) and (39) into (36)2 yields

𝜕t(Bp) − H𝜕sv = 0, (40)

where

H = BI + p ⊗ 𝜕pB. (41)

Equation (36)1 together with (40) give rise to the following system of first-order PDEs

D𝜕tz + E𝜕sz = F, (42)

where

D =

[
A𝜌I 0

0 I

]
E = −

[
0 I
H 0

]
F =

[
b
0

]
. (43)

Assume there exists a curve s = k(t) along which a solution ẑ(t) = z(k(t), t) is given. Then this curve is called a charac-
teristic if the partial derivatives of the solution cannot be uniquely determined through information along this curve.
Accordingly, inserting

𝜕tz = d
dt

ẑ(t) − 𝜕szk′(t)

into (42) yields (
E − k′(t)D

)
𝜕sz = F − D d

dt
ẑ(t). (44)

Since, by assumption, 𝜕sz can not be determined by knowledge of z on the curve, the condition

det(E − k′(t)D) = 0 (45)

has to be satisfied. Consequently, k′(t) coincide with the eigenvalues of E relative to D (i.e., the eigenvalues of D−1E). Corre-
spondingly, there are 2d characteristics associated with the eigenvalues𝜆i (i = 1, … , 2d). In particular, for the hyperelastic
material model introduced in Example 1, matrix (41) assumes the form

H = EA
2

(
1 − 1

𝜈2

)
I + EA

𝜈4 p ⊗ p, (46)

so that condition (45) yields the pairwise solution

k′(t) = ±c
√

1
2

(
1 + 1

𝜈2

)
(47)

for ,

k′
1(t) = ±c

√
1
2

(
1 + 1

𝜈2

)
and k′

2(t) = ±c
√

1
2

(
1 − 1

𝜈2

)
(48)
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for d = 2 and

k′
1(t) = ±c

√
1
2

(
1 + 1

𝜈2

)
and k′

2,3(t) = ±c
√

1
2

(
1 − 1

𝜈2

)
(49)

for d = 3. In the above equations c denotes the constant wave propagation speed introduced in (15).
In the sequel we illustrate the application of the method of characteristics to the inverse dynamics problem with

Examples 4 (linear case) and 5 (nonlinear case). Our approach can be traced back to the graphical-numerical solution
method due to Massau (see Reference 42).

Remark 6. Apart from the one-dimensional case (d = 1), the eigenvalues (48) and (49) are not all real-valued anymore
for 𝜈 < 1. This conforms with the fact that strings can sustain tensile forces but not compressive ones.

Example 4 (Linear-elastic bar). For the linear-elastic bar in one dimension (d = 1) introduced in Example 2, the
second-order PDE (14)1 is replaced by the system of first-order PDEs (42) based on the state vector

z =

[
v
n

]

along with

D =

[
𝜌A 0
0 1

]
E = −

[
0 1

EA 0

]
F =

[
0
0

]
. (50)

The characteristics are characterized by the linear version of (47) given by

ds
dt

= k′(t) = ±c. (51)

Accordingly, the slope of the characteristic lines in (s, t) space is determined by the constant wave propagation speed
introduced in (15). In addition to condition (45), problem (44) gives rise to two further conditions

det

[
𝜌A d

dt
v̂ 1

d
dt

n̂ k′(t)

]
= 0 and det

[
k′(t)𝜌A 𝜌A d

dt
v̂

EA d
dt

n̂

]
= 0. (52)

Here, v̂(t) = v(k(t), t) and n̂(t) = n(k(t), t) stand for, respectively, the velocity and the normal force along the characteristic
lines s = k(t) whose slope k′(t) is given by (51). The two conditions in (52) eventually yield one independent equation of
the form

k′(t)𝜌A dv̂
dt

− dn̂
dt

= 0. (53)

The ODEs (53) can be solved along the characteristic lines specified by (51). Altogether, application of the method of
characteristics converts the scalar second-order PDE (14)1 into a system of four ODEs given by (51) and (53). The ODEs
are supplemented with boundary conditions

n(0, t) = f0(t), v(L, t) = 𝛾 ′(t), n(L, t) = 0 (54)

and initial conditions v(s, 0) = v0 and n(s, 0) = 0.
For the linear problem at hand the ODEs (51) and (53) are decoupled. Accordingly, (51) can be used in a first step

to set up the characteristic net consisting of straight characteristic lines specified by (51). A sample characteristic net
thus obtained is shown in Figure 8. To each node (sQ, tQ) ∈ Ω of the characteristic net there is associated a nodal state
vector zQ = (vQ,nQ). The unknown nodal states can be determined by integrating (53) along the characteristic lines. This
procedure is illustrated with Figure 9 in which three nodes Q and Pj, j ∈ {1, 2} are considered. The three nodes correspond
to vertices on the characteristic net and thus comply with (51) in the sense that

sQ − sPj

tQ − tPj

+ (−1)jc = 0
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F I G U R E 8 Characteristic net along with a representative node Q located at (sQ, tQ) ∈ Ω

F I G U R E 9 Three nodes Q, P1, and P2, located on the characteristic net with associated states (vQ,nQ), (vP1
,nP1

), and (vP2
,nP2

). The
characteristic lines C1 and C2 are associated with the slopes ds∕dt = c and ds∕dt = −c, respectively

is satisfied for j ∈ {1, 2}. The numerical integration of (53) relies on the finite difference scheme

nQ − nPj

tQ − tPj

+ (−1)jc𝜌A
vQ − vPj

tQ − tPj

= 0

for j ∈ {1, 2}. Repeatedly applying this procedure to the characteristic net in Figure 8 yields a (fully coupled) system of
algebraic equations for the determination of the unknown states (vA,nA). Note that the states at the boundaries at s = L
(cf. boundary conditions (54)2,3) and t = 0 (initial conditions) are given. Eventually, boundary condition (54)1 determines
the actuating forces f0(tB) = nB for the nodes B lying on the boundary at s = 0.

Remark 7 (Pre- and post-actuation phases). Prescribing the motion of the right boundary (s = L) during the time interval
[t0, tf ] leads to the requirement of pre- and post-actuation phases in the solution of the inverse dynamics problem. This
can be observed from Figure 8 where the pre-actuation phase is related to t ∈ [0, t0] and the post-actuation phase is related
to t ∈ [tf ,T]. Since the slope of the characteristic lines depends on the wave propagation speed, the wave propagation
speed together with the length of the bar determine the time span of both pre- and post-actuation phases. The shaded
trapezoidal area in Figure 8 elucidates this correlation.

Remark 8 (Riemann invariants for the linear-elastic bar). The functions h𝛼(s, t) = h̃𝛼(z(s, t)) (𝛼 = 1, … , 2d) that are
constant along characteristics associated with eigenvalues 𝜆𝛼 are called Riemann invariants. We refer to Reference 43 for
more details on Riemann invariants. In the case of the linear-elastic bar the two eigenvalues 𝜆1 = c and 𝜆2 = −c have
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been determined in (51). It can be shown by following lines in Reference 22 (ch. 18) that the two Riemann invariants are
given by

h𝛼(s, t) = n(s, t) − 𝜆𝛼𝜌Av(s, t). (55)

Taking the time derivative of (55) along the characteristic lines yields

d
dt

h̃𝛼(ẑ) =
dn̂
dt

− 𝜆𝛼𝜌A dv̂
dt

= 0, (56)

where (53) has been used, which is valid along the respective characteristic line. Accordingly, the functions (55) (𝛼 = 1, 2)
are indeed constant along the characteristics associated with eigenvalues 𝜆𝛼 .

Example 5 (Nonlinear string in 2d). For the nonlinear string in two dimensions (d = 2), the second-order PDE (11)1 is
replaced by the system of first-order PDEs (42) based on the matrices in (43) and (46). The state vector (37) is comprised
of the 2-vectors v and n. Two pairs of characteristics can be distinguished which are characterized by the slopes in (48).
Correspondingly, two (i = 1, 2) pairs of characteristics are defined by(

ds
dt

)
ij
= (−1)j+1ci, (57)

where, with regard to (48),

c1 = c
√

1
2

(
1 + 1

𝜈2

)
and c2 = c

√
1
2

(
1 − 1

𝜈2

)
. (58)

Each pair of characteristics has j ∈ {1, 2} members, where j = 1 refers to the forward propagating direction and j = 2 to
the backward propagating direction. In addition to (57), (44) gives rise to the following ODEs along the characteristics
i, j ∈ {1, 2}

Ui ⋅
(

dn̂
dt

)
i
+ (−1)jciVi ⋅

(
dv̂
dt

)
i
+ (−1)jciWi = 0, (59)

where v̂ = v(k(t), t) and n̂ = n(k(t), t) denote, respectively, the velocity and the contact force along the respective charac-
teristic curve. Moreover,

Ui = Vi = Pi p, Wi = p1p2

with

Pi = 𝛿i1

[
p1 0
0 p1

]
+ 𝛿i2

[
0 −p2

p2 0

]
.

Equations (57) and (59) constitute a system of coupled nonlinear ODEs which can be discretized as follows:

sQ − sPij

tQ − tPij

+ (−1)jci
|||Pij

= 0

Ui
|||Pij

nQ − nPij

tQ − tPij

+ (−1)j(ciVi)
|||Pij

vQ − vPij

tQ − tPij

+ (−1)j(ciWi)
|||Pij

= 0 (60)

for i, j ∈ {1, 2}. In analogy to Example 4, vertices of the characteristic net are denoted by (sA, tA), while the corresponding
nodal states are denoted by (vA,nA). In contrast to Example 4, the characteristic net can not be determined beforehand,
because ci in (60)1 depends on the state, see (58). Consequently, the location of the nodal net points, (sQ, tQ) and (sPij , tPij),
in general needs be determined through the solution procedure, as well as the nodal states.

Scheme (60) is further illustrated with Figure 10, in which the points Q and Pij (i, j ∈ {1, 2}) located on the respec-
tive characteristics are displayed. This procedure can be repeatedly applied within the space-time domain of interest
(Figure 11). After assembly, a coupled system of nonlinear algebraic equations is obtained which can be solved iteratively
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F I G U R E 10 Integration along the characteristics Cij (i, j ∈ {1, 2}) according to (60). The characteristics Cij are associated with the
slopes (ds∕dt)ij in (57)

F I G U R E 11 Characteristic net in the space-time domain

by means of Newton’s method. Prior to the solution the boundary and initial conditions emanating from (11)2,3 need be
taken into account.

Remark 9 (Pre- and post-actuation phases). Note that similar to the linear setting (Remark 7), the solution of the inverse
dynamics problem requires pre- and post-actuation phases. This is again indicated with the shaded area in Figure 11. The
parameters t0, tf , and T have the same meaning as in Remark 7.

4.2 Space-time finite element approach

The method of characteristics dealt with in Section 4.1 can be viewed as simultaneous space-time discretiza-
tion approach to the inverse dynamics problem (11). Aiming at an alternative, more systematic, approach
we next propose a simultaneous space-time finite element method to solve the inverse dynamics problem at
hand.

Introducing the velocity field v(s, t) in space-time, the PDEs (11)1 can be recast in the form

𝜕tr − v = 0
A𝜌𝜕tv − 𝜕s(B𝜕sr) = b.

(61)
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Scalar multiplying the equations in (61) by sufficiently smooth test functions w1,w2 ∶ Ω → Rd and subsequently
integrating over the space-time domain Ω = S × T yields the following integral formulation:

∫Ω
w1 ⋅ (𝜕tr − v) dΩ = 0

∫Ω
w2 ⋅

(
qA𝜌𝜕tv − 𝜕s (B𝜕sr)

)
dΩ = ∫Ω

w2 ⋅ b dΩ. (62)

Integrating by parts the second term on the left-hand side of (62)2 and taking into account the boundary conditions (11)2
yields

∫Ω
w2 ⋅ A𝜌𝜕tv dΩ + ∫Ω

𝜕sw2 ⋅ B𝜕sr dΩ + ∫Γ0

w2(0, t) ⋅ f0(t) dt

= ∫Ω
w2 ⋅ b dΩ + ∫ΓL

w2(L, t) ⋅ fL(t) dt, (63)

where boundaries Γ0 = {0} × T and ΓL = {L} × T of space-time domain Ω = S × T have been introduced (see Figure 12).
Concerning the prescribed motion of the right end of the string (at s = L), we make use of weakly enforced
servo-constraints of the form

∫ΓL

w3(t) ⋅ (𝜸(t) − r(L, t)) dt = 0, (64)

where w3 ∶ ΓL → Rd is a third test function.
Now the weak formulation of the inverse dynamics problem at hand can be stated as follows: Given b, f0, r0, and v0,

find r ∈ V1, v ∈ V2, and f0 ∈ V3, such that

∫Ω
w1 ⋅ A𝜌(𝜕tr − v)dΩ = 0

∫Ω
w2 ⋅ A𝜌𝜕tv dΩ + ∫Ω

𝜕sw2 ⋅ B𝜕sr dΩ + ∫Γ0

w2(0, t) ⋅ f0(t) dt

= ∫Ω
w2 ⋅ b dΩ + ∫ΓL

w2(L, t) ⋅ fL(t) dt

∫ΓL

w3(t) ⋅ (r(L, t) − 𝜸(t)) dt = 0

(65)

F I G U R E 12 Space-time domain Ω = S × T along with the boundaries 𝜕Ω0 = S × {0}, Γ0 = {0} × T and ΓL = {L} × T
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for arbitrary test functions w𝛼 ∈ W𝛼 (𝛼 = 1, 2) and w3 ∈ W3. The prescribed initial conditions (11)3 give rise to the
Dirichlet-type boundary 𝜕Ω0 of the space-time domain Ω (Figure 12). Accordingly, we have

V1 =
{

r ∶ Ω → R
d | r = r0 on 𝜕Ω0

}
V2 =

{
v ∶ Ω → R

d | v = v0 on 𝜕Ω0
}

V3 =
{

f0 ∶ Γ0 → R
d | f0 = f0 on Γ0 ∩ 𝜕Ω0

}
and

W𝛼 =
{

w𝛼 ∶ Ω → R
d | w𝛼 = 0 on 𝜕Ω0

}
W3 =

{
w3 ∶ ΓL → R

d | w3 = 0 on ΓL ∩ 𝜕Ω0
}

for 𝛼 = 1, 2. The space-time finite element discretization of weak form (65) is based on finite-dimensional sub-spaces
V h

i ⊂ Vi and W h
i ⊂ Wi associated with interpolations of the trial functions

rh(s, t) =
nnodes∑
a=1

Na(s, t)ra

vh(s, t) =
nnodes∑
a=1

Na(s, t)va

and
fh

0(t) =
∑

i∈0

Li(t)f0i

fh
L(t) =

∑
i∈L

Li(t)fLi

where nnodes is the total number of nodes given rise to the index set nodes = {1, … ,nnodes}. Moreover, index set 0 ⊂

nodes contains the nodes lying on Γ0. Similarly, L ⊂ nodes contains the nodes lying on ΓL. The test functions are
approximated by

wh
𝛼(s, t) =

nnodes∑
a=1

Na(s, t)w𝛼a and wh
3(t) =

∑
i∈L

Li(t)w3i

for 𝛼 ∈ {1, 2}

4.2.1 Resulting algebraic formulation

In the present work we confine our attention to standard low-order isoparametric finite elements. In particular, Li denote
linear Lagrangian shape functions also employed in Section 3.1, while Na denote bilinear Lagrangian shape functions.
Inserting the above finite element approximations into weak form (65) yields the algebraic system of equations

Q −V = 0
V + Fint(Q) +

T
0 0 = Fext +

T
L L

LQ − 𝜞 = 0,
(66)

where

ab = Id ∫Ω
A𝜌Na𝜕tNbdΩ

ab = Id ∫Ω
A𝜌NaNbdΩ

Fint
a = ∫Ω

𝜕sNaB𝜕srh dΩ

𝛼ib = Id ∫Γ𝛼

LiNb dt

Fext
a = ∫Ω

Nab dΩ

𝜞 i = ∫ΓL

Li𝜸 dt.

(67)
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In (66), the unknown nodal quantities ra, va, and f0i
have been assembled in corresponding nodal system vectors Q, V,

and  0. Elimination of the nodal velocity vector V yields the residual vector

(Q, ) =

[


−1
Q + Fint(Q) +

T
0 0 − Fext −

T
L L

LQ − 𝜞

]
. (68)

The resulting algebraic system of nonlinear equations, (Q, 0) = 0, can be solved iteratively for the nodal unknowns
(Q, 0) by applying Newton’s method. In this connection, the iteration matrix is given by

D(Q, ) =

[


−1
 + DFint(Q) 

T
0

L 0

]
, (69)

where DFint(Q) results from (67)3 together with the constitutive term (12)2. A straightforward calculation taking into
account the material model outlined in Example 1 yields the nodal contribution to DFint(Q) given by

𝜕rb Fint
a (Q) = ∫Ω

𝜕sNaH𝜕sNb dΩ, (70)

where matrix H has been defined in (41). Note that p in (41) has now to be substituted with rh.

Remark 10 (Additional point mass). If an additional point mass M is attached to the right end of the string (Remark 1),
the term fL(t) = M

(
g − 𝜕tvh(L, t)

)
has to be taken into account in weak form (65)2. Correspondingly, in the discrete

formulation, the following entries of matrices (67)1 and (67)5 need be modified according to

ab ←− ab + IdM ∫ΓL

Na𝜕tNb dt

Fext
a ←− Fext

a + Mg∫ΓL

Na dt

for a, b ∈ L.

4.2.2 Recursive implementation

The newly devised space-time finite element method yields the system of algebraic equations (66) which can be solved
by applying the iterative procedure outlined in Section 4.2.1. This implies the simultaneous solution of all the unknowns
resulting from the space-time discretization. We next show that the solution can alternatively be attained by applying
a recursive scheme which relies on the decomposition of Ω into N time-space slabs Ωn = (sn−1, sn) × T, n = 1, … ,N
(Figure 13). Focusing on one representative slab Ωn, the recursive solution procedure relies on the weak form

∫Ωn

w1 ⋅ A𝜌 (𝜕tr − v) dΩ = 0

∫Ωn

w2 ⋅ A𝜌𝜕tv dΩ + ∫Ωn

𝜕sw2 ⋅ B𝜕sr dΩ + ∫Γn−1

w2 ⋅ fn−1 dt

= ∫Ωn

w2 ⋅ b dΩ + ∫Γn

w2 ⋅ fn dt

∫Γn

w3n ⋅
(

r − 𝜸n
)

dt = 0

∫Γn−1

w3n−1 ⋅
(

r − 𝜸n−1
)

dt = 0,

(71)

where Γn = {sn} × T. Note that ΓN = ΓL. In essence, weak form (71) emanates from the original formulation (65) by
restricting the space-time domain to Ωn. In this connection, (71)3,4 have been introduced to facilitate a convenient
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F I G U R E 13 Division of the space-time domain Ω = S × T into time-space slabs Ωn = (sn−1, sn) × T for n = 1, … ,N

description of the recursive solution procedure. The overall space-time approximation remains the same as before. The
approximation of the newly introduced intermediate quantities fn (n = 1, … ,N − 1) is given by

fh
n(t) =

∑
i∈n

Li(t)fni
, (72)

where index set n contains the nodes lying on Γn. In this way, fh
n ∈ V h

3n
⊂ V3n , where

V3n =
{

fn ∶ Γn → R
d | fn = fn on Γn ∩ 𝜕Ω0

}
and fn (n = 1, … ,N − 1) have to be prescribed in the same way as f0, see Section 2.2. Similarly, we introduce

W3n =
{

w3n ∶ Γn → R
d | w3n = 0 on Γn ∩ 𝜕Ω0

}
for n = 0, … ,N − 1, so that in (71)3,4, w3n ∈ W3n . Correspondingly, wh

3n
∈ W h

3n
⊂ W3n is given by

wh
3n

=
∑

i∈n

Li(t)(w3n)i.

It can be easily shown that the recursive application of (71) for n = 1, … ,N is equivalent to the original space-time
method, provided that the approximation of 𝜸n in (71)3,4 conforms with the continuity of the displacement approximation.
To ensure this, we choose

𝜸h
n(t) =

∑
i∈n

Li(t)𝜸ni
, (73)

so that (71)3,4 enforce rh||Γn
= 𝜸h

n and rh||Γn−1
= 𝜸h

n−1. Now, the equivalence between (71)1 and (65)1 follows from the
property

N∑
n=1 ∫Ωn

(… ) dΩ = ∫Ω
(… ) dΩ.

Similarly, the equivalence between (71)2 and (65)2 follows by additionally taking into account

N∑
n=1

(
∫Γn−1

w2 ⋅ fn−1 dt − ∫Γn

w2 ⋅ fn dt
)

= ∫Γ0

w2 ⋅ f0 dt − ∫ΓL

w2 ⋅ fL dt.



20 STRÖHLE and BETSCH

T A B L E 1 Recursive implementation

LOAD 𝜸h
N , fh

N

DO n=N,…,1

SOLVE Equation (71)→ rh||Ωn
, vh||Ωn

, 𝜸h
n−1, fh

n−1

Moreover, (71)3 contains (65)3 for n = N under the provision that the prescribed trajectory 𝜸 on ΓL is based on nodal
interpolation of the type (73).

Now the proposed space-stepping algorithm results from the recursive application of the discretized weak form (71)
in backward space direction, that is, for n = N,N − 1, … , 1 as shown in Table 1.

Note that for n = N the given data follows from the prescribed data on ΓL leading to 𝜸h
N = 𝜸h and fh

N = fh
L, where the

prescribed data 𝜸 and fL is assumed to be given in interpolated form of the type (73) and (72), respectively.
The implementation of the recursive scheme is again based on the algebraic formulation outlined in Section 4.2.1.

However, in each step of the recursive scheme all of the algebraic quantities are now confined to the respective slab Ωn
(see also Remark 12 below).

Remark 11. The meaning of the newly introduced intermediate quantities fn and fn−1 (n = 2, … ,N − 1) in (71)2 can be
elucidated by considering the Euler–Lagrange equations emanating from (71)2. A straightforward calculation based on
integration by parts applied to the second term on the left-hand side of (71)2 yields

∫Ωn

w2 ⋅
(

A𝜌𝜕tv − 𝜕s(B𝜕sr) − b
)

dΩ + ∫Γn

w2 ⋅
(

n − fn
)

dt + ∫Γn−1

w2 ⋅
(

fn−1 − n
)

dt = 0.

Accordingly, fn = n|Γn and fn−1 = n|Γn−1 , so that fn and fn−1 correspond to the contact forces in the string along Γn and
Γn−1, respectively.

Remark 12. (Numerical effort). Assuming a regular discretization of the space-time domainΩ = S × T relying on ns nodes
in space direction and nt nodes in time direction amounts to a total number of nodes nnodes = ns ⋅ nt. The simultaneous
solution for all unknowns outlined in Section 4.2.1 relies on the iteration matrix (69), whose dimension is equal to (ns +
1) ⋅ (nt − 1) ⋅ d. In contrast to that, the dimension of the iteration matrix corresponding to each of the N = ns − 1 steps of
the recursive solution procedure is equal to 3 ⋅ (nt − 1) ⋅ d.

Remark 13. The semi-discrete approach described in Section 3 can be linked to the space-time finite element method
developed above. To this end, we consider a Galerkin-based discretization in time of the semi-discrete formulation. In
particular, we introduce the following approximations of the nodal position and velocity vectors

qh
i (t) = Lj(t)qij

vh
i (t) = Lj(t)vij. (74)

For conciseness the summation convention applies throughout this remark. Moreover, for simplicity we again employ
Lagrangian shape functions in (74). In addition to that, we introduce nodal weighting functions of the form

Wh
i (t) = MA(t)WiA, (75)

where MA are basis functions to be specified below. Now the semi-discrete equations (25) together with the
servo-constraints (28) can be recast in the weighted Galerkin form

∫T
Wh

i ⋅ Mij

(
q̇h

j − vh
j

)
dt = 0

∫T
Wh

i ⋅
(

Mijv̇h
j + fint

i (qh) − fext
i (t) + 𝛿i1fh

0(t) − 𝛿i,p+1fh
L(t)

)
dt = 0

∫T
Wh

i ⋅ 𝛿i,p+1
(

qh
i − 𝜸

)
dt = 0.

(76)
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Note that (76)1 serves the purpose of introducing the nodal velocities vh
i . Time-stepping schemes typically applied in the

context of the semi-discrete formulation can be recovered from (76) by choosing specific discontinuous shape functions
MA in (75), along with associated quadrature formulas for the evaluation of the time integrals. This approach gives rise
to the so-called continuous Galerkin method§(see Reference 33). For example, focusing on the first two equations in (76)
emanating from the underlying system of first-order ODEs, choosing constant shape functions MA and linear Lagrangian
shape functions Lj, along with the mid-point quadrature for the evaluation of the time integrals yields the mid-point rule
(see, e.g., Reference 44).

In sharp contrast to that, the newly developed space-time finite element method can be recovered from (76) by choos-
ing continuous shape functions MA. In particular, using again Lagrangian shape functions, that is, MA(t) = LA(t), (76)
leads to the algebraic formulation (66), provided that

• the shape functions Na(s, t) used in the above space-time finite element method have tensor product form (cf.
References 45,46). That is,

Na(s, t) = Li(s)Lj(t). (77)

Referring to the local node numbering of a bi-linear master element (Figure 14), the node numbers in (77) are related
to each other as depicted in Table 2.

In this connection, the one-dimensional linear Lagrangian shape functions are given by

L1(𝜉) =
𝜉2 − 𝜉

𝜉2 − 𝜉1

L2(𝜉) =
𝜉 − 𝜉1

𝜉2 − 𝜉1
,

(78)

where 𝜉1 and 𝜉2 refer to the nodal coordinates, while 𝜉 stands for either s ∈ S or t ∈ T.
• rectangular shaped space-time finite elements are used leading to a structured mesh in space-time. Note that this

precludes unstructured space-time meshes which are feasible with the space-time finite element method proposed
above.

To further illustrate the connection between (76) and (66), we consider the first term in (76)2, which yields

∫T
Wh

i ⋅ Mijv̇h
j dt = WiA ⋅ ∫T

LA(t)L′
k(t) dt Mijvjk

= WiA ⋅ ∫T
LA(t)L′

k(t) dt ∫S
A𝜌Li(s)Lj(s) ds vjk

= WiA
⏟⏟⏟

w2a

⋅ ∫Ω
A𝜌Li(s)LA(t)

⏟⏞⏞⏟⏞⏞⏟
Na(s,t)

Lj(s)L′
k(t)

⏟⏞⏞⏟⏞⏞⏟
𝜕tNb(s,t)

dΩ vjk
⏟⏟⏟

Vb

= w2a ⋅abVb.

T A B L E 2 Relation between the local node numbers of the shape functions in (77)

a i j

1 1 1

2 2 1

3 2 2

4 1 2
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F I G U R E 14 Bi-linear master element with local node numbering

Here, Mij introduced in (27) has been used. Moreover, the relation between the nodal shape functions in Table 2 has been
taken into account.

The remaining terms in (76) can be linked to the corresponding terms in (66) in a similar manner.

5 NUMERICAL INVESTIGATIONS

In this section the inverse dynamics problem at hand is numerically solved by applying the newly developed space-time
discretization methods. In particular, the method of characteristics, termed “MOC” (Section 4.1), and the space-time
finite element method, termed “ST-FEM” (Section 4.2), are applied. ST-FEM relies on bi-linear isoparametric space-time
elements. The evaluation of the integrals in (67) relies on standard Gaussian quadrature rules.

5.1 Linear-elastic bar

We start with the feedforward control of the linear-elastic bar. This problem makes possible the comparison of the numer-
ical results delivered by both MOC and ST-FEM with the analytical solution (Remark 3). The prescribed trajectory of the
right end of the bar is assumed to be given by

𝛾(t) =

⎧⎪⎪⎨⎪⎪⎩
0 t < t0

1
2

sin
(
𝜋

t − t0

tf − t0
− 𝜋

2

)
+ 1

2
t0 ≤ t ≤ tf

1 t > tf

(79)

for t0 = 1 and tf = 3. Moreover, the remaining data for this problem are EA = 1, 𝜌A = 1, L = 1.
In Figures 15 and 16 the numerical results for the actuating force f0(t) are compared to the reference solution obtain by

applying formula (21). It can be observed that the numerical results of the two alternative schemes under consideration
closely match the reference solution. The results of MOC rely on a total of 356 unknowns. Concerning ST-FEM, two
alternative meshes comprised of rectangular bilinear elements have been applied. The first one consists of 5 × 15 = 75
elements, leading to a total number of 195 unknowns. The second one consists of 10 × 50 = 500 elements, leading to a
total number of 1150 unknowns.

Figure 17 depicts the numerical solution for the functions v(s, t) = 𝜕tr(s, t) and p(s, t) = 𝜕sr(s, t), respectively, com-
puted with the method of characteristics. The corresponding characteristic net is also partially visualized in the
s, t-plane.

Figure 18 contains plots of the two functions h𝛼(s, t) introduced in (55) associated with the Riemann invari-
ants (Remark 8). In particular, function h1(s, t) corresponds to the characteristic line C1 whose slope is given
by ds∕dt = k′(t) = c. Similarly, function h2(s, t) corresponds to the characteristic line C2 whose slope is given by
ds∕dt = k′(t) = −c. It can be observed that both functions are indeed constant along the respective characteristic
line.

The numerical solution for the displacement field u(s, t) and the velocity field v(s, t) computed with the space-time
finite element method are depicted in Figure 19. There, the corresponding finite element mesh is also partially visible in
the s, t-plane.
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F I G U R E 15 Numerical solution for the actuating force f0(t) computed using the method of characteristics (circles) compared with the
analytical solution (solid line)

F I G U R E 16 Numerical solution for the actuating force f0(t) computed using the space-time finite element method (circles) compared
with the analytical solution (solid line). Left diagram: 5 × 15 = 75 elements, right diagram: 10 × 50 = 500 elements

F I G U R E 17 Functions v(s, t) = 𝜕tu(s, t) and n(s, t) = B𝜕su(s, t) computed with the method of characteristics. Part of the characteristic
net is also visualized in the s, t-plane
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F I G U R E 18 Functions h𝛼(s, t) associated with the two Riemann invariants

F I G U R E 19 Numerical solution for the displacement field u(s, t) and velocity field v(s, t) computed with the space-time finite element
method. The corresponding finite element mesh (5 × 15 bilinear elements) can also be partially seen in the s, t-plane

F I G U R E 20 ST-FEM: relative error in the actuating force f0
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Concerning numerical accuracy, the method of characteristics yields exact results in the linear setting. This is due to
the fact that the difference scheme presented in Example 4 is capable to exactly integrate along straight characteristic
lines. In contrast to this, the accuracy of ST-FEM is of order two. This can be concluded from Figure 20, in which the
relative error

𝜀f0(he) =
|||f ana

0 − f he
0
|||||f ana

0
||

is shown. Here, f ana
0 is the actuating force calculated by applying the analytical solution (21), while f he

0 refers to the numer-
ical solution obtained with ST-FEM. To get the results in Figure 20, the space-time finite element mesh has been uniformly
refined. In this connection, he denotes the element length in space direction.

5.2 Nonlinear elastic string in 2d

The next example deals with the planar motion of a geometrically exact string. In particular, the trajectory of the right
end of the string is prescribed as straight line in the x, y-plane via

𝜸(t) = 𝛾(t)

[
1
1

]
, (80)

where function 𝛾(t) is given by (79) with t0 = 2 and tf = 4. The remaining data is given by EA = 1, 𝜌A = 1, L = 1, g = 9.81.
The initial values for the inverse dynamics problem (11) have been obtained by solving the equilibrium problem of

the string by means of the semi-discrete model described in Section 3.1. For that purpose, 50 finite elements have been
employed. The thus obtained vertical equilibrium configuration of the string is characterized by a total length (6) of
l(0) = 9.985 and a suspension force of f0 = −g ey.

Figure 21 depicts the components of the actuating force required to realize the partially prescribed motion of
the string. It can be observed that both the method of characteristics and the space-time finite element method
yield closely related results. These results have been obtained by employing 50 × 150 = 7500 rectangular space-time
elements leading to a total number of 15,600 unknowns. Merely 4 Newton iterations were necessary to achieve
the present results by applying the simultaneous solution procedure outlined in Section 4.2.1. On the other hand,
the results of the method of characteristics relies on a total number of 6727 unknowns. Convergence was attained

F I G U R E 21 Actuating force components f x
0 (t) and f y

0 (t)
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F I G U R E 22 Snapshots of the planar motion of the string in the x, y-plane

F I G U R E 23 Snapshots of the motion of the string in space-time

after 8 Newton iterations. It is worth noting that the data pertaining to the initial equilibrium configuration
of the string has been used to initialize Newton’s method throughout the space-time domain, both for ST-FEM
and MOC.

To get an impression of the overall motion of the string, snapshots in the x, y-plane and in space-time are shown in
Figures 22 and 23, respectively. In addition to that, the stretch distribution over the space-time domain is depicted in
Figure 24.

In the second part of this example an additional point mass M = 1 is attached to the right end of the string (cf. Remarks
1,4, and 10). The prescribed motion of the point mass is again governed by (80), with t0 = 1 and tf = 3. The remaining
data is specified by EA = 10, 𝜌A = 1, L = 1, g = 9.81.

In a first step the equilibrium configuration of the string-mass system has been computed by applying 50 finite ele-
ments within the semi-discrete formulation (Section 3.1). Accordingly, the vertical equilibrium configuration providing
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F I G U R E 24 Stretch distribution over the space-time domain

F I G U R E 25 Actuating force components f x
0 (t) and f y

0 (t)

the initial data for the subsequent inverse dynamics simulation is characterized by a total length (6) of l(0) = 3.258 and a
suspension force of f0 = −2g ey.

The resulting components of the actuating force required to realize the partially specified motion are depicted
in Figure 25. It can be seen that the results of both methods under investigation match each other closely. The
numerical results of the space-time finite element method are based on a mesh containing 50 × 200 = 10,000
elements leading to a total number of 20,800 unknowns. Merely 4 Newton iterations are required to attain
the converged solution. The corresponding results of the method of characteristics are based on a total num-
ber of 10,515 unknowns. The required number of Newton iterations amounts to 7. Again the data pertaining
to the initial equilibrium configuration of the system has been used to initialize Newton’s method throughout
space-time.
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F I G U R E 26 Snapshots of the motion of the string with attached mass point

F I G U R E 27 Total length of the string

The overall motion of the string is illustrated with snapshots of successive configurations of the system in Figure 26.
The total length (6) of the string versus time is depicted in Figure 27. In addition to that, the stretch distribution over the
space-time domain is depicted in Figure 28.

5.3 Nonlinear elastic string in 3d

The final example deals with the spatial motion of the string. In particular, the point mass attached at the right end of the
string (cf. Remarks 1,4, and 10) is supposed to move on a helix. To this end, the helix-shaped trajectory is prescribed by

𝜸(t) =
⎛⎜⎜⎜⎝
cos(2𝜋 ⋅ 𝜙) − 1

sin(2𝜋 ⋅ 𝜙)
zf𝜙

⎞⎟⎟⎟⎠∀t ∈ I, 𝜸(t) =
⎛⎜⎜⎜⎝
0
0
0

⎞⎟⎟⎟⎠∀t < t0, 𝜸(t) =
⎛⎜⎜⎜⎝

0
0
zf

⎞⎟⎟⎟⎠∀t > tf , (81)
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F I G U R E 28 Stretch distribution over the space-time domain

F I G U R E 29 Components of the prescribed trajectory (helix)

where

𝜙 = −1
2

cos(𝜋 ⋅ s) + 1
2

s = 1
2

sin
(
𝜋

t − t0

tf − t0
− 𝜋

2

)
+ 1

2
I =

[
t0, tf

]
= [2, 8].

In Figure 29 the prescribed coordinates are plotted versus time. The remaining data for this example is specified by EA =
10, 𝜌A = 1, L = 1, g = 9.81, M = 1, and zf = 5.

In a first step the vertical equilibrium configuration of the system (Figure 30) subject to gravity load is computed by
applying the semi-discrete model of the string (cf. Section 3.1) consisting of 15 finite elements. Accordingly, the vertical
equilibrium configuration is characterized by a total length (6) of l(0) = 3.258 and a suspension force of f0 = −2g ez. The
thus obtained equilibrium configuration provides the initial data for the inverse dynamics problem (11) to be solved
subsequently. In this connection, the data is also used to initialize Newton’s method through the space-time domain.
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F I G U R E 30 Equilibrium configuration of the string with attached point mass under gravity load. In addition to that, the helix-shaped
trajectory to be tracked by the point mass is indicated as well

F I G U R E 31 Components of the actuating force f0(t) obtained as solution of the inverse dynamics problem

F I G U R E 32 Total length of the string
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F I G U R E 33 Computed trajectory of the actuated upper end of the string (s = 0) projected onto the horizontal x, y-plane. In addition to
that, the projection of the prescribed trajectory of the lower end of the string (s = 1) is also shown

F I G U R E 34 Snapshots of the moving elastic string (the point mass attached at the lower end of the string is not shown). According to
the inverse dynamics problem solved, the lower end of the string starts at rest (starting point 𝜸(t0) = (0, 0, 0)) and traces the prescribed
helix-shaped trajectory until the end point 𝜸(tf ) = (0, 0, 5) has been reached

The space-time finite element approach (Section 4.2) is applied in conjunction with the simultaneous solution procedure
outlined in Section 4.2.1.

The computed three components of the actuating force required to realize the partially prescribed motion of the system
are depicted in Figure 31. Figure 32 displays the total length of the string versus time. The resulting motion of the system is
illustrated with Figures 33 and 34. These results have been obtained by employing 15 × 149 = 2235 rectangular space-time
finite elements amounting to a total number of 7599 unknowns. Merely 4 Newton iterations were required to reach the
numerical solution.

5.3.1 Recursive solution procedure

We next apply the recursive solution procedure described in Section 4.2.2. The data is kept the same as before. The num-
ber of finite elements in space direction is reduced from 15 to 10 in order to simplify the graphical illustration of the
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F I G U R E 35 Components of the contact-forces (left) and trajectories (right) along the boundaries of the time-space slabs obtained with
the recursive solution procedure

results. Accordingly, the space-time finite element mesh is comprised of 10 × 149 rectangular elements leading to N = 10
time-space slabs used in the recursive solution procedure. As expected, the numerical results are practically indistinguish-
able from those obtained by applying the simultaneous solution procedure (Section 4.2.1). In Figure 35 the contact forces
and trajectories along the boundaries Γn of the time-space slabs are shown.

While the dimension of the iteration matrix pertaining to the simultaneous solution is equal to 5364, the dimension of
the iteration matrix of the recursive solution procedure is equal to 1341 (cf. Remark 12). On average 3.2 Newton iterations
were required in each of the 10 steps of the recursive scheme. In comparison, 4 Newton iterations were required to reach
the solution of the simultaneous solution scheme.
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F I G U R E 36 Components of the perturbed data for the prescribed trajectory 𝜸𝛿 for 𝛿 ∶ t → [0, 0.05]

Remark 14 (Perturbed data of the prescribed trajectory). According to Hadamard a problem is well-posed if there
exists a solution to the problem which is unique and stable (see Reference 47 or 48 (definition 1.13)). Since existence
and uniqueness of the solution to the present space-time boundary value problem are assured by the differential flat-
ness of the system, stability still has to be ensured. The solution is called stable if it depends continuously on the given
data—small perturbations of the prescribed servo-constraints on ΓL must not lead to unbounded results for the actuat-
ing force f0(t) on Γ0. This can be verified numerically by adding random noise to the given data of the trajectory such
that

‖‖‖𝜸𝛿 − 𝜸
‖‖‖2

≤ 𝛿,

where 𝜸𝛿 denotes the perturbed trajectory. The perturbed components of 𝜸𝛿 are shown in Figure 36. For comparison, the
original components of 𝜸 given by (81) are depicted in Figure 29. Figure 37 shows the results for the actuating forces
resulting from the solution of the inverse problem with the perturbed data. Comparison with Figure 31 indicates that the
perturbed problem still yields results close to the original ones.
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F I G U R E 37 Components of the actuating force obtained as solution of the inverse problem with noisy data for the prescribed
trajectory 𝜸𝛿 at ΓL with 𝛿 ∶ t → [0, 𝛼] and 𝛼 ∈ {0.02, 0.05}

6 CONCLUSIONS

In the present work a new approach to the numerical simulation of inverse dynamics problems dealing with the
feedforward control of geometrically exact strings has been developed. The newly proposed approach consists of the simul-
taneous discretization in space and time of the underlying space-time BVP. In particular, two alternative methods have
been presented. While the first approach is based on the classical method of characteristics, the second approach relies
on a Galerkin-based space-time discretization of the underlying PDEs. In essence, the space-time finite element method
has been guided by the method of characteristics in that it motivates the simultaneous discretization in space and time.
Moreover, in the finite element approach the trajectory tracking condition has been imposed weakly by means of servo
constraints.

Previously, servo-constraints were employed successfully in the simulation approach to the feedforward control of
underactuated discrete mechanical systems such as cranes and manipulators with passive joints (see, e.g., References
9,10,34). It is tempting to follow similar lines by applying finite elements in the common way to convert the continuous
model of the string into an underactuated discrete system subject to servo-constraints. However, we have seen in Section 3
that the resulting system of DAEs is prone to an excessively high index which hinders the stable numerical integration.
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Thus the successive space-time discretization approach commonly applied in structural dynamics turns out to be rather
unsuited to solve the inverse dynamics problem at hand.

A characteristic feature of the present space-time Galerkin finite element approach are continuous test functions. This
is in sharp contrast to previously developed space-time finite element methods that rely on discontinuous test functions
thus making possible to divide the space-time domain into a sequence of space-time slabs eventually recovering the
time-marching format commonly applied in structural dynamics (see Reference 49, (sec. 6.3) and references cited therein).

Of course, the simultaneous space-time discretization approach yields a comparatively large system of algebraic
equations whose unknowns refer to the whole space-time domain pertaining to the inverse dynamics problem to be
solved. This feature is shared with the alternative approach based on the method of characteristics. On the other hand, the
numerical investigations have shown that the total number of Newton iterations required to yield a converged solution
is surprisingly low, although the system is undergoing quite large deformations. This puts the relatively large number of
unknowns into perspective.

The numerical effort can still be reduced considerably by dividing the space-time domain into a sequence of time-space
slabs making possible a recursive solution of the inverse problem as has been shown in Section 4.2.2. In essence, the
recursive solution procedure does not change the structure of the algebraic system to be solved in each step but signifi-
cantly reduces its size. Indeed, we have shown that both the recursive solution procedure and the simultaneous one yield
equivalent results. While the recursive scheme leads to a reduction of the numerical effort, the simultaneous scheme is
more general in that it makes possible to use unstructured space-time meshes.

If the actuating forces obtained from the inverse dynamics simulation are fed into a forward dynamics simulation
based on the corresponding semi-discrete system in conjunction with a standard time-stepping scheme such as the
mid-point rule, the trajectory previously prescribed in the inverse dynamics problem is accurately tracked. Applying this
procedure to the 3d problem dealt with in Section 5.3, employing 149 time steps leads to an average of 2.85 Newton itera-
tions per time step. Thus a total number of 425 Newton iterations is required in the forward dynamics simulation which
is to be contrasted with merely 4 Newton iterations required to solve the inverse dynamics problem.

Not surprisingly, the method of characteristics is better adapted to the inverse dynamics problem than the space-time
finite element method in the sense that it generally requires less unknowns to yield comparatively accurate results. In
addition to that, the method of characteristics provides valuable insights into the inverse dynamics problem at hand. In
particular, it explains why pre- and post-actuating phases are required to solve the inverse problem (cf. Remarks 7 and 9).

On the other hand, the main advantage of the simultaneous space-time finite element approach over the method
of characteristics is its inherent simplicity and versatile applicability. Therefore, the present space-time finite element
approach should also be well-suited for the inverse dynamics of more elaborate structures such as geometrically exact
beams¶. Moreover, the possibility to use unstructured meshes in space-time as well as higher-order elements should be
investigated in future work. The extension to shells and solids should also be possible. However, it still has to be clarified
under which conditions the corresponding inverse dynamics problem is well-posed.
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ENDNOTES
∗When compared to standard (rheonomic) holonomic constraints, servo-constraints in general do not have collocation property in the sense
that the corresponding constraint forces in general do not refer to the same location as the servo-constraints.

†The pure Neumann problem is obtained by removing the displacement boundary conditions.
‡As mentioned in the introduction, in contrast to servo-constraints holonomic constraints have collocation property. Concerning the imposition
of essential boundary conditions in the finite element method, the constraints are commonly assumed to be holonomic.36

§Note that the designation continuous Galerkin is attributed to continuous test functions despite the use of discontinuous weighting functions.
This is in contrast to the so-called discontinuous Galerkin method which relies on test and weighting functions, both being discontinuous (cf.
Reference 33).

¶Like geometrically exact strings, the motion of geometrically exact beams is governed by second-order quasilinear hyperbolic PDEs.22
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