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INFINITE-ENERGY SOLUTIONS TO ENERGY-CRITICAL

NONLINEAR SCHRÖDINGER EQUATIONS IN MODULATION

SPACES

ROBERT SCHIPPA

Abstract. We prove new well-posedness results for energy-critical nonlinear
Schrödinger equations in modulation spaces, which are larger than the energy

space. First, we remove the ε-derivative loss in Lp-smoothing estimates for

the linear Schrödinger equation, if p is larger than the Tomas-Stein exponent.
Next, we show local well-posedness results for nonlinear Schrödinger equations

in modulation spaces containing the scaling critical L2-based Sobolev space.

The proof is carried out via bilinear refinements and adapted function spaces.

1. Introduction

In this paper we continue the study of modulation spaces as initial data for
nonlinear Schrödinger equations in [27]. Modulation spaces in the present context
are used to model initial data, which are decaying slower than functions in L2-
based Sobolev spaces. These spaces are natural because of their invariance under
the linear Schrödinger evolution in contrast with the Lp-based Sobolev spaces for
p 6= 2. Modulation spaces were introduced by Feichtinger [13]; see also subsequent
joint works with Gröchenig [14, 15, 16]. The body of literature on modulation spaces
is already huge, so we refer to [27, 10] and references therein for an overview with
an emphasis on the use of modulation spaces in the context of dispersive equations.

In the work [27] Lp-smoothing estimates in modulation spaces were considered:

(1) ‖eit∆u0‖Lp([0,1],Lp(Rd)) . ‖u0‖Ms
p,2(Rd).

These turned out to be useful to prove well-posedness results for the cubic NLS

(2)

{
i∂tu+ ∆u = ±|u|2u, (t, x) ∈ R× R,
u(0) = u0 ∈Ms

p,2(Rd).

The solution was placed in Strichartz spaces, in which the linear part was estimated
by (1) and the nonlinear part was iterated with Strichartz estimates.

By frequency localization and rescaling arguments, the estimates (1) followed
from `2-decoupling for the paraboloid due to Bourgain–Demeter [6]. Let E denote
the Fourier extension operator for the paraboloid:

Ef(t, x) =

∫
{ξ∈Rd:|ξ|<1}

ei(x.ξ+t|ξ|
2)f(ξ)dξ.

Bourgain–Demeter proved the following estimates, which are sharp up to the ε-loss:

(3) ‖Ef‖Lp(Bd+1(0,R)) .ε R
s+ε
(∑

σ

‖Efσ‖2Lp(wBd+1(0,R))

)1/2
1
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with s = s(p, d) given by

s =

{
0, 2 ≤ p ≤ 2(d+2)

d ,
d
4 −

d+2
2p ,

2(d+2)
d ≤ p ≤ ∞,

and fσ denotes f · 1B(xσ,R−1/2) such that the family of R−1/2-balls are finitely

overlapping. In [27] was pointed out how the right-hand side is related to the
modulation space norm of the initial value by rescaling and a kernel estimate. Thus,
(3) indeed gives (1) with s > s(p, d). It was also shown in [27] that s ≥ s(p, d) is

necessary for (1) to hold true. In the present work, we remove the ε for p > 2(d+2)
d :

Theorem 1.1. Let d ≥ 1 and 2(d+2)
d < p < ∞. Then, we find (1) to hold for

s = s(p, d).

For this purpose, we use an interpolation argument going back to Bourgain [2],
in which an ε-derivative loss for Strichartz estimates on rational tori was removed.
Moreover, it is known that (3) cannot hold true for p = 2(d+2)

d without Rε-loss by
a relation to Gauss sums (cf. [6, 2]). It is moreover conjectured that (3) is true

with s = 0 for p < 2(d+2)
d . For d = 1, p = 4 (3) follows with ε = 0 from a simple

geometric argument (cf. [27, Theorem 1.1 (E)]).

Indeed, the present arguments follow closely Bourgain’s treatment of the nonlin-
ear Schrödinger equation on tori (cf. [2]; see also [24, 1]). As was already surmised
in [27], the linear evolution on modulation spaces resembles the Fourier sums en-
countered in the periodic case. It will be interesting to explore further consequences
of this transfer principle.

Following the proof of sharp smoothing estimates, we show bilinear refinements
via Galilean invariance:

Proposition 1.2. Let d ≥ 3 and N1, N2 ∈ 2N0 with N2 . N1. Then, we find the
following estimate to hold:

(4) ‖PN1e
it∆f1PN2e

it∆f2‖L2
t,x([0,1]×Rd) . N

d−2
2

2 ‖PN1f1‖M4,2(Rd)‖PN2f2‖M4,2(Rd).

Bilinear refinements go again back to Bourgain [2, 3].

Finally, we apply bilinear Strichartz estimates in modulation spaces to extend
the local well-posedness theory of nonlinear Schrödinger equations. We consider the
energy-critical nonlinear Schrödinger equation for d ∈ {3, 4}:

(5)

{
i∂tu+ ∆u = ±|u|

4
d−2u (t, x) ∈ R× Rd,

u(0) = u0 ∈M1
4,2(Rd).

The equation (5) is energy critical because the scaling

u(t, x)→ λ
d−2

2 u(λ2t, λx)

leaves the energy invariant:

E[u] =

∫
Rd

|∇u(t, x)|2

2
± d− 2

d+ 2
|u|

d+2
d−2 dx.

The corresponding scaling critical Sobolev space is Ḣ1(Rd). For local well-posedness

in Ḣ1(Rd) we refer to the survey by Bourgain [5]. Global well-posedness and scat-
tering for the defocusing case is much harder and was proved for d = 3 by the
I-team [12] and for d = 4 by Ryckman–Vişan [26]; see also references therein and
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Bourgain’s seminal contribution [4] in the radially symmetric case. Sharp condi-
tions for global well-posedness and scattering of the focusing equation in the radial
case were proved by Kenig–Merle [23]. By the embedding

Ḣ1(Rd) ↪→M1
4,2(Rd),

the local well-posedness for initial data in the modulation space strengthens the
local well-posedness result in Ḣ1(Rd). Previous results on infinite energy solutions
to nonlinear Schrödinger equations are due to Braz e Silva et al. [7] with initial
data in weak Lp-spaces. The results in [7] do not cover the energy critical equations
though; see also [8]. Moreover, weak Lp-spaces are not invariant under the linear
propagation in contrast with modulation spaces. The first resuls on infinite energy
solutions are due to Cazenave–Weissler [9], who consider initial data with finite
linear solution in a certain Lp-norm. The results in [9] do not cover the energy
critical case. L2-based Besov spaces were considered by Planchon [25].

In d = 1 I showed local well-posedness for any s > 0 by linear Strichartz estimates
in [27]. This argument extends to d = 2 for s > 0, which is again the sharp analytic
well-posedness up to endpoints. We remark how the arguments of [27] extend to
L2-critical equations for d ∈ {1, 2}, i.e., the quintic NLS on the real line or the cubic
NLS in R2. Note that

L2(Rd) ∼M2,2(Rd) ↪→Ms
p,2(Rd)

for p ≥ 2 and s ≥ 0. In this sense, the following well-posedness results are almost
critical:

Theorem 1.3. Let s > 0 and T > 0.

(1) Then, the equation

(6)

{
i∂tu+ ∆u = ±|u|4u, (t, x) ∈ R× R,
u(0) = u0 ∈Ms

6,2(R) + L2(R)

is locally well-posed in XT = C([0, T ], L2(R) +Ms
6,2(R))∩L6

t ([0, T ], L6(R))
provided that ‖u0‖Ms

6,2(R)+L2(R) ≤ ε(T ).

(2) The equation

(7)

{
i∂tu+ ∆u = ±|u|2u, (t, x) ∈ R× R2,
u(0) = u0 ∈Ms

4,2(R2) + L2(R2)

is locally well-posed in XT = C([0, T ], L2(R2)+Ms
4,2(R2))∩L4

t ([0, T ], L4(R2))
provided that ‖u0‖Ms

4,2(R2)+L2(R2) ≤ ε(T ).

Note how above we choose the existence time in terms of the size of the initial
data. It would be more practical to consider T = T (u0), which is not detailed for
simplicity of presentation (see the proof of Theorem 1.4 below).

For d ≥ 3 the derivative loss in the high frequencies of the L4-Strichartz estimate
has to be ameliorated via bilinear estimates. We show the following:

Theorem 1.4. Let d ∈ {3, 4}. Then (5) is analytically locally well-posed in XT ↪→
C([0, T ],M1

4,2(Rd)) in the critical sense: For any u0 ∈M1
4,2(Rd) there is T = T (u0)

such that there is a unique solution u ∈ XT to (5), and the data-to-solution mapping
analytically depends on the initial value.

The first local well-posedness results on energy critical nonlinear Schrödinger
equations in the periodic setting are due to Herr–Tataru–Tzvetkov [19, 20]. In
these works, improved bilinear or trilinear estimates were proved via orthogonality
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in time. This proof was simplified by Killip–Vişan [24], which is transferred to
modulation spaces presently. Killip–Vişan pointed out how the estimates from
Proposition 4.1 can be used to show the well-posedness result for the energy critical
equation. A few remarks on global results in the periodic setting are in order: Herr–
Tataru–Tzvetkov [19] proved global well-posedness for small initial data by energy

conservation. Since the Sobolev embedding H1(Td) ↪→ L
d+2
d−2 (Td) is sharp, the

straight-forward use of energy conservation requires smallness of the H1(Td) norm.
Ionescu–Pausader [21] subsequently proved global well-posedness for large initial
data in the defocusing case for d = 3. Nonetheless, the global results fundamentally
build on energy conservation, which is not at disposal for initial data in M1

4,2(Rd),
since these possibly have infinite energy. Thus, global results, even in the defocusing
case remain open for initial data in M1

4,2(Rd). On the other hand, the classical blow-
up arguments (cf. [23]) in the focusing case show that global solutions need not
exist, if the energy is negative.

For further reading, we also refer to the very recent contribution by X. Chen and
Holmer [11], in which unconditional uniqueness of solutions in C([0, T ], H1(Xd)) for
energy critical Schrödinger equations is proved via a unified approach for d ∈ {3, 4}
and X ∈ {T,R}.

Outline of the paper. In Section 2 we recall basic facts about modulation spaces,
and we introduce the function spaces used in the proof of Theorem 1.4. In Section 3
we prove Theorem 1.1 by adapting Bourgain’s interpolation argument for Strichartz
estimates on the torus to modulation spaces. In Section 4 we show Proposition 4.1,
by which we prove Theorem 1.4 in Section 5. Theorem 1.3 is proved in Section 5
with linear Strichartz estimates for comparison.

2. Preliminaries

2.1. Modulation spaces. The modulation spaces Ms
p,q(Rd) for d ≥ 1, s ∈ R,

p, q ∈ [1,∞] are defined through an isometric decomposition in Fourier space. Let
(σk)k∈Zd with σk = σ(· − k) and σ ∈ C∞c (B(0, 1)) denote a smooth partition of
unity. We define

Ms
p,q(Rd) = {f ∈ S ′(Rd) : ‖f‖Ms

p,q(Rd) =
∥∥(〈k〉s‖σk(D)f‖Lp(Rd)

)
k∈Zd

∥∥
`q
<∞}.

We write Mp,q(Rd) := M0
p,q(Rd) for brevity. We have the following embeddings in

the standard Besov scale (cf. [27, Section 1]): By the embedding `q1 ↪→ `q2 for
q1 ≤ q2 and Bernstein’s inequality, we have

Ms
p,q1(Rd) ↪→Ms

p,q2(Rd) (q1 ≤ q2),

Ms
p1,q(R

d) ↪→Ms
p2,q(R

d) (p1 ≤ p2).

By Plancherel’s theorem, we have

(8) M2,2(Rd) = L2(Rd).
Moreover, we have from kernel estimates with p = 1 and p = ∞ and interpolation
with (8) the estimates

Mp,p′ ↪→ Lp ↪→Mp,p (2 ≤ p ≤ ∞),

Mp,p ↪→ Lp ↪→Mp,p′ (1 ≤ p ≤ 2).

Lastly, we note that

Ms1
p,q1(Rd) ↪→Ms2

p,q2(Rd)
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provided that s1 − s2 > d
(

1
q2
− 1

q1

)
> 0 as a consequence of Hölder’s inequality.

2.2. Adapted function spaces. We use Up-/V p-spaces taking values in modula-
tion spaces as iteration spaces. Up-/V p-spaces based on L2-based Sobolev spaces
go back to unpublished notes of Tataru in the context of wave maps. For a careful
introduction, we refer to the work by Hadac–Herr–Koch [17, 18]. However, there
seems to be no literature on the case that the base space is not a Hilbert space.
Hence, we choose to give the definition of Up-/V p-spaces and recall well-known as-
pects on the function spaces in the present context. The following presentation is
very close to [17].

Let Z be the set of finite partitions −∞ = t0 < t1 < . . . < tK = ∞ and let
Z0 be the set of finite partitions −∞ < t0 < t1 < . . . < tK ≤ ∞. We consider
Up-/V p-spaces taking values in modulation spaces Mp,q(Rd), but provided that we
still have a suitable dual pairing, the following transpires to a more general case.
Denote the value space in the following by E.

Definition 2.1. Let 1 < p < ∞ and {tk}Kk=0 ∈ Z and {φ}K−1
k=0 ⊆ E with∑K−1

k=0 ‖φk‖
p
E = 1 and φ0 = 0. The function a : R→ E defined by

a =
∑K
k=1 1[tk−1,tk)φk−1 is said to be a Up-atom. We define the atomic space

Up(E) = {u =

∞∑
j=1

λjaj : aj : Up − atom, (λj) ∈ `1}

with norm

‖u‖Up = inf{
∞∑
j=1

|λj | : u =

∞∑
j=1

λjaj , (λj) ∈ `1, aj : Up − atom}.

Subspaces are considered as in [17, Proposition 2.2]. The spaces of p-variation
were already considered by Wiener [28].

Definition 2.2. Let 1 ≤ p <∞. V p(E) is defined as normed space of all functions
v : R → E such that limt→±∞ v(t) exists, v(∞) := 0 (this is purely conventional
and does not necessarily coincide with the limit), and v(−∞) = limt→−∞ v(t). The
norm is given by

‖v‖V p = sup
{tk}Kk=0∈Z

( K∑
k=1

‖v(tk)− v(tk−1)‖pE
) 1
p

is finite. Let V p− denote the closed subspace of V p with limt→−∞ v(t) = 0.

Propositions 2.4, 2.5, and Corollary 2.6 from [17] carry over verbatim. Recall
the duality (Mp,q(Rd))′ 'Mp′,q′(Rd) for 1 < p, q <∞, which is established via the
dual pairing

〈·, ·〉 : Mp,q(Rd)×Mp′,q′(Rd)→ C

(f, g) 7→
∫
Rd
fgdx.

We obtain an obvious variant of [17, Proposition 2.9] and have the following duality
(cf. [17, Theorem 2.8]):

Theorem 2.3. Let 1 < p <∞. We have

(Up(E))∗ ' V p
′
(E′)



6 ROBERT SCHIPPA

in the sense that

T : V p
′
(E′)→ (Up(E))∗, T (v) = B(·, v)

is an isometric isomorphism.

We have an explicit description of B for sufficiently regular functions:

Proposition 2.4. Let 1 < p < ∞, u ∈ V 1
− be absolutely continuous on compact

intervals and v ∈ V p′(E′). Then,

B(u, v) = −
∫ ∞
−∞
〈u′(t), v(t)〉dt.

Later we rely on computing the Up-norm with the aid of duality:

(9) ‖u‖Up(E) = sup
v∈V p′ (E′):‖v‖

V p
′
(E′)=1

|B(u, v)|.

We remark that the spaces can as well be localized to an interval, in which case we
write Up(I;E), V p(I;E). We furthermore define the space DUp(I;E):

DUp(I;E) = {f = u′ : u ∈ Up(I;E)}

with the derivative considered in the distributional sense and

‖f‖DUp(I;E) = ‖u‖Up(I;E).

By Theorem 2.3, we have (DUp(I;E))∗ ' V p
′
(I;E′) with respect to a bilinear

mapping, which for f ∈ L1(I) ↪→ DUp(I;E) is given by

B̃(f, v) =

∫ b

a

〈f(t), v(t)〉dt.

We adapt Up-/V p-spaces to the linear Schrödinger propagation eit∆ as usual:

(10) ‖u‖Xp∆(I;E) = ‖e−it∆u‖Xp(I;E)

with X ∈ {U ;V ;DU}.

3. Sharp Lp-smoothing estimates

In this section we prove Theorem 1.1. Let d ≥ 1 and p∗ = 2(d+2)
d denote the

Tomas–Stein exponent. In the following we show that for p∗ < p <∞ the estimate

(11) ‖eit∆f‖Lp([0,1]×Rd) . ‖f‖Ms
p,2(Rd)

holds with s = s(p, d) = d
2−

d+2
p . By the Littlewood-Paley square function estimate,

we can reduce to the estimate

(12) ‖PNeit∆f‖Lp([0,1]×Rd) . N
s‖PNf‖Mp,2

.

Indeed, if (12) holds, then

‖eit∆f‖Lp([0,1]×Rd) ∼
∥∥(∑

N

|PNeit∆f |2
)1/2∥∥

Lp([0,1]×Rd)

≤
(∑
N

‖PNeit∆f‖2Lp([0,1]×Rd)

)1/2
.
(∑
N

N2s‖PNf‖2Mp,2

)1/2 ∼ ‖f‖Ms
p,2(Rd).
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In the following we use an interpolation argument originally due to Bourgain [2] to
deduce (11) for s = s(p, d) from (11) for s > s(p, d). For more recent presentations
of Bourgain’s interpolation argument and extensions, we refer to works by Killip–
Vişan [24] and Barron [1]. The following presentation is close to Barron’s proof [1]
of sharp Strichartz estimates in the semi-periodic case. We opted to give an outline
of the argument for the sake of self-containedness.

We turn to the proof of (12) for p∗ < p <∞. First, we normalize ‖f‖Mp,2(Rd) = 1.
Hence, we find by the Cauchy-Schwarz inequality

‖PNf‖L∞(Rd) . N
d
2 ‖PNf‖M∞,2(Rd) . N

d
2 ‖PNf‖Mp,2(Rd).

Let F (t, x) = PNe
it∆f(x). By the above, we can write

‖F‖p
Lp(Rd×[0,1])

= p

∫ CN
d
2

0

µp−1|{(t, x) : |F (t, x)| > µ}|dµ.

Let δ > 0 and choose p∗ < q < p. Applying Hölder’s inequality, the above display,
and (12) in Lq for s > s(q, d) gives∫ N

d
2
−δ

0

µp−1|{|F | > µ}|dµ .ε Nq
(
d
2−

d+2
q

)
N (p−q)

(
d
2−δ
)

+εq

. Np
(
d
2−

d+2
p

)
.

The ultimate estimate follows for εq ≤ δ(p− q).
Hence, in the following we focus on the estimate of the level sets, where |F | takes

large values:

A =

∫ CN
d
2

N
d
2
−δ

µp−1|{|F | > µ}|dµ.

Let Ω = {|F | > µ} for µ ≥ N d
2−δ fixed, and set Ωω = {<(eiωF ) > µ/2}. We choose

ω ∈ {0, π2 , π,
3π
2 } such that |Ω| ≤ 4|Ωω| and estimate |Ωω| instead. Note that

(13) µ2|Ωω|2 . 〈1Ωω ,K ∗ 1Ωω 〉L2
x,t
,

where K denotes the kernel

K(x, t) =

∫
Rd
ψ(N−1ξ)ei(x.ξ+t|ξ|

2)dξ, ψ ∈ C∞c (B(0, 2)\B(0, 1/2)).

Like in Barron [1], we do not take advantage of the dispersive effects in Rd for
t ∈ [0, 1], but discretize the kernel such that it resembles the exponential sum on
the torus. By Galilean invariance, we find the following lemma.

Lemma 3.1 ([1, Lemma 4.2]). If Q0 is a cube of side length 1 centered at the
origin, we have the pointwise estimate

|K(x, t)| . sup
α∈Q0

∣∣ ∑
k∈Zd,
|k|<cN

ψ(N−1(α+ k))ei[(x+2tα)·k+t|k|2]
∣∣.

This is amenable to a pointwise estimate, originally used by Bourgain [2] for
solutions to linear Schrödinger equations on the square torus. Let q, a ∈ Z with
1 ≤< N and 1 ≤ a < q with (a, q) = 1, and set

Sq,a = {t ∈ [0, 1] :
∣∣t− a

q

∣∣ ≤ 1

qN
}.
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We have like in [1]:

|K(x, t)|1Sq,a(t) .
N

d
2

q
d
2 (1 +Nd

∣∣t− a
q

∣∣ d2 )
.

Next, like in [24], we consider the times where the kernel is large:

T = {t ∈ [0, 1] : qN2
∣∣t− a

q

∣∣ ≤ N2ρ for some q ≤ N2ρ, and (a, q) = 1},

where ρ > 0 will be chosen later. We let K̃ = K1T (t) and observe from

|K − K̃| . Nd−dρ

This yields that

|〈1Ωω , (K − K̃) ∗ 1Ωω 〉L2
x,t
| . Nd(1−ρ)|Ωω|2

and choosing µ ≥ N
n
2−δ, we can absorb the contribution of K − K̃ into the left

hand-side of (13). We remain with the contribution of K̃. For this, we use the
following proposition (cf. [24, Section 2]):

Proposition 3.2 ([1, Proposition 4.3]). Suppose r > 2(d+2)
d . Then, we find the

following estimate to hold:

‖K̃ ∗ F‖Lr(Rd×[0,1]) . N
2
(
d
2−

d+2
r

)
‖F‖Lr′ .

Applying Proposition 3.2 gives

µ2|Ωω|2 . |〈1Ωω , K̃ ∗ 1Ωω 〉| . |Ωω|
2
r′N2

(
d
2−

d+2
r

)
.

Consequently,

|Ω| ≤ 4|Ωω| . N
r
2

(
d− 2(d+2)

r

)
µ−r

for any r ∈
( 2(d+2)

d , p
)
. By the above, we can estimate the large level sets as

A . N
r
2

(
d− 2(d+2)

r

) ∫ CN
d
2

N
d
2
−δ

µp−r−1dµ . Np
(
d
2−

d+2
p

)
.

The proof of Theorem 1.1 is complete. �

4. Bilinear refinements

By Galilean invariance, we can show bilinear estimates with derivative loss only
in the low frequency. In the context of Strichartz estimates on tori, we refer to
[24, 2]. Starting point is the following linear Strichartz estimate:

(14) ‖eit∆u0‖L4([0,1]×Rd) . ‖u0‖Ms
4,2(Rd).

Proposition 4.1. Let 1 ≤ K � N and suppose that (14) holds true. Then, we
find the following estimate to hold:

‖PNeit∆u0PKe
it∆v0‖L2([0,1]×Rd) . K

2s‖PNu0‖M4,2‖PKv0‖M4,2 .
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Proof. Let (QK′)K′ be a family of frequency projections to balls of size K in Rd
whose supports are covering B(0, 2N)\B(0, N/2) finitely overlapping. By almost
orthogonality, we find

‖PNeit∆u0PKe
it∆v0‖2L2([0,1]×Rd) .

∑
K′

‖PNQK′eit∆u0PKe
it∆v0‖2L2([0,1]×Rd)

=
∑
K′

‖PNQK′eit∆u0‖2L4([0,1]×Rd)‖PKe
it∆v0‖2L4([0,1]×Rd).

We apply (14) to the second factor and to the first factor after Galilean transform,
which yields

. K4s
∑
K′

‖QK′u0‖2M4,2
‖PKv0‖2M4,2

. K4s‖PNu0‖2M4,2
‖PKv0‖2M4,2

.

The ultimate estimate follows by the finitely overlapping property and the definition
of the modulation spaces. �

This yields Proposition 1.2 by Theorem 1.1. In the next step we use the transfer
principle to derive an estimate for V 2

∆M4,2-functions.

Proposition 4.2. Let K,N ∈ 2N0 and 1 ≤ K � N . Suppose that (14) holds.
Then, we find the following estimate to hold:

(15) ‖PNuPKv‖L2
t,x([0,1]×Rd) . K

2s‖PNu‖V 2
∆M4,2

‖PKv‖V 2
∆M4,2

.

Proof. By almost orthogonality, we can write

‖PNuPKv‖2L2 .
∑
K′

‖QK′PNuPKv‖2L2
t,x([0,1]×Rd)

with (QK′)K′ like above. We apply Hölder’s inequality to find

.
∑
K′

‖QK′PNu‖2L4
t,x([0,1]×Rd)‖PKv‖

2
L4
t,x([0,1]×Rd).

We write PKv =
∑
m amgm with gm a U4

∆M4,2-atom:

gm =
∑
j

1Imj e
it∆fmj ,

∑
j

‖fmj ‖4M4,2
= 1.

Consequently,

‖PKv‖L4
t,x([0,1]×Rd) ≤

∑
m

|am|‖PKgm‖L4
t,x([0,1]×Rd)

≤
∑
m

|am|
(∑

j

‖PKeit∆fmj ‖4L4
t,x(Imj ×Rd)

) 1
4

.
∑
m

|am|
(∑

j

‖fmj ‖4M4,2

) 1
4

. Ks
∑
m

|am| . Ks(1 + ε)‖PKv‖U4
∆M4,2

for any ε > 0 by choice of (am) ∈ `1. Likewise, by an additional Galilean transform,
we find

‖QK′PNu‖L4
t,x([0,1]×Rd) . K

s‖QK′PNu‖U4
∆M4,2

.
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We use the embedding V 2
∆ ↪→ U4

∆ and carry out the square sum over K ′ to find∑
K′

‖QK′PNu‖2L4
t,x([0,1]×Rd)‖PKv‖

2
L4
t,x([0,1]×Rd)

. K4s
∑
K′

‖QK′PNu‖2U4
∆M4,2

‖PKv‖2U4
∆M4,2

. K4s
∑
K′

‖QK′PNu‖2V 2
∆M4,2

‖PKv‖2V 2
∆M4,2

. K4s‖PNu‖2V 2
∆M4,2

‖PKv‖2V 2
∆M4,2

.

The proof is complete. �

Hence, the estimate of Proposition 4.1 holds true with functions in V 2
∆M4,2.

5. Local well-posedness in critical modulation spaces

This section is devoted to the proof of Theorems 1.3 and 1.4. We begin with the
proof of Theorem 1.3, which is carried out via linear Strichartz estimates (cf. [22,
Theorem 1.2]).

Proof of Theorem 1.3. We give the proof of (1) in detail. The key ingredients are
still like in [27] smoothing and Strichartz estimates. Let u0 = f1 + f2 with f1 ∈
Ms

6,2(R) and f2 ∈ L2(R). Then, Theorem 1.1 yields

‖U(t)f1‖L6([0,T ],L6(R)) . 〈T 〉
1
6 ‖f1‖Ms

6,2(R)

and by Strichartz estimates we find

‖U(t)f2‖L6([0,T ],L6(R)) . ‖f2‖L2(R).

Furthermore, since U(t)(L2(R) +Ms
6,2(R)) = L2(R) +Ms

6,2(R), we find

‖U(t)u0‖L∞([0,T ],L2(R)+Ms
6,2(R)) . ‖u0‖L2(R)+Ms

6,2(R).

The nonlinear estimate is concluded by the inhomogeneous Strichartz estimates∥∥∫ t

0

ei(t−s)∆(|u|4u)(s)ds
∥∥
L6([0,T ],L6(R))

. ‖|u|4u‖L6/5([0,T ],L6/5(R))

. ‖u‖5L6([0,T ],L6(R)).

Similarly,∥∥∫ t

0

ei(t−s)∆(|u|4u)(s)ds
∥∥
L∞([0,T ],L2(R))

. ‖|u|4u‖L6/5([0,T ],L6/5(R))

. ‖u‖5L6([0,T ],L6(R)).

This finishes the proof of (1). The difference with the cubic NLS on R analyzed in
[27] is that we cannot afford to apply Hölder’s inequality in time. This gives the
small data constraint. Regarding the claim (2), we note that in two dimensions,
p = q = 4 are sharp Strichartz indices and by Theorem 1.1 we have the smoothing
estimate

‖U(t)f‖L4([0,T ],L4(R2)) . 〈T 〉
1
4 ‖f‖Ms

4,2(R2)

for s > 0. �
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We turn to the proof of Theorem 1.4 in earnest. As iteration space, we consider
X1 = `2NU

2
∆M

1
4,s (cf. Section 2). We have for the norm

‖u‖X1 =
(∑
N

N2‖PNu‖2U2
∆M4,2

) 1
2 .

We let furthermore

‖v‖Y s =
(∑
N

N2s‖PNu‖2V 2
∆M4,2

) 1
2

and have the embedding Xs ↪→ Y s.
With bilinear estimates in adapted function spaces like in [24] available, the

arguments of the proof due to [24] apply to the local result. We have the following
analog of [24, Proposition 4.1]:

Proposition 5.1. Let d ∈ {3, 4} and F (u) = ±|u|
4
d−2u. Then, for any 0 < T ≤ 1,

we find the following estimates to hold:

(16)
∥∥∫ t

0

ei(t−s)∆F (u(s))ds
∥∥
X1([0,T ])

. ‖u‖
d+2
d−2

X1([0,T ])

and ∥∥∫ t

0

ei(t−s)∆[F (u+ w)(s)− F (u(s))]ds
∥∥
X1([0,T ])

. ‖w‖X1([0,T ])

(
‖u‖X1([0,T ]) + ‖w‖X1([0,T ])

) 4
d−2 .

(17)

The implicit constants do not depend on T .

Proof. We only have to prove (17) because (16) is a special case. By duality, it is
enough to show∣∣ ∫ T

0

∫
Rd

[F (u+ w)(t)− F (u)(t)]v(t, x)dxdt
∣∣

. ‖v‖Y −1([0,T ])‖u‖X1([0,T ])

(
‖u‖X1([0,T ]) + ‖w‖X1([0,T ])

) 4
d−2 .

For the above display, it is enough to show

∑
N0≥1

∑
N1≥...≥N d+2

d−2
≥1

∣∣ ∫ T

0

∫
Rd
vN0(t, x)

d+2
d−2∏
j=1

u
(j)
Nj

)(t, x)dxdt
∣∣

. ‖v‖Y −1

d+2
d−2∏
j=1

‖u(j)‖X1([0,T ]).

(18)

The proof of (18) follows from linear and bilinear Strichartz estimates combined
with Bernstein’s inequality. We shall only show the variant of the Killip–Vişan
argument for d = 3 to avoid redundancy.
Case I: d = 3. By Littlewood–Paley theory, the two highest frequencies have to be
comparable.

Case I.1: N0 ∼ N1 ≥ . . . ≥ N5: We apply Proposition 4.1 to vN0
u

(2)
N2

and u
(1)
N1
u

(3)
N3

and estimate the remaining factors in L∞t,x. We write N1 = {(N0, N1, . . . , N5) :



12 ROBERT SCHIPPA

N0 ∼ N1 ≥ . . . ≥ N5} for brevity. The estimates yield∑
N1

∣∣ ∫ T

0

∫
Rd
vN0(t, x)u

(1)
N1

(t, x) . . . u
(5)
N5

(t, x)dxdt
∣∣

.
∑
N1

‖vN0
u

(2)
N2
‖L2

t,x
‖u(1)

N1
u

(3)
N3
‖L2

t,x
‖u(4)

N4
‖L∞t,x‖u

(5)
N5
‖L∞t,x

.
∑
N1

N
1
2

2 N
1
2

3 N
3
2

4 N
3
2

5 ‖vN0
‖V 2

∆M4,2

5∏
i=1

‖u(i)
Ni
‖V 2

∆M4,2

. ‖v‖Y −1

5∏
i=1

‖u(j)‖Y 1 .

By the embedding X1 ↪→ Y 1 the proof of Case I.1 is complete.
Case I.2: N0 . N1 ∼ N2 ≥ N3 ≥ N4 ≥ N5. Denote the summation set with N2.

We apply two bilinear estimates to vN0
u

(1)
N1

and u
(2)
N2
u

(3)
N3

and L∞t,x-estimates to the
other factors to find∑

N2

∣∣ ∫ T

0

∫
Rd
vN0

(t, x)u
(1)
N1

(t, x) . . . u
(5)
N5

(t, x)dxdt
∣∣

.
∑
N2

‖vN0u
(1)
N1
‖L2

t,x
‖u(2)

N2
u

(3)
N3
‖L2

t,x
‖u(4)

N4
‖L∞t,x‖u

(5)
N5
‖L∞t,x

.
∑
N2

N
1/2
0 N

1
2

3 N
3
2

4 N
3
2

5 ‖vN0‖V 2
∆M4,2

5∏
i=1

‖u(i)
Ni
‖V 2

∆M4,2

.
∑
N2

N
3
2

0 N
1
2

4 N
1
2

5

N1N2N
1
2

3

‖vN0
‖Y −1

5∏
i=1

‖u(i)
Ni
‖Y 1

. ‖v‖Y −1

5∏
i=1

‖u(i)‖Y 1 .

This finishes the proof of Case I. For the details of the proof of Case II for d = 4
we refer to [24]. �

We can complete the proof of Theorem 1.4 along the lines of [19, 24] with Propo-
sition 5.1 at hand.

Proof of Theorem 1.4. For small initial data we can construct a solution on [0, 1]
by showing that

Φ(u)(t) := eit∆u0 ∓ i
∫ t

0

ei(t−s)∆F (u(s))ds

is a contraction mapping within

B = {u ∈ X1([0, 1]) ∩ Ct([0, 1],M1
4,2(Rd)) : ‖u‖X1 ≤ 2η}

endowed with d(u, v) := ‖u − v‖X1([0,1]). This is a consequence of Proposition 5.1
by observing that Φ maps B into itself by (16) and Φ is indeed contracting by (17).
This proves Theorem 1.4 for small data.
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For large initial data, we argue with a low frequency cutoff. Let u0 ∈ M1
4,2(Rd)

with

‖u0‖M1
4,2(Rd) ≤ A

for some 0 < A <∞. We consider

B = {u ∈ X1([0, T ])∩Ct([0, T ],M1
4,2(Rd)) : ‖u‖X1([0,T ]) ≤ 2A, ‖u>N‖X1([0,T ]) ≤ 2δ}

under the metric d(u, v) := ‖u− v‖X1([0,T ]).
First, we see that Φ indeed maps B to itself:

‖Φ(u)‖X1 ≤ ‖eit∆u0‖X1 +
∥∥∫ t

0

ei(t−s)∆F (u≤N (s))ds
∥∥
X1

+
∥∥∫ t

0

ei(t−s)∆[F (u)(s)− F (u≤N )(s))]ds
∥∥
X1

≤ ‖u0‖M1
4,2

+ C‖F (u≤N )‖L1
tM

1
4,2

+ C‖u≥N‖X1‖u‖
4
d−2

X1

≤ A+ CT‖u≤N‖L∞t M1
4,2
‖u≤N‖

4
d−2

L∞t M
1
∞1

+ C(2δ)(2A)
4
d−2

≤ A+ CTN
6
d−2 (2A)

d+2
d−2 + C(2δ)(2A)

4
d−2 ≤ 2A

provided δ is chosen small enough depending on A, and T is chosen small enough
depending on A and N .

Next, we decompose F (u) = F1(u) + F2(u), where

F1(u) = O(u2
>Nu

6−d
d−2 ) and F2(u) = O(u

4
d−2

≤N u).

We estimate with the Hölder-like inequality for modulation spaces (cf. [10, Theo-
rem 4.3])

‖P>NΦ(u)‖X1

≤ ‖eit∆P>Nu0‖X1 +
∥∥∫ t

0

ei(t−s)∆F1(u(s))ds
∥∥
X1

+
∥∥ ∫ t

0

ei(t−s)∆F2(u(s))ds
∥∥
X1

≤ ‖P>Nu0‖M1
4,2(Rd) + C‖u>N‖2X1‖u‖

6−d
d−2

X1 + C‖F2(u)‖L1
tM

1
4,2

≤ δ + C(2δ)(2A)
6−d
d−2 + CT‖u‖L∞t M1

4,2
‖u≤N‖

2d
d−2

L∞t M
1
∞,1

≤ δ + C(2δ)(2A)
6−d
d−2 + CTN

2d
d−2 (2A)

d+2
d−2 .

We can bound the above by 2δ provided that δ is chosen small enough depending
on A, and T is chosen small enough depending on A, δ, and N .
Next, we prove that Φ is a contraction. We decompose like above F = F1 +F2 and
observe

F1(u)− F1(v) = O((u− v)(u>N − v>N )(u
6−d
d−2 + v

6−d
d−2 ))

and

F2(u)−F2(v) = O((u−v)(u≤N+v≤N )
4
d−2 )+O((u≤N−v≤N )(u+v)(u≤N+v≤N )

6−d
d−2 ).
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By the above arguments for u, v ∈ B:

d(Φ(u),Φ(v))

. ‖u− v‖X1(‖u>N‖X1 + ‖v>N‖X1)(‖u‖X1 + ‖v‖X1)
6−d
d−2

+ ‖F2(u)− F2(v)‖L1
tM

1
4,2

. (4δ)(4A)
6−d
d−2 d(u, v) + T‖u− v‖L∞t M1

4,2
(‖u≤N‖L∞t M1

∞,1
+ ‖v≤N‖L∞t M1

∞,1
)

4
d−2

+ T (‖u‖L∞t M1
4,2

+ ‖v‖L∞t M1
4,2

)‖u≤N − v≤N‖L∞t M1
∞,1

×
(
‖u≤N‖L∞t M1

∞,1
+ ‖v≤N‖L∞t M1

∞,1

) 6−d
d−2

. [(4δ)(4A)
6−d
d−2 + TN

4d
d−2 (4A)

4
d−2 ]d(u, v) ≤ 1

2
d(u, v),

provided δ is chosen small enough depending on A, and T is chosen small enough
depending on A and N . This yields uniqueness and analytic dependence of the
data-to-solution mapping within B. By standard arguments, uniqueness extends to
X1([0, T ]) ∩ Ct([0, T ],M1

4,2(Rd)). �
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