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Abstract

We study correlations of non-affine displacements during simple shear deformation of Cu—Zr bulk
metallic glasses in molecular dynamics calculations. In the elastic regime, our calculations show
exponential correlation with a decay length that we interpret as the size of a shear transformation zone
in the elastic regime. This correlation length becomes system-size dependent beyond the yield
transition as our calculation develops a shear band, indicative of a diverging length scale. We discuss
these observations in the context of a recent proposition of yield as a first-order phase transition.

1. Introduction

Bulk metallic glasses (BMGs), multi-component metals that are kinetically arrested into an amorphous
structure, have been suggested for wide range of applications, including as structural materials [1, 2]. For
practical applications a big problem is their tendency to form shear bands [3], planar regions in that localize most
of the plastic deformation at relatively low strain [4, 5]. These shear bands are the primary mechanism by which
metallic glasses fail in tensile [6] or cyclic (fatigue) loading [7, 8] or during indentation [9]. Numerous ideas to
address this problem have been suggested, such as deliberately introducing heterogeneities, such as pores [10],
nanocrystals [11] or internal interfaces [12].

The deformation of BMGs is described by the theory of shear transformations or shear transformation zones
(STZs) [13-15], localized rearrangements of small regions of atoms. The size of these zones has been estimated to
range from a few [ 16] to many tens of atoms [17, 18]. Knowledge of the size of the zones could help to
fundamentally understand this class of materials on an atomic level and be used in mesoscale simulations that
incorporate STZs [19-21]. The size of STZs has been linked to the Poisson ratio [22] as well as the brittle or
ductile character of fracture of BMGs [23-25].

Spatial correlation functions of non-affine deformation have recently been employed to quantify the
geometry of STZs. Murali et al [26] looked at the spatial autocorrelation in the non-affine deformation field of
deformed BMGs in molecular dynamics (MD) simulations. They found an exponential decay of the
autocorrelation from which they extracted a correlation length #, which they interpreted as the size of an STZ.
These findings have been confirmed by similar calculations on Lennard-Jones-Glasses [27]. In a similar spirit,
Chikkadi et al [28, 29] have discussed the autocorrelation of non-affine deformation in experiments of sheared
colloidal glasses. In addition to the global non-affine displacement field, they characterized the local non-affine
deformation through the D2, measure of Falk and Langer [ 15]. Their data shows long-range correlations as
manifested in a power-law behavior of the autocorrelation function in both global and local measures for non-
affinity. In contrast to Murali et al’s data [26], this suggests a scale-free character of the deformation. Calculations
of hard-sphere mixtures carried out for the interpretation of these experiments did again yield an exponential
decay of the correlation function [29, 30]. Varnik et al [31] argued that this is because of limitation in system size;
larger calculation, albeit carried for a 2D soft disk model rather than in 3D, indeed showed power-law
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correlations. In alarge study comparing different simulation models and experiments, Cubuk et al [32] appear to
find again only exponential correlation in DJ2,;,.. Note that correlation of the vorticity (strain) field during
deformation of a 2D Lennard-Jones solid showed similar power-law correlations [33, 34], and we have recently
found power-law correlation in the displacement-difference field [35]. The question of power-law versus
exponential correlation clearly hinges on the details of the quantity whose correlations are studied.

We here revisit the question of exponential versus power-law correlations in D2, provide new data on how
they evolve through the yield transition and show that the question of exponential versus power-law correlation
depends on how D2, is calculated. Our MD calculations of the deformation of BMGs show the emergence of
correlations in the non-affine part of the deformation field of calculations larger than those previously reported.
This allows us to extract the correlation function up to distance ~75 times the nearest neighbor distance for the
largest systems studied here, similar to previous 2D calculations that showed power-law correlation [31]. While
we do find exponential and not power-law correlations, the length-scale # associated with the exponential
becomes a function of system size after shear-band nucleation, indicating a divergent length at the nucleation of
the band, but only if the ‘strain window’ used to calculate D2, is chosen large enough.

2. Methods

2.1.MD simulations

We conducted all simulations using MD and the second generation of the interatomic Cu—Zr potential by
Mendelev et al [36]. Amorphous sample systems were first obtained by melting and equilibrating systems of
CusyZrsg (or other stoichiometries, see below) at 2500 K for 100 ps, followed by a linear quench to 750 K at a rate
of 6 K ps~ . This temperature is slightly above the glass transition temperature T, ~ 600 K, as obtained from the
jump in heat capacity when cooling the system through T, at the same rate. We then aged the system for 1 ns
before quenching it to 0 K atarate of 6 K ps~'. We used a Berendsen barostat [37] with a relaxation time
constant of 10 ps to keep the hydrostatic pressure in the simulation cell at zero and Langevin thermostat [38]
with a relaxation time constant of 1 ps to control temperature during quench and equilibration.

To prepare simulations carried out at different temperatures, the amorphous systems were then equilibrated at
zero pressure for 200 ps at different temperatures between 0 and 300 K. The cell was subsequently deformed using
simple shear deformation at constant volume at an applied shear rate of &€ = 10® s~} up to a maximum of 35%
strain. To control temperature, we again used a Langevin thermostat but only thermalize the Cartesian direction
normal to the plane of shear to eliminate any drag with respect to the reference velocity field intrinsic to the Langevin
thermostat. The bulk of our simulations comprises a cubic cell with an edge length of L ~ 206 A and 500 000
atoms. The potential influence of finite-size effects was studied using two additional system sizes: A cubic system
with twice the edge length and eight times the number of atoms and another cubic system with half the edge length
and 1/8 the number of atoms. We ran all sets of parameters for five systems obtained from independent quenches
and averaged the results of the analyses, to reduce the impact of random fluctuations. If not mentioned otherwise,
results are reported for the L /= 206 A systems and as averages over these five realizations.

2.2. Local strain measure and correlation

To quantify heterogeneous flow of the system, we need measures that identify local deformation events. Falk and
Langer [15] introduced a method to determine the local deformation of an atomic system within spheres of
radius 7., The idea is to map for each atom i its atomic neighborhood at time #~Atto the neighborhood at time ¢
using an affine deformation with deformation gradient F, and then find F. that minimizes the residual error.
The final residual error

k

N
D}, ; = min Fi{%z [ri(t) — F; - rig(t — ADPO (1o — fik)}a (D

is a measure for the non-affine component of local deformation. Here ©(r) is the Heaviside step function. STZs
and shear bands can be identified by looking for regions with high values of D, ;. Note that for our calculations
carried out at constant applied shear rate £, we specify the reference frame by its distance in applied strain Ae,
the strain window, rather than At = Ac/c.

To quantify the geometry of these deformation events, we use spatial auto-correlation maps. The auto-
correlation map of some field Q(7) is defined as

A1) =V [#rQENQF — 7) = %ZZQQ,* 5(F — %), @
p i j

where the last identity is the expression obtained for N}, point particles for which Q(¥) = ZQi 6(7 — 1) where

1
Q; is the value of quantity Q on atom i. Note that for any quantity Q this autocorrelation map obeys the
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Figure 1. Snapshots of the system at (a) 0%, (b) 25% and (c) 50% applied simple shear strain. Arrows indicate the shearing direction.

following sum rules
A[Q)(F — 0) = (Q7) and #[QI(T — o0) = Q% 3)

where the average (Q;) = > Q;/N}.

1
The radial average of this auto-correlation map gives a function .7 [Q](r), depending only on the distance
and not the direction between the two atoms. The auto-correlation function of unity is the radial distribution (or
pair correlation) function

& (r) = /[1](r). (4)
By virtue of equation (3) it is normalized such that g, (r) — lasr — 0. Weare specifically interested in the
correlations of D2

o ADL1(F) — (D)
C(#) = Al 5
™ ((DRini)*) — (Daini)? ©

Note that equation (5) is normalized such that, because of equation (3), C(# — 0) = land C(7 — o) = 0.
We compute .o/ [Q](7) at short distances by direct evaluation of equation (2) and at long distances using a fast
Fourier transform to speed up the convolution in equation (2), allowing us to efficiently compute the correlation
function up to half the size of our systems. Details of this algorithm are given in the appendix.

3. Results

Figure 1(a) shows a snapshot of the quenched system before shear. The radial distribution function g, (r)

(figure 2(a)) is indicative of a disordered structure with broad nearest and second-nearest neighbor peaks and
non-zero probability for finding a neighbor between them. The first neighbor peak is located at gy = 2.8 A and
indicated by a vertical dashed line and we use 7y to normalize all distances reported below. The value of the
non-affine displacement D, ; depends on the cutoff distance 7., for identifying neighbors of an atom and on
the distance Ace between current and reference configuration in the time domain. In the following, we will show
results obtained for 7,,,; being an integer multiple of the nearest-neighbor distance ryy as given by the position of
the first peak in g, (r). These distances are indicated by the vertical dashed lines in figure 2(a).

After equilibrating, we deformed our metallic glass under simple shear. Figures 1(b) and (c) show exemplary
snapshots of these calculations. As an important dynamical quantity, we analyzed the mean square displacement
(MSD) as a function of applied strain ¢, where we only considered the component of the displacement in the z-
direction, perpendicular to the plane where shear is applied (figure 2(b)). This is necessary in order not to
contaminate the displacement by the applied shear; we could have subtracted the streaming velocity
alternatively. Note that at constant strain rate £, the applied strain € = &t is the same as the usual parameter time
t. The MSD shows the typical behavior for a glass [39]: initially, MSD o< 2, showing the ballistic motion of each
atom within its local environment. The MSD then saturates at a value ~0.01 ryy;, corresponding to a distance of
around 0.1 7N much smaller than the nearest neighbor distance (see figure 2(a)) but around the Lindemann
criterion for melting [40]. Atoms do not diffusive in this regime but are trapped within their local cages. Finally,
atlarge e, the system entered a diffusive regime where MSD o ¢. This diffusive regime is accompanied by a
breaking out of the individual cage, because the mean distance traveled by the atoms now exceeds the nearest
neighbor distance. Without mechanical agitation, this breaking out of the cage happens after what is known as
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Figure 2. (a) Radial distribution function of the CuZr BMG at 0 K. Vertical lines represent multiples of the nearest neighbor distance
an = 2.8 A used as dey for the calculation of DZ;;,.. (b) Mean squared displacements in the z direction (perpendicular to the simple
shear plane). Dashed lines show ~&? (diffusive) and ~e (ballistic) scaling.

the (-relaxation time. Under mechanical agitation, it happens at the cage-breaking strain €, here between
€. ~ 0.1% and 1% (see also [41, 42]).

The shear stress oy, in the plane of shear (figure 3(a)) initially rose linearly with the strain € applied in the xy-
plane. Ataround € ~ 10% the system yielded and the stress oy, dropped from a peak value to a plateau region
where 0y, remained constant up to an applied strain of ¢ = 35%), the maximum strain applied in our
calculations. Our five calculations at 0, 50, 100, 200 and 300 K show that the system softened as temperature
increased; from ayield stress of around 1.7 GPa in the athermal limit to 0.8 GPa at 300 K.

Figures 3(b)—(d) show a map of D2, during deformation, here computed for a cutoff 7., = 3 ryyanda
strain window of Ae = 1%, about the cage-breaking strain ¢, before the frame shown in the figure. At small
strain € where oy, (€) is linear, we find localized events (figure 3(b)). After yield, these localized events coalesce to
shear-bands, first vertical (figure 3(c), see also [27, 43—45]) but later horizontal (figure 3(d)), developing a clear
anisotropic structure. Note that such vertical shear-bands occurred only in some of our calculations. At small
strain, both shear-band directions are equivalent and the nucleation direction is random. Symmetry breaking at
larger strain forces the shear band back into the direction of shear. We note that the shear-bands are only visible
for strain windows Ae > &.. Figures 3(e) and (f) show maps of D2, for Ac = 0.1% and Ae = 0.01%,
respectively. Observed at these small strain windows, the shear band dissolves into individual disconnected
localized events.

To statistically quantify this (random) structure we computed the D2 auto-correlation maps, C (7).
Figures 4(a) and (b) showaslice C(x, y, z = 0) = Cy(x, y). Beforeyield (figure 4(a)), Cy(x, y) showsa
rotationally symmetric structure with a visible ring at the nearest-neighbor distance ry. After yield
(figure 4(b)), Cy(x, y) develops an anisotropic structure with aband of correlation parallel to the x-axis.

Figure 4(c) shows radial averages C(r) of the data of figures 4(a) and (b). There are oscillations at small distances
that turn into an exponential decay at around 10 A. Oscillations at small distances are due to the structure of the
amorphous solid. We therefore normalize the autocorrelation function and define

C(r) = C(r)/g(n) (6)

to remove variations in C(r) due to variations in local atomic density. The normalized correlations are also
shown in figure 4(c). The oscillations are eliminated in C (r) forr > 5 A. Note that beyond yield, the radial
symmetry of C(r) is lost (see figure 4(b)). Figure 4(d) shows C (r) parallel and perpendicular to the shear band.
The positions where the data is taken from is marked with the black and red line in figure 4(b). This shows that
the correlation is practically constant in the shear band direction, while it decays perpendicular to it.

The radially averaged function C (r) decays exponentially, as visible by a constant slope in the log-linear plots
of figures 4(c), 5(a) and later. We find that there are two regions of exponential decay with different correlation
lengths, clearly visible in figure 5(b). We characterize the exponential decay

C(r) = Aexp(—1/?), )

by fitting the correlation length # in equation (7) over a select section of the correlation function. At short
distance r < 1y, the characteristic length #,0,4 appears to be affected by the choice of ., within which the
non-affine part of the local deformation field is computed, as presented in more detail below. The initial decay

4
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a & = 5% applied strain, Ae = 1%
(a) (b) £ = 5% applied in, Ae = 1%
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(c) € = 15% applied strain, Ae = 1% (d) € = 35% applied strain, Ae = 1%

(e) € = 35% applied strain, Ae = 0.1% (f) € = 35% applied strain, At = 0.01%

Figure 3. (a) Stress strain curves for CuZr at 0, 50, 100, 200 and 300 K. The region shaded in gray indicates the strains over which the
systems show a sharp increase in £ong (see figure 8(a)). Black solid dots indicate the positions where the snapshots shown in (b)-(d)
were taken. All calculations use 7oy = 3 rmynand Ae = 1%. The color code corresponds to D2 with high values in red and low
values in blue. Atlow strains (b) we find individual STZs. Higher strains (c) and (d) develop a clear shear band. (e) and (f) show the
same state as (d), but D2, is computed at strain windows Ae = 0.1% and 0.01%, respectively. While individual events are still visible,
there are not enough of them in the strain window to coalesce into a full band like in (d).

crosses over to a second exponential at distances r > 7., with a characteristic length £, that does not depend
on the specific choice of 7, and reference frame and is a characteristic of the material under investigation.

We first focus on the behavior at short scales. The computation of C (r) involves the cutoff radius .,  as a
parameter. r., determines the local atomic neighborhood within which D7, is calculated. To test whether the
length scales Zhort and £y depend on this length, we parametrically vary 7., between roye = 2 ryn = 5.6 Aand
Tewt = 57N = 14 A. The resulting correlation functions at 7% and 12% applied strain are shown in figures 5(a)
and (b), respectively. The radius ., varies by a factor of 2.5 while the individual correlation functions move
systematically upwards. As a consequence, the extracted value ot depends systematically on ... Indeed, we
can collapse all £, values on a single curve when normalizing by 7.y, hort / e (figure 5(c)). The behavior of
Llong 1s different. Its value (figure 5(d)) is independent of 7, used in the computation of D2, and the data does
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Figure 4. Slice through the normalized real space correlation in xy-plane at (a) 7% applied strain and (b) 15% applied strain.

(c) Correlation function C(r) for the two cases shown in panels (a) and (b), both normalized (solid) and not normalized with pair
correlation function g,(r) (dashed). (d) shows the correlation function from (b) parallel and perpendicular to the shear band (position
indicated by the black and red line). All results are for a strain window Ae = 1%.

not collapse when normalized accordingly. The evolution of £t and £y With applied strain € clearly show the
point where the samples yield (see also figure 3(a)). Ataround 12.5% strain, £, increases dramatically. During
further deformation it fluctuates around a value consistently higher by a factor of 4 than before yield.

The computation of C (r) furthermore depends on how the reference frame for the computation of D, is
chosen. Here, we report results obtained for reference frames at constant distance in applied strain, Ae. All
results reported above were obtained for Ae = 1%. Figure 6 demonstrates how the correlation function and #
vary as a function of this parameter. Before yield, the correlation function does not depend on A¢ and drops
exponentially over two decades as a function of distance. Figure 6(a) shows this behavior for Ae = 1%, 0.1%
and 0.01% which is above, at and below the cage-breaking strain ¢, (figure 2(b)). The behavior changes at yield
(figure 6(b)), where the initial exponential drop starts to depend on Ae. Figure 6(c) shows the influence on the
extracted value of £oys. £ong decreases with decreasing A and saturates at £ong ~ 15 A in the flow region for
thelowest Ae = 0.01%.

To clarify the role of A¢ on the calculation of the correlation length £, we further tested the influence on
system size on the correlation functions. Figure 7(a) shows that before yield (applied strain € = 7%), C (r) is
independent of system size but that a clear size dependence develops when the material flows (figure 7(c),
€ = 20%). Plotting £,y versus applied strain € shows that the before yield £, is independent of size but after
yield it depends on system size (figure 7(b)). Normalizing distance r or correlation length #,,,; by system size
collapses all data in the region where the amorphous solid flows (figures 7(c) and (d)).

To gain further insights into the system size dependence of #,,g, we took one of our medium-sized
simulations at 20% applied strain and replicated it parallel (A) and perpendicular to the shear band (B, see insets
in figure 8), creating simulation boxes with aspect ratios ~2. We continued straining these ‘supercell’ systems up
to 50% applied strain. System A continued to shear along the replicated shear band. System B had initially two
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(a) € = 7% applied strain

(b) € = 12% applied strain
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Figure 5. D%, auto-correlation functions at (a) 7% and (b) 12% strain, using different cutoff values ro. (c) Characteristic length £ o

derived from the correlations for the different cutoffs, normalized with the cutoff ., for each line. (d) Bare unnormalized
characteristic length £1ng. All results are obtained for a strain window Ae = 1%.

shear bands, but one of the shear bands disappeared during shear in favor of the other, such that the final system
had only a single shear band (inset in figure 8). While £y, of system A remains unaffected, £y, of system B rises
to twice its initial value, like the cubic systems with twice the edge length.

Finally, we test the dependence of the correlation function on temperature and composition. Figure 9(a)
shows the temperature dependence of #{yy. Data in the temperature range from 50 to 300 K, below the glass
transition temperature of T, ~ 600 K of our metallic glass, is superimposed for small strain. It appears that at
large strain the highest temperature leads to a smaller #,g, while the values for the other temperatures are
approximately the same. Figure 9(b) shows £, () for different compositions. Again, the data collapses in the
elastic regime and there appears to be a slight variation with composition after the sample has yielded.

4. Discussion

The correlation length £ characterizing the exponential decay of the spatial-autocorrelation functions C (r) of
D2, have in the past been interpreted as giving the size of the STZ [26]. Our results clearly show that the decay of
C (r) with distance r is exponential in MD calculations of BMGs, confirming other results obtained for EAM
[26], Lennard-Jones [27] and hard-sphere glasses [29, 30]. However, there are two regions of exponential decay
with different correlation lengths. At short distance r < ., the characteristic length £y, is strongly affected
by the choice of 7, within which the non-affine part of the local deformation field is computed. Our results
indicate £por X 7oy such that £pere does not characterize any intrinsic material scale. The initial decay crosses
over to a second exponential at distances r > 1., with a characteristic length £, that does not depend on the
specific choice of 1, and reference frame and is a characteristic of the material under investigation. For the CuZr
glasses investigated here we find £jop, ~ 5-10 A. This is on the order of the values reported for FeP in [26]

(¢ = 8.5 A) but smaller than the values for MgAl (# = 11.1 A) and CuZr (¢ = 15.0 A) reported there at an
applied strain of ¢ = 4% for simulations carried out with an earlier version of the EAM potential used here [46].
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Figure 6. Auto-correlation functions of D2y calculated for different strain windows Ae, at 7% (a) and 12% (b) strain. (c) Shows the
characteristic length g derived from the correlations for the different strain windows. All results were obtained with r, = 3 .
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Figure 7. D%, auto-correlation functions for systems of different sizes, at 7% (a) and 20% (c) applied strain. (b) Shows the
characteristic length g derived from the correlations for the systems of different size. (d) Shows the same curves as (b), but
normalized with the system size L. All results are obtained with an offset Ae = 1% and 7y = 3 N Ciong curves for the small system
with L = 103 Astartate = 11.9% because the data could not be fit to exponential over the range from 20 to 30 A used to extract Zlong:
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Figure 8. Characteristic length £}, for as a function of the aspect ratio of the box for Ae = 1% and r,, = 3 run, but only for asingle
realization of the amorphous system (no averaging). The initial system was obtained by duplicating the size of a pre-strained system
with a pre-existing shear band. Insets show exemplary maps of D2, for these two systems.
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Figure 9. Characteristic length £}, for (a) varying temperature and (b) varying composition. All results are obtained with an offset
Ae = 1%and rey = 3 rnne-

Additionally, the work described in [26] used the initial configuration at ¢ = 0 as reference (and hence

Ae = ¢ = 4%) and looked at correlations of global non-affine displacements rather than D2,. Recent work
using a Lennard-Jones model for CuZr reports # = 5 A [27]. This appears to indicate that the actual value of the
correlation length is highly model-dependent and may also depend on the preparation of the glass. As an
extreme example, for a poorly tempered system that does not show shear bands, we would not expect the
correlation length to increase suddenly and become system size dependent at the onset of yield. For our systems,
we find that the values extracted from our calculations are robust to variations of temperature and

stoichiometry.
The situation in the pseudoelastic regime before yield is characterized by individual regions of large D2

(figure 1(b)) that are typically attributed to individual STZs. Therefore, C (r) measures the autocorrelation of the
deformation field of an individual STZ. Since the overall density of STZs is low, the strain offset A¢ that
determines over how many STZs we average does not affect the results. The situation changes dramatically after
the sample has yielded (¢ > 10%). STZs are now localized within a shear band and it becomes difficult to
identify individual STZs (figures 3(c) and (d)). The onset of shear-banding is then accompanied by a
characteristic length #,,, proportional to the system size L that depends on strain window Ae. For strain
windows smaller than the cage-breaking strain, Ae < ¢, we find values for £ comparable to the ones found in
the elastic regime (figure 6(c)). This is because even for the flowing glass with a shear band we can identify
individual STZs if we look at small enough strain windows. Figures 3(e) and (f) show examples of the
distribution of regions of large D, for Ae < &, that clearly show individual STZs. The correlation length oy,
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computed for Ae < ¢, therefore, like in the pseudoelastic regime, characterizes the size of an individual STZ
rather than the correlation along the shear band. Note that Cubuk et al [32] have chosen to evaluate g ata
value of Ae that corresponds to the minimum in the #j,ng (A€) behavior obtained during flow of the material.
Figure 6(c) indicates, that #j,,s (Ae) = const for Ae < e, and a system size dependence for Ae > ¢ in our
calculations. Cubuk et al are therefore likely in the region where Ae < ¢.. They find exponential correlation in
all cases and their extracted scale is independent of analysis protocol and system size.

The actual value of #,,; depends on the size perpendicular to the shear band. Our ‘supercell’ calculations
show that duplicating a shearing simulation (with an existing shear band) parallel to the shear band (system A in
figure 8) does not affect #,g, while duplicating it perpendicular to the shear band (system B in figure 8) also
doubles #j,,,g. Note that in the latter case only one of the two shear bands survived during consecutive strain. The
scaling £j,ng o< L is therefore simply a consequence of the ratio between the volume occupied by the band (it is of
athickness on the order of the size of the STZ that does not depend on system size) and the cell volume, or in
other words, #,,; measures the distance between individual shear bands in the superlattice of shear bands
created by the periodic boundary conditions. For an experimental system of a size much larger than the STZ size,
this length scale would look divergent.

We would like to note that our system sizes, although large, are yet too small to rule out power-law behavior
during flow. Indeed, the fact that for Ae > ¢, our length scale 4, depends on system size for is indicative of a
diverging length scale. This could be a signature of a cross-over to a power-law as STZ events become correlated
within the shear band. This observation is consistent with a recent proposition that yield in amorphous solids
can be interpreted as a first-order phase transitions [47, 48], an interpretation that has a rich history for
explaining shear-banding instabilities in non-Newtonian fluids [49]. Jaiswal et al [47] identified the transition
using an order parameter that measures similarity or ‘overlap’ of atomic configuration. The atomic
configuration loses overlap with the initial configuration at yield. A central observation is that their ‘yield’ point
occurs at larger strains than the overshoot in the stress—strain curve that is typically attributed to yield. This is
consistent with our calculations, which show that £ rises after the stress has peaked. As a guide to the eye, the
gray vertical band in the stress—strain curve (figure 3(a)) indicates the applied strain where £y, rises rapidly (see
also figures 7(b), (d)).

We note that power-law correlations can be found in other measures for the non-affine displacement field
rather than D72, , for example by looking at the global non-affine displacement field rather than at the non-affine
displacements in augmentation spheres of radius r., as employed for the computation of D2,. In the elastic
regime, the displacement-difference correlation function of a disordered body shows power-law behavior that
describes the elastic Green’s function [50, 51]. In the plastic regime, power-law scaling persists albeit with a
different exponent that is compatible with a self-affine geometry for the deformation field [35]. Similar scaling
hasbeen observed for correlation of the strain field [34]. However, this type of scaling cannot be detected in the
bare correlation function of the non-affine displacement (only in the difference correlation); and it appears to be
not manifested in the local deviation from affinity as described by D2,...

5. Summary and conclusion

We studied the correlation between non-affine displacements, as characterized by the D2, measure of Falk and
Langer [15], using MD calculations. This multipoint correlation function shows exponential behavior in the
elastic regime from which we can extract alength scale #, typically attributed to the size of an STZ. We find that
this length scale diverges at yield, as manifested by a size-dependent # in during flow of the material. The
divergence of £ occurs at strains larger than the peak stress that is typically attributed to the yield point. Our
results support a recent proposition that yield in amorphous materials can be interpreted as a first-order phase
transition [47, 48].
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Appendix. Calculation of the spatial correlation in reciprocal space

Spatial correlations can be computed straightforwardly by implementing equation (2) directly, with the
6-function broadened into discrete bins. This calculation, however, becomes prohibitive for large distances,
since the number of pairs of atoms scales with the distance squared. In order to speed-up the calculation (for
large distances), we map our field Q onto a regular grid

Qx,y,z - ZQx,y,z;i: (8)

Vghere x,y and zare integers denoting points on a grid of Nppr = N, N, N, grid points. We chose Q,,, .. = Q; for
R = xd| + yd, + zd; closest to the position of atom 7, 7, and zero otherwise. Other choices like a Gaussian
interpolation or a distribution over all neighboring grid points are possible, but not used here. They only affect
the results at small distances. Note that a; are the cell vectors that describe the tilted cell.

The discrete Fourier transform, and the inverse transform, of Q. ,, , are given by

DFT{Qx,y,z} = Z Qx,y,z eXP(—ikxx - 1kyy — ik.2), 9
X9,2
IDFT{ Oy} = —— 3 Quye exp (ikex + ikyy + ik.2), (10)
DET x5,

with k; = 27/ N;. The autocorrelation map in reciprocal space is obtained from the transform of equation (2)
\4

F1QIE) = 25 DFT(Quc) DFT* Q) (1)
p
which in real space yields
A1QIR) = Nﬁ? IDFT{DFT{ Qs 2} DFT*{ Qs . . (12)

p

The tilt of simulation box is accounted for automatically, by using the appropriate cell vectors in the Fourier
transformation. Specifically, the phase of equations (9) and (10), kyx + k,y + k,z = R- (kg, + 18, + mg,)
where g, are the reciprocal lattice vectors. Our reciprocal lattice vectors are normalized such that @y - g = 27m0.
Care needs to be taken that when computing radial averages of .o/ [Q] (ﬁ ), the tilt of the box vectors is
appropriately accounted for.

The periodic boundaries of the system, in reciprocal space, also pose no problem as all pairs of grid points at
a certain (real space) distance one from another collapse onto the same reciprocal grid point. Note that the
fidelity of the autocorrelation at short distances depends on the choice of the size of the grid and the
interpolation prescription. We here use Ax = 1 A for the radially averaged correlation functions and use
Ax = 0.5 A for the correlation maps shown in figure 4. We systematically checked implementation of
equation (12) against a brute-force estimate of equation (2) to check thatas Ax — 0, we obtain the brute force
estimate at short distances. We have implemented this algorithm in matscipy [54] and Ovito [55] and it is
available in the public repositories of these codes.
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