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Abstract
We study correlations of non-affine displacements during simple shear deformation of Cu–Zr bulk
metallic glasses inmolecular dynamics calculations. In the elastic regime, our calculations show
exponential correlationwith a decay length that we interpret as the size of a shear transformation zone
in the elastic regime. This correlation length becomes system-size dependent beyond the yield
transition as our calculation develops a shear band, indicative of a diverging length scale.We discuss
these observations in the context of a recent proposition of yield as afirst-order phase transition.

1. Introduction

Bulkmetallic glasses (BMGs), multi-componentmetals that are kinetically arrested into an amorphous
structure, have been suggested forwide range of applications, including as structuralmaterials [1, 2]. For
practical applications a big problem is their tendency to form shear bands [3], planar regions in that localizemost
of the plastic deformation at relatively low strain [4, 5]. These shear bands are the primarymechanismbywhich
metallic glasses fail in tensile [6] or cyclic (fatigue) loading [7, 8] or during indentation [9]. Numerous ideas to
address this problemhave been suggested, such as deliberately introducing heterogeneities, such as pores [10],
nanocrystals [11] or internal interfaces [12].

The deformation of BMGs is described by the theory of shear transformations or shear transformation zones
(STZs) [13–15], localized rearrangements of small regions of atoms. The size of these zones has been estimated to
range from a few [16] tomany tens of atoms [17, 18]. Knowledge of the size of the zones could help to
fundamentally understand this class ofmaterials on an atomic level and be used inmesoscale simulations that
incorporate STZs [19–21]. The size of STZs has been linked to the Poisson ratio [22] as well as the brittle or
ductile character of fracture of BMGs [23–25].

Spatial correlation functions of non-affine deformation have recently been employed to quantify the
geometry of STZs.Murali et al [26] looked at the spatial autocorrelation in the non-affine deformation field of
deformedBMGs inmolecular dynamics (MD) simulations. They found an exponential decay of the
autocorrelation fromwhich they extracted a correlation length ,ℓ which they interpreted as the size of an STZ.
Thesefindings have been confirmed by similar calculations on Lennard-Jones-Glasses [27]. In a similar spirit,
Chikkadi et al [28, 29] have discussed the autocorrelation of non-affine deformation in experiments of sheared
colloidal glasses. In addition to the global non-affine displacement field, they characterized the local non-affine
deformation through the Dmin

2 measure of Falk and Langer [15]. Their data shows long-range correlations as
manifested in a power-law behavior of the autocorrelation function in both global and localmeasures for non-
affinity. In contrast toMurali et al’s data [26], this suggests a scale-free character of the deformation. Calculations
of hard-spheremixtures carried out for the interpretation of these experiments did again yield an exponential
decay of the correlation function [29, 30]. Varnik et al [31] argued that this is because of limitation in system size;
larger calculation, albeit carried for a 2D soft diskmodel rather than in 3D, indeed showed power-law
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correlations. In a large study comparing different simulationmodels and experiments, Cubuk et al [32] appear to
find again only exponential correlation in D .min

2 Note that correlation of the vorticity (strain)field during
deformation of a 2DLennard-Jones solid showed similar power-law correlations [33, 34], andwe have recently
found power-law correlation in the displacement-difference field [35]. The question of power-law versus
exponential correlation clearly hinges on the details of the quantity whose correlations are studied.

We here revisit the question of exponential versus power-law correlations in D ,min
2 provide newdata on how

they evolve through the yield transition and show that the question of exponential versus power-law correlation
depends on how Dmin

2 is calculated. OurMDcalculations of the deformation of BMGs show the emergence of
correlations in the non-affine part of the deformation field of calculations larger than those previously reported.
This allows us to extract the correlation function up to distance≈75 times the nearest neighbor distance for the
largest systems studied here, similar to previous 2D calculations that showed power-law correlation [31].While
we dofind exponential and not power-law correlations, the length-scale ℓ associatedwith the exponential
becomes a function of system size after shear-band nucleation, indicating a divergent length at the nucleation of
the band, but only if the ‘strainwindow’used to calculate Dmin

2 is chosen large enough.

2.Methods

2.1.MD simulations
Weconducted all simulations usingMDand the second generation of the interatomic Cu–Zr potential by
Mendelev et al [36]. Amorphous sample systemswere first obtained bymelting and equilibrating systems of
Cu50Zr50 (or other stoichiometries, see below) at 2500 K for 100 ps, followed by a linear quench to 750 K at a rate
of 6 K ps−1. This temperature is slightly above the glass transition temperatureT 600 K,g » as obtained from the
jump in heat capacity when cooling the system throughTg at the same rate.We then aged the system for 1 ns
before quenching it to 0 K at a rate of 6 K ps−1.We used a Berendsen barostat [37]with a relaxation time
constant of 10 ps to keep the hydrostatic pressure in the simulation cell at zero and Langevin thermostat [38]
with a relaxation time constant of 1 ps to control temperature during quench and equilibration.

Toprepare simulations carried out at different temperatures, the amorphous systemswere then equilibrated at
zeropressure for 200 ps at different temperatures between 0 and300 K.The cellwas subsequently deformedusing
simple shear deformation at constant volume at an applied shear rate of 10 s8 1e = - up to amaximumof 35%
strain. To control temperature,weagain used aLangevin thermostat but only thermalize theCartesiandirection
normal to the plane of shear to eliminate any dragwith respect to the reference velocityfield intrinsic to theLangevin
thermostat. Thebulk of our simulations comprises a cubic cell with an edge length of L 206 Å» and500 000
atoms. The potential influence offinite-size effectswas studiedusing twoadditional system sizes: A cubic system
with twice the edge length and eight times thenumber of atoms and another cubic systemwithhalf the edge length
and1/8 the number of atoms.We ran all sets of parameters forfive systemsobtained from independent quenches
and averaged the results of the analyses, to reduce the impact of randomfluctuations. If notmentionedotherwise,
results are reported for the L 206 Å» systems and as averages over thesefive realizations.

2.2. Local strainmeasure and correlation
To quantify heterogeneous flowof the system, we needmeasures that identify local deformation events. Falk and
Langer [15] introduced amethod to determine the local deformation of an atomic systemwithin spheres of
radius rcut. The idea is tomap for each atom i its atomic neighborhood at time t–Δt to the neighborhood at time t
using an affine deformationwith deformation gradient F ,i and thenfind Fi thatminimizes the residual error.
Thefinal residual error

r rD
N

t F t t r rmin
1

, 1i F
k

N

ik i ik ikmin,
2 2

cuti å q= - - D -
⎧⎨⎩

⎫⎬⎭[ ( ) ¯ · ( )] ( ) ( )¯

is ameasure for the non-affine component of local deformation.Here rQ( ) is theHeaviside step function. STZs
and shear bands can be identified by looking for regionswith high values of D .imin,

2 Note that for our calculations
carried out at constant applied shear rate ,e we specify the reference frame by its distance in applied strain ,eD
the strainwindow, rather than t .e eD º D /

To quantify the geometry of these deformation events, we use spatial auto-correlationmaps. The auto-
correlationmap of some field Q r

( ) is defined as
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where the last identity is the expression obtained for Np point particles for which Q r Q r r
i

i iå d= -
  ( ) ( )where

Qi is the value of quantity Q on atom i.Note that for any quantity Q this autocorrelationmap obeys the
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following sum rules

Q r Q Q r Q0 and , 3i i
2 2A A = á ñ  ¥ =

 [ ]( ) [ ]( ) ( )

where the average Q Q N .i
i

i påá ñ = /

The radial average of this auto-correlationmap gives a function Q r ,A[ ]( ) depending only on the distance
and not the direction between the two atoms. The auto-correlation function of unity is the radial distribution (or
pair correlation) function

g r r1 . 42 A=( ) [ ]( ) ( )

By virtue of equation (3) it is normalized such that g r 12 ( ) as r . ¥ Weare specifically interested in the
correlations of Dmin
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Note that equation (5) is normalized such that, because of equation (3), C r 0 1 =
( ) and C r 0. ¥ =

( )
Wecompute Q rA

[ ]( ) at short distances by direct evaluation of equation (2) and at long distances using a fast
Fourier transform to speed up the convolution in equation (2), allowing us to efficiently compute the correlation
function up to half the size of our systems. Details of this algorithm are given in the appendix.

3. Results

Figure 1(a) shows a snapshot of the quenched systembefore shear. The radial distribution function g r2( )
(figure 2(a)) is indicative of a disordered structure with broad nearest and second-nearest neighbor peaks and
non-zero probability forfinding a neighbor between them. Thefirst neighbor peak is located at r 2.8 ÅNN = and
indicated by a vertical dashed line andwe use rNN to normalize all distances reported below. The value of the
non-affine displacement D imin,

2 depends on the cutoff distance rcut for identifying neighbors of an atom and on
the distance eD between current and reference configuration in the time domain. In the following, wewill show
results obtained for rcut being an integermultiple of the nearest-neighbor distance rNN as given by the position of
thefirst peak in g r .2( ) These distances are indicated by the vertical dashed lines infigure 2(a).

After equilibrating, we deformed ourmetallic glass under simple shear. Figures 1(b) and (c) show exemplary
snapshots of these calculations. As an important dynamical quantity, we analyzed themean square displacement
(MSD) as a function of applied strain ,e wherewe only considered the component of the displacement in the z-
direction, perpendicular to the planewhere shear is applied (figure 2(b)). This is necessary in order not to
contaminate the displacement by the applied shear; we could have subtracted the streaming velocity
alternatively. Note that at constant strain rate ,e the applied strain te e=  is the same as the usual parameter time
t. TheMSD shows the typical behavior for a glass [39]: initially, MSD ,2eµ showing the ballisticmotion of each
atomwithin its local environment. TheMSD then saturates at a value≈0.01 rNN, corresponding to a distance of
around 0.1rNN2much smaller than the nearest neighbor distance (see figure 2(a)) but around the Lindemann
criterion formelting [40]. Atoms do not diffusive in this regime but are trappedwithin their local cages. Finally,
at large ,e the system entered a diffusive regimewhere MSD .eµ This diffusive regime is accompanied by a
breaking out of the individual cage, because themean distance traveled by the atoms now exceeds the nearest
neighbor distance.Withoutmechanical agitation, this breaking out of the cage happens after what is known as

Figure 1. Snapshots of the system at (a) 0%, (b) 25%and (c) 50%applied simple shear strain. Arrows indicate the shearing direction.
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the b-relaxation time. Undermechanical agitation, it happens at the cage-breaking strain ,ce here between
0.1%ce » and 1% (see also [41, 42]).

The shear stress xys in the plane of shear (figure 3(a)) initially rose linearly with the strain e applied in the xy-
plane. At around 10%e » the system yielded and the stress xys dropped froma peak value to a plateau region
where xys remained constant up to an applied strain of 35%,e = themaximum strain applied in our
calculations. Ourfive calculations at 0, 50, 100, 200 and 300 K show that the system softened as temperature
increased; from a yield stress of around 1.7 GPa in the athermal limit to 0.8 GPa at 300 K.

Figures 3(b)–(d) show amap of Dmin
2 during deformation, here computed for a cutoff r r3cut NN= and a

strainwindowof 1%,eD = about the cage-breaking strain ,ce before the frame shown in the figure. At small
strain ewhere xys e( ) is linear, wefind localized events (figure 3(b)). After yield, these localized events coalesce to
shear-bands, first vertical (figure 3(c), see also [27, 43–45]) but later horizontal (figure 3(d)), developing a clear
anisotropic structure. Note that such vertical shear-bands occurred only in some of our calculations. At small
strain, both shear-band directions are equivalent and the nucleation direction is random. Symmetry breaking at
larger strain forces the shear band back into the direction of shear.We note that the shear-bands are only visible
for strainwindows .ce eD Figures 3(e) and (f) showmaps of Dmin

2 for 0.1%eD = and 0.01%,eD =
respectively. Observed at these small strainwindows, the shear band dissolves into individual disconnected
localized events.

To statistically quantify this (random) structure we computed the Dmin
2 auto-correlationmaps, C r .

( )
Figures 4(a) and (b) show a slice C x y z C x y, , 0 , .0= º( ) ( ) Before yield (figure 4(a)), C x y,0( ) shows a
rotationally symmetric structure with a visible ring at the nearest-neighbor distance r .NN After yield
(figure 4(b)), C x y,0( ) develops an anisotropic structure with a band of correlation parallel to the x-axis.
Figure 4(c) shows radial averages C r( ) of the data of figures 4(a) and (b). There are oscillations at small distances
that turn into an exponential decay at around 10 Å.Oscillations at small distances are due to the structure of the
amorphous solid.We therefore normalize the autocorrelation function and define

C r C r g r 62=( ) ( ) ( ) ( )/

to remove variations in C r( ) due to variations in local atomic density. The normalized correlations are also
shown infigure 4(c). The oscillations are eliminated in C r( ) for r>5 Å.Note that beyond yield, the radial
symmetry of C r( ) is lost (see figure 4(b)). Figure 4(d) shows C r( ) parallel and perpendicular to the shear band.
The positionswhere the data is taken from ismarkedwith the black and red line infigure 4(b). This shows that
the correlation is practically constant in the shear band direction, while it decays perpendicular to it.

The radially averaged function C r( ) decays exponentially, as visible by a constant slope in the log-linear plots
offigures 4(c), 5(a) and later.Wefind that there are two regions of exponential decaywith different correlation
lengths, clearly visible infigure 5(b).We characterize the exponential decay

C r A rexp , 7= - ℓ( ) ( ) ( )/

byfitting the correlation length ℓ in equation (7) over a select section of the correlation function. At short
distance r r ,cut< the characteristic length shortℓ appears to be affected by the choice of rcut withinwhich the
non-affine part of the local deformation field is computed, as presented inmore detail below. The initial decay

Figure 2. (a)Radial distribution function of theCuZr BMGat 0 K.Vertical lines representmultiples of the nearest neighbor distance
rNN=2. 8 Å used as dcut for the calculation ofD

2
min. (b)Mean squared displacements in the z direction (perpendicular to the simple

shear plane). Dashed lines show∼ε2 (diffusive) and∼ε (ballistic) scaling.
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crosses over to a second exponential at distances r rcut> with a characteristic length longℓ that does not depend
on the specific choice of rcut and reference frame and is a characteristic of thematerial under investigation.

Wefirst focus on the behavior at short scales. The computation of C r( ) involves the cutoff radius rcut as a
parameter. rcut determines the local atomic neighborhoodwithinwhich Dmin

2 is calculated. To test whether the
length scales shortℓ and longℓ depend on this length, we parametrically vary rcut between rcut=2rNN=5.6 Å and
rcut=5 rNN=14 Å. The resulting correlation functions at 7%and 12%applied strain are shown infigures 5(a)
and (b), respectively. The radius rcut varies by a factor of 2.5 while the individual correlation functionsmove
systematically upwards. As a consequence, the extracted value shortℓ depends systematically on rcut. Indeed, we
can collapse all shortℓ values on a single curvewhen normalizing by r ,cut rshort cutℓ / (figure 5(c)). The behavior of

longℓ is different. Its value (figure 5(d)) is independent of rcut used in the computation of Dmin
2 and the data does

Figure 3. (a) Stress strain curves for CuZr at 0, 50, 100, 200 and 300 K. The region shaded in gray indicates the strains over which the
systems show a sharp increase inℓlong (seefigure 8(a)). Black solid dots indicate the positions where the snapshots shown in (b)–(d)
were taken. All calculations use rcut=3rNN andΔε=1%. The color code corresponds toD2

min with high values in red and low
values in blue. At low strains (b)wefind individual STZs. Higher strains (c) and (d) develop a clear shear band. (e) and (f) show the
same state as (d), butD2

min is computed at strainwindowsΔε=0.1% and 0.01%, respectively.While individual events are still visible,
there are not enough of them in the strainwindow to coalesce into a full band like in (d).
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not collapse when normalized accordingly. The evolution of shortℓ and longℓ with applied strain e clearly show the
point where the samples yield (see alsofigure 3(a)). At around 12.5% strain, longℓ increases dramatically. During
further deformation itfluctuates around a value consistently higher by a factor of 4 than before yield.

The computation of C r( ) furthermore depends on how the reference frame for the computation of Dmin
2 is

chosen.Here, we report results obtained for reference frames at constant distance in applied strain, .eD All
results reported abovewere obtained for 1%.eD = Figure 6 demonstrates how the correlation function and ℓ
vary as a function of this parameter. Before yield, the correlation function does not depend on eD and drops
exponentially over two decades as a function of distance. Figure 6(a) shows this behavior for 1%,eD = 0.1%
and 0.01%which is above, at and below the cage-breaking strain ce (figure 2(b)). The behavior changes at yield
(figure 6(b)), where the initial exponential drop starts to depend on .eD Figure 6(c) shows the influence on the
extracted value of .longℓ longℓ decreases with decreasing eD and saturates at 15 Ålong »ℓ in theflow region for
the lowest 0.01%.eD =

To clarify the role of eD on the calculation of the correlation length ,ℓ we further tested the influence on
system size on the correlation functions. Figure 7(a) shows that before yield (applied strain 7%e = ), C r( ) is
independent of system size but that a clear size dependence developswhen thematerial flows (figure 7(c),

20%e = ). Plotting longℓ versus applied strain e shows that the before yield longℓ is independent of size but after
yield it depends on system size (figure 7(b)). Normalizing distance r or correlation length longℓ by system size
collapses all data in the regionwhere the amorphous solidflows (figures 7(c) and (d)).

To gain further insights into the system size dependence of ,longℓ we took one of ourmedium-sized
simulations at 20% applied strain and replicated it parallel (A) and perpendicular to the shear band (B, see insets
infigure 8), creating simulation boxeswith aspect ratios≈2.We continued straining these ‘supercell’ systems up
to 50%applied strain. SystemA continued to shear along the replicated shear band. SystemBhad initially two

Figure 4. Slice through the normalized real space correlation in xy-plane at (a) 7% applied strain and (b) 15%applied strain.
(c)Correlation functionC(r) for the two cases shown in panels (a) and (b), both normalized (solid) and not normalizedwith pair
correlation function g2(r) (dashed). (d) shows the correlation function from (b) parallel and perpendicular to the shear band (position
indicated by the black and red line). All results are for a strainwindowΔε= 1%.
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shear bands, but one of the shear bands disappeared during shear in favor of the other, such that the final system
had only a single shear band (inset infigure 8).While longℓ of systemA remains unaffected, longℓ of systemB rises
to twice its initial value, like the cubic systemswith twice the edge length.

Finally, we test the dependence of the correlation function on temperature and composition. Figure 9(a)
shows the temperature dependence of .longℓ Data in the temperature range from50 to 300 K, below the glass
transition temperature ofT 600 Kg » of ourmetallic glass, is superimposed for small strain. It appears that at
large strain the highest temperature leads to a smaller ,longℓ while the values for the other temperatures are
approximately the same. Figure 9(b) shows long eℓ ( ) for different compositions. Again, the data collapses in the
elastic regime and there appears to be a slight variationwith composition after the sample has yielded.

4.Discussion

The correlation length ℓ characterizing the exponential decay of the spatial-autocorrelation functions C r( ) of
Dmin

2 have in the past been interpreted as giving the size of the STZ [26]. Our results clearly show that the decay of
C r( )with distance r is exponential inMDcalculations of BMGs, confirming other results obtained for EAM
[26], Lennard-Jones [27] and hard-sphere glasses [29, 30]. However, there are two regions of exponential decay
with different correlation lengths. At short distance r r ,cut< the characteristic length shortℓ is strongly affected
by the choice of rcut withinwhich the non-affine part of the local deformation field is computed. Our results
indicate rshort cutµℓ such that shortℓ does not characterize any intrinsicmaterial scale. The initial decay crosses
over to a second exponential at distances r rcut> with a characteristic length longℓ that does not depend on the
specific choice of rcut and reference frame and is a characteristic of thematerial under investigation. For theCuZr
glasses investigated herewefind 5 10 Å.long ~ℓ – This is on the order of the values reported for FeP in [26]

8.5 Å=ℓ( ) but smaller than the values forMgAl 11.1 Å=ℓ( ) andCuZr 15.0 Å=ℓ( ) reported there at an
applied strain of 4%e = for simulations carried outwith an earlier version of the EAMpotential used here [46].

Figure 5.D2
min auto-correlation functions at (a) 7% and (b) 12% strain, using different cutoff values rcut. (c)Characteristic lengthℓshort

derived from the correlations for the different cutoffs, normalizedwith the cutoff rcut for each line. (d)Bare unnormalized
characteristic lengthℓlong. All results are obtained for a strainwindowΔε=1%.
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Figure 6.Auto-correlation functions ofD2
min calculated for different strainwindows!ε, at 7% (a) and 12% (b) strain. (c) Shows the

characteristic lengthℓlong derived from the correlations for the different strainwindows. All results were obtainedwith rcut=3rNN.
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Figure 7.D2
min auto-correlation functions for systems of different sizes, at 7% (a) and 20% (c) applied strain. (b) Shows the

characteristic lengthℓlong derived from the correlations for the systems of different size. (d) Shows the same curves as (b), but
normalized with the system size L. All results are obtainedwith an offsetΔε=1% and rcut=3rNN.ℓlong curves for the small system
with L=103 Å start at ε=11.9%because the data could not befit to exponential over the range from20 to 30 Åused to extractℓlong.

Figure 8.Characteristic lengthℓlong for as a function of the aspect ratio of the box forΔε=1%and rcut=3rNN, but only for a single
realization of the amorphous system (no averaging). The initial systemwas obtained by duplicating the size of a pre-strained system
with a pre-existing shear band. Insets show exemplarymaps of Dmin

2 for these two systems.

9

J. Phys.:Mater. 2 (2019) 045006 R Jana and L Pastewka



Additionally, thework described in [26] used the initial configuration at 0e = as reference (and hence
4%e eD = = ) and looked at correlations of global non-affine displacements rather than D .min

2 Recent work
using a Lennard-Jonesmodel for CuZr reports 5 Å=ℓ [27]. This appears to indicate that the actual value of the
correlation length is highlymodel-dependent andmay also depend on the preparation of the glass. As an
extreme example, for a poorly tempered system that does not show shear bands, wewould not expect the
correlation length to increase suddenly and become system size dependent at the onset of yield. For our systems,
wefind that the values extracted fromour calculations are robust to variations of temperature and
stoichiometry.

The situation in the pseudoelastic regime before yield is characterized by individual regions of large Dmin
2

(figure 1(b)) that are typically attributed to individual STZs. Therefore, C r( )measures the autocorrelation of the
deformation field of an individual STZ. Since the overall density of STZs is low, the strain offset eD that
determines over howmany STZswe average does not affect the results. The situation changes dramatically after
the sample has yielded ( 10%e > ). STZs are now localizedwithin a shear band and it becomes difficult to
identify individual STZs (figures 3(c) and (d)). The onset of shear-banding is then accompanied by a
characteristic length longℓ proportional to the system size L that depends on strainwindow .eD For strain
windows smaller than the cage-breaking strain, ,ce eD < we find values for ℓ comparable to the ones found in
the elastic regime (figure 6(c)). This is because even for the flowing glass with a shear bandwe can identify
individual STZs if we look at small enough strainwindows. Figures 3(e) and (f) show examples of the
distribution of regions of large Dmin

2 for ce eD < that clearly show individual STZs. The correlation length longℓ

Figure 9.Characteristic lengthℓlong for (a) varying temperature and (b) varying composition. All results are obtainedwith an offset
Δε=1%and rcut=3rNN.
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computed for ce eD < therefore, like in the pseudoelastic regime, characterizes the size of an individual STZ
rather than the correlation along the shear band.Note that Cubuk et al [32] have chosen to evaluate longℓ at a
value of eD that corresponds to theminimum in the long eDℓ ( ) behavior obtained during flowof thematerial.
Figure 6(c) indicates, that constlong eD =ℓ ( ) for ce eD < and a system size dependence for ce eD > in our
calculations. Cubuk et al are therefore likely in the regionwhere .ce eD < They find exponential correlation in
all cases and their extracted scale is independent of analysis protocol and system size.

The actual value of longℓ depends on the size perpendicular to the shear band.Our ‘supercell’ calculations
show that duplicating a shearing simulation (with an existing shear band) parallel to the shear band (systemA in
figure 8)does not affect ,longℓ while duplicating it perpendicular to the shear band (systemB infigure 8) also
doubles .longℓ Note that in the latter case only one of the two shear bands survived during consecutive strain. The
scaling Llong µℓ is therefore simply a consequence of the ratio between the volume occupied by the band (it is of
a thickness on the order of the size of the STZ that does not depend on system size) and the cell volume, or in
otherwords, longℓ measures the distance between individual shear bands in the superlattice of shear bands
created by the periodic boundary conditions. For an experimental systemof a sizemuch larger than the STZ size,
this length scale would look divergent.

Wewould like to note that our system sizes, although large, are yet too small to rule out power-law behavior
duringflow. Indeed, the fact that for ce eD > our length scale longℓ depends on system size for is indicative of a
diverging length scale. This could be a signature of a cross-over to a power-law as STZ events become correlated
within the shear band. This observation is consistent with a recent proposition that yield in amorphous solids
can be interpreted as afirst-order phase transitions [47, 48], an interpretation that has a rich history for
explaining shear-banding instabilities in non-Newtonian fluids [49]. Jaiswal et al [47] identified the transition
using an order parameter thatmeasures similarity or ‘overlap’ of atomic configuration. The atomic
configuration loses overlapwith the initial configuration at yield. A central observation is that their ‘yield’ point
occurs at larger strains than the overshoot in the stress–strain curve that is typically attributed to yield. This is
consistent with our calculations, which show that ℓ rises after the stress has peaked. As a guide to the eye, the
gray vertical band in the stress–strain curve (figure 3(a)) indicates the applied strainwhere longℓ rises rapidly (see
alsofigures 7(b), (d)).

We note that power-law correlations can be found in othermeasures for the non-affine displacement field
rather than D ,min

2 for example by looking at the global non-affine displacement field rather than at the non-affine

displacements in augmentation spheres of radius rcut as employed for the computation of D .min
2 In the elastic

regime, the displacement-difference correlation function of a disordered body shows power-law behavior that
describes the elastic Green’s function [50, 51]. In the plastic regime, power-law scaling persists albeit with a
different exponent that is compatible with a self-affine geometry for the deformation field [35]. Similar scaling
has been observed for correlation of the strain field [34]. However, this type of scaling cannot be detected in the
bare correlation function of the non-affine displacement (only in the difference correlation); and it appears to be
notmanifested in the local deviation from affinity as described by D .min

2

5. Summary and conclusion

We studied the correlation between non-affine displacements, as characterized by the Dmin
2 measure of Falk and

Langer [15], usingMDcalculations. Thismultipoint correlation function shows exponential behavior in the
elastic regime fromwhichwe can extract a length scale ,ℓ typically attributed to the size of an STZ.Wefind that
this length scale diverges at yield, asmanifested by a size-dependent ℓ in duringflowof thematerial. The
divergence of ℓ occurs at strains larger than the peak stress that is typically attributed to the yield point. Our
results support a recent proposition that yield in amorphousmaterials can be interpreted as a first-order phase
transition [47, 48].
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Appendix. Calculation of the spatial correlation in reciprocal space

Spatial correlations can be computed straightforwardly by implementing equation (2)directly, with the
d-function broadened into discrete bins. This calculation, however, becomes prohibitive for large distances,
since the number of pairs of atoms scales with the distance squared. In order to speed-up the calculation (for
large distances), wemap ourfieldQ onto a regular grid

Q Q , 8x y z
i

x y z i, , , , ;å= ( )

where x, y and z are integers denoting points on a grid ofNDFT=NxNyNz grid points.We choseQx,y,z;i=Qi for
R xa ya za1 2 3= + +
   

closest to the position of atom i, r ,i

and zero otherwise. Other choices like aGaussian

interpolation or a distribution over all neighboring grid points are possible, but not used here. They only affect
the results at small distances. Note that ai


are the cell vectors that describe the tilted cell.

The discrete Fourier transform, and the inverse transform, ofQx,y,z are given by

Q Q ik x ik y ik zDFT exp , 9x y z
x y z

x y z x y z, ,
, ,

, ,å= - - -{ } ( ) ( )

Q
N

Q ik x ik y ik zIDFT
1

exp , 10x y z
x y z

x y z x y z, ,
DFT , ,

, ,å= + +{ ˜ } ˜ ( ) ( )

with k N2 .i ip= / The autocorrelationmap in reciprocal space is obtained from the transformof equation (2)

Q k
V

N
Q QDFT DFT , 11

p
x y z x y z2 , , , ,A *=

˜ [ ]( ) { } { } ( )

which in real space yields

Q R
N

N
Q QIDFT DFT DFT . 12

p
x y z x y z

DFT
2 , , , ,A *=


[ ]( ) { { } { }} ( )

The tilt of simulation box is accounted for automatically, by using the appropriate cell vectors in the Fourier
transformation. Specifically, the phase of equations (9) and (10), k x k y k z R k l mg g gx y z 1 2 3+ + = + +

   · ( )
where gi


are the reciprocal lattice vectors. Our reciprocal lattice vectors are normalized such that a g 2 .k l klpd=

 ·
Care needs to be taken thatwhen computing radial averages of Q R ,A


[ ]( ) the tilt of the box vectors is

appropriately accounted for.
The periodic boundaries of the system, in reciprocal space, also pose no problem as all pairs of grid points at

a certain (real space) distance one from another collapse onto the same reciprocal grid point. Note that the
fidelity of the autocorrelation at short distances depends on the choice of the size of the grid and the
interpolation prescription.We here use x 1 ÅD = for the radially averaged correlation functions and use

x 0.5 ÅD = for the correlationmaps shown infigure 4.We systematically checked implementation of
equation (12) against a brute-force estimate of equation (2) to check that as x 0,D  we obtain the brute force
estimate at short distances.We have implemented this algorithm inmatscipy [54] andOvito [55] and it is
available in the public repositories of these codes.
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