Journal of Physics Communications

PAPER » OPEN ACCESS You may also like

Using states with a large photon number variance  wcerero. Al sone. Jacob L Beckey et

. . . : . . al.
to increase quantum Fisher information in single- et metolony fom a duantun

H . information science perspective
mode phase estimation Géza Toth and lagoba Apelianiz
- Sequential phonon measurements of
To cite this article: Changhyoup Lee et al 2019 J. Phys. Commun. 3 115008 atomic motion
Atirach Ritboon, Luka$ Slodika and Radim
Filip

View the article online for updates and enhancements.

This content was downloaded from IP address 141.52.248.4 on 16/03/2022 at 14:16


https://doi.org/10.1088/2399-6528/ab524a
/article/10.1088/2058-9565/abfbef
/article/10.1088/1751-8113/47/42/424006
/article/10.1088/1751-8113/47/42/424006
/article/10.1088/2058-9565/ac3c52
/article/10.1088/2058-9565/ac3c52

10P Publishing

® CrossMark

OPENACCESS

RECEIVED
10 October 2019

REVISED
25 October 2019

ACCEPTED FOR PUBLICATION
29 October 2019

PUBLISHED
11 November 2019

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL

J. Phys. Commun. 3 (2019) 115008 https://doi.org/10.1088,/2399-6528 /ab524a

Journal of Physics Communications

PAPER

Using states with a large photon number variance to increase
quantum Fisher information in single-mode phase estimation

Changhyoup Lee' @ , Changhun Oh’, Hyunseok Jeong’, Carsten Rockstuhl'’ and Su-Yong Lee*

' Institute of Theoretical Solid State Physics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

2 Center for Macroscopic Quantum Control, Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
* Institute of Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany

* Quantum Physics Technology Directorate, Agency for Defense Development, Daejeon, Korea

E-mail: changhyoup.lee@gmail.com

Keywords: quantum metrology, quantum Fisher information, phase estimation

Abstract

When estimating the phase of a single mode, the quantum Fisher information for a pure probe state is
proportional to the photon number variance of the probe state. In this work, we point out particular
states that offer photon number distributions exhibiting a large variance, which would help to improve
the local estimation precision. These theoretical examples are expected to stimulate the community to
put more attention to those states that we found, and to work towards their experimental realization
and usage in quantum metrology.

1. Introduction

Finding an optimal combination of an input state and a measurement setup is one of the key issues in quantum
metrology, by which quantum enhancement can be maximized [1]. On the one hand, the optimality of a
measurement setting is assessed by comparing the Fisher information for a chosen setting with the quantum
Fisher information (QFI) that would be obtained by an optimal setting, given parameter encoding and a probe
state [2, 3]. The optimality of a probe state, on the other hand, can be addressed by maximizing the QFI given a
parameter encoding [4]. The aforementioned approaches apply to various parameter estimation problems.

Much attention has been paid on identifying optimal quantum states in a variety of quantum metrological
applications. The attention has been triggered because the key mechanism leading to quantum enhancement can
often be understood as the non-classicality of the probe state [1, 5, 6]. For example, in single-mode loss
parameter estimation, the photon number state having no uncertainty in the intensity is known to be the
optimal state, providing the maximal quantum enhancement [7, 8]. In phase parameter estimation, it is known
that the squeezed vacuum state reaches the QFI scaled with N2 [9], leading to a Heisenberg scaling of N~!in
precision, where N is the average photon number of the probe state. However, the squeezed vacuum state is not
the theoretical optimal state that maximizes the QFI in single-mode phase estimation as we will discuss through
this work.

Various fiducial photon number distributions have so far been considered as candidates to achieve quantum
enhancement in single-mode phase estimation. Examples include the SSW state [10], the SS state [11], Dowling’s
model [12], the small peak model [13, 14]. These states are respectively written in the photon number state basis
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where the A/’s correspond to normalization factors, z is a positive constant, 7 is a smooth cutoff, 0 < a < 1,
and |7) is orthogonal to the vacuum. Different approaches have been employed to show the advantages of such
states in phase estimation.

In this work, we begin with the appreciation that the QFI for the single-mode phase parameter estimation is
proportional to the photon number variance of the probe state and sets the lower bound in the precision through
the quantum Cramér-Rao inequality [ 15, 16]. This implies that the probe state with the maximal photon
number variance would possibly be the theoretical optimal state for single-mode phase estimation. Here, we aim
to introduce, while leaving the proof of the achievability of the quantum Cramér-Rao bound to future studies
[17, 18], fiducial quantum states that have the maximum, or at least a larger photon number variance than that
available with the squeezed vacuum state—the paradigmatic state known to be useful for quantum phase
estimation. We distinguish the scenarios when the photon number probability distribution is either bounded or
unbounded, i.e., defined within a finite or an infinite domain [19]. When considering bounded distributions, we
show that the theoretical optimal state with maximum photon number variance can indefinitely increase the
QFI even for a fixed average photon number N. When considering unbounded distributions, we show that one
can achieve not only the Heisenberg scaling using other quantum states than the squeezed vacuum state, but also
sub-Heisenberg scaling by a particular photon number statistics without relying on any nonlinear effects. Here,
the sub-Heisenberg scaling manifests in terms of the average photon number N and might mislead to conclude
that it violates the fundamental Heisenberg limit. More details on that can be found in the relevant debates,
which have been devoted over the last decade [20-27], followed by the conclusive proofs [24, 28—35]. The latter
showed that the overall scaling, while including the amount of resources required for obtaining a priori
probability distribution of the parameter and the number of measurements required to achieve the asymptotic
bound, is still Heisenberg scaling-limited. Nevertheless, the fiducial photon number distributions we introduce
here would be useful for an operating regime of a parameter that is locally calibrated in advance, so the
identification of minute changes of the parameter is only of interest. That is, fortunately, often the case, e.g., for
plasmonic sensors [36, 37] or phase tracking [38]. In such cases, the validity of the quantum Cramér-Rao bound
can be investigated in terms of the required minimum number of measurements and the minimum prior
knowledge of the parameter [17, 18].

The theoretical states we discuss in this work have rarely been experimentally realized so far [39], but we
expect more states will be implemented in the future. It would require the development of quantum technology
geared towards engineering states with photon number statistics on demand. Recently, an arbitrary photon
number statistics has been shown to be producible with current technology through quantum optical circuits
being optimized for a target photon number statistics [40—43]. Having the ability to prepare such quantum states
unlocks their use for various purposes in quantum applications [44]. Therefore, the purpose of this work is to lay
out exotic photon number distributions in order to trigger experimental efforts along these lines.

2. Phase estimation

For a parameter-encoded pure state [1);) = ei%0| in), where G denotes a generator encoding a parameter ¢, the
QFI can be calculated by H = 4((AG)?)[15, 16], where ((A0)?) = (Oz> — (O)?for an operator O and the
expectation value is calculated for |1);,). The QFI sets the lower bound to the mean-squared-error of estimate
when considering an unbiased estimator, given by the quantum Cramér-Rao inequality written as

1
vUVH ’

where A¢ is the root-mean-squared-error, interpreted as the estimation error or precision, and v denotes the
number of repetitions of measurement. This bound, called quantum Cramér-Rao bound, is known to be
achievable in the asymptotic limit ¥ — oo.

For a single-mode phase parameter encoding, G = 474, so that the QFI is given by

H = 4((AA)) ©)

Ap > )

where i = d%4. This clearly indicates that a probe state |t);,) with a maximum photon number variance leads to
the maximal QFI. The importance of the photon number fluctuation for phase estimation has been addressed
[45,46]. In consequence, the maximum photon number variance leads to the greatest quantum enhancement
over the standard quantum limit (SQL), i.e., A¢ scaled with N~!/2 [47]. Such scaling is the optimal scaling that
can be obtained when only classical resources are used [48]. Therefore, it is of utmost importance to identify
quantum states with a maximum photon number variance.

To set the stage before looking for particular photon number distributions, let us consider a few of
paradigmatic states that have often been considered for phase estimation. The first one is a coherent state | v) of
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light, for which H,,, = 4N, where the average photon numberis N = |« |* [9]. Heop, is regarded as the classical
benchmark in single-mode phase estimation, i.e., the SQL. Another example is a squeezed vacuum state written
as|&) = X, c.l2n) where ¢, = (—e™ tanh r)”\/ (2n)! / (2"n cosh r) with the squeezing parameters r and 6.
For the squeezed vacuum state, the QFI reads as [9]

qu = 8(N2 + N), (7)

where the average photon number is given as N = sinh? . Itis clear that H, exhibits a Heisenberg scaling,
which suggests that A¢ scales with N~! (see equation (5)). In particular, one can see that H,q =~ 504.89 for state-
of-the-art squeezed state of 15 dB-squeezing as recently reported [49], approximately corresponding to r ~ 1.73
(i.e., N & 7.46) while ignoring the thermal photon contribution for simplicity despite its practical significance
studied in [3, 50—52].

In the next sections, we look for quantum states with maximum photon number variance, or at least larger
than that of the squeezed vacuum state, which consequently further increases the QFI in equation (6) as
compared to Hyq of equation (7). To this end, we distinguish two types of discrete probability distributions p(n)
for photon number statistics of a single-mode probe state: a bounded photon number distribution that is
defined within a finite domain n € [m, M]with integers m < M and an unbounded photon number
distribution that is defined in an infinite domain n € [0, 00).

3. Bounded photon number distributions

For the sake of generality, let us consider an arbitrary superposition of photon number states in a range from m
to M photons, written as

M
[Yp) = > Jp(n) e?™n), ®)

where the photon number distribution p(#) is bounded by the minimum m and the maximum M, i.e.,

p(n) = 0forn < mandn > M. The phase distribution 6 () plays an important role in preparing an optimal
measurement setting in practice, which depends on both 6 (1) and ¢ being estimated. The phases, however, can
be dismissed in this work since we focus on the error bound given by the QFI. This means that the optimal
measurement setting assumed to be chosen accommodates the phases, leaving only the dependence of p(n) in
equation (6). One can find that the variance of such bounded probability distribution p (1) is upper bounded by
Popoviciu’s inequality [53], given as

(AR < i(M —my, ©)

where the equality holds when p(m) = p(M) = 1/2. Thisimplies that for the given minimum  and maximum
M, abalanced superposition of m and M photons provides the maximal QFI according to equation (6). The QFIL is
thus writtenas H = 4(M — N)?with N = (m + M) /2 being the average photon number. For a fixed N, the
maximal QFI is obtained when m = 0, which is obvious, for which H = 4N?, clearly showing the Heisenberg
scaling, but still smaller than Hy, in equation (7). The bound on A¢ associated Popoviciu’s inequality indicates
that the Heisenberg scaling is the maximal scaling when the photon number distribution is bounded.

A stronger inequality than equation (9) exists, called the BhatiaDavis inequality [54], which is written as

((Ad)?) < (M — N)(N — m), (10)
where the equality holds when p(n) = 1 — aand p(M) = a for an arbitrary weight factor of a that determines
the average photonnumber N = (1 — a)m + aM.When a = 1/2, the Bhatia-Davis inequality of equation (10)
becomes the Popoviciu inequality of equation (9). The Bhatia-Davis inequality suggests to consider an arbitrary
superposition state of m and M photons, which we call the m&M state throughout this work. The m&M state can
be written as

[Ymem) = V1 — alm) + Ja|M). (11)
This leads to the QFI of the form
Hpsm = 4a(l — a)(M — m)2. (12)

Itis clear that Hy, g depends on the difference (M — m) and takes on the maximum when a = 1/2 for given m
and M, the case satisfying the equality of Popoviciu’s inequality. To compare the QFIs for a fixed N, let us set
a= (N — m)/(M — m)whichkeeps N unchanged for any m and M, so that equation (11) is rewritten by

M- N N-—m
|¢m&M> — M—m |m> + M— m |M>’ (13)
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Figure 1. The QFI for the 0&M state, Hyg (red curve), can be arbitrarily increased with M, in comparison with Hyy (blue curve)
for N = 7.46 as an example. The weight factor a (dashed curve) is set to keep the average photon number N unchanged while
varying M.

and equation (12) becomes
Hugm = 4(M — N)(N — m). (14)

Note that N is fixed in equation (14) regardless of the values of m and M although equation (14) seems directly
obtainable from equation (10) where N definitely depends on m and M. Itis interesting to see that in the limit
M > N, oneobtains Hy gy ~ 4M (N — m), which can be arbitrarily increased by increasing M while keeping
N fixed.

Equation (14) indicates that the QFI increases with increasing the maximum M and decreasing the minimum
forafixed N.Soletusset m = 0, for which the m&M state of equation (13) becomes the 0&M state, i.e.,

[Yosm) = V(M — N)/M|0) + N/M|M), for which Hygy = 4N (M — N). Therefore, the 0&M state is the
optimal state and Hyg is the upper bound for the QFI within the class of the states having a bounded photon
number distribution. The 0&M state has been considered as the so-called ON states in the context of quantum
computation [55] and a few schemes for its experimental generation have been proposed [43, 56]. The 0&M state has
already been discussed as the state showing an arbitrarily large QFI in single-mode phase estimation [31, 57], but here
we prove, by using the Bhatia-Davis inequality of equation (10), that the 0&M state is the theoretical optimal state
exhibiting the maximum photon number variance among the states with bounded photon number distributions.

The 0&M state can be categorized as the small peak model of equation (4). In general, the QFI for the small
peak model is given as Hgpp = 4N (N; — N) + 4(An,)?N /Ny, where Ny is the average photon number of the
state |7) and (An,; )? denotes its variance. The small peak model is able to attain an arbitrarily large QFI by
increasing N, or (An, )2, while keeping N fixed. The particular case |7) = |£) has been discussed in [14],
followed by the review in [31].

In comparison with equation (7), for N ~ 7.46 considered in state-of-the-art squeezed vacuum state, one
can achieve higher QFI than Hyq with the 0&M state when M > 25 (correspondingto a < 0.3), resulting in
Hpgm 2 523.39. Figure 1 shows the behaviors of Hygy (seered curve)and a = N/M  (see dashed curve) with
varying M for N = 7.46. Note that Hyg, in the order of 10° can be theoretically attained by increasing M even
when N is fixed. The 0&M state has been realized up to M = 18 in the harmonic motion of a single trapped ion
[39], and the states with higher M can also be realized in quantum optical circuits with current technology
[42-44].

4. Unbounded photon number distributions

When a probability distribution is defined in an infinite domain, i.e., unbounded, there exits an infinite number
of degrees of freedom to characterize types of unbounded probability distribution. Therefore, the analysis for
unbounded photon number distributions would not be as simple as the bounded case. Instead, we investigate
here a few special probability distributions, which lead to intriguing behaviors in single-mode phase estimation.

4.1. Heisenberg scaling in the local precision

As mentioned above, the squeezed vacuum state enables the Heisenberg scaling of N~!in A¢. Itis interesting to
see that there exist other types of photon number statistics, leading to the Heisenberg scaling in phase
estimation. Below, let uslook at some of them as examples.
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Consider the probe state with the photon number distribution given as
pe(m) = p(d — ", (15)

for ;1 € (0, 1). Thisis called the geometric distribution and p, (n) is the probability of n 4- 1 Bernoulli trials
required to get the first success with success probability 1. It possesses the average photon number of
N = (1 — p)/p and the variance of

((AR)*)g = N? + N. (16)

This clearly exhibits the Heisenberg scaling through equation (6), i.e., scaling of N~!in A¢, although a little
worse than the case using a squeezed vacuum state due to the absence of the factor of 2.

A generalization of the geometric distribution, called the negative binomial distribution, can also be
considered, written by

Pap(m) = (” + Z a 1)u“(l — ) (17)

for 4 € (0, 1)and > 0. Inthis case, the average photon number is givenby N = un/(1 — p) while the
variance takes the form of

(AR = N2 4 1L = 1) (18)
a—p?
Note that the second term is positive only when i1 < 1, for which the Heisenberg scaling is achieved. When
1 > 1, on the other hand, a worse scaling than the Heisenberg scaling is obtained. It can be shown that the states
with p i, (1) significantly outperforms the case using a squeezed vacuum state when pm < land p ~ 1.
As another example, consider the probe state with the photon number distribution given as

0 forn = 0,
pr(n) = -1 (19)

- forn > 1,
for o € (0, 1). Thisis called the logarithmic distribution and has been used to model relative species abundance
[58]. It exhibits the average photon number of N = —u/(1 — p)In(1 — p)and the variance of

—pl2p + In(l = ]
(1 — w?*[Ind — 7P

Here, the second term plays an important role in determining a further improvement when compared to the
case using a squeezed vacuum state. The second term is negative when p < .. It crosses zero to be positive at
i = ., and increases to diverge when increasing u further, where 1. ~ 0.7968 is the solution of

2/t 4 In[1 — p] = 0. One can see that the corresponding QFI is less than Hq for 4 < 1(i.e., N < 1), but
outperforms Hyy when p1 ~ 1(i.e., N > 1).

(AR, = N* + (20)

4.2. Sub-Heisenberg scaling in the local precision
The Heisenberg scaling of N~!in A¢ is considered as the ultimate scaling in quantum parameter estimation,
often called the Heisenberg limit. It has been shown that a sub-Heisenberg scaling’of N—* with s > 1is
achievable through nonlinear effects arising in many-body systems [59—65]. The latter has been demonstrated
with a nonlinear atomic ensemble [66]. Here we show that a similar sub-Heisenberg scaling can also be achieved
by particular photon number statistics of a single-mode state of light, but requiring neither nonlinearity nor
many-body systems. Note that such alluring results do not indicate that the Heisenberg limit can be beaten, but
have been proved to be still limited by the Heisenberg scaling when appropriately accounting of all the resources
needed to reach the error bound [24, 28-35].

Consider the state with the photon number distribution given by

0 forn =0,
pB(n) = N e (un)" ! (21)
n!

forn > 1,

for p1 € [0, 1]. The distribution pj(n) is called the Borel distribution [68, 69], being observed in branching
process and queueing theory [70, 71]. The distribution of equation (21) exhibits the average photon number of
N = 1/(1 — p)and the variance of

(A% = p/(A1 — @)’ = N*(N — D), (22)

> Inthe literature, the terms ‘super-Heisenberg scaling’ and ‘sub-Heisenberg scaling” have interchangeably used to denote the same limit
[60,63,65,67].
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obviously leading to the QFl of Hg = 4N?(N — 1). Therefore, the probe state engineered with photon number
distribution of p, (1) promises sub-Heisenberg scaling of N3/ in A¢, being dominant in the limit N > 1, i.e.,
when g & 1. Again, note that it has been proven that sub-Heisenberg strategies are not so effective [29], but
would provide rather insignificant improvement when taking into account a priori knowledge about the
parameter ¢.

4.3. Indefinite scaling in the local precision

Unlike the bounded probability distribution, there is no upper bound to the variance of the unbounded
probability distribution. In other words, some probability distribution may have a diverging or even an infinite
variance, arising from the feature of heavier tails than the exponential distribution [72]. One can consider
distributions such as the Riemann-Zeta distribution, the Beta negative binomial, or the Yule-Simon
distribution, all of which exhibit a diverging or an infinite variance of the photon number. Particularly, the
Riemann Zeta distribution has already been considered as an interesting example showing an infinite QFI in
two-mode schemes [73]. These examples seem to provide the completely precise estimation, but it turned out
that it is not the case (see more detailed discussion in [31]).

5. Conclusion

We have identified particular fiducial photon number distributions of a single-mode probe state, which
maximize the QFI and would possibly be useful for the local phase estimation. Considering the case that the
photon number distribution is bounded, we have provided the proof that the theoretical optimal state is the
0&M state, indefinitely increasing the QFI and consequently reducing the local estimation error of A¢ in the
asymptotic limit of the number of measurements  — 00. For the case that the photon number distribution is
unbounded, on the other hand, we have discussed several particular photon number statistics which show
Heisenberg scaling and sub-Heisenberg scaling without requiring nonlinear effects. The states discussed in this
work have rarely been experimentally realized [39], but state-of-the-art quantum state engineering technique
would enable the generation of an arbitrary photon number superposition via quantum circuit optimization
[42—44]. In the scenario when a priori probability distribution of the parameter is unknown and the number of
measurements is limited, those states may not be useful since they are still Heisenberg-scaling limited with

Niot = Nu, the total average number of photons being used. It has been shown that the strong Heisenberg limit
written as A, o< 1/Nyot [1,28-34,74,75] can never be beaten [10, 11, 13, 14, 25-27, 73, 76-82]. However,
when estimating the parameter in a local regime, the states we discussed would be able to provide the sub-
Heisenberg scaling in principle. Furthermore, Luis recently showed through analytical and numerical
examination that the weak Heisenberg limit [83], written as A¢,, o< 1/ N, can be beaten by the 0&M state
with the prior information being updated without bias [57].

More rigorous analysis beyond the framework of the quantum Cramér-Rao bound is necessary to see
whether or not the states discussed in this work can beat at least the weak Heisenberg limit for practical purposes
[17,18]. Weleave similar investigation for unbounded photon number distributions as a future study. From a
more fundamental perspective, the relation between the QFI and quantum coherence can be investigated for the
states discussed in this work [84—87]. From a practical perspective, on the other hand, the effect of loss or
decoherence needs to be taken into account when the local precision is more rigorously examined. These subtle
analyses are beyond the scope of this work, and so we leave them for future work. It would also be interesting to
investigate other kinds of single-mode parameter estimation or multi-mode schemes. Particularly, in the Mach—
Zehnder interferometer, useful states within the class of path-symmetric states have been discussed in terms of
the QFIin [88]. One can generalize it to an arbitrary two-mode setting for full generality.
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