Documenting the Execution of Semantically
Modelled Inter-organisational Workflows on a
Distributed Ledger

Christoph H.-J. Braun
Institute AIFB
Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
braun @kit.edu

Janina Traue

DATEV eG

Abstract—We present an approach for documenting the exe-
cution of inter-organisational workflows on a distributed ledger,
with the possibility of adding selectively shared verifiable data
to the workflow instances’ documentation. On data level, we
base our approach on semantic workflow and data modelling,
augmented with hashing. As system components, we use a dis-
tributed ledger as consensus-based shared database for workflow
documentation and data verification, and RESTful APIs for
sharing data with different privacy and publicity requirements.
We evaluate our approach using a load test based in a real-world
logistics setting.

Index Terms—Distributed ledger, Decentralised semantic data
management, workflow management

I. INTRODUCTION

Specialisation, globalisation, and vertical disintegration of
companies lead to value chains and associated workflows
that are (1) highly inter-organisational and (2) where often
not all parties throughout the value chain (i.e. workflow) are
defined prior to instance execution time!. The collaboration
in such value chains is enabled by information technology
and software systems. Yet, heterogenity of the IT system
landscape, especially if there are small organisations involved
poses the challenge of interoperability throughout the value
chain network. In addition, documentation and certification
requirements demand verifiable data about the workflows’
instances to be shared with all or some members of the
network?. That is, while information about the workflow needs
to be available to all members of the network, other data needs
to remain private, under the souvereignty of the owning party,
with the possibility to share it with selected parties.

Consider for instance a small or medium enterprise (SME)
in manufacturing, which is a typical client of most tax ad-
visors. Such an SME typically has to procure 30 % of the
components of the products it sells up-stream on the value
chain and is subject to documentation duties. Thus, multiple
and changing suppliers and service providers take part in the

Thttps://www.cisco.com/c/dam/en/us/solutions/collateral/enterprise/benefit-
unified-communications/c11-593971-00_creating_collab_bus_procWP.pdf

Zhttps://ec.europa.eu/docsroom/documents/37824/attachments/2/
translations/en/renditions/native

Blockchain@DATEV Blockchain@DATEV

Nuremberg, Germany Nuremberg, Germany
janina.traue@datev.de boris.lingl @datev.de

Tobias Kifer
Institute AIFB
Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany
tobias.kaefer @kit.edu

Boris Lingl

DATEV eG

manufacturing workflow: Assume the SME offers a cleaning
product and needs to document its production steps. The
production process consists of several steps, from the cleaning
fluid itself, which has pre-products from third parties, to the
production of bottles, for which there are multiple suppliers,
labelling, shipping, handling etc. The challenge for the SME
is that its information flow typically terminates at the end
of their Enterprise Resource Planning (ERP) solution. Thus,
inter-organisational workflows with changing participants are
commonplace for SMEs, but hard to support with information
technology for verifiable documentation.

The challenge when building a solution is in the combina-
tion of a number of technologies that allow for (a) verification
in a setting with potentially low trust, (b) interoperability, (c)
coordinating the course of action with variable participants,
and (d) data souvereignty. Technologies that facilitate those
points include: (a) distributed ledgers, (b) semantic descrip-
tions, (c) workflow management solutions with late binding,
and (d) decentralised data Pods with RESTful interfaces and
fine-granular access control, as put forward by SoLiD?.

Previous approaches that combine technologies to address
only some of the mentioned challenges, for instance: inter-
organisational workflows have been investigated, e. g. in [10]
using the distributed ledger to drive the workflow execution,
which puts a considerable amount of load on the distributed
ledger and all workflow-relevant data is public on the dis-
tributed ledger. Verifiable, but souvereign data sharing has
been investigated in [4] using Linked Data and distributed
ledgers, but lacks the workflow aspects. Semantic descriptions
for workflows have been investigated e.g. in the WiLD ap-
proach [7], but lack late-binding and instance representations
on the distributed ledger. We provide a more in-depth discus-
sion of related work in section II, where we also present the
subleties in different ways of bringing workflows to distributed
ledgers.

Our approach consists in:

3https://solidproject.org/

1) A representation for workflows and instances in the
WILD ontology on the distributed ledger to allow for
maintaining workflow instances in WiLLD on the distrib-
uted ledger

2) An extension to WiLD to allow for late binding to cater
for the ad-hoc nature of workflow instances

3) A model of chain events to document the workflow
execution and the data to be verified

4) An architecture based on SoLiD and Ethereum

Where 1.-3. are the core contributions of this paper. The
architecture is shared with [3, 4].

The paper is structured as follows: In section II, we survey
related work. In section III, we give the technological and
formal foundations for our approach. In section IV, we present
our approach. In section V, we present a performance evalu-
ation. Last, in section VI, we discuss the practical applicability
our approach and conclude.

II. RELATED WORK

We work in the intersection of Linked Data, workflows,
and distributed ledger. Thus, we survey related work in each
intersection.

Linked Data and Workflows

Many ontologies have been defined to describe workflows,
including OWL-S [12]. We base our work on the WiLD
ontology (workflows in Linked Data), using which one can
describe workflows in a way that allows for execution on the
web architecture and under the open-world assumption [7].

Linked Data and Distributed Ledger

Third et al. present a vision of LinkChains [21] to combine
SoLiD (for personal data storage), distributed ledger (for
verification), and IPFS (a distributed peer-to-peer filesystem
— for meta data) for verifiable tokens that can be attached
to people. Our approach does not use IPFS but makes the
participants responsible for maintaining their data over time.
Ramachandran et al. describe different approaches for distrib-
uting the verification and data management aspect between
Linked Data and the distributed ledger [16]. Similarly to [4],
Our approach can be categorised in Storing individual hashes
of SoLiD Pod-stored files on the Blockchain. In [4], while
working partially with the same technologies, Braun et al. did
not investigate workflow aspects. Sopek et al. investigated an
approach to store RDF on the distributed ledger [18], while
we store data off-chain and use a specialised Smart Contract
to maintain only workflow models and instances on-chain.

Workflows and Distributed Ledger

Different approaches in the intersection of the BPM com-
munity, which is concerned with workflow management, use
the distributed ledger differently. They can be distinguished
along: Who is driving the workflow execution: Is the distrib-
uted ledger actively issuing calls to other system components
or is the distributed ledger merely passively monitoring? How
is the workflow maintained on the distributed ledger: Does the

distributed ledger (a) have one or multiple Smart Contracts that
interpret a description of a workflow model, or (b) execute
Smart Contracts into which the workflow model has been
compiled?

Weber et al. [24] present two approaches they call mediator
and choreography monitor. The mediator approach is in our
terminology the active approach, the choreography monitor
the passive approach. Moreover, they follow the compiled
approach. Similar to our approach, they support the passive
mode. In contrast to our apporach, they follow the compiled
apporach. Another difference is the workflow representation,
where they use the BPMN choreography diagram, which
focusses on messages exchanged, whereas we use a workflow
representation that focusses on the order of activities.

In subsequent work around the Caterpillar approach, see
eg. [10], Lopez-Pintado et al. present a full workflow engine
based on BPMN, with a wide array of BPMN constructs
supported including swimlanes and subprocesses. Their motiv-
ation is similar to ours: to enable interorganisational workflows
by combining workflow management and distributed ledgers.
Caterpillar in [10] is active and follows the compiled style.
For this active execution, they also need to put all execution-
relevant data onto the distributed ledger. Later, they changed
their approach to follow the interpreted style citing improved
flexibility and efficiency [9]. In another extension, they exten-
ded Caterpillar to support role binding at run-time [8]. Role-
binding is also part of our late binding, however in our case,
also the workflow model to be bound has to be determined.

The LEAN approach by Sturm et al. [19] shares our
motivation when it comes to documentation and traceability.
In contrast to the original Caterpillar approach and similar to
our apporach, they follow an interpreted style. Yet, while they
use one generic Smart Contract that can interpret all workflow
models, they use one Smart Contract per workflow instance.
In contast, we use one Smart Contract for all workflow models
and all workflow instances.

The inclined reader can find a more in-depth discussion of
blockchain and workflow management in a paper by Mendling
et al. [13], which, next to including the approaches discussed
above, also discusses future challenges and opportunities.

III. PRELIMINARIES

In this section, we introduce the technologies, practices, and
standards on which we base our approach.

A. Linked Data and SoLiD

The Linked Data principles for data publishing on the Web
have been coined by Berners-Lee [2]. They recommend the
use of Uniform Resource Indentifiers (URISs) to identify things,
the Hypertext Transfer Protocol (HTTP) to transfer data, and
the Resource Description Framework (RDF) to describe data,
combined with the imperative to provide hyperlinks. Under
the headline of Social Linked Data (SoLiD), for an early
demonstration see [11], the practices around Linked Data
are used and extended to decentrally publish personal data
on the web using possibly self-hosted personal online data

storages (Pods) with access control* and with the possibility to
interact with people via Linked Data Notifications’. If people
(or more general: agents) are identified using URIs in the
SoLiD context, the identifiers are called WebIDs®. User-facing
applications that consume SoLiD Pods are called SoLiD Apps.

B. Uniform Resource Identifier(URI)

Uniform Resource Identifiers (URIs) serve as names on the
web’. URIs are meant to identify anything: abstract, virtual, or
physical things. URIs are character sequences that start with a
so-called scheme followed by a colon character. The scheme
determines how the subsequent characters are to be interpreted.
The scheme http: or https: denotes that interaction with the
resource via the HTTP protocol may be possible.

C. Hypertext Transfer Protocol (HTTP)

The Hypertext Transfer Protocol (HTTP) is the protocol for
data transfer on the web®. HTTP subdivides the two parties
involved in a peer-to-peer communication act into clients, who
initiate the communication request and are called user agents
in HTTP, and servers, who react to the request with a response
and are called origin server in HTTP. The body of an HTTP
message (i. e. request or response) can contain data, which can
come in different data models and formats. One such format
is RDF.

D. Resource Description Framework (RDF)

The Resource Description Framework (RDF)° is the graph-
based data model of the Linked Data family of technologies.
An RDF graph describes the adjacency list of a labelled
graph, and is defined as a set of triples. The positions in a
triple are called subject, predicate, and object, where in each
positions a URI may appear. In subject and object position
also graph-local identifiers, so-called blank nodes, are allowed.
To describe values, literals can be used in object position.
Literals, blank nodes, and URIs are called Terms in RDF.
Ontologies are a set of terms with a formally defined meaning.
To determine hashes for RDF graphs, the approach by Hogan
can be used [6].

E. Workflows in Linked Data (WiLD)

Workflow models are an abstract description of a course of
action as a set of activities with a prescibed order. Workflow
instances are a concrete incarnation of a workflow model. The
WILD ontology [7] provides terms to describe both, workflow
models and instances. Activities in WiLLD can be atomic (i.e.
no further subdivision is expected), ordered (sequential or
parallel) or conditional. Popular workflow languages such as
BPMN use a flow-based description of workflows, i.e. the
course of action is described step-wise. WiLLD in contrast uses
a tree-based description of workflows, which can be losslessly

“https://solid.github.io/web-access-control-spec/
Shttps://www.w3.org/TR/Idn/
Ohttps://www.w3.0rg/2005/Incubator/webid/spec/
7https://tools.ietf.org/html/rfc3986
8https://tools.ietf.org/html/rfc7230
https://www.w3.org/TR/rdf11-concepts/

converted in to a flow-based representation and vice versa [23].
In the tree, the leaf nodes are the activities from the flow-based
diagram, and the upper-level nodes provide structure and bear
the control flow information. See Figure 2 for an example with
both a tree- and a flow-based representation of a workflow.

F. Distributed Ledger, Smart Contracts, and Ethereum

A distributed ledger is a shared distributed database com-
prised of a decentralised network of database nodes, where
each node holds an identical copy of all data. All data is
transparently available on all database nodes. There exists no
central authority governing the shared database. New data is
added to the database in an append-only style and synchron-
ized among database nodes following a pre-defined consensus
protocol. The consensus protocol in place determines the rules
by which the nodes accept or reject data proposed for addition
to the database. When appending new data, timestamps and
hash-based references to previous data leads are included
thereby imposing high effort on retrospective modification
of data. Taking transparency through data replication into
account, a high degree of data integrity is achieved. The first
implementation of such system is the Bitcoin blockchain [14].

For our work, we choose Ethereum [5], a well-established
blockchain implementation, that allows for the deployment
Smart Contracts. Smart Contracts allow for defining ap-
plication logic that is executed directly on the distributed
ledger [20]. The application logic is automatically executed
when conditions regarding ledger data as specified in the
contract are met. Smart Contracts can be regarded as database-
level code whose scope is limited to the data available on the
ledger and whose logic can be triggered by issuing specific
database transactions.

IV. APPROACH

We present our approach as follows: first, we present the
architecture of our approach to give an high-level-overview.
Then, we have a look at the data modelling: we briefly describe
how we extend the WiLD ontology to allow for late binding.
Subsequently, we describe the on-chain representation of a
workflow model into which a Smart Contract code reads
RDF describing a workflow model in WiLD. After the data
modelling, we describe the dynamics of the system: we present
the events that are logged on the chain in response to progress
in workflow instance enactment.

A. Architecture

The architecture, illustrated in Figure 1, consists in: a SoLiD
Pod for each participant, a distributed ledger with wallets for
the participants and a Smart Contract that implements the
behaviour outlined in sections IV-C and IV-D, as well as
internal service endpoints of the participants and a SoLiD App
as a user interface, which both interact with the SoLiD Pods
and the distributed ledger. For our implementation, we use
Ethereum as distributed ledger, but our approach should also
be transferrable to other distributed ledger implementations.

Read/Write Transactions

SoLiD App
& Wallet

Read/Write Linked Data

Read/Write Transactions

SoLiD App
& Wallet

Read/Write Linked Data

ff \? Linked Data

SolLiD Pod

Listen for Events I
Y

Internal
Service

SME

Ethereum
Node
Endpoints

L @ A Write Transactions

Transactions

Linked Data ff \?

SoLiD Pod

S
Q
3
g
Q'
8
<
@
g

Internal

] Listen for Events
A/
Service

Ethereum
Node
Endpoints

Write Transactions A 2\ —
Q Transaction

S

l Ethereum Ledger]

Figure 1. The system architecture: Each user in the network has its own Ethereum Node, Internal Service Endpoints and SoLiD Pod.

On their SoLiD Pod, participants store semantic descriptions
of (i) their WebID and profile (linked to their Ethereum wallet
address), (ii)) workflow models they offer, and (iii) business-
relevant data. The participants can SoLiD-based apply access
control to e.g. only share workflow models and business-
relevant data with selected parties.

On the distributed ledger, each participant has a wallet. The
ledger also runs a Smart Contract that offers the functional
interface to:

o Represent workflow models in WiLD on-chain

o Document progress of workflow instances using events

o Late-bind additional participants and subprocesses during
workflow execution

e Maintain and verify hashes of selectively shared data that
is stored off-chain in access-controlled SoLiD Pods

In our apporach, there is one single Smart Contract for
all workflow models and instances. As this Smart Contract
manages all workflow models, we can enable the plugging
together of different workflow models by different participants.
The internal service endpoints of a participant provide an
interface for coupling existing IT infrastructure for business
processes with the distributed ledger and SoLiD Pods. Internal
service endpoints consume events documented by the Smart
Contract as a trigger for executing their corresponding service.
The specific character of the internal service endpoints is de-
pendant on the IT landscape of the corresponding participant.
The SoLiD App provides a user interface to manually inter-
act with data stored on the SoLiD Pods and the Smart Contract
on the distributed ledger. The app allows for creating workflow
models using the WiLD ontology. A a graphical workflow
model editor is offered for convenience. The models can be
stored on the distributed ledger and the SoLiD Pod of the
participant. In addition, the app allows for manually interaction
with the Smart Contract: manual instantiation of workflows,
documentaion of workflow activities of workflow instances
and late binding of additional participants and subprocesses.

B. Extending WILD for Late Binding

The WiLD ontology allows for representing workflows in
a tree, where leaf nodes are atomic activities, i.e. activities
where no further subdivision is foreseen by the modeller. To
allow for late binding during workflow execution, we need
to introduce a special kind of activity that, similar to atomic

activities, only appears on leaf level at modelling time. How-
ever, during workflow execution, activities of this kind need
to be instantiated with a fresh workflow instance of another
workflow. We call this kind of activity a wild:InterfaceActivity,
as such activities serve as interface between organisations. A
similar notion in BPMN is the ‘call activity’, which allows
for modular re-use of workflow models, mainly within one
workflow management system. In the tree representation, the
late binding adds a sub-tree to a leaf node, see Figure 2. Late
binding has been studied in the context of Web Services. In
the classification of Pautasso et al. [15], we do Binding at
Invocation Time, i.e. at a comparatively late point in time
during workflow execution, which allows to delay the decision
in long-running workflows. Yet, as the binding is a change
that happens before the course of action reaches the activity,
we consider the binding as a safe change in the workflow
model, for unsafe changes see for instance the investigations
of van der Aalst [22].

An example can be found in Figure 2, where workflow
models and actors for #production_interface and #transport_
interface have to be dermined at run-time.

C. On-chain Representation

On the chain, the Smart Contract offers the functional
interface to re-build the tree-based WiLD representation of
workflows by interpreting the RDF triples provided by the
function caller: All activities in the tree and their interrelations
are represented as sets, mappings, lists, and structs.

In the tree, an activity is characterised by its type and a
list of children. We identify each activity on the chain using
the activity’s URI as a string value. If the activity’s list of
children is empty, the activity is either an atomic activity or
an interface activity. In the latter case, the activity maintains a
mapping from workflow instances to workflow instances (see
below) in order to point from the containing instance, which
provides the interface, to the contained instance. Moreover, we
maintain the address of the wallet of the owner of the activity
for rights management. Thus, an activity is a pentuple:

Activity =(URI, Wallet, ActivityType, [Activity],

Instance — Instance)

#root
#invoice

#parallel

#production
_interface
#production

#sequential
#transport
_interface

#transport

/ #fluid_

}»(#hott11ng>—><#pick,up)—o(“f{ﬁfﬂﬁ")—»(gdeuver%

\cleaning
. % < #create >—>< #send >—0< #settle)
Start

7 ®)

End

Figure 2. A tree-based workflow in WiLD and its flow-based BPMN counterpart (solid black symbols). Blue and orange: different actors determined at

run-time to fill the interfaces.

where the last element of the pentuple is a mapping, the pen-
ultimate element is a possibly empty list, and ActivityType €
{Atomic, Conditional, Parallel, Sequential, Inter face}.

A workflow model has a distinguished activity, which is the
root in the tree representation of the model. We also identify
each workflow on the chain using a string with its URL. We
also maintain the owner’s wallet for each workflow, again
for rights management. On top, we store a hash of the off-
chain workflow model in RDF available at the given URI,
from which the on-chain representation has been compiled,
for the purpose of verification. Thus, a workflow model is a
quadruple:

Work flowModel = (URI, Wallet, hash, Activity)

A workflow instance refers to the workflow model to which
it is an instance, and maintains a mapping from all the
activities in the workflow to their state in the instance. As
our approach is only concerned with workflow instances that
exist on the chain, in constrast to the workflow models, there is
no off-chain representation of the instances. Therefore, we can
identify the workflow instances by an integer not a URI, which
allows us to save some space. We thus describe workflow
instances as a triple:

Instance = (1D, Work flowM odel, Activity — State)

where State € {initialised, active, done}, and again the last
element is a mapping.

D. Evolving the On-chain Representation

The on-chain representation of workflow instances can be
evolved by calling the functions of our Smart Contract. The
Smart Contract then changes its internal data structures and
logs the following events to the distributed ledger:

Instantiation of a Workflow Model: As workflow models
are identified by a URI both on-chain and off-chain, the Smart
Contract must be supplied with the URI of the workflow model
to be instantiated. Next to this URI, the caller of the Smart
Contract can supply another URI and the hash of the data to be
retrieved at said URI, in order to allow for later verification of
the data. The Smart Contract then logs on the chain: the ID of
the newly generated workflow instance, next to the workflow
model’s URI, the other URI and the hash.

Documenting Workflow Instance Progress: The workflow
execution is performed outside of the chain. Our Smart Con-
tract allows for documenting this progress with the ID of the
workflow instance at hand, the URI of the activity, the new
state of the activity in the instance. On top, the caller can
supply a URI where progress-relevant data can be obtained
and a hash of this data for later verification. Only the workflow
owner can change the corresponding instance’s activity states.

Offer for a Tender: The interface activity in workflow
models allows for plugging in other workflows that do not
need to be known at modelling time, but can be assigned at
run-time. This late binding allows e. g. for the choice of a range
of suppliers for the same service. To ‘fill’ an interface activity
of a specific workflow instance, the agent owning the workflow
first determines a suitable workflow, e.g. by searching available
workflows on the SoLiD Pods of their business partners. Then,
she creates an offer for a tender by issuing a corresponding
transaction to the Smart Contract. The offer must contain the
URI of the interface activity, the URI of the activity to fill the
interface, and the workflow instance ID for which the offer is
provided. At the same time, a URI and a hash can be provided,
e. g. offer documentation stored in a SoLiD Pod.

Acceptance of an Offer for a Tender: The owner of the
workflow requested to fill the interface activity can to accept or
reject the offer. According to the owner’s decision, the Smart
Contract logs on the chain: the URI of the interface activity,
whether the offer has been accepted and the workflow instance
ID in question. Again, at the same time, a URI and a hash can
be provided with more information and for later verification.

The plugged-in workflow extends the existing workflow
instance and thus evolves just as its superordinate workflow
instance with the interface activity it filled. Activities of the
plugged-in workflow remain under control of their owner; the
owner of the superordinate workflow is not able to change
their states.

V. EVALUATION

We evaluate our approach as follows: We take a workflow
based on industrial practice, run it in our lab environment, and
measure the performance.

As environment, we use 16 cores (Intel Xeon e5-2690 v4
2.6 GHz) of an HP ProLiant DL380 Gen9 server. From those

16 cores, 4 cores, 16 GB RAM, and 32 GB HDD are reserved
for a virtual machine running the distributed ledger. Another
4 cores, 12GB RAM and 16 GB HDD are assigned as virtual
machines each to three components that simulate participants
in workflows. All virtual machines run Ubuntu Linux. The first
virutal machine hosts a proof-of-authority Ethereum network
comprised of a signer node and a peer. Specifically, we use
the ‘Clique’ consensus protocol for signing transactions, which
has been shown by Angelis et al. to have a comparatively small
communication overhead [1]. The remaining three virtual
machines each host a system consisting in two components: (1)
a SoLiD Pod that serves the workflows one participant offers,
next to (2) Java code that (a) listens on the distributed ledger
for workflow instantiation events, (b) retrieves the respective
workflow from Linked Data, (c) sends transactions to the
chain to set activity instances to active/done, as prescribed
in the workflow but skipping the actual task, (d) fills interface
activities.

The workflow is inspired from e-commerce cases as ob-
served by the project partners of the authors in industrial
practice in B2C and B2B settings in Germany. The workflow
employs multiple partners for shipping and processing of
physical goods.

The evaluation then specifically works as follows: We
initialise the evaluation by putting workflow models onto the
distributed ledger and the SoLiD Pods. The load using which
we evaluate are then instances of those workflow models. We
measure the number of transactions on the distributed ledger
that our system can perform per second. Thus, a transaction in
our case would be for instance a change in state of an activity
in an instance, or an accepted tender. From our industrial
partners, a peak load of 300 transactions per second would
be required to cover a pre-pandemic e-commerce peak load as
typically observed during Christmas season.

A. Scale-Up

Our set-up only contains one signer node and one peer
node, where the peer node acts as an gateway for receiving
transactions from the simulated participants. One would be
inclined to run an evaluation that scales the number of nodes.
Yet, Schiffer et al. investigated the scalability of different Eth-
ereum blockchains [17] and found no significant performance
difference when scaling up the network’s size of proof-of-
authority networks.

B. Varying Load Ingestion

To see how different dynamics of the load affect our system,
we vary the way the load is ingested. We fix the overall load
at 1200 instances and we contrast three scenarios:

Peak All instances are ingested at once.
Batch 3 ingestion batches with 20s delay.
Mini 12 ingestion mini-batches with 5s delay.

The results can be found in Figure 3. In the Peak scenario, we
can see how the different workflow instances are processed in
a fairly parallel fashion: The tender and responses (green and
blue respectively) are within a discernible period of blocks.

Peak Load (1 x 1200)

EEE nstantiation
State_Change

B Assignment_Offer
EEE Assignment_Response

Number of Transactions
bR NN W oW B
5 &G 3 & & & 3

o

|
M

Blr?)ck Numbe<rr
Batch Load (3 x 400)

EEN |nstantiation
State_Change

|
|

O“
o o
1S3

1000
2000

000
5000
6000 -

B Assignment_Offer
EEE Assignment_Response

i ”

IS
S

w
o

w
S

IN]
a

N
S}

-
o

|
|

=
1)

Number of Transactions

.‘t

o

b

ol i
o

o ° ° o o
8 3 IS 5 3
8 3 5 5 3
— ~N lal < n
Block Number
Mini-Batch Load (12 x 100)
N |nstantiation B Assignment_Offer
State_Change EEE Assignment_Response
v 40
f=
S
=
1%
&
930
©
=
S 2. [t]! \
5 | LI L
3 | ‘ i ‘H)
E | T \“,‘\ \\M\“\‘ (A R bt
210 ' ‘ H‘ \‘ \‘\ i
0‘“\\““‘ Ik H h“ ‘ Il }‘ ‘ !
o o

=3
=3
=3

1001
2000
4000
5000
6000 -

]
Block Number

Figure 3. Evaluating our approach using different ingestions of the load.

However in the Batch scenarios, the events of the different
types are highly interleaved due to the iterative ingest of in-
stances. Thus, the continuous ingestion of workflow instances
is reflected in the overall more leveled firing of events. In
the Peak scenario, the average number of transactions per
second of around 500 is higher than in the other scenarios
(Batch: ~ 375, Mini-Batch: ~ 350) and well above the
required level of 300. The smaller we choose the batch size
however and move to a more realistic scenario, the more the
performance degrades, but is still within a security margin
above the required level.

Investigating the reasons of the degradation we can identify
the management of nonces, i.e. consecutive transaction num-
bers, as a cause. Our implementation is multi-threaded, which
can lead to race conditions on this consecutive number. We
tried two implementations of nonce management:

Polite The party who wants to send a transaction asks the
distributed ledger for the next nonce.

Eager The party who wants to send a transaction maintains
the number of the nonce that it last tried, increments

if it fails and tries again.

Our implementation of the polite approach rendered the sys-
tem irresponsive: the many requests of our multi-threaded
implementation overloaded our system, because if nonces are
requested for multiple queued transactions simultaneously, the
same nonce is retrieved as response and all but one transaction
are reverted and have to be requeued. We generated Figure 3
using an implementation of the eager approach. Note that the
more the access to the ledger is shared between the instatiating
part of our implementation and the workflow execution part,
the more the performance degrades, but stays well above the
acceptance criterion of the industry partner.

VI. CONCLUSION

In this paper, we presented an approach that combines
semantic modelling of data for interoperability, SoLiD as
means for data souvereignty, distributed ledger for verification
and transparency, and workflow modelling for documenting
courses of action. We evaluated our approach in a logistics
setting regarding performance. Using our proof-of-concept
implementation, we show that with research-quality code and
under lab environments, we can provide a research solution
that satisfies the requirements of real-world customers and
meet their performance requirements.

We envision demand from industry for approaches like
ours: Businesses are increasingly connected by value chains,
where regulatory demands like the German supply chain
act initiative'® will generate new challenges for companies
that call for solutions as presented in this paper. Moreover,
recent standardisation efforts in Germany and France make a
standardised description format for PDF-based orders appear
on the horizon!!, after the corresponding format for invoices
has been standardised already. This standardisation builds on
older standards including the XML format for Cross-Industry
Order (CIO) by the UN/CEFACT'2, for which ERP and
manufacturing systems already have been digitised in the past.

In the future, we hope that decentralised identities such as
SSIs'3, DIDs'* (based on semantic technologies), and WebIDs
(contained in SoLiD) permeate organisations such that e.g.
people and machines can get identified across organisations
and ecosystems, where the underlying open standards create
an interoperable substrate for, eg. inter-organisational data
sharing around supply chains —using solutions like this paper.

ACKNOWLEDGMENTS

This work is partially supported by the German federal
ministry for education and research (BMBF) in TraPS, a
Software Campus project (FKZ 011S17042).

10https://www.bmas.de/SharedDocs/Downloads/DE/Gesetze/
Regierungsentwuerfe/reg-sorgfaltspflichtengesetz.pdf

https://www.ferd-net.de/aktuelles/meldungen/order-x-ein- gemeinsamer-
standard-fuer-elektronische-bestellungen-in-deutschland-und- frankreich.html

Zhttps:/funece.org/trade/uncefact

Bhttp://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-
identity.html

Yhttp://www.w3.org/TR/did-core/

REFERENCES

[1] Angelis, SD., Aniello, L., Baldoni, R., Lombardi, F., Margheri, A., and
Sassone, V., "PBFT vs Proof-of-Authority: Applying the CAP Theorem
to Permissioned Blockchain”, Proc. of the 2nd ITASEC, 2018.

[2] Berners-Lee, T., "Linked Data”, Design Issues, 2006. https://www.w3.

org/Designlssues/LinkedData.

[3] Braun, C., and Kifer, T., ”A SoLiD App to Participate in a Scalable

Semantic Supply Chain Network on the Blockchain (Demo)”, Proc. of

Demos at the 19th ISWC, 2020.

Braun, C., and Kifer, T., Verifying the Integrity of Hyperlinked

Information Using Linked Data and Smart Contracts”, Proc. of the 15th

SEMANTICS, 2019.

[5] Buterin, V., "Ethereum white paper”, 2013. https://ethereum.org/en/
whitepaper/.

[6] Hogan, A., ”Skolemising Blank Nodes while Preserving Isomorphism”,
Proc. of the 24th WWW, 2015.

[7] Kifer, T., and Harth, A., "Specifying, Monitoring, and Executing Work-
flows in Linked Data Environments”, Proc. of the 17th ISWC, 2018.

[8] Lopez-Pintado, O., Dumas, M., Garcia-Banuelos, L., and Weber, I.,
”"Dynamic Role Binding in Blockchain-Based Collaborative Business
Processes”, Proc. of the 31st CAiSE, 2019.

[9] Lépez-Pintado, O., Dumas, M., Garcia-Banuelos, L., and Weber, 1.,
“Interpreted Execution of Business Process Models on Blockchain”,
Proc. of the 23rd EDOC, 2019.

[10] Lépez-Pintado, O., Garcia-Baiiuelos, L., Dumas, M., Weber, 1., and
Ponomarev, A., "Caterpillar: A business process execution engine on the
Ethereum blockchain”, Software: Practice and Experience 49(7) 2019.

[11] Mansour, E., ”A Demonstration of the Solid Platform for Social Web
Applications”, Proc. of P&D at the 25th WWW, 2016.

[12] Martin, DL., ”Bringing Semantics to Web Services with OWL-S”, World
Wide Web Journal 2007.

[13] Mendling, J., "Blockchains for Business Process Management - Chal-
lenges and Opportunities”, CoRR abs/1704.03610 2017.

[14] Nakamoto, S., "Bitcoin: A Peer-to-Peer Electronic Cash System”, Cryp-
tography Mailing list at https:/metzdowd.com 2009.

[15] Pautasso, C., and Alonso, G., "Flexible Binding for Reusable Compos-
ition of Web Services”, Proc. of the Software Composition WS at the
4th ETAPS, 2005.

[16] Ramachandran, M., Chowdhury, N., Third, A., Domingue, J., Quick,
K., and Bachler, M., "Towards Complete Decentralised Verification of
Data with Confidentiality: Different ways to connect Solid Pods and
Blockchain”, Proc. of DecentralisedWeb WS at the 29th WebConf, 2020.

[17] Schiffer, M., Angelo, MD., and Salzer, G., "Performance and Scalability
of Private Ethereum Blockchains”, Proc. of the Blockchain and CEE
Forum at the BPM, Springer 2019.

[18] Sopek, M., Gradzki, P., Kosowski, W., Kuzinski, D., Tréjczak, R.,
and Trypuz, R., ”GraphChain: A Distributed Database with Explicit
Semantics and Chained RDF Graphs”, Proc. of the LD-DL WS at the
27th WebConf, 2018.

[19] Sturm, C., Szalanczi, J., Schonig, S., and Jablonski, S., A Lean
Architecture for Blockchain Based Decentralized Process Execution”,
Proc. of the 1st CCBPM workshop at the 16th BPM conference, 2018.

[20] Szabo, N., "Smart Contracts”, 1994. http://szabo.best.vwh.net/smart.
contracts.html. Offline, but available in the Web Archive.

[21] Third, A., and Domingue, J., “LinkChains: Trusted Personal Linked
Data”, Proc. of the BlockSW at the 18th ISWC, 2020.

[22] Van der Aalst, WMP., “Exterminating the Dynamic Change Bug: A
Concrete Approach to Support Workflow Change”, Information Systems
Frontiers 3(3) 2001.

[23] Vanhatalo, J., Volzer, H., and Koehler, J., ”The Refined Process Structure
Tree”, Proc. of the 6th BPM, 2008.

[24] Weber, 1., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., and
Mendling, J., ”Untrusted Business Process Monitoring and Execution
Using Blockchain”, Proc. of the 14th BPM, Springer 2016.

[4

=

