

www.kit.edu

KIT – The Research University in the Helmholtz Association

Electron Microscopic Investigation of Post-Annealed Superconducting $GdBa_{2}Cu_{3}O_{7-\delta}$ Thin Films on MgO

L. Grünewald¹, R. Popov², J. Hänisch², B. Holzapfel², D. Gerthsen¹ ¹ Karlsruhe Institute of Technology (KIT), Laboratory for Electron Microscopy (LEM), Karlsruhe, Germany ² Karlsruhe Institute of Technology (KIT), Institute for Technical Physics (ITEP), Eggenstein-Leopoldshafen, Germany Introduction of interest for fundamental research and applications¹ • nm-sized structural defects desirable for magnetic-flux pinning² GdBCO growth starts Increased critical current density ******** to form the superconducting orthorhombic phase ($\delta \approx 0$) (Scanning) transmission electron microscopy (STEM) for detailed Influence of annealing • [110]-twin-formation during After PLD tetragonal-to-orthorhombic phase transition²

High density of precipitates all and large) visible after O-annealing

Cross-section, 300 keV LAADF-STEM

After PLD GdBCO[100]/[010]

MgO[100]

• [001] ab-grain not fully captured in

10 nm

Shift of grain

along [001]

direction

[001]

HAADF-STEM images

Summary

 \bigcirc

Understanding of defects and structure-property relations in GdBCO requires extensive EM-analyses **Ex-situ annealing** introduces additional defects such as twin-boundaries and precipitates

🖂 - lukas.gruenewald@kit.edu - 🌐 www.lem.kit.edu @GruenewaldLukas ORCID: 0000-0002-5898-0713

[1] Obradors and Puig, Supercond. Sci. Technol. 27 (2014) 044003 [2] Hervieu et al., *Phys. Rev. B* **36** (1987) 3920–3922 [3] Træholt et al., Physica C: Superconductivity **230** (1994) 297–305 [4] Oktyabrsky et al., Journal of Materials Research 14 (1999) 2764-277 [5] Popov et al., J. Phys.: Conf. Ser. **1559** (2020) 012038 [6] Lin et al., *Scientific Reports* **11** (2021) 5386

) TEM	Gd M 10 nm	BaM	Extracted EELS core-loss edge net-intensities after filtering with principal component analysis.		
			Changes in EELS signal $(\uparrow, \downarrow, \approx)$ near precipitates qualitatively fits Gd_2CuO_4		
	Cu L	ΟK		GdBCO ₇	Gd ₂ CuO ₄
	La mar		Gd / at%	7.7	28.6 (1)
			Ba / at%	15.4	0 (↓)
			Cu / at%	23.0	14.3 (↓)
			0 / at%	53.9	57.1 (≈)
	HAADF (denoise G	d by AtomSegNet®	5) 2	nm	Structure Fits well with Gd ₂ CuO ₄

- GdBCO ($\delta \approx 1$) grown by pulsed laser deposition (PLD) on MgO(001) and subsequent ex-situ annealing (450°C, 1 bar O_2 , 30 min)
- TEM cross-section and plan-view sample preparation by focused-ionbeam *in-situ* lift-out (FEI Strata 400S & Thermo Scientific Helios G4 FX)
- High/Low-angle annular dark-field (H/LAADF) STEM and electron energy-loss spectroscopy (EELS): FEI Titan³ 80-300, GIF Tridiem 865 ER

For STEM-in-SEM analyses of superconducting thin films see the Poster "Analysis of superconducting thin films in a modern FIB/SEM dual-beam instrument"

22-26 RUGUST 2021

Joint Meeting of Dreiländertagung & Multinational Congress on Microscopy

