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Science is founded on uncertainty. Each time
we learn something new and surprising, the
astonishment comes with the realization that
we were wrong before.

Lewis Thomas





Zusammenfassung

Diese Dissertation beschäftigt sich mit der gemeinsamen Entscheidungsfindung in
der Mensch-Maschine-Kooperation und liefert neue Erkenntnisse, welche von der
theoretischen Modellierung bis zu experimentellen Untersuchungen reichen. Zu-
nächst wird eine methodische Klassifikation bestehender Forschung zur Mensch-
Maschine-Kooperation vorgenommen und der Forschungsfokus dieser Dissertation
mithilfe eines vorgestellten Taxonomiemodells der Mensch-Maschine-Kooperation,
dem Butterfly-Modell, abgegrenzt. Darauffolgend stellt die Dissertation zwei mathe-
matische Verhaltensmodelle der gemeinsamen Entscheidungsfindung von Mensch
und Maschine vor: das Adaptive Verhandlungsmodell und den n-stufigen War of
Attrition. Beide modellieren den Einigungsprozess zweier emanzipierter Koopera-
tionspartner und unterscheiden sich hinsichtlich ihrer Ursprünge, welche in der
Verhandlungs- beziehungsweise Spieltheorie liegen. Zusätzlich wird eine Studie
vorgestellt, die die Eignung der vorgeschlagenen mathematischen Modelle zur Be-
schreibung des menschlichen Nachgebeverhaltens in kooperativen Entscheidungs-
findungs-Prozessen nachweist. Darauf aufbauend werden zwei modellbasierte Auto-
mationsdesigns bereitgestellt, welche die Entwicklung von Maschinen ermöglichen,
die an einem Einigungsprozess mit einem Menschen teilnehmen können. Zuletzt
werden zwei experimentelle Untersuchungen der vorgeschlagenen Automationsde-
signs im Kontext von teleoperierten mobilen Robotern in Such- und Rettungsszena-
rien und anhand einer Anwendung in einem hochautomatisierten Fahrzeug präsen-
tiert. Die experimentellen Ergebnisse liefern empirische Evidenz für die Überlegen-
heit der vorgestellten modellbasierten Automationsdesigns gegenüber den bisheri-
gen Ansätzen in den Aspekten der objektiven kooperativen Performanz, des mensch-
lichen Vertrauens in die Interaktion mit der Maschine und der Nutzerzufriedenheit.
So zeigt diese Dissertation, dass Menschen eine emanzipierte Interaktion mit Bezug
auf die Entscheidungsfindung bevorzugen, und leistet einen wertvollen Beitrag zur
vollumfänglichen Betrachtung und Verwirklichung von Mensch-Maschine-Koopera-
tionen.





Abstract

The research reported in this thesis focuses on the decision making aspect of human-
machine cooperation and reveals new insights from theoretical modeling to experi-
mental evaluations. In a first step, the thesis provides a methodical classification of
work on human-machine cooperation and circumscribes its research scope by means
of a newly presented taxonomic model of human-machine cooperation called but-
terfly model. Thereafter, the thesis introduces two mathematical behavior models of
human-machine cooperative decision making: the adaptive negotiation model and
the n-stage war of attrition. Both mathematically model the engagement of two
emancipated cooperation partners in a cooperative decision making process with
different modeling backgrounds which lie in negotiation theory and game theory.
Furthermore, this thesis reports on the models’ suitability to represent human con-
cession behavior in cooperative decision-making scenarios and subsequently pro-
vides two model-based automation designs capable of participating in a cooperative
decision making process with a human. Finally, the thesis presents two experimen-
tal evaluations of the proposed automation designs in the contexts of teleoperated
mobile robots in a search-and-rescue scenario and of highly automated driving. The
experimental results provide empirical evidence of the model-based automation de-
signs’ superiority compared to state-of-the-art approaches in terms of objective co-
operative performance, user satisfaction and human trust in the interaction. Hence,
this thesis reveals the insight that humans prefer a truly cooperative interaction with
respect to decision making and therefore advances research towards the comprehen-
sive consideration and realization of human-machine cooperation.
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m Stage index in the n-stage war of attrition
M Mean value
n Number of stages required in the n-stage war of attrition to reach an

agreement
n□ Number of elements in sets or vectors □ specified by index
N Number of cooperation partners/agents/players
o Offer
o□ Offer specified by □ being a time instance /iteration number or a label
O Set of offers o
Õ Set of offers whose utility is greater or equal than current target utility
p Probability
P Set of players or agents
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q Probability offset for reinitializing hypotheses with probability zero
r Risk disposition of agents
SD Standard deviation
t Time
u Utility/utility function
u□ Utility specified by □ being a time instance /iteration number or a label
ut Target utility function
U Set of utilities/utility functions u
U⃗ Ordered utility set with elements in descending order
w Weight
x Auxiliary variable
y Auxiliary variable

Greek Letters

Symbol Description

α Concession update step size or significance level
β Adapation design parameter
γ Effort function
δ Utility difference
δl Utility difference at stage l
δm Utility difference at stage m
δ↑ Dirac function
∆ Set of utility differences δ
ϵ Concession rate
E Set of concession rates ϵ
ζ Importance level
Z Set of importance levels ζ
θ Parameter
θ Parameter vector
Θ Heavieside function
κ Iteration number
λ Type of player in incomplete information games
Λ Set of types λ
µ Specifier for decision options and offers
ν Specifier for decision options and offers
π Payoff/payoff function
Π Set of payoffs/payoff functions π
σ Variance of identification result
τ Threshold/threshold function
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τl Threshold/threshold function at stage l in the n-stage war of attrition
τm Threshold/threshold function at stage m in the n-stage war of attrition
T Set of thresholds or threshold functions τ
ϕ Transformation function
χ2 Chi-squared distribution
χ2

c Critical value of chi-squared distribution
ψ Game theoretic strategy
Ψ Set of strategies ψ

Calligraphic and Other Symbols

Symbol Description

N Set of natural numbers
R Set of real numbers
A Automation
B Bidding strategy
C Acceptance strategy
E Concession strategy or function
F Set of utility probability density functions f
G Game
H Human or H-value of the Kruskal-Wallis test
N Negotiation
T Deadline
J Objective function
∅ Empty set
∞ Infinity
S System

Indices, Exponents and Operators

Symbol Description

□∗ Optimal value
□⋄ Distinct value
□H Set of history values
□−1 Inverted function
□k Variable in iteration k or at discrete time tk
□κ Variable in iteration κ or at discrete time tκ
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□l Variable at stage l in the n-stage war of attrition
□m Variable at stage m in the n-stage war of attrition
□+ Set containing non-negative values
□>0 Set containing positive values
□t Variable at time t
□c Critical value of a distribution
□f Final values of □ at end of cooperative decision making
□g Variable with global scope
□h Function □ with parameters of hypothesis h
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□j Placeholder for opposite kind of agent or player compared to i, either A

or H
□l Variable with local scope
□l Running index
□t Target value or function
|□| Absolute value for scalars or number of elements for sets
arg max Argument at maximimum
arg min Argument at minimum
d□ Infinitesimal change of □
∆□ Describes difference between values of □
∂□
∂x Partial derivative of □ by x
□̇ Time derivative d

dt□
d□
dx Total derivative of □ by x
max Maximization or maximum
min Minimization or minimum
□⊤ Transposed vector
□x:y Cumulative value of □ from stage x to stage y− 1: ∑

y−1
x □

□̄ Normalized variable
□̂ Estimated variable
□̃ Constrained set





1 Introduction

Since the third industrial revolution in the second half of the 20th century, the au-
tomation of functionalities and processes, tools and technical systems has increased
continuously and pervasively [BvD+14, PLF16]. To a great extent, the goal of this
automation has been the state of full autonomy [Bai82, Lam13]. Nevertheless, up
to the current day and despite all efforts to make human involvement redundant,
industrial plants or vehicles require human operators or drivers, respectively, to su-
pervise the automation’s performance [End17]. Hence, these systems have become
tools with widely automated functionality. The human has to interact with these
tools only if necessary and to switch them on and off.

However, this form of interaction has some major disadvantages. One of them is
the “out-of-the-loop performance problem” [End17] which describes the inability of
humans to adequately react to a reduced performance of the automation. This is
due to the fact that humans lack situation awareness in case they only possess a su-
pervisory role [GDLB13]. Bainbridge summarized this and associated issues as the
“ironies of automation” [Bai82]. A closely related disadvantage is the disregard of
beneficial human action in situations in which the human outperforms the automa-
tion [VGLH11]. Another disadvantage is the costly development of fully automated
systems which become increasingly complex and comprise more and more functions
that have to be automated [Bil96, pp. 47-51].

To counteract these disadvantages, engineers started to focus on cooperative human-
machine systems in the context of the fourth industrial revolution [EK99]. This im-
plied reintroducing the human into the automated process or production and hence
keeping her or him in the loop instead of allotting her or him a solely supervisory
position [FWBB16, FDM+20]. Research has shown that human-machine coopera-
tion creates performance synergies, e. g. by combining the strengths of the human
(abstract thinking and situation recognition) and of the machine (endurance, con-
sistent accuracy, and precision) [VGLH11], and increases human trust in and ac-
ceptance of technical systems [FCA+17, ACM+18, Fla19, NSWS20]. Furthermore,
human-machine cooperation also allows for a step-by-step automation of a work-
ing technical system by gradually augmenting the degree of automation [PSW00].
Hence, engineers implement systems in which the human and the machine simul-
taneously share or sequentially trade control for a respective process or production
task [PLF16, FCA+17, OGD17, ACM+18]. Examples are advanced driving assis-
tance systems in partially autonomous vehicles [DvA+10, AMB12, LHFH18, Fla19,
SWS19, WCW19], industrial production with close collaboration of human and ma-
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chine [MLK+12, Lam13] and teleoperation of robots for search-and-rescue scenarios
[CHS21] or surgery [RHS11].

All these examples and in fact the majority of current cooperative human-machine
systems consider a close physical interaction of the human and the machine: The
human and the machine operate on the same workpiece [MLM+11, MLK+12] or
jointly control a vehicle [DvA+10, AMB12, Fla19, SWS19] or robot [NFA08, CHS21]
by means of a steering wheel or a joystick. In all these cases, the human-machine
communication is based on physical forces and haptic feedback (and potentially
visual and acoustic feedback).

However, this form of communication allows only for a limited scope of human-
machine cooperation as the interaction and interfaces are tailored to the specific use-
case and application field, e. g. [ACM+18, Fla19, FDM+20]. The reason for this is
the limited communication ability of haptic communication. One way to circumvent
this problem is the development of supplementary communication channels such as
brain-machine interfaces, e. g. [CD13]. However, these interfaces require significant
technological effort, work to date only for specific brain signals in special cases, and
are in general not yet user-friendly.

Moreover, a growing automation of tasks and processes entails an increase in the
level of abstraction on which human and machine are able to communicate and
interact [FAI+16, FWBB16, ACM+18]. This allows for richer communication symbols
and ultimately for a larger scope of cooperative human-machine systems [ACM+18].
As a consequence, future cooperative human-machine systems with high degrees
of autonomy require appropriate interaction design and foremost a holistic view on
cooperation on higher levels of task execution [FAI+16, PLF16].

The next higher level of human-machine cooperation with respect to task execution
is the so-called decision level [PLI15]: Current cooperative systems mostly inter-
act [FWBB16, ACM+18] by e. g. cooperatively tracking given reference trajectories
[NC15, LHFH18, Fla19]. Only a few approaches consider decision making scenarios
during task execution. The vast majority of these approaches (implicitly) implements
the leader-follower paradigm with the human as the sole decision maker, e. g. [GR86,
SBP+18, TW19], or in form of decision support systems, e. g. [DvA+10, BAMF14,
WWM+19]. Some approaches dynamically shift the decision making authority to the
automation if its decisions are congruent to the human ones, e. g. [Khe11, MLK+12,
MLH15, ABH+16]. However, in case of conflicting decisions the human remains the
ultimate decision maker.
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1.1 Towards Emancipated Cooperative Decision
Making in Cooperative Human-Machine Systems

Implementing the leader-follower paradigm with the human in the lead has some
disadvantages. Consider for example a highly automated driving scenario in which
the vehicle’s automation may possess more information about the future driving sit-
uation obtained by car-to-car communication. In this scenario, reasonable objections
of the automation for maneuver selection may be ignored by the human if she or he
is in the lead. Furthermore, the human may be left with too little information for
decision making or too much information for processing. Both lead to an unfruit-
ful interaction and potentially suboptimal decision making results. Similar concerns
arise in the inverse scenario with the automation in the lead, e. g. if human percep-
tion of the immediate traffic situation outperforms the vehicle’s situation recognition,
e. g. due to blocked sensors.

To create synergies and to circumvent shortcomings of the leader-follower paradigm
in the above example, it would be beneficial if the human had the ability to intu-
itively convince the vehicle’s automation to follow her or his lead in e. g. maneuver
selection. However, if the automation had good reason to disagree with the human
choice of maneuver due to matters of e. g. safety, the automation should be able to
communicate this in a comprehensible manner. This would lead to human and ma-
chine being engaged in an intuitive cooperative decision making process with equal
rights and authority. Hence, human and machine would be emancipated cooperation
partners. Furthermore, the process they were participating in had the objective to
balance the significance of individual choices while treating both cooperation part-
ners equally and to lead to a mutual agreement.

Therefore, if both cooperation partners are equally performant in terms of individual
decision making and are able to participate in a cooperative decision making pro-
cess, striving towards an emancipated human-machine cooperation on decision level
offers benefits: in contrast to conventional leader-follower approaches, it allows to
raise the synergies of cooperative decision making by means of information fusion
or by cooperatively balancing and negotiating the significance of individual deci-
sion making. Furthermore, the equal assignment of authority within a cooperative
setting has already proven to be beneficial by similar, successful concepts for human-
machine cooperation on lower levels of task execution [NC15, Fla19]. Besides this,
the equal assignment of authority within a cooperative setting does still allow for the
generally applied paradigm that humans are able to switch off the automation.

To advance research on cooperative human-machine systems towards emancipated
cooperative decision making, the objective of this thesis is the establishment of a first
automation design enabled to participate in an explicit emancipated human-machine
cooperative decision making and the evaluation of the automation design’s poten-
tial benefits. For reasons of generalizability and reusability, the automation design
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should be model-based and should suit human concession behavior in cooperative
decision making to increase user acceptance and trust.

1.2 Research Contribution

A first contribution of this thesis is a methodical classification of human-machine
cooperation in Chapter 2 to precisely circumscribe the focus of this thesis. To this
end, a new taxonomic model of human-machine cooperation, the butterfly model is
introduced. Furthermore, Chapter 2 discusses existing literature on human-machine
cooperation in terms of decision making in more detail and thereby reveals the corre-
sponding research gap. The subsequently specified research questions in Section 2.4
are concerned with

1) suitably and mathematically modeling emancipated human-machine coopera-
tive decision making processes focusing on human concession behavior,

2) adequately designing automation based on these models offering an intuitive
interaction, and

3) appropriately evaluating and comparing new automation designs to state-of-
the-art approaches by means of customized experimental designs targeting the
cooperative decision making aspect.

To provide answers to those questions, the research of this thesis results in a first
theory of emancipated human-machine cooperative decision making with emphasis
on and consideration of human decision making and concession behavior. By means
of the introduced mathematical models of cooperative decision making, automation
designs are implemented and experimentally evaluated, demonstrating their practi-
cal relevance. In summary, the main contributions of the research reported in this
thesis are therefore:

1) A first behavioral meta-model of emancipated human-machine cooperative de-
cision making is introduced in Chapter 3, followed by the proposal of two
mathematical behavior models originating from negotiation theory and game
theory. The two novel mathematical behavior models aim to close the gap in
terms of control authority between the two extremes of the leader-follower ap-
proach, i. e. the human in the lead has the ultimate control authority while the
automation is only allowed to provide assistance and vice-versa. Both mathe-
matical behavior models are theoretically analyzed and compared with respect
to their ability to guarantee an agreement.

2) A study on the suitability of both mathematical behavior models to represent
human concession behavior is reported in Chapter 4. Additionally and based
on the proposed models, two automation designs are introduced and crucial
aspects for their practical application are discussed.
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3) A general experimental design focusing on human-machine cooperative deci-
sion making is established in Chapter 5 along with suitable measures to evalu-
ate objective cooperative performance as well as subjective human perception.
On this basis, two experimental evaluations of the proposed automation de-
signs capable of human-machine cooperative decision making are presented in
the same chapter. The experiments were conducted in the context of teleoper-
ating a mobile robot with multiple levels of autonomy and guiding a highly
automated vehicle. These experimental evaluations yield first evidence of the
objective and subjective benefits of emancipated human-machine cooperation
on decision level.

The resulting structure of the remaining thesis is depicted in Figure 1.1.

Chapter 2
Human-Machine Cooperation:

Current State and Open Questions
• Methodic Classification of HMC

• Introduction of the Butterfly Model

• State of Research of HMC on Decision Level

• Research Questions

Chapter 3
Models of Human-Machine

Cooperative Decision Making
• Meta-Model

• Adaptive Negotiation Model

• n-Stage War of Attrition

Chapter 4
Towards Models’ Application

• Models’ Suitability Study

• Model-Based Automation Design

Chapter 5
Experiments

• Highly Automated Driving

• Teleoperated Mobile Robots

Figure 1.1: Structure of the thesis.





2 Human-Machine Cooperation: Current
State and Open Questions

This chapter firstly introduces important terminology of human-machine coopera-
tion in the context of this thesis in Section 2.1. For the purpose of circumscribing the
scope of this thesis, i. e. human-machine cooperative decision making, Section 2.2
reports on the state of research of cooperative human-machine system design and
provides a methodical classification of human-machine cooperation. For these pur-
poses, the section presents an overview on good practice in terms of automation de-
sign for cooperative human-machine systems and elaborates on human behavioral
models and their advancements towards models of human-machine cooperation by
accounting for different interaction aspects. A review of existing human-machine
cooperation models reveals some shortcomings with respect to classifying human-
machine cooperation to the end of intuitively circumscribing the scope of this thesis.
Therefore, a new taxonomic model, the butterfly model, is introduced. Upon this, Sec-
tion 2.3 reports on research in the context of human-machine cooperative decision
making and Section 2.4 reveals the open research questions that are addressed in this
thesis.

2.1 Important Terminology

The following section discusses and defines important terminology for this thesis in
the context of human-machine cooperation.

To start with, in this thesis human and machine denote the agents, i. e. active entities,
in the considered interaction setting. For reasons of simplicity, this thesis considers
only scenarios with one human and one machine. Whenever human and machine
are put together they might interfere with each other and hence find themselves in
a general setting called human-machine interaction. Note that interfere has no negative
connotation in this context.

Definition 2.1 (Human-Machine Interaction)
A general setting with two active entities, called agents, in which at least one of the
agents (continuously) interferes with the other. One agent denotes the human, the other
the machine.
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In the context of this thesis, the machine comprises an intelligence driving its actions,
called automation. The design of this automation is within the scope of research
reported in this thesis.

For a more detailed distinction of human-machine interactions, two obvious aspects
are the distributions of authority and ability among the agents.

2.1.1 Authority vs. Ability

In this thesis, authority describes the extent of permission/right an agent possesses in
the interaction or in parts of the interaction.1 An agent with no authority has no right
to interfere with others whereas the agent with the highest authority is in the lead.
In other words, actions of agents are prioritized according to the agents’ authority,
e. g. actions of agents with little authority are only effective if agents with higher
authority break down or have reached their goals. While the distribution of author-
ity may generally be provided by nature or given by some sort of history, in the
context of human-machine interaction, it is usually regulated by law giving a higher
authority to the human, e. g. in case of driver assistance systems [WHLS16, Chap. 3].
However, in few cases, the machine is given a higher authority, e. g. in the application
of electronic stability control systems in vehicles [WHLS16, Chap. 39]. Apart from
this, the authority distribution can also be dynamically assigned, i. e. shifted or traded.
Examples are authority shifts in driving assistance systems [FAC+03], in handover
scenarios between human drivers and highly automated driving assistance systems
[LHFH18], and in human-robot interaction [OKSB10, MLK+12, MLH15, KSB13].
Rarely, the human and the machine possess equal authority. Examples can be found
in the development of fuel-saving driving assistance systems [Fla19] and in teleoper-
ating mobile robots [CHS21]. Figure 2.1 presents an overview on the above discussed
authority distributions in human-machine interactions. If interacting agents possess

Human
Leader

Equal
Authority

Automation
Leader

Shifted/Traded Authority

Figure 2.1: Overview of authority distributions in human-machine interactions.

the same authority, i. e. they are equal in terms of authority, they are referred to as
emancipated. Hence, this forms the basis of the following definition of emancipated
human-machine interaction.

1 Another closely related term to authority is responsibility which has, compared to authority, a notion
concerning liability. However, this aspect is not in the research scope of this technically oriented thesis.
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Definition 2.2 (Emancipated Human-Machine Interaction)
Consider a human-machine interaction according to Definition 2.1. If the human and
the machine participating in this interaction possess equal authority, i. e. equal right to
act, this interaction is called emancipated.

The emancipated human-machine interaction is in the focus of this work as moti-
vated in the introduction of this thesis.

Note. The proposition implied by Definition 2.2 targets human-machine interactions in
which the functionality of the machine is secured and the emancipated interaction enables
the creation of or increases synergies and mutual benefits. The general requirement that
humans have to be able to switch off the machine is not affected by this proposition.

In contrast to the authoritarian aspect, the ability focuses on the relation between
an agent and a task and describes the extent to which an agent is able to solve it.
Hence, agents with the individual ability to perform a task (or parts of it) can solve it
(or the respective parts of it) without any help of other agents. However, this does
not consider performance measures such as quality, efficiency, etc. In the context
of human-machine interaction, it may be the case that both agents are not able to
perform a task individually but can do so if they interact.

While there might be influences on each other, the aspects of authority and ability
distribution in human-machine interaction can be regarded separately. Furthermore,
the aspect of ability leads to two other sub-aspects that are crucial for this thesis and
are discussed in the following: the ability for goal-oriented action (i. e. rationality,
discussed in Section 2.1.2) and the general ability of the machine to perform a certain
task (i. e. level of automation, discussed in Section 2.1.3).

2.1.2 Rationality

Rationality is a concept that describes to which extent an agent chooses its actions in
a goal-oriented manner. Aggregating various definitions of rationality in literature
on game theory [Moo85, FT91, SLB09] and discussions of human rationality [Nag95,
CHC04, CGC06, CGIC09, YAB14, Str14, Har17, TLL+18, AY21], this thesis applies
the following definition of rationality.



10 2 Human-Machine Cooperation: Current State and Open Questions

Definition 2.3 (Rationality)
Agents act (fully) rationally when they strive towards a particular objective considering
all potential influences of actions from themselves or others in the process of pursuing
that objective. Agents exhibit a bounded rationality if they only consider influences of
actions from themselves or others to a certain extent. Agents act irrational if the actively
avoid reaching an objective.

In real-world scenarios, one usually has to assume bounded rationality for both, hu-
mans and machines, due to cognitive limitations (e. g. cognitive biases, limited think-
ing capacity, or time constraints [GV19]) or due to the complexity of the objective,
see [Nag95, CHC04, CGC06, Har17, GV19].

In contrast to rationality applying to both human and machine, the level of automa-
tion explained in the following is an established measure for classifying the ability
of machines.

2.1.3 Level of Automation

While machines outperform humans in some aspects such as strength and preci-
sion, humans are in general superior considering cognition and reasoning [VGLH11].
When interacting, it is crucial to be able to describe the extent to which the ma-
chine is able to perform on its own, without human support. This extent is gen-
erally referred to as the level of automation (LOA) for which literature offers vari-
ous definitions, e. g. [End87, SLL78, PSW00, She11, BFH19]. Typically, these def-
initions are a set of level descriptions that divide the spectrum of performing a
task by means of (human) manual control to full autonomy in discrete steps, see
[SLL78, End87, EK99, PSW00, She11]. Additionally, Endsley and Kaber [EK99] and
Parasuraman et al. [PSW00] enhance the LOA definition by introducing different
LOA to different discrete “information processing stages”, i. e. “acquisition, analysis,
decision, and action” [PSW00], when performing a task. Apart from these discrete
level definitions, Braun et al. [BFH19] define a continuous and quantitative metric to
describe the LOA in human-machine interaction.

In this thesis, an exact (level) definition of LOA is not required. Therefore, the fol-
lowing broad definition based on the “criteria for LOA definitions” established by
Braun et al. [BFH19] is applied.
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Definition 2.4 (Level of Automation)
The level of automation (LOA) describes the extent to which the automation is (currently)
acting autonomously. It ranges from manual control to full autonomy and is strictly
monotone in between. The LOA may be associated with sequential and/or parallel aspects
of human and machine jointly performing one or multiple tasks.

Remark. Although LOA definitions usually originate from the ability of a machine to per-
form tasks or aspects of a task, the LOA is consequently linked to the authority of the machine
to perform these tasks or task aspects, i. e. the machine will not be allowed to perform tasks or
task aspects beyond its highest achievable corresponding LOA.

With these aspects of human-machine interaction and corresponding definitions of
rationality and LOA, human-machine cooperation can be defined.

2.1.4 Cooperation

General cooperation can be defined in various ways and domains (cf. biology [AH81],
human-human cooperation also called joint action [SBK06], and automation design
for human-machine interaction [BYK+02, FAI+16, FCA+17, BK17, Fla17, ACM+18]).
One of the broadest definitions is given by Jean-Michel Hoc:

Definition 2.5 (Cooperation [Hoc01])
“Two agents are in a cooperative situation if they meet two minimal conditions.

1. Each one strives towards goals and can interfere with the other on goals, resources,
procedures, etc.

2. Each one tries to manage the interference to facilitate the individual activities and/
or the common task when it exists.

The symmetric nature of this definition can be only partly satisfied.” [Hoc01, p. 515]

Hence, cooperation requires an enhanced interaction in which agents strive towards
an objective and interfere with each other to facilitate the achievement of this objec-
tive. Note that facilitate makes the difference between cooperation and competition.

In the following, the agents within a cooperation will be generally referred to as co-
operation partners. Furthermore, depending on the modeling theory used to describe
the cooperation partners, they are referred to as agents (also automated agents and
human agents) or players.
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A human-machine interaction fulfilling the requirements of Definition 2.5 is called
human-machine cooperation (HMC).2

Definition 2.6 (Human-Machine Cooperation)
On the basis of Definition 2.5, human-machine cooperation is a human-machine inter-
action according to Definition 2.1 with agents, i. e. cooperation partners, possessing at
least bounded rationality (see 1. in Definition 2.5 and Definition 2.3) and additionally
each agent tries to to manage the interference to facilitate the individual activities and/or
the common task when it exists (see 2. in Definition 2.5). The symmetric nature of this
definition can be only partly satisfied.

2.2 Methodical Classification of Human-Machine
Cooperation

The following section aims for a methodical classification of human-machine coop-
eration to circumscribe the scope of this thesis. To this end, relevant literature on
cooperative human-machine system design and on suitable classifiers is discussed.
As a result, a new classifier in form of a taxonomic model for human-machine coop-
eration, called the butterfly model, is presented.

2.2.1 Introduction

The basis of today’s research on human-machine cooperation was established in the
second half of the 20th century by utilizing models of human behavior in the engi-
neering context of so-called “cyber-physical systems” [Wie61]. Since then, a large
body of literature has been created providing increasingly sophisticated human be-
havior models and their advancements towards models of human-machine coopera-
tion. This also fueled the development of design paradigms for cooperative systems
and corresponding automation designs for machines based on these developed mod-
els to interact and eventually cooperate with the human.

2 Another related term found in literature is human-machine collaboration. While some researchers define
collaboration as an refinement of human-machine cooperation (e. g. collaboration enhances coopera-
tion by the notion of actively working together or jointly performing tasks [BK17]), others do not seem
to differentiate between these terms, cf. [Gro11, MLK+12, FAI+16, ACM+18]. In this thesis, there is
no need to differentiate between cooperation and collaboration. For reasons of uniformity, the term
cooperation is used throughout this thesis.
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In order to methodically categorize research on human-machine cooperation and to
apply such a classification for circumscribing the scope of this thesis, the following
three basic classifiers can be considered:

• Number and Type of Cooperation Partners
The number and types (i. e. human or machine) of cooperation partners are
the most basic classifiers for human-machine cooperation. However, in this
thesis along with the vast majority of similar research, the focus is placed on
the cooperation of one human and one automated machine, cf. Definition 2.1.
Therefore, this classifier has low relevance and is not discussed further in this
thesis.

• General Aspects of Interaction
Depending on their abilities, authorities and the given interfaces, human and
machine can interact within a cooperation in various forms, e. g. sequentially
vs. in parallel or in leader-follower3 form vs. in an emancipated manner.

• Descriptive Behavioral Models
The behavioral models of cooperation partners in a human-machine coopera-
tion originate from models of individual human behavior. These human behav-
ior models comprise the human general abilities to act (in terms of cognition,
reasoning, execution and learning) described from different perspectives such
as psychology, ergonomics and engineering. Typically, these abilities are de-
scribed on various dimensions and levels of abstraction.

The following sections elaborate on these classifiers by providing all necessary back-
ground information: Section 2.2.2 offers an overview of good practice in automa-
tion design for human-machine cooperation, followed by the explanation of exist-
ing human behavior models in Section 2.2.3, and of general interaction aspects in
Section 2.2.4. Upon this background information, existing human-machine coopera-
tion models which adopt (human) behavioral models for modeling both cooperation
partners and enhance them by means of several interaction aspects are reviewed in
Section 2.2.5. To counteract their shortcomings as classifiers for human-machine co-
operation to emphasize the research focus of this thesis, a new taxonomic model, the
butterfly model, is introduced in Section 2.2.6.

2.2.2 Overview of Good Practice in Automation Design for
Human-Machine Cooperation

In the last decades, the increasing spread and pervasiveness of automation did not
only yield a large variety of (partially automated) machines that do not continuously
interfere with the human and are therefore tools for the human. It also enabled

3 Another, equivalent term is master-slave which is avoided in this thesis due to the terminology’s prob-
lematic historic background.
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machines to perform certain tasks, such as driving or manufacturing, with at least
temporarily or in parts comparable or even superior manners to the human. Due
to the different strengths of humans (e. g. fast cognition and abstract thinking) and
machines (e. g. physical strength, accuracy, computing power, and speed) engineers
started to foster cooperative human-machine systems to benefit from the potential
synergies and to cooperatively execute tasks better, safer, faster, etc. However, unlike
conventional tool design aiming for the automation of basic functionalities for which
suitable, mostly informative human-machine interfaces are required to achieve high
usability, cooperative human-machine systems pose a greater challenge. This is due
to the fact that a lot of automation design effort is required to suitably manage the
interaction with the human to achieve the targeted benefits of the cooperation. The
interaction management has to consider many aspects which include taking into
account human behavior, i. e. learning and adapting to it, completing the given task
in cooperation, assuring safety of the human, assisting and supporting the human
and handling conflicting interests. In other words, it requires much effort to turn the
static automation design of tools into dynamic, adaptable automation designs.

Due to ethical and legal reasons (a comprehensive overview is provided by Flemisch
et al. [FDM+20]), most of the research on automation design aiming for a success-
ful cooperation of human and machine follows human-centered design approaches.
They focus mainly on the human needs, abilities and behavior and on how machine
interaction may have a positive impact.

Two prominent design concepts for the automation in human-machine cooperation
are the concepts of traded and shared control, in which the cooperation partner se-
quentially trade or continuously share the authority of conducting a task in coopera-
tion. These concepts usually define cooperation partners to be (at least temporarily)
equally capable of individually performing the task in question [ACM+18]. Espe-
cially in the case of the term “shared control”, there are many slightly different defi-
nitions in literature revealing the lack of unity among the peer researchers, cf. [EK99,
PLI15, FAI+16, Fla17, ACM+18]. One major reason for this issue is the large range
of scopes and applications of cooperative human-machine systems, e. g. in medical
technologies, driving assistance systems, and robotics [ACM+18].

While the above and similar concepts offer guidelines for human-centered automa-
tion design considering the abilities of human and machine and their authority in
interaction, other concepts focus on the human behavior and reasoning. One promi-
nent example is the concept of mental models which were first extensively discussed
in the eponymous book by Gentner and Stevens [GS83]. Humans form mental
models of everything they encounter: the world, other people, and technical sys-
tems. By means of these models, humans are able to “predict system behavior and
guide actions” [Nor83]. Together with their peer researchers, Norman, Gentner and
Stevens [GS83, Nor83] early highlighted the necessity to properly take into account
human mental models in system design to develop appropriate human-machine in-
terfaces. Subsequently, Heiner Bubb [Bub03] postulated that the human is naturally
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developing and utilizing mental models of the machine she or he is interacting with.
Furthermore, he assumed that the mental models have to correspond with reality
to a certain extent such that human-machine interaction is beneficial and “human
errors” can be avoided. In order to achieve this correspondence despite the missing
ability to identify mental models of humans, he introduced the system ergonomics
approach enabling designers to find and implement the “simplest form of operation”
[Bub03]. Flemisch et al. [FSKL08] promoted mental models in the context of human-
machine cooperation and proposed design guidelines to ensure the compatibility of
human mental models of the machine the human is interacting with and the behav-
ior models of the machine. However, this compatibility requirement does not imply
similarity in behavior of human and machine. It rather demands for automation
designs such that the human is able to establish a mental model of the automa-
tion. As a result, humans are able to predict the automation behavior and will not
face an uncomfortable nor uncertain situation. Nevertheless, adopting human be-
havioral models for the automation design in cooperative human-machine systems
is assumed to increase compatibility of human mental models and corresponding
automation behavior and to ultimately lead to a more successful cooperation be-
tween human and machine [FSKL08]. In other words, designing the automation in
accordance to human models is supposed to result in interactions between human
and machine that are less disruptive, increase human acceptance and yield greater
cooperative performance.

Following this concept of replicating human behavior by designing automation ac-
cordingly, researchers have two potential approaches to develop a model of human-
machine cooperation. These approaches are depicted in Figure 2.2: Starting from
human behavioral models, the first approach adopts the insights on human behavior
in an automation design for human-machine cooperation which supports and seam-
lessly adapts to the human (dotted arrow in Figure 2.2). Alternatively, the second
approach advances the human behavioral models to human-human cooperation and
then transfers these models to human-machine cooperation (dashed arrows in Fig-
ure 2.2). Although the latter approach tackles the fact that human behavior changes
in cooperation [IFH19], most researchers follow the first approach to establish models
of human-machine cooperation [FSKL08, FBB+14, PLI15, ACM+18]. However, these
models resulting from the first, direct approach usually assign implicitly a higher
authority to the human compared to the automation, see e. g. [ACM+18]. In contrast
to this, human and machine possess equal rights from a modeling perspective in case
human-machine cooperation models are established following the second approach
considering emancipated cooperation partners.

In summary, the good practice of automation design for human-machine coopera-
tion is a collection of guidelines and principles that highlight the importance to con-
sider human needs, abilities, behavior, reasoning and mental models. Researchers
accounted for this by establishing models of human behavior and advancing them
to behavior models of partners in a human-machine cooperation. In what follows,
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Figure 2.2: Abstract representation of the two different approaches to develop human-machine coopera-
tion models starting from individual human behavioral models: the direct approach indicated
by means of the dotted arrow and the approach via human-human cooperation, hence consid-
ering emancipated cooperation partners, shown with dashed arrows.

this development is elaborated on, starting with the report on models of human
behavior.

2.2.3 Cognition, Reasoning, Execution and Learning in Human
Action

In the early years of the second half of the 20th century, psychologists agreed that
human social behavior is goal-directed (e. g. [Hei58])4, i. e. human action follows some
sort of plan [Ajz85]. To explain the origin of this plan, the psychologists Fishbein
and Ajzen introduced the theory of reasoned action [FA75, AF80] for predicting human
social behavior in situations in which humans are able to willingly control their
actions. According to this theory, humans consider available information and predict
the implications of their actions. This process forms an intention to perform an action
which in turn leads to the action itself if no unforeseen events occur. Fishbein and
Ajzen later refined this theory with respect to the determinants of the intentions in
order to cover also situations in which humans (anticipate to) possess no full control
over potential actions. This resulted in the theory of planned behavior [Ajz85]. Both
theories are based on experimental data and were also experimentally compared
which proved that the theory of planned behavior enhances the theory of reasoned
action [MEA92].

4 This insight is also backed up by the research on sensorimotor control of human actions that has been
proven to be optimal with respect to some goal [Fri11].
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Upon these general insights from the field of psychology, engineers5 started to de-
velop detailed models of human behavior, see [Don82, Ras83, Mic86]. Although
these models are usually based on some experimental evidence for some of their fea-
tures, the overall models are typically not validated, e. g. [Don82]. The focus of these
models was to appropriately design automation to suit human behavior in various
aspects such as interface or assistance design. Most literature addressing human be-
havior from the engineering perspective considers the cognition-and-action cycle (also
known as the perception-action cycle) with the following typical elements: cognition
of the general current situation, human reasoning, i. e. processing the obtained infor-
mation and deriving potential future action, and execution of the determined action.
With respect to different aspects described in human behavior models, the cognition-
and-action cycle is typically defined with different levels of abstraction.

One of the first human behavior models is the work of Jens Rasmussen [Ras83]. He
introduced three levels to describe the behavior of a skilled operator in a determin-
istic environment. In essence, each level in this model defines human behavior as a
cognition-and-action cycle with respect to a certain degree of consciousness. Depend-
ing on the task complexity, its frequency of occurrence and degree of consciousness
during execution, human behavior is goal-driven and either knowledge-, rule- or skill-
based:

• Skill-Based Behavior
This level describes sensorimotor performance of humans during activities fol-
lowing some intention without conscious control. Such behavior is associated
with often performed and well trained tasks. On this level, the sensory in-
put is converted into signals that directly trigger automated sensorimotor patterns.
Therefore, behavior on this level can be compared to feedforward control or
feedback control if error information is available.

• Rule-Based Behavior
The behavior on this level is for tasks for which some experience is avail-
able. However, the tasks still require conscious attention: The human recog-
nizes which task is appropriate based on signs. This task is associated with rules
which are established by experience and appropriately compose the execution
of automated behavior patterns of the skill level.

• Knowledge-Based Behavior
In unknown situations, human behavior to reach a known goal consists of the
identification of the situation on a symbolic basis and the decision on the right
task to reach the known goal which involves planning and validating by trial
and error or by predictions.

Note that this model explicitly considers learning and training effects which will
shift task execution towards skill-based behavior. Furthermore, humans can also

5 In the following, this thesis focuses on the engineering perspective of human-machine cooperation
models, i. e. their practical application in the automation design for human-machine systems.
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actively focus on task execution e. g. due to unknown circumstances which will shift
it towards a knowledge-based behavior.

In contrast to Rasmussen’s work focusing on the degree of consciousness with which
humans perform, Edmund Donges [Don82, Don99] chose another approach that is
centered around the degree of task abstraction and is specified for the task of driving.
The resulting model possesses three levels: On navigation level, a suitable route from
the starting position to the known destination with respect to a corresponding time
schedule is determined. The guidance level refines the route and time schedule and
provides reference trajectories that include the desired car velocity and respect cur-
rent local traffic. Up to this point, the model postulates an open-loop control for
the cognition-and-action cycle. This changes in the lowest level, the stabilization level,
on which the reference trajectory is supposed to be tracked by means of closed-loop
control concepts. Although Donges and Rasmussen chose different focuses for their
models, Donges proposes a mapping of the two level models in [Don99]: Naviga-
tion is associated with knowledge-based behavior and stabilization corresponds to
skill-based behavior. Guidance may be associated with either of the three levels of
Rasmussen depending on the experience of the driver.

Another similar example of modeling driver behavior was proposed by Michon
[Mic86] who divided the driving task into three levels: On the strategical level (also
planning level), the destination and the general route with corresponding risks and
costs are derived. On the tactical level (maneuvering level) drivers determine ap-
propriate driving maneuvers such as turning and overtaking which have to be in
accordance with the derived plan from the strategical level. On the operational level
(control level) the chosen maneuvers are instantiated. Depending on the maneuver
execution, there is the possibility to adapt the maneuver choice and also the strategi-
cal plan if required.

In more recent work in the context of LOA research, human behavior models elabo-
rated on the perception-action cycle of human performance to define aspects which
can be supported or conducted by the automation. Considering the increasing au-
tomation of human-machine systems, Endsley [End17] aggregated work of Endsley
and Kaber [EK99] and Parasuraman et al. [PSW00] and described three stages of
task performance: possessing situation awareness, making a decision on potential ac-
tions and performing this action [End17]. Similar to this and to the work of Para-
suraman [PSW00] is the work of Pacaux-Lemoine and Itoh [PLI15] which proposes
similar stages: information gathering, information analysis, decision making and action
implementation.

In summary, the existing human behavior models in literature were proposed along
three prominent dimensions. The first dimension is concerned with the perception-
action cycle of humans and is sometimes referred to as the horizontal dimension. The
second dimension deals with the degree of task abstraction, sometimes called the ver-
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tical dimension, and is greatly inspired from an engineer’s design perspective.6 The
third dimension is associated with the degree of consciousness which is greatly in-
fluenced by learning effects. The relation between these dimensions is depicted in
Figure 2.3. Note that the second and third dimensions are not motivated by strong
experimental evidence. They are purely motivated by observations as they serve
an engineering purpose. Furthermore, note that existing mathematical models typ-
ically do not consider all dimensions nor all potential levels associated with each
dimension, e. g. optimal control models of sensorimotor control focus on the entire
perception-action cycle but only on the lowest level of task abstraction and neglect
the dimension of consciousness/learning, see [Fri11]. For reasons of better readabil-
ity, the term (behavioral) level refers to task abstraction level in the following if not
specified otherwise.

Skill

Rule

Knowledge

Situation
Awareness

Decision
Making

Action
Implementation

Operational

Tactical

Strategical

Figure 2.3: Dimensions of human behavior models: perception-action cyle (horizontal), task abstraction
(vertical), consciousness (depth); aggregated from [Ras83, Mic86, End17]. The colored boxes
abstractly illustrate levels and components of actual human behavior models.

Around the same time the human behavioral models discussed above were intro-
duced, psychologists came up with the concept of mental models that humans es-
tablish of everything, and especially of other humans and technical systems they
encounter, to understand and predict potential interaction with them and resulting
consequences [GS83]. Following research has shown that humans need to be able to
establish such mental models of technical systems in order to successfully interact
with the technical systems, see [Nor83, FSKL08] and Section 2.2.2. Consequently,
engineers developing cooperative human-machine systems should apply human be-
havioral models within the automation design. To this end, they established models
of human-machine cooperation which adopt (human) behavioral models of the co-
operation partners. Furthermore, these models account for other general aspects of
the interaction which are discussed in the following.

6 The influence of conventional automation design on human behavior models becomes apparent re-
garding the hierarchical design concept for the automation of complex systems, see e. g. [Sar83, Bro86,
VNE+01].
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2.2.4 General Aspects of Interaction

The general aspects of interaction7 within human-machine cooperation are the timing
of the interaction and the ability and the authority of the cooperation partners.

Regarding the aspect of timing, the cooperation partners can either interact sequen-
tially, i. e. alternatingly, or in parallel depending on the given interface and task. In
sequential interactions, one cooperation partner acts first followed by the other one,
e. g. the automation proposes actions for completing a task and the human chooses
one to be implemented [MM95]. Parallel interaction can be often found in haptic
human-machine cooperation, e. g. in the case of human and assistance system simul-
taneously controlling and hence influencing a vehicle [NC15, FCA+17, ACM+18,
Fla19, IFH19].

The aspect of ability considers cases in which human and machine possess com-
plementary capabilities to perform certain parts of a task and therefore require co-
operation to complete the overall task. Furthermore, situations in which human
and machine are both capable to perform the entire task but cooperate to share the
workload or to increase redundancy and hence safety are taken into account as well.
Schmidt [SRBL91] denotes the case with complementary capabilities as “integra-
tive” and distinguishes the case of similar capabilities between “augmentive form”
(workload is shared by allocating sub-tasks to the different cooperation partners)
and “debative form” (the workload is not shared, each cooperation partner performs
the task individually and the outcomes are debated). In the same context, Pacaux-
Lemoine [PLD02] proposed to enhance the term of human abilities to not only com-
prise abilities to individually operate but also the abilities to cooperate:8 Denoting
the dimension of human abilities to operate (including the perception-action cycle
with the elements of information gathering, information analysis, decision making, and
action implementation, see also Section 2.2.3) as the human know-how (to perceive and
act), they named the human abilities to cooperate the know-how-to-cooperate consist-
ing of the operational elements information gathering on the other, detection of inter-
ference, management of interference and function allocation [PLI15]. The latter element
determines which form and degree of cooperative task execution (e. g. shared vs. in-
tegrative) is applied in a given situation.

In close relation to the ability of the cooperation partners, the aspect of authority
within cooperation possesses a key role in cooperative system design. Obviously,
a cooperation partner with a limited capability to perform tasks or parts of a task
is also accompanied by a limited authority in performing cooperatively. Tradition-
ally, such limitations are associated with the machine. Additionally, other reasons
based on law and (re-)liability often lead to a reduced authority of the machine

7 These general aspects are at first independent of any potential behavioral level of the cooperation part-
ners. Furthermore, if different behavioral levels are considered, the manifestation of the interaction
aspects may differ across these levels.

8 On this basis, Pacaux-Lemoine also defines levels of cooperation similar to LOA [PLV13].
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within the cooperation [FDM+20]. As a consequence, there are typically two forms
of authority distribution among the cooperation partners: the automation has no au-
thority to execute actions and is left in an assistive role, supporting the human who
has all execution authority (leader-follower paradigm). In the other case, human
and machine share and/or dynamically assign the authority within the cooperation,
e. g. [MLK+12, Fla19]. Millot and Mandiau [MM95] denote these cases of assistance
and authority sharing by “vertical” and “horizontal” cooperation. In an untypical
third form of authority distribution, the automation has all authority, e. g. due to
its learning abilities with respect to human behavior (denoted as “implicit mode of
cooperation” by Greenstein et al. [GAR86]).

Figure 2.4 summaries and depicts the different categories of human-machine coop-
eration along the aspects of timing, ability and authority describing the general form
of interaction.

Timing

Sequential
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Parallel

Ability

Complementary
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Shared Redundant

Authority

Assistive

+
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Figure 2.4: Forms of interaction within human-machine cooperation considering the aspects of timing,
ability and authority. Arrows indicate the course of action. In case of sequences, i. e. for
sequential and assistive forms of interaction, only one variant is depicted. Perception aspects
are neglected in this overview. Partially inspired by [PLF16].

Upon the introduced models of human behavior and the general aspects of interac-
tion, the next section discusses layer models of human-machine cooperation for the
purpose of classifying research in the context of human-machine cooperation and
circumscribing the scope of this thesis.
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2.2.5 Layer Models of Human-Machine Cooperation

In order to properly design cooperative human-machine systems and especially the
automation within, the modeling of the overall human-machine cooperation has
proven to be methodically beneficial: Flemisch et al. [FSKL08] expect a more suc-
cessful cooperation if there is a compatibility of the mental model of the automation
behavior developed by the human and the automation behavior itself. To achieve
this, behavioral models of the human can be advanced towards models of human-
machine cooperation. This is often accomplished by introducing behavioral models
for the automation design which resemble the model of human behavior, see Sec-
tion 2.2.2. For models concerned with general human-machine cooperation, this
implies a mirroring of the human behavior models typically based on task abstrac-
tion levels (see Section 2.2.3) for the automation behavior. The result are layer models
of human-machine cooperation. The following paragraphs provide an overview on
the existing layer models of human-machine cooperation.

Flemisch et al. [FSKL08] proposed a layer model of human-machine cooperation in
the context of cooperative vehicle control. Within this model they aggregate the ver-
tical (task abstraction) and horizontal (perception-action cycle) dimension of human
behavior models [Ras83, Don99, EK99, PSW00] and adopt the so-developed human
model in large parts for the automation behavior modeling. This results in two al-
most identical behavior models of human and machine which cooperatively interact
with the vehicle. Both behavior models comprise a perception module and a sit-
uation assessment module to perceive and assess the state of the vehicle and the
environment it is in. This is followed by a four layer reasoning model describing
the task of controlling the vehicle with four levels of abstraction. The four levels
are closely related to the human behavior model of Donges [Don82, Don99]: On
the navigation level a route is planned to reach the destination. The maneuver level
decides on meaningful maneuvers that suit the predefined route. Each maneuver
is converted into a trajectory on the short term planning level and finally into control
actions on the control level. The control actions of human and automation are then
combined via human interaction resources and an arbiter module of the automation.
The arbiter’s objective is to resolve conflicting actions of human and automation via
some arbitration process. Furthermore, the interaction model allows for different
degrees of automation such that the participation of human and machine in action
execution does not have to be equal. The authors also point out that the coopera-
tive control loop shall be closed on all four levels simultaneously. Together with the
replicated human behavior in automation design, the authors assume that the au-
tomation presents a human compatible behavior and hence leads to better interaction
and cooperation.

In their subsequent layer models, Flemisch et al. [FBB+14] focused on the actual
human-machine interaction in terms of communication on each level of the verti-
cal dimension of the driving task abstraction. To this end, they reduced the num-
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ber of task abstraction levels to three (navigation, guidance, and control, similar to
Donges [Don99]) while the guidance level is split into maneuver and trajectory guid-
ance. On this basis, they discuss parallel and serial aspects of cooperative vehicle
guidance and control: Human and automation may navigate, guide and control in
parallel according to the current degree of automation which depends on the capabil-
ities of human and automation. The automation displays results of the different levels
and the human is able to intercept on all levels (cf. “mediator” concept in [BAMF14]).
Consequently, human and machine communicate on all levels but the human has
the ultimate authority and the automation possesses an assistive role. Providing the
concept of steer-by-wire, the researchers also highlight a sequential aspect of the coop-
eration which is closely related to the LOA: the automation may take responsibility
of guidance and control whereas the human mostly focuses on the navigation. The
LOA may be adapted dynamically depending on automation capability and human
focus. Shortly after this publication, Flemisch et al. [FAI+16] generalized the scope
of their model and introduced new names for the levels of task abstraction: strategic,
tactical, and operational.

Pacaux-Lemoine and Itoh [PLI15] proposed a layer model of human-machine coop-
eration considering the vertical and horizontal dimension of human behavior models
for a generic scope: the three vertical levels of task abstraction are denoted as plan-
ning, tactical, and operational. Furthermore, Pacaux-Lemoine and Itoh focus on an
enhancement of the horizontal perception-action cycle of a human towards human
capabilities of cooperating, i. e. know-how (to perceive and act) towards know-how-
to-cooperate, see Section 2.2.4. Consequently, these human capabilities are then also
introduced to the automation model. Additionally, the capabilities to cooperate in-
fluence the “mixing (or not) of [...] results” [PLI15] of the conventional horizontal
perception-action cycles of human and automation: human and automation may
e. g. analyze information cooperatively or one of them does and shares the results.
The concrete assignment and result sharing depends on the cooperation partners’ in-
teraction/communication capabilities, analyzing capabilities and workload [PLI15].
The close relation of the cooperation models of Flemisch et al. [FSKL08, FBB+14] and
Pacaux-Lemoine and Itoh [PLI15] are discussed in a joint publication of the corre-
sponding researchers [PLF16].

Abbink et al. [ACM+18] introduced a layer model of human-machine cooperation
with a generic robotic scope comprising four “task levels” (strategic, tactical, opera-
tional, and execution) for each cooperation partner. Between these task levels, the
model assumes a “goal sharing/multi-modal communication interface” to transform
the result of a higher level (called “action”) into a “goal” for the next lower level.
These goals can also be shared/traded with the cooperation partner. The authors
do not elaborate on the nature of these interfaces. Each task level has access to a
“multi-sensory channel” to perceive the environment and the system and to assess
the task progress. Furthermore, the model includes at each task level the degree of
consciousness (i. e. skill-, rule-, and knowledge-based behavior, see [Ras83] and Sec-
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tion 2.2.3) of each cooperation partner to account for the aspect of learning behaviors.
Consequently, communication between cooperation partners via a “multi-modal in-
teraction interface” for each task level has to suit the partners’ current degrees of
consciousness on the specific task level. The authors point out the advantage of this
integration in terms of modeling simultaneous guiding (i. e. “teaching”) and learning
which is assumed to be beneficial for a “symbiotic relationship” between human and
machine.

Flemisch et al. [FAI+19] enhanced their previous layer model [FAI+16] which pos-
sessed a generic scope and the three task abstraction levels strategic, tactical, and op-
erational by means of highlighting the aspects of cooperation on higher levels. To this
end, the model comprises a meta layer for communication among the cooperation
partners, called “cooperational” [FAI+19], transversal to the task abstraction levels.
By means of this layer, the authors accounted for the postulated know-how-to-cooperate
of Pacaux-Lemoine et al. [PLD02, PLI15]. Therefore, this layer may include “commu-
nication about the cooperation” [FAI+19] and resembles the model’s new focus on
the communication on all levels of human-machine cooperation. Furthermore, the
authors discussed the close relation to and integration of the above introduced model
of Abbink et al. [ACM+18].

Table 2.1 provides an overview of the discussed layer models of human-machine
cooperation along the following features: the levels of task abstraction, the stages
of the considered perception-action cycle, and the consideration of the cooperation
aspect.

In summary, existing layer models of human-machine cooperation have evolved from
duplicating and slightly adapting human behavior models based on task abstraction
levels to models that increasingly consider the aspect of cooperation on all these task
abstraction levels. Furthermore, existing layer models differ in some aspects due to
different scopes, origins, modeling focuses, and despite the clearly noticeable will of
researchers to align their models.9

Apart from being well-motivated, all of these models lack evidence for the existence
of the postulated layers. Furthermore, when taking a closer look at the concepts and
approaches associated with the discussed layer models of human-machine coopera-
tion, they are either:

• General design concepts for human-machine cooperative systems (e. g. “H-
metaphor” in [FAC+03], “H-mode” in [FBB+14, ABC+16], “AiKiDo metaphor”
in [FPLV+20], all associated with the layer model of Flemisch et al. [FBB+14,
FAI+16, FAI+19]),

9 The struggle to align models is most noticeable in the researchers’ discussion of the relation of the
design paradigm shared control and state-of-the-art layer models of human-machine cooperation: While
Flemisch et al. [FAI+16, FAI+19] described shared control as being mostly applied on the operational/
control level of human-machine cooperation, some of the authors advanced the term shared control to
also comprise all layers of human-machine cooperation [ACM+18].
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Table 2.1: Overview of most relevant layer models of human-machine cooperation.

Layer Levels of Perception- Aspects of
Model Task Abstraction Action Cycle Cooperation

[FSKL08]

navigation

present arbiter concept
maneuver

short-term planning
control

[FBB+14]
navigation not

mediator conceptguidance explicitly
control present

[PLI15]
planning

present know-how-to-cooperatetactical
operational

[ACM+18]

strategic
not

explicitly
present

multi-modal
interaction interface &

goal-sharing/multi-modal
communication interface

tactical
operational
execution

[FAI+19]
strategic not

cooperational layertactical explicitly
operational present

• Descriptive concepts of information exchange within human-machine coopera-
tion (e. g. “know-how-to-cooperate” in [PLD02] associated with the layer model
of Pacaux-Lemoine et al. [PLI15], “interaction patterns” in [BLF19] associated
with the layer model of Flemisch et al. [FAI+19]), or

• Implemented approaches for the automation design in human-machine coop-
eration (e. g. decision support in driving assistance systems [DvA+10] associ-
ated with the layer model of Abbink et al. [ACM+18], “mediator” concept in
[BAMF14], “self-determined nudging” in [WAS+19], both associated with the
layer model of Flemisch et al. [FAI+19], and “emulated haptic feedback brain-
computer interface” in [PLHSC20] associated with the layer model of Pacaux-
Lemoine et al. [PLI15]) which do not consider all levels and dimensions of the
layer models and typically not the emancipated interaction of the human and
the machine.

Consequently, there are no implemented approaches which comprise the entire scope
of any layer model of human-machine cooperation. Hence, the existing layer models
serve two major purposes:
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• The layer models are a means for researchers to communicate and highlight
certain aspects of human-machine cooperation which are in their interests or
focuses.

• The layer models are of structural value to classify the researchers’ work on
human-machine cooperation.

With regard to the topic of this thesis, i. e. emancipated human-machine cooperative
decision making, none of the above discussed layer models allows for an intuitive
communication and a clear classification of the thesis’ research: decision making
is typically associated with each level of task abstraction and with the perception-
action cycle. Given these observations and pursuing the objective to circumscribe the
research reported in this thesis, a new taxonomic model, the butterfly model, was in-
troduced: it was established from an engineering perspective to structure and relate
existing work on emancipated human-machine cooperation and to circumscribe the
research on emancipated human-machine cooperative decision making reported on
in this thesis.

2.2.6 Butterfly Model of Human-Machine Cooperation

The taxonomic model of human-machine cooperation introduced in this section is
called the butterfly model. It was established in the course of two supervised master
theses [Sch18, Ste18] and published thereafter [RWIH20]. The butterfly model is de-
fined from an engineering perspective on how to executing a general task with focus
on the aspects of emancipated cooperation on all levels of task abstraction. The result
is a lean taxonomic model which is inspired by the layer models of human-machine
cooperation (see Section 2.2.5) and which allows to structure and relate existing im-
plemented work and the approach of this thesis on emancipated human-machine
cooperation.

Introduction of the Butterfly Model

The butterfly model10 is depicted in Figure 2.5 and will be discussed in detail in the
following.

The key features of the butterfly model are:

• No constraints, also no implicit ones, on the authority distribution among co-
operation partners which allows for a potentially emancipated cooperation be-
tween human and automation.

• No constraints on the application scope, i. e. the model is verbalized for the
generic case of task execution.

10 The name of the butterfly model is inspired by its shape.
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Figure 2.5: The butterfly model of human-machine cooperation inspired by the model of Flemisch et
al. [FBB+14, FAI+16] but with focus on interfaces for an emancipated goal-directed cooperation
between human and automation on every level.

• Focus on interconnected task abstraction levels within the model of one co-
operation partner for reasons of representation simplicity, while integrating
the elements of decision making and action implementation of perception-action
cycles in the task levels and disregarding different degrees of consciousness,
i. e. learning aspects.

• Potentially individual goals for each cooperation partner and specific objectives
for each level.

• Explicit possibility to directly communicate, interact and cooperate between
cooperation partners on all task abstraction levels via suitable interfaces. This
also allows for an easy representation of systems with increased or dynamically
changing LOA.

• Taxonomic model of human-machine cooperation with layers which are place-
holders for more specific models of human-machine cooperation.

The human, the automation and the environment form the fundamental elements of the
butterfly model. Both, human and automation, are able to perceive the environment.
Within the environment, there is a system the human and the automation primarily
interact with, e. g. a vehicle or a work piece. Its state is observable for both human
and automation.

In the following, the task abstraction levels of both cooperation partners are defined
in more detail. Although, the scope of this model is not limited and may cover var-
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ious applications (e. g. in cooperative manufacturing involving humans and robots,
or cooperative driving of a vehicle), the task abstraction levels are exemplarily ex-
plained with respect to the execution of a driving task. Hence, the system is a vehicle
while the environment is its driving area such as streets, cities, other vehicles, pedes-
trians, etc. The four task abstraction levels are defined as follows:

• Decomposition Level
On this level, the overall task is decomposed into all potential subtasks whose
execution abilities depend on the system’s and environment’s state. This is
done under consideration of a certain goal for this level. Regarding the example
of a driving task, this level provides all potential maneuvers, e. g. “turn left”,
“overtake”, etc. for the goal “drive from A to B”.

• Decision Level
On this level, it is decided which subtask, i. e. driving maneuver, to execute
with respect to the system’s, i. e. vehicle’s, and environment’s current state as
well as given objectives like task execution in shortest time or with the least
effort, i. e. with minimal travel time or steering effort. The decision has to
be made before the current subtask/maneuver ends. Also, decisions must be
reevaluated if the state changes significantly.

• Trajectory Level
The actual trajectory for executing the chosen driving maneuver is planned
on this level with respect to goals specific to this level such as time-optimal
trajectories or safety measures, e. g. keeping safety distances to obstacles.

• Action Level
On this level, the agent directly controls and interacts with the system/vehicle
to achieve the planned trajectory and ultimately accomplish the chosen sub-
task/driving maneuver.

The outcome of higher levels are passed on to the next lower level as requirements.
On the other hand, lower levels can communicate the success or failure of their work
to higher levels. The goal-directed action of cooperation partners (see Section 2.2.3)
on all levels is emphasized by considering specific goals for each level and potentially
different goals for each cooperation partner. Furthermore, the goals are assumed to
be time-invariant for the current processing and meaningful with respect to the given
level. Although the individual goals of the cooperation partners may differ, the goals
have to be consistent such that arising conflicts can be resolved within the cooper-
ation. Each layer in the butterfly model explicitly allows for direct communication
and cooperation between the human and the automation via suitable interfaces (indi-
cated by dashed lines in Figure 2.5). These interfaces may not be part of the original
system, i. e. the vehicle in the exemplary application. They can be part of an extended
system, e. g. a touchpad as utilized in conduct-by-wire concepts [FBB+14]. Also in
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the context of the research for this thesis, three interfaces for cooperative decision in-
terfaces were implemented and examined which were based on touchpads, joypads
and various displays, see Sections 4.1.1, 5.3.1, and 5.2.1.

Furthermore, the explicit modeling of direct cooperation on higher levels enables
a straightforward integration of high LOA into the model. Consider the case of
e. g. highly autonomous driving in which the action and trajectory levels are fully
automatized, i. e. steering wheel and pedals are not present and the driver is only
able to interfere with the vehicle via a maneuver interface, cf. conduct-by-wire con-
cept [FBB+14]. Hence, both, driver and vehicle automation, may be enabled to
cooperate by negotiating upcoming maneuvers. This form of application can be
described by replacing the two lowest levels of the model with a fully automated
component that is integrated in the system. However, if the LOA can be changed
flexibly, i. e. steering wheel and pedals are still present, an adaptation of the LOA
e. g. similar to Baltzer et al. [BAMF14] could be applied as well.

Comparison to Other Layer Models of Human-Machine Cooperation

The outer appearance of the butterfly model in terms of structure does not differ
greatly from the existing layer models. However, the task abstraction levels (see Sec-
tion 2.2.3) are adapted to the context of executing a general task. This implies a shift
in terms of the perspective on abstraction itself from time-horizon-based (i. e. strat-
egy, tactics) to task-action-based (i. e. task decomposition, decision making). Nev-
ertheless, there remains an analogy between the strategic, tactical, operational, and
execution levels and the levels of the butterfly models. Additionally, the elements
of decision making and action implementation of the conventional perception-action cycle
(see Section 2.2.3) can be considered to be integrated into the task abstraction levels,
see the task level names in the butterfly model. Even though the perception elements of
the perception-action cycle are considered, as stated above, they are only implicitly
visualized via arrows in Figure 2.5 for more clarity. Like in most other layer mod-
els, learning and training aspects (see [Ras83] and Section 2.2.3) are disregarded for
reasons of simplicity. In contrast to other layer models, the goal-directed action on
all levels with respect to individual goals of the cooperation partner is highlighted
in the butterfly model. Furthermore, the butterfly model highlights the aspect of po-
tentially direct communication and cooperation on all levels and explicitly considers
itself to be lean and taxonomic. This implies that each layer resembles a placeholder
for more specific models which serve as design model for human-machine cooper-
ation on the respective layer. These specific models focus on forms of interaction
(see Section 2.2.4) and especially on the abilities to cooperate (cf. “know-how-to-
cooperate” [PLD02]). They also form the basis for cooperative automation designs
which can be validated.

To conclude, the butterfly model provides a taxonomy for emancipated human-
machine cooperation from an engineering and implementation perspective. Fur-



30 2 Human-Machine Cooperation: Current State and Open Questions

thermore, it is suitable to intuitively circumscribe the research of this thesis and
relate it to existing work in the context of emancipated human-machine coopera-
tion: motivated by the success of established approaches for emancipated human-
machine cooperation on the trajectory and action level [Fla19, LHFH18, Ing21], the
research reported in this thesis targets human-machine cooperation on the decision
level. Hence, the remaining thesis applies the butterfly model for classifying human-
machine cooperation and elaborates on the decision level by means of mathematical
behavior models of human-machine cooperative decision making (see Chapter 3),
which forms the basis of experimentally evaluated automation designs to coopera-
tively decide with humans and resolve conflicts (see Chapter 4 and 5).

The next section motivates the research on the decision level of human-machine co-
operation in more detail and discusses existing research with the same focus, provid-
ing details about automation designs and experimental investigations on cooperative
decision making. This discussion reveals the research gap in more detail and is fol-
lowed by a corresponding statement of the contribution of this thesis.

2.3 Human-Machine Cooperation on Decision Level

The research presented in this thesis investigates human-machine cooperation on
decision level for four major reasons:

1. Reviewing the state of research on human-machine cooperative decision mak-
ing (see Section 2.3.2) reveals a research gap, especially in terms of emancipated
human-machine cooperation.

2. Research on emancipated human-machine cooperation at lower task levels, es-
pecially at action level, has revealed a great potential for creating synergies and
improving performance [Fla19, LHFH18, Ing21]. Hence, aiming to transfer this
success to higher levels is a logical next step.

3. For an in general functioning human-machine cooperation, all task levels re-
quire consideration and attention when designing appropriate automated co-
operation partners [PLI15, FAI+16]. Especially cooperative human-machine
systems with the ability to resolve decision conflicts can be assumed to be more
robust and flexible in application, therefore advancing their scope significantly
compared to existing, tailored human-machine systems for narrow scopes.

4. Facing current trends of increasing capabilities of automation in cooperative
human-machine systems, the conflict resolution among cooperation partners
on the decision level is a current pressing issue [FPLV+20]: On the one hand,
increasing capabilities of the automation will enable human-machine coopera-
tion on higher levels and therefore the ability to resolve decision conflicts is a
key feature of these future cooperative human-machine systems. On the other
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hand, regarding the serious out-of-the-loop problems of human operators in
cooperative human-machine systems with high LOA, the continuous involve-
ment of humans on decision level has the potential to keep the human in the
loop such that she or he is consequently able to properly supervise the automa-
tion on lower levels.

Furthermore, the research reported in this thesis exclusively focuses on the decision
level. This is motivated twofoldly:

1. The LOA of newly developed systems increases constantly which allows for
fully automated performance of cooperative human-machine systems on lower
levels, i. e. trajectory and action level, see e. g. [FBB+14, ACM+18].

2. The development of cooperative human-machine systems taking into account
all levels at once is highly complex. Therefore, focusing on one level at a time
and integrating them in the end potentially reduces this complexity.

Therefore, the focus on decision level is suitable in the scope of this thesis which is
one of the first investigations on (emancipated) human-machine cooperative decision
making.

2.3.1 Definition and General Solution Approaches

Human-machine cooperation on decision level can be analogously defined to Defi-
nition 2.6 of human-machine cooperation with a slight refinement of the term task
which is specified to decision making. This leads to the following definition.

Definition 2.7 (Human-Machine Cooperation on Decision Level)
Two cooperation partners, i. e. human and machine, are involved in cooperative decision
making, i. e. in a cooperation on decision level, if they meet two minimal conditions.

1. Each one strives towards decision making objectives and can interfere with the
other in the cooperative decision making process.

2. Each one tries to manage the interference to facilitate the individual activities in
the decision making process and/or the common task, i. e. reaching an agreement.

The symmetric nature of this definition can be only partly satisfied.

Although the term cooperative decision making could be perceived with a broader
scope, it is always associated with human-machine cooperation in this thesis. It ori-
gins from the term decision making that is associated with the reasoning of one agent
in a decision scenario and which is extended to the cooperative case that requires
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individual decision making of potentially all cooperation partners involved and a com-
munication process among them to reach an agreement, constituting the cooperative
decision making process.

Again, note that in Definition 2.7 interfere has no negative connotation and that the
abilities and authorities in cooperative decision making are generically defined and re-
quire further definition in case of a specific scenario. In the most extreme case in
terms of ability, a cooperation partner could not be able to make decisions, e. g. due
to lacking relevant information. In this case, this cooperation partner will probably
leave the other partner to make the decision for them. However, in the general case
considered in this thesis, it is assumed that all cooperation partners are able to some
extent to take part in the cooperative decision making process.

Furthermore, the general Definition 2.7 of cooperative decision making yields a vast
scope, e. g. human-robot collaboration, driving assistance systems, etc. In the exem-
plary context of highly automated driving, cooperative decision making may man-
ifest itself as follows: the human driver and the automation individually evaluate
maneuver options, individually decide for their maneuver preference and subse-
quently participate in a (communicative) process to reach a mutual agreement on
one maneuver option which is eventually executed.

In what follows, the form of interaction between cooperation partners on decision
level and based on that general solution approaches for the cooperative decision
making challenge are discussed.

Interaction vs. Communication

When Norbert Wiener introduced the term “cybernetics” in 1948 to describe the
relation of animals/humans and machines, he postulated that a successful coopera-
tion requires some sort of communication [Wie61]. Considering this from a human-
machine cooperation perspective and in contrast to cooperation on action level, co-
operative decision making may rely on two communication channels with respect
to the butterfly model, see Section 2.2.6: the direct, explicit communication channel
on the decision level and/or the interaction channel via lower levels and a potential
interaction system. Table 2.2 provides the typical features of these different channels
in the context of human-machine cooperation [JMS+16, RIK+17].

In essence, the direct, explicit communication channel offers a more abstract, richer
communication, if it exists at all, while the interaction channel may be perceived to
be more intuitive but has a more limited information flow.

On this basis, three general solution approaches for the challenge of cooperative
decision making can be defined.
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Table 2.2: Features of available communication channels on decision level.

Direct, Explicit Interaction
Features Communication Channel Channel

Symbols abstract symbols physical signals

Interpretation of Symbols not required required

Information Flow high low

Existence (typically) artificial natural

General Solution Approaches

The general solution approaches for human-machine cooperative decision making
differ in their assumption on the authority distribution among the cooperation part-
ners and the richness of the available communication channel(s):

• Trivial Cooperative Decision Making due to Information Alignment
Given a direct, explicit communication channel with a fast and extensive flow
of information (e. g. exchange based on stenography), the information basis
for decision making of all cooperative partners can quickly be aligned. Fur-
thermore, assuming all cooperation partners are able to equally process the
information and reason about it to reach a mutual (higher) goal, then all co-
operation partners develop the same preference and trivially agree. Hence,
no (communication) process is required to reach the agreement, e. g. [GR86,
SBP+18, JA19, TW19]. Note that in this setting the authority distribution is
irrelevant. Apart from that, this setting is highly unlikely in the context of
human-machine cooperation as decision scenarios are usually highly complex
and the communication channels will not be as rich as required, especially
considering human limited perception capabilities.

In the simplified example of cooperatively determining a route to drive, the
navigation system may be able to provide all relevant time information of all
potential route options to the human driver who has no other information to
add. In case both cooperation partners pursuit the mutual goal of minimizing
travel time, both will decide trivially for the same route.

• Leader-Follower Approach
In this approach, the authority among cooperation partners is unequally dis-
tributed, putting one cooperation partner in the lead and hence also avoiding
an extensive communication process to reach an agreement, e. g. [MM95, BK17,
TI17]. Therefore, this approach is suitable for situations in which cooperation
partners communicate via the limited interaction channel. Beyond that, the co-
operation partner with minor authority might have important insights for the
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decision making but is continuously overruled. Therefore, this approach is un-
suitable in situations in which all cooperation partners have legitimate interest
to participate in the process of decision making, e. g. if they obtain different but
equally valuable information about the decision scenario. One solution to this
can be a dynamic leader-follower role assignment that relies on a deterministic,
universally valid assessment of cooperation partners’ performance with respect
to decision making.

In highly automated vehicles, the vehicle could e. g. assess how distracted the
human driver is at any point in time. As soon the driver is distracted, the ve-
hicle’s automation takes control authority of e. g. maneuver selection. It hands
back the control authority to the driver whenever the distraction disappears, al-
though the automation may have legitimate reasons to decide differently than
the human, e. g. due to different information bases for making the maneuver
decision.

• Emancipated Cooperative Decision Making Process
This approach assumes equal authority among cooperation partners and allows
for different abilities with respect to decision making, aiming for an improved
cooperative performance, e. g. [OKSB12, VKG14, OGD17, CHS21]. It therefore
has the potential to yield a solution that is mutually agreed on by all cooper-
ation partners. However, there is a risk of not reaching an agreement if both
cooperation partners are unyielding. In terms of communication channels, this
approach usually does not require the extensive information flow of a direct
communication channel. Nevertheless, in order to avoid misinterpretation of
symbols, the direct communication channel may be preferable compared to
communication via the interaction channel.

In the context of highly automated vehicles, the vehicle’s perception of future
traffic is outperforming the human abilities due to car-to-x communication. The
opposite could hold for the perception of the rapidly changing close by traffic
situation. In this case and with both cooperation partners pursuing a minimal
travel time, the emancipated combination of both abilities to perceive traffic
could be beneficial in selecting appropriate driving maneuvers. However, the
traffic assessment results in a lot of information which cannot easily be shared
among the cooperation partners. Therefore, an emancipated cooperative deci-
sion making process has the potential ability to implicitly fuse the information
and yield a driving maneuver both cooperation partners mutually agree on.

The following section discusses the state of research of human-machine cooperative
decision making which typically considers either the leader-follower approach or
rarely an emancipated cooperative decision making process.
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2.3.2 State of Research

Like research on general human-machine cooperation, research on human-machine
cooperative decision making can be observed as the consequence of considering
firstly individual decision making of humans or automated agents and subsequently
decision making in groups of multiple equal agents, i. e. groups of humans or groups
of automated agents, see Figure 2.6. Therefore, this section briefly presents some
exemplary research on decision making of individuals and within classes of equal
agents. Thereafter follows the discussion of research on decision making in the con-
text of human-machine systems in more detail.

Figure 2.6: Evolution of decision making: from individual decision making over decision making of mul-
tiple agents of the same class (e. g. humans or automated agents) to decision making in the
context of human-machine cooperation.

Decision Making of Individuals and Within Groups of Equal Agents

Research investigating human individual decision making began in the middle of
the last century in the context of economics: Researchers tried to mathematically
describe, understand and predict human decision making behavior when facing eco-
nomical benefits and risks, e. g. in gambling or buying insurances, leading to exten-
sive theories of expected utility [FS48] that have been advanced up to the present
[KT79, KR14]. Besides this (more or less) static economical context, biologists inves-
tigated human decision making in the dynamic domain of human motion to under-
stand the decision making process in terms of selection, planning and controlling of
goal-directed human movements, see review of Gallivan et al. [GCWF18]. Further-
more, engineers developed and validated threshold models of human decision mak-
ing, e. g. in dynamic process control to understand and predict how a plant operator
detects events and selects actions when supervising multiple process measurements
[GR82, GAR86].

Apart from human individual decision making, automated agents required decision
making capabilities in the course of increasing automation in the last century. There-
fore, engineers developed various decision making strategies and integrated these
into hierarchical automation designs [GDW91, BYK+02].

Naturally, engineers extended these individual decision making capabilities towards
multi-agent systems to allow for decentralized decision making of distributed artifi-
cially intelligent systems (see overview by Millot and Mandiau [MM95]) by means of
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methods such as prioritization and auctions. Exemplary scopes were task allocation
[JCH16] and the coordination of autonomous airplanes or vehicles [SVP11, DP14,
TLL+18]. Also in the course of research for this thesis, a decentralized path plan-
ning approach for cooperating autonomous mobile units with conflict resolution by
means of a prioritization approach was introduced [RPFH19a].

Apart from these rather application-specific solutions in terms of cooperative deci-
sion making in action or trajectory planning (see task levels in the butterfly model in
Section 2.2.6), a prominent theory developed over the last decade to formalize con-
flict resolution among automated agents in a more abstract way is called negotiation
theory [Baa16]. Corresponding models consist of agent models and an interaction
protocol along which the agents have to communicate offers. Each agent model
comprises a utility function for evaluating offers and decision options, an accep-
tance strategy determining when to accept an offer of another agent, and a bidding
strategy for generating own offers. Negotiation theory offers various application
examples, e. g. supply chain management [Fin04], service distribution [ZR89], and
traffic management of automated vehicles [ASM+05, YHS07]. Furthermore, there
are many bidding /conflict resolution strategies [RS06, HL14] available as well as
identification approaches for agents’ negotiation behaviors [CJ04, HT08, MHM11].

In the context of human group decision making, one also observes two bodies of
literature differing slightly in their scope: One type of research is concerned with
human-human interaction or cooperation by providing some experiments investigat-
ing cognitive and neural processes in human joint action (e. g. [SBK06]) and sensori-
motor control in joint action and planned coordination (e. g. [BK17]). Also engineers
experimentally investigated haptic human interaction and found that humans are
able to communicate and negotiate simple intentions haptically: Reed et al. [RP08]
and Groten et al. [GFKP13] investigated paired human subjects who had to track
conflicting reference trajectories while facing haptically coupled input devices. Weel
et al. [WSA+18] examined the motion control in conflict situations of couples walk-
ing hand in hand on a Christmas market. The same insights were obtained in the
realistic setting of driving assistance in case the driving assistance system is simu-
lated by a human [JMS+16]. Similarly, an experiment in the course of the research
on this thesis also yielded the insight that humans are able to cooperatively decide:
two subjects were haptically coupled by means of force-feedback steering wheels
and faced a dynamic evasive driving scenario which created conflict situations. In
general, the subjects were able to successfully and cooperatively resolve the conflict
situations [RGFH18].

The other type of research in the context of human group decision making focuses on
mathematical models of abstract decision scenarios, e. g. in the economical context
[MCAV19]. The most noticeable research of this type is summarized by game theory
[FT91]: It provides models and analysis of decision scenarios with multiple intelli-
gent, selfish entities involved. These entities are typically humans or animals and
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are called players. As a result, this theory usually describes game settings and con-
straints as well as provides and/or analyzes solution concepts, e. g. equilibria. In the
context of dynamic group decision making, game theory offers various models such
as revision games [CE08, CKLS14], bargaining games [Rub82, AG00] and the war
of attrition that models conceding behavior in a competition [May74, BC78, BK99].
To be more specific, the war of attrition describes the concession behavior of players
in an incomplete information setting, i. e. the players are unaware of the detailed
reasoning of the other players. Application examples are hierarchic encounters in
animal populations [May74] and market competitions [BK99].

With this research background concerning decision making of individuals or in
groups of equal agents, researchers started to investigate human-machine decision
making scenarios and transferred and adapted some aspects of this previous re-
search.

Decision Making in the Context of Human-Machine Systems

In general, human-machine systems are required to make decisions in increasingly
complex fields of application. Aside from simple, static authority assignments in
terms decision making, the ability to cooperatively decide and resolve naturally oc-
curring conflicts among cooperation partners is considered a key feature of automa-
tion designs in successful and robust cooperative human-machine systems aiming for
a large area of applications [FPLV+20]. Therefore, researchers developed approaches
enabling the machine to actively participate in cooperative decision making. For
further discussions, all resulting and existing approaches can be categorized by the
authority allocated to the machine in cooperative decision making:

1) Leader-Follower Paradigm
The authority in cooperative systems designed according to this paradigm is
assigned to the leader who is in most cases the human. The follower may
propose the own preference to the leader but only if the leader is absent the
follower is able to enforce this preference. Therefore, in terms of authority
assignment, designs obeying this paradigm are plain and well-defined. Apart
from that, this paradigm is applied for various reasons such as liability and
human acceptance.

2) Decision Support Systems
The automation proposes decision options and a potential preference to the
human who is in the lead and makes the decision.

3) Dynamic Authority Assignment
The authority of the automation with respect to decision making within the
cooperation is dynamically assigned considering the congruence of decision
between human and automation, i. e. the follower-role of the automation is
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dynamically shifted to the leader role if the human (potentially implicitly) ac-
cepts decisions of the automation. Ultimately, the human stays in the lead as
the automation gives in if its decision is opposed by the human.

4) Equal Authority Assignment
Both human and automation engage in cooperative decision making as equal
partners.

Approaches of the first and third categories implement the leader-follower approach
for human-machine cooperative decision making introduced in Section 2.3.1 while
the approaches subsumed in the second category try to trivialize cooperative deci-
sion making by providing proposals or other information. Approaches of the last
category aim for or investigate emancipated cooperative decision making processes.
In the following the existing approaches are discussed in more detail along these five
categories.

The majority of applications in the context of human-machine systems employs the
leader-follower paradigm with the human as the leader [CD13, JSB13, BK17, TI17]
(rarely the automation is in the lead, e. g. [MM95]) or considers cases in which the
task can be split in complementary but divisible subtasks such that the human
and the machine work in parallel but not together on one subtask [JSB13]. The
three major reasons for this are simplicity (automation design must not consider
human behavior [BK17]), liability (if in the lead, the human clearly stays responsi-
ble for the decisions of the entire human-machine system [FPLV+20]) and human
comfort/acceptance (potentially disruptive decision behavior of the automation is
avoided, therefore approaches aim for reducing conflicts to zero [GR86, SBP+18,
JA19, TW19]).

Closely related are decision support systems which aim at supporting the decision
making of the human leader: Hindriks and Jonker [HJ09] addressed the potential
mental overload of humans facing a complex decision situation with many options,
aspects and stakeholders. To offer support to the human in these situations, they pro-
posed a concept and architecture for a “pocket negotiator” which has to be provided
with a description of the decision scenario and displays useful hints during the ne-
gotiation. Similarly, Suehiro et al. [SWS19] proposed a driving assistance system for
decisions in lane merging to reduce cognitive load of drivers. The system is based on
a human decision making model of drivers choosing merging positions. By means
of this model, the systems predicts the merging gap and proposes the correspond-
ing velocity to the driver. The corresponding experiment indicates reduced cognitive
load and difficulty in decision making for the driver. Also in the field of driving as-
sistance systems, Della Penna et al. [DvA+10] designed an assistance system which
reduces steering wheel stiffness to encourage faster decision making of drivers facing
several evasive maneuver options. The authors emphasized that the decision capa-
bility and authority should stay with the driver but should be supported. Therefore,
the driver is able to compensate the reduced stiffness. The experimental results show



2.3 Human-Machine Cooperation on Decision Level 39

less crashes, decreased response times and control effort. To solve conflicts in coop-
erative control of highly automated vehicles, Baltzer et al. [BAMF14] introduced the
concept of “arbitration”: For controlling a highly automated vehicle, the driver and
the assistance system interact via haptic multi-modal interfaces to navigate/guide/
control the highly automated vehicle. Via specific “interaction mediators” for the
different driving task levels, the assistance system proposes a suitable action to the
driver who can intercept or (implicitly) approve the action before it is potentially
executed. In cases of emergency, the driver is firstly warned and ultimately “de-
coupled” from the driving task such that the automation solely executes actions to
reach a safe state. Experiments proved the effectiveness of the concept. Upon this,
the “conduct-by-wire” principle [GHW+11, FBB+14, FKGH15] was introduced for
highly automated vehicles which do not require a manual stabilization of the vehicle
and are guided by means of maneuver commands. To this end, maneuver interfaces
have been developed to present maneuver options, indicate the preferred option of
the automation and perceive the selection of the driver. The interfaces range from
touchscreens and head-up-displays [KSB10, KFS+12, FKB+12, FKBG12] to driver ges-
ture recognition [FDM+20]. By means of the driver’s ability to decide for the ma-
neuvers or supervise the maneuver decisions of the automation, the driver is kept in
the loop and experimental evaluation reveals increased cooperative performance, re-
duced human workload and increased driver acceptance [FBB+14, FKGH15]. Walch
et al. [WSH+16, WWM+19] also considered a highly automated vehicle which can
be guided on a maneuver basis. The vehicle offers potential future maneuvers and
the driver is able to approve the default option or select another one via a touch-
pad. Participants in the corresponding experiment reported a high usability and
satisfaction with the proposed form of vehicle interaction. Motivated by the same
area of application, Weßel et al. [WAS+19] proposed the concept of “self-determined
nudging” which tries to support humans by nudging to make decision according to
values and in situations the human authorized. Pacaux-Lemoine et al. [PLHSC20]
proposed a decision support system in the context of a teleoperated robot: The robot
is controlled by a human operator via an “emulated haptic feedback” brain-computer
interface for selecting the direction the robot is driving (i. e. left, right, straight). To
avoid obstacles, the automation increases the mental effort required to steer towards
detected obstacles. In contrast to the above discussed decision support systems, the
ultimate decision in which direction to drive is made by the automation to account
for the low speed of the interface and hence potentially greatly delayed detection of
human (thought) inputs. A conducted study showed the benefits of the emulated
haptic feedback compared to operating the robot without it.

Another prominent category of research is concerned with dynamic authority as-
signment: Fern et al. [FNJT07] developed an assistant partially observable Markov
decision process (POMDP) to observe a goal-directed behavior of a human, esti-
mate the human’s goal and decide on assistive actions. These action selections were
customized to the individual users. The concept was evaluated in simulated envi-
ronments with human subjects and showed substantial reduction of human effort. In
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the context of robotics, Kheddar [Khe11] proposed a control concept for humanoid
service robots with the purpose of a dynamic leader-follower assignment based on
the concurrence of the human’s and the robot’s motion goals. The aspiration was
the development of a robot which is either passive or proactive if the motion goals
are similar. However, no implementation details or results were reported. In con-
trast to this, Thobbi et al. [TGS11] published the results of an actual experiment
in which a robot and a human were supposed to jointly lift a table. The robot was
equipped with two controllers: One was reactive to the human motion, the other was
proactive as it took the prediction of human motion into account. The switching of
the controllers and hence of the authority distribution was influenced by the robot’s
confidence in the prediction of human motion. The experiment yielded improved
cooperative performance.

Similarly, two collaborating research groups [MLK+12] developed a dynamic “role”
assignment method for a human-robot team with the aim to assist but not disturb
the human in joint task executions. The first implementations of the dynamic au-
thority assignment were based on the alignment of human’s and robot’s forces on
a joint work piece. The robot gradually increased force contribution if forces were
aligned and reduced its contribution if this was not the case. Corresponding experi-
ments revealed objective benefits in cooperative performance. However, participants
perceived the force adaptation process as not transparent [OKSB10, MLK+12]. The
authority assignment strategy was then advanced to an adaptation depending on hu-
man intention recognition in haptic collaborations with similar experimental results
[KSB13]. Upon this, the intention recognition was refined by a data-driven stochastic
model of human motion behavior. Additionally, the authority assignment was also
advanced to allow for recessive to dominant attitudes of the robot depending on the
uncertainty of human motion modeling and potential risk of the joint action. An ex-
periment proved the increased helpfulness of the assistive system and human effort
minimization [MLH15]. Corredor et al. [CSP14] developed an authority assignment
strategy for teleoperation assistance with the aim to leave the human operator in the
lead. To this end, the assistive force was dynamically adjusted depending on the
concurrence of forces to track a reference trajectory.

An example of the dynamic authority assignment in driving assistance of highly
automated ground vehicles is the “H-mode” introduced by Altendorf et al. [ABH+16,
ABC+16]. It is inspired by the “(H)orse” metaphor of Flemisch et al. [FAC+03] from
the same research group: the interaction of a rider and horse served as a metaphor
for the development of assistance systems and their interaction with the driver. In
the H-mode approach, the driver is supported by the assistance systems with various
levels of automation. The change of the levels of automation is mainly initiated by the
driver either by tight grasp of the steering wheel (reducing the degree of automation
and resembling holding the reins tightly in the H-metaphor) or by pushing a button
for in- or decreasing the degree of automation. The assistance system only initiates
switches of automation degree in emergency situations [ABH+16, ABC+16].
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The so far discussed models are strongly human-centered, i. e. they are mostly de-
signed with an assistive objective. Furthermore, no mathematical behavior model of
human decision making is utilized and the authority among the cooperation part-
ners is not equal. However, there is also some research on equal authority assign-
ment between human and automation. Vahidov et al. [VKG14] investigated bilateral
and multi-bilateral negotiations between automated agents and humans in electronic
marketplaces. The authors established a model of this scenario by means of negoti-
ation theory and experimentally evaluated the performance of agents. However, the
authors did not model, identify or adapt to human negotiation behavior. In another
example, Oguz et al. [OKSB12] established a haptic cooperation game: one human
and one automated player are haptically coupled and earn rewards depending on
their cooperative (or selfish) action. The scenario was modeled by means of a multi-
stage static game and three automation behaviors11 were experimentally evaluated.
Although human and automated player possessed equal authority, the research is
concerned with a series of static decision making scenarios and the corresponding
decision making history rather than with the dynamic process of cooperative deci-
sion making to reach an agreement within one scenario. Also in the case of so-called
mixed initiative systems in which a (usually mobile) robot is operated with different
LOA such as teleoperation or autonomy, the human operator and the robot’s au-
tomation possess equal authority to initiate a LOA switch. For such systems, Owan
et al. [OGD17] developed a so called mixed-initiative control switcher. In case the
agents disagree whether or not to change the LOA, the robot’s automation will drop
its initiative for or resistance against the LOA change according to fixed time thresh-
olds, ultimately giving the lead to the human. Chiou et al. [CHS21] propose another
mixed-initiative control switcher focusing on when the robot’s automation is taking
the initiative to switch the LOA. They apply fuzzy control methods and adapt param-
eters to human (i. e. expert) behavior which results in the expert-guided mixed initiative
control switcher (EMICS). Although EMICS is less intrusive than its predecessors, it
may still lead to continual LOA switching, showing that the underlying conflicts for
control of the robot between the human operator and the robot’s automation is not
resolved.

To summarize, Table 2.3 visualizes the major categories of research on cooperative
decision making in the context of human-machine cooperation and the categories’
key aspects. Note that for most approaches the category of decision support systems
can be seen as a sub-category of human-in-lead due to its similarities in terms of au-
tomation authority. Besides this, Table 2.3 is the basis of the research gap discussion
in the following.

11 The three automation behaviors were either conceding relatively fast, conceding relatively late, and
mirroring the behavior of the cooperation partner, denoted by competitive, concessive, and tit-for-tat,
respectively.



42 2 Human-Machine Cooperation: Current State and Open Questions

Table 2.3: State of research on cooperative decision making in human-machine systems. The categories’
key aspects are the following: The automation authority may range from follower to leader or
may be equal to the human authority. The considered cooperative decision making process is
either trivial, i. e. the agreement is found instantaneous, or only partially elaborated on in the
respective work. The human decision making behavior may be modeled within some approaches
and utilized in the automation design to avoid conflicts.

Range of Decision Human
Automation Making Decision

Categories Authority Process Behavior

Human-in-Lead
follower trivial

rarely modeled
[GR86, TI17, SBP+18, TW19] and utilized

Decision Support Systems
follower
or leader

partially
elaborated

rarely modeled
and utilized

[HJ09, DvA+10, BAMF14, FBB+14]
[SWS19, WWM+19, PLHSC20]

Dynamic Authority Assignment
follower
to leader

trivial rarely modeled[FNJT07, OKSB10, Khe11, TGS11]
[MLK+12, MLH15, ABH+16]

Equal Authority Assignment
equal

partially
not modeled

[OKSB12, VKG14, OGD17, CHS21] elaborated

2.4 Research Gap, Questions and Contributions

Regarding the state of research, the gap in research can be formulated upon which
the research questions addressed in this thesis are stated.

Research Gap

The above summary of research on cooperative decision making in the context of
human-machine systems provided in Table 2.3 reveals many approaches that deal
with cooperative decision making to some extent. Within the categories human-in-
lead, decision support systems and dynamic authority assignment of Table 2.3, most
research tries to avoid conflicts between human and machine, either by means of in-
tent recognition (decision support systems) and/or by (implicitly/ultimately) giving
the human the leading role in the cooperation (human-in-lead, dynamic authority
assignment). The minority of approaches deals with equal authority assignment be-
tween both agents, i. e. with emancipated agents. Although some approaches within
this group consider some of the following aspects, there is no approach that
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• considers the case of emancipated cooperative decision making between hu-
man and machine and

• properly focuses on the decision level of human-machine cooperation by

– allowing for non-trivial cooperative decision making processes which lead
to mutual agreements and by

– utilizing suitable mathematical models of human decision making behav-
ior, especially with focus on modeling human concession behavior in co-
operative decision making.

However, enabling machines to take part in emancipated cooperative decision mak-
ing processes with a human and to adopt human-like strategies may yield synergies
and high user acceptance even in conflict situations: perceiving the automation like
an emancipated cooperation partner, i. e. like another human, the conflict resolution
may be as successful as research has revealed for the conflict resolution between
two humans, see [RP08, GFKP13, JMS+16, RIK+17]. Furthermore, one cooperation
partner’s reasons for an initial decision which caused the conflict cannot simply be
ignored by the other cooperation partner. As an example, the driver of a highly au-
tomated vehicle could not just ignore the decision of the vehicle’s automation and
the corresponding reasons for avoiding an unfavorable situation.

In order to investigate emancipated human-machine cooperation on decision level, a
suitable automation design for the machine is required. To this end, this work utilizes
a consistent model-based design approach. This approach offers several advantages
compared to a heuristical design approach: It allows to introduce existing white-box
knowledge of the considered human-machine cooperation on decision level. Ad-
ditionally, it enables a comprehensible, explanatory description of the cooperation
and of the automation behavior. Given this knowledge and description, a mathe-
matical behavior model and hence an automation behavior similar to the respective
mental model of humans may be generated which potentially leads to high user ac-
ceptance, see Section 2.2.2. Furthermore, the model-based design approach allows
for a compartmentalized validation process and a replicable and easily adjustable
design of the automation in new areas of application. Following this model-based
approach to establish a suitable automation design, adequate mathematical behavior
models of human-machine cooperative decision making are required. To eventu-
ally reveal potential benefits of the emancipated human-machine cooperation and
although some research experimentally investigated aspects of cooperative decision
making, the new models and automation designs demand for an innovative experi-
mental design due to their exclusive focus on the decision level of human-machine
cooperation.

In consequence of these research opportunities, this thesis addresses the following
research questions and provides associated contributions.
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Research Question 1

How to explicitly model cooperative decision making regarding human and machine as equal
partners and considering human abilities as well as human behavior in a cooperative decision
making process?

Contribution 1

Following the human-machine cooperation modeling approach via emancipated co-
operation partners (dashed arrows in Figure 2.2), a first meta-model of human-machine
cooperative decision making is introduced including a set of requirements resulting
from human participation. Based upon this model design template, two novel math-
ematical behavior models for human-machine cooperative decision making are pro-
posed: the adaptive negotiation model with its origin in negotiation theory and the
n-stage war of attrition advancing game-theoretic models, see Section 2.3.2. Both treat
the cooperation partners as equal in terms of authority and ability. Furthermore, the
cooperation partners are modeled to individually evaluate and decide on decision
options and mutually agree in a process of cooperative decision making. Additionally,
human behavior in cooperative decision making is explicitly considered in both mod-
els to increase user acceptance. In the case of the adaptive negotiation model, this
includes the identification and the adaptation towards the identified individual human
behavior in the course of cooperative decision making. Moreover, a theoretical state-
ment for the adaptive negotiation model is derived providing a guarantee for finding
an agreement and hence for successfully resolving conflicts in cooperative decision
making. In the case of the n-stage war of attrition, it is shown that the proposed
game-theoretic strategies lead to a perfect Bayesian equilibrium. An overview and the
relation of the models presented in this thesis is provided in Figure 2.7.

Research Question 2

How to design an automation based on a mathematical behavior model of cooperative deci-
sion making which is capable of participating in an emancipated cooperative decision making
process with a human?

Contribution 2

After the introduction of the two mathematical behavior models of human-machine
cooperative decision making, i. e. the adaptive negotiation model and the n-stage
war of attrition, the models’ suitability for describing human decision making be-
havior, more precisely human concession behavior in cooperative decision mak-
ing processes, is investigated: the results of a corresponding study are presented
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Figure 2.7: Overview and relation of the models presented in this thesis.

which prove the models’ suitability. To complete a first holistic framework for human-
machine cooperation on decision level, automation designs for both proposed mathemat-
ical behavior models of human-machine cooperative decision making are introduced. Fur-
thermore, general guidelines for the implementation of an automation capable to
participate in human-machine cooperative decision making are provided.

Research Question 3

Are there benefits of applying automation designs based on human-machine cooperative de-
cision models (see Research Questions 1 and 2) to human-machine cooperation on decision
level compared to state-of-the-art approaches?

Contribution 3

At first, a general experimental evaluation approach for investigating human-machine
cooperative decision making is introduced due to missing experiments which ex-
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clusively focus on the decision level of human-machine cooperation. The approach
comprises a set of guidelines and appropriate measures for suitable experimental
designs. On this basis, two experiments are presented regarding two different appli-
cation domains: teleoperated mobile robots and highly automated driving. In these
settings, the two automation designs based on the proposed mathematical behavior
models of human-machine cooperative decision making, i. e. the adaptive negotia-
tion model and the n-stage war of attrition, are experimentally compared to relevant
state-of-the-art approaches. The experimental results provide first empirical evidence
that the new automation designs significantly outperform the state-of-the-art approaches in
terms of objective cooperative performance. Similarly, the subjective evaluation re-
sults reveal a preference of the new automation designs.

The remaining thesis strives to answer these research questions and to fill the cor-
responding research gap by elaborating on the contributions. As a first step, the
next chapter introduces a meta-model and the two mathematical behavior models of
human-machine cooperative decision making.



3 Models of Human-Machine Cooperative
Decision Making

In this chapter, a new theory on cooperative decision making in the context of
human-machine cooperation is proposed to answer the first research question elab-
orated in the previous chapter: At first, a meta-model of human-machine cooperative
decision making is proposed in Section 3.1 due to missing previous work on human-
machine cooperation with model-based automation designs for the decision level.
The meta-model describes the key properties of a cooperative decision making pro-
cess and takes into account the requirements resulting from human participation.
Applying the meta-model as a design template of the human-machine cooperation
on decision level (see models’ overview in Figure 2.7), two mathematical behavior
models of cooperative decision making are introduced: the adaptive negotiation model
in Section 3.2 and the n-stage war of attrition in Section 3.3, which originate from nego-
tiation theory and game theory, respectively. Although, both mathematical behavior
models describe a cooperative decision making process and are adapted to human
behavior, the models differ in some aspects such as the consideration of decision
making deadlines and the mathematical modeling of the concession behavior of the
cooperation partners.

3.1 Meta-Model of Cooperative Decision Making

In the following, a first meta-model of general cooperative decision making is intro-
duced: It comprises the general setting description of cooperative decision making
scenarios and the interaction mode of the cooperation partners in these scenarios.
Furthermore, a set of requirements arising from human involvement and modeling
limitations are given to delimit the mathematical models considered in this thesis.
By means of these requirements and limitations the general meta-model definition
is refined to the meta-model definition of human-machine cooperative decision mak-
ing.

Due to the lack of preliminary work that investigated a model-based approach for
cooperative decision making with human participation, the following requirements
on and definition of the meta-model are based on own observations and thoughts in
addition to isolated hints in literature.
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3.1.1 Introduction to the Meta-Model

When observing cooperative decision making in a social context, e. g. humans bar-
gaining [Rub82] or negotiating contracts [KW89], it becomes apparent that elements
of the underlying process can be generalized: At least two decision makers, e. g. mer-
chants, face a set of at least two decision options, e. g. price levels. The decision
makers are individually able to evaluate the options with respect to their payoff,
e. g. profit margin, and decide for one preferred decision option. However, due to
the cooperative setting, the decision makers have to choose one mutually-agreed de-
cision option. Therefore, they have to advance from individual decision making to
a coordination process. Within this process, the decision makers, i. e. the coopera-
tion partners, communicate by means of acting, e. g. offering price proposals, and
observing the others’ actions via a corresponding communication channel. The com-
munication may be based on natural language or other forms symbolic signaling,
e. g. electronic bits in stock trading. Event-based communication is the most general-
ized form in terms of timing and has to be typically assumed if humans are involved
and no other interaction protocol is in place. Furthermore, a pressure for reaching
an agreement is usually present [Rub82], e. g. due to approaching the market place
closing time. Therefore, rational cooperation partners interact strategically [CHC04]
such that an agreement is reached while maximizing the individual payoffs as much
as possible.

These general observations can be transferred into the technology context regarding
machine-machine and human-machine cooperation. As a consequence, the follow-
ing meta-model definition formalizes this generalized description of a cooperative
decision making process for the first time and comprises the involved entities, the
setting they are in and the mode of their interaction.
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Definition 3.1 (The Meta-Model of Cooperative Decision Making)
The meta-model of cooperative decision making comprises the following elements:

• A set of cooperation partners P = {1, . . . , N} , N ≥ 2.

• A set of decision options D, |D| ≥ 2.

• An event-based interaction model consisting of the following elements:

– A set of actions A :=
⋃

i=1,...,N Ai where Ai, i ∈ P, describes the set of
actions of cooperation partner i. Each action “a” implies the choice of a
decision option (a =⇒ d, a ∈ A, d ∈ D).

– A set of possible events E :=
⋃

i=1,...,N Ei where Ei, i ∈ P, describes the set
of events which cooperation partner i is capable to perceive.

– The system dynamics S which transform every action into an event and/or
trigger events according to internal system states.

• A potential pressure for reaching an agreement.

If the cooperation partners act rational, they possess the following abilities:

• A cooperation partner i ∈ P acts according to a strategy σi ∈ Ψi which is defined
as a mapping of a sequence of event-time-tuples ((e, t)k)k∈N+ to a sequence of
action-time-tuples ((a, t)l)l∈N+ :

σi :
{
((e, t)k)k∈N+

}
7→
{
((a, t)l)l∈N+

}

with e ∈ Ei, a ∈ Ai and t ∈ R+. The set of strategy sets of all cooperation
partners is denoted by Ψ := {Ψi | i ∈ P}.

• A cooperation partner i ∈ P is able to evaluate strategies by means of a payoff
function πi which assigns a payoff to each sequence of event-time-tuples resulting
from a strategy combination of all cooperation partners:

πi
(
((e, t)k)k∈N+

∣∣ (σ1, . . . , σN)
)
∈ R.

A rational cooperation partner chooses a strategy which maximizes the individual
payoff.

Note. A cooperative decision making process is fully described by the corresponding sequence
of events ((e, t)k)k∈N+ with each action being transformed into an event by the system dy-
namics S .
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The definition of events E, actions A and the system dynamics S primarily resembles
a general model of a communication and interaction channel among cooperation
partners. The definition of strategies and payoffs provides some general guidelines
for the rational goal-oriented reasoning of the cooperation partners: The objective of
each cooperation partner is provided by maximizing the payoff function while taking
into account the course of the cooperative decision making process which results
from the own decision making strategy and the ones of other cooperation partners.
Furthermore, the pressure for reaching an agreement can be modeled by means
of a disagreement sensitive influence on the payoff functions and/or on the system
dynamics. The strategy can be seen as the general road map in a cooperative decision
making process in which participants strive towards their objective of maximizing
their payoffs.

Definition 3.1 provides some template elements for cooperative decision making
models but does not consider human abilities. What follows is therefore the dis-
cussion of requirements human participation poses on models of human-machine
cooperative decision making.

3.1.2 Requirements Due to Human Participation

The participation of humans in a cooperative decision making scenario implies the
following requirements which constrain some aspects of the meta-model of Defini-
tion 3.1.

Human Form of Interaction

Without enforcing any interaction constraints, human interaction is based on discrete
events at undefined times with a limited interaction rate [MG17], i. e. the interaction rate
is rather low in comparison to the one of technical communication systems.

The key element of this requirement, i. e. the event-based interaction, is already in-
cluded in Definition 3.1. Besides this, the interaction rate is greatly influenced by the
numbers of decision options and actions available, e. g. small numbers are assumed
to cause a rather low rate of interaction as there is less to explore. First and foremost
small numbers of decision options and actions enable the human to comprehend a
decision scenario. A reasonable number may be four decision options/actions due
to the fact that the human “focus of attention at one time [has four as a] capacity
limit” [Cow01]. In terms of the human mental short-term storage capacity slightly
higher numbers are discussed in literature [Cow01]. Since these cognitive limitations
of humans must be considered by the model of human-machine cooperation, the
following assumption on the number of decision options is posed in a generalized
manner.
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Assumption 3.1. The sets of decision options D, events E and actions A have a size which
is sufficiently small such that the cognitive abilities of humans are not exceeded.

State of Knowledge

To the knowledge of the author, there is no model of general human reasoning in a
cooperative decision making process. Furthermore, it is in general not easy to trans-
fer this reasoning from human to machine and potentially infer vice versa. Hence,
models of human-machine cooperative decision making should consider an incom-
plete information setting, i. e. the source of reasoning and the reasoning process of
humans is in general not explicitly available to other cooperation partners. For rea-
sons of symmetry, this is assumed for all cooperation partners.

Assumption 3.2. Cooperation partner models have to assume that they possess incomplete
information about the other cooperation partners.

Note. The lack of information of the cooperation partners on other partners is not a hin-
drance when implementing cooperative decision making with human participation. In fact,
an experiment conducted in the course of the work on this thesis found that two humans
are able to cooperatively decide in a scenario in which only a limited haptic communication
channel is available [RIK+17].

Human Rationality and Strategy Determination

Definition 3.1 comprises a general description of strategies of rational cooperation
partners. Rationality describes the depth of strategic thinking in pursuing the objec-
tive, i. e. a (fully) rational cooperation partner strives to determine a strategy that
maximizes the individual payoff in complete information settings or expected payoff
in incomplete information settings whereas a non-rational cooperation partner acts
randomly [Str14].

Humans exhibit a behavior of bounded rationality [Har17], i. e. they will maximize
their payoff based on a finite cognitive level, described by the cognitive hierarchy theory
[Nag95] and its enhancements to different scopes [CHC04, CHC16, AY21]. This is
due to the fact, that humans do not possess unlimited cognitive power to assess
their actions’ impact without loss of time or other resources. For example, they are
not generally able to assess the infinite circle of impact of their actions on the other
cooperation partners’ actions, on their actions, and so forth. Instead, they may stop
after a specific depth of thought: In level 0, actions are chosen randomly; in level 1, the
player chooses actions assuming all other players are of level 0; and so on [Nag95].
It is in general difficult to determine the level of rationality of a human. However,
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some experimental evidence indicates rather low numbers, i. e. level-1, level-2, or at
most level-3 [CHC04, CGC06].

Other research on human decision making in rather simple, non-cooperative deci-
sion scenarios was able to fit rule-based models to human decision making actions
and to utilize these models to predict human decision making actions, e. g. [GR82].
In more complex decision scenarios, hints for human reflection and adaptation tech-
niques were observed [VKG14, GCWF18]. Examinations of human decision making
behavior in the game theoretic context confirmed non-fully-rational human behavior
and descriptive mathematical decision models with probabilistic influences could be
fit to experimental human data [MP95, AGH04].

Given the above hints and observations in literature on the bounded rationality of
humans, the suitability of behavioral models based on rules, reflection and adap-
tation techniques, and probability, and considering the regarded cooperative, in-
complete information setting (see Definition 3.1 and Assumption 3.2), three general
approaches for strategy determination in the context of this thesis are proposed:

• Reaction
Cooperation partners react to events based on their own strategy without any
reflection on the strategy of other cooperation partners while being in the co-
operative decision making process. This approach is associated with a level-1
depth of thought.

• Identification-Prediction-Action
Cooperation partners identify the other cooperation partners’ strategies during
the cooperative decision making process. On that basis, they are able to predict
the consequence of their own choice of strategy and adapt it accordingly. Con-
sequently, this approach comprises the reflection of decision making behavior
and represents at least a level-2 depth of thought. However, with an increase
of the depth of thought, strategy determination becomes more challenging and
is no longer human-like [CHC04, CGC06].

• Uncertainty-Action
Cooperation partners possess no detailed information on the other cooperation
partners’ strategy or payoff function. However, they have some probability
information on the strategies or payoff functions which they utilize in their
strategy determination. Hence, this approach also represents a level-2 depth
of thought. As there is no more information available without utilizing some
identification approach, this approach could be considered fully rational in the
given information setting.

Each of these general approaches is rational to some extend and it depends on the
mathematical behavior model of cooperative decision making which approach’s ap-
plication is suitable. These insights are summarized in the following assumption on
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models of cooperation partners in the context of human-machine cooperative deci-
sion making.

Assumption 3.3. Cooperation partners are modeled with respect to bounded rationality and
following one of the three general strategy determination approaches: reaction, identification-
prediction-action, or uncertainty-action.

3.1.3 Additional Assumptions and Limitations

Following the Definition 3.1 of the meta-model for cooperative decision making and
the discussion of model requirements due to human participation in a cooperative
decision making scenario (see Assumptions 3.1 to 3.3), a set of additional assump-
tions and limitations is introduced for reasons of models’ manageability and ap-
plicability in the context of automation designs for human-machine cooperation on
decision level.

The following assumption restricts the general decision scenario considered in this
work for reasons of manageability: Decision options and communications symbols,
i. e. events and actions, are limited to finite, discrete numbers which are known to all
cooperation partners, allowing for straightforward interface designs and theoretical
model analysis. For the same reasons, the form of interaction is set to be determinis-
tic and time-invariant.

Assumption 3.4. The general decision scenario is limited to:

• Discrete, finite sets of decision options D, events E and actions A which are identical
for all cooperation partners, and

• A deterministic and time-invariant system S , i. e. form of interaction of the cooperation
partners.

Due to human preference of interaction at undefined times [MG17], the timing of
the interaction shall not be constrained to some potentially unintuitive communica-
tion protocol. Moreover, the presence of an element creating pressure to reach an
agreement is required to make cooperative decision making worthwhile [SGC98]. In
practice, this element may be e. g. a deadline T until which cooperation partners
have to agree on one decision option [SGC98].

Assumption 3.5. The timing of the interaction is unrestricted and an element creating
pressure to reach an agreement is present.
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In the general decision scenario, this work considers two cooperation partners, i. e. the
human and the machine (see Definition 2.1), with the following characteristics: For
reasons of emancipation (see Definition 2.2), the cooperation partners’ rights shall
possess equal rights. To enable potential benefits of cooperative decision making,
both partners shall be equally performant in terms of decision making, i. e. no coop-
eration partner is able to continuously outperform the other. However, cooperation
partners may possess individual objectives and/or different individual information
bases for decision making. For reasons of identification and reproducibility, the
strategies of the cooperation partners in a cooperative decision making process shall
be deterministic but may be based on probabilistic information. Furthermore, the
considered strategies are limited to those which lead to a conceding behavior in
the cooperative decision making process, i. e. cooperation partners strive towards an
agreement on one decision option and cannot take back the proposal of a decision
option. This limitation is introduced for reasons of manageability in the initial math-
ematical modeling and analysis of human-machine cooperation on decision level in
this thesis. These characteristics of the cooperation partners are summarized in the
following assumption.

Assumption 3.6. Two cooperation partners, i. e. one human and one automated agent, are
considered with:

• equal rights,

• equal performance in terms of individual rational decision making with different objec-
tives and information bases,

• deterministic strategies which lead to

• a conceding behavior throughout the cooperative decision making process.

With regard of training effects in human behavior described by Rasmussen [Ras83],
this work focuses on first investigations of stationary human-machine cooperative
decision making processes and neglects long-term learning for the sake of simplic-
ity.

Assumption 3.7. No long-term learning or training effects need to be modeled.

3.1.4 Meta-Model of Human-Machine Cooperative Decision
Making

The following definition summarizes all requirements for and assumptions on coop-
erative decision making models in the scope of this thesis.
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Definition 3.2 (Meta-Model of Human-Machine Cooperative Decision Mak-
ing)
The meta-model of human-machine cooperative decision making is the enhancement of
cooperative decision making (Definition 3.1) by means of the requirements given by As-
sumptions 3.1 to 3.7. The key aspects are the following:

• A discrete set of decision options D is available of a size which is sufficiently small
such that the cognitive abilities of humans are not exceeded.

• Two cooperation partners P = {A,H}, i. e. the human H and the automation A,
are considered with

– equal rights and abilities of individual decision making with bounded ratio-
nality and individual objectives,

– incomplete information about the other cooperation partner,

– deterministic and conceding strategies which are determined following one of
the three general strategy determination approaches (reaction, identification-
prediction-action, uncertainty-action).

• The cooperation partners interact on an event-basis. This interaction is determinis-
tic and time-invariant. The sets of events E and actions A are discrete, sufficiently
small and identical for both cooperation partners.

• A pressure for reaching an agreement has to be in place, e. g. a deadline T until
which cooperation partners have to agree on one decision option.

After the introduction of the meta-model of human-machine cooperative decision
making and the assumptions on and limitations of models considered in this thesis,
the following section explains the choice of two theories which serve as a basis to
derive two mathematical behavior models of human-machine cooperative decision
making in Sections 3.2 and 3.3.

3.1.5 Motivation for the Theoretical Basis of the Developed Models

In the discussion of the research gap with respect to human-machine cooperative
decision making in Section 2.4, the two key aspects are the lack of approaches which
consider a non-trivial process of cooperative decision making and the disregard of
equal authority of the cooperation partners human and automation within this pro-
cess. However, the state of research presented in Section 2.3.2 provides two promi-
nent theories with models which incorporate non-trivial processes of cooperative de-
cision making among emancipated cooperation partners: negotiation theory and game
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theory. Yet, negotiation theory usually only considers automated agents which can be
programmed and game theory regards independent players such as humans which
cannot be influenced by a system’s designer. Facing the cooperation of human and
machine, approaches and models of both theories cannot be applied directly. Never-
theless, there are some approaches with origins in either negotiation theory or game
theory which were successfully investigated in some context of human-machine co-
operation: E. g., Oguz et al. [OKSB12] examined human behavior in a series of static
decision games without modeling the individual decision making process. Vahidov
et al. [VKG14] investigate adaptive strategies in human-machine negotiation with a
time-horizon of several days.

Consequently, the research reported in this thesis advances mathematical behav-
ior models of negotiation theory and game theory to meet the requirements of the
introduced meta-model of human-machine cooperative decision making (see Defi-
nition 3.2 and models’ overview in Figure 2.7) and to close the gap between mod-
els of cooperating automated agents and models of cooperating independent play-
ers. The resulting models are the adaptive negotiation model and the n-stage war of
attrition model. They differ in the general approach to model strategy determi-
nation, see Section 3.1.2: the adaptive negotiation model relies on the reaction or
identification-prediction-action approach whereas the n-stage war of attrition utilizes
the uncertainty-action approach.

Aside from a slightly different perspective of authority assignment and differing
strategy determination approaches facing incomplete information scenarios, these
models also close the gap between human-in-lead and automation-in-lead: cus-
tomized models of negotiation theory comprise the urge to find mutual agreements
between agents which will force agents to ultimately give in whereas the automa-
tion designs based on adapted game theory models focus on their independence
and thus may not ultimately concede. However, in a practical application scenario,
a final decision may be required at a fixed deadline. If cooperation partners cannot
reach a mutual agreement before the deadline, this consequently leads to an ulti-
mately higher authority of the human in case the automation is designed based on
the adaptive negotiation model. The opposite holds for the application of the n-
stage war of attrition. Therefore and despite all efforts, the state of equal authority
in the context of human-machine cooperation will not be achieved if the cooperation
partners cannot find a mutual agreement. However, this state is also not achiev-
able in cooperation of automated agents nor in cooperation of humans for the same
reason.

Figure 3.1 illustrates the relation of the leader-follower distributions and the devel-
oped models, i. e. the adaptive negotiation model and the n-stage war of attrition
model. It thereby provides the motivation why this thesis elaborates on and investi-
gates both models. The following two sections are devoted to the introduction of the
two human-machine cooperative decision making models.
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Figure 3.1: Relation of models based on negotiation theory and game theory to leader-follower models in
terms of authority distribution.

3.2 Adaptive Negotiation Model

The following section introduces the adaptive negotiation model that enhances con-
ventional negotiation theory by allowing for human-machine negotiations. This re-
search was the result of two supervised master theses [Sch18, AW19] and led to two
publications [RSFH19, RAFH20].

3.2.1 Introduction and Terminology

The following general statements about negotiation theory are derived from Baarslag
[Baa16], one of the standard references in terms of negotiation theory. Negotiation
theory originally provided models for multi-agent systems with autonomous agents to
negotiate in conflict situations with potentially multiple issues. Within the negotia-
tion process, i. e. process of cooperative decision making, the agents exchange offers
representing decision options according to a bidding strategy. This strategy relies ei-
ther on a time-based concession strategy, modeling negotiation pressure increasing with
time, or on a behavior-based concession strategy, directly reacting to the other agents’
negotiation behavior and actions, e. g. the tit-for-tat strategy. The latter type of strat-
egy is prone to cause endless negotiations without any agreement. Agents accept or
reject offers of other agents based on an acceptance strategy which is based on utili-
ties the agents individually assign to these offers. For the case that no agreement is
found until a certain deadline, it is common to define in advance a conflict deal all
agents agree on. This is possible due to the fact that usually automated, i. e. pro-
grammable, agents are considered. The interaction of agents is defined by means of
a negotiation protocol. In state-of-the-art negotiation models, simultaneous or alternat-
ing protocols are applied in which agents exchange offers simultaneously or in an
alternating fashion, respectively.

In literature, many application examples of negotiation models for the design of
negotiating autonomous agents are available. The scopes range from supply chain
management [LC10, Fin04] to task and service distribution [ZR89, HSW05, KAL07]
and buyer-seller scenarios in automated e-commerce [FSJ98, CW15, CJ04, WWY11].
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Another area of application is traffic management in which automated agents within
one domain, i. e. sea, land, or air, negotiate maneuvers to optimize traffic flow or eva-
sion maneuvers in case of conflicting trajectories [WVI04, ASM+05, YHS07, SVP11,
DLDS13, GAB15, HHBR15, CPRMML17]. All these negotiation models were de-
signed for automated, i. e. programmable, agents which communicate with a high
rate and quantity. With regard to the targeted form of human-machine interaction
and its limitations on communication among agents introduced in Section 3.1, these
models are unsuitable for a direct adaptation to human-machine cooperation on de-
cision level.

However, there are some approaches which consider human-machine interaction in
the field of human-agent negotiation. Some models were used to implement negoti-
ation support systems for humans, e. g. [HJ09]. Their aim is to support the human
in multi-issue negotiations by providing suitable graphics which help to keep the
overview of the negotiation. Furthermore, they try to compensate human negotiation
errors due to impatience or emotion-driven actions. Vahidov et al. [VKG14] experi-
mentally investigated human-machine negotiation in a buyer-seller scenario focusing
on time-dependent and behavior-dependent bidding strategies which outperformed
humans in negotiations. The results showed that in bilateral negotiations “com-
petetive” bidding strategies are favorable but in general adaptive behavior strategies
may yield benefits. However, such behavior adaptation requires information about
the other agent’s negotiation behavior. Human negotiation behavior has been found
to be individual without the possibility to make general assumptions [OLK09]. Mell
and Gratch [MG17] aimed at replicating human negotiation behavior by means of a
web-based platform for multi-issue bargaining and by focusing on human features
in the context of human negotiation participation: they paid great attention to the
communication channel such that it allowed for low communication rate, speech
and transfer of emotions. Furthermore, they allowed for irrationality and partial
offer exchange in their automated agent designs. The negotiation setting was multi-
issue negotiation in which agents have to iteratively negotiate a resource distribution.
There was no eminent pressure for decision making and the automated agent only
acted upon human offers or other communication events, resulting in an alternating
offer negotiation protocol. The results showed that it is crucial to account for human
capabilities in negotiations, especially in terms of communication. The authors ad-
vanced their research and negotiation models to account for more human-like traits
such as making promises or to betray others [MLG20].

In summary, the few approaches in the context of human-agent negotiation do not
entirely fit the modeling objectives of human-machine cooperative decision making
of this thesis, see Section 3.1.4: they either only support or try to outperform hu-
mans in negotiations or replicate human negotiation behavior in situations with little
pressure to reach an agreement. Despite this and the low number of human-agent
negotiation models, the existence and success of these models encouraged the devel-
opment of a negotiation model which suits the requirements of the meta-model of
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human-machine cooperative decision making: the objective of this new negotiation
model is to represent a human-machine negotiation over a set of decision options D
by exchanging offers o ∈ O among two participating agents i ∈ {A,H}, i. e. au-
tomation and human. Although the general structure of conventional negotiation
models can be inherited, i. e. utility functions, acceptance and time-based concession
strategies, the introduction of the human into this automated agents’ theory results
in some design challenges for the components which can be derived from the intro-
duced meta-model of human-machine cooperative decision making in Section 3.1.4.
First and most importantly, the basis of reasoning is generally unknown. Hence, the
exchange of offers is the only direct source of information for the automation. Sec-
ond, but closely related, no conflict deal can be defined in advance. Third, the timely
form of interaction among agents with human participation requires attention.

Consequently, the following introduction of the adaptive negotiation model focuses
on the required enhancements of conventional negotiation models towards a human-
compatible negotiation model. The specific enhancements are

• an asynchronous negotiation protocol to suit the discrete event character of human
action and communication,

• the selection and application of an identification approach for identifying the
other agent’s behavior, i. e. an opponent model12, that is able to perform on little
information due to an expected limited rate of communication of the humans
involved, as well as

• a generalized, explicit strategy for adaptation of negotiation tactics to draw ad-
vantage from deeper insights into the other agent’s reasoning via the identifi-
cation approach, and

• an agreement guarantee by means of the asynchronous negotiation protocol and
a suitable concession design of the automated agent.

3.2.2 Model Definition and Overview

This section provides the definition of the adaptive negotiation model based on the
requirements of human-machine cooperation on decision level and the model limi-
tations considered in this thesis described in Section 3.1 altering state-of-the-art ne-
gotiation models as stated above.

12 In the context of negotiation theory other agents are referred to as opponents which is then also the
name origin of corresponding opponent models to identify their behavior. However, in this thesis’
context of human-machine cooperation, the term opponent is avoided as agents are negotiating to
reach an agreement and resolve conflicts.
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Definition 3.3 (Adaptive Negotiation Model)
The setting of human-machine cooperative decision making for the adaptive negotiation
model consists of the following components:

• A set of two rational, adaptive agents P := {A,H} (will be defined subsequently
in Definition 3.4): A denotes the automation and H the human.

• A discrete, finite set of offers O which is identical for both agents. Each offer o ∈ O
is associated with one decision option d of a given discrete, finite set of decision
options D but may be enriched by some additional information. In other words, an
offer o is a communication symbol for which o =⇒ d holds but not necessarily
vice-versa. The notation ot includes the time t ∈ R+ at which an offer is proposed.

• An asynchronous negotiation protocol [RSFH19], allowing the agents to commu-
nicate, i. e. exchange offers, on an event basis which suits human communication
behavior. However, except the initial offers, simultaneous offers are prohibited,
i. e. two offers ot1 and ot2 are required to be proposed at different times t1 ̸= t2,
t1, t2 ∈ R+.

• A negotiation deadline T ∈ R+ until which agents have to agree on one decision
option, i. e. one agent has to accept an offer of the other agent.

In this model, a negotiation starts as soon as both agents (potentially simultaneously)
placed initial offers. This point in time is defined as t = 0. In a conflict situation,
i. e. agents favor different decision options, the rational agents concede by strategically
proposing offers, which they cannot take back. Hence, agents establish a history set of
offers OH

i ⊂ O, i ∈ {A,H}. The negotiation ends when an agreement among agents is
found.

Remark. In the adaptive negotiation model’s definition, the case of not reaching an agreement
before the deadline is purposefully excluded. In conventional negotiation theory, this case
is handled by the definition of a conflict deal which is impossible in the intended scope of
human-machine cooperation with the requirement to consider both cooperation partners as
equal. Hence, the following definitions and assumptions will provide a setting in which it is
guaranteed that an agreement is reached before the deadline is met.

The term adaptive in the name of the above defined negotiation model stems from
the applied adaptive agent model which is defined in the following.
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Definition 3.4 (Adaptive Agent Model)
The rational, adaptive agents i ∈ P are modeled by means of the following aspects:

• An individual, time-invariant utility function ui, according to Definition 3.5 for
evaluating offers o ∈ O, |O| ≥ 2, i. e. ui(o) ∈ R.

• An acceptance strategy Ci (see Definition 3.6) determining whether to accept or
decline offers oκ

j (short for otκ
j ) of the other agent based on the offer’s utility com-

pared to the utility of an own current offer ok
i at time tk, taking into account the

entire offer history sets OH
j of the other agent, i. e.

Ci

(
ui

(
ok

i

)
,
{

ui

(
oκ

j

)}
∀oκ

j ∈OH
j

)
∈ {accept, decline} .

• A bidding strategy Bi for determining a (counter) offer oi which is set to be a
time-based concession strategy Ei (see Definition 3.8), modeling an increasingly
concessive behavior over time t, i. e.

Ei(ui, t) ∈ O,

is utilized which is motivated by its successful application in the context of human-
machine negotiation [VKG14] and by the presence of a deadline. Due to agents’
rationality, agents will always propose offers in a sequence such that the offers’
utilities strictly decrease, starting with their initial offer o0 associated with the
highest utility. This fact together with a time-invariant utility function explain
why agents do not take back offers already proposed.

• An identification module which agent i ∈ P utilizes to identify the bidding strat-
egy Bj and ultimately the concession strategy Ej of the other agent j ∈ P, j ̸= i.
The identification module is required to work on the expected limited communica-
tion and therefore little information exchange between agents (see Definition 3.9).

• An explicit, generalized adaptation module that allows agents to adapt their bid-
ding strategy Bi based on the insights generated by the identification module re-
garding the other agent’s negotiation behavior (see Definition 3.12).

Any specific structure or parameterization of the agents’ components introduced above
is private information and remains unknown to the other agent.

Figure 3.2 provides an overview of the introduced adaptive negotiation model and
the interaction between its components. Therefore, Figure 3.2 is a refinement of
the block adaptive negotiation model in the models’ overview depicted in Figure 2.7.
Within the basic negotiation model, agents interact (i. e. communicate) according to the
negotiation protocol, evaluate offers by means of an individual utility function and ac-
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cept or generate offers via acceptance and bidding strategies. Through the identification
module and the explicit adaptation component, agents are able to adapt their bidding
strategy, i. e. negotiation behavior, with respect to the previously observed behavior
of the other agent.

Furthermore, Figure 3.2 connects the components of the adaptive negotiation model
with the aspects of the general identification-prediction-action paradigm, see strat-
egy determination approaches in Section 3.1.2: after identifying the other agent’s
behavior, the adaptation module predicts the course of the negotiation and allows for
an adaptation of the agent’s bidding strategy, i. e. the agent’s action determination. In
broader terms, the action part of the model can be seen as the tactics of negotiation,
leaving the prediction and adaptation part to resemble the negotiation strategy.

Action

Prediction

Identification

Agent A

Utility
Function uA

Acceptance
Strategy CA

Bidding
Strategy BA

Adaptation

Identification

Agent H

Utility
Function uH

Acceptance
Strategy CH

Bidding
Strategy BH

Adaptation

Identification

Negotiation
Protocol

oA oH

Basic Negotiation Model

Tactics
Strategy

Figure 3.2: Overview of the adaptive negotiation model and its components’ connection to negotiation
strategy and tactics and to the aspects of the general identification-prediction-action paradigm.
Agent H resembles the human and Agent A the automation.

3.2.3 Details of the Basic Negotiation Model

In the context of human-machine cooperative decision making, the basic negotiation
model resembles the reaction part of the adaptive negotiation model (see strategy
determination approaches in Section 3.1.1).
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Figure 3.3 provides an overview of the reasoning and reaction process of one agent i
in the basic negotiation model. In each cycle k of decision making, which corresponds

Initial offer o0
i

Evaluate offers ok
i & OH

j
based on ui

Check Ci

Determine counter offer
ok+1

i according to Bi/Ei

Partner’s offer oκ
j

Approval of oκ
j

accept

k→ k + 1

Counter offer ok+1
i

decline

Figure 3.3: Overview of reasoning for one agent i in the basic negotiation model (i, j ∈ {A,H}, j ̸= i).

to a time tk, agent i evaluates its own current offer ok
i ≡ otk

i and the offers of the offer
history otκ

j ≡ oκ
j ∈ OH

j , κ < k, established by the cooperation partner, agent j, at
earlier times tκ by means of the utility function ui. Then the agent decides whether
the other agent’s offer should be accepted or rejected according to its acceptance
strategy Ci. If the other agent’s offer is declined, the agent determines a new counter
offer ok+1

i in line with the own bidding strategy Bi, i. e. in this case the concession
strategy Ei. This offer is presented to the other agent. The next cycle may start at
potentially any time unless an agreement or the deadline T has been reached.

Regarding its application in the context of human-machine cooperative decision
making, the components of the basic negotiation model are defined in greater de-
tail in the following.

Utility Function

In line with state of the art approaches and without loss of generality the proposed
structure for the utility functions is a linear combination of normalized evaluation
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functions b̄(·) ∈ [0, 1] for various aspects of the negotiated issues. By means of nor-
malized weights in the linear combination, this leads to a normalized utility func-
tion u := ū and hence to comparable evaluations of different negotiation scenarios.

Definition 3.5 (Normalized Utility Function)
Based on normalized evaluation functions b̄i(o) : O 7→ [0, 1], the normalized utility
function ūi(o) : O 7→ [0, 1] of agent i ∈ {A,H} is defined as their linear combination:

ūi(o) := ∑
l

wi,l · b̄i,l(o) (3.1a)

with ∑l wi,l = 1.
Furthermore, the normalized utility function has to enable a meaningful differentiation
of offers within each negotiation scenario, i. e. the offers’ utilities have to be unique:

ūi

(
o1
)
̸= ūi

(
o2
)
∀o1, o2 ∈ O, o1 ̸= o2. (3.1b)

Note. In general, negotiation theory allows for time-dependent utility functions, i. e. ūi(o, t) :
O×R 7→ [0, 1] and b̄i(o, t) : O×R 7→ [0, 1]. Due to the requirements of the meta-model of
human-machine cooperative decision making (see Definition 3.2), only time-invariant utility
functions are considered in this thesis, see definitions of ūi(o) and b̄i(o) in Definition 3.5.

As an example for a time-invariant utility function, consider the use case of navi-
gating a vehicle in which cooperation partners may negotiate over different routes
before starting to drive. In this example, the routes represent the decision options.
To evaluate each route, two normalized evaluation functions given by the fuel sav-
ings on a route relative to the maximum fuel savings of all routes and the travel time
savings on a route relative to the maximum travel time savings of all routes could
be used. The weighted sum of these evaluation functions constitute the utility func-
tion. The cooperation partners assigning different utility values to a given route and
hence having different preferences can result from cooperation partners weighting
fuel savings and time savings differently. Another reason for different utility values
and preferences can be varying assessments of fuel costs or travel time in a given
situation, e. g. due to different information bases.

Acceptance Strategy

Considering the concession behavior of both agents and their rationality due to
which they cannot take back offers, the acceptance strategy for both agents is de-
fined as follows.
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Definition 3.6 (Acceptance Strategy)
Applying the Normalized Utility Function Definition 3.5, the acceptance strategy Ci of
both agents i ∈ {A,H} is set to:

Ci

(
ūi

(
ok

i

)
,
{

ūi

(
oκ

j

)}
∀oκ

j ∈OH
j

)
:=





accept, ∃ oκ
j ∈ OH

j : ūi

(
oκ

j

)
≥ ūi

(
ok

i

)

decline, ∀ oκ
j ∈ OH

j : ūi

(
oκ

j

)
< ūi

(
ok

i

) (3.2)

with i, j ∈ {A,H}, i ̸= j.

In other words, offers oκ
j ∈ OH

j are accepted by agent i if they yield a higher or equally

high utility as the own current offer ok
i , otherwise they are declined.

Bidding Strategy

The core bidding strategy of the basic negotiation model is set to be a reaction com-
ponent to react to events in a cooperative decision making process based on an own
strategy without considering the strategy of the cooperation partner, see types of hu-
man strategy determination in Section 3.1.2. However, the prospect is an additional
implementation of an identification algorithm and adaptation strategy, enhancing
the reaction component in the overall model towards an identification-prediction-action
approach, see Figure 3.2. Furthermore, Section 3.1.3 limits the behavior modeling to
conceding behavior only. On this basis and to ensure an agreement without the abil-
ity to define a common conflict deal with a human agent present, this work proposes
the bidding strategy to be a time-based concession strategy with a continuously in-
creasing concession [Baa16, pp. 27-28].

Hence, the concession strategy is based on a time-dependent target utility ūt(t) which
is decreasing over time and which the agent tries to track with the available offer
utility values.
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Definition 3.7 (Normalized Target Utility)
The definition of the time-dependent normalized target utility ūt,i(t) : R+ 7→ [0, 1] ⊂ R

is

ūt,i(t) := max
o∈O

(ūi(o)) ·
(

1−
(

t
T

)1/ϵi
)

(3.3)

with the concession rate ϵi ∈ R+, i ∈ {A,H} and a negotiation deadline T ∈ R+,
assuming t ∈ [0, T ] ⊂ R.

A set of exemplary target utility trajectories for various concession rates ϵ with

max
o∈O

(ūi(o)) = 1

is depicted in Figure 3.4.
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Figure 3.4: Exemplary target utility trajectories for various concession rates.

The concession of agents, i. e. the target utility tracking of agents, is defined by the
following optimization problem: it determines offer ot

i of agent i at time t ∈ [0, T ] on
the basis which offers’ utility is closest to but greater than the current target utility.
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Definition 3.8 (Concession Strategy)
The concession strategy is based on the utility Definitions 3.5 and 3.7 and determines
the potentially new, best fitting offer at time t ∈ [0, T ] according to this optimization:

o∗i = arg min
o∈Õ

{ūi(o)− ūt,i(t)} (3.4)

s. t. Õ :={o ∈ O : ūi(o) ≥ ūt,i(t)}

If this currently best fitting offer was not yet proposed, i. e. o∗i /∈ OH
i , it is offered to the

other agent (ot
i := o∗i ) and added to the offer history set OH

i .

This concession definition allows for modeling various concessive negotiation behav-
iors, i. e. giving in linearly over time (ϵ = 1), early (ϵ > 1) or late (ϵ < 1) with respect
to to a given deadline. In literature, these concession behaviors are also called “neu-
tral”, “concessive”, and “competetive”,13 respectively [VKG14]. The suitability of the
defined concession strategy and target utility to model and predict human negotia-
tion behavior was experimentally examined and confirmed in the course of research
for this thesis, see detailed report in Section 4.1.

Furthermore, the above defined time-based concession strategy ensures an agree-
ment without any conflict deal when reaching the deadline, assuming no two offers
are placed at the same time instances. From a practical point of view, this assump-
tion will be fulfilled in the intended scope of human-machine negotiation as it is
nearly impossible that human and machine each propose offers at exactly the same
time. However, the next section provides a necessary and sufficient criterion which
also yields a theoretical agreement guarantee.

Investigations on Agreement Guarantees

The following investigations are based on a continuous-time contemplation of the ba-
sic negotiation model reasoning, which is described by the following assumption.

Assumption 3.8. Agents perform their reasoning process of the basic negotiation model,
depicted in Figure 3.3, with an infinitely small sampling time.

For this case, the following lemma states a necessary and sufficient criterion for the
uniqueness of times at which agents are proposing offers after the initial offers. Note
that initial offers starting the negotiations are allowed and favored to be proposed
simultaneously by both agents, see also the definition of the negotiation protocol in
Definition 3.3.

13 In order to avoid confusion with the models’ limitation to concessive cooperative decision making
behavior, these terms are avoided in the following.



68 3 Models of Human-Machine Cooperative Decision Making

Lemma 3.1 (Criterion for the Uniqueness of Agents’ Offer Timing)
After the initial offers have been placed, the times at which subsequent offers are proposed
in accordance with the concession strategy of Definition 3.8 are unique for both agents if
Assumption 3.8 holds and if and only if

(
1− ūi(oi)

maxo∈O ūi(o)

)ϵi

̸=
(

1− ūj
(
oj
)

maxo∈O ūj(o)

)ϵj

(3.5)

holds ∀oi, oj ∈
{

oi, oj ∈ O|oi ̸= arg maxo∈O ūi(o) , oj ̸= arg maxo∈O ūj(o)
}

and for
i, j ∈ {A,H} , i ̸= j.

Proof:
First, the uniqueness of times one agent i ∈ {A,H} proposes new offers is shown:
According to (3.1b) of the Normalized Utility Definition 3.5, one agent’s utilities of all
offers differ from each other. The uniqueness of times the offers are proposed follows
considering the strict monotonicity of the target utility (3.3) and the unambiguity of
the concession strategy in Definition 3.8 if Assumption 3.8 holds.

Second, the times t at which agents may propose new offers simultaneously after the
initial offers are examined: The critical condition for an agent i ∈ P to propose a new
offer when evaluating the concession strategy continuously follows from (3.4), i. e.

ūi(oi)− ūt,i(t) = 0 with oi ∈
{

oi ∈ O

∣∣∣∣∣oi ̸= arg max
o∈O

ūi(o)

}
. (3.6)

Inserting the target utility definition (3.3), followed by some rearrangement yields

t
T =

(
1− ūi(oi)

maxo∈O ūi(o)

)ϵi

(3.7)

Note, that the division by maxo∈O ūi(o) is legitimate due to it being non-zero which
follows directly from the utility function definition and its uniqueness in Defini-
tion 3.5.

What remains is to equate the two conditions of both agents by means of the identical
time t which yields (3.5).

Note. Criterion (3.5) implies that at least one agent i has to have a minimum utility of any
offer which is greater than zero, i. e.

∃ i ∈ {A,H} : min
o∈O

ūi(o) > 0. (3.8)
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Upon this lemma on timing uniqueness, the following theorem states the guarantee
of agents arriving at an agreement before the deadline is reached.

Theorem 3.1 (Agreement Guarantee)
Assume the criterion of Lemma 3.1 is fulfilled and Assumption 3.8 holds in the case of
agents proposing new offers according to Definition 3.8. Then, it is guaranteed that an
agreement is found before the deadline T is reached.

Proof:
What follows is a proof by contradiction. If the deadline is reached and no agree-
ment was found, both agents would have left one final offer each with a utility of
zero which has to be proposed at t = T . This is due to the uniqueness of utilities (see
Definition 3.5), the strict monotonicity of the target utility (3.3) and the unambiguity
of the concession strategy in Definition 3.8 and constitutes the critical situation for
the theorem.

However, both agents proposing zero-utility offers simultaneously is a violation of
the criterion provided by Lemma 3.1. According to this lemma at most one agent i
may reach the deadline with a zero-utility offer not proposed before the deadline.
However, at that point in time the other agent j must have proposed the entire offer
set and hence must have agreed on an earlier offer of agent i.

Consequently, the fulfillment of Lemma 3.1 allows for not having a conflict deal in
place.

Assumption 3.9. The criterion introduced in Lemma 3.1 holds for the subsequent theoretical
analysis of the adaptive negotiation model to guarantee an agreement of a negotiation and
hence avoid the definition of a conflict deal within the model.

Remark. From a practical point of view, the automated agent will operate with some reason-
able sampling time. In this case, the above criterion of Lemma 3.1 and Theorem 3.1 are not
applicable. Therefore, the negotiation protocol implementation has to take care of assuring of-
fer timing uniqueness. This is the motivation of restrictions in the asynchronous negotiation
protocol from Definition 3.3. To guarantee that agents arrive at an agreement, the automation
design may ensure that condition (3.8) holds for the automation, i. e. the least valuable offer’s
utility is greater than zero. That way, the automation will always ultimately concede, which
also reflects current legislative requirements [FDM+20].

Upon the above introduced customizations and enhancements of the basic nego-
tiation model towards its application in human-machine negotiations in terms of
asynchronous negotiation protocol, time-based concession strategy, and agreement
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guarantee, the following sections provide a suitable selection and application of a ne-
gotiation behavior identification approach and introduce the new explicit adaptation
module of the adaptive negotiation model.

3.2.4 Identification of Negotiation Behavior

In order to influence the outcome of the negotiation, agents may use the information
of the other agent’s offers to identify an opponent model and apply this information
within their bidding strategy. In literature, various opponent models are available,
e. g. [CJ04, HT08, HL14]. Facing the challenge of little communication between au-
tomation and human within one round of negotiation (see Sections 3.1.1 and 3.1.3),
a model-based identification approach capable to identify human behavior over sev-
eral negotiation rounds is favored.

In the course of the research for this thesis two model-based identification approaches
were considered: nonlinear least squares and Bayesian learning. In a simulative eval-
uation both approaches performed similarly well, although theoretically both ap-
proaches are prone to not converge or yield inconsistent results.14 Due to the fact
that Bayesian learning was designed to cope with model uncertainty, the fact that the
adaptive negotiation model may not definitely represent human negotiation behav-
ior, and the successful application of Bayesian learning in the context of human-agent
negotiation (e. g. [HT08]), Bayesian learning was selected for the implementation of
the adaptive negotiation model.

What follows is an application and customization of the general Bayesian learning
approach to the context of the adaptive negotiation model. First, some modeling
assumptions about the other agent’s negotiation behavior are made.

Assumption 3.10. For reasons of conformity and without other knowledge, it is assumed
that the agents follow the same basic negotiation model and only differ in their parameters θ
of utility function, bidding/concession and acceptance strategy, i. e. θ comprises e. g. the con-
cession rate ϵ and the utility function weights w.

With regard of a practical application, the following aspects concerning these param-
eters is assumed.

Assumption 3.11. The ranges of the parameters, i. e. the ranges for each element of θ, are
known and uniform discretization of these ranges yield suitable approximations of the actual
parameters.

14 Nonlinear least squares approaches are generally biased and may not converge due to non-convex
problems. Bayesian learning may only yield consistent results for large numbers of observations
according to the Bernstein-von Mises theorem [van12, pp. 138-152].
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Upon these assumptions and observed offers of the other agent, Bayesian learning
identifies the unknown parameters θj of the other agent’s utility function and bid-
ding strategy.
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Definition 3.9 (Identification Approach Based on Bayesian Learning)
Regarding Assumptions 3.10 and 3.11, a set of nh hypotheses concerning the other
agents’ parameters is established by means of the discretized ranges of parameters θ:

H :=
[
θ1

1 , . . . , θ
nh1
1

]
× . . . ×

[
θ1

nθ
, . . . , θ

nhnθ
nθ

]

each resembling a specific and unique combination of parameters hl ∈ H with l ∈ [1, nh],
nh = nh1 · nh2 · . . . · nhnθ

and nθ denoting the number of parameters.
For all l ∈ [1, nh], the initial probabilities p0(hl) of these hypotheses hl are set according
to a uniform distribution.
Within each iteration k of Bayesian learning at time tk the likelihood of parameter hy-
potheses pk(hl) ∀l is updated by means of the discretized Bayes’ rule and the current
offer oκ

j , κ < k of the other agent:

pk
(

hl | oκ
j

)
=

pk(hl) pk
(

oκ
j | hl

)

nh
∑

x=1
pk(hx) pk

(
oκ

j | hx

) , (3.9a)

pk+1(hl) :=pk
(

hl | oκ
j

)
(3.9b)

Considering the uniqueness of the assumed other agent’s concession strategy Ej (see

Definition 3.5), the conditional probability pk
(

oκ
j | hl

)
at the current time tk can be

defined as

pk
(

oκ
j | hl

)
:=

{
1, if oκ

j is the result of (3.4) parameterized with hl

0, else.
(3.9c)

The estimate of the other agent’s parameters can be determined as the expected value of
θ with respect to all hl , i. e.

θ̂
k
j :=

nh

∑
l=1

pk(hl) · hl . (3.9d)

To assess the uncertainty of the estimation, the standard deviation can be determined by:

σk :=

(
nh

∑
l=1

pk(hl) ·
(

hl − θ̂
k
j

)2
)1/2

. (3.9e)

The definition of the conditional probability pk
(

oκ
j | hl

)
in (3.9c) is a major design

issue in Bayesian learning. Commonly, the conditional probability is either set to the
exact probabilities for which oκ

j follows from hl if these are deterministically known
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or they are set in accordance to a probability distribution describing a fuzzy causal
relationship between oκ

j and hl . One instantiation of the probability distribution in
the latter case is the definition of a normal distribution with respect to parameters hl
given an offer oκ

j . The expected value and variance of the normal distribution can be
chosen on the basis of observed hints on the causal relationship between parameters
and offers. However, due to Assumption 3.10, the conditional probability pk

(
oκ

j | hl

)

is deterministically specifiable in (3.9c) given the postulated concession behavior de-
scribed by (3.4) parameterized with hl . This “Dirac” definition of the conditional
probability yields faster convergence than e. g. a definition relying on a normal dis-
tribution. However, the chosen form is prone to more quickly exclude hypotheses
compared to the normal distribution version.

Remark. To avoid the persistent exclusion of hypotheses with pk(hl) = 0, especially in
scenarios with agents that change their negotiation behaviors or with inadequate assumptions
on the other agent’s evaluation functions b̄ (see Definition 3.5), hypotheses’ probabilities
can be reinitialized before each estimation update by adding a small offset q followed by
normalization.

In general, the convergence accuracy and the speed of this Bayesian learning ap-
proach also depends on the rate of observed offers of the other agent and the rate of
Bayesian updates.

In practical application, this approach usually yields sufficiently fast and accurate
parameter estimates. Furthermore, due to the expectation calculation (3.9d), the
parameter estimate θ̂j will be in the range of hypotheses and not diverge which is
also a crucial aspect in a practical implementation.

The actual instances of Bayesian updates, i. e. the estimation updates on θ̂j, may
be performed synchronously or asynchronously with the agent’s basic negotiation
model reasoning of Figure 3.3.

Note. Even at times when there is no new offer of the other agent available, productive
estimation updates are possible. This is due to the time-based concession strategy (see Defini-
tion 3.7 and 3.8) in which also sticking to an offer and not proposing a new offer is valuable
information for parameter estimation.

With regard to the next section introducing the explicit, generalized adaptation ap-
proach, the estimation update rate must be higher than the adaptation rate as the
adaptation relies on accurate (and at best converged) estimations.
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3.2.5 Explicit, Generalized Adaptation Approach

In the following the explicit adaptation component of the adaptive negotiation model
is introduced. It alters the agent’s parameters of the basic negotiation model from
Section 3.2.3 based on the insights given by the identified negotiation behavior of the
other agent, see Section 3.2.4. This way, the adaptation module enhances the reaction-
based basic negotiation model towards the more advanced identification-prediction-
action approach, see Section 3.1.2. Generally, behavior-sensitive approaches are fa-
vorable compared to purely time-dependent strategies as they account for individual
negotiation behaviors of other agents and perform better in experiments [VKG14].

Usually, the identified negotiation behavior information is directly included in the
bidding strategy [HL14], e. g. to choose an offer that suits the other agent best in
case one is indifferent towards multiple potential offers [FIZ+16, p. 137]. Other
approaches use utility predictions to adapt the target utility and thus concession
behavior with the aim to maximize utility [CATW13].

However, in this model, a more generalized adaptation principle is included which is
based on an explicit evaluation of the agents’ current negotiation behavior. The basis
of this adaptation is the prediction of the negotiation outcome, assuming that both
agents follow the basic negotiation model and that the corresponding parameters θi
and θ̂j are known or estimated by agent i ∈ P.

Lemma 3.2 (Predictability of Negotiation Course and Outcome)
With a negotiation model according to Definition 3.4 and Assumptions 3.9 and 3.10,
knowledge of parameters θi and identification of θ̂j according to Definition 3.9, agent
i ∈ {A,H} can predict the course and outcome of the basic negotiation model, i. e. the
offer sequence, the agreed final offer and corresponding utilities.

Proof:
This statement follows trivially, considering the deterministic nature of the basic
negotiation model functions (see Definition 3.4) with a unique offer timing and a
guaranteed agreement (see Assumption 3.9), knowledge of all structures of these
functions (see Assumption 3.10) and their (identified) parameters (θi, θ̂j).

Hence, agent i is able to profit from this information by determining optimal negoti-
ation parameters θ∗i with respect to an individual objective function Ji.
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Definition 3.10 (Explicit, Generalized Adaptation Approach)
The generalized adaptation approach is based on the negotiation’s predictability of
Lemma 3.2: considering the potential utility outcome ūf,i

(
θi, θ̂j

)
and required effort

γi
(
θi, θ̂j

)
for persuading the other agent, the optimal parameters of agent i ∈ {A,H}

for the basic negotiation model are:

θ∗i = arg min
θκ

Ji
(
ūf,i
(
θκ , θ̂j

)
, γi
(
θκ , θ̂j

))
(3.10)

For the intended application in the context of human-machine negotiation, the effort
of persuading the other agent in relation to the expected reduced loss of utility is
examined. In this work, it is proposed to measure the effort of persuading by means
of the time tf from the start of a negotiation to achieving an agreement. Further-
more, only the bidding/concession strategy parameter, i. e. ϵi ∈ E, is adapted, not
the weights of the utility function. Hence, the negotiation behavior is influenced, not
the values of agent i.

Definition 3.11 (Optimal Concession Determination)
For the scope of human-machine negotiation, the optimization problem (3.10) of Defini-
tion 3.10 for the optimal parameters of agent i ∈ {A,H} for the basic negotiation model
is refined to determine the maximum optimal concession rate ϵ∗i :

ϵ∗i = max

{
arg max

ϵ∈E
ūf,i
(
θi, θ̂j

)
· βtf(θi ,θ̂j)

}
(3.11)

s. t. ϵ→ ϵi ∈ θi.

β ∈ ]0, 1] is an adaptation design parameter and tf represents the expected time from the
beginning of the negotiation to its expected end, which is depending on the parameteri-
zation of the agents, i. e. θi and θ̂j. ūf,i

(
θi, θ̂j

)
is the corresponding loss of utility at time

tf for agent i.

Remark. The maximum operator in (3.11) is in place to achieve a unique optimal concession
rate ϵ∗i . The choice of the maximum operator instead of the minimum operator is motivated
by the association of reduced effort with more concessive behavior, i. e. higher concession rates,
resulting in agents that are just relentless enough.

Upon this prediction of the optimal concession parameter, agent i is able to adapt
the current concession rate ϵk

i towards ϵ∗i , taking into account the identification speed
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and quality in terms of the standard deviation σk of identification results and the risk
disposition ri (see [MHM11]) of agent i.

Definition 3.12 (Adaptation Approach for Human-Machine Negotiation)
The adaptation of the concession rate ϵk

i of agent i ∈ {A,H} is based on the optimal
concession rate determination of Definition 3.11, the standard deviation σk of the iden-
tification result and the risk disposition ri of agent i:

ϵk+1
i := ϵk

i + α(σk, ri) ·
(

ϵ∗i − ϵk
i

)
(3.12a)

The risk disposition factor ri ∈ ]0, 1] is a design parameter that influences the adaptation
behavior of the agent. The higher the factor the more prepared the agent is to take risks.
The proposed function α

(
σk, ri

)
∈ [0, 1] ⊂ R evaluates the standard deviation of the

current parameter estimation and balances it with the risk factor:

α(σk, ri) :=
1
nθ

nθ

∑
l=1

max

(
1− σk

l
ri

, 0

)
(3.12b)

nθ is the number of estimated parameters θ̂j (and corresponding standard deviations).

In summary, the higher the risk disposition of an agent, the faster the behavior,
i. e. concession parameter, will converge to the optimal one regarding the adaptation
objective, also accepting higher standard deviations of the estimated parameters.

Remark. Since the potential adaptation of the other agent j is not explicitly considered in
the introduced identification and adaptation approach of agent i, a rather high adaptation rate
of agent i potentially results in an increased uncertainty in the identification and adaptation
processes of both agents. Therefore, the adaptation rate from ϵi towards ϵ∗i has to be suffi-
ciently small in a practical application such that the trajectory of the concession rate ϵi can be
considered quasi-stationary from the perspective of agent j. This has to be taken into account
by both agents due to the symmetry of the discussed setup.

Hence, the adaptation process of agent i from ϵk
i towards ϵ∗i will not be at the same

rate as the offer exchange. Instead, it could take place at the end of a negotiation
round. That way one can think of the reactive behavior according to the basic ne-
gotiation behavior within a negotiation round as the tactics of negotiation and the
negotiation prediction and adaptation as part of the strategy of negotiation, see Fig-
ure 3.2.

Note. To ensure uniqueness of offer timing and to guarantee an agreement, the adaptation
of Definition 3.12 has to obey the criterion of Lemma 3.1.
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To conclude, the adaptation module allows to model an overall negotiation behavior
that factors in the other agent’s behavior (see possible strategy determination in
Section 3.1.2), e. g. giving in immediately if the negotiation prediction indicates a
strong resistance towards the own preference or insisting on one’s preference if the
corresponding outcome is worth the effort. Furthermore and in contrast to existing
adaptation approaches which are strongly entangled with the bidding strategy of
the basic negotiation model, this approach offers increased modeling flexibility due
to the fact that the adaptation strategy can be modified without changing the basic
negotiation model.

In the Appendix B, an application example of the adaptive negotiation model in the
context of highly automated driving is presented: It provides simulative evidence of
the adaptive negotiation model’s ability to cope with the challenges of cooperative
decision making involving humans in terms of identifying negotiation behavior and
adapting to it. Furthermore, the example also highlights the model’s characteristic
that offers can contain more information besides the chosen decision option. This
leads to more communication and hence an increased information exchange within
one round of negotiation which facilitates the identification of negotiation behav-
ior.

In the course of negotiation theory research for this thesis, also time-variant utility
functions have been investigated. An application example for negotiating driving
maneuver in an evasion scenario was published [RSFH19]. However, negotiation
models allowing for time-variant utility functions are not restricted to concessive
behavior and complicate agreement guarantees, identification and adaptation strate-
gies. This resulted in the limitations introduced in Section 3.1.3 for the considered
cooperative decision making models in this thesis.

After the introduction of the adaptive negotiation model, the game theoretic model
for emancipated human-machine cooperative decision making, the n-stage war of
attrition, is presented in the next section.

3.3 The n-Stage War of Attrition

The n-stage war of attrition was developed in the course of two master theses [Ste18,
Tan20] which led to two publications [RSFH20, RTIH20]. It advances the conven-
tional war of attrition by means of a generalized disagreement cost function and a stage
concept. These enhancements allow for modeling human-machine cooperative deci-
sion making soft deadlines and with multiple decision options.

To this end, the next two sections provide explanations of the required game-theoretic
terminology and a review of relevant existing game-theoretic models. Subsequent
sections present the n-stage war of attrition by means of introducing the stage con-
cept and the generalized disagreement cost function.
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3.3.1 Introduction and Terminology

Game theory has its origin in the mathematical modeling of strategic decision mak-
ing scenarios with two or more rational entities. It is therefore qualified to be consid-
ered for the modeling of human-machine cooperative decision making as discussed
in Section 3.1. If not stated differently, the following explanations are based on the
work of Fudenberg and Tirole [FT91].

Game theory typically considers independent rational entities called players, e. g. hu-
mans, animals, societies, companies, etc., whose interactions are observed and de-
scribed by means of a game model15. In contrast to automated, programmable agents
in negotiation theory, players in game theory are no objects of design. Furthermore,
game theory differs from conventional decision theory16 by considering the influences
of decision making within the decision making process, i. e. the decisions of one
player depend on the decisions of all other players in the game and vice versa.

Models of game theory can be divided into two major classes, cooperative and non-
cooperative games: in cooperative games, players can commit to contracts among
themselves whereas in non-cooperative games all players act egoistically but still
consider the decision making behavior of other players. In the context of this thesis,
contracts in human-machine cooperation are not considered (see Definition 3.2) and
therefore this work considers non-cooperative games only.

In a general game setup, players face decision options which usually also resemble
the actions17 of players. Each player values these decision options/actions individ-
ually18 and receives a corresponding payoff which depends on the options chosen
by himself and the other players and the dynamicity of the game. This dynamicity
comprises two aspects: Games are either dynamic or static, depending on whether or
not time or sequences of actions are considered. Furthermore, games can be one-shot
games, if they are only played once, repeated games, i. e. there are several rounds of the
same game, or multi-stage games which are sequentially interconnected non-identical
games. In consequence, the time at which players receive payoffs, which may be
continuously over time, at the end of a game, or dependent on the number of rounds
(of the game) played, will ultimately influence the players’ actions. In a realization
of a game, each player’s actions are determined by a strategy the player chooses. The
strategy defines which actions will be performed depending the status of the game,
especially with respect to the other players’ actions or strategies. Furthermore, all
strategies of one player form the player’s strategy set and a combination of strategies
with exactly one strategy for each player constitutes a strategy profile.

15 In the following, game model will be sometimes abbreviated by game.
16 Decision theory comprises models and approaches for rational decision making of individuals, espe-

cially in uncertain environments [Mye91, p. 5].
17 In comparison to negotiation theory, there is usually no difference between actions and offers,

i. e. game theory does not provide an additional communication layer.
18 The utility of decision options in game theory is generally considered to be time-invariant in contrast

to the utility of decision options in negotiation theory, which may in general be time-dependent.
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Upon this general setup, the other major purpose of game theory apart from mod-
eling strategic decision making scenarios is to provide and analyze solution concepts.
By means of these solution concepts players are able to establish solution strategies
to play/solve the game. A solution of a game denotes the strategy profile resulting
from the corresponding solution concept. Furthermore, the establishment of strate-
gies is not only influenced by the players’ payoffs and game rules but also by the
determinism of the game setting, the state of knowledge of players and their type or level
of rationality.

In a deterministic game, players act and receive payoffs deterministically, i. e. there
is no influence of probability on players’ actions or payoffs. The human-machine
cooperation setup considered in this work is assumed to be deterministic as the form
of interaction and reasoning may not change, see Section 3.1.3. As a consequence,
the presented approaches in this work strive to find deterministic strategies.

The state of knowledge describes how much players know about the game, i. e. rules
and history of actions, as well as about other players, i. e. their payoffs, strategies and
rationality. Due to the fact, that the considered use-case involves unidentified hu-
mans, players will have no or only little knowledge about the other player and there-
fore face an incomplete information game. The typical form of incomplete information
is that the payoffs are private information of each player. This private information is
denoted as the type of a player. In a realization of a game, nature randomly assigns
players’ types according to a probability distribution. This probability distribution
is common knowledge upon which players form a belief about the other players’
types. The belief may also be influenced by the history of action within a game.
Ultimately, players’ strategies in incomplete information games depend on the belief
on the other players’ types and on the potential update of this belief throughout the
game.

Rationality describes the depth of strategic thinking in pursuing the maximization of
the own payoff as elaborated on in Section 3.1.1. Generally, humans are considered
to exhibit a bounded rationality, i. e. they maximize their payoff based on a finite
cognitive level. Taking into account this bounded rationality of humans may be
beneficial in modeling human-machine cooperation and automation design.

After determining strategies for these deterministic, incomplete information games
with players of bounded rationality, the resulting strategy profile and hence the cor-
responding solution concept can be analyzed. If all players choose the same strategy,
the resulting strategy profile is called symmetric. Of high importance is the persis-
tence and stability of strategy profiles: an equilibrium is a solution concept in which a
strategy profile is stable with respect to the game’s definition (including the players’
definition), i. e. no player changes the strategy despite they are generally permitted to
do so. Important equilibria in the context of this thesis are defined in Appendix C.1.
One famous example is the Nash equilibrium in which strategies of the corresponding
strategy profile are best responses to each other with respect to the individual payoff
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and the other strategies in the strategy profile, see Definition C.1. Hence, no player
has an incentive to change the chosen strategy.

To conclude, game theory may be a suitable framework to mathematically model the
relation and strategic interaction between a human and a machine in a cooperative
decision making scenario. Moreover, it provides a large toolbox for determining and
analyzing strategies to take part in the process of cooperative decision making.

3.3.2 Discussion of Relevant Existing Games

In literature, various game models are available which can model certain aspects
of the meta-model of human-machine cooperative decision making introduced in
Section 3.1.

For example, differential games are often applied to model human-human or human-
machine interaction on a trajectory basis since they consider the dynamics of the
interaction system. Exemplarily, Na and Cole [NC15] and Flad et al. [FRDH14] base
their design of driving assistance systems on differential games. In these cases, the
vehicle is the interaction system and the assistance system cooperates with the driver
in tracking a given reference driving trajectory of the vehicle. However, in the con-
text of cooperative decision making, the decision options would be various differing
reference trajectories. Due to the fact that solution methods for differential games
assume similar, i. e. conflict-free reference trajectories, they are not suitable to re-
solve conflict situations, i. e. agreeing on conflict-free reference trajectories. Hence,
differential games are not applicable to model and support human-machine cooper-
ation on decision level with discrete decision options as required by the introduced
corresponding meta-model, see Definition 3.2.

The Rubinstein bargaining game considers two players that have to split a prize by al-
ternatingly placing offers on how to divide the prize. Due to individual discounting
factors of players that reduce the players’ subjective values of the prize over time, a
concept of impatience is integrated into this game model. Solutions and equilibria
exist both for the case of complete information [Rub82] as well as for the case of
incomplete information [AG00]. Although this model is dynamic, the continuous set
of decision options and the necessity for an alternating form of interaction make it
unsuitable for an application in human-machine cooperative decision making, see
Definition 3.2.

In the field of coordination games, Zlotkin and Rosenschein [ZR89] described a prob-
lem considering the workload distribution among postmen. They propose the ex-
tended Zeuthen strategy [Zeu19] to achieve a Nash equilibrium by iteratively and
simultaneously exchanging offers in a complete information setting. For the case
of incomplete information, they analyze the possibility of exchanging the relevant
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information before the start of the game. However, in the desired scope of cooper-
ative decision making, the mutual exchange of all relevant information before the
start of an cooperative decision making process can in general not be realized, see
Assumption 3.2 and Definition 3.2.

The revision game of Calcagno et al. [CKLS14] models a deadline until which the
players have to agree on an discrete action. Before reaching the deadline, players can
revise their choice of action at times determined by a Poisson process. Caruana and
Einav [CE08] introduce a similar model with switching costs if players change their
choices of actions. Solutions to these games are provided for a complete information
setting with two actions available. However, in this complete information setting,
the solution strategies lead to an instantaneous agreement, i. e. there is no extended
process of decision making. Therefore, both aforementioned models are unsuitable
to model cooperative decision making processes in incomplete information scenarios
as required in the meta-model of human-machine cooperative decision making, see
Definition 3.2.

The war of attrition was proposed by Maynard Smith [May74] to model animal
behavior in conflict situations with an incomplete information setting. Since then,
the war of attrition has been advanced by various researchers, most of them fo-
cusing on evolution within markets or human and animal societies (e. g. oligopoly
theory [FT86, BK99], establishment of technical standards [DM94], auction theory
[KM97, AM06, HS11], bargaining theory [AG00], animal conflicts in evolutionary bi-
ology [BC78, BCM78, CRN12]). The original war of attrition considers two decision
options and two players who pursue the goal to outlast the other player in order
to win a price while facing linearly increasing costs over time if no agreement is
reached. The valuation of the price is preexisting and private information of the
players. The provided solution strategy for determining thresholds for giving in
leads to a unique Bayesian Nash equilibrium. As a consequence, the war of attrition
modeling approach is in general promising as it combines the modeling of the deci-
sion making process with the incomplete information setting. However, the majority
of existing war of attrition models do only consider linear cost functions and two
decision options [FT86, BK99] or players who choose valuation bids for multiple de-
cision options in a signaling/auction game setting [DM94, KM97, AM06, HS11]. The
latter manifestation of the war of attrition model is not suitable to model human-
machine cooperation on decision level as the valuations of decision options should
be in a predefined relation to the decision options, see Definition 3.2. Otherwise it
would be generally unclear how an automation should establish its valuations of de-
cision options. However, the first manifestations of the conventional war of attrition
model offers some promising starting points for taking into account the discussed
requirements of human-machine cooperative decision making, see Definition 3.2.

Therefore, an enhancement of the conventional war of attrition model towards the
generalization of the original time-linear cost function to a strictly increasing time-
dependent cost function and the consideration of more than two decision options is
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introduced in the following sections. As a first step in modeling human-machine co-
operative decision making by means of the war of attrition concept, the game model
applied in the context of this thesis is defined. It is customized to suit the require-
ments of human-machine cooperation on decision level summarized in the corre-
sponding meta-model Definition 3.2 and hence differs from the conventional war of
attrition definition by allowing for multiple decision options and an arbitrary but
strictly increasing disagreement cost function, resembling a shapeable soft deadline.
In a second step, solution strategies for the applied game model and corresponding
equilibria are presented.

3.3.3 The Applied Game Model of the War of Attrition

The applied game model of the war of attrition generalizes the conventional model
(see [May74, FT91]) towards the requirements of human-machine cooperation on
decision level (see Assumptions 3.1, 3.4, and 3.5) by allowing for multiple decision
options and (soft) decision making deadlines in form of increasing disagreement cost
functions. The game model is defined as follows.
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Definition 3.13 (The Applied War of Attrition Game Model)
The applied war of attrition game model is described by the tuple G(P, D, c, U, Π,F ):

• A set of two rational players P, |P| = 2.

• A discrete set of decision options D that is identical for both players and to the set
of offers D ≡ O.

• A time-dependent, cumulative cost function c(t) : R+ 7→ R+, c(0) = 0, which is
common knowledge.

• A set of utilities Ui ⊂ U ⊂ R as the basis for each player i ∈ P to value every
decision option di ∈ D with an individual utility udi

∈ Ui, i. e. each utility udi
∈

Ui is unique and |Ui| = |D|. The utility information Ui is private knowledge and
resembles the type of player i.

• A set of payoff functions Π for both players mapping any pair of decision options
to a utility of U reduced by the disagreement costs at time t:

πi ∈ Πi ⊂ Π : D× D×R+ 7→ R

πi
(
di, dj, t

)
:=

{
udi
− c(t) , di = dj

−∞, di ̸= dj
(3.13)

with udi
∈ Ui, di, dj ∈ D and i, j ∈ P, i ̸= j.

The objective of both players is to maximize their individual payoff.

• A set of probability density functions F with fδi (δi) : ∆i 7→ R+, fδi ∈ F ∀i ∈ P,
which are non-zero except for δi = 0, i. e. fδi (0) = 0, and δi → ∞,
i. e. limδ→∞ fδi (δ) = 0. The utility difference δi ∈ ∆i ⊂ R+ is defined as the
difference between neighboring elements of the ordered set U⃗i which is the set Ui
of player i ∈ P with elements in descending order and with |∆i| = |U⃗i| − 1. The
probability density function fδi as well as the corresponding cumulative distribu-
tion function Fδi (δi) : R+ 7→ [0, 1], i ∈ P, are common knowledge.

The rules of the game are: The game starts at time t = 0 with an initial decision option
offer of both players. If the initial offers are equal, the game ends immediately and players
receive their payoffs. Otherwise, the game continues and both players i ∈ P are able to
place new offers of decision options, both establishing a history of decision option offers
DH

i and DH
j . An agreement is reached as soon as DH

i ∩ DH
j = df ̸= ∅, i, j ∈ P, i ̸= j,

and hence the game ends at time tf at which the offer df ∈ D is placed by the player who
places this offer last.
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Note, that in this setup the repetition of offering one decision option which was
already proposed by the same player has no influence on the payoff. Therefore, it
is assumed without loss of generality that each player proposes a specific decision
option offer at most once.

Considering this game model, the question to be answered next is at which times
players will concede and offer subjectively less valuable decision options. These
(potentially multiple) time thresholds τi resemble the strategy ψi of player i and a
corresponding strategy profile represents a solution of the game.

The following sections introduce two solution approaches to different forms of the
above introduced game model. At first, a game setup according to Definition 3.13
with two decision options (|D| = 2) is considered to focus on strategy determination
with respect to the generalized disagreement cost function c(t).

3.3.4 Solution Strategy for Generalized Costs

The following solution strategy for the war of attrition with two decision options
(|D| = 2) and a generalized cost function advances the work on the conventional
war of attrition, see [FT91, pp. 216-219] and [BK99]. It was developed in the course
of the supervised thesis of Steinkamp [Ste18] and published afterwards [RSFH20].

The purpose of the generalized cost function is to create a cooperative decision mak-
ing pressure (see Definition 3.2) which can be motivated by increasingly concessive
human behavior when approaching a critical point or deadline for decision making
[SGC98].

Therefore, the disagreement cost is modeled as an external, systematic influence on
cooperative decision making of all players. Hence, the disagreement cost function
is set to be identical and common knowledge for all players. Furthermore, the cost
function is modeled as time dependent and cumulative, i. e. strictly increasing over
time. Therefore and for mathematical reasoning purposes, the cost function c(t) in
this thesis has to fulfill the following assumption:

Assumption 3.12. The disagreement cost function c(t) ∈ C1 : R+ 7→ R+ is continuously
differentiable and strictly increasing, i. e. ċ exists and ċ(t) > 0 ∀t ∈ R+.

As a consequence, the cost function allows for modeling a soft deadline: If the cost
function becomes sufficiently steep at some point, players’ utilities are not worth the
effort of not conceding as both players try to maximize their payoff (3.13), and hence
an agreement is reached at that point.

What follows is the introduction of a solution strategy and the corresponding equi-
librium considering these kinds of cost functions.
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Strategy Determination

The non-trivial part of the strategy determination is concerned with the case of a
conflict situation, i. e. players initially prefer different decision options. In this situ-
ation, players try to outlast the other player. However, as all players face the same
disagreement costs, players will concede and offer their second preferred decision
option after some time which leads to an agreement. The times at which the play-
ers i ∈ P concede are denoted as thresholds τi. These thresholds depend on player i’s
own utility difference δi and on the other player’s utility difference δj (i, j ∈ P, i ̸= j),
as well as on the disagreement costs c(t). The function determining the thresholds
dependent on these parameters is called threshold function τi(·) and forms the basis
of the players’ strategies to outlast the other player. As the utility of decision options
is private information, each player i has to maximize expected payoff πi with respect
to the given utility difference distribution fδj(δ) of the other player j in order to find
the trade-off between cost and reduced loss of utility in this incomplete information
setting.

Given a cost structure according to Assumption 3.12, the following assumption on
the threshold function parameterized with the player’s utility difference is made:

Assumption 3.13. τi(δ) : R+ 7→ R+ is strictly increasing and hence invertible. Further-
more, τi(δ) is continuously differentiable and

τi(0) = 0, (3.14)

see [FT91, pp. 216-217].

Based on the Assumptions 3.12 and 3.13, the following lemma provides the threshold
function for maximizing the expected payoff.

Lemma 3.3 (Threshold Function for Generalized Costs)
Let Assumptions 3.12 and 3.13 hold. Then, the threshold of player i ∈ P in a war of
attrition with two decision options (|D| = 2) maximizing her or his expected payoff with
respect to the density distribution of utility difference fδj of player j, a cost function c(t)
and player i’s utility difference δi is given by

τi(δi) = c−1

(∫ δi

0
δ̃

fδj

(
δ̃
)

1− Fδj

(
δ̃
) dδ̃

)
. (3.15)

In the following, the crucial steps in deriving (3.15) are briefly presented as the ap-
proach is inspired by Fudenberg and Tirole [FT91, pp. 216-219].
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Proof:
By means of Assumption 3.15, utility differences δ can be mapped to thresholds τ
∀i ∈ P. Therefore, the common knowledge utility difference distribution fδj of the
other player j can be virtually transformed into the corresponding threshold density
distribution fτj . Hence, the objective function Ji for maximizing the expected payoff
is set up in the threshold, i. e. time, domain by means of the threshold density distri-
bution fτj with fτj : R+ 7→ R+, fτj(0) = 0 and limτ→∞ fτj(τ) = 0. Furthermore, the
objective function Ji depends on the sought threshold τi of player i, player i’s utility
difference δi and the cost function c(t), i. e.

Ji(τi) :=
∫ τi

0
(δi − c(τ)) fτj(τ)dτ

︸ ︷︷ ︸
expected payoff gain if player i wins

+
∫ ∞

τi

(−c(τi)) · fτj(τ)dτ

︸ ︷︷ ︸
expected payoff loss if player i loses

. (3.16)

With the derivative of Ji by τi the necessary condition for the maximum is found:

δi · fτj(τi)− ċ(τi)
(

1− Fτj(τi)
)
= 0. (3.17)

The sufficiency of condition (3.17) is the result of Lemma C.1.

According to the fundamental theorem of calculus and with Assumption 3.13, the
density distribution and the cumulative distribution function of (3.17) can be trans-
formed according to Lemma A.2 and rearranged to

ċ(τi(δi))
dτi
dδi

(δi) = δi ·
fδj(δi)

1− Fδj(δi)
. (3.18)

The transformed condition (3.18) is integrated with respect to δi taking into account
the cost function’s initial value from Definition 3.13.

c(τi(δi)) =
∫ δi

0
δ̃

fδj

(
δ̃
)

1− Fδj

(
δ̃
) dδ̃. (3.19)

Finally, with the cost function c(t) being continuous, strictly increasing and therefore
invertible (Assumption 3.12) and with (3.14), the threshold function (3.15) follows.

Remark. The threshold function (3.15) fulfills Assumption 3.13 of τi(δ) being an invert-
ible function due to the fact that the cost function is invertible (Assumption 3.12) and the
integral is strictly increasing, hence also invertible. The latter results from an always posi-
tive integrand that diverges [Rin14, p. 12]. Besides this, it is easy to see that the threshold
function (3.15) is differentiable yielding an integrable derivative.
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Having established the threshold function maximizing the player’s expected payoff
and assuming no differences between players in terms of rationality, the following
symmetric strategy profile can be defined.

Definition 3.14 (War of Attrition Strategy Profile for Generalized Costs)
For both players i ∈ P:

1. Start the game with offering the preferred decision option, i. e. the option with the
highest utility.

2. If the other player does not give in before the own threshold provided by (3.15) is
reached, concede by offering the other decision option.

What follows is the equilibrium analysis of the above introduced strategy profile.

Equilibrium

The following theorem states the equilibrium resulting from the strategy profile of
Definition 3.14.

Theorem 3.2 (Bayesian Nash Equilibrium)
The symmetric strategy profile of Definition 3.14 yields a Bayesian Nash equilibrium.

Proof:
According to Definition C.2 of the Bayesian Nash equilibrium, it has to be shown that
the proposed strategy is a best response to itself considering the maximization of ex-
pected payoffs with respect to the probability for potential types of the other player.
This is done by considering separately the two cases of how the game can possibly
start with: If both players prefer the same option, an agreement is reached imme-
diately without any costs. If players prefer different options, both will realize the
conflict and hence the war of attrition they are in. By following the above introduced
symmetric strategy of conceding only if their thresholds are reached, they individu-
ally maximize their expected payoff at all times taking into account the other player’s
potential types. Hence, both players find themselves in a Bayesian Nash equilibrium
which consequently also applies for the overall game.

The next section advances the introduced war of attrition with generalized costs to
games with more than two decision options, i. e. |D| > 2.
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3.3.5 Extension Towards Multiple Decision Options

In human-machine cooperative decision making, participants usually face more than
two decision options. Therefore, this section provides a solution approach for the
applied war of attrition game model of Definition 3.13 that is capable of handling
cases with more than two decision options (|D| > 2) and also allows for a generalized
cost function as introduced in Section 3.3.4.

The requirements of Definition 3.2 in terms of incomplete information and conces-
sive behavior of the cooperation partners are still valid for more than two decision
options. However, in the case with more than two decision options the uncertainty
of players increases with respect to the unknown preference sequence of the other
players, i. e. players do not only not know when the other player concedes but they
are additionally unaware which decision option the other player concedes to. Hence,
it is assumed that players facing disagreement costs in these conflict situations are
iteratively closing in on the agreement by conceding and offering multiple other de-
cision options. The objective of the following advanced war of attrition game model
is to describe this process and the corresponding behavior of players.

One important aspect in modeling the conceding process by means of game theory
is the absence of a clear interaction order, see meta-model of human-machine coop-
erative decision making in Definition 3.2. In other words, players are not forced to
interact simultaneously or alternatingly in the course of the game. Another crucial
aspect is the fact that players are able to react to the observation of the conceding be-
havior of the other player, i. e. when the other player proposes which other decision
options. These aspects require careful consideration when determining the strategy
of players for the given game setting.

As before, a function providing the thresholds τi, at which the player i ∈ P concedes,
forms the basis of the player’s strategy of how to outlast the other player. The
thresholds τi should still depend on the disagreement costs c(t), players’ own utility
differences δi for the corresponding decision options and the utility differences δj of
the other player (i, j ∈ P, i ̸= j). Due to the incomplete information setting, the utility
of decision options is again private information and therefore each player i has to
maximize the expected payoff with respect to the given utility difference distribution
fδj(δ) and the potentially observed conceding behavior of the other player j.

To account for these requirements, the following sections first introduce the stage
concept for modeling the iterative closing in on an agreement. Upon this concept,
the strategy that maximizes the expected payoff is derived. Furthermore, it is proven
that the corresponding symmetric strategy profile yields a perfect Bayesian equilibrium,
see Definition C.3.
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Stage Concept

The introduction of the stage concept is motivated by the following two major aspects
of the challenge to determine a solution strategy for the war of attrition with multiple
decision options.

1) The Bounded Rationality of Humans
Considering the game model with multiple decision options, humans face the
complex task of taking into account the future course of the incomplete infor-
mation game when determining their strategies. In other words, they have to
anticipate which decision option the other player is proposing next and when.
In line with the rationality discussion in Section 3.1.1 and supporting experi-
ments [Nag95, CHC04, CGC06, CGIC09] showing that humans usually operate
on decision level with a low level of rationality, humans may not be able to fully
predict the future course of the game in all aspects and (re-)act accordingly.
Instead it is assumed that humans will focus more on the current situation,
history and immediate future course of the game.

2) Analytical and Scalable Strategy Determination
For the practical implementation of any solution strategy, it is beneficial that its
determination can be performed analytically and is scalable with respect to the
number of decision options. In the course of this work, it has become obvious
that considering every future course of the proposed game setup and especially
future offers of decision options of the other player does not yield analytical
solutions and requires numerical solutions instead. Furthermore, the input for
the numerical solution methods scales poorly with respect to the number of
decision options and becomes almost unmanageable when a game considers
more than three decision options. [Tan20]

Therefore, it is advisable to restrain the basis of strategy determination to the history,
current state and immediate future course of the game which is the objective of the
stage concept. To this end, the potential iterative closing in on the agreement is split
into rounds of cooperative decision making. The subsequent splitting within the
game model yields a multi-stage game. Consequently, the rounds of cooperative deci-
sion making are called stages. An exemplary stage setting is depicted in Figure 3.5.

Definition 3.15 (Stage in the n-Stage War of Attrition)
A stage m ∈ {1, . . . , n} ⊂ N>0 is defined as the time span (tm−1, tm] during which
players do not offer new decision options. Consequently, at stage changes, i. e. at
times tm, one player offers a new decision option. The actual stage number for reaching
an agreement is denoted by n. The upper boundary of stage numbers is n ≤ |D| − 1
which is common knowledge.
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Stage 1 Stage 2 Stage 3

d2 d1 d3

d3 d4

Player 1

Player 2

Time
0 t1 t2 t3

Figure 3.5: An exemplary stage setting with two players P = {1, 2}, decision options D =
{

d1, d2, d3, d4}

and utilities U1 = [3, 4, 1, 0], U2 = [0, 1, 4, 2]. The green vertical line on the right indicates the
agreement after the third stage.

The upper boundary of stage numbers results from both players acting (at least to
some degree) rational and therefore only conceding, them relying on the identical
set of decision options D and each offer appearance being unique with respect to the
individual player.

Note, that from the point of view of player i not every stage m that is determined
by the other player offering a new decision option, i. e. giving in, provides a decision
option dj ∈ D that is closer to the own decision option offers DH

i in terms of utility
compared to the other player’s offer history DH

j . In the example illustrated in Fig-

ure 3.5, this is the case at t1 when player 1 newly offers d1. From the perspective of
player 2, this new offer provides an decision option with even less utility than the
previously offered decision option d2 (0 vs. 1).

Due to the incomplete information setting, players are not aware of the other player’s
preference sequence of the decision options in addition to corresponding unknown
utility differences. Therefore, players cannot foresee the conceding sequence until
an agreement is reached. Hence, the actual number of stages needed to reach an
agreement in a realization of the game, i. e. n, is a priori unknown to players. This
actual number of stages motivates the name n-stage war of attrition for this model of
cooperative decision making.

To account for the unknown number of stages until an agreement is reached and
considering the bounded rationality of humans discussed above, the stage concept
also comprises the following assumption for strategy determination that restrains
players not to consider every possible future course of the game.

Assumption 3.14. Each player treats the current stage of the game as if the game terminates
at the end of the current stage.

Assumption 3.14 furthermore enables the following analytical determination of the
solution strategy for the war of attrition with multiple decision options.
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Strategy Determination

The threshold determination of each player in the war of attrition with multiple de-
cision options is based on the maximization of the expected payoff as in the case
of two decision options, see Section 3.3.4. However, the determination of the next
threshold is performed at the beginning of every stage. In so doing, players follow
Assumption 3.14 and only consider the current situation, game’s history and im-
mediate future course, i. e. the upcoming stage, instead of taking into account all
unknown potential future courses of the game.

As one consequence, it is essential that players update their belief about the other
player, i. e. the density function of utility differences, with the information they en-
counter in previous stages:

• The player that has not given in at the previous stage m − 1, the winner of
that stage, may be able to determine the utility difference which led the other
player j to concede in stage m − 1. However, due to the fact that the utility
difference of player j in stage m is independent of the one in the previous
stage, this information does not add value for player i in stage m.

• The player that has given in at the previous stage m− 1, the loser of that stage,
receives the information that the current utility difference of the other player j
is greater than the own utility difference in stage m− 1. On this basis, player i
is able to adapt the utility density function fδm

j
for stage m.

Remark. At the first stage m = 1 both players see themselves as winners of the previous
virtual stage m = 0. The same applies for situations in which both players determine the
same threshold and give in simultaneously.

Furthermore, considering Assumption 3.14, the proposed solution strategy for the
n-stage war of attrition is based on individual threshold functions τm

i (δ) : R+ 7→ R+,
i ∈ P, for every stage m ∈ {1, . . . , n}. For these threshold functions the following is
assumed similarly to Assumption 3.13.

Assumption 3.15. ∀i ∈ P, m ∈ {1, . . . , n} the threshold function τm
i (δ) : R+ 7→ R+ is

strictly increasing and hence invertible. Hence, its inverse δ = ϕm
i (τ) exists. Furthermore,

τm
i (δ) is continuously differentiable and

τm
i (0) := 0. (3.20)

Before presenting the analytical threshold functions maximizing the players’ ex-
pected payoffs for the n-stage war of attrition solution strategy, the following no-
tations and a lemma on players’ expected payoff in each stage m are introduced.
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First, let τ1:m denote the time at which stage m ∈ {1, . . . , n} starts:

τ1:m :=
m−1

∑
κ=1

min
(

τκ
i , τκ

j

)
with τ1:1 := 0. (3.21)

Similarly, δl:m
i describes the sum of utility differences δi from stage l to (m− 1):

δl:m
i :=

m−1

∑
κ=l

δκ
i . (3.22)

Furthermore, l references the last stage before the current stage m at which players’
roles (winner/loser) changed, i. e. τl

i ≷ τl
j and τ

(l−1)
i ≶ τ

(l−1)
j holds. Initially, l is set

to l = 1.

By means of these definitions, the expected payoff of player i at stage m depending
on the sought threshold τm

i can be stated. For simplicity, the expected payoff is
firstly formulated in the threshold, i. e. time, domain by means of a threshold density
distribution fτm

j
of the other player j in stage m with fτm

j
: R+ 7→ R+, fτm

j
(0) = 0 and

limτ→∞ fτm
j
(τ) = 0.

Lemma 3.4 (Expected payoff at Stage m)
Let Assumptions 3.14 and 3.15 hold for any player i ∈ P. The expected payoff J m

i for
stage m is:

J m
i (τm

i , δm, cm) :=
∫ τm

i

0

(
δm − c

(
τ1:m + τ

)
+ cm

)
· fτm

j
(τ)dτ

+
∫ ∞

τm
i

(
−c
(

τ1:m + τm
i

)
+ cm

)
· fτm

j
(τ)dτ (3.23a)

with utility differences

δm :=

{
δl

i if player i has won the previous stages since stage l < m,
δm

i if player i has lost the previous stage,
(3.23b)

and cost functions offsets

cm :=

{
c
(

τ1:l
)

if player i has won the previous stages since stage l < m,

c
(
τ1:m) if player i has lost the previous stage.

(3.23c)
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Proof:
Due to Assumption 3.15, a mapping of utility difference δ to threshold τm

i exists
for all stages m and ∀i ∈ P. This enables the virtual transformation of the common
knowledge utility difference distribution fδj into the corresponding threshold density
distribution fτm

j
. Therefore, the expected payoff of player i can be formalized by

means of the threshold density distribution fτm
j

. Since the expected payoff depends
on whether player i wins (τm

i > τm
j ) or loses (τm

i < τm
j ) the current stage m, the

expectation integral over fτm
j

is split into these two parts, assuming that the game
will end after the current stage m, see Assumption 3.14:

J m
i (τm

i , δm, cm) :=
∫ τm

i

0

(
δm − c

(
τ1:m + τ

)
+ cm

)
· fτm

j
(τ)dτ

︸ ︷︷ ︸
expected payoff gain if player i wins

+
∫ ∞

τm
i

(
−c
(

τ1:m + τm
i

)
+ cm

)
· fτm

j
(τ)dτ

︸ ︷︷ ︸
expected payoff loss if player i loses

.

The first integral resembles the expected payoff gain if player i wins stage m and
hence the game, see Assumption 3.14. In this case, she or he gains compared to
the next smaller utility of U⃗i the utility difference δm minus the disagreement costs
c
(
τ1:m + t

)
. The second integral yields the expected payoff loss in case player i loses

the current stage, i. e. compared to the next smaller utility of U⃗i she or he faces the
disagreement costs c

(
τ1:m + τm

i
)

at the end of stage m.

δm describes the utility difference of the current stage m. This utility difference
depends on whether player i has won or lost previous stages since stage l, see (3.23b).
If she or he has won, the utility difference δl

i of stage l is still relevant (δm = δl
i ). If

she or he lost the previous stage, she or he considers the new utility difference δm
i

of stage m (δm = δm
i ). In order to properly compare utility win and disagreement

costs, cm is required for a cost offset correction of the current stage m (see Figure 3.6)
depending on whether player i has lost or won previous stages, see (3.23c).

Note. Although the expected payoff J m
i depends on τm

i , δm and cm, the utility difference δm

and the cost function offset cm are determined by the specific stage setting. From the perspec-
tive of player i, only the threshold is variable, i. e. J m

i
(
τm

i
)
.

Having established the expected payoff J m
i of player i ∈ P for each stage m ∈

{1, . . . , n} in Lemma 3.4 the following theorem provides the threshold function that
maximizes J m

i .
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0 τm
i

c(
τ

1:
m
+

τ
m i

)

0 τ1:m
0

c
(
τ1:m)

Time
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Figure 3.6: Offset correction in exemplary cost function at τ1:m for player i.

Theorem 3.3 (n-Stage War of Attrition Threshold Function)
Let Assumptions 3.12, 3.14 and 3.15 hold. The expected payoff J m

i
(
τm

i
)

of player i (see
Lemma 3.4) is maximized for all stages m ≤ n by the following threshold τm

i depending
on whether player i has won or lost the previous stage (m− 1):

τm
i

(
δl

i

)
= c−1

(∫ δl
i

0
δ̃ ·

fδj

(
δ̃
)

1− Fδj

(
δ̃
) dδ̃ + c

(
τ1:l
))
− τ1:m (3.24a)

if player i has won since stage l including stage (m− 1), otherwise

τm
i (δm

i ) = c−1



∫ δm

i

0
δ̃ ·

fδj

(
δl:m

i + δ̃
)

1− Fδj

(
δl:m

i + δ̃
) dδ̃ + c

(
τ1:m

)

− τ1:m (3.24b)

if player i has lost stage (m− 1).

Note. It can be easily shown that the conventional war of attrition with two decision options
has only one stage (n = 1) with m = l = 1 and both players considering (3.24a).

Proof:
The two cases of the strategy definition given in Theorem 3.3 are discussed sepa-
rately. The case in which player i has won in the previous stage or the game has just
started (m = 1) is considered first:

Recall the expected payoff function (3.23a) of Lemma 3.4 and the relevant case
(player i has won stage m− 1) of (3.23b) and (3.23c). Considering the Definition A.1
of integrals with infinite integration limits and following the rule for differentiation
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of limits of integrals (see Lemma A.1), the partial time derivative of the expected
payoff function J m

i
(
τm

i , δm, cm)∣∣
δm=δm

i ,cm=c(τ1:l) with respect to τm
i can be obtained

which yields the necessary condition for a maximum payoff:

δl
i · fτm

j
(τm

i )− ∂c
(
τ1:m + τm

i
)

∂τm
i

·
(

1− Fτm
j
(τm

i )
)
= 0. (3.25)

The proof of sufficiency of condition (3.25) is analogous to Lemma C.1.

The subsequent goal is to retrieve a threshold function τm
i

(
δl

i

)
from condition (3.25).

Therefore, (3.25) is rearranged:

δl
i ·

fτm
j

(
τm

i
)

1− Fτm
j

(
τm

i
) =

∂c
(
τ1:m + τm

i
)

∂τm
i

. (3.26)

This rearrangement is possible for finite threshold values due to the fact that only for

τm
i → ∞ follows

(
1− Fτm

j

(
τm

i
))
→ 0 which is a direct consequence of the general

definition of density functions and Assumption 3.15.

Next, fτm
j

and Fτm
j

in (3.26) are transformed into fτl
j
≡ fτj and Fτl

j
≡ Fτj by the ar-

gument shift of τl:m to take into account the history of victories in previous stages,
i. e. past thresholds since stage l. Taking also into account Lemma A.2 for the trans-
formation of density functions, this results in:

δl
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fτj
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1− Fτj

(
τl:m + τm

i
) =
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(
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i
)

∂τm
i

. (3.27)

At this point, the virtual transformation of the proof of Lemma 3.4 is reversed, i. e. fτj

and Fτj are re-transformed to fδj and Fδj , respectively, by means of the following
mapping:

δl
i = ϕm

i

(
τl:m + τm

i

)
, τl:m const, (3.28)

which resembles the inverted threshold function ϕm
i (τ) of Assumption 3.15 in case

player i has won since stage l.

Considering again Lemma A.2 for the transformation (3.28) of the density function
and its cumulative distribution function, (3.27) can be reformulated as:
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i

(3.29)
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Multiplying this transformed condition (3.29) with the derivative of the inverse trans-

formation
dτm

i (δl
i)

dδl
i

results in:

∂c
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i
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∂τm
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·
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dδl
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= δl
i ·

fδj

(
δl

i

)

1− Fδj

(
δl

i
) (3.30)

Equation (3.30) is then integrated with respect to δl
i by reversing the chain rule of

differentiation and considering the initial offset of (3.20):

c
(
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i

(
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)
+ τ1:m
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=
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i

0
δ̃ ·
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δ̃
)

1− Fδj

(
δ̃
) dδ̃ + c

(
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)

(3.31)

Due to Assumption 3.12 c(t) is continuous, strictly increasing and therefore invert-
ible, the threshold function (3.24a) results by rearranging (3.31).

The second case of (3.24b) can be proven analogously to (3.24a). Therefore, only the
relevant steps and reasonings are provided. The derivative of (3.23a) with respect to

τm
i and with δm = δm

i , cm = c
(

τ1:l
)

yields the necessary and sufficient condition

δm
i · fτm

j
(τm

i )− ∂c
(
τ1:m + τm

i
)

∂τm
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·
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1− Fτm
j
(τm
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)
= 0. (3.32)

Then, the transformation
δl:m

i + δm
i = ϕm

i (τ
m
i ) (3.33)

is introduced to re-transform fτm
j

and Fτm
j

into fδj and Fδj , respectively. This is taking

into account the information that τl
j > τl:m

i , which implies δl
j > δl:m

i , by means of

shifting the argument by δl:m
i . Ultimately, this leads to a clipped density function

requiring normalization which is depicted in Figure 3.7.

Using (3.33), (3.32) turns into:
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. (3.34)

Note that the necessary normalizations of density and distribution function in (3.34)
neutralize themselves. The integration of (3.34) with respect to δm

i and rearrangement
with respect to Assumption 3.12 yields (3.24b).

To conclude, the player adapts her or his strategy in every stage if she or he has lost
in the previous stage. The information of δl

j > δl:m
i is used to adapt the corresponding

density function of the other player for stage m, see Figure 3.7 and argument shift in
(3.24b).
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Figure 3.7: Transformation including normalization of an exemplary density function for taking δl
j > δl:m

i
into account.

Remark. Both functions (3.24a) and (3.24b) fulfill Assumption 3.15 which is therefore justi-
fied: Both functions are differentiable yielding an integrable derivative and yield non-negative
thresholds. The threshold functions are also invertible due to an invertible cost function (see
Assumption 3.12) and a positive and diverging integrand (see [Rin14, p. 12]) resulting in a
strictly increasing and therefore invertible integral.

Note. τm
i + τl:m = τl

i holds, i. e. the winning player sticks to the strategy of stage l.

Remark. Transformations (3.28) and (3.33) resemble the inverted threshold function which
in turn depends on the cost function. The fact that these transformations are applied to
threshold values of the other player j are another practical reason why Assumption 3.12 does
not consider individual cost functions for both players.

After introducing the threshold functions for all stages in Theorem 3.3, they serve as
the basis of the solution strategy for the n-stage war of attrition and the following
symmetric strategy profile can be defined.
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Definition 3.16 (n-Stage War of Attrition Strategy Profile)
For all players i ∈ P:

1. Start the first stage of the game with offering your preferred decision option with
the highest utility.

2. If the other player does give in before your current threshold is reached enter the
next stage by updating your threshold according to (3.24a).

3. If your current threshold is reached give in and start the next stage by offering the
decision option with the next highest utility. Update your belief about the other
player and determine the new threshold according to (3.24b).

4. If no agreement is reached, repeat starting with step 2.

In the following, it is shown that this strategy profile leads to a unique perfect
Bayesian equilibrium. Hence, the considered strategy profile leaves no ambiguity
while following the strategies which would be present if multiple equilibria existed.
This is beneficial for a practical application of the strategy profile as the uniqueness
of the equilibrium does not leave open the question on which equilibrium to strive
towards.

Equilibrium

In the following, it is proven that the symmetric strategy profile of Definition 3.16
leads to a unique perfect Bayesian equilibrium as stated in the following theorem:

Theorem 3.4 (Perfect Bayesian equilibrium)
Let Assumptions 3.12, 3.14 and 3.15 hold such that the symmetric strategy profile of
Definition 3.16 exists. The symmetric strategy profile of Definition 3.16 yields a unique
perfect Bayesian equilibrium.

Proof:
The perfect Bayesian equilibrium is defined as a refinement of the Bayesian Nash
equilibrium, see Section C.1. Therefore, it has to be shown that the introduced strat-
egy and associated beliefs fulfill the following two conditions as given in Defini-
tion C.3:
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• Sequential rationality of strategies: The strategy has to be optimal with respect
to the current belief of the other player’s type.

• Consistency of beliefs: The belief about the other player has to be updated with
respect to the observed actions of the other player.

First, it is proven that the introduced strategy is a best response to itself with respect
to to the given belief about the other player’s type: If both players prefer the same
option at the start of the game, an agreement is reached immediately without costs.
If players prefer different options, both will realize the conflict and hence the game
they are in. By following the introduced symmetric strategy both players will wait
until their thresholds for giving in are reached. Under Assumptions 3.12, 3.14 and
3.15, Theorem 3.3 provides that the thresholds (3.24a) and (3.24b) optimize, i. e. max-
imize, in expectation the individual payoff for all positive times in every individual
stage m ∈ {1, . . . , n} of the game. Under Assumption 3.14, this payoff’s optimality
also applies for the overall game.

Second, the belief has to be updated: For this, it is referred to the proof of Theo-
rem 3.3 which provides the necessary consideration of updating the density distri-
bution of the utility difference in every stage with respect to the current role (winner/
loser) of each player.

In summary, both conditions are fulfilled and therefore the introduced symmet-
ric strategy profile yields a perfect Bayesian equilibrium. The uniqueness of the
equilibrium follows from the deterministic relation between decision option and its
utility and the deterministic calculation of thresholds in Theorem 3.3, see [FT91,
p. 219],[BK99].

After the introduction of the n-stage war of attrition and the adaptive negotiation
model, the following section highlights the models’ theoretical similarities and dif-
ferences.

3.4 Theoretical Comparison of the Proposed Models

Both above introduced mathematical behavior models enhance existing models to
suit the scope of human-machine cooperation on decision level, see Figure 2.7. Con-
sequently, both mathematical behavior models possess some similarities but also
focus on different aspects of human-machine cooperative decision making. After a
brief recapitulation of the mathematical behavior models’ setup, the following para-
graphs elaborate on these similarities and differences.
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The adaptive negotiation model proposes a time-based concession strategy as the
instant reaction strategy within negotiation and introduces the asynchronous ne-
gotiation protocol removing communication restrictions. Furthermore, the model
provides an identification component based on Bayesian learning. Thereby, it ad-
dresses the identification challenge in human-machine negotiation arising due to the
expected limited communication with few symbols. Upon this identification compo-
nent, the model extends state-of-the-art negotiation models by an explicit adaptation
strategy of negotiation behavior allowing for efficient negotiations. The adaptation
strategy also yields high flexibility in modeling as it can be changed independently
of the other parts of the negotiation model.

The n-stage war of attrition builds upon the conventional war of attrition game model
with incomplete information and two rational players. It enhances the conventional
war of attrition by allowing for more than two decision options and by a time-
dependent disagreement cost function. The proposed solution strategy is proven
to lead to a perfect Bayesian equilibrium.

In consequence, the proposed models fulfill the requirements and limitations stated
in Section 3.1 as the adaptive negotiation model and the n-stage war of attrition con-
sider two emancipated, equally performant, rational agents/players in a cooperative
decision making scenario with multiple decision options. Agents exhibit a conces-
sive behavior due to their lack of information on the other agent’s decision option
utilities and hence preferences. In other words, both above introduced mathemati-
cal behavior models of cooperative decision making represent an answer to the first
research question of this thesis, see Section 2.4.

In what follows, the differences with respect to major features of the newly pro-
posed mathematical behavior models are compared. To this end, Table 3.1 provides
an overview on these features for both models. A first difference between the models
is the relation between the communicated offers and the decision options: while the
n-stage war of attrition requires a bijective mapping between offers and decision op-
tions, the adaptive negotiation model allows for offers conveying more information
besides the proposed decision option which may be beneficial for the identification
of negotiation behavior. Furthermore, the models differ in their ways of conces-
sion modeling, more specifically in the source of the decision-making pressure: the
adaptive negotiation model focuses on the deadline whereas the n-stage war of at-
trition considers increasing time-dependent disagreement costs which may resemble
a soft deadline. As a result, the adaptive negotiation model guarantees an agree-
ment within a set period of time in contrast to the n-stage war of attrition. This
difference in the agreement characteristic reflects the different origins of the two
models: negotiation theory typically relies on a conflict deal in cases no agreement
is found. As conflict deals cannot generally be suitably defined in the context of
human-machine cooperation, this feature is implicitly integrated into the time-based
concession strategy considering the deadline. On the other hand, game theory usu-
ally focuses on rational, emancipated players and hence the original war of attrition
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does not consider deadlines. Both models also differ in their information bases and
adaptation techniques: the adaptive negotiation model allows for agents to identify
the negotiation behavior of the other agent during the negotiation and to adapt their
negotiation behavior over negotiation rounds. The n-stage war of attrition inher-
ently models the uncertainty due to the incomplete information setting and takes
into account each observed event in the course of the game to potentially gain and
instantly utilize information about the other player. Although both models consider
adaptation techniques, the general concession behavior within a single cooperative
decision making process persists. Both models are also able to represent long-term
adaptations, i. e. some sort of learning, of both cooperation partners. However, the
adaptations’ analysis is not within the scope of this thesis, see Assumption 3.7.

Table 3.1: Features of the proposed models of cooperative decision making.

Adaptive n-Stage
Feature Negotiation Model War of Attrition

Relation: Offer to offers may contain
identical

Decision Option more information

Concession Modeling target utility & disagreement costs
(time dependent) (hard) deadline (soft deadline)

Agreement guaranteed not guaranteed

Information Basis online identification uncertainty modeling

Adaptation online & over rounds online & event-based

To conclude, the adaptive negotiation model has its strengths in the ability to adapt
in changing decision environments and in the agreement guarantee in highly time-
sensitive situations. The latter aspect however assigns the correspondingly designed
automation the feature to ultimately concede which a human decision maker could
presumably take advantage of. In contrast to this, the n-stage war of attrition model
has its strengths in capturing more egoistic, human traits and will yield a less conces-
sive automation, potentially displaying stubborn behavior. Furthermore, the n-stage
war of attrition model only allows for the implementation of soft deadlines and is
therefore not suitable for highly time-sensitive situations. Apart from this, the n-
stage war of attrition model focuses on the uncertainty of decision making scenarios
and is therefore predesignated for corresponding implementations.
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Subsequent to the theoretical introduction of the two mathematical behavior models
of human-machine cooperative decision making, i. e. the adaptive negotiation model
in Section 3.2 and the n-stage war of attrition in Section 3.3, this chapter focuses
on the mathematical behavior models’ practical applications and strives to answer
the second research question of this thesis on how to design the corresponding au-
tomation which is capable of participating in an emancipated cooperative decision
making process with a human, see Section 2.4. To this end, Section 4.1 reports on
a study which investigated the suitability of both mathematical behavior models to
describe human concession behavior. Moreover, Section 4.2 discusses important as-
pects of the model-based automation design to successfully enable the machine to
cooperatively make decisions with a human.

4.1 Study on Models’ Suitability to Describe Human
Concession Behavior

In the following, a suitability study on the introduced mathematical behavior models
of human-machine cooperative decision making of Sections 3.2 and 3.3 is presented.
The study was conducted in the course of a master thesis [Wör20] and led to a
publication [RWIH20]. The study investigated the mathematical behavior models’
suitability to represent human concession behavior in cooperative decision making,
see Section 3.1. To this end, two human participants were supposed to be confronted
with a series of cooperative decision making scenarios in the original study design.
However, at the time of the study it was impossible to conduct this study as planned
with several participants being simultaneously in one room.19 Therefore, a program
and corresponding guidelines were designed to allow participants to conduct the
study alone: the program comprised an automation capable of actively participating
in cooperative decision making and provided a series of cooperative decision making
scenarios to the participants by means of a graphical representation. The distribution
of the program and guidelines and the collection of log-file data was conducted via
email. The following sections provide information about the study’s design, the
results and their discussion.

19 The study took place in early summer of 2020 at the height of the COVID19 pandemic. Due to
imposed restrictions in Germany, it was not allowed to conduct studies with multiple participants
and instructors in the same room.
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4.1.1 Study Design

Based on the study’s objective to examine human cooperative decision behavior, a
program was implemented which displayed a series of cooperative decision making
scenarios to the participants. Each scenario consisted of four decision options repre-
sented by buttons. Each decision option was associated with a different utility value
visualized numerically on the corresponding button. The participants’ objective was
to maximize the utility values received within each and over all cooperative deci-
sion making scenarios. To this end, participants were able to select a decision option
via a click on the corresponding button. The choice was visualized by a change in
background color of the respective button. However, participants were not able to
withdraw a choice. A designed automation acted similarly but on the basis of differ-
ent utilities associated with the decision options. This intentionally caused potential
conflicts on the choice of decision options. Furthermore, the participant was only
able to collect utility values if she or he and the automation found an agreement on
one decision option within a fixed limited time period before the next scenario be-
gan. As a result, concessive actions of the participants were expected, i. e. additional
choices of decision options with decreasing utility over time. To emulate a similar
behavior, the automation was programmed to also display various concession behav-
iors. The offers of decision options and their timestamps were recorded and fitted to
simulated outcomes of the proposed cooperative decision making models to evaluate
their ability to replicate human concession behavior in cooperative decision making
scenarios.

In the following, the scenario setup for cooperative decision making, the decision
interface (i. e. the program) and the automation behavior in the cooperative decision
making scenarios is introduced in more detail. Furthermore, the study’s procedure
and its measures are explained.

Cooperative Decision Making Scenario

In each cooperative decision making scenario, the participant was introduced to four
decision options dµ, µ ∈ [1, 4] ⊂ N with different predefined utilities uµ

H in the
range from one to seven (uµ ∈ [1, 7] ⊂ N). The range and size of both sets were
chosen with the goal to not mentally overload the participants, see Section 3.1.2 and
esp. Assumption 3.1. Each scenario comprised a cooperative decision making time
period of T = 12 s. This time period was based on the following motivation: Gold et
al. [GDLB13] found human reaction times for driving related tasks, e. g. perceiving a
hazardous situation and reacting by breaking, of around 3 s. To allow the participant
to virtually perceive and react to each individual decision option, this reaction time
was multiplied by four, i. e. the number of decision options within one scenario.

The participants were generally able to freely choose, i. e. offer, decision options.
However, participants were not able to take back an offer they had already chosen.
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The objective of the participants was to receive as much utility payoff in each scenario
as possible and accumulate as much as possible throughout the series of scenarios.
However, there was only a utility payoff at the end of each scenario if the participant
and the automation had reached an agreement on a decision option within the given
time period of cooperative decision making. In order to reach an agreement within
that time period, the participants were able to concede by proposing additional de-
cision options after their initial choice of a decision option. Therefore, a theoretical
maximum of three concession steps was possible for each participant in each sce-
nario. Due to the participants’ objective, it was assumed that participants initially
chose the option with the highest utility payoff and successively proposed additional
decision options with decreasing utility payoff.

The automation chose decision options in a changing but predefined pattern that will
be explained later. The choice of the automation was displayed to the participant. As
soon as either the human or the automation chose an option that had been already
offered by the other one, an agreement was reached yielding a corresponding payoff
for the participant. The scenario ended if either the deadline was reached or an
agreement was found.

One part of the study also investigated whether or not participants would make
use of a richer communication within the cooperative decision making process. To
this end, offers were not only associated with a decision option but also comprised
further meaningful information for the cooperative decision making process: par-
ticipants and the automation were also able to communicate the importance level ζ
of their currently chosen decision option by double and triple clicks on that op-
tion. However, double and triple clicks reduced the potential payoff by one and
two, respectively, accounting for the higher communication effort and an evaluable
meaning.

Decision Interface

The decision interface of the study is depicted in Figure 4.1 by means of two exem-
plary screenshots. Each decision option was visualized by a button that was initially
colored in light blue and had a certain utility uµ

H depicted in its lower right corner.
The choice of the automation was indicated by the coloring of the respective button
in dark blue. The participant was able to choose decision options by clicking on
the corresponding button which then changed its color to orange. If available, the
communicated higher importance level of a decision option was indicated by two
or three yellow bars in the upper right corner of the decision option. If an agree-
ment was reached, the mutually chosen decision option button turned green and the
corresponding utility was added to a utility counter in the lower right corner of the
screen. During the whole scenario the remaining time until the deadline had been
reached was indicated by a decreasing red bar graph (i. e. inverted progress bar) in
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the upper half of the screen. When the scenario ended, either by reaching the dead-
line or an agreement, the results of this scenario were displayed for 2 s. Then, the
next scenario started after a countdown of 3 s.

(a) Scenario with one offer each of participant
and automation.

(b) Scenario with communicated importance
level.

Figure 4.1: Exemplary screenshots of the decision interface. ©2020 IEEE

Scenario Design

Each scenario was determined by a set of utilities for the participant (uH) and the
automation (uA). However, both were unaware of each other’s utilities. For each
scenario, the utility patterns were assigned to decision options, i. e. the pair of utility(

uµ
H, uµ

A
)

, µ ∈ [1, 4] ⊂ N, was assigned to decision option dµ. The decision options
were presented in a random order on screen (see Figure 4.1) in order to avoid learn-
ing effects. The applied utility patterns forming different scenarios are presented in
Table 4.1. The utility patterns were designed to reveal different manifestations of
participants’ time-based concession behaviors, which is explained in the following.

Table 4.1: Scenario utility pattern.

Scenario uH uA

S1 [7, 5, 3, 1] [1, 3, 5, 7]
S2 [7, 3, 2, 1] [1, 3, 5, 7]
S3 [7, 5, 3, 1] [1, 2, 3, 7]
S4 [7, 6, 2, 1] [1, 3, 5, 7]
S5 [7, 5, 3, 1] [1, 2, 6, 7]
S6 [7, 5, 3, 2] [3, 5, 7, 2]
S7 [7, 5, 3, 1] [ , , , 7]
S8 [7, 5, 3, 1] [ , , 6, 7]
S9 [7, 3, 2, 1] [ , , 6, 7]

Scenario S1 had a linear utility distribution for both participant and automation. In
scenario S2 and S4, the automation had a linear utility distribution and the partic-
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ipant faced a larger utility gap between highest and second-highest valued options
and between second highest and third-highest valued options, respectively. In sce-
nario S3 and S5, this was set vice-versa for participant and automation. All scenarios
mentioned up to now let to an agreement after a maximum of three concession steps
in total. In contrast to that, scenario S6 had a decision option that was the least
valued option for both decision makers, i. e. at maximum two concession steps by
any decision maker were required to find an agreement. Scenarios S7 to S9 caused a
stubborn behavior of the automation (options with “–” were treated as not existing)
to avoid the impression that the automation was forced to reach an agreement and
to incite more offers of the participants within one scenario.

Automation Design

The behavior of the automation was predefined with respect to the utility pattern
of Table 4.1 and the basic negotiation model for human-machine cooperation intro-
duced in Section 3.2.3. This model was chosen without any explicit knowledge on
human conceding behavior and represents the simplest form of automation design
that allows for rational and active participation in cooperative decision making.

The automation always offered the option with the highest utility (maxν uν
A) at the

beginning of each decision making scenario. Additional offers were placed if the
linear-over-time decreasing target utility ut,A became smaller than a utility uµ

A of a
non-chosen decision option dµ. Therefore, the following condition was continuously
evaluated for the utilities uµ

A of all so far non-chosen decision options dµ:

uµ
A > ut,A := max

ν
{uν
A} −

(
max

ν
{uν
A} −min

ν
{uν
A}
)
· t/T (4.1)

with t ∈ [0, T ]. If applicable, the automation also communicated the importance
level of its choice of decision option.20 The corresponding times were determined
analogously to (4.1) by replacing uµ

A on the left-hand side of the inequality with
uµ
A − 1 or uµ

A − 2 for the currently chosen decision option dµ. Note that in certain
cases the utility of another decision option dν (ν ̸= µ) was equal or greater than this
reduced utility (uν

A ≥ uµ
A − 1 or uν

A ≥ uµ
A − 2). In this case, this decision option dν

was offered instead of communicating higher importance levels.

By means of this automation design based on the basic negotiation model and sce-
nario design, the participants faced a cooperative decision making counterpart that
was rational but from their perspective unpredictable in terms of decision options
preference sequence and concession behavior. Furthermore, the automation design
was kept as simple as possible to minimize its influence on human behavior. This
effort was made to present a human-like cooperation partner to the participants to

20 Further information on the enriching of offers with importance information can be found in the adap-
tive negotiation model example in Appendix B.
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get as close as possible to the original study design in which two human participants
were supposed to cooperatively decide.

Procedure

Provided with the designed program and guidelines explaining the study, partici-
pants were able to conduct the study on their own. Hence, participants received the
program and guideline via email after they reacted to the study’s invitation. In the
following, the different parts of the study and their sequence are presented. The
accomplishment of all practical parts of the study took up to 15 min.

1) Information & Preparation
Firstly, the participants were instructed to read the guidelines on how to con-
duct the study. These included a user guide for the program and an explanation
of which information was needed to be sent back to the examiners. Further-
more, the participants were informed about the setup of the decision scenarios
(four decision options, deadline, automation also places offers, payoff only in
case of agreement) and what their objective was (accumulate as much utility as
possible). They were unaware of the exact behavior of the automation. Finally,
they were asked to start the program.

2) First Trial Part
This part of the study was a random series of scenario S1 to S8. To get to know
the general handling of the program it was possible to repeat this part any
number of times. The results of this part were not included in the evaluation.

3) First Test Part
This part comprised three times scenarios S1 to S7, twice scenario S9 and once
scenario S8 in random sequence.

4) Second Trial Part
This part was built similar to the first trial part. The ability to communicate
the importance level of a decision option’s choice via double and triple clicks
was available in this part and was the only difference regarding the usability.
Furthermore, this part was not repeatable.

5) Second Test Part
This part had a setup equivalent to the first test part while the ability to com-
municate the importance level of decision option’s choice was given.

6) Postprocessing
The participants were asked to send back the log-files created by the program
along with additional information about age, sex and profession.
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General Evaluation Procedure

The resulting data of each participant were the placed offers of each scenario, i. e. de-
cision options that were chosen with a certain amount of clicks, and the correspond-
ing time stamp relative to the start time of each scenario.

In a first step, rationality of participants was verified by searching for guideline
violations such as offering options with increasing utility over time, not reaching an
agreement or only placing single offers at the beginning or end of a scenario. These
behaviors do not resemble a rational cooperative decision making process. Therefore,
the data of the corresponding scenario was excluded from further examination.

In a next step, the models of cooperative decision making, namely the adaptive nego-
tiation model and the n-stage war of attrition, were fitted to the observed participants
concession behavior and the fitting error was evaluated. This was possible due to
the study’s design that specified the available decision options and corresponding
offers, their utilities and the time frame of cooperative decision making.

The specific evaluation procedures for each model of cooperative decision making
are separately explained in the following.

Evaluation Procedure for the Adaptive Negotiation Model

In the case of the adaptive negotiation model, the concession behavior within each
negotiation was determined by the basic negotiation model’s concession strategy, see
Section 3.2.3. The basic idea of this strategy is to compare utilities uκ

H of offers oκ

to a time-dependent target utility ut,H. If uκ
H > ut,H holds for the first time for oκ

then this offer is proposed and becomes part of the offer history OH
H. A parametric

description of the target utility facing a deadline at time T without normalization
is

ut,H(t, ϵ) = max
κ
{uκ
H} −

(
max

κ
{uκ
H} −min

κ
{uκ
H}
)
· (t/T )1/ϵ (4.2)

with the concession parameter ϵ, see Definition 3.7. Utilizing this model, the partic-
ipants’ negotiation behavior can be expressed by means of their concession parame-
ters. To determine the concession parameter of one participant within one scenario,
all times

{
tκ
H|κ > 0

}
at which the participant proposed an additional offer after the

initial offer were taken into account. Note that the initial value does not provide
information on participants concession behavior. Therefore, participants were in-
structed to propose the initial offer shortly after the start of the decision scenario.
By means of the following optimization of the squared error between the conces-
sion model (4.2) with respect to

{
tκ
H|κ > 0

}
and the set of utility

{
uκ
H|κ > 0

}
of the

observed offers
{

oκ
H
}

the concession rate was estimated:

ϵ̂ := arg min
ϵ

∑
κ>0

(uκ
H − ut,H(tκ

H, ϵ))2 . (4.3)
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On the basis of these estimated concession parameters of every scenario and each
participant, the following aspects were evaluated:

• Suitability of Time-based Concession Model
For scenarios with more than two observed offers the concession rates were
estimated according to (4.3) and the resulting maximum deviation between
model and observations in terms of time (∆maxt) and utility (∆maxu) were eval-
uated:

∆maxt := max
κ>0

∣∣∣tκ
H − (ut,H)

−1(uκ
H, ϵ̂)

∣∣∣ (4.4)

∆maxu := max
κ>0
|uκ
H − ut,H(tκ

H, ϵ̂)| (4.5)

• Influences of Valuation Pattern and Automation Behavior
The utility pattern of scenario S1, S2 and S4 varied in the utility that was dis-
played to the participant while the utility of the automation and hence its be-
havior stayed invariant. Therefore, these scenarios of the first test part were
used for examining the influence of different utility patterns on the partic-
ipants’ behavior, i. e. ϵ̂. This was conducted by means of a non-parametric
Kruskal-Wallis test by ranks [KW52] for each participant considering these sce-
narios.

The utility pattern of scenario S1, S3 and S5 varied in utility considering the
automation and hence the behavior of the automation also varied while the
utility for the participant did not change. A Kruskal-Wallis test by ranks was
applied for each participant with respect to these scenarios of the first test part
to examine if the change of automation behavior influenced the participants’
behavior.

• Influence of Richer Communication
The influence of richer communication, i. e. in this case the ability to show
the importance of a current choice to the automation, on the negotiation be-
havior was examined by comparing the concession parameters of both test
parts. Concession rates were estimated with respect to changes of decision
options disregarding changes in importance level in order to achieve a simple
and comparable evaluation. The comparison was performed by means of a
Kruskal-Wallis test by ranks [KW52].

Evaluation Procedure for the n-Stage War of Attrition

In case of the n-stage war of attrition, the relevant model component describing
the concession behavior is the time-dependent cost function since the other model
components, i. e. utility differences and their distribution, are specified by the study’s
design. Hence, the following measures focus on the estimation of the cost function.
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Note that the n-stage war of attrition does not consider additional communication
symbols like the importance of a choice. Therefore, the data of the second test part
of the study associated with the ability of richer communication is not considered in
this game theoretic evaluation.

For the presented evaluation, the offers, i. e. the chosen decision options and corre-
sponding time stamps, determined the stages and corresponding thresholds of the
n-stage war of attrition game model for each scenario, see Section 3.3.5: a stage is
defined as the time period between two proposals of decision options by any player,
i. e. cooperation partner. The thresholds describe the times after the beginning of a
stage at which players concede and propose their next decision option if the other
player has not yet conceded.

The evaluation was based on the postulated threshold calculation of the human
player for each stage of the game according to Theorem 3.3. This calculation of
thresholds τm

H depends on the time-dependent cost function c(t), the current util-
ity difference δm

H, the corresponding utility differences density function fδA and on
whether or not the human player has won or lost the previous stage(s) of the game.
Although fδA was specified by the study’s design, the automation in this study did
not behave according to Theorem 3.3 because its behavior was governed by the basic
negotiation model for reasons of simplicity. Therefore, it was assumed that the par-
ticipants’ beliefs of fδA was a uniform distribution within the given range of utility
differences. Consequently, all other dependencies of the threshold calculation were
known except for the cost function. In order to make the identification of cost func-
tions manageable, an exponential function structure was assumed which yielded a
parameterized cost function:

c(t, θ) = θ1 · tθ2 , θ = [θ1, θ2]
⊤ , θ1 > 0. (4.6)

This structure was motivated by an increasing decision-making pressure over time
that becomes steeper when approaching the deadline while still disagreeing. In line
with Definition 3.13, the initial costs were set to zero.

For identifying the parameters θ of this parameterized cost function, it was assumed
that the sequence of offers of both participants resulting from the simulated model
had to be identical to the observed sequence. Furthermore, note that the initial offers
of both agents do not provide information on their concession behavior and were
therefore disregarded in the identification process. Hence, the offer times tκ

H of ob-
served offers oκ

H (except the initial offers, i. e. κ > 0) of the participant and those of
the automation were utilized to calculate the relevant thresholds τm

H of the partici-
pant in every stage m of each scenario. Hence, each scenario was associated with
an observed set of thresholds TH. Additionally, the parameterized model yielded a
similar set of thresholds Tθ by means of Theorem 3.3 that depended on the param-
eters θ. These parameters were determined with respect to the optimal fit of the set
of thresholds Tθ to the set of observed thresholds TH. To this end, the following
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objective function based on the squared error between the sets’ thresholds was set
up:

J(θ) :=





|TH |
∑

κ=1

(
τκ
H − τκ

θ

)2 |TH| = |Tθ|
|TH |
∑

κ=1

(
τκ
H − τκ

θ

)2
+

|Tθ|
∑

κ=|TH |+1

(
τκ

θ − T
)2 |TH| < |Tθ|

|Tθ|
∑

κ=1

(
τκ
H − τκ

θ

)2
+
|Tθ|
∑

κ=1

(
τκ

θ − 0
)2 |TH| > |Tθ| ∧ |Tθ| ̸= 0

(
c(T , θ)− 1.5 · c

(
T , θ̂

))2 |Tθ| = 0.

(4.7)

The different cases with respect to TH and Tθ was utilized to ensure an identical
sequence of offers, i. e. thresholds, between the observation and the simulated pa-
rameterized model. The penalty components in the cases in which the number of
offers was not identical created an incentive to either reduce or increase the num-
ber of thresholds in the simulated set Tθ. In the case that the simulated model did
not provide a single threshold τθ, the comparison of cost function values at the end
of the scenario with respect to the current parameters θ and estimated parameters
of a previous optimization iteration θ̂ created an incentive to increase the values of
parameters θ and hence the cost function values. With these increased cost function
values, the simulation of the model yielded thresholds τθ < T .

Minimizing the objective function (4.7) by iteratively simulating the n-stage war of
attrition with respect to parameters θ finally resulted in the identified parameters θ̂
that fitted the observed thresholds to the simulated ones:

θ̂ = arg min
θ

J(θ) . (4.8)

On the basis of these estimated cost function parameters for each scenario and each
participant, the following aspects were evaluated:

• Suitability of Modeling Concession by Means of a Cost Function
For scenarios with more than two observed offers, i. e. at least two more offers
after the initial offer, the two cost function parameters could be unambiguously
estimated according to (4.8) and the resulting maximum deviation between
simulated and observed thresholds was calculated:

∆maxτ := max
κ>0
|τκ
H − τκ

θ̂
| (4.9)

• Generalizability of the Cost Function
According to Definition 3.13, the cost function is supposed to be common
knowledge and equal for all players. Regarding the practical application of the
n-stage war of attrition, it would be beneficial if the cost function generalizes
over different scenarios. Consequently, the above introduced estimation (4.8)
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of individual parameters for every scenario was augmented to investigate this
generalizability: three groups comprising increasing number of sets of scenar-
ios and participant quantities were defined and different parameter sets θ̂ were
estimated for each group. The three groups only consisted of scenarios S1 to
S5 as these represent situations in which potentially both cooperation partners
conceded in order to reach an agreement. The groups were defined as follows:

G1: Parameter Determination Depending on Types of Scenarios
For this group, a common cost function for each type of scenario and each
participant was postulated. Consequently, one parameter set θ̂ was deter-
mined for all scenarios of one type and for each participant by means of
(4.8). Hence, there were five (for scenario types S1 to S5) times the num-
ber of participants parameter sets that minimized the timely deviation
between simulated and observed thresholds.

G2: Parameter Determination Depending on all Scenarios
Postulating, there was only one common cost function for each partici-
pant, this group comprised all scenarios of each participant. Hence, one
parameter set for each participant was determined by means of (4.8) that
minimized the timely deviation between simulated and observed thresh-
olds for all scenario types of the respective participant.

G3: Parameter Determination Depending on all Scenarios and all Participants
Lastly, one parameter set was determined by means of (4.8) that mini-
mized the timely deviation between simulated and observed thresholds
for all scenario types and all participants.

The influence of considering these groups with respect to the parameter es-
timation and the corresponding timely deviations of simulated and observed
thresholds was evaluated by means of the Kruskal-Wallis test [KW52].

Participants

27 participants (70.4 % male, 29.6 % female) with a range of 22 to 56 years (aver-
age age of 29.2 years) took part in the study. The majority of participants were
research associates or engineers (37 %) and students (29.6 %). Participants were re-
cruited without any intended selection procedure and compensation.

4.1.2 Results Concerning the Adaptive Negotiation Model

This section presents the results concerning the adaptive negotiation model. Due
to fact that three participants violated the study’s guidelines by not striving for the
highest utility and therefore did not provide any information about their concession
behavior, the data of 24 participants is presented in the following.
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Figure 4.2: Exemplary observed offer times (×) and corresponding target utility trajectories of participants
19 and 21 in different scenarios.

Concession Model Fit of Target Utility

In order to analyze the proposed concession model based on the target utility con-
cept, the differences between the fitted model and observed offers of the participants
were calculated, see (4.3). Exemplary observed offers and corresponding identified
target utility trajectories are depicted in Figure 4.2. The estimated concession rates
ϵ̂ were in the range of 1.6× 10−3 to 0.9 with a mean value of M = 0.2 and a stan-
dard deviation of SD = 0.22. The resulting model errors considering time (∆maxt)
and utility (∆maxu) are presented in Table 4.2. Furthermore, Table 4.2 also provides
the average (M) and the standard deviation (SD) of the maximum error based on
62 valid examinations. The deviations ∆maxt and ∆maxu were within the range of
3.6× 10−3 ms to 7.3× 103 ms and 2.9× 10−6 to 3.94, respectively.

Table 4.2: Exemplary, highest and average target utility model errors. Overall analysis comprised 62
scenarios with more than two observed offers of 16 participants.

Scenario ∆maxt in ms ∆maxu

P19: S7 314.4 0.34
P19: S9 292.8 0.44
P21: S8 908.4 0.84
P21: S7 121.2 0.19

M 419.8 0.33
SD 978.3 0.54
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Observed Decision Option Offers

In Figure 4.3 compact boxplots (see explanations in the Appendix D.1) for observed
timestamps of decision option offers of all participants and scenarios S1 to S5 of
the first test part are depicted. The majority of first offers was placed before 2 s.
There was a large variance in time among the participants when they were about to
place second and possibly third offers, e. g. participants 3, 4, 5, 11, 19, 22, 23 and
24. No correlation with the different scenarios was noticeable. Furthermore, some
participants placed their second offer exclusively in the last second of the scenario,
e. g. participants 1, 7, 10, 13, and 14.

These observations are also visible in Figure 4.4 presenting the identified concession
rates ϵ̂ for each individual scenario in compact boxplot manner. The concession rate
was in the range of 0.001 to 2.8 and had a great variance among participants. The
strategy to place the second offer in the last second of the study let to concession
rates close to zero.

Influences of Valuation Pattern and Automation Behavior

In order to apply the Kruskal-Wallis test by ranks to evaluate the similarity of par-
ticipants’ negotiation behavior facing different utility patterns, 23 valid sets of mea-
surements were obtained. At a significance level of 5 % 19 participants (82.6 %) did
not vary their behavior with respect to facing different utilities. Four participants
(17.4 %) did: participants 5, 17, 22 and 24.

Similarly, 22 valid sets of measurements were available for applying the Kruskal-
Wallis test by ranks to examine the similarity of participants’ negotiation behavior
facing different automation behaviors. The behavior of 18 participants (81.8 %) was
not significantly influenced (α = 5 %), 18.2 % (four participants) were influenced by
this change of automation behavior: participants 3, 5, 17 and 18.

Influences of Richer Communication

The compact boxplots of identified concession rates of scenarios S1 to S5 of both test
part 1 and 2 and every participant are depicted in Figure 4.5. Applying the Kruskal-
Wallis test by ranks with a significance level of α = 5 % to compare the distributions
of ϵ̂ of both test parts yielded that 79.2 % of the participants did not adapt their
negotiation behavior. Participants 1, 7, 10, 13 and 16 showed significant differences.
However, six participants (25 %) did not utilize the richer communication feature,
e. g. participants 6, 7 and 23. 12 participants (41.7 %) occasionally and six participants
(33.3 %, e. g. participants 5, 16 and 19) intensively utilized this feature.
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Figure 4.3: Compact boxplots (see explanation in Appendix D.1) of observed offer timestamps for each
participant, individually for scenario types S1 to S5 based on data of test part 1: colors fade
with number of offers. For all scenarios: median ×, lower/upper quartile –, lower/upper
adjacent · · · .
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Figure 4.4: Compact boxplots (see explanation in Appendix D.1) of identified concession rates for each
participant, individually for scenario types S1 to S5 based on data of test part 1. Median ×,
lower/upper quartile –, lower/upper adjacent · · · .
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Figure 4.5: Comparison of compact boxplots of concession rates of scenarios S1 to S5 of test part 1 and 2.
Median ×, lower/upper quartile –, lower/upper adjacent · · · , outliers ◦.
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4.1.3 Results Concerning the n-Stage War of Attrition

In this section, the results concerning the game-theoretic n-stage war of attrition
model are presented. Equally to the above presentation of results concerning the
adaptive negotiation model, the data of 24 participants is presented in the follow-
ing.

Concession Model Fit of the Cost Function

To examine the proposed concession modeling by means of a cost function, the max-
imum deviation between simulated and observed thresholds was calculated for sce-
narios with more than two human offers. As for the target utility model examination,
there were 62 of these scenarios originating from 16 participants. Figure 4.6 pro-
vides exemplary identified cost functions of four participants for one scenario each.
The fitted parameters were in the range of 1.7× 10−10 to 9.9 (θ̂1) and 4.9× 10−4 to
14.5 (θ̂2) with mean values of M = [1.06, 1.95]. Table 4.3 provides the maximum
deviation (∆maxτ) between observed thresholds and the ones corresponding to the
identified cost function for the exemplary scenarios of Figure 4.6 and the mean (M)
and standard deviation (SD) of all maximum deviations ∆maxτ from all applicable
62 scenarios. The deviations ∆maxτ were within the range of 4.4 · 10−5 ms to 4813 ms.
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P23, S9, θ̂ = [1.03, 0.396]⊤ P24, S3, θ̂ =
[
6.6 · 10−4, 3.28

]⊤

Figure 4.6: Exemplarily identified cost functions based on observed thresholds (×). The vertical dashed
line visualizes scenarios’ deadline at 12 s.
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Table 4.3: Exemplary and average cost function model errors. Overall analysis comprised 62 scenarios
with at least two observed offers of 16 participants.

Scenario ∆maxτ in ms

P15, S7 254.51
P16, S9 745.91
P19, S7 704.87
P23, S9 5.5 · 10−5

M 416.67
SD 543.03

Generalizability of the Cost Function

Figure 4.7 shows the compact boxplots of the maximum deviations of observed and
simulated thresholds depending on the defined scenario groups G1 to G3 for each
participant and scenario type S1-S5 separately. Table 4.4 provides the maximum
and average deviation between observed and simulated thresholds based on the
identified parameters considering different scenario groups G1 to G3 of scenario
types S1 to S5. The statistical analysis by means of the Kruskal-Wallis test by ranks
yielded a significant difference of deviations of observed and simulated thresholds
with respect to scenario groups G1 to G3. A pairwise post-t-test revealed that the
distribution for G1 was significantly different compared to G2 and G3, whereas there
is no significant difference between G2 and G3.

Table 4.4: Average and maximum deviation between observed and simulated thresholds depending on
scenario groups.

∆maxτ in ms
G1 G2 G3

M 671.4 3587.1 4368.5
SD 905.6 2618.5 2802.3

max 6735.0 9287.6 9000.5

4.1.4 Discussion

In general, participants displayed a diverse concession behavior regarding observed
times of decision option offers as depicted in Figure 4.3. However, no distinct influ-
ence of the scenario types differing in the utility patterns was noticeable. The initial
decision option choice was usually offered within two seconds. This reflects human
reaction time for consciously conducted tasks (about 2 s, see [GDLB13]). However,
considering the countdown phase before each cooperative decision scenario and the
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Figure 4.7: Compact boxplots of maximum deviations ∆maxτ between observed and simulated thresholds
for scenario groups G1 to G3 provided for each participant and scenario type S1-S5 separately
based on data of test part 1. Median ×, lower/upper quartile –, lower/upper whisker · · · ,
outlier ◦.
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rather small number of decision options and utilities, the reaction times appear rather
long. This may have been influenced by the interface design or the rapid sequence
of decision options within the study. Hence, cooperative decision interface design
needs to ensure the mutual start of the cooperative decision making scenario. Fur-
thermore, some participants exhibited a two-offers-strategy, i. e. participants placed
their second offers only close to the deadline without any noticeable dependence of
utilities on the concession behavior. Hence, the study design did not encourage all
participants to consciously evaluate utilities and choose a corresponding concession
strategy leading to a cooperative decision making process. This also applies for the
participants who did not strive for the highest utility and who were therefore ex-
cluded from the evaluation because they did not provide any concession strategy
information. These observed behaviors highlight the importance of elaborated study
and interface designs for cooperative decision making. Some participants provided
oral feedback saying that the given time made it possible to consciously decide. This
demonstrates that the provided time for cooperative decision making was appropri-
ate for the given scenario and interface design. Furthermore, this encourages the
application of the same design principle (3 s times the number of decision options)
in related cooperative decision making scenarios with similar interface designs.

However, for those participants who did engage in the cooperative decision making
process, the basic negotiation model fit to the observed human behavior revealed the
target utility model’s suitability to model concession behavior. The maximum timely
deviations ∆maxt were mostly within the range of human reaction time [GDLB13].
Therefore, they can be considered to be noise caused by human actions when using
the interface. When fitting the basic negotiation model, the majority of identified pa-
rameters depicted in Figures 4.4 and 4.5 was below ϵ < 1. Therefore, the correspond-
ing human negotiation behavior is considered to be “competitive” [VKG14]. This
supports findings of earlier investigations of human concession rates [VKG14]. The
subsequent statistical analysis of the identified concession rates yielded the insight
that the concession behavior of some participants depended on the scenario types
which differ in terms of utilities and automation behavior as well as on the form
of communication. Furthermore, the high diversity of identified parameters of the
modeled concession behavior among participants supports the general impression
based on the observed times of decision option offers depicted in Figure 4.3. Conse-
quently, an identification and adaptation functionality as provided by the adaptive
negotiation model may be beneficial for the design of an automation enabled to ne-
gotiate with and adapt to the concession behavior of humans. This adaptation also
has the potential to counteract the observed two-offers-strategy or other stubborn
behavior: the automation may adapt either to equally stubborn negotiation behavior
or to early-conceding behavior to avoid fruitless negotiations. The fact that only one
third of participants intensively utilized the richer communication ability to addi-
tionally indicate the importance level of a choice shows that the other participants
did not see the necessity or benefits of this form of richer communication. Hence,
if some form of richer communication is applied in future, the necessity and benefit
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of it has to be made more apparent to the participants, including a revision of the
interface design.

Regarding the n-stage war of attrition fit to the the observed human behavior, the
results yielded average model errors that were also within the range of human reac-
tion time. Hence, the errors can also be considered noise of human actions to operate
the interface. Therefore, also the n-stage war of attrition can be considered a suitable
model for human concession behavior in cooperative decision scenarios. However,
as the examinations of the cost functions’ generalizability shows, the model errors
increased greatly when attempting to generalize over scenario types and over par-
ticipants. Hence, although the n-stage war of attrition explicitly relies on uncertain
information of the cooperation partner, in terms of automation design it may be
beneficial to have some sort of adaptation technique in place to adapt to individual
human behavior.

4.1.5 Conclusion

The fit of the proposed mathematical behavior models of human-machine coopera-
tive decision making, i. e. the basic negotiation model and the n-stage war of attrition,
to the observed human behavior revealed the models’ suitability to model human
concession behavior in cooperative decision making scenarios. Hence, the proposed
mathematical behavior models are a suitable basis for the design of an automation
capable to actively take part in human-machine cooperative decision making exhibit-
ing human-like concession behavior.

The study also provided useful insights that need to be considered in the automation
design based on the proposed models of cooperative decision making: The automa-
tion should be capable to adapt to individual human behavior. Furthermore, the
interface design for cooperative decision making requires particular attention to en-
sure an intuitive and proper interaction process.

In terms of future experiments on human-machine cooperative decision making,
the study showed that an intuitive interface and careful scenario design in terms
of presenting decision options’ utilities is crucial to encourage humans to properly
perceive, comprehend and consciously choose from available decision options. Fur-
thermore, this study forms the foundation of future experimental investigations of
automation designs based on the proposed mathematical behavior models and their
suitability of describing human concession behavior.

In essence, the conducted study on the models’ suitability for describing human
concession behavior provided the following key insights.

• The basic negotiation model and the n-stage war of attrition are suitable to
describe human concession behavior.
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• There are indications that an adaptive automation towards individual human
concession behavior may be beneficial.

• Adequate interface designs for cooperative decision making are crucial to en-
sure an intuitive and fruitful interaction.

After proposing the mathematical behavior models of cooperative decision making
and assessing their suitability for describing human-like concession behavior, the
following section introduces the automation design for human-machine cooperation
on decision level based on these mathematical behavior models.

4.2 Model-Based Automation Design

After introducing two mathematical behavior models of human-machine cooperative
decision making in Chapter 3 and evaluating their suitability to represent human
time-dependent concession behavior in Section 4.1, the following section describes
the automation design based on these mathematical behavior models and on some
general aspects of human-machine cooperative decision making. The objective of
the proposed automation designs is to enable humans to establish a mental model of
the automation’s behavior. This is assumed to yield high user acceptance [FSKL08].
To facilitate the human establishment of mental models, the proposed automation
designs utilize the cooperative decision making models which are capable of repre-
senting human behavior in a cooperative setting, see Section 4.1. Previous success
of similar design approaches for driver assistance systems in the context of human-
machine cooperation on action level [Lan02, Fla19] supports this model-based ap-
proach.

The following section discusses general aspects of automation design for coopera-
tive decision making. Subsequent sections provide the model-specific guidelines for
implementing the corresponding automation designs.

4.2.1 General Automation Design for Cooperative Decision Making

In order to design an automation which is able to take part in a cooperative decision
making process, not only the the automation behavior requires attention. Also the
decision making interface and the situation in which a cooperative decision making
process can take place have to be considered.
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Decision Options and Their Evaluation

The set of decision options needs to be defined appropriately. This includes that
all decision options need be apparent and valid for both cooperation partners. In
a practical implementation suitable for many areas of application, ensuring this re-
quirement is a challenging task. Furthermore, the number of decision options within
one scenario of cooperative decision making should either be limited or suitably ag-
gregated by means of abstraction (see example in [KFS+12]) such that the human
cooperation partner is able to conceive all decision options and their impact. An
appropriate number may be limited to four decision options as this is the “capacity
limit [of human] focus of attention at one time” [Cow01].

Additionally, there has to be at least one measure which allows for a differentiation
of the decision options by both cooperation partners. Despite this, the measures do
not have to be identical for human and machine. However, it may be beneficial for a
fruitful human-machine cooperation if some identical aspects of the decision making
scenario are considered by the measures of human and machine such that both coop-
eration partners’ decisions are to some extent meaningful to the other partner. This
aspect is crucial for the identification of and adaptation to human behavior within
the cooperative decision making process.

Start, Duration and End of the Cooperative Decision Making Process

The scenario for cooperative decision making should allow for a time span in which
a cooperative process can take place, i. e. after the initial decision making of both co-
operation partners resulting in a conflict situation, there has to be time for both coop-
eration partners to evaluate the choice of their partner, reflect on their decisions and
potentially concede by proposing different decision options. An appropriate time
span obviously depends on participants’ cognitive capabilities, the decision making
scenario and its complexity, e. g. its number of decision options. As a consequence,
cooperative decision making requires in general some time in the magnitude of hu-
man reasoning and reaction times. Therefore, it is not suitable for highly time-critical
scenarios.

For practical implementations however, it is suitable to limit the time period of co-
operative decision making in order to avoid confusion about the beginning of the
process and to prevent an endless process without reaching an agreement. In case
of defining the beginning of a cooperative decision making process, there are two
potential design options assuming both cooperation partners are able to perceive the
decision scenario and initially decide: from the perspective of automation design,
the process may either start as soon as the automation is able to decide on its initial
decision option or as soon as the human communicates her or his initial choice of
decision option. In the course of the study on the models’ suitability reported on
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in Section 4.1, the first design option often induced a purely reactive human behav-
ior, i. e. participants would only react to choices proposed by the automation shortly
before the deadline was reached. Hence, no real process of cooperative decision
making was established. Therefore, it is recommended to enforce the second design
option e. g. via the interface design. Besides the beginning, the end of the cooperative
decision making process, i. e. the point in time until which an agreement should be
reached, also requires attention. It must be designed in such a way that the overall
process duration is reasonably short to come to an agreement in a timely manner, but
still long enough to allow for at least skill-based or knowledge-based human action,
see Section 2.2.3 and [Ras83]. In the course of the study on the models’ suitability
(see Section 4.1), the broad rule to set the overall time period to 3 s times the number
of decision options has proven to be appropriate. This rule is based on the typi-
cal human reaction time of 3 s in driving related tasks, e. g. perceiving and reaction
to driving situations, found by Gold et al. [GDLB13]. Upon this, it is proposed to
virtually provide this time to perceive and react for each available decision option.
However, the consequence of setting a hard deadline and potentially enforcing it via
the decision making interface requires the allocation of ultimate authority in case the
applied model for cooperative decision making does not guarantee to find an agree-
ment before the deadline is reached. Depending on the area of application and the
type of decision to be taken in the course of the cooperative decision making process,
different allocation strategies can be utilized: if the cooperative decision making is
about actions with serious influences, regulatory and ethical reasons allow only the
human to be the ultimate decision maker [FDM+20]. In case the cooperative decision
making is only concerned with comfort functionality, it is reasonable to also consider
the automation to be the ultimate decision maker.

Decision Making Interface

As already mentioned, the decision interface between human and automation plays
a key role in the general automation design for cooperative decision making. Its
design is crucial as it has to enable a period of potential cooperative decision making
as well as it has to make the human aware of this period by communicating its
beginning and end. Furthermore, it has to present the available decision options
the latest at the beginning of a decision scenario and allow for their selection by the
human. Moreover, the interface has to ensure conceding-only behavior during the
cooperative decision making process.

From an ergonomic perspective, the interface design has to allow for an intuitive
start of the cooperative decision making process, an intuitive communication of the
process’ end and an intuitive presentation and selection of decision options [BD16,
WWM+19, FDM+20]. Moreover, it should provide adequate feedback on mutual
agreements or ultimately valid decision options if no agreement is reached in order
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to increase the overall system’s transparency and, by association, also human trust
and acceptance.

4.2.2 Adaptive Negotiation Automation Design

The automation design based on the adaptive negotiation model introduced in Sec-
tion 3.2 requires some meaningful instantiations of the general design rules from
above.

Measure for Utilities

In the context of negotiation theory, offers are differentiated by means of a util-
ity measure, see Definition 3.5 in Section 3.2.3. The definition of this utility mea-
sure (3.1a) has to take into account the decision option associated with the evaluated
offer and potential additional information relevant for the cooperative decision mak-
ing process. The actual measure has to yield unique and meaningful utility values.
Furthermore, it is suitable to design the measure in such a way that comparison of
utility values between different decision scenarios is possible. This could e. g. be
achieved by normalization if the range of possible utility values is known. An exem-
plary utility function ut is defined in (B.1a) in Section B.2.

Parameterization of Concession Strategy, Identification and Adaptation

Apart from the utility measure definition, the automation requires an initial set of
parameters, especially in terms of the concession parameter ϵA for the target utility
function ut defined in (3.3) and other parameters for identification and adaptation.

The study on models’ suitability (see Section 4.1) provides the insight that human
concession rates range between 0.0016 and 0.9073 with an average value of approx-
imately 0.2. It is therefore sufficient to set the concession rate of the automation
design to a value within this range such that the automation’s behavior is perceived
as being human-like. Furthermore, the average value is proposed as the initial con-
cession rate in the automation design considering the automation’s ability to adapt
to individual concession behavior. In terms of identification by means of Bayesian
learning, the re-initialization of 10 % of the probability mass to avoid the exclusion
of individual hypotheses has proven to be appropriate, see remark in Section 3.2.4.
The adaptation design parameter β required in (3.11) and the risk disposition factor
r required in (3.12b) have to be within the interval ]0, 1] (see Section 3.2.5) and can
be tuned with respect to the relation of negotiation time and outcome (β: the higher
the value the less important becomes negotiation time in comparison to negotiation
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outcome) as well as with respect to the sensitivity and speed of the adaptation itself
(r: the higher the value the more sensitive and faster becomes the adaptation).

With respect to the identification and adaptation aspects of the adaptive negotiation
model, also the update rates need to be set. In general, the adaptation rate must
be sufficiently small compared to the rate of identification in order to only adapt on
the basis of converged identification results, see Section 3.2.5. Apart from that and
although the identification is possible at any time even if there is no new offer of
the cooperation partner (see Section 3.2.4), experience has shown that identification
updates are most effective at times where new offers are placed. Therefore, the
identification rate should depend on the rate of offers of the cooperation partner.
This in turn depends on the partner’s concession behavior and number of potentially
available offers/decision options. The more concessive the partner is and the more
offers are available, the more offers of this partner will be observed within one round
of negotiation. If the number of observed offers within on round is expected to
be close to zero, it might also be appropriate to identify (and potentially adapt)
only once after each round of negotiation. This leads to purely time-based reaction
behavior during a negotiation round and a cooperation partner’s behavior-depended
adaptation of the automation behavior after negotiation rounds, see Sections 3.1.2
and 3.2.5.

4.2.3 The n-Stage War-of-Attrition Automation Design

The automation design based on the n-stage war of attrition introduced in Sec-
tion 3.3 also requires some meaningful instantiations of the general design rules of
Section 4.2.1 and additionally specific considerations concerning the war of attrition
model.

Defining Utility Differences and Corresponding Distributions

A meaningful utility difference measure for evaluating the decision options is re-
quired, see Definition 3.13. An appropriate utility definition as described above in
Section 4.2.2 is a suitable basis which only needs customization by sorting the utili-
ties in descending order and calculating the differences between neighboring utilities.
This also yields the preference order of the decision options.

Closely related to the definitions of utilities and the corresponding differences among
them is the determination of the distribution of utility differences of the human
which is required for the threshold functions (3.24a) and (3.24b). Definition 3.13
of the applied war of attrition game model assumes that the distributions of utility
differences is common knowledge. However, the utility difference distribution fδH
of the human in practice is unknown to the automation. Therefore, it is proposed
that the automation initially assumes a suitable distribution of utility differences
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of the human and adapts this distribution by means of an identification approach
while engaging in the cooperative decision making process with the human. In
terms of the initial assumption on the utility difference distribution fδH , two different
assumptions are proposed:

1) Uniform Distribution
Assume a uniform distribution over a suitable interval of utility differences,
i. e. within the same range as those of the automation. This yields a distribution
requiring the least information about human utility differences.

2) Distribution of the Automation
Assume that the measures of utility are similar for human and automation and
hence adopt the distribution of utility differences of the automation, i. e. set
fδH := fδA .

Remark. In order for Assumption 3.15 to hold in practice, the threshold functions (3.24a)
and (3.24b) require a positive and diverging integrand (see [Rin14, p. 12]) such that the
threshold functions are strictly increasing and hence yield unambiguous thresholds. This has
to be ensured for the assumed (or identified) density distribution of human utility differences.
Special consideration is required if the calculations are discretized.

The initially assumed distribution of the human can be updated by means of ob-
servations in the course of the game. This requires to solve the inverse game of
the n-stage war of attrition, i. e. to determine utility differences δm

j corresponding
to observed thresholds τm

j while taking into account the strategy determination of
Theorem 3.3. One possible realization to solve this inverse game is the iterative
distribution identification algorithm which is introduced in the following.

Iterative Utility Difference Distribution Identification Algorithm

This identification method was published in [RTIH20] and for reasons of applica-
bility but without loss of generality, it is introduced here for the case in which the
automation, denoted as player A, identifies the utility difference density distribution
of of the human, denoted as player H. Hence, fδH is the subject of identification for
player A, i. e. the automation.

Note that fδA and costs c(t) are common knowledge and that the concessive behavior
of either player is observable by the other player. The main assumption for the
iterative identification algorithm is the following:

Assumption 4.1. Both players play the n-stage war of attrition in a perfect Bayesian equi-
librium.
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Hence, both players are aware of how they determine their thresholds, see Theo-
rem 3.3 and 3.4. Therefore, player A is able to use (3.24a) and (3.24b) to uniquely
calculate utility differences δm

H of the human based on (observed) thresholds τm
H in

every stage m.

Note. In the context of the automation continuously identifying the human density distri-
bution while this identification influences the automation’s strategy, Assumption 4.1 results
from the well-known chicken-and-egg problem which is common for the identification of hu-
man cooperative behavior [Ing21, p. 2].

The general procedure of the iterative identification algorithm for every stage m of
the n-stage war of attrition is depicted in Figure 4.8 and explained in the following.

update f̂δH

Player A

estimate δ̂m
H or δ̂⋄H

stage end at min
(
τm
A , τm

H
)

calculate τm
A

δm
Af̂δH

fδA

Player H

calculate τm
H

δm
HfδA

fδH

Figure 4.8: Overview of the iterative identification algorithm to solve the inverse game of the n-stage war
of attrition.

At the end of stage m, i. e. one player has reached the individual threshold τm and
gives in, the update of the density distribution f̂δH depends on whether player A has
won or lost the stage:

• if player A has won, she or he observes τm
H and is able to estimate the utility

difference δ̂m
H based on (3.24a) or (3.24b), depending on the roles player H had

at the beginning of stage m. Then player A updates the density distribution
f̂ m
δH

by

f̂ m+1
δH
← m

m + 1
· f̂ m

δH +
1

m + 1
· δ↑
(
δ̂m
H
)

(4.10)

with Dirac delta function δ↑(·).
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• if player A has lost and gave in at τm
A , she or he estimates the utility difference

δ̂⋄H that would have resulted in player H having the same threshold τm
H = τm

A .
The estimation is based on (3.24a) or (3.24b), depending on the role player H
had at the beginning of stage m. Then playerA updates the density distribution
f̂ m
δH

with respect to δm
H ∈

(
δ̂⋄H, ∞

)
:

f̂ m+1
δH
← m

m + 1
· f̂ m

δH +
1

m + 1
·

f̂ m
δH
·Θ
(
δ̂⋄H
)

1− F̂m
δH

(
δ̂⋄H
) (4.11)

with Θ(·) being the Heaviside step function.

Note. The update rule weights all, past and current, observations equally due to the assump-
tion that fδH is time-invariant.

The first identification update rule (4.10) is motivated by the law of large numbers
[BLP16], i. e. the expected value and the variance of the identification result converge
for m → ∞ to their ground truth values. However, this update is only applicable if
a threshold of player H is observed. Therefore, the second update rule (4.11) tries to
make use of the perceived information of δl

j > δl:m
A if player A gives in at stage m.

Remark. The identification of the density distribution f̂δj at the end of every stage m may

lead to situations in which the threshold τm+1
A for the next stage m + 1, calculated by means

of the density distribution f̂ m
δj

updated at the end of stage m, becomes negative. This can be

solved either practically by setting τm+1
A = 0 or by only updating the density distribution f̂δj

at the end of a game taking into account all corresponding observations.

Establishing the Cost Function

Another crucial design factor of the automation based on the n-stage war of attrition
is the definition of the cost function, see Definition 3.13 and Assumption 3.12. The
study on models’ suitability (see Section 4.1) reveals that exponential functions with
an average exponent of 1.95 fit human behavior. Therefore, c(t) ∼ t2 may be an
appropriate initial choice in a practical application. However, the prefactor values
of the exponential function are strongly influenced by the duration of the coopera-
tive decision making process. Therefore, a general criteria for meaningful concession
behavior of the automation is motivated by the threshold calculations (3.24a) and
(3.24b): the potentially largest utility difference between the highest and lowest util-
ities within a decision scenario should be in the same order of magnitude as the cost
functions value at the deadline i. e.

max
dk∈D

uA(dk)− min
dk∈D

uA(dk) ≈ c(T ) .
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This should yield a conceding behavior of the automation that is neither overly con-
cessive nor dominant.

Note. Sometimes the introduction of a soft deadline is favored to practically ensure a mutual
agreement when reaching the deadline. To this end, a steep incline shortly before t = T may
be added to the cost function.

Remark. In general without any consideration, there is no guarantee for an agreement until
a given deadline. Therefore, the automation design also needs to address the allocation of
ultimate authority to decide in non-agreement cases.

In summary, the report on the suitability study and the above introduction of au-
tomation designs based on mathematical behavior models of cooperative decision
making provide an answer to the second research question of this thesis, see Sec-
tion 2.4. Furthermore, they also provide important insights and guidelines for a
practical implementation of the automation designs. This includes the communi-
cation interface design which is essential for cooperative decision making and the
design of decision scenarios for an experimental investigation of human-machine
cooperation on decision level. On this basis, the following chapter presents two ex-
perimental evaluations of implemented automation designs based on the adaptive
negotiation model and the n-stage war of attrition.



5 Experiments

This chapter reports on two experimental evaluations of the automation designs
based on human-machine cooperative decision models which are proposed in the
previous chapter. The experimental evaluation is a means to methodically compare
the newly proposed automation designs with state-of-the-art approaches in practice.
The results provide first evidence that the proposed emancipated human-machine
cooperation on decision level outperforms state-of-the-art autonomy-centered and
human-centered cooperation designs.

Both experiments consider a common and highly investigated application area: the
human-machine cooperative control of highly automated mobile entities. The exem-
plary application scope of the first experiment is the teleoperation of mobile robots:
the robot has two LOA, manual control and automated control, and the robot’s au-
tomation and the human operator have to cooperatively and dynamically decide on
the appropriate choice of LOA. The second experiment focuses on highly automated
driving: human and machine have to cooperatively decide which driving maneuver
to select which is then executed by the highly automated car.

As a prerequisite for these experiments, this chapter initially introduces a novel ex-
perimental evaluation approach focusing on the decision level of human-machine
cooperation by discussing the corresponding challenges and measures.

All in all, this chapter provides an answer to the third research question of this thesis,
see Section 2.4.

5.1 General Experimental Evaluation Approach for
Human-Machine Cooperation on Decision Level

Although there is no experimental evaluation of human-machine cooperation exclu-
sively focusing on the decision level, there are some experimental reports investigat-
ing human-machine cooperation which partially comprise decision making in some
form [OKSB12, MLK+12, DvA+10, BAMF14, WWM+19].

On this foundation, a general experimental evaluation approach for human-machine
cooperation focusing on decision level is introduced in the following. It provides
specific requirements for a suitable experimental design with respect to cooperative
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decision making and customized measures for an expressive experimental evalua-
tion. Apart from these specific requirements and measures, the prevalent compar-
ative character of experiments, i. e. comparing newly-proposed and state-of-the-art
concepts, is also applied in the experimental evaluation of human-machine coopera-
tion on decision level.

5.1.1 Measures for Experimental Evaluation and Comparison

In order to experimentally evaluate and compare automation designs for coopera-
tive decision making, a set of measures considering both subjective user aspects and
objective cooperative aspects is proposed. The measures are inspired by and ag-
gregated from experiments conducted in the context of human-machine cooperation
[OKSB12, MLK+12, DvA+10, BAMF14, WWM+19]. They are customized to suit the
evaluation and comparison of cooperative decision making automation designs. All
measures require a sufficiently large series of decision making scenarios between
human and the respective automation design in order to yield meaningful results.

Subjective User Aspects

The following subjective aspects can be evaluated by means of a questionnaire which
is typical for human-centered analysis of automation designs [OKSB12, MLK+12,
BAMF14, WWM+19].

• Satisfaction
How satisfied are humans with the cooperation in general?

• Trust
How much do humans trust in the automation during the process of coopera-
tive decision making?

• Transparency/Reasonability
How subjectively transparent/reasonable do humans perceive the interaction
with the automation?

• Mental Load/Excitement
How mentally demanding do humans perceive the interaction with the au-
tomation?

• Frustration
How frustrating do humans perceive the interaction with the automation?

• Usability
How intuitive do humans perceive the interaction with the automation and
corresponding interfaces?
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Objective Cooperation Aspects

The following measures allow for an objective evaluation of the cooperation part-
ners’ performance and involvement in the cooperative decision making. However,
all applied metrics have to be carefully designed according to the respective scenario
of cooperative decision making in order to avoid in- and over-sensitivity towards any
evaluated automation design.

• Objective Cooperation Performance
Some objective metric that allows for measuring the performance of coopera-
tion with respect to the given decision scenario which e. g. requires information
fusion of both cooperation partners.

• Balance of Conceding
The ratio between the numbers of instances each cooperation partner concedes.

• Effort
A metric that evaluates the effort of the cooperation partners in a given coop-
erative decision making scenario, e. g. in terms of communication.

Partially based on the proposed measures, the following section composes require-
ments on the experimental design for evaluating human-machine cooperative deci-
sion making.

5.1.2 Requirements on the Experimental Design

In general, experiments investigating human-machine cooperative decision making
have to feature decision scenarios which are plausible and intuitive for humans and
allow for a suitable application of all or a subset of the evaluation measures intro-
duced above [RWIH20]. To this end and with respect to the meta-model of human-
machine cooperative decision making introduced in Section 3.1.4, the following list
provides more detailed requirements on a suitable experimental design for human-
machine cooperative decision making. This list of requirements is referenced in all
following explanations of experimental designs to ensure consistent experimental
designs.

a) A controlled but realistic and dynamic environment with a sufficiently large
amount of decision scenarios has to be provided.

b) The decision scenarios have to be intuitively comprehensible by participants,
e. g. the number of decision options should be small, see Section 3.1.2.

c) Each decision scenario has to comprise a set of decision options and allow (suf-
ficiently often) for differences in decision option preferences between human
and automation which lead to decision conflicts. Furthermore, for reasons of
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practicality, a pressure for making a (consensual) cooperative decision in con-
flict situations should be present.

d) A human-machine cooperation on decision level has to be enabled, i. e. no co-
operation partner is always able to outperform the other in terms of reasonable
decision making. Furthermore, cooperation partners have to be able to com-
municate during cooperative decision making.

e) Suitable objective and subjective measures to evaluate cooperative performance
as introduced in Section 5.1.1 have to be defined.

f) Confounding variables especially considering human-machine communication
have to be avoided.

g) The repeatability of experimental runs considering the different investigated
newly-proposed and state-of-the-art concepts has to be ensured.

h) Learning effects during the course of the experiment have to be avoided.

Taking these requirements and proposed measures of the general evaluation ap-
proach for human-machine cooperative decision making into account, the following
sections report on two experiments conducted to evaluate the automation designs
based on the models of human-machine cooperative decision making proposed in
Chapter 3.

5.2 Cooperative Decision Making in Mixed-Initiative
Control of Robots

The following experimental report on cooperative decision making in mixed-initiative
control of robots is the result of a collaboration with the Extreme Robotics Lab at the
University of Birmingham (United Kingdom) and is currently in the publishing pro-
cess [RCI+22].

In recent years, the control of mobile robots has evolved from sole manual teleop-
eration to assisted teleoperation to robots with a variable LOA. For assisted teleop-
eration, concepts such as shared control have been applied for manipulation tasks,
e. g. [CSP14, MLH15]. In essence, these approaches use some form of input mix-
ing or policy blending between the robot’s controller and/or the operator’s control
inputs [DS13]. Control conflicts arise when the desired trajectories of the operator
differ from the automation controller’s assistive trajectories, e. g. the controller in-
duces guiding forces contrary to the human’s desired movement [MO04]. To tackle
this problem, researchers utilize trajectory learning and intention recognition strate-
gies [KSB13, JWBA16]. Hence, these assistive teleoperation systems adapt their level
of assistance.
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In contrast, robots with a variable LOA may cause a different form of conflict for con-
trol, i. e. the human operator and the robot prefer different LOA. Although there are
some approaches which avoid these conflicts by recommending or asking the opera-
tor for LOA switching or other actions [TI17, HIL+19, CRDD20], these variant LOA
systems usually allow switches between different LOA: both the operator and the
robot’s automation have the authority to initiate or completely override each other’s
commands in a variety of levels of abstraction, e. g. from direct control commands to
role and task assignment [CHS21]. The basis of these systems is denoted as mixed-
initiative (MI) control which is defined as “a collaboration strategy for human-robot
teams where humans and robots opportunistically seize (relinquish) initiative from
(to) each other as a mission is being executed, where initiative is an element of the
mission that can range from low-level motion control of the robot to high-level speci-
fication of mission goals [. . . ]” [JA15]. In this thesis, MI control refers to the authority
of both the robot’s automation and the operator to initiate LOA switches.

Existing work often tackled potential conflicts for control rather reactively and intru-
sively by the robot’s automation taking control triggered by specific (usually safety-
critical) events [NFA08, HG09, VGLH11]. Only a few approaches tried to properly
resolve the conflict for control. Mercier et al. [MTD10] proposed an authority dynam-
ics controller based on a dependence graph of resources, such as the robot’s wheels
or its pose. These resources could be controlled by either the operator or the robot.
They solved authority conflicts by reallocating these resources based on task-specific
predefined authority priorities. Owan et al. [OGD17] proposed a consensus proce-
dure based on heuristically determined timeout thresholds to solve control conflicts.
When consent could not be reached, similarly to [MTD10], a task-specific heuristic
contingency procedure was triggered based on predefined authority priorities.

In summary, variable LOA systems (including MI systems) found in literature often
do not use any explicit policies for avoiding conflicts. They either ask for the opera-
tor’s help when an autonomy level modification is needed (e. g. the operator taking
control) or intrusively take the initiative. The few works offering explicit policies
for dealing with authority transfer and conflicts are based on predefined priorities
which agent has authority in which scenario.

Therefore, the following sections report on an experiment comparing the state-of-the-
art expert-guided mixed-initiative control switcher (EMICS, introduced in [CHS21]) with
the newly proposed negotiation-enabled mixed-initiative control switcher (NEMICS). The
NEMICS is a novel MI control system which is enabled to cooperatively and explic-
itly resolve conflicts for control by means of utilizing the basic negotiation model (see
Section 3.2.3) from the adaptive negotiation model of Section 3.2. This was the first
step of experimentally investigating research on human-machine cooperative deci-
sion making. Additionally, this was the first effort of the research collaboration to
gain some initial experience of introducing negotiation theory to MI control switcher
design. The cooperative performance of human operators with the NEMICS was
evaluated and compared to the cooperative performance with the EMICS by means
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of subjective and objective cooperative performance measures: operators’ frustra-
tion, time to reach the destination, number of collisions, and number of conflicts.
The corresponding hypothesis was the following.

Hypothesis 5.1 (Subjective Assessment and Objective Performance)
The application of NEMICS in comparison to EMICS leads to a reduced operators’ frus-
tration and increased objective cooperative performance in terms of smaller times to des-
tination and reduced number of collisions and conflicts.

Subsequent to the introduction of the experimental design in Section 5.2.1, Sec-
tions 5.2.2 and 5.2.3 report the experiment’s results and discuss these findings.

5.2.1 Experimental Design

The experiment was designed along the requirements on experimental designs in the
context of human-machine cooperative decision making introduced in Section 5.1.2:

a) The basis of this experiment was the simulation of a mobile robot operating in
a realistic search-and-rescue scenario [CTS19].

b) For navigating the robot towards a predefined destination, there were two de-
cision options (i. e. LOA): either the robot navigated autonomously or the robot
was navigated via teleoperation.

c) While navigating through the simulated environment, changing circumstances
incentivized the robot’s MI control switcher and the human operator, i. e. the
two cooperation partners, to continuously decide whether or not a LOA switch
would be appropriate. The incentives for switching the LOA resulted from
temporarily different navigational objectives and performances of the robot’s
automation and the human operator: the temporarily navigational objective
was the intuitive investigation of human victims along the path to the desti-
nation. Furthermore, the robot’s automation and the human operator faced
realistic navigational performance degradation in the form of sensor noise and
secondary tasks, respectively.

d) As a result, conflicts for control arose which had to be solved and no cooper-
ation partner was able to always outperform the other in reasonable decision
making.

e) The cooperative decision making was evaluated by means of a subjective us-
ability questionnaire and the NASA-TLX [Har06] assessing the participants’
frustration. Furthermore, the time to reach the destination, the number of
conflicts for control, and the number of collisions were utilized as objective
cooperative performance measures.
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f) The communication between participants and the MI control switchers was
based on an intuitive two-button, graphical and acoustical interface.

g) Participants had to navigate twice through the search-and-rescue scenario while
facing one of the two different MI control switchers, either the state-of-the-art
EMICS or the newly proposed NEMICS, in separate experimental runs.

h) To counteract potential learning effects, the sequence in which EMICS and NE-
MICS were active was counterbalanced among participants and participants
got to know the setup and simulation environment in a standardized training
in advance of the actual experimental runs.

The following sections introduce experimental setup, the conflict for control scenar-
ios, the experimental procedure, the applied measures as well as the applied MI
control automation designs EMICS and NEMICS in more detail.

Setup

The experimental setup consisted of a mobile robot simulation and an operator control
unit (OCU) which allows for the interaction of a human operator with the simulated
robot in a search-and-rescue scenario.

The environment and the robotic system were simulated in Gazebo, a high fidelity
robotic simulator. The simulated robot was a mobile robot, the Clearpath Robotics
Husky Unmanned Ground Vehicle, equipped with a laser range finder and a camera.
It was capable of operating in two different types of LOA: teleoperation (operator
fully in control of navigation via the OCU) and autonomy (autonomous navigation
towards a predefined destination). The software of the MI control framework and
related capabilities was developed by means of the robot operating system (ROS) and
is described in detail in [CSB+16, CHS21].

A simulated environment was chosen to avoid introducing complex confounding
factors from a real robot operating in the real world and for improving the exper-
iment’s repeatability. As it can be seen in Figure 5.1, the simulation environment
created very realistic situations and stimuli for the participants as experienced when
operating a real robot. In addition to the experiment’s test environment, a similar
training environment was provided for the participants to become familiar with the
hardware setup and simulated robot. Both environments were approximately 720 m2

of similar difficulty but different layout.

The robot was controlled via the OCU which was composed of a joypad as an input
device, a laptop running the software of the MI control framework and for simu-
lating the environment, and a screen showing the graphical user interface (GUI), see
Figure 5.2. To navigate the robot in teleoperation mode, the direction controller on
the joypad was used. Additionally, the operators could communicate their choice of
LOA via two buttons on the joypad: if interacting with EMICS, this led to a LOA
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Figure 5.1: The simulation environment of the search-and-rescue scenario used for the experimental eval-
uation.

Figure 5.2: The graphical user interface. Left: video feed from the robot’s camera (1), the control mode in
use (2) and the status of the robot (3). Right: The map (4) showing the position of the robot,
the current destination (blue arrow), the optimally planned path (green line), the obstacles’
laser reflections (red) and the walls (black). Bottom: The negotiation display (disabled if only
EMICS is active) with the available control modes (left: autonomy (5), right: teleoperation (6))
and a bar graph (7) to visualize the remaining negotiation time.
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switch; if interacting with NEMICS, this either initiated or was part of a negotiation
whether or not to switch the LOA.

The negotiation part of the GUI consisted of an image of the teleoperation LOA and
the autonomy LOA and a bar graph to visualize the negotiation deadline, i. e. the re-
maining time for negotiation. All elements of the negotiation display were in standby
mode (black overlay) if agents were not negotiating. If a negotiation was active, LOA
choices of EMICS and human operator were visualized by different background col-
ors of the respective LOA images (blue - choice of EMICS; orange - choice of opera-
tor) and the remaining negotiation time was depicted by the red portion of the bar
graph. If an agreement was reached, the agreed LOA was highlighted with green
color while all other elements returned to the standby mode. After 3 s, all elements
were in standby mode again. This negotiation GUI had been successfully applied in
the suitability study reported on in Section 4.1 and in [RWIH20].

Conflict for Control Scenarios

The experimental scenario was composed of six areas depicted in Figure 5.3. The pri-
mary task objective of the human-robot system was to navigate from Area 1 to the
destination in Area 6 as quickly as possible while avoiding collisions. The remain-
ing four areas were designed to evaluate the functionality of EMICS and NEMICS
in various LOA switching situations with potential conflicts for control. These situ-
ations were created by introducing secondary objectives or performance degrading
factors.

Figure 5.3: The conflict for control Areas 1 to 6 in the simulated environment of the search-and-rescue
scenario.
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While participants were performing the primary task, their secondary objective was
to spot a human victim in both Areas 3 and 5. Each of these human victims was
associated with three points-of-interest (POI) represented by three red balls that par-
ticipants had to locate. The location of the balls had been unknown to the partici-
pants in advance. Each POI was considered completed when the ball was entirely
covered by the laser’s mounting, visible in the lower center of the camera’s video
feed. This incentivized equal proximity of each participant to each ball. Localiz-
ing the POI caused a detour and ultimately led to conflicts for control with the MI
control switcher due to opposing objectives. While locating the POI, some obsta-
cles were undetectable by the robot but visible to the operator via the camera feed.
Hence, they were additional source of potential conflicts for control concerned with
avoiding collisions. While navigating through Area 2 and 4, the human-robot system
experienced situations of performance degradation of either the robot’s automation
through artificial sensor noise or the operator through a math task of adding a series
of 3-digit numbers. The sensor noise and the math task began when the area was
entered and were lasting for 15 s each. During the period of performance degrada-
tion of one agent, the other agent had an incentive to take control. In this case, it
was assumed that the agent with degraded performance would not oppose the other
agent taking control and hence no conflict for control was expected.

The following listing provides more details on the six areas constituting one experi-
mental run.

• Area 1
This was the starting area with the robot initially operating in the autonomy
LOA. The area was easy to navigate for either LOA. It represented a situation
without any incentive for the MI control switcher or the operator to initiate a
LOA switch.

• Area 2
As the robot entered this area, artificial noise was introduced to the laser scan-
ner readings to degrade autonomy’s performance. As a result, if autonomy
LOA was active, the robot’s autonomous navigation was slowing down. How-
ever, the noise was not enough to make the MI control switcher initiate a LOA
switch. It was expected that the operator would like to overcome the perfor-
mance degradation and hence would initiate a LOA switch to teleoperation.
Consequently, this area represented a situation in which the operator had an
incentive to initiate a LOA switch while the MI control switcher had no incen-
tive to resist.

• Area 3
This area was easy to navigate for either LOA. The operator could spot a hu-
man victim and was asked to inspect it and its close-by POI, i. e. the red balls.
Hence, if the autonomy mode was active, the operator had an incentive to
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change to teleoperation, which the MI control switcher would initially not op-
pose. Furthermore, the robot would then deviate from the expected path and
the MI control switcher, inferring that the performance has dropped, would
initiate a LOA switch to autonomy. This led to a situation where the operator
had an incentive to persist on her or his chosen LOA (exploring the POI with
teleoperation) while the MI control switcher insisted on an opposing LOA (re-
ducing the path deviation via giving control to autonomy). This is the kind of
situation in which typically conflicts for control emerge as observed in [CHS21].
After the inspection of all red balls, the operator was expected to return to the
original path.

• Area 4
Within this area, the human operator was asked to conduct the math task,
hence the operator’s performance (or capacity for performing well), was ex-
pected to decrease. As a result, if the teleoperation was active, either the op-
erator or MI control switcher would initiate a LOA switch to autonomy. This
represented a situation in which the operator and the MI control switcher had
an incentive to switch to the same LOA.

• Area 5
This area is similar to Area 3 being easy to navigate for either LOA. The op-
erator could spot a human victim and was asked to inspect it and its close-by
POI. Hence, if the autonomy mode was active, the operator was expected to
initiate a LOA switch to teleoperation. The MI control switcher had no incen-
tive to oppose strongly. As a result, the teleoperated robot would deviate from
the expected path while the MI control switcher inferred the operator’s perfor-
mance degradation and initiated a LOA switch to autonomy. This again led to
a situation where the operator had an incentive to persist on her or his chosen
LOA while the MI control switcher insisted on an opposing LOA. After the
inspection of all POI, the operator was expected to return to the original path.

• Area 6
This was the destination area in which the experimental run was terminated.

Note that the operator and EMICS were able to freely initiate LOA switches at any
moment. In the case of using NEMICS, the operator and EMICS were able to freely
initiate negotiations for LOA switches.

In summary, there were two areas with an expected conflict for control due to differ-
ent objectives of the operator and MI control switcher and three non-conflict situa-
tions in which both agents did not have an incentive to oppose the other’s wish for
switching LOA.
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Mixed-Initiative Automation Designs

In the following, the state-of-the-art EMICS and the novel NEMICS are introduced.

The EMICS uses an expert-guided approach to initiate LOA switches [CHS21]. It
assumes the existence of a task expert (e. g. a navigation planner) which, given a
navigational destination, is able to provide the expected task performance for the
human-robot system in the absence of performance-degrading factors. The com-
parison between the system’s run-time performance with the expected expert per-
formance yields an online task effectiveness metric called goal-directed motion er-
ror21 g ∈ [0, 1] [CHS21]. In essence, the error describes the difference between the
robot’s current motion and the motion of the robot required to reach the destination
according to the expert planner. Hence, the error metric expresses how effectively
the system performs the navigation task. On this basis, the EMICS infers whether
a LOA switch is beneficial. In practice, the EMICS’s error thresholds were trained
by observing human operators in previous experiments. The EMICS informs the
operator about the initiated LOA switch using an alarm sound identical to the one
denoting autopilot disconnection in aircraft, a synthetic speech expressing the LOA
the system switched to, and a GUI notification.

Two assumptions are key in the design of EMICS: the human operator is willing to
be in control and to hand over control based on the initiative of the EMICS, and the
agent to which the control will be handed (i. e. either the human or the MI control
system) is capable of correcting the task effectiveness degradation as expressed by
the error. These assumptions have been found to cause conflicts for control in situ-
ations where the operator has different navigational objectives or information than
the EMICS. In such cases, the EMICS infers a performance drop due to an increased
error. At the same time, operators try to follow their navigational objectives or in-
formation which are unknown to the robot. As EMICS and operator have the same
authority to switch LOA, this results in a series of conflicts for control, i. e. aggres-
sively overriding the other’s LOA switches.

In contrast to this, the novel NEMICS enhances state-of-art MI control, e. g. EMICS,
by adding negotiation capabilities to address conflicts for control. By means of this
approach, any MI control switcher can be enhanced as long as it provides some sort
of utility measure for the different decision options (in this context LOA). The result-
ing framework enables the robot’s automation and the human operator to negotiate
the LOA during operation by means of a negotiation interface, i. e. the negotiation
module, that allows for the communication and negotiation of the desired LOA.

The relation of robot, NEMICS and operator is depicted in Figure 5.4, also illustrat-
ing the advancement of the EMICS by means of the negotiation module towards
NEMICS. The proposed negotiation module in NEMICS was designed according to
a basic negotiation model introduced in Section 3.2.3: Two agents, i. e. the NEMICS

21 Referred to as error for the rest of this section.
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Figure 5.4: Block diagram of EMICS and NEMICS and their interaction with the robot and human opera-
tor.

(A) and the human operator (H), exchange offers which resemble the decision op-
tion, i. e. the different types of LOA which are teleoperation and autonomy. This set
of offers, i. e. decision options, O = {autonomy, teleoperation} is selectable via the
interface. Both agents are able to freely initiate a LOA negotiation if they want to
switch the LOA by proposing the other LOA via the interface. While negotiating,
the agents are allowed to propose offers, i. e. concede to the other LOA offer, at any
time, see asynchronous negotiation protocol in Section 3.2.2.

The normalized utility function ūA ∈ [0, 1] enables NEMICS to evaluate the current
LOA o ∈ O by means of the normalized error metric g ∈ [0, 1] of the EMICS, see
explanations on the error metric above and in [CHS21]:

ūA(o) :=
{

1− g o represents active type of LOA
0.8 o represents inactive type of LOA

(5.1)

Note that the utility estimation of the inactive type of LOA is a difficult, predictive
task. Since this was not the focus of this experiment this problem had been sim-
plified: assuming a constant utility value for the inactive type of LOA reflects both
the hesitation to change LOA and the hope for improvement by means of a LOA
switch.

The human-like concession strategy EA is time-based, see Section 4.1 and [RWIH20].
In starting or joining a negotiation, NEMICS always starts to offer the LOA with
the highest normalized utility o0

A = arg maxo∈O ūA(o). In case of a conflict, it was
assumed that there was a negotiation deadline T in place for practical reasons un-
til which NEMICS and the human operator were required to agree on one LOA.
Therefore, NEMICS concedes towards the other LOA if a decreasing, normalized
target utility ūt,A(t) has diminished by more than the normalized utility difference
between the two LOA utilities ∆ūA = maxo∈O ūA(o)−mino∈O ūA(o). To this end,
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NEMICS continuously evaluates the following condition:

1− ∆ūA > ūt,A(t) := 1− t
T

1/ϵ

(5.2)

with t ∈ [0, T ] and the concession parameter ϵ. NEMICS concedes if this condition
does no longer apply.

With two decision options available, the maximum negotiation time was set to T =
4 s which was enforced by the provided interface and motivated by 2 s reaction time
per decision option. This deviation from the recommended 3 s reaction time per
decision option (see Section 4.2.1) was motivated by the low number of decision
options and the easy to use decision making input device.

Procedure

Each participant was introduced in a standardized manner (see [CTS19]) to the hard-
ware setup and the simulation environment by operating the robot in a training en-
vironment for ten minutes. Hence, participants became familiarized with the robot’s
driving behavior, performance degradation, the LOA switching behavior when in-
teracting with EMICS or NEMICS and the ball-locating task in the context of the POI
exploration.

After the training, participants were informed about the upcoming two experimen-
tal runs and about their general objectives. For the two experimental runs, EMICS
and NEMICS were employed separately. The sequence order of the EMICS and
the NEMICS was counterbalanced among participants to compensate the influence
of learning effects. Additionally, the layout of POI was such that operators were
restricted from using different exploration strategies or paths and hence restricting
individual variability. After conducting the two experimental runs, participants were
asked to file the NASA-Task Load Index (TLX) questionnaire [Har06] once for each
experimental run and a usability questionnaire to compare NEMICS and EMICS.

Measures

To evaluate the performance of the newly introduced NEMICS and compare it with
the EMICS, the following objective measures were considered:

1) the time-to-completion of the primary task,

2) the number of collisions with the environment as a measure of safety, and

3) the number of conflicts for control in EMICS and the number of negotiations
in NEMICS as a measure of human-robot-interaction performance.
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The conflict for control is defined as a situation in which the EMICS and/or the
operator aggressively override each other’s LOA choices. For example, a situation
in which the operator is in teleoperation LOA and the EMICS switches to autonomy
LOA, forcing the operator to switch back to teleoperation, counts as one conflict.
Similarly, a successful negotiation is defined as a situation in which the NEMICS has
successfully negotiated an LOA switch that would otherwise result in a conflict.

Additionally, the NASA-TLX questionnaire [Har06] was applied as a subjective mea-
sure of the perceived workload level of operators when interacting with EMICS and
NEMICS. Furthermore, a free form qualitative usability questionnaire was utilized
considering user acceptance, intuitiveness, and transparency of interaction. The spe-
cific questions were:

Q1: Was the interaction with either system intuitive?

Q2: Was the LOA switching behavior of either system transparent?

Q3: Was the LOA switching of either system intrusive?

Q4: Is there anything that could improve the LOA switching capabilities of either system
that you can think of?

Q5: Anything that you would like to comment or add?

Participants

A total of 10 participants took part in the study, 9 males and 1 female with a mean age
of 31.5 years. All of them were experienced robot operators with extensive previous
experience operating similar robotic systems.

5.2.2 Results

Given the relatively small sample size, the following presentation of the experiment’s
results focuses on the descriptive statistics and the qualitative results. The descrip-
tive statistics for the objective measures and the NASA-TLX score can be found in
Table 5.1.

There is a trend of participants completing the navigation task faster when using
the NEMICS (M = 231.4 s, SD = 16.2) compared to the EMICS (M = 238.4 s, SD =
23). Participants had more collisions when using the EMICS (M = 1.8, SD = 1.7)
compared to NEMICS (M = 0.8, SD = 1.2). While using the EMICS 12 out of the
in total 18 collisions took place during conflicts. While using the NEMICS 1 out of
the 8 collisions took place during the negotiations. Furthermore, a higher number
of conflicts for control with EMICS (M = 8.7, SD = 2.3) was observed than numbers
of successful negotiations with NEMICS (M = 7.1, SD = 1.6) that avoided potential
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Table 5.1: Objective measures’ results time-to-completion, number of collisions and number of conflicts
for control (EMICS) or of negotiations (NEMICS), and NASA-TLX scores.

Participant
Time in s No. of collisions No. of conflicts NASA-TLX

NEMICS EMICS NEMICS EMICS NEMICS EMICS NEMICS EMICS

1 228 237 1 3 6 7 42.5 61.7
2 215 207 0 0 6 7 34.2 55.8
3 218 233 0 1 10 12 38.3 61.7
4 227 257 3 4 6 12 35.0 81.7
5 250 255 0 1 6 7 40.8 42.5
6 221 215 0 0 8 6 30.8 47.5
7 238 263 3 5 7 9 26.7 58.3
8 213 213 0 1 5 7 46.7 19.1
9 262 274 1 1 9 11 56.7 50.0
10 242 230 0 2 8 9 35.8 38.3

M 231.4 238.4 0.8 1.8 7.1 8.7 38.8 51.7
SD 16.2 23.0 1.2 1.7 1.6 2.3 8.5 16.7

conflicts for control. Participants experienced a higher cognitive workload leading to
higher NASA-TLX scores while using the EMICS (M = 51.7, SD = 16.7) compared
to using the NEMICS (M = 38.8, SD = 8.5).

Regarding the usability, 9 out of 10 participants found the interaction with both
systems (i. e. EMICS and NEMICS) intuitive, see Q1. However, 5 out of these 10
participants stated that the NEMICS was more intuitive than EMICS, 4 participants
found EMICS more intuitive, and one participant perceived both systems equally
intuitive.

Considering Q2, 3 out of 10 participants found the LOA switching behavior of both
systems to be equally transparent, 6 out of 10 participants perceived the NEMICS to
be more transparent, and only 1 participant found EMICS to be transparent, but not
NEMICS.

Considering Q3, 8 out of 10 participants found EMICS to be more intrusive com-
pared to the NEMICS. One participant perceived the NEMICS more intrusive than
the EMICS and one participant found both MI control switchers to be equally intru-
sive.

Regarding the objective performance results and the subjective assessment of the
participants, evidence was found which supports Hypothesis 5.1.

Furthermore, the usability questions (see Q4 & Q5) have provided important in-
sights. First, participants thought that the negotiation method and respective way of
communication with the operator was an improvement compared to the more intru-
sive hand-off strategy of the EMICS, e. g. “NEMICS was much less intrusive but still,
some interaction was needed, having a grace period [meaning to negotiate] helped”,
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“NEMICS was more intuitive as you expect from a robot to negotiate and listen to
you”, and “NEMICS was an improvement over EMICS.” However, participants also
stated “because of tunnel vision and concentration on the task you might miss a ne-
gotiation” and “negotiation is still intuitive but the GUI is complex, [provides] too
much info”.

Second, participants expressed the view that they should have a more direct and
instant influence on negotiation e. g. “[I would like] instant negotiation in some cases,
e. g. when operator wants control [but not when the robot wants control].” (at least
4 participants made similar statements).

Third, participants expressed the need to be better understood by the robot’s au-
tomation to minimize the frequency of negotiations, e. g. “I want the robot to better
understand what I want, understand that I was looking for the balls and not have to
communicate the LOA multiple times” and “[I would like the robot to] understand
intentions or tell the robot what you are doing.”

5.2.3 Discussion

The trend to higher time-to-completion with the EMICS further strengthens the idea
that this may be due to the conflicts for control as also observed in [CHS21]. Based
on the observations, two factors negatively influence time-to-completion: the ex-
tra commands needed (i. e. extra LOA switches and extra maneuvers to correct for
movement during the conflicts); and the higher cognitive workload as measured by
NASA-TLX.

The mixed results considering the intuitiveness and transparency of the interaction
(see Q1 and Q2) might be explained by the participants not being sufficiently aware
of the start of a negotiation. As one participant suggested, one could “have a beeping
sound once the negotiation started that stops once you made your LOA choice” to
improve NEMICS.

Evidence from the study suggest that intrusive control authority transfer can lead
to decreased safety in navigation as most of the collisions observed while using the
EMICS were due to the conflict for control. While the operators were fighting for
control with the EMICS, they could not concentrate on obstacle avoidance which
is especially severe due to the (to them potentially undesired) maneuvering which
happened in autonomy mode. Avoiding collisions was even more difficult as some
boxes during the search task were not visible by the robot’s sensors, and hence au-
tonomy LOA would not avoid them. Additionally, the majority of participants also
subjectively perceived EMICS as more intrusive, see Q3.

To further increase the usability of the NEMICS, the application of the entire adaptive
negotiation model is expected to improve performance as it offers the capability to
adapt to the human operators’ negotiation behaviors, i. e. operators’ actions during
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the negotiation. Furthermore, the evidence suggests that human intent recognition
can play a crucial role in human-robot teaming and MI systems, potentially increas-
ing user acceptance drastically.

Lastly, this experiment demonstrated the ability of NEMICS to deal with conflict for
control due to unforeseen circumstances such as performance degrading factors for
both agents and a mismatch in their objectives. Due to the realistic experimental
design, the observed results motivate future investigations with real robots.

5.2.4 Conclusion

An experimental study was conducted, inspired by a search-and-rescue scenario in
which a human-robot system had to navigate and search for points of interest. The
mobile robot was controlled by a robot’s automation and a remote human operator in
a mixed-initiative manner. In the course of the experiment two MI control strategies
were compared: the state-of-the-art EMICS with the newly proposed NEMICS based
on negotiation theory, see Section 3.2.3.

This study provides the first experimental evidence that the application of a negoti-
ation model enabling the robot to cooperatively make a decision on the appropriate
LOA reduces conflicts for control and can potentially counteract their negative effects
on cognitive workload, operational performance and safety metrics. Furthermore,
the study’s results highlight again how crucial an adequate interface and decision
scenario design is to enable intuitive cooperative decision making.

The success of NEMICS encourages future investigations of applying the entire adap-
tive negotiation model and the n-stage war of attrition in similar MI control switcher
designs. Furthermore, this success is assumed to be generalizable to other scopes
and realistic implementations due to the general and realistic experimental setup.
Therefore, the next section examines both automation designs based on the adaptive
negotiation model and on the n-stage war of attrition in the application scenario of
highly automated vehicles.

5.3 Cooperative Decision Making in Highly Automated
Driving

The experiment reported on in this section is currently under review for publica-
tion [RWI+] and was conducted in the course of a master thesis [Wör20]. The ex-
periment focuses on cooperative decision making in the application scenario of a
highly automated vehicle. Resulting from an increasing degree of automation in
vehicle control, guidance and navigation in form of already available advanced driv-
ing assistance systems, the driver’s role changes continually from manual (assisted)
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control towards supervision of the automated driving systems [FKGH15, FCA+17,
ACM+18, Fla19, WLCW19]. Research has revealed that drivers become increas-
ingly unaware of the driving situation if no (supervisory) action of them is required
[GDLB13, FBB+14, End17]. Hence, engineers of driving assistance systems face the
general “out-of-the-loop performance problem” [EK99] which can be observed for
users interacting with any highly automated systems: in case human action is re-
quired at some point due to e. g. functionality boundaries of the automated system,
the human, in this case the driver, is almost certainly unable to act appropriately due
to lacking situation awareness. One approach is to carefully design the transition
from automated driving back to manual driving by means of gradually shifting the
control authority in accordance to the driver awareness [LHFH18]. Another approach
is to keep the human in the loop at a higher task level, i. e. instead of conventional
manual vehicle control, the driver operates the system on e. g. the guidance level (see
Section 2.2.5, [FBB+14]), i. e. by means of maneuver commands [FKGH15, WLCW19].
In this context of keeping the driver in the loop while operating a highly automated
vehicle, this experiment investigated emancipated human-machine cooperative deci-
sion making concerned with the maneuver selection. Although some research and
approaches exist which consider dynamic authority assignment and/or offer deci-
sion support, the state of the art in cooperative decision making in this application
context is the leader-follower approach with the human in the lead in non-critical
situations, see Section 2.3.2. Therefore, this experiment compares the two automa-
tion designs based on the newly proposed cooperative decision making models (the
adaptive negotiation model and the n-stage war of attrition, see Sections 3.2, 3.3, and
4.2) with the two leader-follower-based automation designs (human in lead while the
automation follows, and vice versa). The comparison’s evaluation was conducted
with respect to objective measures and subjective assessment and investigated the
following hypotheses.

Hypothesis 5.2 (Objective Performance)
The objective performance of the human-machine cooperation on decision level with au-
tomation designs based on cooperative decision making models is significantly better
compared to the state-of-the-art leader-follower-based automation designs.

Hypothesis 5.3 (Subjective Assessment)
The participants’ subjective assessments are significantly better for the proposed automa-
tion designs based on cooperative decision making models than for the state-of-the-art
leader-follower-based automation designs in terms of satisfaction and trust in the co-
operation as well as intuition of interaction. The opposite is expected regarding the
transparency of interaction.
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The following report on the experiment is structured as follows: The experimental
design and evaluation of the automation designs’ comparison is provided in Sec-
tion 5.3.1 and 5.3.2, respectively. This is followed by the discussion of the results in
Section 5.3.3 and some concluding remarks in Section 5.3.4.

5.3.1 Experimental Design

The experiment was designed according to the requirements on experimental de-
signs in the context of human-machine cooperative decision making introduced in
Section 5.1.2:

a) The experiment was set in a futuristic yet reasonable highly automated driv-
ing scenario (cf. similar research on “conduct-by-wire” [FKGH15]): A driving
simulator depicted in Figure 5.5 was utilized to realistically recreate a drive in
a highly automated vehicle through a so called Manhattan grid.

Figure 5.5: Front view of the driving simulator for highly automated driving equipped with three vehicle
visualization screens (top), steering wheel and pedals (middle, unused in this experiment), a
driver’s seat (bottom) and a touchscreen as a maneuver decision interface (mid-right).

b) The Manhattan grid comprised multiple intersections, each representing a co-
operative decision scenario in which a driving direction (left, right, straight
ahead) had to be chosen.
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c) This choice was influenced by potential traffic delays associated with specific
vehicles at different directions and the objective to minimizing travel time to
reach a defined destination displayed on a map.

Additionally, participants were made aware of their cooperative decision mak-
ing performance with the automation by means of an objective performance
measure based on the minimal travel time: after each decision made at an in-
tersection the deviation in travel time between the chosen direction and the
optimal choice was displayed as well as the overall time deviation between the
optimal and chosen path.

d) In order to create decision conflicts, the human participant was only aware
of the traffic at the upcoming intersection (local information) whereas the au-
tomation possessed information on all traffic (global information). However,
the information of the automation was partially false (e. g. due to inaccurate
perception of the dynamic traffic development at the upcoming intersection)
such that the cooperation of human and automation, i. e. the intervention of the
human, potentially yielded benefits which were observable via the displayed
objective performance measure.

e) The cooperative performance was objectively evaluated by means of the travel
time and subjectively via a questionnaire assessing the satisfaction with the
cooperation, the intuition of interaction, and the reliability and transparency of
the partner’s behavior.

f) To avoid confounding factors, the human and the automation solely communi-
cated via a cooperative maneuver decision making interface (CMDI) consisting
of a head-up display and a touchscreen. The interface provided the discrete
decision options of the next intersection, i. e. the available driving maneuvers,
and the remaining time until a final decision had to be reached before enter-
ing the intersection. When reaching the intersection the (potentially) mutually
chosen decision option, i. e. the driving maneuver, was executed by the highly
automated vehicle which then continued the autonomous drive until the next
decision scenario took place at the next intersection.

g) For each drive through the Manhattan grid, i. e. each experimental run asso-
ciated with the application of a different decision making automation design,
participants were confronted with the same Manhattan grid setup but were un-
aware as the displayed map was rotated by a defined multiple of 90°. Further-
more, the sequence of experimental runs within the experiment was random-
ized for each participant. In addition, participants got to know the experimen-
tal setup by means of a training phase in advance of the actual experimental
runs.

In total, there were four experimental runs investigating the benefits of human-
machine cooperation on decision level by comparing the two automation designs
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based on the cooperative decision making models proposed in Chapter 3 with the
two manifestations of state-of-the-art leader-follower automation designs, i. e. either
the human or the automation is in the lead. To easily differentiate the four automa-
tion designs in the following, the following abbreviations apply:

NT: automation design based on Negotiation Theory, i. e. on the adaptive negotia-
tion model, see Section 3.2,

GT: automation design based on Game Theory, i. e. on the n-stage war of attrition
game model, see Section 3.3,

LH: automation design based on the leader-follower approach with the Leader be-
ing the Human or

LA: the Leader being the Automation.

Setup

The experiment’s setup was based on a simulator for highly automated driving de-
veloped by the Institute of Control Systems (IRS) at the KIT with a human-machine
interface on driving maneuver level for cooperative decision making, see Figure 5.5.
Its core was a XPACK4 real-time system from IPG Automotive GmbH and their vehi-
cle simulation software CarMaker® 8. This setup was utilized to simulate the driving
behavior of a car and its environment including traffic. For this experiment the hard-
ware setup was enhanced by three visualization screens displaying the simulated
vehicle, its surroundings and a head-up display as the visual part of the CMDI. Fur-
thermore, a touchscreen was integrated on the right hand side of the driver’s seat as
active part of the CMDI. Additionally, a sound system provided driving sounds and
other user-designed sounds, e. g. warning signals. The software was enhanced by a
customized vehicle control module for highly automated driving and for cooperative
decision making based on the four decision making automation designs.

The visual part of the CMDI was displayed on the middle screen as a head-up display
(see Figure 5.6) and consisted of the following components:

• The available maneuvers, i. e. directions, at the next intersection, indicated by
icons displaying respective arrows. The icons’ background colors indicated the
maneuvers’ current status: gray indicated the non-availability of maneuver op-
tions, light blue indicated their availability; orange signaled the automation’s
choice of maneuver (and history), dark blue signaled the maneuver choice (his-
tory) of the driver; and green informed about an agreement on the correspond-
ing maneuver.

• A countdown of 3 s, motivated by previous experiences [RWIH20] and dis-
played by means of a series of yellow triangles with respective numbers, before
a cooperative decision making was enabled.
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• A bar graph with a red background and a black rectangle, the size of which
corresponded to the remaining time until the predefined deadline in a period
of cooperative decision making had been reached.

Additionally and only for experimental design reasons, the objective measure of
cooperative performance, associated with the travel time and explained further in
the following, was displayed outside of the CMDI on the middle screen’s top left
corner, as well as a map of the overall Manhattan grid in the top right corner (see
Figure 5.5 and 5.6). The display of the objective measure allowed participants to
instantly assess the cooperative performance. The map showed the current position
of the vehicle and the destination but no other traffic.

(a) Countdown phase prior to a cooperative decision
making phase with disabled bar graph and deci-
sion options in gray color.

(b) Situation in a cooperative decision making phase
with one maneuver choice of a participant (straight
ahead, orange color) and the automation (left, dark
blue color), the not chosen but available maneuver
(right, light blue) and the bar graph (red & black).

Figure 5.6: Exemplary screenshots of the driving simulator’s middle screen including the head-up display
containing the display of a cooperative performance measure (top left), the available decision
options i. e. maneuvers (center), the countdown display (right of center), a bar graph indicating
the remaining time until the deadline (left of center) and the current vehicle speed (far right of
center).

Decision Scenarios

In general, decision scenarios comprise a set of decision options that cooperation
partners are able to evaluate individually. If cooperation partners have to cooper-
atively decide on one decision option the following types of decision scenarios are
possible:

• Conflict: In this scenario type, both cooperation partners have strong opposing
preferences on the choice of a specific decision option. Hence, cooperation
partners are forced into a cooperative decision making process to mutually
decide for one decision option.

• Persuasion: In these scenarios, one cooperation partner is almost indifferent
towards the decision options while the other cooperation partner has a strong
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preference and therefore is expected to try to persuade the other cooperation
partner.

• Trivial: Both cooperation partners prefer the same decision option and no pro-
cess to reach an agreement is required.

A potential local traffic delay based on different types of vehicles (i. e. car, van, bus,
truck) causing different but known delays was associated with each maneuver op-
tion. These delays can be contrasted to the time that it took to travel from one inter-
section to the next one without any traffic delays which was 14.5 s: car +3.6 s (+25 %),
van +7.3 s (+50 %), bus +14.5 s (+100 %), truck +29 s (+200 %). In the following, a delay
step or travel time step is defined for reasons of simplicity and readability as 3.6 s,
i. e. the delay of a car.

Figure 5.7: Exemplary segment of the Manhattan grid indicating traffic delays by gray rectangles (lengths
represent the delay duration) and presenting the three decision options, i. e. maneuver options,
for one decision scenario at the corresponding intersection by solid colored arrows. Respective
optimal future paths to the destination (×) are depicted with dotted lines.

While driving through the Manhattan grid, human participants and the automation
were aware of their current position and destination by means of the displayed map
(see Figure 5.6). Participants were also aware of the local traffic when approaching
the intersection. Hence, they were able to assess the associated local delays. The
automation had global information about the general traffic delays at all subsequent
intersections (motivated by state-of-the-art real-time traffic information distribution
and future car-to-x technology), yet it might have had false information about the
local traffic delays at the next intersection (simulating the environment perception
of the automation that requires some time for local information updating). The au-
tomation was therefore able to evaluate the globally required time to reach the des-
tination for each decision option, yet potentially considering inaccurate local delays
at the current intersection.
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This setting emphasized the strength of both cooperating partners: The automated
vehicle was well informed regarding the traffic along the upcoming route but could
be tainted by potentially misinterpreted delays due to changing local traffic. The hu-
man was not able to anticipate future traffic but to perceive local traffic information
correctly.

Consequently, local delays as well as misinformation were purposefully applied in
the design of the Manhattan grid to create different maneuver preferences for human
participants and the automation at each intersection, yielding the following instanti-
ations of the different types of decision scenarios:

• Conflict: There were at least three delay steps between first and second maneu-
ver preference for each cooperation partner and cooperation partners disagreed
on first and second preferences.

• Persuasion: For one cooperation partner there was only one delay step in be-
tween the first and second maneuver preference, while the other cooperation
partner had a strong preference, i. e. at least 3 delay steps in between.

• Trivial: Both cooperation partners evaluated the same maneuver option as the
best. This type of scenario was applied to show the human the potential im-
mediate agreement and that there was not always a conflict or persuasion situ-
ation.

The overall size of the Manhattan grid was 12×8 intersections consisting of 29 conflict
scenarios, 33 persuasion scenarios and 30 trivial scenarios, disregarding the grid’s
corners. The detailed distribution of the scenario types in the Manhattan grid can be
found in Table 5.2. Furthermore, the Manhattan grid is schematically depicted in Fig-
ure 5.8. The start position of the automated vehicle and the destination were placed
on opposite corners of the grid. The globally optimal path to reach the destination
without misinformation consisted of 6 conflict scenarios, 8 persuasion scenarios and
3 trivial scenarios. On this optimal path, traffic delays accumulated to 29 steps which
was used as a baseline to compare the performance of the four different automation
design to.

Each decision scenario started with a displayed countdown of 3 s. Within this time
period the human cooperation partner was able to perceive the local traffic infor-
mation regarding the upcoming intersection and the vehicle’s position on the map.
After the countdown, the actual phase of cooperative decision making started with
the human cooperation partner being asked to communicate her or his most pre-
ferred option first. Afterwards, the automation would instantly present its most
preferred option. After this, both cooperation partners were able to freely propose,
i. e. select, other maneuver options without any regard of sequence nor fixed timing.
The design of the beginning of the cooperative decision making process encouraged
human attendance right from the start of the process. Hence, situations in which
humans only react shortly before the deadline and do not take part in the decision
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Table 5.2: Differentiation and distribution of scenario types in the Manhattan grid: total count within
the Manhattan grid and count on the globally optimal path to reach the destination without
misinformation.

Scenario Scenario Misinformation Total Count on
Type Name Present Miscellaneous Count Opt. Route

Conflict
S1 ✘ 15 2
S2 ✔ 14 4

Persuasion
S3 ✘ A persuades H 16 4
S4 ✔ A persuades H 7 2
S5 ✘ H persuades A 10 2

Trivial
S6 ✘ 16 2
S7 ✘ on grid borders 14 1

making process were avoided, see insights of the suitability study reported on in Sec-
tion 4.1. Therefore, this design was primarily a means for this experiment evaluating
the cooperative decision making process. In other applications, designs in which the
automation proposes first may be preferable.

Depending on how strong or weak the individual preferences (depending on the
individual information on the difference of delay steps between different maneu-
ver options) were, the automation designs based on the cooperative decision mak-
ing models and/or the participants were expected to concede after some time (and
potentially some decision option offering iterations): they were assumed to select
additional maneuver options and hence agree with the cooperation partner on a ma-
neuver choice. In case of the LA automation design or stubborn human behavior no
agreement might have been reached. Then the ultimate decision was set according to
the current automation design, i. e. automation choice in case of GT & LA and human
choice in case of NT & LH. This reflected how the newly proposed automation de-
signs try to close the gap between the two extremes in terms of authority assignment
(LH & LA), as explained in Section 3.1.5. Hence, the phase of cooperative decision
making ended either by an agreement on one maneuver option or by reaching the
predefined deadline, i. e. the vehicle entering the intersection, after 9 s. This time was
motivated by the assumption of at most three choices with 3 s each, as already ap-
plied in the models’ suitability study, see Sections 4.1 and 4.2.1. The remaining time
until reaching the deadline and entering the intersection was displayed by means of
the bar graph for more clarity. After the deadline was reached, the resulting maneu-
ver option as well as the current, updated measure of cooperative performance and
its potential increase were displayed. The increase described the potentially added
travel time steps of the resulting option with respect to the optimal path from the
current intersection to the destination. Furthermore, the participant actually expe-
rienced the potential local traffic delay because the automated vehicle was slowed
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Destination

Start

Figure 5.8: Schematic of the Manhattan grid: each circle and connecting line denote an intersection and
a connecting street, respectively. The nodes’ colors indicate the type of scenario when ap-
proaching this intersection while traveling towards the destination: S1, S2, S3, S4, S5, S6, S7,
see Table 5.2. Three different important paths are the globally optimal path to the destination
without misinformation ( ), the path considering only local information ( ), and the path
considering global (mis-)information ( ).

down depending on the traffic associated with the conducted maneuver. This traffic
disappeared before the next decision scenario started.

Automation Design

As already mentioned, four automation designs were evaluated in the course of the
experiment: LH, LA, NT, and GT. All of these automation designs made their deci-
sions based on the global and potentially on inaccurate local traffic delay information
for each available direction of a given decision scenario introduced above.

In case of the automation design putting the human in the lead, i. e. LH, the au-
tomation might have proposed an own decision option but would ultimately ac-
cept the human decision without any resistance. In case the automation was in
the lead, i. e. LA, the human might have proposed other decision options but the
automation would ultimately follow through with its decision. By means of these
behaviors, these automation designs followed the two potential manifestations of
the leader-follower paradigm. Note that the application of decision support systems
and dynamic role assignment approaches (see Section 2.3.2) was unrewarding in the
considered decision scenarios: the scenarios were not as unclear such that a deci-
sion support would have been effective nor was a human intention identification for
dynamically adapting the automation’s authority rewarding due to the rather short
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decision making processes and potentially inaccurate information for the automa-
tion. Hence, LH and LA represent the state of the art with respect to cooperative
decision making in these decision scenarios.

The automation designs NT and GT were based the adaptive negotiation model and
the n-stage war of attrition introduced in Sections 3.2 and 3.3, respectively. They
were designed and implemented in accordance with the guidelines of model-based
automation design proposed in Section 4.2. As a result, the automation designs were
capable of actually taking part in the cooperative decision making process with the
human, i. e. the automation did not only display suggestions but also exhibited con-
cession behavior in conflict situations. Furthermore, this concession behavior was
human-like and its extent differed with respect to the model the automation designs
were based on: the negotiation-theory-based automation design (NT) would give in
as a last resort whereas the game-theory-based automation design (GT) ultimately
insisted and realized its decision in case no agreement had been reached. The basis
of the concession behavior of both NT and GT was the utility of the available decision
options. These utilities were derived from the local and global delay information of
maneuver options. To account for differences regarding the maximum and minimum
delays of available maneuver options at different intersections, i. e. decision scenar-
ios, data of each decision scenario were normalized. Refer to Appendix D.2 for more
details on the model-based automation designs and parameterization.

Procedure

The overall practical accomplishment of the experiment took between 45 and 60 min
and followed the procedure listed below.

1) Introduction and Preparations
Participants first read the guidelines on how to conduct the experiment. They
were informed about the setup of the decision scenarios, i. e. explaining the
Manhattan grid with intersections consisting of (usually) three decision op-
tions, the delays caused by the different types of vehicles at the intersections
and the time to deadline. In addition, they were informed that the automation
selects maneuver options based on information about additional delays at sub-
sequent intersections and potentially false information about local delays. The
objective for the participants was to reach a marked destination in the shortest
possible time by iteratively and cooperatively deciding on a travel route. In
each of the following experimental runs, they were unaware of the type of au-
tomation design, i. e. the exact maneuver-choosing behavior of the automation.
Finally, the participants were asked to fill out the part of the custom-designed
questionnaire (see Appendix D.3) regarding their general information and the
familiarization procedure started.
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2) Familiarization Procedure
To introduce the general procedure of different decision scenarios and the han-
dling of the decision interface, the participants were facing a shortened Man-
hattan grid (6×8) which consisted of random combinations of decision scenar-
ios and automation designs. The results of this part were not included in the
evaluation.

3) First to Fourth Experimental Run
For each of the four automation designs the participants were passing one ex-
perimental run. The order of experimental runs were counterbalanced over
participants to equate potential learning effects. Each experimental run was
evaluated by the participants via a specific section of the custom-designed
questionnaire. This scheme was applied to strengthen their sensitization and
contemplation regarding the different automation designs.

4) Postprocessing
After completing the fourth experimental run, the participants were asked to
fill out the last part of the given questionnaire which allowed for an evaluation
of the four experimental runs in relation to each other.

Participants

33 participants (27 male and 6 female) took part in the experiment. The average
age was 29 years with an age range of 22 to 57 years. All participants possessed a
valid driving license and 30.3 % did have some general experience regarding driving
simulators.

Measures

The relevant measures for this experiment were an objective cooperative performance
measure and subjective assessment by means of a questionnaire to evaluate the four
experimental runs: Generally, the two automation designs based on the cooperative
decision making models were compared with the two automation designs follow-
ing the leader-follower approach. Furthermore, the relation of all four automation
designs to each other was analyzed.

The objective cooperative performance regarding the human-machine cooperative
decision making was measured by the additional travel time steps when comparing
the required travel time at the end of each experimental run to the optimal route’s
travel time. Hence, the smaller the additional travel time steps, the higher was the
performance of the human-machine cooperation.
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To assess the participants’ subjective perception of the human-machine cooperation,
a questionnaire with a five-point Likert Scale [Lik32] with the following relevant items
was used.

Q1: How do you assess the overall cooperation between you and your partner?
Answer range from not satisfying (1) to satisfying (5).

Q2: How do you assess your partner’s cooperation behavior?
Answer range from not reliable (1) to reliable (5).

Q3: How do you assess the interaction between you and your partner?
Answer range from not intuitive (1) to intuitive (5).

Q4: Was the behavior of your partner in cooperative decision making transparent?
Answer range from not transparent (1) to transparent (5).

The entire questionnaire is provided in the Appendix D.3.

Due to the comparison of up to four sample sets and the lack of information regard-
ing their distributions, the statistical analysis was conducted by means of the non-
parametric Kruskal-Wallis test [KW52]. The test’s null hypothesis (all sample sets ori-
gin from the same original distribution) was accepted if H ≤ χ2

c holds. In case of the
pooled comparison of the two automation designs based on the state-of-the-art leader-
follower models (LH & LA) with the two newly-introduced automation designs based
on the cooperative decision making models (GT & NT) χ2

c = χ2
d f=1,α=0.05 = 3.842 fol-

lows. When comparing the individual results of the four automation designs, there
were three degrees of freedom (d f = 3). Hence, with a significance level of α = 0.05,
χ2

c = χ2
d f=3,α=0.05 = 7.815 follows.

Based on these measures, the following section provides the results of the conducted
experiment.

5.3.2 Results

First, objective performance results are provided to investigate Hypothesis 5.2. Fig-
ure 5.9 shows the objective cooperative performance by means of compact boxplots
(see explanation in Appendix D.1) based on the additional travel time steps for each
automation design. It reveals that experimental runs with the automation designs
based on cooperative decision making models yielded less additional time steps than
the leader-follower-based automation designs. Furthermore, comparing the pooled
automation designs LA & LH with the pooled automation designs GT & NT, the null
hypothesis of the Kruskal-Wallis test was rejected with H = 72.123. Considering the
sample set for the four automation designs individually, the null hypothesis was re-
jected with H = 64.823. Hence, the objective cooperative performance measure was
significantly better for the automation designs based on cooperative decision making
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Figure 5.9: Compact boxplots (see explanation in Appendix D.1) of additional travel time steps for each
automation design. Median ×, lower/upper quartile , lower/upper adjacent · · · .

models than for the leader-follower automation designs. Therefore, Hypothesis 5.2
was accepted.

Next, the participants’ subjective assessment is provided to investigate Hypothe-
sis 5.3. Figure 5.10 shows the participants’ subjective perceptions based on the corre-
sponding questions Q1-Q4 of the questionnaire. Comparing the pooled automation
designs LA & LH with the pooled automation designs GT & NT, the null hypothesis
of the Kruskal-Wallis test was rejected regarding the satisfaction with the human-
machine cooperation (H = 83.776), the trust in automation’s decision making behav-
ior (H = 52.51), the intuition of the interaction (H = 24.192) and the transparency
of the interaction (H = 7.563). In view of the individual sample sets of the four
automation designs, the null hypothesis of the Kruskal-Wallis test was also rejected
regarding the satisfaction with the human-machine cooperation (H = 84.845), the
trust in automation’s decision making behavior (H = 52.682), the intuition of the
interaction (H = 24.85) and the transparency of the interaction (H = 11.406). To
sum up, the evaluation of subjective perception regarding the different automation
designs revealed that the automation designs based on cooperative decision models
led to a significantly more satisfying, trustworthy and intuitive interaction in compar-
ison to the state-of-the-art leader-follower approaches. However, the opposite held
for the transparency of the interaction. Therefore, Hypothesis 5.3 was accepted.

In summary, both hypotheses stated at the beginning of Section 5.3 were accepted.

For a deeper understanding, some post-test results for each measure comparing the
sample sets of each automation design individually by means of a t-test are provided.
All resulting p-values are given in Table 5.3. Considering the objective cooperation
performance measure, all sample sets differed significantly except for the compari-
son of NT & GT. Regarding the participants’ satisfaction with the human-machine
cooperation, the trust in the automation’s decision making behavior and the intu-
ition of the interaction between human and automation, the sample sets of both NT
and GT were significantly different compared to LH and LA. Considering the trans-
parency of the interaction between human and automation, there were significant



164 5 Experiments

not
satisfying

satisfying

LA

NT

GT

LH

(a) Q1: satisfaction regarding the human-machine cooperation

not
reliable

reliable

LA

NT

GT

LH

(b) Q2: trust in automation’s decision making behavior

not
intuitive

intuitive

LA

NT

GT

LH

(c) Q3: intuition of the interaction

not
transparent

transparent

LA

NT

GT

LH

(d) Q4: transparency of the interaction

Figure 5.10: Compact boxplots (see explanation in Appendix D.1) regarding the subjective perceptions to
Q1-4. Median ×, lower/upper quartile , lower/upper adjacent · · · , and outlier ◦.
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Table 5.3: Results of the t-test evaluating objective performance measure and answers to Q1-Q4: p-values
of pair-wise comparison.

Measures
Pairs LA LA LA NT NT GT

NT GT LH GT LH LH

Obj. Coop. Performance 0 0 0.042 1 0 0

Q1: Satisfaction 0 0 1 1 0 0

Q2: Trust 0 0 1 1 0 0

Q3: Intuition 0.004 0 1 1 0.022 0.003

Q4: Transparency 1 1 0.304 1 0.016 0.026

differences comparing the sample sets of GT and NT with LH and no significant
difference in comparison with LA.

Furthermore, the objective cooperation performance measure strongly correlated to
participants’ subjective assessment of the satisfaction with the human-machine co-
operation (M = −0.8113, SD = 0.2195). In other words, participants were more sat-
isfied with the human-machine cooperation if the cooperation led to smaller travel
times (a better performance), and vice-versa.

The above gained insights were also supported by collected statements of partici-
pants noticing a “will to compromise” and “good proposals” of the automation de-
signs based in the cooperative decision making models. The interaction with them
was perceived as “pleasant” and “trustworthy”. The interaction with leader-follower
approaches was criticized as “frustrating” and “strenuous”. Participants perceived
the automation design with the automation in lead as “too dominant” and “un-
responsive to suggestions”. When participants were in lead the automation was
criticized for “taking no responsibility”.

5.3.3 Discussion

The significantly improved objective cooperative performance for the automation de-
signs based on cooperative decision making models compared to the leader-follower
automation designs demonstrates that

• an emancipated design of the human-machine cooperation on decision level is
beneficial for the overall cooperative system’s performance and that

• a model-based approach is suitable to design the corresponding automation.
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Furthermore, note that the objective performances of LA and LH did not differ sig-
nificantly, i. e. the performance of LA was reasonably designed and did not system-
atically void the results.

The observed significantly more satisfying and intuitive interaction with the automa-
tion designs based on cooperative decision models may have been a result of the
significantly increased trust regarding the automation’s decision making behavior.
In other words, participants recognized the increased cooperative, i. e. concessive,
behavior of the introduced cooperative decision model automation designs as more
trustworthy and intuitive which also increases participants’ acceptance of the au-
tomation.

A closer look at the reduced transparency of interaction for the automation designs
based on cooperative decision making models reveals two insights:

1. Designing fully automated systems is not necessarily the solution in terms of
transparency for humans as interaction with LA was not assessed significantly
more transparent than GT & NT.

2. Humans prefer complete transparency about the final decision as interaction
with LH is assessed significantly more transparent compared to all other au-
tomation designs which was expected as the human has exclusive control au-
thority. Hence, in terms of transparency, assistive decision support systems
have an advantage compared to emancipated decision making system.

Putting together all these insights, the trade-off in designing cooperative systems
becomes apparent, i. e. balancing the aspects of cooperative performance, human ac-
ceptance, trust in the automation, intuition and transparency of interaction. Accord-
ing to the experiment’s results and depending on the application context, approaches
with focus on cooperative decision making or humans in lead are preferable in con-
trast to approaches with the automation in lead.

5.3.4 Conclusion

This experiment yielded results which demonstrate that the proposed automation
designs for cooperative decision making based on negotiation theory and game the-
ory add value for human-machine cooperation on decision level in the examined
scope of highly automated vehicles: the objective cooperative performance was sig-
nificantly increased compared to automation designs based on conventional leader-
follower approaches. While the transparency of interaction slightly decreased as
expected, the remaining aspects of the subjective assessment of the participants in
terms of satisfaction and trust in the cooperation as well as intuition of interaction re-
vealed a preference for cooperative decisions models. This reveals the known trade-
off in cooperative system design to accommodate the increased cooperative perfor-
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mance, human acceptance of and trust in the automation, and the transparency of
interaction.

To summarize, the experiment evidently reveals humans’ preference for an emanci-
pated interaction on decision level.

5.4 Conclusion of the Experimental Evaluation

Both reported experiments pursued the general evaluation approach introduced in
Section 5.1 and therefore provided first empirical evidence that cooperative perfor-
mance is significantly increased by allowing for emancipated human-machine co-
operative decision making. Furthermore, the subjective evaluation reveals that hu-
mans prefer this truly cooperative interaction over state-of-the-art leader-follower
approaches in terms of user acceptance of and trust in the automation. The mixed
subjective assessments with respect to intuition and transparency of the interaction
demonstrate the relevance of finding a trade-off in the design of cooperative systems,
i. e. finding the balance between increased cooperative performance and subjective
human assessment of not being in full control.

Consequently, the two experimental evaluations demonstrate in realistic simulations
the ability of enabled automation designs to cooperatively and effectively make de-
cisions with humans. Furthermore, the proposed mathematical behavior models
of human-machine cooperative decision making and corresponding automation de-
signs successfully close the gap between fully automated and human-centered deci-
sion making from a practical point of view (see Section 3.1.5) and answer the third
research question of this thesis, see Section 2.4.

Additionally, the newly gained insights add major value for the design of future
cooperative systems by expanding their widespread practical limitation to the ac-
tion level of human-machine cooperation towards explicitly including the decision
level. Hence, the experimental results revealing the benefits of emancipated human-
machine cooperation on decision level encourage further research and practical ap-
plications.
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This thesis focuses on the decision making aspect of human-machine cooperation: It
provides evidence that emancipated human-machine cooperative decision making outper-
forms human individualism and technical autonomy in terms of objective performance,
user satisfaction, and human trust in the interaction.

Along the way to this novel insight into cooperative human-machine systems’ de-
sign, this thesis initially analyzes the current state of research on human-machine
cooperation and proposes the butterfly model as a comprehensive classification of
human-machine cooperation. On this basis, the research gap on the decision level of
human-machine cooperation is revealed: there is no approach reported in literature
that enables the machine to take part in an emancipated human-machine coopera-
tive decision making process, i. e. human and machine participate in a process of
cooperative decision making with equal authority.

To close this gap, this thesis subsequently proposes a first meta-model of emancipated
human-machine cooperative decision making. This meta-model takes into account the
human limitations and characteristics in a cooperative decision making scenario. Ap-
plying this meta-model as a design template, this thesis introduces two mathematical
behavior models for emancipated human-machine cooperative decision making pro-
cesses: the adaptive negotiation model and the n-stage war of attrition which originate
from negotiation theory and game theory, respectively. In case of the adaptive ne-
gotiation model, the cooperative decision making process modeling is inspired by
negotiating automated, i. e. programmable, agents whereas in case of the n-stage
war of attrition the focus is on selfish rational entities, e. g. humans. In both cases, a
concessive process of exchanging decision option offers is established to the end of
reaching a mutual agreement. Furthermore, both models account for the uncertainty
in cooperative decision making with human participation: The adaptive negotiation
model provides the ability to identify the negotiation behavior of the cooperation
partner and adapt the own behavior accordingly. The n-stage war of attrition inher-
ently considers uncertainty and allows for an adaptation of the interaction strategy
based on observed actions of the cooperation partner. In decision making scenarios
with a given deadline, the adaptive negotiation model furthermore provides a the-
oretical guarantee for reaching a mutual agreement. In contrast to this, the n-stage
war of attrition only considers soft deadlines which in turn allows for emulating
unyielding behavior. As a result, the two mathematical behavior models success-
fully close the gap between the two extremes of the state-of-the-art leader-follower
approach, i. e. the human or (more rarely) the automation being in the lead, towards
an emancipated human-machine cooperation.
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For the purpose of experimentally investigating both models of human-machine co-
operative decision making, this thesis reports on a study and corresponding results
prove the suitability of the basic negotiation model and the n-stage war of attrition to
describe human concession behavior. Furthermore, the study’s results highlight the ne-
cessity of an adequate interface design for cooperative decision making. Encouraged
by the study’s results, two automation designs based on the two proposed mathematical
behavior models of cooperative decision making are introduced along with guidelines for
their practical implementation. By means of the mathematical behavior models’ abil-
ity to represent human concession behavior, the automation designs additionally aim
for an intuitive human-machine cooperation and high user acceptance. A potential
preference for the application of one of the proposed automation designs depends
on the application scenario and the features of the respective mathematical model of
human-machine cooperative decision making.

Pursuing the empirical evidence for the benefits of emancipated human-machine co-
operative decision making, this thesis proposes a novel experimental design by intro-
ducing specific requirements and measures for subjective and objective cooperative
performance evaluation focusing on the decision making aspect of human-machine
cooperation. Following these guidelines, this thesis reports on two experimental eval-
uations of the newly proposed automation designs. The first experiment’s scope is
the cooperative determination of the appropriate LOA in teleoperating a mobile robot
in a search-and-rescue scenario. The other experiment is set in the scenario of highly
automated driving in which the driver and the vehicle’s automation have to coop-
eratively decide on the selection of driving maneuvers. In both experiments, the
proposed automation designs were compared to state-of-the-art approaches. The
results demonstrate the benefits of the novel automation designs capable of emanci-
pated human-machine cooperative decision making in terms of objective cooperative
performance and subjective user satisfaction and trust in the cooperative systems.
Hence, both experiments provide first evidence that humans prefer an emancipated
cooperation on decision level. Furthermore, performance benefits can be created or
increased by considering this form of cooperation. Therefore, it can be concluded
that emancipated human-machine cooperation on decision level has the ability to
outperform the individual decision making of either human or automated system
and raises synergies from both perspectives of objective system design and subjec-
tive user perception.

These novel positive insights into the research on human-machine cooperation may
encourage further research on emancipated human-machine cooperative decision
making. The experimental results highlight the necessity to further elaborate the
interface design for cooperative decision making. Additionally, the application of the
automation designs to other fields of human-machine cooperative decision making
has to be investigated in order to explore novel scopes and also potential practical
limitations.
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Another major challenge remaining with respect to the cooperative human-machine
system design is the seamless shift of human-machine cooperation across all levels
of task abstraction. Hence, extensive research is required which enhances existing
approaches on the action level of human-machine cooperation by means of the pro-
posed approaches on decision level.

Therefore, this thesis advances research towards the ultimate goal in cooperative
systems’ design which is a holistic consideration and realization of human-machine
cooperation on all levels of task abstraction and with a large area of application.
Regarding the disadvantages of fully automated systems in terms of high develop-
ment costs and out-of-the-loop problems for human supervisors, this research there-
fore strengthens the superior alternative, i. e. the application of cooperative human-
machine systems.





A Mathematical Fundamentals

This appendix provides relevant mathematical fundamentals for more complex inte-
gration and differentiation as well as for the transformation of density functions.

A.1 Definition of Integrals with Infinite Integration
Limits

Integrals with infinite integration limits are defined as follows.

Definition A.1 (Definition of Integrals with Infinite Upper Integration Lim-
its)
Integrals with an infinite upper integration limit are defined as follows [BSMM15,
p. 507]: ∫ ∞

a
f (x)dx = lim

b→∞

∫ b

a
f (x)dx a, b ∈ R, a < b. (A.1)

A.2 Differentiation for Limits of and Under the Symbol
of Integrals

In order to differentiate limits or the integrand of an integral, the following differen-
tiation rule applies.
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Lemma A.1 (Differentiation for Limits of and Under the Symbol of Integrals)
Consider continuous, differentiable and bounded limit functions α(y) and β(y) defined
on a finite interval of y and a continuous integrand f (x, y) with a continuous partial
derivative with respect to y, then the following differentiation rule holds [BSMM15,
p. 512]:

d
dy

∫ β(y)

α(y)
f (x, y)dx =

∫ β(y)

α(y)

∂ f (x, y)
∂y

dx

+
dβ(y)

dy
· f (β(y))− dα(y)

dy
· f (α(y)) (A.2)

Proof:
Be referred to [BSMM15, p. 512].

A.3 Density Function Transformation

The following lemma provides the mathematical relation between a transformed
density function and its original.

Lemma A.2 (Density Function Transformation)
Consider a one-dimensional density function fx(x) (non-negative and Lebesgue-
integrable) and a scalar, invertible transformation y = ϕ(x) , ϕ : R 7→ R. The inverse
transformation is denoted by ϕ−1.
The transformed density function fy(y) = fy(ϕ(x)) is given by:

fy(y) = fx

(
ϕ−1(y)

) ∣∣∣∣
d

dy

(
ϕ−1(y)

)∣∣∣∣ . (A.3)

Note that the transformation of the corresponding cumulative distribution function
Fx(x) =

∫ x
−∞ fx(x̃)dx̃ by means of ϕ results in

Fy(y) = Fx

(
ϕ−1(y)

)
. (A.4)

Proof:
This transformation results from the substitution method [BSMM15, p. 484].



B Application Example of the Adaptive
Negotiation Model

The following application example explores by simulating a human-machine negoti-
ation the potential of the adaptive negotiation model in terms of negotiation behavior
identification, adaptation towards the identified behavior. Furthermore, it demon-
strates how offers can convey additional information for the cooperative decision
making process besides the information about the associated decision options.

The exemplary application of the adaptive negotiation model is the negotiation of
directions at an interaction between a highly automated vehicle and human driver.
For the simulation of this scenario, both agents are modeled by means of the intro-
duced adaptive negotiation model, see Section 3.2. Both agents are able to exchange
offers which represent a proposed decision option and the (potentially time-variant)
importance of that choice. In the following, the scenario and the agents’ setup are
presented in more detail before the simulation results are shown.

B.1 Scenario

The exemplary road scenario is a Manhattan grid navigation setting depicted in Fig-
ure B.1. The aim of both agents is to reach the intersection marked with a green dot.
At the time of the negotiation the vehicle is traveling along the black solid arrow. At
the intersection three decision options d are available for both agents: turn left

(
d1),

drive straight ahead
(
d2) and turn right

(
d3). Each decision option can be offered

Figure B.1: Exemplary Manhattan grid scenario with shortest path to goal in blue, path avoiding local
delays in orange and longest path with short local delay in gray.
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with one of three importance levels ζi ∈ Z, |Z| = 3. Consequently, an offer is de-
scribed by the tuple o := (d, ζ) and the set of offers has a magnitude of ∥O∥ = 9. The
importance levels represent an additional communication parameter that indicates
how much an agent clings to the chosen direction with respect to the agent’s conces-
sion strategy and the directions’ utility differences. As the choice of importance level
is influenced by the agent’s time-based concession behavior, the other agent’s identi-
fication of the agent’s negotiation behavior is able to take into account this additional
information and is hence facilitated and quicker.

In Figure B.1, the gray boxes indicate traffic delays. The options d can be rated with
respect to to the time loss due to a local traffic delay tl at the current intersection
and to the estimated time to reach the target intersection tg taking into account all
relevant traffic delays on the remaining way. The simulation results for the proposed
model are based on the times in Table B.1.

Table B.1: Times for local traffic delay and time to goal intersection.

D tg tl

d1 (left) 390 10
d2 (straight) 140 0
d3 (right) 80 40

The negotiation is set to start at time t = 0 and agents face a deadline t = T at
which the vehicle has to start one of the potential maneuvers. The time during the
negotiation is normalized, i. e. t̄ := t/T , t̄ ∈ [0, 1] ⊂ R.

B.2 Agents’ Setup

Due to the introduction of additional communications symbols in form of impor-
tance levels, agents need to determine the importance level along with the direction
to provide offers o = (d, ζ). Hence, the utility functions for both agents are set as a
linear combination of evaluation functions for evaluating the decision option d and
the importance level ζ of offer o:
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ui(o) = ui(d, ζ) := wg,i · b̄g(d) + wl,i · b̄l(d)︸ ︷︷ ︸
ūi(d)

+bζ(ζ) (B.1a)

with b̄g(d) :=
min∀dµ∈D tg(dµ)

tg(d)
, (B.1b)

b̄l(d) := 1− tl(d)
∑∀dµ∈D tl(dµ)

, (B.1c)

bζ(ζ) :=





−0.5 · ζ −min(Z)
max(Z)−min(Z)︸ ︷︷ ︸

b̄ζ(ζ)

if (B.1f) holds

∞ else

(B.1d)

s. t. wg,i + wl,i = 1, (B.1e)

b̄ζ(ζ) < ūi(d)−max
dµ∈D̃

ūi(dµ) (B.1f)

D̃ := {dµ ∈ D|ūi(d) > ūi(dµ)} . (B.1g)

b̄g(d) penalizes the time for reaching the target intersection, referred to as the time-
to-goal tg, of a decision option d with respect to the fastest alternative. b̄l(d) penalizes
the local traffic delay tl of decision option d by comparing it to the sum of all local
traffic delays. b̄ζ(ζ) penalizes the usage of importance levels for communication.
This models the importance level as a measure for the deviation of the utility of the
chosen direction ūi(d) from the target utility ūt,i. The agents will start with minimum
importance level, increase it when approaching the next closest utility of another di-
rection and restarting with minimum level of importance whenever offering a new
decision option. The cases in (B.1d) with condition (B.1f) ensure that higher im-
portance levels are only communicated in case their associated decision option is
still valid, i. e. no other offer comprising another decision option has been proposed
since this associated decision option has been offered. Therefore, note that in (B.1a)
ui(o) ∈ [0, 1] ∪∞. However, this does not negatively influence the concession strat-
egy: the optimal offer ot

i = (d∗, ζ∗) at time instance t is determined following the
time-based concession strategy of Definition 3.8, i. e. solving the optimization prob-
lem (3.4) utilizing ui(o) defined in (B.1a).

For the simulation of the negotiation between agent A, resembling the automation
and focusing on the time to goal, and agent H, the human, trying to avoid local
traffic delays, the agents are parameterized as follows:

ϵA/H = 1, wg,A = 1, wg,H = 0, wl,A = 0 wl,H = 1.

Both agents are able to identify the other agent’s parameters θj =
[
ϵj, wg,j

]⊤, j ∈
{A,H}, by means of the identification method presented in Section 3.2.4. In this
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setting, the following aspects of the identification method are adapted with respect
to the introduced negotiation scenario: In order to calculate the Bayesian update,

p
(

ot
j | hl

)
has to be determined. This likelihood depends on a-priori knowledge on

the other agent’s behavior and observed offers ot
j and can be reformulated to:

p
(

ot
j | hl

)
= p

(
dt

j, ζt
j | hl

)

=
p
(

dt
j, ζt

j , hl

)

p(hl)

=
p
(

ζt
j | dt

j, hl

)
· p
(

dt
j | hl

)
· p(hl)

p(hl)

= p
(

ζt
j | dt

j, hl

)
· p
(

dt
j | hl

)
. (B.2)

p
(

dt
j | hl

)
depends on the concession and acceptance strategy, i. e. (3.4) and (3.2),

respectively. Therefore, the associated direction of offer ot
j of the other agent has to

fulfill the following condition:

ūhl

(
dt

j

)
= min

d∈D
ūhl (d) (B.3)

w. r. t. ūhl (d) ≥ ūt,h(t) and

ūhl (d) > uhl

(
dt

i
)

The index □hl
indicates the parameterization of the corresponding function with the

parameters of hypothesis hl . Besides ensuring that the other agent’s utility of the
chosen direction lies above target utility, condition (B.3) also takes into account that
this utility must be higher than that of the last own offer with respect to the other
agent’s utility measure. Otherwise this offer would have been accepted by the other
agent.

All hypotheses fulfilling this condition explain the current chosen direction of the
other agent. Therefore a uniform distribution is assigned to these hypotheses:

p
(

dt
j | hl

)
:=

{
1
|D̃| if (B.3) holds

0 else
(B.4)

with D̃ := {d ∈ D | (B.3) holds} .

Note that in this exemplarily case D̃ is a singleton.

The probability p
(

ζt
j | dt

j, hl

)
of an importance level ζt

j given a direction dt
j and a

parameterization hl depends on the concession strategy (3.4) with respect to (B.1a).
Therefore the following condition has to hold:

ζt
j = arg min

ζ∈Z

{
uhl

(
dt

j, ζ
)
− ūt,hl (t)

}
(B.5)
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All hypotheses that fulfill this condition explain the current chosen importance level
at the current direction. Due to the fact that only one importance level per direction
is valid, the probability is set to

p
(

ζt
j | dt

j, hl

)
:=

{
1 if (B.5) holds
0 else

(B.6)

Furthermore, the probability re-initialization offset is set to q = 0.001. Aside from
that, agent A is able to adapt its negotiation behavior with β = 0.8 and rA = 0.3, see
Section 3.2.5. Moreover, agent A is set to propose offers at a constant update rate
whereas agent H, representing the human, interacts at random times.

B.3 Simulated Negotiation Process

Figure B.2 shows a negotiation process without adaptation. The agreement on option
d2 is indicated by a green circle. The vertical bars represent different levels of impor-
tance. Note that due to the asynchronous protocol the agents are allowed to interact
at random times. Therefore, agent H detects the agreement only at his next interac-
tion time. The corresponding performance of the identification method of agent A
is depicted in Figure B.3. The estimated values (dashed lines) converge from their
starting values at t̄ = 0 towards the real values (solid line). Note that changes in
direction offered or in importance levels contribute most to improvements regarding
the parameter estimation, as they provide a high information content.

0 0.2 0.4 0.6 0.8 1

d1

d2

d3

Normalized Time t̄ = t/T

dA ζA dH ζH

Figure B.2: Negotiation process without adaptation: green circle indicates agreement.

Figure B.4 shows a negotiation round in which agent A adapts its behavior after
the identification process of the agent H model’s parameters is about to converge.
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Normalized Time t̄ = t/T
0 0.2 0.4 0.6 0.8 1

0.0

0.2

0.4

0.6

0.8

1.0

1.2

wg,H ŵg,H ϵH ϵ̂H

Figure B.3: Identification process of agent A without adaptation. Actual parameters are depicted with
solid lines, dotted lines represent the estimates.

Agent A becomes more intransigent and therefore is able to convince agent H with
his offer for option d3. Figure B.5 presents the identification performance of agent H
of the changing behavior of agent A. The adaptation process is visible regarding the
changing blue trajectories of the concession parameter ϵA from high to low values,
i. e. from concessive to intransigent behavior. Also the identification ability of chang-
ing negotiation behavior is visible as the estimates follow the actual values with a
small delay.

0 0.2 0.4 0.6 0.8 1

d1

d2

d3

Normalized Time t̄ = t/T

dA ζA dH ζH

Figure B.4: Negotiation process with adaptation: green circle indicates agreement.

In conclusion, the simulated adaptive model is able to model negotiation scenarios
that lead to an agreement between emancipated agents. The agents are allowed to
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Normalized Time t̄ = t/T
0 0.2 0.4 0.6 0.8 1
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wg,A ŵg,A ϵA ϵ̂A

Figure B.5: Identification process of agent H showing adaptation of agent A. Actual parameters are
depicted with solid lines, dotted lines represent the estimates.

communicate at different rates and with importance levels as additional communi-
cation symbols. Furthermore, the proposed identification method is able to identify
the behavior of the other agent (see Figure B.3), even if it is changing, see Figure B.5.
The explicit adaptation strategy allows the agent to change his negotiation behav-
ior based on the estimated effort and outcome of persuading the other agent, see
Figure B.4. As a result the outcome of the negotiation may be different to the one
without adaptation. The ability to adapt with respect to some objective function, in
this case the trade-off between outcome utility and effort to achieve it, is a great ad-
vantage of the introduced model. In comparison to existing adaptation techniques,
the introduced approach is more generalized and allows for more efficient negotia-
tions.





C Supplementals on Game Theory

This appendix provides some important supplementals on game theory for this the-
sis. It states the definitions of important equilibria followed by an additional lemma
on the sufficiency of a condition on the maximum payoff of the applied war of attri-
tion game model.

C.1 Important Equilibria

Equilibria in games define the state of strategy profiles. In the following, equilibria
definitions are provided for games with two players. The most famous equilibrium
for complete information games is the Nash equilibrium.

Definition C.1 (Nash Equilibrium for Two Players)

Consider a strategy profile
(

ψ∗i , ψ∗j
)

, i, j ∈ P, i ̸= j in a complete information game.
The profile is in a Nash equilibrium if the following inequality condition for the payoff
holds for all players:

πi

(
ψ∗i , ψ∗j

)
≥ πi

(
ψi, ψ∗j

)
, ∀ψi ∈ Ψi, ∀i ∈ P. (C.1)

A strict Nash equilibrium is given if

πi

(
ψ∗i , ψ∗j

)
> πi

(
ψi, ψ∗j

)
, ∀ψi ∈ Ψi, ∀i ∈ P. (C.2)

(see Definition 1.2 in [FT91, p. 11])

In games with incomplete information, the analogue to the Nash equilibrium is the
Bayesian Nash equilibrium. It incorporates the type of a player which resembles play-
ers’ private information. This incomplete information about the other player usually
considers the player’s payoff which is why rational players choose strategies that
maximize the expected payoff with respect to to a belief about the potential type of the
other player. This belief depends on a common knowledge probability distribution
of types and potentially also on the player’s own type.
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Definition C.2 (Bayesian Nash Equilibrium)
Suppose the strategies ψi ∈ Ψi of players i ∈ P depends on their type λi which is
private information. Furthermore, the type’s probability density function f

(
λi, λj

)
is

given and common knowledge. The strategy profile
(

ψ∗i (λi) , ψ∗j
(
λj
))

is in a Bayesian
Nash equilibrium if each player i maximizes her or his expected payoff with respect to
her or his belief about the type of the other player given her or his own type:

ψi(λi) ∈ arg max
ψ∈Ψi

∫

λj

f (λ|λi) · πi
(
ψ, ψj(λ) , λi, λ

)
dλ. (C.3)

(see Definition 6.1 in [FT91, p. 215])

For dynamic games, there is a refinement of the Bayesian Nash equilibrium called the
perfect Bayesian equilibrium which assures the consistent update of beliefs throughout
the game to avoid non-credible beliefs and consequently non-credible strategies. The
belief’s update is based on observed actions of the other player.

Definition C.3 (Perfect Bayesian Equilibrium)
In order for a strategy profile and an associated set of beliefs to be in a perfect Bayesian
equilibrium, two requirements have to be met:

• Sequential rationality of strategies: Each player’s strategy has to be determined
optimally with respect to the current belief about the other player’s type, see Defi-
nition C.2.

• Consistency of beliefs: The player’s belief has to be updated considering observa-
tions of the other player’s actions.

(see Definition 8.2 in [FT91, p. 333])

C.2 Additional Lemma on the Sufficient Condition for
Maximum Payoff

The following lemma on the sufficient condition for maximum payoff in strategy de-
termination of the applied war of attrition (see Lemma 3.3) is adapted to Fudenberg
and Tirole [FT91, pp. 217-218].
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Lemma C.1 (Sufficient Condition for Maximum Payoff)
Condition (3.17) is sufficient in terms of maximizing the payoff of (3.16).

Proof:
The sufficiency of condition (3.17) can be proven by contradiction analogous to Fu-
denberg and Tirole [FT91, pp. 217-218]:

Let J ∗i (τi, δi) denote the maximum of (3.16). Observe that

∂2J ∗i (τi, δi)

∂τi∂δi
= fτj(τi) > 0, ∀τi > 0. (C.4)

Assume there is another τ⋄i for which J ∗i
(
τ⋄i , δi

)
> J ∗i (τi, δi) holds, given that

τ⋄i := τi(δi). This implies that

∫ τ⋄i

τi

∂J ∗i
∂τ

(τ, δi)dτ > 0. (C.5)

Together with the first-order condition

∂J ∗i
∂τ

(τ, ϕi(τ)) = 0 ∀τ (C.6)

it follows that ∫ τ⋄i

τi

(
∂J ∗i
∂τ

(τ, δi)−
∂J ∗i
∂τ

(τ, ϕi(τ))

)
dτ > 0

and finally that
∫ τ⋄i

τi

∫ δi

ϕi(τ)

∂2J ∗i (τ, δ)

∂τ∂δ
dδ dτ > 0. (C.7)

If τ⋄i > τi holds, then ϕi(τ) > δi follows for all τ ∈
(
τi, τ⋄i

]
, which does not fulfill

(C.7). This can be derived similarly for τ⋄i < τi. Therefore, τi is the global optimum
of Ji for the given utility difference δi.
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D.1 Presenting Distributions by Means of Boxplots

By means of a boxplot the distribution of empirical data and related characteristic
values can be visualized [Tuk97, pp. 39-43]. Figure D.1 depicts two exemplary com-
pact boxplots of fictional data. A cross denotes the median which divides the dataset

0 1 2 3 4 5 6 7 8 9 10 11

d1

d2

Data Range

D
at

as
et

Figure D.1: Exemplary compact boxplots of datasets d1 and d2: Median ×, lower/upper quartile ,
lower/upper adjacent · · · , and outliers ◦.

in half, i. e. 50 % of the data is not smaller or bigger than the median. The box or, in
case of the compact boxplot version, a thick line indicate the lower and upper quar-
tiles which form the boundaries of the middle half of the data. This range is called
interquartile range. The dots reach out from lower and upper quartile towards lower
and upper adjacent, respectively, which are the extreme values of the dataset exclud-
ing outliers. Outliers are denoted by circles and are defined as values which have
a distance between themselves and the lower or upper quartile that is 1.5-times the
length of the box, i. e. the interquartile range.

D.2 Details on the Automation Designs of the Highly
Automated Driving Experiment

The following section provides implementation details on the automation designs
based on the adaptive negotiation model and the n-stage war of attrition applied in
the highly automated driving experiment.
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For evaluating the (at most) three possible maneuver options D ≡ O at each in-
tersection with respect to the associated global delays tg and local delays tl, both
automation designs applied the following normalized utility function:

ūi(o) = ūi(d) := wg,i · b̄g(d) +
(
1− wg,i

)
︸ ︷︷ ︸

wl,i

·b̄l(d) (D.1a)

with b̄g(d) :=
max∀dµ∈D tg(dµ)− tg(d)

max∀dµ∈D tg(dµ)−min∀dµ∈D tg(dµ)
, (D.1b)

b̄l(d) :=
max∀dµ∈D tl(dµ)− tl(d)

max∀dµ∈D tl(dµ)−min∀dµ∈D tl(dµ)
. (D.1c)

Based on this utility evaluation, the utility difference distribution fδA for the automa-
tion design based on the n-stage war of attrition was determined by aggregating all
utility differences δA of all intersections of the Manhattan grid. The utility difference
distribution fδH was initially set to a uniform distribution within the range of value
of fδA and was subsequently updated analogous to the identification algorithm de-
scribed in Section 4.2.3. Furthermore, on the basis of the results of the suitability
study (see Sections 4.1.3 and 4.2.3) in terms of exponential cost function fit, the cost
function was set to be quadratic, i. e.

c(t) ∼ t2. (D.2)

The prefactor of the cost function was determined for each decision scenario accord-
ing to the procedure described in Section 4.2.3.

As the decision making process was set to start when the human initially chose a
maneuver option at time t0, the time normalization required for the target utility (3.3)
of the adaptive negotiation model as well as for the cost function (D.2) was defined
as follows:

t̄ =
t

T − t0
. (D.3)

The parameters of the automation design based on the adaptive negotiation model
introduced in Sections 3.2 and 4.2.2 were partially inspired by the results of the
suitability study (see Sections 4.1.2 and 4.2.2) and are summarized in Table D.1.
For the identification of the human behavior, the same utility function structure and
target utility structure as for the automation design based on the adaptive negotiation
model were assumed.

D.3 Questionnaires of the Highly Automated Driving
Experiment

The translated questionnaires for the highly automated driving experiment are de-
picted in Figures D.2 to D.5: the first questionnaire is concerned with general and
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Table D.1: Parameters of the adaptive negotiation model in the highly automated driving experiment.

Parameter Description Value/Range

Utility weight wg,A 1
Initial concession rate ϵA 0.3
Estimation range for utility weight ŵg,H [0, 0.2, . . . , 1]
Estimation range of concession rate ϵ̂H [0.1, 0.3, . . . , 1.1]
Adaptation parameter βA 0.5
Risk disposition factor rA 0.2
Adaptation range of concession rate ϵA [0.1, 0.2, . . . , 0.5]

personal information, the second and third are filled out after each experimental run
and the fourth questionnaire is for comparing all experimental runs.
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KIT – The Research University in the Helmholtz Association www.kit.edu 

 

Questionnaire of the Cooperative Decision Making Experiment 

 

Please check all that apply and elaborate where needed.  

 

Before the Start of the Experiment  

 

 Age: _______ 

  

 Gender:     □ male  □ female □ diverse 

 

 Profession: ________________________________________________________ 

 

 Possession of a valid driver license:  □ Yes □ No 

 

 Experience with driving simulators:   □ Yes □ No 

If yes, which? ______________________________________________________ 

 

 Do you have experience with navigation systems?  □ Yes □ No 

 

 How do you assess your style of driving? 

Fast   □ □ □ □ □ Slow 

Proactive  □ □ □ □ □ Reactive 

Aggressive  □ □ □ □ □ Defensive 

 

 How do you judge your cognitive capabilities to assess traffic situations?  

For example the correct assessment of danger and deceleration of other road users. 

Good   □ □ □ □ □ Bad 

 

 You have to make a decision in a group or team. 

How do you judge your demeanor in pushing through your interests? 

Dominant  □ □ □ □ □ Restrained 
 

How do you assess your willingness to compromise in such situations? 

High   □ □ □ □ □ Low 

 

We wish you a pleasant time while participating in the experiment! 

  

Figure D.2: Questionnaire for general and personal information.
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After Each Experimental Run 

 

 Did you follow the instructions? Did you make an effort to find the shortest path to the 

destination by means of cooperating with your cooperation partner? 

□ Yes □ Partially    □ No 

 

 You have agreed multiple times with your partner on a decision option. 

How do you asses yourself in the cooperative decision making? 

Ready to compromise □ □ □ □ □ Stubborn 
 

How do you judge your partner in the cooperative decision? 

Ready to compromise □ □ □ □ □ Stubborn 
 

How do you assess the overall cooperation between you and your partner?  

Satisfactory   □ □ □ □ □ Dissatisfactory  

 

 Did you follow a specific strategy while making cooperative decisions?  

□ Yes □ No 

If yes, which one? ________________________________________________ 

 

 Did perceive the cooperative decision making in this experimental run as negative, 

neutral or positive with respect of reaching the destination in the shortest time 

possible?  

□ Positive □ Neutral □ Negative 

 

 Was your behavior in cooperative decision making transparent? 

Transparent  □ □ □ □ □ Non-transparent 

 

 Was the behavior of your partner in cooperative decision making transparent? 

Transparent  □ □ □ □ □ Non-transparent 

 

 How do you assess your partner’s cooperation behavior? 

Reliable   □ □ □ □ □ Not reliable 

 

 How did you assess the interaction between you and your partner? 

Intuitive   □ □ □ □ □ Not intuitive 
 

If not or little intuitive, why?  __________________________________ 

 

 How did you perceive the recent experimental run? 

Very strenuous □ □ □ □ □ Very easy 

 

  

Figure D.3: Questionnaire after each experimental run: first page.
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 Did you observe any change in your partner’s behavior during the last experimental 

run?  

□ Yes □ No 

If yes, how do you assess this change?  

Positive   □ □ □ □ □ Negative 

 

 Please leave some notes for the later comparison of the experimental runs  

(e.g. adjectives describing the last experimental run). 

____________________________________________________________________ 

____________________________________________________________________ 

____________________________________________________________________ 

 

 

  

Figure D.4: Questionnaire after each experimental run: second page.
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After Finishing All Experimental Runs 
 

Please answer the following question again but with focus on the relation between the four 

experimental runs (ER1 – ER4). 

 

 How do you assess the overall cooperation between you and your partner?  

Satisfactory 

ER1 □ □ □ □ □ 

Dissatisfactory  ER2 □ □ □ □ □ 

ER3 □ □ □ □ □ 

ER4 □ □ □ □ □ 

 

 Was the behavior of your partner in cooperative decision making transparent? 

Transparent 

ER1 □ □ □ □ □ 

Non transparent  ER2 □ □ □ □ □ 

ER3 □ □ □ □ □ 

ER4 □ □ □ □ □ 

 

 How do you assess your partner’s cooperation behavior? 

Reliable 

ER1 □ □ □ □ □ 

Not reliable  ER2 □ □ □ □ □ 

ER3 □ □ □ □ □ 

ER4 □ □ □ □ □ 

 

 How did you assess the interaction between you and your partner? 

Intuitive 

ER1 □ □ □ □ □ 

Not intuitive  ER2 □ □ □ □ □ 

ER3 □ □ □ □ □ 

ER4 □ □ □ □ □ 

 

 How did you assess the experimental runs in comparison? 

Very 

strenuous 

ER1 □ □ □ □ □ 

Very easy  ER2 □ □ □ □ □ 

ER3 □ □ □ □ □ 

ER4 □ □ □ □ □ 

 

The Institute of Control Systems thanks you for your participations! 

Figure D.5: Questionnaire for comparison of all experimental runs.
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