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Abstract: Serrated plastic deformation is an intense phenomenon in CoCrFeMnNi at and below
35 K with stress amplitudes in excess of 100 MPa. While previous publications have linked serrated
deformation to dislocation pile ups at Lomer–Cottrell (LC) locks, there exist two alternate models
on how the transition from continuous to serrated deformation occurs. One model correlates the
transition to an exponential LC lock density–temperature variation. The second model attributes the
transition to a decrease in cross-slip propensity based on temperature and dislocation density. In
order to evaluate the validity of the models, a unique tensile deformation procedure with multiple
temperature changes was carried out, analyzing stress amplitudes subsequent to temperature changes.
The analysis provides evidence that the apparent density of LC locks does not massively change with
temperature. Instead, the serrated plastic deformation is likely related to cross-slip propensity.

Keywords: cryogenic deformation; serrations; high-entropy alloys

1. Introduction

Metallic materials have shown serrated plastic deformation at different tempera-
tures [1–4]. Recent publications highlight especially intense serrated deformation in high-
entropy alloys (HEA) [5–8]. Equiatomic CoCrFeMnNi even exhibits low temperature
serrations at 35 K, a temperature higher than previously reported for any other metal
or alloy [6]. While a few different hypotheses exist to explain low temperature serra-
tions [9–11], recent results led to a phenomenological model based on dislocation pile ups
at LC locks [5,6]. Alternate hypotheses, related to a thermomechanical [9], twinning or
martensite-based instability [11] were previously invalidated and are neglected in this
communication [5–7].

The model presented in Ref. [6] extends the work of Seeger [10], based on screw
dislocation immobility in close-packed crystals at low temperatures [12]. As mobile screw
dislocations interact with forest dislocations, they form immobile jogs [12,13]. This restric-
tion is not seen for edge dislocations, for a more detailed view on the differences between
edge and screw interaction with forest dislocations refer to Figure 6 in Ref. [6]. The motion
of these jogged screw dislocations is associated with vacancy formation [12,13] which
becomes increasingly difficult with decreasing temperature. Thus, at temperatures close
to 0 K, the motion of jogged screw dislocations is restricted so much that it compromises
cross-slip propensity. Correspondingly, as opposed to dislocations cross-slipping out of
pile ups at barriers such as LC locks, they would activate dislocation sources on the other
side of the pile up as a result of the stress-field at its head [10]. This proliferation and
motion of dislocations leads to a macroscopic stress drop, seen as a serration. Ref. [6]
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extends the model, accounting for cross-slip propensity as a function of temperature and
dislocation density, along with an explanation for transition from continuous to serrated
plastic deformation as temperature decreases. In contrast, the original Seeger model [10,14]
considers only a critical temperature condition associated with serrations, establishing
that at a given temperature, deformation would either be continuous or serrated in na-
ture. It cannot explain initially continuous and subsequently discontinuous deformation,
as seen in CoCrFeMnNi for example [6]. This is circumvented by either considering (i)
the aforementioned cross-slip propensity variation [6] or, alternatively, (ii) assuming an
exponential LC lock density–temperature variation as proposed in Ref. [12]. The present
work investigates the validity of these two possibilities by the application of a specific
mechanical testing scheme at low temperatures [6,15]. The in situ observation of cross-slip
events or the LC lock density as fundamental requisites of the two alternatives exhibits
multiple complications when performed at such low temperatures, while microstructural
investigations post deformation suffer from partial recovery of dislocation features on
heat-up. These issues are presently avoided with a novel interrupted tensile test where
serration characteristics are evaluated through stress drop amplitude (∆σe). The details
of this test are as described in the following section and have been designed specifically
for this investigation. Correspondingly, issues that cannot be avoided in other methods
are avoided.

2. Materials and Methods

CoCrFeMnNi was synthesized by arc melting of high-purity elements. It was cast,
homogenized at 1200 ◦C for 72 h, rotary swaged, machined and annealed at 800 ◦C for 1 h.
For a detailed overview, please refer to Ref. [16].

Interrupted tensile deformation was carried out between 25 K and 8 K in a sealed
chamber with He vapor at ~50 mbar, with multiple interruptions (sequence of events and
associated temperatures and strains stated in later sections). The machine used for this was
the MTS25 (MTS Systems, Eden Prairie, USA) with a maximum load of 25 kN [17]. The
extension was measured by a pair of clip-on extensometers. The specimens had a cylindrical
gauge section of 22 mm in length and 4 mm in diameter. Tensile testing was performed at a
constant crosshead speed equaling an initial plastic strain rate of ~3 × 10−4 s−1. The strain
was measured using two strain gauges within the gauge length of the specimens. Data
analysis was carried out using force, time and elongation results through the proprietary
software packages Origin 2020b by OriginLab and MATLAB R2018a (MathWorks). For
more information, please refer to Ref. [6].

3. Results and Discussion
3.1. Tensile Tests up to Fracture Model Considerations

Figure 1a shows serrated plastic deformation of CoCrFeMnNi at 8, 15 and 25 K, as
seen in the engineering stress–strain (σe − εe) curves for tensile tests. Corresponding
∆σe were determined from the difference between stress maxima and minima for each
serration (Figure 1b). As deformation continues, the intensity of serrations as measured
by ∆σe increases. Additionally, serrated plastic deformation is initiated at a lower strain at
lower temperatures.

According to the model of serrated plastic deformation described above, dislocations
pile up at LC locks; at low temperatures, dislocation sources are activated and massive
dislocation proliferation events take place at the heads of the pile ups, seen as macroscopic
stress drops [10]. This is only noted at low temperatures since mobility of intersected
screw dislocations and cross slip is restricted for close-packed crystals at very low tem-
peratures [10,12]. However, this model proved insufficient in explaining results where
deformation was continuous at lower strains and discontinuous at larger strains, since
the condition was based only on temperature. Different alloys have shown a transition
from continuous, to partially serrated and finally fully serrated deformation as temperature
decreases in the range T < 50 K [6,14]. Skoczeń et al. [15] proposed that the LC lock density
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increases exponentially with decreasing temperature to satisfy these results. Correspond-
ingly, the number of pile ups and dislocation proliferation events would increase with
decreasing temperature. Alternatively, multiple factors affecting cross slip were instead
considered to explain these results in Ref. [6]. These two more recent versions of the model
are explained below:

(i) Skoczeń et al. [15] have proposed a rapid increase in LC lock formation rate F̃+
LC

during deformation with decreasing temperature and assigned it the form:

lgF̃+
LC = A + BlgT (1)

Here, A and B are constants and T is the temperature (note: B is negative due to the
inverse variation of F̃+

LC and T). F̃+
LC expectedly changes by orders of magnitude below

40 K [15]. A minimum strain εmin is required to generate a sufficient LC lock density and
dislocation pile ups which result in serrated deformation. At higher temperatures (25 K),
F̃+

LC is lower, thus, εmin is necessarily larger. At lower temperatures (8 K), the εmin instead
decreases significantly due to much higher F̃+

LC.
(ii) Ref. [6] considers screw dislocation mobility [10], stacking-fault energy (SFE) and

dislocation pile up characteristics and their effect on cross-slip propensity. Dislocation
density and temperature affect this most significantly. At higher temperatures (i.e., 25 K
presently), cross slip is facilitated easily and proceeds sufficiently until a critical strain
(εmin), where dislocation density is high enough to compromise screw dislocation mobility,
subsequently resulting in serrations. At lower temperatures (8 K), cross slip is so severely
restricted that even minor strain results in serrations. Notably, this model considers LC lock
density to scale with dislocation density and assumes it to be similar in the temperature
range of 8–25 K.
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Figure 1. (a) σe − εe plots of CoCrFeMnNi at 8, 15 and 25 K. (b) ∆σe − σe plots of serrations. Data
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3.2. Expectations on Interrupted Tests from the Different Models

To test these models, a temperature change test is carried out. The tensile test is
initiated at 8 K and the sample is strained to an engineering strain of approximately
εe ∼ 10% and then unloaded. The temperature is then changed to 15 K and the test
continued. Stress drop amplitude vs. stress ∆σe − σe is evaluated to confirm the correct
model. Regardless of the model, the initial trend at 8 K should have a positive variation, as
seen in the experimental data from the uninterrupted test in Figure 1b. Post-interruption,
there are two possibilities as illustrated in Figure 2.

(i) Figure 2a shows a condition where instability is met by some physical factor,
e.g., minimum dislocation or LC lock density. At 8 K, the necessary LC lock density for
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serrated plastic deformation is achieved easily. On changing the temperature to 15 K,
the LC lock density remains unaffected, hence serrated deformation proceeds onwards.
However, based on the lower F̃+

LC, the ∆σe − σe slope may be lower than at 8 K, possibly
even plateauing. This is the generalized interpretation of Ref. [15].

(ii) Alternatively, instability is controlled by cross-slip propensity and, correspond-
ingly, dislocation density and temperature. Thus, after the interruption, ∆σe should drop
significantly, since cross-slip probability is greater at 15 K than 8 K, evidenced by ∆σe − σe
variation (Figure 1b). Since dislocation density increases during further deformation, ∆σe
should subsequently increase consistently with σe (seen in Figure 2b). Thus, the impor-
tant difference between the expected results is that in one model the ∆σe values pre- and
post-interruption match [15] and in the other model, there is a distinct change in ∆σe [6].
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Figure 2. Schematic ∆σe − σe trend for tensile tests with an interrupted temperature change. Both
(a) and (b) show possible interpretations of the temperature change based on the models adapted
from [6,15], respectively.

3.3. Results of the Interrupted Tests

The temperature change tensile test consists of interruptions at εe ∼ 10%, 22% and
40%. The test begins at 8 K and then continues at 15, 25 and back at 8 K after the respective
interruptions to verify consistent trends despite pre-deformation. σe − εe and corresponding
∆σe − σe results are shown in Figure 3.

Figure 3b is clearly indicative of the trend expected for the cross-slip propensity model
(compare with Figure 2b). A ∆σe drop is noted for temperature changes to both 15 and
25 K. As a final verification, reloading at 8 K would result in a drastically higher ∆σe post-
interruption when considering cross slip [6] in comparison to a lower ∆σe when considering
F̃+

LC from Equation (1) [15]. The severe increase in ∆σe provides further evidence of a cross-
slip-based mechanism.

The ∆σe − σe variation of the uninterrupted tests has been included in Figure 3b. The
∆σe − σe values are noticeably lower after the interruptions and temperature changes to
15 and 25 K. This may be explained by the stress τbow to move the unpinned portion of a
jogged screw dislocation using G (shear modulus), b (Burgers vector), l0 (mobile dislocation
length between the jogs) and α (constant ~0.1–0.2) [12]:

τbow =
α G b

l0
(2)
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As the temperature decreases, the minimum l0 for a mobile screw dislocation keeps
increasing. At a given temperature, screw dislocations of a length less than some l0 are
immobile and at higher temperatures the minimum l0 is shorter. Accordingly, several
dislocations are likely immobile at 8 K but at 15 K the critical l0 being shorter, the same
dislocations become mobile. Combined with the higher stress, cross slip is significantly
more viable subsequent to the interruption and reloading at a higher temperature, making
serrations less intense. Additionally, since there is an unloading step, unstressed disloca-
tions only partially recede from the stressed state due to dislocation–dislocation interactions.
Thus, the uninterrupted and interrupted ∆σe − σe trends should be similar but offset by
different states of dislocations.

In the given test, the observed drop in ∆σe can only be explained in the absence of
an exponential variation of dislocation or LC lock density with temperature. Hence, this
experiment reinforces the model given in Ref. [6] where cross slip based on temperature,
dislocation density and dislocation mobility govern the serration behavior close to 0 K in
face centered cubic alloys.

4. Conclusions

The ∆σe − σe trends observed in tensile tests with deliberate, intermediate temperature
steps conducted on CoCrFeMnNi experimentally verify that low temperature serrations in
face centered cubic high-entropy alloys are governed by the immobility of screw disloca-
tions. The temperature-dependent cross-slip propensity and dislocation density throughout
deformation are the relevant parameters controlling the immobility.
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