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Abstract

Technological improvements are increasing the degree of automation of vehi-
cles. The natural move is to support the driver where they most desire: adverse
weather. Weather impacts all the sensors used to perceive the surroundings, so
it is crucial to factor in and mitigate these effects. This dissertation focuses on
the emerging technology of automotiveLightDetection andRanging (LiDAR)
sensors and contributes to the development of autonomous vehicles capable of
operating under different weather conditions.

The foundation is the first LiDAR point cloud dataset with an emphasis on
adverse weather conditions, containing pointwise ground truth labels and be-
ing recorded under well controlled weather conditions. Different weather
conditions generated in controlled environments enable the aforementioned
approaches to be evaluated and provide valuable information for automated
and autonomous driving. This dataset is enriched by a novel weather augmen-
tation system for generating realistic weather effects.

A unique approach to classifying weather conditions and the first CNN-based
de-noising algorithm have been developed, resulting respectively in an accurate
prediction of weather conditions and improved point cloud quality. Compared
with conventional geometric approaches, our algorithm is capable of general-
izing the underlying noise pattern, thereby allowing near-range clutter caused
by fog or rain clouds to be distinguished from solid objects like pedestrians,
cyclists or vehicles.

In conclusion, this thesis will make a significant contribution toward the safety
of autonomous vehicles in the future through not only the efficient filtering of
adverse weather conditions wherever necessary but also the accurate classifi-
cation of weather conditions.
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Zusammenfassung

Technologische Verbesserungen erhöhen den Automatisierungsgrad von Fahr-
zeugen. Der natürliche Schritt ist dabei, den Fahrer dort zu unterstützen, wo
er es am meisten wünscht: bei schlechtem Wetter. Das Wetter beeinflusst alle
Sensoren, die zurWahrnehmung der Umgebung verwendet werden, daher ist es
entscheidend, diese Effekte zu berücksichtigen und abzuschwächen. Die vor-
liegende Dissertation konzentriert sich auf die gerade entstehende Technologie
der automobilen LiDAR-Sensoren und trägt zur Entwicklung von autonomen
Fahrzeugen bei, die in der Lage sind, unter verschiedenen Wetterbedingungen
zu fahren.

Die Grundlage ist der erste LiDAR-Punktwolken-Datensatz mit dem Schw-
erpunkt auf schlechte Wetterbedingungen, welcher punktweise annonatatierte
Wetterinformationen enthält, während er unter kontrollierten Wetterbedingun-
gen aufgezeichnet wurde. Dieser Datensatz wird durch eine neuartige Wetter-
Augmentation erweitert, um realistische Wettereffekte erzeugen zu können.

Ein neuartiger Ansatz zur Klassifizierung des Wetterzustands und der erste
CNN-basierte Entrauschungsalgorithmus werden entwickelt. Das Ergebnis ist
eine genaue Vorhersage des Wetterstatus und eine Verbesserung der Punkt-
wolkenqualität.

Kontrollierte Umgebungen unter verschiedenen Wetterbedingungen ermög-
lichen die Evaluierung der oben genannten Ansätze und liefern wertvolle In-
formationen für das automatisierte und autonome Fahren.

iii





Acknowledgments

This dissertation would not have been possible without the extensive support
of and discussions with many people over the past few years. In particular,
I would like to thank the following people for their support, supervision and
guidance: Prof. Dr. rer. nat. Wilhelm Stork, my supervising professor, and
Dr. Philipp Schindler. My contribution to the scientific community and the
success of my dissertation would not have been possible without their support
and the numerous valuable discussions I engaged in with them.

Furthermore, I would like to thank Prof. Dr. rer. nat. Cornelius Neumann of
the Light Technology Institute at the Karlsruhe Institute of Technology (KIT)
for his kind willingness to be a second reviewer.

Thanks also go to my colleagues at Mercedes Benz in the LiDAR Team for
numerous and valuable discussions as well as their interest in mywork. I would
especially like to thank my supervisor Dr. Philipp Schindler for his dedication,
support and corrections. In addition, special thanks go to Prof. Dr. Markus
Enzweiler and Dr. Florian Piewak for their proofreading and feedback, which
has improved the content and quality of this work.

Many thanks also to the student contributors without whom the content would
be different.

Additionally, I would like to thank my family for their support in various
ways throughout my education and the opportunity to pursue my interests in
reaching my objectives. My deep thanks to Maren, for her understanding,
patience, support and willingness to contribute in proofreading this work.

v





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . v

Abbreviations and Symbols . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Automated and Autonomous Driving . . . . . . . . 2
1.1.2 Perception for Autonomous Driving . . . . . . . . . 3
1.1.3 Perception in Adverse Weather Conditions . . . . . 4

1.2 Scientific Contribution . . . . . . . . . . . . . . . . . . . . 5
1.3 Structure of the Work . . . . . . . . . . . . . . . . . . . . . 6

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Light Detection and Ranging . . . . . . . . . . . . . . . . . 9

2.1.1 Measurement Principle . . . . . . . . . . . . . . . . 11
2.1.2 Data Representation . . . . . . . . . . . . . . . . . 13

2.2 Scattering and Absorption . . . . . . . . . . . . . . . . . . 17
2.2.1 Propagation in the Atmosphere . . . . . . . . . . . . 17
2.2.2 Electromagnetic Scattering . . . . . . . . . . . . . . 18

2.3 Weather . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Fog . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.2 Rain . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Weather Simulation in Controlled Environments . . . . . . . 28
2.4.1 Artificial Rainfall . . . . . . . . . . . . . . . . . . . 30

vii



Contents

2.4.2 Artificial Fog . . . . . . . . . . . . . . . . . . . . . 31
2.5 Machine Learning in Computer Vision . . . . . . . . . . . . 33

2.5.1 Feature Extraction . . . . . . . . . . . . . . . . . . 34
2.5.2 Machine Learning Methods . . . . . . . . . . . . . 35
2.5.3 k Nearest Neighbor . . . . . . . . . . . . . . . . . . 35
2.5.4 Support Vector Machine . . . . . . . . . . . . . . . 36
2.5.5 Artificial Neural Networks . . . . . . . . . . . . . . 38
2.5.6 Convolutional Neural Networks . . . . . . . . . . . 43
2.5.7 Evaluation Metrics . . . . . . . . . . . . . . . . . . 44

3 The State of the Art . . . . . . . . . . . . . . . . . . . . . . . . 47
3.1 Weather Condition Monitoring . . . . . . . . . . . . . . . . 47

3.1.1 Measurement of Meteorological Optical Range . . . 48
3.1.2 Measurement of Precipitation . . . . . . . . . . . . 50
3.1.3 Qualitative Measurement in Non-Stationary Systems 50
3.1.4 Qualitative Measurement with Non-Dedicated Sensors 51

3.2 Influence of Weather on LiDAR Sensors . . . . . . . . . . . 53
3.2.1 Influence of Fog on LiDAR Sensors . . . . . . . . . 53
3.2.2 Influence of Rain on LiDAR Sensors . . . . . . . . . 54

3.3 Point Cloud De-Noising . . . . . . . . . . . . . . . . . . . . 55
3.3.1 Dense Point Cloud De-Noising . . . . . . . . . . . . 56
3.3.2 Sparse Point Cloud De-Noising . . . . . . . . . . . 57

3.4 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Discussion of the Current State of the Art . . . . . . . . . . 58

3.5.1 Weather Impact and Classification . . . . . . . . . . 59
3.5.2 Weather De-Noising . . . . . . . . . . . . . . . . . 60
3.5.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Concept and Method . . . . . . . . . . . . . . . . . . . . . . . 61
4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Methods for Quantifying the Influence of Weather . 62
4.1.2 Methods for Weather Detection by LiDAR Sensors . 65
4.1.3 Methods for Point Cloud De-Noising . . . . . . . . 67

4.2 Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . 68
4.2.1 Requirements Regarding Datasets . . . . . . . . . . 69

viii



Contents

4.2.2 LiDAR Sensors Used . . . . . . . . . . . . . . . . . 71
4.2.3 Recorded Datasets . . . . . . . . . . . . . . . . . . 73
4.2.4 Data Split . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Ground Truth Labeling and Data Augmentation . . . . . . . 78
4.3.1 Framewise Labeling . . . . . . . . . . . . . . . . . 78
4.3.2 Pointwise Labeling . . . . . . . . . . . . . . . . . . 79
4.3.3 Data Augmentation . . . . . . . . . . . . . . . . . . 81

5 LiDAR in Adverse Weather Conditions . . . . . . . . . . . . 85
5.1 Influence of Weather on Lidar Sensors . . . . . . . . . . . . 85

5.1.1 Influence of Weather on Point Clouds . . . . . . . . 85
5.1.2 Influence of Weather on Object Perception . . . . . 87
5.1.3 Influence of Weather on Extracted Features . . . . . 96
5.1.4 Influence of Weather on Image Representation . . . 100

5.2 Weather Classification by LiDAR Sensors . . . . . . . . . . 103
5.2.1 Weather Classification by Manually Extracted Features 103
5.2.2 Weather Classification by CNN . . . . . . . . . . . 104

5.3 Pointwise Weather Segmentation . . . . . . . . . . . . . . . 114
5.3.1 Experiments . . . . . . . . . . . . . . . . . . . . . 114
5.3.2 Results with Static Chamber Data . . . . . . . . . . 116
5.3.3 Results with Dynamic Chamber Data . . . . . . . . 117
5.3.4 Results with Dynamic Road Data . . . . . . . . . . 121
5.3.5 Visibility Estimation . . . . . . . . . . . . . . . . . 121

6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . 125
6.1 Summary and Conclusion . . . . . . . . . . . . . . . . . . . 125
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

Personal Publications . . . . . . . . . . . . . . . . . . . . . . . . 149
Journal article . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Conference proceedings . . . . . . . . . . . . . . . . . . . . . . . 149
Patents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

ix



Contents

Supervised Student Work . . . . . . . . . . . . . . . . . . . . . . 151

x



Abbreviations and Symbols

Abbreviations

ABS Anti-lock Braking System

ADAS Advanced Driver Assistance Systems

AEB Autonomous Emergency Braking

AMS American Meteorological Society

ANN artificial neural network

CIE International Commission on Illumination

CNN convolutional neural network

DROR dynamic radius outlier removal

ELU Exponential Linear Unit

EPW echo pulse width

ESC Electronic Stability Control

EVT Euro Vehicle Target

FFN feed forward network

FMCW frequency modulated continuous wave

FoV Field of View

FN false negative

FP false positive

xi



Abbreviations and Symbols

FPR true positive rate

ICA independent component analysis

IoU intersection over union

mIoU mean intersection over union

IVC International Visibility Code

KIT Karlsruhe Institute of Technology

kNN k nearest neighbors

Laser Light Amplification by Stimulated Emission of Radiation

LDA linear discriminant analysis

LiDAR Light Detection and Ranging

LUH Leibniz University Hanover

MOR meteorological optical range

NCAP New Car Assessment Program

PCA principle component analysis

PSD particle size distribution

PWRI Public Works Research Institute

RaDAR radio detection and ranging

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

ROI Region of Interest

ROR radius outlier removal

SAE Society of Automotive Engineers

SNR signal to noise ratio

xii



Abbreviations and Symbols

SOR statistical outlier removal

SVM Support Vector Machine

TN true negative

ToF time of flight

TPR false positive rate

TP true positive

VSR Virginia Smart Roads

VRU vulnerable road user

2D 2-Dimensional

3D 3-Dimensional

xiii



Abbreviations and Symbols

Latin Symbols and Variables

General Definitions for Variables

x Scalar (italic)

c Constant scalar (lowercase, non-italic)

v Vector of arbitrary size (bold, italic)

M Matrix of arbitrary size (bold, uppercase, non-italic)

Mi, j Matrix item at position (i,j) (bold, uppercase, non-italic)

Weather, Scattering and Absorption Variables

V Visibility

β Specific attenuation

R Rainfall rate

T Visual threshold in percentage

PTH Power threshold indicating where the backscatter light results
during detection by the receiver

PRx Power of the backscatters light

Cext Extinction cross-section

I(z) Incoming energy flux

T(z) Fraction of energy transmitted

Qext Extinction efficiency: cext/πr2

Qsca Sum of scattering efficiency

Qabs Sum of absorption efficiency

Cx Apparent luminance of a black object

xiv



Abbreviations and Symbols

C0 Apparent luminance of the background

LN(µ, σ2) Logarithmic normal function with scalar arguments

LiDAR Point Clouds

Point Cloud

∆t Time difference between t0 and t1: ∆t = t1 − t0

c Speed of light (constant)

λ Wavelength

f Frequency

n(r) Number of particles per unit volume and radius increment

t Timestamp of measurement

k Discrete time stamp of measurement

d Measured distance of the sensor

r Measured distance of the sensor

ζ Measured intensity of the sensor

e Measured echo or return of the sensor

epw Measured echo pulse width of the sensor

θ Elevation angle

ϕ Azimuth angle

P Point cloud or point list of one LiDAR frame (matrix)

D Point cloud in image representation containing the distance mea-
surements (matrix)

xv



Abbreviations and Symbols

p Single point of a LiDAR point cloud containing the Cartesian
coordinates and additional point cloud attributes (vector)

px x-value of the Cartesian coordinates of a point vector p

py y-value of the Cartesian coordinates of a point vector p

pz z-value of the Cartesian coordinates of a point vector p

σ Variance

µ Mean

Point Cloud Features

PD Point density metric

O Object label

N Number of points

Machine Learning Variables

b Bias of a neuron

w Weight of a neuron (scalar)

w Weight vector

x Input variable (scalar)

x Input vector

y Output variable (scalar)

y Output vector

fact (·) Activation function

Ci Class with index i

xvi



Abbreviations and Symbols

P(Ci |x) Conditional probability for input vector x and class Ci

E(w) Error function

xvii





1 Introduction

In 2018, annual traffic deaths reached 1.35 million people worldwide [1] -
that is enough people to fill 1, 500 of the world’s biggest aircraft with people
every year or six every single day 1. This comparison with air transportation
illustrates the extremely high number of road-related fatalities, but still the car
remains our primary means of everyday transportation. In contrast, air travel
would be inconceivable were six of the biggest planes in the world to crash
every day without survivors.

The most frequent victims of traffic accidents are pedestrians, cyclists and
motorcyclists - vulnerable road users (VRUs) - accounting for more than half
of fatalities. For people in the age group 5-29, traffic accidents are the leading
cause of death [1]. The main cause of accidents resulting in personal injury is
driver error. This statistic is based on data from Germany, where 65% of more
than 5.4 million accidents resulting in personal injury over the last ten years
were caused by driver error [3] 2.

In a survey encompassingmore than 1,000 respondents, 68% stated that driving
in extreme weather conditions caused the most difficulties, followed by driving
in the dark (37%) [4]. The full results of the survey can be seen in Figure 1.1. To
the best of our knowledge, no dedicated driver assistance systems designed to
support drivers during adverse weather conditions - besides basic systems like
theAnti-lockBrakingSystem (ABS) orElectronicStabilityControl (ESC) - are
currently available on the market. FutureAdvancedDriverAssistance Systems
(ADAS) should be designed to support driverswhere they need thismost, which
means that adverse weather conditions needs to be explicitly considered during
design and development. The environment perception capability of these

1 According to the European Aviation Safety Agency, the Airbus A380 has a capacity of 868
passengers [2], making it the largest passenger airplane as of 2021.

2 Figures are rounded. The exact figures are 5, 488, 223 accidents, with 3, 617, 522 caused by
driver error in the period of 2010 to 2019 [3]
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Figure 1.1: The biggest difficulties that German drivers experienced on the road in 2015. In a
survey, 1, 000 participants responded to the question, "Which of the following situations
cause(s) you the most difficulties while driving". Only three answers were allowed,
and the participants were driver’s license holders who had driven at least once in the
last 12 months [4].

systems is typically based on cameras, radio detection and ranging (RaDAR),
ultrasonic systems and LiDAR sensors. While the first three technologies are
well-established in the industry, the latter has only recently started to emerge.
This work is therefore dedicated to the impact, detection and mitigation of
adverse weather conditions on LiDAR sensors.

1.1 Purpose

1.1.1 Automated and Autonomous Driving

For on-road automated driving systems, the Society of Automotive Engineers
(SAE) has defined the five levels of automation [5]. At levels 1 and 2, the driver
is always in charge of the vehicle, although the system is capable of performing
one or two driving tasks (e.g. longitudinal and lateral control). At level 3,
the system assumes partial responsibility for driving, for example, the system
is capable of taking over control on specific highways until an unusual traffic
situation occurs (e.g. an accident), the highway ends or the driver wants to
leave the highway. At Level 4, the system assumes full responsibility in certain,

2



1.1 Purpose

Perception Fusion Planning Control

Figure 1.2: Chronological sequence of interaction among the individual subsystems for au-
tonomous driving. The environment is first perceived by a number of sensors, and
the resulting data is then fused to map the environment. This is used to calculate the
planning path. Finally, the control systems for the lateral and longitudinal actuators
ensure that the selected trajectory is followed.

defined use cases (e.g. during daytime in a defined urban district). At level 5,
the system assumes total control in all situations and without restriction.

To realize these complex driving tasks in a technical system, various subsystems
with subtasks are presented [6, 7]. In Figure 1.2, the tasks are split into four
major subcomponents [6, 7]. Environment perception is the first instance
providing reliable information about the surroundings for further processing
steps such as fusion, planning and control. The environment is typically
perceived using multiple sensors. Missing or incorrect information in one of
the subsystems cannot - or can only partially - be compensated for or identified
by downstream systems. Since the extent to which environment perception is
successful can impact downstream systems, it plays a key role in the availability
and performance of the entire autonomous system.

1.1.2 Perception for Autonomous Driving

The most challenging aspect of achieving good environmental perception ca-
pability is developing a system that functions not under defined conditions only
or only sometimes, but one that functions all the time. This could be interpreted
as the shift from a level 4 to a level 5 system, whereby the autonomous system
is capable of operating at all times under all conditions. But since a level 3
system needs to be capable of recognizing its own boundaries independently
before returning control to the driver when the defined, level 3 conditions are
not fulfilled, the step from level 2 to level 3 is significant. The capability to
follow the driver ahead on an empty highway in ideal weather conditions was

3
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Target Object Atmosphere Lidar Sensor

Specular
Reflection

DiffusionTransmission

Diffusion

Figure 1.3: Schematic overview of influences on the light emitted from LiDAR sensors. The
transmitted and received signal is influenced by the sensor and its components, by the
atmosphere and by the target object. This diagram is based on [16] and was expanded
accordingly.

developed a decade ago3; the challenge now, however, is to develop a system
capable of properly perceiving and responding to unusual situations that even
humans rarely experience. Multimodal sensor setups are therefore typically
used to ensure robust and redundant environment perception. LiDAR sensors
are increasingly being developed and used in the automotive field [8–15]. By
scanning their surroundings with light in the near-infrared range, LiDAR sen-
sors create a 3-Dimensional (3D) representation of the environment, which
completes the perception of established sensors such as cameras, radar or
ultrasonic and enables redundancies.

1.1.3 Perception in Adverse Weather Conditions

A range of environmental conditions and traffic situations need to be addressed
in order to increase the degree of automation and system availability. To ensure
the safety of a system, it is vital to understand every conceivable environmental
condition and recognize how they affect the system response. For level 3 sys-
tems, for example, all the influences of different weather conditions on the raw
sensor data and underlying algorithms need to be addressed so that the system
limits can be identified. Figure 1.3 shows the interaction between LiDAR sen-
sors and the environment, especially under different weather conditions. The
diagram has been simplified to show one single laser pulse and the weather
influences based on water droplets and sunlight. The main factors influencing

3 "Empty" here refers to the absence of objects of any kind
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the performance of the LiDAR sensors are the sensor itself, the target objects
in the environment and the atmosphere between these two objects. The atmo-
sphere includes all influencing factors that affect the emitted and reflected light
waves between the sensor and the object (e.g. droplets of rain).

During autonomous driving, therefore, when sensors are constantly faced with
unique and varying atmospheric conditions, research into environmental influ-
ences on sensor performance is absolutely vital and essential to the development
of autonomous systems capable of operating in adverse weather conditions -
i.e. the driving conditions that drivers reported as being the most challenging
and problematic [4].

1.2 Scientific Contribution

This work is intended as a contribution to the development of autonomous
vehicles capable of operating under a range of weather conditions. The main
focus is on LiDAR sensor perception algorithms and concepts for rain and fog.
This work addresses the following scientific questions:

• To what extend are LiDAR sensors affected by adverse weather condi-
tions, especially dense fog and heavy rainfall?

• Is it possible to develop an algorithm concept that can determine the
weather conditions only on the basis of the raw data from the LiDAR
sensor?

In addition to an analysis of the influence of weather and the classification of
weather condition, this dissertation also discusses the following questions:

• Is it possible to develop an algorithm that segments the LiDAR points
according to whether a point is caused by unfavorable weather or by a
solid object?

• Is it possible to estimate the maximum sensor viewing range using only
the point cloud data?

To answer these questions, a dataset of LiDAR point clouds captured during
different weather conditions is required. Since no public dataset of this kind

5
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currently exists, appropriate datasets were created while this thesis was being
prepared. Since the dataset was recorded both in a dedicated climate cham-
ber and on the road, it contains highly accurate weather information derived
from reproducible and real-world scenarios. The dataset therefore enables the
following, which are part of this work:

1. The first LiDARpoint cloud dataset with an emphasis on adverseweather
conditions, containing pointwise ground truth labels and being recorded
under controlled weather conditions. The dataset is publicly available.

2. The detailed analysis of the influence of weather on LiDAR sensors
under well-known ground truth weather conditions provides valuable
information for automated and autonomous driving.

3. A novel approach classifying the weather conditions based on a LiDAR
point cloud for controlled and uncontrolled environments is presented.

4. The first LiDAR point cloud de-noising approach based on convolutional
neural networks (CNNs) resulting in significant performance gains over
previous state-of-the-art geometric approaches while being highly effi-
cient in terms of execution time.

5. Weather augmentation for enriching LiDAR point clouds with realistic
weather effects.

6. Evaluation of de-noising algorithms in controlled environments under
different weather conditions based on a point-level ground truth.

1.3 Structure of the Work

To help readers navigate through the individual topics, the structure of this
work is outlined.

Chapter 1 provides an introduction to and describes the purpose of this work.

Chapter 2 outlines the technical background, including the fundamentals of
LiDAR sensors, weather, scattering and absorption, machine learning and
evaluation metrics.

6



1.3 Structure of the Work

Chapter 3 describes the current state of the art of LiDAR sensors in adverse
weather conditions, with an focus on weather influences, weather classification
and de-noising.

Chapter 4 details the concept and methods behind this work.

Chapter 5 describes and analyzes the influence of weather on LiDAR sensors,
weather classification by LiDAR sensors and the pointwise weather semantic
including the de-noising of point clouds.

Chapter 6 summarizes the results and looks at the prospects for future appli-
cations in this research field.
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2 Background

This chapter provides a comprehensive description of the underlying principles.
Section 2.1 provides some technical background to LiDAR sensors. Section 2.2
outlines the fundamentals regarding the interaction of small particles like water
droplets with light pulses. Section 2.3 covers research into weather, including
the definition, characteristics and simulation of rain and fog. Section 2.5,
the concluding section, covers the fundamentals of machine learning with an
emphasis on computer vision applications.

2.1 Light Detection and Ranging

This section contains technical background information on state-of-the-art
LiDAR sensors, which is important for understanding the context of this work.
The term LiDAR itself already explains the basic functionality of a LiDAR
sensor. The sensor emits light in the near-infrared range from 800 nm−2.5 µm,
which is reflected by a target in the environment and then detected by the
sensor’s receiver. The distance d to the target can then be calculated, as shown
in the diagram in Figure 2.1.

The essential functions of a LiDAR sensor can be divided into five major
components: (1) illumination, (2)wavelength, (3) steering, (4) receiver and (5)
distance measurement. Various technologies are available for each component,
some of which can be seen in Figure 2.2. By combining these technologies,

distanced

back-scatteredsignal

transmittedsignal

Figure 2.1: Principle measurement method of LiDAR sensors.
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Figure 2.2: Principle components and technologies of LiDAR sensors. One possible combination
of technologies is indicated as used in the ’Scala’ LiDAR sensor which is used in this
work.

developers can createmany different LiDAR sensor types. This is also reflected
in numerous different sensor manufacturers currently active on the market (e.g.
Aeva Inc. [8], Baraja PtyLtd. [9], BlickfeldGmbH [10], Hesai Technology [11],
Innoviz Technologies Ltd. [12], Valeo [13], Velodyne Lidar Inc. [14], Waymo
LLC [15]). One possible combination of subsystems is given in Figure 2.2, this
is the combination of used for the ’Scala’ sensor. The Velodyne LiDAR sensors
are based on similar technology combinations, but use rotating optics instead of
a rotatingmirror. Unlikewith cameras orRaDAR, a systemdesign that provides
the optimal trade-off between cost, performance and manufacturability has yet
to emerge (as at 2021). For the sake of simplicity, only sensor designs which
used in this work are explained in more detail. For a complete overview of
LiDAR technologies currently available and for further reading, see [17, p.
1-18], [18, p. 405-430] and [19].
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2.1 Light Detection and Ranging

2.1.1 Measurement Principle

The most commonly used method for range measurement is pulsed time of
flight (ToF), although a number of methods - such as frequency modulated
continuouswave (FMCW) - exist for deriving distance based on the transmitted
and received signal. For the purpose of this thesis, only ToF is explained in
detail, because the sensors utilized are based on this principle. For other range
measurement principles, [19] is recommended.

Distance Measurement

When the speed of light c and the time ∆t = t1 − t0 between transmission t0
and reception t1 is known, the distance d to the object is defined by

d =
∆t · c

2
. (2.1)

Consequently, the ToFmethodmeasures the distance directly and the resolution
in distance results from the resolution in time of the receiver, which is typically
in the nanosecond range. The distance resolution is thus in the centimeter
range. Figure 2.3 shows a diagram of the transmitted pulse and target reflection.
Whether an object is detected depends on whether a reflected light pulse can be
distinguished from the background noise, caused by other light sources, above
all natural sunlight and the sensor components themselves. The maximum
detection range of a sensor therefore depends on the signal to noise ratio
(SNR).

Furthermore, if the receiver component is capable of detecting multiple val-
ues above the threshold Pth , the system can provide multiple distance mea-
surements from one receiver component. This multi-return capability pro-
vides valuable information whenever the emitted light pulse is only partially
backscattered by an object and then later backscattered again by another object.
This often occurs in the vicinity of vegetation, for example, where part of the
light is reflected by a leaf and the other part hits the trunk of a tree. This
behavior generally occurs whenever there are partially transmitting objects or
the light pulse hits an edge. The returns are typically ordered by distance or
by the characteristic of the target reflection.
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2 Background

Angle and Layer

To generate a 3D image of the environment, each individual distance measure-
ment is spatially deflected while the elevation angle θ and azimuth angle ϕ are
determined. The sensor types used in this work obtain the horizontal spacial
deflection by either rotating sender and receiver components (Velodyne) or a
deflection mirror (Ibeo) [20–24]. With Velodyne sensors, the vertical Field of
View (FoV) is obtained by stacking multiple receiver and transmitter compo-
nents in order to obtain one transmitter and receiver couple per layer. The Ibeo
sensor, employ one transmitting unit for multiple layers and multiple receiving
elements for height differentiation. The elevation angle θ is typically also re-
ferred to as the layer and is determined on the basis of the vertical alignment of
the sender and receiver components. The azimuth angle ϕ is determined by the
known rotation of the sensor components themselves or the known deflection
mechanism, which is why the spherical coordinates p = (pd, pθ, pϕ) are mea-
sured directly by the sensor. For further processing steps, those coordinates
are often transformed into Cartesian coordinates by

px = d · sin θ · cos ϕ (2.2)
py = d · sin θ · sin ϕ (2.3)
pz = d · cos θ (2.4)

which results in the Cartesian point vector pcart = (px, py, pz).

Intensity and Echo Pulse Width

In addition to the 3D information, LiDAR sensors typically provide information
about the backscattered light signal. In general, and depending on the sensor
components used, it is technically possible to sample the entire backscattered
signal, which yields a large amount of information about the scanned environ-
ment. State-of-the-art LiDAR sensors typically provide an estimation of the
length or height of the reflection signal, as shown in Figure 2.3. The intensity
is defined as the height of the pulse above the threshold Pth , typically corrected
over the distance in order to provide a distance independent measure for the
backscattered intensity [25]. The EPW is defined as the length of the pulse
above the threshold Pth . Multi-return LiDAR sensors often use the intensity or

12
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t
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Figure 2.3: Schematic representation about the transmitted and backscattered light signal from a
target reflection. The intensity ζ and EPW are the hight and length of the received
pulse above the threshold Pth . The time of flight is denoted as ∆t.

EPW to further distinguish among multiple returns in addition to the distance
information, for example by providing the strongest return in terms of intensity
and first return in terms of measured distance [25].

2.1.2 Data Representation

Point Cloud

The raw data from LiDAR sensors is commonly presented in the form of a
point cloud. A point cloud P is defined as a list of point vectors p. Each point
vector contains at least Cartesian or spherical coordinates and can expanded to
include additional attributes. Subsequent data processing - e.g. algorithms for
environment perception - are usually based on the point cloud data format.

The properties and structure of the point cloud reflect the sensor principle,
which requires algorithms to be adapted to different sensor principles. Typical
structures of point clouds obtained by LiDAR sensors with rotating transmitter
and receiver components include, for example, the characteristic circles per
layer, e.g. of ground-based reflections. By way of example, Figure 2.4 shows
a point cloud obtained by a rotating sensor concept with 32 vertically stacked
sender and receiver modules. The vertical resolution of such sensor concepts
is also quite limited and typically less than a few hundred pixels (i.e. layers).
The resulting point cloud is therefore referred to as a sparse point cloud. These
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Figure 2.4: Example 3D point-cloud of a Velodyne HDL-32E [21]. For each point, the received
intensity is displayed as a color code (dark=low intensity, bright=high intensity). At the
top of the image, there are three corresponding camera images shown. The point-cloud
data and images are taken from scene 125 of the NuScenes dataset [26].

characteristics are not evident in point clouds obtained by sensors with a flash
exposure of the entire FoV (e.g. by depth cameras), where the resulting point
cloud provides a dense representation of the environment.

14



2.1 Light Detection and Ranging

Mn,1

M1,1

M2,3

Mn,1

M1,1
M2,3

Mn,m

M1,m

2D Image

unrolling

azimuth angle φ

el
ev
at
io
n
an
gl
e
θ

Figure 2.5: Principle of unrolling 3D LiDAR scans to a 2D representation of the image. The
diagram is based on [27].

Point List

The raw data from state-of-the-art LiDAR sensors is defined as a point cloud
P ∈ R2, where each row i = (1, . . . , n) contains one point with j = (1, . . . ,m)
number of attributes.

Pn×m =

©«
p11 p12 · · · p1m

p21 p22 · · · p2m
...

...
...

pn1 pn2 · · · pnm

ª®®®®®¬
(2.5)

LiDAR sensors commonly provide 3D data of the environment in spherical
coordinates with the radius d, azimuth angle ϕ and elevation angle θ, often
combined with additional information about the characteristic of the backscat-
ter signal, typically an estimated intensity ζ or the width of the returned pulse,
which is referred to as EPW. This information is represented in each column
of the point cloud. In the literature, point clouds are also referred as point lists
and the elevation angle θ is also referred to as layer. In this work, the term
"point lists" denotes an unordered list of points.
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Lidar 2D Images

LiDAR 2-Dimensional (2D) images are matrices M = (mi, j) ∈ R
(n×m), where

each row i represents one elevation angle θ and each column j one azimuth
angle φ. The point cloud is therefore structured as an image in which each pixel
is located in the corresponding position within the field of view of the sensor.
Figure 2.5 illustrates the unrolling of a 360 ◦ LiDAR frame into a 2D image
representation. For each attribute of the point cloud, there is one corresponding
LiDAR imagematrix - for example, the distancematrix D ∈ R(n×m) or intensity
matrix I ∈ R(n×m). This representation corresponds to the usual representation
of images, whereas instead of stacked color channels (e.g. with RGB values),
the LiDAR image contains stacked channels with distance, intensity or further
attributes.
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2.2 Scattering and Absorption

2.2 Scattering and Absorption

For a better understanding of weather effects on LiDAR sensors, we first
need to examine how an electromagnetic wave interacts when it encounters
particles in the air. This section therefore describes scattering and absorption,
covering propagation through atmospheric particles. It is based on the research
of [28, p. 49f ff] and [29].

2.2.1 Propagation in the Atmosphere

Since rain and fog consists ofwater particles, the fundamental optical properties
are identical and so can be treated analogously, taking into account their
respective droplet size and distribution. Their shape is spherical or can be
parameterized as spherical with the radius r . When the electromagnetic wave
that propagates through a homogeneous medium such as air encounters a
particle, some of the energy is absorbed by the particle and dissipated into
heat, and the remainder is scattered. For the wavelength λ, at a distance

R >
r2

λ
(2.6)

the wave front can be described as spherical. The power flow subtracted from
a plane wave propagating through a layer of randomly distributed particles is
calculated by the integral of the contributions of the individual scatters, as
shown by [30]

β(λ) = 10−3
r2∫

r1

Cext (r, λ)n(r)d(r) (neper/km). (2.7)

The particle size distribution (PSD) is defined as n(r), representing the number
of particles per unit volume and radius increment. The Cext defines the
extinction cross-section of the particle. The volume extinction coefficient β(λ)
is measured in neper/km, but is often expressed in dB/km, where 1 dB/km =
4.343 neper/km.
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The attenuation (i.e. decrease in energy transmission) experienced by a wave
along the wave propagation in the z-direction through a PSD n(r) is described
by the Bouguer-Lambert-Beer law:

I(z) = I0 exp(−βz). (2.8)

The incoming energy flux I(z) is specified as z = 0 with I0 and the specific
attenuation with β. Equation 2.7 and Equation 2.8 are based on two assump-
tions: (1) Scattering is independent, where the interaction between the incident
wave and each particle is regarded without taking into account the scattering
of other particles and; (2) multiple scattering effects are negligible.

With the introduction of the concept of transitivity, the fraction of energy
transmitted T(z) is defined as [28]

T(z) =
I(z)
I0
= exp(−βz) . (2.9)

2.2.2 Electromagnetic Scattering

The Mie theory defines an analytic expression of the electromagnetic field
scattered by a sphere within a homogeneous and isotropic medium when the
particle is illuminated by a uniform plane wave [30]. Defining the dimension-
less extinction efficiency Qext = Cext/πr2, the Mie theory takes the form of a
series

Qext =
2
k2

∞∑
m=1
(2m + 1)Re{am + bm} (2.10)

where k = 2πr/λ is the dimensionless diffraction parameter and Re is the
real part of the sum of the expansion coefficients am and bm. The extinction
efficiencyQext is therefore defined as the sumof scatteringQsca and absorption
Qabs efficiency [31]:

Qext = Qsca +Qabs (2.11)
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Figure 2.6: Ratio between the extinction efficiencies Qext (λ)/Qext (λ0) with λ0 = 550 nm as a
function of droplet radius r at different optical wavelengths λ. The image is based on
[28]; the complex refraction index is taken from [32]; and the calculation is performed
by the implementation of [33].

Extinction Efficiency

The sensitivity of the Qext is evaluated for typical LiDAR wavelengths in the
near-infrared range and for the particle size of water droplets in fog and rain.
The complex refractive indexes n = v−ik are a function of the frequency of the
incoming wave and describe the electromagnetic properties of particles with
a given size and shape. Through calculation of the ratio of Qext (λ)/Qext (λ0)
as a function of droplet radius, the sensitivity of Qext is comparable to human
perception with λ0 at 550 nm. The value for λ0 is equal to the peak of the
optical transfer function of the human eye at 550 nm [28]. This comparison is
represented in visual form in Figure 2.6 for the typical wavelengths used for
LiDAR sensors and the water droplet sizes that typically occur in rain and fog.
The complex refraction indexes of water are taken from [32].

Analysis of the ratio Qext (λ)/Qext (λ0), shows that the extinction efficiencies
of the evaluated wavelengths are oscillating for fog particles with a typical
radius of 1 − 10 µm [28, 29]. For 900 and 1000 nm, the extinction efficiency
reaches its maximum at approximately two, which means that the extinction
efficiency is doubled compared with the baseline wavelength λ0. For larger
wavelengths (λ > 1500 nm), the oscillation amplitude decreases progressively.
At a wavelength of 10 µm the quotient is close to zero, which means that
the extinction efficiency is significantly smaller than the base wavelength λ0
efficiency.
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Figure 2.7: Diagram showing asymptotic convergence for electromagnetic back-scattering. The
case distinction is shown for the ratio of droplet size radius r and wavelength λ in the
near-infrared range.

For water droplets in rain with a typical radius of 155 µm−4 mm, the extinction
coefficient ratios are close to 1, which means that the extinction efficiencies
are approximately the same for the given wavelength λ and λ0 [28, 29].

Asymptotic Convergence

In mathematics, asymptotic convergence characterizes the behavior of func-
tions when the independent variable approaches a certain value [34]. This
concept is applied to the scattering (Equation 2.10) for the diffraction param-
eter k, which defines the ratio between the circumference of a particle 2πr
and the wavelength λ. If the wavelength λ is much smaller than the particle
(e.g. r < 0.05λ), the Rayleigh theory holds and Qext ∝

r4

λ4 . For large droplets
compared with the wavelength (e.g. r > 10λ), geometric scattering with the
classical laws of diffraction, reflection and refraction applies. Otherwise, the
Mie theory with Equation 2.10 remains without simplification.

The application of this case distinction in relation to the size of water droplets
in fog and rain is shown for the near-infrared range, which is where LiDAR
sensors typically operate (see Section 2.1): Figure 2.7 relates the radius of wa-
ter droplets from rain and fog to the wavelength of LiDAR sensors, indicating
which scattering mechanism dominates. Water droplets in rain typically mea-
sure 155 µm − 4 mm, while those in fog typically measure 1 − 10 µm [28,29].

20



2.3 Weather

Figure 2.7 therefore shows that geometric scattering can be applied for rain,
while Mie scattering can be applied for fog with large droplets. This result
is also reflected in Figure 2.6 and was therefore to be expected. While the
influence of rain might be simpler to simulate than the influence of fog since
only geometric scattering is present in rain, Mie and geometric scattering can
also occur in fog, depending on the droplet size.

2.3 Weather

To study the influence of weather - especially of rain and fog - on LiDAR
sensors, it is best to first provide a definition of these conditions. Quantification
measures to distinguish between different intensity levels of rain and fog are
therefore of particular interest. This section is based on [16, 28, 29, 35, 36], to
which reference is made for further elaboration.

2.3.1 Fog

The following section provides a definition of fog and then analyzes the in-
fluence on the measuring principle of LiDAR sensors on the basis of the
microphysical properties. The meteorological classification of different fog
levels is then presented.

Definition

Fog is generally defined as suspended water droplets in the atmosphere that
are close to the earth’s surface and reduce visibility to below 1 km. [28, 37].
Fog typically appears with a relative humidity close to 100 %, whereas mist
is an intermediate condition in which the relative humidity is above 60 % and
visibility is greater than 1 km [28]. Any suspension of particles that are solid,
dry and of microscopic size (e.g. smoke, sand, dust) is defined as haze [28].
Fog differs from cloud only in that it appears close to the earth’s surface while
clouds form at some distance above the surface [37].
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The distribution of droplet sizes and the concentration of cloud condensation
seeds determines the extent to which visibility is reduced [37]. Saturated
water vapor and, in turn, fog occurs either when the air cools or water vapor
increases. The first type can be divided into the following groups [28, 38]
and [28, 38, 39, p. 115 ff.]:

• Radiation fog: Radiation cooling of the earth’s surface lowers the air
temperature to such an extent that relative humidity is saturated. In
continental areas, this characteristic is usually observed at night during
colder seasonswithmoderatewind conditions. Radiation fog has smaller
water droplets and a lower liquid water content than advection fog.

• Advection fog arises when a warm and humid air mass moves over a
colder surface. It can be further categorized into marine fog, which is
caused by the advection of sea air from warm to cold oceanic areas, and
coastal or sea fog, which forms when warm air moves from the sea to
the inland.

• Upslope fog is caused by a decrease in the temperature of an air mass,
which is moved upward by the wind along the slopes of hills or moun-
tains.

Steam and frontal fog are caused by an increase in atmospheric water vapor.
In general, polluted air results in a higher number of small particles than clean
air.

Microphysical Characteristic

The microstructure characteristic of fog (i.e. the PSD) is summarized on the
basis of the research of [28, 29, 36, 40]. Compared with cloud, fog has a
relatively low water content, small droplets and small droplet concentrations
per unit volume. The droplets can be assumed to be spherical in shape with
a typical diameter of 1 − 10 µm [28] or between 2.5 µm and a few tens of
micrometers [29].
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The distribution of the volume concentration of droplets per unit radius as a
function of the radius r is approximated by a modified gamma function, as first
proposed by Deirmendjian [41]:

n(r) = Arα exp
[
α

γ
(

r
rc
)γ

]
(cm−3µm−1). (2.12)

The constants A, α, γ and rc define the shape of the distribution of n(r). The
total number of water droplets N per unit volume is defined by

N =
A

γb(α+1)γ Γ

(
α + 1
γ

)
(cm−3) (2.13)

and the total liquid water content by

W =
4
3
π10−6pw

A
γb(α+4)γ Γ

(
α + 4
γ

)
(g m−3). (2.14)

The liquid water density is given by pw (g cm−3) and b = α
γr

γ
c
in (µm−γ) [28].

With γ = 1, equation 2.12 corresponds to a gamma distribution, which could
also be expressed by an logarithmic normal distribution [29, p. 26].

Specific Attenuation

Equations 2.7, 2.10 and 2.12, require extensive information about the physical
properties of fog in order for the attenuation β to be calculated.
In [28, pp. 57 ff.], this calculation is performed for different types of fog,
using various PSD parameters available in the relevant literature. However,
the quantification of fog parameters according to the microphysical model
is impractical due to the lack of availability of particle distributions and the
temporal and spatial variety of the properties. Empirical models are therefore
required for predicting attenuation in fog [42–44].

Kruse originally proposed an empirical model that relates the visibility range
in km with the fog attenuation by

V(λ) =
10 log10(T)

β

(
λ

λ0

)−q
(2.15)
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where λ0 is the maximum spectrum (λ0 = 550 nm) of the solar band and T is
the visual threshold and defined as 2 % [42, 43]. The coefficient q is related
to the distribution of the fog particles and was originally defined by [43] and
optimized by [44]:

q =


0 if V<0.5km dense fog (2.16)
V − 0.5 if 0.5V<1.0km moderate fog (2.17)
0.16V + 0.34 if 1.0<V<6.0km mist (2.18)

However, the assumption that β is independent of the wavelength for fog with
V < 0.5 km is disproved by experimental data for selective wavelengths at
830 nm and 1.55 µm by [45, 46]. The research of Ijaz et al. further defines
the wavelength dependency of q by evaluating experimental data captured in
fog and smoke. The coefficient q is therfore described as a linear function of
wavelength

q(λ) = 0.1428λ − 0.0947 (2.19)

which is valid for the near-infrared range (0.55 < λ0 < 1.6 µm) and visibility
range 0.015−1.0 km [42]. Accordingly, the attenuation in fog can be calculated
by

β(λ) =
10 log10(T)

V

(
λ

λ0

)−q(λ)
(dB/km) . (2.20)

Meteorological Visibility

The basis for meteorological visibility was defined in 1924 by Koschmieder,
who proposed a theory concerning the apparent luminance of a black object
Cx that can be distinguished from the background C0 [16, 35, 47]

Cx = C0e−βz . (2.21)

Meteorological Optical Range

Since the meteorological visibility is based on subjective factors, a more objec-
tive measure based on the transparency of the atmosphere is represented by the
meteorological optical range (MOR) [47]. The MOR is defined as the length
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of the path in the atmosphere over which the luminous flux in a collimated
light beam with a wavelength of 550 nm from an incandescent light source is
reduced to 5 %. The color temperature is defined here as 2.700 K [47]. The
wavelength of 550 nm equates to the peak of optical transfer function of the
human eye [28]. In accordance with the Bouguer-Lambert-Beer law (2.8), the
MOR can be written as:

0.05 =
I
I0
= e−βz (2.22)

and results in
z = −

ln 0.05
β
≈

3
β
. (2.23)

The link to the attenuation expressed in dB/km by the empirical fog model
(equation 2.15) is given by

β10 = −
10log10(0.05)

z
(dB/km) (2.24)

with q = 0 and the atmospheric attenuation β10 in decibel per unit length
r = 1 [48]

β10 = −10 log10(T(1)) = 10 log10(e)β . (2.25)

The application of equation 2.25 in 2.24 and the logarithmic laws results in the
definition of the MOR in 2.23:

z = −
10 log10(0.05)
10 log10(e)β

= −
ln(0.05)

β
. (2.26)

The MOR results in the meteorological visibility, when the magnitude of the
apparent contrast of a black object seen against the horizon Cx/C0 is 0.05.
Equation 2.21 then reduces to 0.05 = e−βz , which is the MOR at the distance
z.

A distinction among the different weather conditions based on the MOR is
defined in the International Visibility Code (IVC) shown in Table 2.1.
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Table 2.1: International visibility definition based on [49].

Code No. Weather Condition MOR
0 Dense Fog < 50 m
1 Thick Fog > 50 m and < 200 m
2 Moderate Fog > 200 m and < 500 m
3 Light Fog > 500 m and < 1 km
4 Thin Fog > 1 km and < 2 km
5 Haze > 2 km and < 4 km
6 Light Haze > 4 km and < 10 km
7 Clear > 10 km and < 20 km
8 Very Clear > 20 km and < 40 km
9 Exceptional clear > 50 km

2.3.2 Rain

This subsection defines rain as a weather condition and analyzes its impact
on the measuring principle of LiDAR sensors on the basis of microphysical
properties. This subsection also presents the meteorological classification of
different rain intensities.

Definition

Rain is defined as precipitation in the form of liquid water droplets with a
diameter greater than 0.5 mm, while drizzle is defined as precipitation in the
form of liquid water droplets with a diameter less than 0.5 mm [50]. Drizzle
generally contains many more water droplets and attenuates visibility more
than light rain does.

Microstructure Characteristic

Rain consists of deformed water droplets, which can be parameterized by the
equivalent radius r0 defined as the radius of a sphere with the same volume
as the deformed droplet [29]. The deformation of rain droplets depends on
the radius r . For a radius r . 140µm droplets are nearly perfect spheres
when falling at terminal velocity. Larger drops with 140 . r . 500µm are
slightly deformed; at a radius greater than r & 500µm the droplets take the
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form of flattened spheroids. At a radius greater than r & 5mm droplets are
hydrodynamically unstable and decompose [29].

An analytical approximation of the terminal velocity of falling drops is a
function of droplet radius and reaches its maximum at about 9m/s for a radius
of 2 − 3 mm [28]

v(r) = 9.65 − 10.3 exp(−1.2r) (m/s) . (2.27)

The PSD of rain is analytically described as a gamma distribution

n(r) = N0rµe−γr (m−3mm−1) (2.28)

where µ is the shape parameter (−3 . µ & 8). N0 and γ are expressed by

N0 = 6 · 104e (3.2−ln 5)µ−ln 5 (m−3mm−1−µ)

γ = 0.2
[

R
33.31N051+µΓ(4.67 + µ)

]− 1
4.67+µ

(mm−1) .
(2.29)

Furthermore, based on the terminal velocity and PSD, the rainfall rate R results
in

R = 4.8π · 10−3
rmax∫

rmin

r3 v(r) n(r) dr (mm/h) . (2.30)

Specific Attenuation

In the near-infrared range, attenuation due to rain is almost completely inde-
pendent of the wavelength [28, p. 63]. The wavelengths are much smaller than
the rain droplets, which is why asymptotic formulas for large particles can be
applied as presented in Section 2.2.2.

Rainfall Rate

Precipitation intensity describes the amount of precipitation - or, more pre-
cisely, the amount of precipitation that falls over an area of m2 in mm over a
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Figure 2.8: Precipitation intensity and air temperature captured on a summer’s day in southern
Germany in August 2019.

given time unit [51]. Based on the rainfall rate R (usually given in mm/h), the
precipitation can be classified as rain or drizzle. A definition is given in [50]
and [51] (see Table 2.2). As an example of naturally occurring precipitation
intensities, Figure 2.8 shows the rainfall on a summer’s day in southern Ger-
many in 2019. Between 14h and 15h the intensity reaches a maximum level of
35.8mm/h and remains above 1.7 mm for more than 10 minutes, which means
that it can be classified as strong rain based on the definition in Table 2.2 [51].

2.4 Weather Simulation in Controlled
Environments

As Table 2.1 and Table 2.2 show, there is a significant variance in weather
conditions. The precipitation curve in Figure 2.8 shows how dynamically the
rain intensity can shift and, in particular, how quickly very high intensities can
be observed. It is therefore extremely difficult to detect such weather condi-
tions dynamically, especially in on-road scenarios, which is why controlled
environments are required for reproducibly simulating such conditions.

The state-of-the-art climate chambers used in the automotive industry are
designed primarily for the purpose of conventional vehicle-centric testing of
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Table 2.2: Precipitation levels for rain and drizzle based on [50, 51].

Precipitation
Type

Precipitation Level in mm/60min Precipitation Level in mm/n min

Rain [50]
light < 2.5 mm (0.1 in.) and < 0.25 mm (0.01 in.) with n = 6 min.
moderate ≥ 2.6 mm (0.11 in.) and < 7.6 mm (0.3

in.)
and < 0.76 mm (0.03 in.) with n = 6 min.

heavy > 7.6 mm (0.3 in.) or ≥ 0.76 mm (0.03 in.) with n = 6 min
Rain [51]
light < 2.5 mm and < 0.5 mm with n = 10 min
moderate ≥ 2.5 mm and < 10.0 mm and ≥ 0.5 mm and < 1.7 mm with n = 10

min
strong ≥ 10.0 mm and ≥ 1.7 with n = 10 min
very strong ≥ 50.0 mm and ≥ 8.3 with n = 10 min
Drizzle [51]
light < 0.1 mm
moderate ≥ 0.1 mm until < 0.5 mm
strong ≥ 0.5 mm

the influence of weather and temperature on vehicles and their components.
The size and shape of these systems is therefore designed to ensure that vehicles
are positioned centrally and without a large amount of free space around them.
This can be seen in Figure 2.9, which shows two examples of the kind of climate
chamber used in the automotive industry [52, 53]. These examples show that
insufficient space is available - especially in front of and around the vehicle
- to investigate the performance of sensors potentially used in automated or
autonomous systems. Due to their limited size and shape, therefore, such
climate chambers are not suitable for analyzing sensor perception systems
designed for autonomous driving systems.

Moreover, conventional climate-wind chambers are not designed for reproduc-
ing natural rainfall or natural fog, but rather for exposing a vehicle to a defined
amount of water combined with high wind speeds corresponding to the head-
wind of the velocity to be simulated. These tests are performed over the entire
temperature profile of a conventional passenger car (e.g −40 ◦to + 60 ◦ [52]
or −20 ◦to + 55 ◦ [53]). Weather conditions such as homogeneous fog are not
considered to be of major importance and so cannot be generated reproducibly,
which means that the conventional climate chamber used in the automotive in-
dustry are not suitable for the in-depth analysis of sensor perception in adverse
weather conditions. This work is therefore based on the results from dedicated
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Figure 2.9: Examples of automotive manufacturer climate chambers [52, 53]

climate chambers specially designed to study human and machine perception
in adverse weather conditions.

The information relating to different fog and rain simulators in the two following
subsections is based on the work of [54] and supplemented by information
from [55].

2.4.1 Artificial Rainfall

The production of artificial rain is the subject of intense research in the agricul-
tural sciences [56–59]. Artificial rain is usually produced by means of nozzles
mounted on a metal structure a few meters above the ground; the number
of nozzles, area covered and height are variable. The height typically varies
between 1 m and 7 m and determines the velocity of the generated raindrops.
The number of nozzles and the area covered depends on the application and
is typically below a few tens of square meters. Furthermore, the rain droplet
distribution, rainfall rate and rain drop velocity can be influenced by the choice
of nozzle and the water injection pressure [54]. In [60], the droplet distribution
is altered though the attachment of a mesh under the nozzles. For the purpose
of analyzing sensor perception capability for autonomous driving, the area
covered by rain in these systems is usually too small, which means that the
result cannot be applied. For the analysis of suitable rain simulators, we use
the work of [54], which lists and evaluates suitable simulations with large rain
areas, supplemented by the Carissma Chamber in Ingolstadt [55].
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2.4 Weather Simulation in Controlled Environments

Since no publicly available technical details about the rain simulator used
by the Public Works Research Institute (PWRI) is publicly available, we
use the information given in the work of [61], which was recorded in the
PWRI simulator. Hence, the PWRI is capable of producing rainfall rates of
20 − 100mm/h and fog visibility of 10 − 200m [61].

The Virginia Smart Roads (VSR) facility is capable of producing rain with
2−63mm/h, although no details of the droplet size or distribution are available
[54]. In the chamber of [62], the simulated rainfall rate is between 10 −
150mm/h without a homogeneous distribution of the water amount [54]. In
addition, the Leibniz University Hanover operates a rain simulator with a
uniform precipitation between 9.2 and 98.1mm/h. However, the rain area of
4m by 3m is too small for dynamic automotive experiments [54, 63]. A large
rain area of 5m by 50m is available in the Carissma chamber in Ingolstadt,
Germany [55]. The rainfall rate is expected to be between 14 and 88mm/h.

2.4.2 Artificial Fog

To analyze the influence of fog on LiDAR sensor perception under controlled
environmental conditions, the simulation requires a highly realistic droplet size
distribution, spatial uniformity and temporal stability, because the backscat-
tered light depends on the distribution and size of the water droplets [54].
According to Colomb et al., who have spent many years researching the sim-
ulation of natural fog, only three facilities capable of producing fog for auto-
motive applications are available: the VSR in the Untied States, the PWRI in
Japan and Cerema in France [54,62,64]. Since the VSR is an outdoor facility,
the requirement of spatial uniformity is not fulfilled [65], although the length
of 800 m offers a range of opportunities for test scenarios and realistic setups
without any limitation in maximum viewing range, especially for camera or
LiDAR sensors.

The length of the indoor facility in Japan (PWRI) is 200 m, considerably more
than that in France (31 m). To our knowledge, however, the Cerema facility in
France is the only one capable of controlling droplet size distribution, as well
as the spatial and temporal stability of the simulated fog [62]. Note that at the
time this work was created, no fog simulation facilities were in operation in
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Table 2.3: Climate chambers for producing artificial rain or fog, mostly with the purpose of sensor
testing for autonomous driving [54].

Name Location Size (b,l,h) Rain Simulation Fog Simulation Additional Information

PWRI Japan 9.8x200x6.9m3 20 − 100mm/h 10 − 100m
VSR USA 10x800x10m3 2 − 63mm/h 3 − 90m

Cerema France 5.5x31x2.4m3 10 − 150mm/h 5 − 200m spatial (only for fog) and tem-
poral uniformity, droplet size
distribution is measured

LUH Germany 4x3x3m3 9.2 − 98.1mm/h − spatial uniformity, droplet size
distribution is measured

Carissma Germany 120x30m3 14 − 88mm/h −

the Carissma climate chamber in Ingolstadt [55]. This facility was therefore
not considered.

Table 2.3 contains a summary of all the artificial fog and rain simulators and an
overview of the meteorological visibility and rainfall that can be simulated.
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2.5 Machine Learning in Computer Vision

This section covers the basic principles of machine learning algorithms based
on [66–71], with an emphasis on the approaches applied in this work. For
a complete overview of machine learning methods and for further in-depth
study, the information provided in [66–68,70] is recommended.

Machine learning can be defined as the design of algorithms that automatically
learn through experience [69]. The term "experience" here usually refers to
the process of training data on the basis of which machine learning algorithms
can build a mathematical model for making decisions or predictions without
being implemented explicitly [70, 72]. Machine learning approaches can be
categorized as unsupervised and supervised learning.

Unsupervised learning methods are not based on labeled training data, but
instead learn the structure of given input data. The goal is to gain new insights
based on the learned structures within the input data [67, p.9]. The absence
of labeled training data is a major advantage, particularly when very large
amounts of data are processed.

Supervised learning methods learn from the basis of labeled training data by
optimizing the function to predict the corresponding ground truth labels from
the input data. The aim of the function is to predict the correct class label of
an unseen input data sample, which is defined as generalization [67, p.276].

Furthermore, semi-supervised learning methods are based on combinations of
both, whereby, for example, only parts of the database are manually annotated,
annotations are generated without manual intervention or the algorithm can
itself request a user label for a new data point (active learning).

Reinforcement learning involves evaluating system actions or a series of sys-
tem actions, whereby correct behavior leads to positive rewards and incorrect
behavior leads to negative rewards [67, p.9]. Using reinforcement learning,
for example, an algorithm can learn a board game solely on the basis of the
rules of the game, the conditions for victory and by playing intensively against
itself [71]. Since the reward influences the learning progress by providing
feedback, this method is also considered to be a supervised method.
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For the purposes of this work, we will focusing on supervised methods, which
comprise two key task types: (1) classification and (2) regression. Classifica-
tion, as the name suggests, typically refers to the categorization of data into
either concepts or collections that apply the concept of family similarities. In
the context of images and machine learning, classification at pixel level is often
referred to as segmentation. Regression typically involves the analysis of data
trends in order to make predictions on the basis of these trends [68, p.121].

2.5.1 Feature Extraction

Machine learning approaches are usually based on two steps, feature extraction
and the subsequent processing of the desired result. Feature extraction in
this context is either manual or automated. Some examples of manual and
automated feature extraction are outlined in the following.

Manually Extracted Features

Traditional approaches are based on two steps: First, features are derived
manually from the input data; and, secondly, classification is performed by
applying machine learning approaches. The first step is typically performed
by an expert and results in a feature representation of the input data. An
edge detection algorithm (e.g. Sobel operator) is one example of a well-
known feature representation in the field of computer vision. In general, any
representation of the input data that supports discrimination for the desired
output is suitable as a feature representation. In general, any representation of
the input data that supports discrimination for the desired output is suitable as
a feature representation.

Feature Learning

Manual feature extraction can generally also be performed automatically, for
example with a principle component analysis (PCA), which is based on the
eigenvector and eigenvalues of the covariance matrix of the input data [66].
By using the first n eigenvectors of the corresponding eigenvalues sorted in
ascending order, the data is projected to a lower n-dimensional representation
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x̂j
new data point

Class A

Class B

Class C

Figure 2.10: Diagram of a kNN algorithm for three classes with k = 5, i.e. regarding the k = 5
nearest neighbors.

without taking into account the target class label. Other unsupervised feature
learning techniques are autoencoders, deep belief networks and independent
component analysis (ICA). One of the main drawbacks of unsupervised fea-
ture learning methods is that they do not take into account the class label in
the learning process. Methods that include the class label and learn feature
extraction under supervision have shown superior results, as demonstrated by
the success of CNN in classification and object recognition [67, p.9].

2.5.2 Machine Learning Methods

The following subsections present the machine learning methods used in this
work; for a complete overview of available methods, refer to [66].

2.5.3 k Nearest Neighbor

The classification method k nearest neighbors (kNN) is based on the similarity
of neighboring points. Through the manual definition of a distance measure for
similarity, each point is classified based on its k neighboring points, assuming a
classification task for the set of data {(xi, yi)}with xi features, yi corresponding
class labels and i data samples [68]. The kNN algorithm classifies a new data
point x̂j by computing the distance to all other points xi , selecting the k nearest
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y = 1
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margin

hyperplane

Figure 2.11: Diagram of an SVM for two classes. The support vectors are marked with double
lines. This representation is inspired by [66, p. 327].

neighbors and applying their corresponding class labels yi to the input data
point x̂j . Figure 2.10 shows the classification for a new data point for its k = 5
nearest neighbors. The stored dataset {(xi, yi)} can be regarded as training
data, on which basis new data points are classified. The training procedure
is performed simply by storing the input data, whereby the parameters k and
distance function are set manually to fit to the existing data distribution. A
generic example of a possible distance function is the Minkowski Distance

d(x, y) = p

√∑
i

(xi − yi)p (2.31)

which becomes the Euclidean Distance for p = 2 [68].

2.5.4 Support Vector Machine

The term "maximum margin classifier" essentially describes the idea of an
SVM classifier that determines a hyperplane between two linearly separable
classes such that the distances between the two classes and the hyperplane

36



2.5 Machine Learning in Computer Vision

is maximal [66, p. 326 ff.]. This results in the mathematical optimization
of maximizing the distance between the support vectors -, i.e. the points
closest to the decision boundary - and the hyperplane itself. Figure 2.11 shows
the decision boundary (hyperplane) between two classes with a maximized
margin.

The basic mathematical representation of an SVM is based on the book by [66,
p. 326 ff]; for a complete overview of the mathematical optimization and for
further details, refer to this chapter.

With the definition of the training dataset as input vectors x as xi, . . . , xN with
target values t as ti, . . . , tN where t ∈ −1, 1 representing the classification label,
each new data point x is classified based on the sign of y(x) with

y(x) = w · x + b . (2.32)

Then the shortest distance between the hyperplane y(x) = 0 and each data
point xi is given by the perpendicular distance

|y(x)|
‖w‖

. (2.33)

Given that only the correctly classified points where tny(xn) > 0 are of rele-
vance, we obtain tny(xn)/‖w‖. The maximum margin of the smallest distance
between each data sample and the hyperplane will then result in the optimiza-
tion:

arg max
w,b

{
1
‖w‖

min
n

[
tn(wxn + b)

]}
. (2.34)

Since 1/‖w‖ is independent from n, the term could be written outside the
optimization over n.

The application of the SVM to data distributions with non-linear class bound-
aries could be performed by introducing a fixed feature-space transformation
φ(x) - the "Kernel" - that transforms the data to a higher dimensional space,
where the classes are linearly separable [66, p. 326 ff.]. Since the input feature
vector x and kernel transformation are usually derived manually on the basis
of the input data, the SVM is based on manually extracted features.
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Figure 2.12: Diagram showing an artificial neuron with input vector x, weight vector w and bias
b. The representation is inspired by [67, p. 63].

Furthermore, the SVM can be extended to deal with overlapping class distri-
butions by allowing mis-classifications during optimization while also simul-
taneously penalizing them [66, p. 331 ff.].

2.5.5 Artificial Neural Networks

CNNs are a subcategory of artificial neural networks (ANNs). We will there-
fore discuss ANNs at first.

Elements of Neural Networks

An ANN consists of neurons and is powered by biological neural networks.
Each neuron consists of dendrites, soma, nucleus, axon and synapses [67]. By
describing the dendrites as input vector x ∈ Rn and the synaptic strengths as
weight vector w ∈ Rn, a nucleus can be mathematically described as

z = wxT + b (2.35)

where b ∈ Rn denotes the bias [67]. A nucleus therefore essentially calculates
the weighted sum of its inputs and adds the bias. The result is then used as input
for a nonlinear activation function fact : R→ R. The resulting mathematical
description of a neuron is

y(x, w, b) = fact (wxT + b) . (2.36)

Figure 2.12 shows a computational graph diagram of a neuron.
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Network Training

In neural networks, the term "training" is defined as the adjustment of weights
w and bias b, which leads to an altered response of the neuron. By intro-
ducing w̃, which contains the bias parameter b as an additional weight w̃0,
the term "learning" refers simply to the adjustment of w̃. Equation 2.35 and
Equation 2.36 result in

y(x̃, w̃) = fact (w̃ x̃T ) (2.37)

where the input variable x̃0 is set to x̃0 = 1 [66, p. 225ff]. This definition
simplifies the adjustment of weights and bias in one variable during the training
process.

A mathematical description of network training aims to obtain a weight vec-
tor w̃ that minimizes the error function E(w̃). This minimization is typically
achieved through gradient descent optimization. The sum-of-squares, for ex-
ample, could be used as an error function. By describing the training process
as a set of independent observations, the cross-entropy error function is given
by the negative log likelihood

E(w̃) = −
n∑
i=1

ci ln(yi) + (1 − ci) ln(1 − yi) (2.38)

where yi is one output neuron and n is the total number of output neurons
(i.e. the number of classes) [66, p.235]. According to Simard et. al, the
cross-entropy error function in multi-class classification tasks enables faster
training and better generalization than the sum-of-squares [66, 73].

Activation Functions

An essential component of neural networks consists of the activation functions.
A feed forward network containing only linear activation functions remains a
linear function regardless of the number of neurons, which is why nonlinear
activation functions are used to map non-linearities with neural networks. Fur-
thermore, a differentiable activation function is required for gradient-descent-
optimized learning. It is also desirable for an activation function to have a
large gradient close to the origin, which means that convergence is accelerated
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for input variables close to zero. The weight vectors and bias values are often
initialized with near-zero values [67, p.71]. Figure 2.13 shows a selection of
common activation functions and their derivatives. Activation functions like
sigmoid or tangential hyperbolic fulfill all the described requirements, although
the derivatives are saturating toward zero (see Figure 2.13a and Figure 2.13b)
as the input value |x | increases. During backpropagation in multi-layered
neural networks, the multiplication of gradients close to zero brings learning
progress to a standstill. These activation functions are therefore used only in
networks with just a few layers [67].

Rectified linear unit (ReLU) activation functions do not saturate as |x | increases
and are therefore recommended for neural networks with multiple layers. Fur-
thermore, for non-biased input data, it is advantageous when non-linearity is
close to zero. With the hyperparameter α ∈ {0, 1}, they are defined as

fact (x) =

{
αx x < 0
x x ≥ 0 .

(2.39)

Mathematically, theReLU function is not differentiable; theExponential Linear
Unit (ELU) function, however, can be seen as a smoothed variant of the ReLU
function, which is differentiable [67]. When α = 0, they are referred to as
ReLU, for α > 0 leaky ReLU [67]. Figure 2.13c and Figure 2.13d show
a plot of ReLU functions with α = 0 and α = 0.1. The fast numerical
computability of ReLU functions, is especially advantageous as the number
of layers increases [67]. Accordingly, the ReLU activation functions have
become established in recent years for deep neural networks and results in
faster convergence of training as shown in [74, 75] and better result [76].

Network Topologies

The linking of one or more neurons results in a neural network, which can
exhibit a variety of typologies due to the large number of potential connections
[67]. The first layer of an ANN without any prior layers is known as the "input
layer". The last layer without any subsequent layers is known as the "output
layer" and provides the result of the network, which can form any arbitrary
nonlinear function by output neuron. All layers in between are known as
"hidden layers". Figure 2.14 shows an ANN with three input neurons, two
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(d) Leaky ReLU activation function and its derivative.

Figure 2.13: Selection of common activation functions and their derivatives.
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Input OutputHidden Layers

Figure 2.14: Diagram showing an FFN with three input neurons, two output neurons and three
hidden layers. A skip or shortcut connection is shown in red.

output neurons and three hidden layers. Since each layer is linked only to the
subsequent layer, the network topology is called feed forward network (FFN)
[66, p. 225ff]. Figure 2.14 also shows two skip or shortcut connections, where
one or more layers are skipped [77, p. 42]. Numerous other topologies like
Boltzmann machines also exist, although these do not fall within the scope of
this thesis; for further information on these, please refer to [68].

Output Layer

Assuming a binary classification problem with two classes C1 and C2, the
classification probability for each class is derived on the basis of the network
output. For a network with one single output neuron and a logistic sigmoid
activation function, the activation function of the output layer y(x̃, w̃) can be
interpreted as the conditional probability P(C1 | x̃). Consequently, P(C2 | x̃) is
given by 1 − P(C1 | x̃) [66, p. 235f.].
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For a multi-class problem with n-classes and the binary coded variables ci ∈
{0, 1}, which represent each class i with ci ∈ {1, n}, n-output neurons are used
according to the number of classes. Applying the softmax function

Pi(ci | x̃) =
exp(yi(x̃, w̃))∑
j

exp(yj(x̃, w̃))
(2.40)

the probability per class is derived from the result of each output neuron
yi(x̃, w̃) [66, p. 235f.]. Note that the activation function of the output layer is
set to unit activation [66, 67].

2.5.6 Convolutional Neural Networks

The concept underlyingCNN is based on the idea that, for example, an extracted
feature is not affected by the position of an object in a given input space. In
other words, it is irrelevant whether the object is on the right or left edge of the
image.

Applying this idea to ANN indicates that a local environment is sufficient
for training and the complete input space is not required in one training step.
This local area in the input space is denoted as a receptive field and shifted
multiple times to cover the complete input space, which means that the weights
are shared over the input space. The number of weights can therefore be
significantly reduced, is determined by the size of the receptive field and is
independent of the input data size [66, p.268].

In addition to the sharing of weight over in the spacial domain of CNN ar-
chitectures, recurrent neural network (RNN) architectures exist in which the
output of a neuron is connected to one or more previous layers, which means
that the weights are shared over the temporal domain. These architectures are
often applied to time series data. In the field of autonomous driving, multi-
modal sensor setups (e.g. camera, RaDAR and LiDAR) are used to perceive
the environment, which apparently results in time series data. This time series
data is then typically fused by bayesian filters (e.g. Kalman Filter), which
assume independent measurements over time by each sensor component, in
order to modal temporal correlations between measurements correctly. Perep-
tion algorithms based on RNN architectures have temporal dependencies and
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are therefore not providing uncorrelated measurements over time. Thus, RNN
architectures are not applied in this thesis and so will not be discussed in any
greater depth. Detailed information on RNN is available in [66, 67, 77].

2.5.7 Evaluation Metrics

Metrics are essential for the evaluation of classifiers. Based on the confusion
matrix, this section presents the metrics accuracy and intersection over union
(IoU) are introduced in this section. For further metrics and details [67,
p.106ff.], [78] and [68, p.121ff.] is recommended.

Confusion Matrix

The confusion matrix is defined as M = (mi, j) ∈ R
(n×n) for n classes, where

each elementMij represents the samples classified as class j that are actually in
class i. Consequently, the elements on the diagonal Mii result in the correctly
classified samples.

The notation of true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) are introduced with the confusion matrix of a binary
classification problem:

M2×2 =

(
TP FN
FP TN

)
. (2.41)

For multi-class evaluations, the observed class ck =M11 is presented, whereby
the predicted classification result is defined as cp and the actual label (i.e.
ground truth) is defined as cl [79]:

• The TP samples are correctly classified with cp = cl for the observed
class ck = cp .

• The FP samples are falsely classified cp , cl for the observed class
ck = cp .

• The FN samples are falsely classified (cp , cl), but not the observed
class (ck , cp).
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Figure 2.15: Confusion matrix for multi-class classification with n-classes. The terminology for
the confusion matrix is derived through observation of class ck with k ∈ [0, n]. The
representation is based on [80, p. 71].

• The TN samples are correctly classified cp = cl , but not the observed
class ck , cp .

So, for a multi-class problem with observed class ck the resulting confusion
matrix is given in Figure 2.15.

Accuracy

Themost basic metric function for the classification task is the accuracy, which
calculates the percentage of samples that are classified correctly. Based on the
terminology of the confusion matrix, the accuracy is defined by

accuracy(ck) =
TPck + T Nck

TPck + T Nck + FPck + FNck

(2.42)

for class ck . This accuracy definition provides a measure of correctly classified
samples for each class and is in the best case 1 and in the worst case 0.
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Intersection over Union

The IoU is defined as

IoU(ck) =
TPck

TPck + FPck + FNck

(2.43)

which was introduced in the Pascal Visual Object Classes Challenge [81]. The
TN are therefore not taken into account, which makes the IoU metric more
reliable than the accuracy, especially in the case of unequal class distributions.
On this basis, the mean intersection over union (mIoU) is defined as a measure
for all n classes by averaging the single class IoU

mIoU =
1
n

n−1∑
i=0

IoU(ci) . (2.44)

In this thesis, IoU and mIoU are primarily applied to compare classification or
segmentation approaches, since this metric is more reliable than accuracy and
represents the state of the art [81–84].
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This chapter describes the current state-of-the-art of LiDAR sensors in adverse
weather conditions. Section 3.1 covers weather condition monitoring tech-
niques on roads with stationary and non-stationary systems. Section 3.2 looks
at climatic influence on LiDAR sensors. Section 3.3 describes the current
state of the art when it comes to the elimination of weather effects in point
clouds, a process also known as "de-noising". Section 3.4 lists related work on
publicly available datasets for the purpose of determining weather influence on
LiDAR sensors. Finally, Section 3.5 summarizes the current state-of-the-art
and highlights various areas of research complemented by this work.

Parts of this chapter were previously published in [85, 86] and [87].1

3.1 Weather Condition Monitoring

This section contains information about instrumental measurement systems for
the MOR and precipitation intensity. We will be focusing here on condition
monitoring systems that can be used in the automotive filed - that is, systems that
are mounted along the roadside or on-board sensors that are already integrated
in state-of-the-art passenger cars or that can potentially be integrated in the
near future. Conventional passenger cars have so far not been equipped with
sensors for this purpose, with the exception of temperature sensors and sensors
for qualitatively estimating rainfall and brightness so that thewindshieldwipers
and headlights can be adjusted accordingly.

1 Editorial modifications have been made to improve readability and to ensure consistency of
nomenclature.
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3.1.1 Measurement of Meteorological Optical Range

The World Meteorological Organization divides systems for measuring the
MOR into two categories [47]:

• Systems that measure the extinction coefficient or transmission factor

• Systems that measure the scattering coefficient or intensity of light scat-
tered

Measuring the Extinction Coefficient

In principle, the extinction coefficient can be measured with telephotometric
instruments, visual extinction meters or transmissometers. Since transmis-
someters are the most commonly used devices, they will be explained in more
detail in the following [47]. The mean extinction coefficient and MOR can
be calculated by measuring the mean transmission between a transmitter and
receiver in a horizontal cylinder of air. With this measurement principle, the
transmissometer is closely related to the definition of the MOR (Section 2.3.1)
and so yields accurate information on the true optical range. The typical accu-
racy of transmissometers is around 10% when the MOR is up to 60 times the
baseline length [47]. This type of measuring instrument is designed for sta-
tionary use only, because the influence of the air stream affects the measuring
distance, which can lead to unreliable results. This means that they cannot be
used in the automotive sector, for example, where, in addition to the air stream,
localized temperature differences on the vehicle prevent the occurrence of fog
in the vicinity of the vehicle, meaning that it cannot therefore be measured.

An application example of this measurement technique is the fog warning
system on the A8 in Ulm, Germany, which alerts drivers to the presence of fog
and poor visibility by changing the variable message signs according to current
visibility levels [88, 89]. This application of a transmissometer enables very
detailed visual ranges with ±5 m below 50 m visual range and ±5 % above
5.000 m [90]. The visual range is derived on the basis of a local transmission
measurement with a wavelength of 640 − 660 nm over a distance of around
20 cm [90]. The visibility is estimated on the assumption that a reduction in
transmission usually occurs due to fog [89,90]. A disadvantage of such systems
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is interference by insects or other objects, which can influence themeasurement
path and lead to faultymeasurements. In June 2020, for example, a fogwarning
was issued on a bright and sunny day due to the presence of insects along the
measurement path [91]. At the time of writing, no solution to these kinds of
false alerts has been found [91].

Measuring the Scattering Coefficient

The reduction of visibility in rain or fog is caused mainly by the scattering
of water droplets and only to a minor extent by absorption2. The MOR can
therefore be measured by determining the scattering alone, not taking into
account absorption [47].

The scattering coefficient can be determined concentrating a beam of light in a
small volume of air and using photometricmethods to determine the proportion
of backscattered light. When interfering light sources are modulated, this
method can be used during the day and at night [47].

Measuring the intensity of scattered light yields less precise MOR measure-
ments than transmissometers. Due to the relatively low contamination of
optical surfaces and their ability to measure the MOR over a wider range than
transmissometers, however, an increasing number of these instruments are used
in automated meteorological observing systems (e.g. visibility measurements
on highways or to determine the presence of fog) [47]. One example of such a
sensor is the optical fog sensor from [92]. Suchmeasurement systems typically
achieve an accuracy of around 10%, but are less accurate than transmissometers
at low values of the MOR and are more affected by precipitation [47].

LiDAR sensors can also be used to detect the presence of fog. Their range of
visibility is very limited but sufficient to detect the presence of fog [47].

2 Note: The absorption influence increase in the presence of air pollution, dust or ice crystals.
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3.1.2 Measurement of Precipitation

In weather forecasts, rain is classified by duration over time and referred to as
showers, intermittent precipitation or continuous precipitation. The intensity of
precipitation is typically determined by optical disdrometer systems, Doppler
radar systems or rain gagues [47].

Optical disdrometer systems use the depression of a horizontal light beam to
detect falling particles of liquid or solid water in the atmosphere. The intensity
of the precipitation can be determined on the basis of the drop in intensity on
the receiver side due to the falling particles. The amplitude of the reduction
corresponds to the particle size and the duration to falling speed [47].

Doppler radar sensors emit a vertical beam that is reflected by falling liquid or
solid water droplets in the atmosphere. The velocity and size of the particles
can be measured by the Doppler shift. The precipitation type can also be
determined by measuring fall speeds at different altitudes [47].

Conventional rain gauges are designed to measure the amount of precipitation
over a predefined period by collecting the water that falls over a unit area
with known proportions. Smaller devices also provide an indication of rain
intensity [47].

3.1.3 Qualitative Measurement in Non-Stationary
Systems

In the automotive field, non-stationary systems are typically mounted on the
vehicle itself. As an example, state-of-the-art passenger cars are capable of ad-
justing the wiper speed to the prevailing weather conditions, so a dedicated sen-
sor is typically mounted behind the interior mirror on the windshield [93–95].
These sensors are generally not designed to provide an accurate measurement
of meteorological variables but instead a qualitative value for meeting defined
application criteria (e.g. adjusting the wiper).
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3.1.4 Qualitative Measurement with Non-Dedicated
Sensors

The description of non-dedicated weather monitoring systems focuses on the
utilization of passenger car on-board sensors - for example, sensors that are
designed specifically for environment perception in semi-autonomous or fully
autonomous driving tasks and for the task of monitoring weather conditions.
Any perception sensor that is influenced by adverse weather could essentially
be used for weather condition monitoring, provided that the weather impact is
quantifiable. For the purpose of environment perception for an autonomous
vehicle, the sensor and perception algorithms are usually designed to be as
robust as possible in the face of adverse weather conditions. For the recogni-
tion of the environmental conditions, however, the influence is obviously an
important aspect. This section therefore evaluates the application of camera
and LiDAR sensors for weather detection in passenger cars.

Camera-based Weather Detection

In 1998, Busch and Debers presented an approach for estimating fog visibility
based on stationary camera systems mounted above highways facing the road-
way [96]. For the visibility estimation, only the image area of a roadway is
considered to be a region of interest, and the intensity gradient is derived for
this area [96]. A gradient threshold value is used to determine the maximum
visibility in image coordinates, and a visibility level in world coordinates is
derived on the basis of the known camera position and a flat world assump-
tion [96]. The threshold value of the intensity gradient was determined in
experiements on the basis of images taken at known viewing distances. The
resulting visibility estimate is given in multiples of 50m above 300m visibility
and in multiples of 10 m below 300 m visibility [96]. This principle is not
easily applicable, for non-stationary cameras because the assumptions based
on the static camera position are not satisfied.

A non-stationary approach for a percentage visual range reduction based on
camera images is presented by Pormeleau in 1997 [97]. The idea is based on
a contrast degradation along similar roadway features like lane markings. The
contrast degradation is determined on the basis of geometric transformation of
an adaptive trapezoidal area into a bird’s eye view. The approach does not take
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into account the root cause of the contrast reduction and so cannot differentiate
between rain, fog or other weather influences. The algorithm is evaluated on
the basis of simulated fog from 100 to 700m visibility. To obtain reliable
results, the author recommends analyzing at least 30 sequential frames, due to
the standard deviation of individual measurements between 0.2 and 0.3 [97].

In 2004, Hautiere et al.derived the visibility by estimating the extinction coeffi-
cient based on camera images [98]. The correlation between the luminance of
the background or objects and the measured pixel values of the camera image is
assumed to be linear. The region of interest for deriving the intensity is selected
to be as homogeneous as possible and extend from the road directly in front
of the vehicle to the sky. Estimated meteorological visibility is demonstrated
using a sample image under real fog conditions without any ground truth infor-
mation. Based on synthetic image data, the authors suggest good accuracy for
low visibilities (< 150 m), but do not cite any specific numbers. Consequently,
no statistical validation of the visibility estimation is available.

In 2008, Roser and Moosmann presented a classification-based approach for
detecting different rain levels [99]. The approach is capable of distinguishing
between light rain, heavy rain and clear conditions based on a single input
image. Histogram features based on brightness or contrast are calculated over
different region of interests of the input image and concatenated to a single
input vector for a linear SVM. The error rate for the distinction between heavy
rain and clear conditions is less than 1 %. For the three-class-case, however, the
error rate is between 2.0 % for highway environments and as much as 14.8 %
for rural and urban environments.

In 2013, Pavlic et al. introduced an algorithm for differentiating between fog
and the absence of fog based on linear discriminant analysis (LDA) [100]. The
grayscale input image of a conventional passenger car camera is transformed,
normalized and processed by image processing filters (e.g. Gabor filter) into a
feature vector. These features are selected with a PCA. The final classification
is derived based on a LDAwhich results in an accuracy of 95.35 %. The image
descriptor presented by Roser et al. is applied as a baseline for the fog dataset
and results in an accuracy of 92.20 % for the same dataset and classification
task.

Weather classification based on single camera images with CNNs are pre-
sented by Elhoseiny et al. This method involves fine-tuning the AlexNet [74]
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for differentiating between sunny and cloudy images [101]. The proposed
CNN architecture achieves 82.2 % normalized accuracy and outperforms the
baseline classifier (53.1 %), which was introduced with the dataset itself by
Lu et al. [102]. The dataset contains 10k outdoor images with a wide variety
of viewpoints, landscapes, scenes, and locations, which makes the process
of distinguishing between sunny and cloudy conditions a highly challenging
classification task. Further improvements are introduced by Lu et al. with a
collaborative learning approach, which combines hand crafted features with a
CNN and achieves an overall accuracy of 91.4 % [103].

LiDAR based Weather Detection

To the best of the author’s knowledge, no publicly available approaches to
classifying weather conditions based only on sparse point clouds captured
with LiDAR sensors have been implemented, evaluated or published in the
automotive field. The basic concept behind detecting weather conditions using
vehicle on-board sensors - including the utilization of LiDAR sensors - is
presented in [47] and [104]. However, no implementations, evaluations or test
results are available.

3.2 Influence of Weather on LiDAR Sensors

The influences of weather on LiDAR sensors is a large and highly active
field of research [105–117], although publicly available datasets including
LiDAR sensors are commonly recorded under favorable weather conditions
(e.g. [82,118]). This section summarizes the current state-of-the-art regarding
the influence of weather on LiDAR sensors.

3.2.1 Influence of Fog on LiDAR Sensors

Hasirlioglu et al. proposed a theoretical model using multiple reflections of
rain droplets or fog to determine the influence of fog and rain for automotive
perception sensors [110]. The principle of the model is based on a longitudinal
layer representation. Within each layer, reflection, transmission and absorption
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could occur. This approach uses multiple reflections and is verified by means
of an experimental setup with a fog and rain simulator [108,109]. The system
developed has an overall distance of 10 m between the sensor and target,
whereby the effective length over which the weather affects the LiDAR signal
is 4 m. With this theoretical model and experimental setup, the influence of
weather on LiDAR sensors is studied by analyzing the influence of rain and
fog on the perception capability of a standardized Euro NCAP Vehicle Target
(EVT) [119]. However, the target is optimized to represent a vehicle for visual
camera sensors and not for LiDAR sensors. The results of the test setup show
that radar sensors are generallymore robust against fog than LiDAR and camera
sensors, which are strongly affected by fog [108]. Since the fog density (e.g.
meteorological visibility) is not quantified, it is not possible to direct ascertain
the real-world environmental conditions.

The LiDAR dataset in dense fog by [117] enables a conclusion to real-world
scenarios, because the datasetwas recorded in a dedicated climate chamber [62]
with a closed-loop-controlled visibility range. Note that the datasets used in
this work were recorded in the same climate chamber in collaboration with
the authors of [117]. In addition, actual objects are used to represent typical
scenes in the road environment and to ensure a correct reflection behavior
for the backscattered light. The detailed analysis by Bijelic et al. takes into
account the total number of scan points in a single frame, the intensity, the
maximum detection distance and sensor parameter tuning. According to [117],
the detection range of state-of-the-art LiDAR sensors deteriorates at visibility
levels of less than 40 m visibility and so is limited to 25 m, even with multiple
returns.

3.2.2 Influence of Rain on LiDAR Sensors

The influence of rain on LiDAR sensors was analyzed in [107,113]. Filgueira
et al. presented a work that quantifies the influence of rain on one LiDAR
sensor and a static scene, detailing the average range, intensity and number
of points for certain objects [107]. The results show smaller changes in the
distance of detected objects, while the intensity and the number of points
decrease dramatically.
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Ryde et al. and Phillips et al. analyze the influence of dust in detail with one
type of 2D laser scanner, similar to our approach of studying the influence of
fog and rain [113, 116]. Smoke and rain are also examined in [113], but no
information regarding the influence of fog is available because the chamber
used was not capable of producing artificial fog. According to [116], the
influence of dust on LiDAR sensors is systematic and predictable because the
LiDARmeasures the leading edge of a dust cloud, which with the LiDAR used,
occurs from a transmission of about 70 %.

Wojtanowski et al. [120] presented a detailed analysis and discussion con-
cerning range degradation with hypothetical LiDAR sensors with 0.9 µm and
1.5 µm under foggy and rainy conditions. In terms of attenuation only by fog,
rain and wet surfaces, LiDAR sensors with a wavelength of 905 nm outperform
sensors with 1550 nm. Since air humidity did not have any significantly impact
on the sensor’s performance, fog is the most suppressing factor [120].

Kutila et al. [121, 122] recently analyzed the impact of severe weather condi-
tions on LiDAR sensors at 905 nm and 1550 nm by evaluating the SNR of the
backscattered light and through a quantitative comparison of the number of
points per object. According to [122], the 1550 nm LiDAR sensor outperforms
the 905 nm sensor in adverse weather conditions, due to the lower restrictions
on emitted light power to achieve laser class 1.

3.3 Point Cloud De-Noising

As demonstrated in the previous section, adverse weather conditions have a
huge impact on the perception capability of LiDAR sensors. Consequently,
point cloud processing algorithms either have to deal with these influences
or require preprocessing by filter algorithms. Nevertheless, only a few de-
noising algorithms for sparse point cloud data obtained by LiDAR sensors
have been developed or are currently publicly available ( [115, 123]). We will
therefore first address the current situation regarding the de-noising of dense
point clouds obtained by depth cameras or stereo vision and then examine how
these concepts can be applied to sparse point clouds. The current state of the
art regarding sparse point cloud data will then be summarized.
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3.3.1 Dense Point Cloud De-Noising

Previous work on 2D depth image de-noising is based primarily on dense
depth information obtained by stereo vision and depth cameras (e.g. Intel
RealSense, Microsoft Kinect, etc.), which is why the traditional algorithms
developed over many years for camera image de-noising can be applied in a
straightforward manner [124, 125]. These approaches can be split into three
different categories: (1) spatial, (2) statistical and (3) segmentation-based
methods.

Spatial smoothing filters (1) - e.g. the Gaussian low-pass filter - calculate a
weighted average of pixel values in the vicinity, where the weight decreases
with the distance to the observed pixel. Points are smoothed as the distance
from the derived weight increases [126]. For de-noising 2D point cloud data
corrupted by snow, these filter types have proven highly successful, as shown
by [127] with a median filter. Since it assumes only small variations in the
vicinity, however, this approach generally fails to preserve edges. The bilateral
filter, introduced by [126] for gray and color images, is replacing traditional
low-pass filtering by providing an edge-preserving smoothing filter for dense
depth images [128].

Statistical filter methods (2) for dense point cloud de-noising are often based
on maximum likelihood estimation [129] or Bayesian statistics [130]. By
optimizing the decision regarding whether or not a points lies on a surface,
these approaches smooth surfaces and remove minor sensor errors.

By applying a segmentation step before filtering, segment-based filters (3)
are smooth only localized point cloud segments with identical labels. This
means that corners and finer structures are better preserved. Region growing
[131], a maximum a-posteriori estimator [125] or edge detection [132] is
used for segmentation, while bilateral filters are used for smoothing localized
segments.

LiDAR point clouds are significantly less dense than camera images, particu-
larly at larger distances. The direct application of camera algorithms therefore
does not typically achieve the desired result, as exemplified in [123] for a me-
dian filter applied to point cloud data. Since conventional LiDAR sensors have
a resolution of tenths of a degree and a range of 200 to 300 meters, the density
of the point cloud decreases significantly in the middle and far range.
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Abasicmachine learning approach for de-noising dense point clouds corrupted
by fog with a visibility of 2m and 6m is presented in [115]. By manually ex-
tracting features, a kNN and SVM are trained. The feature vector in particular
is based on the eigenvalues of the covariance matrix of the Cartesian coordi-
nates, which means that it is derived only if there are more then ten points in a
50mm3 cubic voxel. For a sparse LiDAR point cloud, this assumption is rarely
satisfied.

3.3.2 Sparse Point Cloud De-Noising

Many approaches in the 3Ddomain are based on the spatial vicinity or statistical
distributions of the point cloud [133], such as the statistical outlier removal
(SOR) and radius outlier removal (ROR) filter. The SOR defines the vicinity
of a point based on its mean distance to all k neighbors compared with a
threshold derived by the global mean distance and standard deviation of all
points. The ROR filter directly counts the number of neighbors within the
radius r in order to decide whether or not a point is filtered. Charron et
al. [123] recently showed that these filter types are not suited for the de-noising
of sparse point clouds corrupted by snow. In response, the enhanced dynamic
radius outlier removal (DROR) filter was introduced by [123], which increases
the search radius r for neighboring points as the distance from the measured
point increases. Since this approach takes into account the raw data structure
of LiDAR sensors, which is less dense at far distances, a better performance
could be achieved.

Nevertheless, these approaches are based on spatial vicinity and so discard
single reflections without points in the neighborhood. As a result, points at
greater distances are increasingly filtered, as shown in [123] for the SOR, ROR
and even DROR. Valuable information for an autonomous vehicle - especially
at higher speeds - is therefore discarded and the sensor’s range is additionally
limited by the filter.
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3.4 Datasets

In 2009, the first dataset with radar, visual camera, infrared camera and LiDAR
sensors was recorded in challenging environmental situations (dust, rain and
smoke) by Peynot et al. [106]. According to the results, LiDAR sensors exhibit
significantly more attenuation than radar sensors in challenging environmental
conditions. With LiDAR sensors, it was also observed that objects could
disappear behind the airborne dust. Based on the different attenuation of the
two sensor concepts, an algorithmwas developed to remove the dust reflections
by filtering the laser data based on radar data. Most recent datasets are recorded
under favorableweather conditions only or include sceneswith adverseweather
only to a minor extent. The most prominent datasets are the "Ford campus
vision and LiDAR dataset" by [118] from 2011 and, in particular, the "KITTI
dataset" by [82] from 2013.

During the period when this work was created, large datasets for the purpose
of autonomous driving were publicly released: the "nuScenes dataset" by [26]
in 2019, the "Waymo open dataset" by [134] in 2020 and the "PandaSet" Hesai
and Scale AI [135] in 2021. These large-scale datasets contain a variety of
traffic situations, objects, road types and detailed ground-truth annotations for
the purpose of semantic segmentation or object recognition. The datasets also
contain scenes with different weather conditions.

3.5 Discussion of the Current State of the Art

Given that LiDAR sensors are key for autonomous driving and robotics appli-
cations, they are currently being developed by numerous companies in a wide
variety of designs. Nevertheless, LiDAR technology is still heavily challenged
in adverse weather because the rangemeasurements are highly impaired by fog,
dust, snow, rain, pollution and smog [85,116,117,122,123,136]. Such condi-
tions - from the point of view of the autonomous system - result in erroneous
measurements in the point cloud data due to the reception of backscattered
light from water droplets (e.g. rain or fog) or arbitrary particles in the air (e.g.
smog or dust).
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For environment perception algorithms, these points are undesirable noise that
need to be specifically addressed in order for the system to be capable of
properly interpreting the scene. This is particularly relevant for algorithms that
make direct use of the low-level geometry of a measured point cloud, e.g. the
Stixel algorithm [137], where noisy input data inevitably results in noisy and
false Stixel output data. CNN-based LiDAR perception algorithms might be
better capable of handling such issues given their learning capacity, thereby
reducing the need for explicit handling of noisy measurements. For the CNN
to cope with increased noise, significantly more representative training data is
required.

Moreover, most LiDARperception algorithms involvemore traditional bottom-
up approaches for tasks such as object detection since they are usually imple-
mented on the LiDAR sensors themselves, which offer very limited computing
power. This has sparked a large body of research on algorithms to detect
and handle noisy point cloud measurements in a pre-processing step before
perception algorithms are applied.

3.5.1 Weather Impact and Classification

As the current state of the art demonstrates, the weather has a significant im-
pact on LiDAR sensors. Heavy rain or dense fog in particular can severely
affect performance [105,107–109,111–117,121,122,138,139]. It is therefore
of vital importance to recognize and quantify the impact of current weather
conditions on LiDAR performance in order to develop robust perception and,
in turn, autonomous systems. Above all, for fusion and trajectory planning
of autonomous cars, it is important to reliably classify current sensor perfor-
mance for optimally weighing sensor modalities. It is therefore essential that
the impact of various environmental conditions on specific sensor systems is
evaluated. Furthermore, it is important that the weather impact is classified
so that system limitations can be reliably identified. Some initial concepts for
detecting weather conditions using vehicle on-board sensors - including the
utilization of LiDAR sensors - are presented in [47] or [104]. To the best of
the author’s knowledge, however, no publicly available approaches, to classify
weather conditions based only on sparse point clouds captured with LiDAR
sensors have been implemented, evaluated or published in the automotive
field.
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3.5.2 Weather De-Noising

Many different 2D image anti-aliasing algorithms have been developed that
focus on smoothing noisy surface points resulting from marginal sensor er-
rors [125–128, 130–132]. De-noising algorithms in 3D space are often based
on spatial features to discard noise points caused by rain or snow [123, 133].
Since these techniques discard points based on the absence of points in their
vicinity, smaller objects at medium to large distances might be falsely sup-
pressed and identified as noise. Furthermore, these filtering techniques are not
designed to work at close range, especially when points occur in dense clouds
caused by e.g. fog, spray or drizzle. In these conditions, filtering based on the
local vicinity is not effective.

3.5.3 Dataset

Since the publication of the "KITTI dataset" [82] in 2013, numerous further
datasets focusing on environment perception in autonomous driving have been
published (e.g. [26,134,135]). The datasets and their ground truth annotations
focus here on semantic segmentation or object recognition and naturally include
numerous different weather conditions. None of them, however, provide for
adverse weather conditions with detailed weather ground truth information
containing different levels of fog or precipitation intensities. Furthermore, no
data captured in controllable environments like climate chambers with detailed
weather information containing fog visibilities or precipitation intensities is
publicly available, even though this is essential for the in-depth analysis of the
impact of weather on sensors and subsequent algorithms.

60



4 Concept and Method

This chapter describes the basic concept and methods underlying the approach
to the challenges outlined in this work. The first part of this chapter (Sec-
tion 4.1) describes the methods for analyzing the influence of weather as well
as machine-learning-based classification and segmentation methods. The sec-
ond part of this chapter (Section 4.2) covers data acquisition in adverse weather
conditions, while the third part of this chapter (Section 4.3) covers data labeling
and data augmentation to facilitate machine-learning-based methods.

4.1 Methods

To answer the scientific questions underlying this thesis, we apply different
methods in order to

(1) quantify the impact of rain and fog on LiDAR sensors;

(2) analyze the ability of an algorithmic concept to derive the weather con-
ditions based on point cloud data; and

(3) evaluate a concept for point cloud de-noising in rain and fog.

These methods are outlined in the following subsections; parts of this section
previously appeared in [85, 86] and [87]1.

1 Editorial modifications have beenmade to improve readability and ensure consistency of nomen-
clature.
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4.1.1 Methods for Quantifying the Influence of Weather

As the current literature already indicates, LiDAR sensors are heavily influ-
enced by weather conditions [105–117]. It is therefore extremely important for
autonomous systems to precisely determine this influence and to classify it at
each time stamp. The quantification of influence is presented in the following
sections, based first on the point cloud representation of individual objects
and, second, on one complete point cloud containing the entire field of view
or region of interest. The analysis for an entire point cloud could also be re-
ferred to as manual feature extraction, serving as a vector for machine learning
methods, which are applied in the subsequent section.

Impact on Object Sensing

Object sensing is a crucial task for autonomous driving and the basis for all the
following systems, including fusion, trajectory planning and behavior. Since
LiDAR perception algorithms usually detect objects on the basis of geometric
features of segments of the point cloud, two metrics are used for analyzing the
alteration of those object segments at a constant distance.

We therefore analyze the point cloud representation for the object O as a
function of rainfall rate R and visibility V at time stamp k. Thus, the number
of points per object O and echo e is denoted by the function N(O, e, k). The
expected number of points Nclear for one object is based on the mean over all
frames in favorable weather conditions without any fog or precipitation

Nclear (O, e) =
1
K

K∑
k=1

Nclear (O, e, k). (4.1)

The number of frames or samples is denoted as k ∈ 1 . . .K . To assess the
influence on perception performance, a point density PD is derived as a key
metric, quantifying the impact of missing points. The density PD(O, e, k)
is defined for each return e and object O separately by calculating the ratio
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of points per object Nweather (O, e, k) scaled by the mean over all frames in
favorable weather conditions Nclear without any fog or precipitation:

PD(O, e, k) =
N(O, e, k))

Nclear (O, e)
(4.2)

The object density is an indication of the degradation of object perception and
reflects the number of missed points on objects in adverse weather. In addition,
the point density rate in clear conditions is an indication of the stability of the
raw data and the occurrence of missing points (FP).

Impact on Point Cloud Data

Research into the impact of rain and fog on entire point clouds is based on
the alteration of distance and intensity images in controlled environments with
static scenes, whereby the metric to derive the influence on the overall point
cloud is based on manual feature extraction based on statistical representations
of the point cloud.

As explained in Section 2.1.2, we utilize an unstructured point list as matrix
Pnxm(k) at a discrete time step k, where each row i = (1, . . . , n) contains one
point. The attributes of a point Pi are defined as:

Pi = (xi, yi, zi, ri, θi, ϕi, ei, ζi) . (4.3)

The notation for one point is: (x, y, z) for the Cartesian coordinates, (r, θ, ϕ) for
the spherical coordinates, e for the return number, ζ for the intensity or EPW
depending on the sensor type. Manual feature extraction is based on the point
list P(k) and starts with spatial filtering to focus on a Region of Interest (ROI).
Since the return energy of light scattered by atmospheric particles is weak, the
influence of ambient conditions is expected to manifest itself primarily at close
range. The point cloud is thus spatially filtered, restricting processing to the
near-range (x ≤ 20m) of the ego lane (−1.5m ≤ y ≤ +1.5m). Furthermore, the
ROI reduces local dependencies because roadside vegetation, guardrails, etc.
are filtered out, saving computation time and resources. At the same time, the
ROI is sufficiently large to provide a representative segment of the entire point
cloud. A distinction by the echo number t ∈ N representing the first, second
or third return signal of a transmitted light pulse, is reasonable because the
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[h]

Table 4.1: Feature vector for environment classification based on point cloud data. For the feature
set "VLP16", the echo pulse width epw is replaced by the intensity I .

f1 N1 f5 r2 f9 mean(r) f13 mean(epw)
f2 N2 f6 r3 f10 mean(ϕ) f14 eig(cov(x))
f3 N3 f7 mean(e) f11 mean(θ) f15 eig(cov(y))
f4 r1 f8 var(e) f12 var(epw) f16 eig(cov(z))

number of echoes per scan direction relates not only to the number of objects
but also atmospheric particles, which are potential scatter points for the light.
Hence, the amount Mt is defined as Mt := {ei |ei = t} with t ∈ {1, 2, 3, · · · }
being the number of the respective received return pulse per angle. For the
number of points for a specific echo, the signal Nt (k) is derived:

Nt (k) = |ei(k)| ∀ei ∈ Mt . (4.4)

The mean and variance of one attribute pj are calculated for each frame by:

pj(k) =
1
n

n∑
i=1

pi j(k) var(pj(k)) =
1
n

n∑
i=1
(pi j − pi j(k))2 . (4.5)

For example, the mean distance of all points corresponding to a specific return
is given by:

r t (k) = ri(k) ∀ei ∈ Mt . (4.6)

The spatial distribution of the points is represented by the eigenvalues of the
covariance matrices of x, y and z, similar to [115]. Finally, the assignment of
the resulting feature vector f = ( f1, . . . , f16)

T , shown in Table 4.1, describes
one frame of the laser scanner. The features are filtered in a subsequent
component analysis to identify the parameters with the highest effect [140].
Additionally, the impact of a static scene has to be mitigated in order to not
bias the training of ambient condition detection. For example, the total number
of points is not taken into consideration for weather classification because it
is highly dependent on the situation (empty highway versus inner-city traffic
jam).
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Figure 4.1: Basic CNN architecture for weather classification based on LiDAR point clouds. The
denoted WeatherBlock (WB) shows an inception module, which is followed by a
decoding layer based on a convolution.

4.1.2 Methods for Weather Detection by LiDAR Sensors

The most successful state-of-the-art camera image weather classification ap-
proaches are based on machine learning, either with manual feature extrac-
tion [99, 103, 141, 142] or deep learning approaches [143, 144], as presented
in Section 3.1.4. We therefore apply these methods to the task of weather
classification by means of LiDAR point clouds.

Specifically, the manual extracted features presented in Section 4.1.1 are de-
rived to quantify the weather impact and are therefore suitable for use as a
feature vector for an SVM and kNN classifier.

Additionally, deep learning techniques with a CNN are directly applied to the
raw point cloud as an end-to-end approach to classifying theweather conditions
based on the sparse point cloud data. The development process of the applied
CNN architectures is explained below. For framewise weather classification,
we adapt state-of-the-art CNN architectures for sparse point cloud semantic
segmentation for the classification task [145, 146]. Since these architectures
are capable of retrieving information at a point level and predicting a label per
point, we use the backbone structure to create a new network architecture for
classifying the weather condition for the entire image.
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Figure 4.2: Details of the WeatherBlock and DecodeBlock structure. The WeatherBlock is pre-
sented in [87], based on the LiLaBlock from [145] and enlarged by a dilated convo-
lution [129] and a dropout or batch normalization layer. For the classification task,
down-sampling is additionally applied after each WeatherBlock by a convolution with
strides 2 × 2. A ReLu layer is used as an activation function [76].
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Figure 4.3: Block diagram of the WeatherClass architecture for end-to-end weather classification
based on LiDAR point clouds.

As input data, we use the LiDAR distance and intensity image (see Sec-
tion 2.1.2). If the sensor data contains multiple returns, we concatenate the
strongest and last return of the intensity and distance image. The data is then
processed by a CNN in order to predict the weather condition.

The model architecture is based on a combination of LiLaNet from [145] and
RangeNet from [146]. Figure 4.1 illustrates the architecture of the classifica-
tion CNN, whereby the input shape, number of output predictions, depth and
number of layers are flexible. These parameters are adapted to the complexity
of each classification task, for example, to the number of classes or the fineness
of the subdivision of weather conditions. The WeatherBlock (Figure 4.1) is
an inception module with four parallel convolutions, a bottleneck convolution
and dropout or batch normalization layer. Figure 4.2 shows the WeatherBlock
in detail, which is inspired by the LiLaBlock introduced by [145]. Compared
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Figure 4.4: The proposed WeatherNet architecture is based on LiLaNet presented by [145] and
optimized for de-noising purposes. The depth is therefore reduced, a dropout layer
is inserted and a dilated convolution is added to the base block of the network. The
modified LiLaBlock is shown in detail in Figure 4.2. The WeatherNet illustration
previously appeared in [87].

with [145], we enlarged the LiLaBlock with a squared dilated convolution to
provide more information about the spatial vicinity by increasing the recep-
tive field. Furthermore, a dropout or batch normalization layer is applied to
improve generalization capability [147, 148].

EachWeatherBlock is followedby a down-sampling layer that has been adjusted
based on [146]. We used a 3 × 3 convolution with 2 × 2 strides, followed by a
leaky ReLu activation function by [76]. The input shape is therefore divided
in two vertically and horizontally. Subsequently, fully connected layers are
applied until the target vector shape is achieved and the prediction is derived by a
softmax activation layer. Figure 4.3 illustrates the aforementioned architecture
for weather classification in the form of a schematic block diagram.

4.1.3 Methods for Point Cloud De-Noising

We propose a filter approach based on a convolutional neural network, which
understands the underlying data structure and can generalize its characteristics
for different distances and clutter distributions. Furthermore, this approach
can incorporate the intensity information of the point cloud. The semantic
segmentation task is being further developed by many in the scientific com-
munity and is already applied to the LiDAR point cloud domain, showing very
promising results [145, 146, 149]. A major advantage is that the algorithms
can generalize to a very high standard and thus recognize objects at different
distances and orientations.

A number of approaches already exist for the input data layer and the network
structure itself, which we utilize and adapt to the task of semantic weather
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segmentation [145, 146, 150–153]. The recently introduced PointPillars by
[152] is based on a feature extraction network, generating a pseudo image
from the point cloud, which is then used as input for a backbone CNN. This
approach excels with KITTI’s object detection challenge [82] in terms of
detection performance and inference time. Just such a 3D CNN architecture
was recently applied to a pointwise semantic segmentation task by Piewak et.
al, as a further development of the aforementioned 2D approach. In terms of
efficiency and computation complexity, however, 3D approaches still have a
number of disadvantages compared with 2D approaches. Since preprocessing
algorithms particular place strict requirements on computation speed, we will
focus on 2D input layer approaches, which commonly use a bird’s eye view
(BEV) [150–152] or an image projection view [145, 146, 153]. We therefore
propose a 2D approach inspired by the CNN architecture of LiLaNet [145].

Specifically, for the de-noising of LiDAR images, we will utilize the Weath-
erBlock as introduced in the previous section and already published in [86]
and [87]. Since labeling is performed on a single point level, the decoding
layer, which reduces the image resolution, is omitted. Due to the reduced
complexity of the segmentation task (3 classes) compared with multi-class
semantic segmentation (e.g. 13 or 28 classes) [82–84, 145], we reduced the
depth of the network by reducing the number of filters. A dropout layer is
also added before the lastWeatherBlock. The resulting network architecture is
shown in Figure 4.4.

4.2 Data Acquisition

To address the questions posed in this work through the application of machine
learning methods as proposed in Section 4.1, a large-scale dataset for LiDAR
sensors containing various different weather conditions with detailed ground
truth information, is required. The requirements for such a dataset were there-
fore first defined in order to evaluate whether existing datasets can be used or
new data needs to be acquired. Furthermore, the requirements enable planning
for the acquisition of future datasets.
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4.2.1 Requirements Regarding Datasets

The requirements regarding the datasets are derived by the applications of this
thesis: the analysis of weather influences on LiDAR sensors and the machine
learning approaches for the classification and filtering of these influences.
First, the repeatability of weather conditions is essential in order for the same
scenarios to be recorded repeatedly under different weather conditions. The
influence of weather can then be analyzed exclusively while the surroundings
remain static. Second the predictability of weather conditions is necessary for
capturing a significant amount of data from very rare weather conditions like
dense fog [154]. In addition, either constant environmental conditions or very
precise ground truth reference systems are required to capture an entire scene
with known weather characteristics.

While a climate chamber fulfills the requirement for repeatability, it is almost
impossible with road-based recordings to create an identical scene in different
weather conditions or identical weather conditions in different scenes. More-
over, a climate chamber provides a range of opportunities and information for
a recorded dataset such as highly detailed ground truth information about the
weather condition, closed-loop controlled stabilized meteorological visibility,
rainfall rate or temperature. A controlled environment is therefore used for
recording adverse weather data.

Datasets recorded in controlled environments, however, are limited in terms
of the variance of weather conditions, variety of scenarios and size of the
available recording area. Datasets recorded on the road are important to assess
the influence of natural weather and the performance of the algorithms under
realistic conditions. This is why we combine on-road and climate-chamber-
based recordings in order to leverage the benefits of both environments in
one dataset. The requirements regarding a dataset suitable for the questions
contained in this thesis are as follows:
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Requirements for Controlled Environments

REQ-01 The weather simulation area must be sufficiently large to present
realistic scenarios for analyzing sensor perception capability.

REQ-02 The simulated weather conditions must be verifiably equivalent to
real-life weather conditions.

REQ-03 The simulated weather conditions must be quantified using mete-
orological metrics and provided as ground truth information.

REQ-04 Predictability: The controlled environment must be capable of
generating rare weather conditions instantaneously.

REQ-05 Repeatability: The controlled environment must be capable of
generating reproducible weather conditions in order to capture dif-
ferent scenarios under the same weather conditions and the same
scenario under different weather conditions.

REQ-06 Controllability: The simulated weather conditions must be contin-
uously controlled. The simulated weather remains constant during
the measurement recording, or is continuously monitored by mea-
surement technology.

Requirements for Road Environments

REQ-07 Various natural rain conditions, including different precipitation
intensities.

REQ-08 Various natural fog conditions, including different densities in
terms of MOR.

REQ-09 Various traffic situations and road conditions.
REQ-10 Road environments must allow algorithms trained in controlled

environments to be evaluated in real-life traffic situations. The
weather conditions therefore need to be measured or at least docu-
mented as scene tags in order to generate ground truth information.
The frequency of this information is to be at least one tenth of the
frame rate of the LiDAR sensor.

As explained in Section 3.4, no dataset for autonomous driving with the focus
on adverse weather is currently publicly available. Moreover, none of the
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Table 4.2: Comparison of publicly available LiDAR datasets in automotive environments based
on the derived requirements for this work.

Requirement Ford C. KITTI nuScenes Waymo PandaSet Ours
REQ-XX [118] [82] [26] [134] [135] [87, 155]

Co
nt
ro
lle
d

En
vi
ro
nm

en
t

01 Realsitic Traffic Scenarios 7 7 7 7 7 X

02 Realsitic Weather Simulation 7 7 7 7 7 X

03 Groundtruth (meteorol. metrics) 7 7 7 7 7 X

04 Predictability 7 7 7 7 7 X

05 Repeatability 7 7 7 7 7 X

06 Controllability 7 7 7 7 7 X

Ro
ad

En
vi
ro
nm

en
t 07 Natural Rain 7 7 X X 7 X

08 Natural Fog 7 7 7 7 7 X

09 Diversity X X X X X X

11 Groundtruth (Scene Tags) 7 7 X 7 7 X

published datasets meets the requirements summarized in Table 4.2. In par-
ticular, no dataset acquired in a climate chamber and under controlled weather
conditions is currently publicly available.

Multiple datasets will therefore be collected in this work with a focus on un-
favorable weather conditions. The datasets focus primarily on the weather
conditions "fog", "rain" and "snow". Other weather conditions were not ex-
plicitly considered but are included in the dataset as a result of the outdoor
recordings. Most of the recordings were made in collaboration with the Dense
project [156]. In February 2020, the recorded datasets were published as part
of the following contributions [87, 155, 157–159].

4.2.2 LiDAR Sensors Used

Since the market for LiDAR sensors in the automotive sector is currently very
dynamic, the performance of the sensors, - especially in terms of range and
resolution - is constantly evolving. This means that any LiDAR sensor setup
will likely be outdated as soon as a dataset is captured, pre-processed and
published, which is why we have continuously updated the selection of our
sensors with recently published state-of-the-art LiDAR sensors to ensure that
we are using the most up-to-date sensor for the respective recording of our
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Table 4.3: All sensor specifications are based on the manufacturer’s data sheet [20–24]. We stated
only the specification of the configuration that we used during our recordings.

Manufacturer Sensor FoV Resolution Framerate Number Maximum
Name h. v. h. v. of Returns Range

Velodyne VLP16 360 30.0 0.2 2 10 Hz 2 100m
Velodyne HDL32E 360 41.33 0.08 − 0.33 1.33 10 Hz 2 100m
Velodyne VLP32c 360 40.0 0.1 − 0.4 0.33 10 Hz 2 200m
Velodyne HDL64E-S3 360 26.9 0.08 − 0.35 0.4 10 Hz 2 120m

Ibeo Scala 145 3.2 0.25 0.8 12.5 − 22.5 Hz 3 150m

datasets. This is why our recordings involve numerous different sensors. Table
4.3 contains an overview of important information about the sensors used for
data acquisition in adverse weather.

The sensors used for data acquisition in this work are four state-of-the-art
Velodyne LiDAR sensors: Velodyne VLP16, Velodyne VLP32c, the Velo-
dyne HDL64E-S3 and Ibeo Laserscanner Scala. "NuScenes" - the publicly
available dataset used here - is captured with the Velodyne HDL32E [26]. All
sensors operate at wavelength of around 905 nm with a scanning system. The
main difference between the Velodyne and Ibeo sensor concepts lies in the
mechanical design of the scanning pattern [85]. The Velodyne sensors use a
rotator to spin the transmitter and receiver; the Scala sensor keeps the transmit-
ter and receiver fixed and deflects sending and receiving light with a rotating
mirror [85]. Another difference is that the Scala sensor provides the EPW of
the received light pulses, whereas the Velodyne sensor measures the intensity
of the received pulses [85]. Both sensors are capable of detecting multiple
returns, which are also referred as "echoes". While the Scala sensor provides
three echoes ordered by distance, the Velodyne sensor provides the last and
the strongest echo. If the last and the strongest echoes are identical, the second
strongest echo is provided [20–22,24,25]. Since the notation with the strongest
and last return causes confusion if there are more than two returns, a uniform
designation is used for the sensor types used, sorting the pulses by distance.
We therefore refer to the returns as 1 for the closest return and the returns
ascending with increasing distance. If we use the strongest or last echo, we
state this explicitly. If no multiple reflections are detected, there are no points
provided by the Scala sensor for echo 2 or 3. With Velodyne sensors, however,
the strongest and the last echo are identical if only one return is measured.
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Figure 4.5: Static setups in the chamber representing four complex, real-life traffic situations. The
upper picture shows a scene with a pedestrian (1) on a zebra crossing (6), a child (7)
imitating chasing a ball (4) on the street, a parked car (2), a cyclist pushing their bike
across the street and a car (5) that is turning left. There is also a garbage can (8) on
the far right. The bottom pictures show a number of traffic scenarios with different
objects like a black tire as lost cargo, guardrails, cars, lane markings, reflector posts,
traffic signs, a plant and pedestrian mannequins with and without umbrella [85].

4.2.3 Recorded Datasets

Controlled Environments

By taking part in the Dense project [156], the following datasets were acquired
under controlled weather conditions in Cerema’s climate chamber [62, 64]
in accordance with the publications of [87, 157–159]. The climatic cham-
ber [62, 64] , which provides spatial and temporal uniformity in addition to
water droplet size distribution, is capable to determining in great detail the ar-
tificially generated weather conditions. The climate chamber therefore meets
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all requirements that we derived for a dataset in controlled environments - with
the exception of the requirement regarding the size of the test environment.
The simulation area and height of the chamber are a disadvantage which is why
our work focuses on the influence of rain and fog in the near range (d < 30m).
However, since our research focuses on dense fog (10− 100m) [37] and heavy
rain (> 7.6 mm/h) [50], where the maximum visibility range of even state-
of-the-art - as of 2019 - LiDAR sensors is very limited, the limited length of
the climate chamber does not constitute a major drawback for the recordings.
Nevertheless, the limited height has a stronger impact on the tests because the
ceiling and nozzles are permanently visible in the LiDAR data.

To enable machine-learning approaches to data captured in controlled environ-
ments, we designed different setups for creating scenarios that were as realistic
as possible within the limited size of the facility. First, only real objects were
used instead of replicas like the Euro Vehicle Target (EVT) by the European
New Car Assessment Program (NCAP) [119], which is designed to represent a
passenger car for camera sensors but not for LiDAR sensors. The characteristic
backscattering distribution of a real car is different to that of the EVT, which
has, for example, no retro-reflective surfaces. By using real objects instead
of replicas we cannot expect any differences regarding sensor perception in
relation to objects compared with on-road recordings. This is a tremendous
advantage when it comes to training algorithms in both domains. For static
scenes only, pedestrian mannequins are used instead of actual people in order
to ensure the exact same scene without any changes in position or gesture
during the entire recording process under different weather conditions.

To analyze the impact only of rain and fog, highly realistic static scenarios -
as shown in Figure 4.5 - are recorded under reference conditions without any
precipitation or fog, rain with a stabilized rainfall rate of 15 mm/h, 33 mm/h
and 55 mm/h and fog with a close-loop controlled meteorological visibility
between 5 m and 110 m. The chamber dataset with static scenes is denoted
as chamber32stat and contains 72 800 samples for training, validation and
testing. For reducing temporal correlations among samples collected in the
climate chamber, each setup is used only in training, validation or test split (see
Figure 4.5). This results in a data split of approximately (60% − 15% − 25%)
for training, validation and testing.

In addition, dynamic scenes are recorded with a pedestrian, cyclist and car.
A total of six different trajectories and complex combinations of those three
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Figure 4.6: Schematic overview of the dynamic scenes in the climate chamber, recorded under
different meteorological visibility ranges and rainfall rates. Overall, we obtain six
different dynamic scenes: the four trajectories shown in the figure, the combination of
a pedestrian A and the cyclist and the combination of all three objects. The climate
chamber is 5.50 m wide and 31.0 m long [64].

dynamic objects are captured under each weather condition: the three rainfall
rates mentioned above and under foggy conditions with constant visibility from
10−100m in increments of 10m. The dynamic scenes dataset (chamber32dyn)
in the climate chamber contains a total of 150 790 frames. An overview of the
trajectories is provided in Figure 4.6

Uncontrolled Environments

A large-scale road dataset under various fog, rain and snow conditions com-
bined with favorable weather conditions was recorded by [157] and [155] in
the Dense project [156]. We denoted this road dataset as dense32 (VLP32c)
and dense64 (HDL64E-S3) for the different sensor types.

We also recorded a road dataset with aVelodyneVLP16 and a reference camera
under various different weather conditions and traffic scenarios. The dataset
contains sunny, cloudy and rainy weather situations during the day and the
night. Furthermore, the recordings were captured on different types of roads
(highways, rural- and urban roads) and in different traffic situations (empty
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(a) national road, light rain (b) rural road, heavy rain

(c) roundabout in a city, no rain (d) traffic jam on a highway, no rain

Figure 4.7: Examples for the road data set denoted as rainkles16, which contains different precip-
itation levels, scenarios and road types during day- and night-time [85].

roads, traffic jams, crowded scenes with numerous different objects). Figure
4.7 provides four different examples. The dataset contains a total of five scenes
without precipitation (four during the day, one at night), three with occasional
precipitation and four with almost permanent precipitation (three during the
day, one at night). The dataset is referred to as rainkles16 in the following.

We also use the recently released NuScenes dataset by [26], which contains a
total of 331, 036LiDAR frames 64, 718 ohwhich were captured during rainfall.
The sensor used here is the Velodyne HDL32E [21,26].

Data Sets Overview

The notation in Table 4.4 uniquely identifies the datasets being used in this
work. Furthermore, an overview of the number of samples and the purpose of
each dataset is given. The datasets are recorded with different LiDAR sensors,
which also enables the impact of adverse weather on different LiDAR sensor
types to be analyzed. For deep learning purposes, however, the domain adapta-
tion from one sensor type to another is still an open question in research [160]
and not covered in this work. The classification models are thus trained on
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Table 4.4: Overview of datasets used. The notation uniquely identifies the recording during the
thesis. Except for NuScenes [26], all datasets were recorded within the scope of this
work or in collaboration with the research project DENSE 24/7 [156].

Data Set Name Sensors Location Purpose Samples

chambers16 VLP16/Scala
chamber dense fog and heavy rain

274k/105k
chambers32stat VLP32c 73k
chambers32dyn VLP32c 151k

rainkles16 VLP16

roads

adverse weather (rain) 270k
dense32 [155] HDL64 S3D, VLP32c adverse weather (snow, rain and fog) 1, 400k
NuScenes [26] VLP32E object detection 331k

each dataset separately.

4.2.4 Data Split

We carefully split our datasets into training, validation and test data in order
to preventing machine learning approaches from over-fitting. Since adverse
weather conditions usually occur less often than calm weather conditions,
datasets recorded on roads are mostly imbalanced (e.g. [26, 155]). This is
important in the training of machine learning classifiers, by either distributing
the class equally or weighting the classification by the inverse of the number of
classes. Appendix Figure A.3 provides an overview of the class distributions
of all datasets.

Furthermore, the datasets contain sequential frames or sequences that form
temporal correlations, which must be specially taken into account when ma-
chine learning is applied. A recorded sequence or setup in the climate chamber,
therefore, is either used for training, validation or testing. The target distribu-
tion of (65 %−15 %−20 %) for training, validation and testing could therefore
not be achieved accurately (Figure A.3).
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4.3 Ground Truth Labeling and Data
Augmentation

Ground truth annotations are essential for evaluating the quality of machine
learning approaches. Furthermore, for the applied supervised methods, large-
scale annotated training data is required. In this thesis, we classify point clouds
on a frame basis and on a point level. Each frame or single point in one frame
thus needs to be annotated (e.g rain or no precipitation).

4.3.1 Framewise Labeling

For framewise labeling, one label per frame is sufficient. We have defined
the following major classes: "clear", "fog" and "rain". "Clear" indicates
no precipitation, fog or other adverse weather conditions. "Rain" and "fog"
indicate the respective weather conditions and are subdivided according to the
classification task and available ground truth information.

In controlled environments, we have highly accurate information about the
weather condition on a frame level, since the ground truth data obtained by the
chamber’s reference system can be directly applied for annotating each LiDAR
frame. The frequency of the ground truth information is 1Hz.

For the rainkles16 road recordings, the ground truth labels are derived by using
the vehicle on-board sensor for adjusting the speed of the wiper according to
the rain intensity on the windshield. The LiDAR point clouds in the dense32
and dense64 datasets are manually annotated by evaluating time-synchronized
camera images. In the NuScenes dataset, the scene description itself contains
information on whether or not it is raining. This is applied directly as a label
for all frames in the corresponding scene [26].
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dGT
i, j,1 dGT
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f stacked ground truth images DGT label candidate D

Figure 4.8: Diagram showing the automated labeling process for point clouds in static environ-
ments. The selected pixels di, j are marked red for ground truth and blue for the frame
that is labeled.

4.3.2 Pointwise Labeling

Parts of this section on the label method for pointwise annotations in reference,
fog and rain conditions previously appeared in [86] and [87]2.

For pointwise segmentation, ground truth labels are required for each single
point. The label defines whether a point is caused by a water droplet or solid
object. Since LiDAR sensors are capable of providing more than 1, 200, 000
points per second, manual annotations are extremely sophisticated.

For sparse LiDAR point clouds, manual annotation is also very challenging
and even more difficult for semantic weather segmentation, whereby it is
determined whether or not a point is caused by a water droplet. Humans
are more readily able to process camera images than LiDAR point clouds,
so a time-synchronized camera image as additional information is helpful for
labeling LiDAR point clouds in order to significantly improve the label quality.
Since water droplets cannot be captured directly by passive camera sensors,
especially over long distances, this label aid is not available for semantic
labeling of weather information. We therefore use the recorded static scenes
in controlled environments to develop an automated labeling procedure, which

2 Editorial modifications have beenmade to improve readability and ensure consistency of nomen-
clature.
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does not involve human perception. The basic idea of auto-labeling is that, in
a static scene, every point that occurs in rain or fog in addition to the reference
conditions is caused by the influence of weather and is labeled as "clutter".
Each single LiDAR image k, therefore, is stacked to create l images under
reference conditions. The stacked ground truth images are denoted as

DGT = (dGT
i, j,k) ∈ R

(n×m×l). (4.7)

Subsequently, as illustrated in Figure 4.8, each distance measurement d at pixel
position (i, j) is labeled by calculating the difference to all stacked ground truth
images dGT

i,j,k. Additionally, a threshold ∆R is added to the search region of
valid distances. To minimize the number of false negatives, the threshold value
∆R = ±35 cm is quite high in relation to the specified distance accuracy of the
sensor. The labels di, j - whether or not a distance measurement is "clutter" -
are calculated per pixel as follows:

p =
{

clutter, if ∆R ≤ min
1≤k≤l

|dGT
i, j,k
− di, j | (4.8)

no clutter, else (4.9)

By direct comparison of the pixel values, the transmitter and receiver compo-
nents are identical in each comparison, which means that measurement offsets
or any other absolute sensor errors have no influence. Furthermore, smaller
sensor measurement inaccuracies are already taken into account in the com-
parison of the distance images through accumulation over multiple frames in
the reference condition. This method is very fast because it does not require
3D information. Alternatively, a 3D point cloud comparison was implemented
by a kd tree approach without showing significantly different label results.
The sequences for fog and rain are labeled separately so that they can be
differentiated.

The error of the derived ground truth labels is quantified by applying the label
procedure to the reference recording itself. By splitting the reference frames
into half, the evaluation is performed by taking the first split as ground truth
labels to label the second one (and vice versa). Since the scenes are identical
and there are no changes in weather conditions, all points are expected to be
labeled as valid. For both tests, the resulting per-pixel mean false rate for
labeling a valid point as clutter is 0.367 ± 0.053 %.
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Since there are no manual annotated ground truth labels for clutter points, the
error in relation to whether or not a clutter point is labeled as valid could not
be evaluated.

4.3.3 Data Augmentation

The following section on the data augmentation techniques previously appeared
in [86] and [87]3. State-of-the-art, publicly accessible sparse point cloud
datasets tend to be recorded under favorable weather conditions. To use these
datasets for semantic weather segmentation, we developed an augmentation
approach for rain based on the fogmodel of [155]. We therefore obtained a large
training dataset without requiring manual annotation while providing error-
free ground truth. The augmentation algorithm is applied to LiDAR images to
enable manipulations for each individual distance measurement, whereby the
risk of occlusion is excluded by design. The proposed augmentation based on
the model of [155] not only adds individual points but also alters additional
attributes of the point cloud: Adverse weather affects the viewing range and
also lowers the contrast of intensity and echo pulse widths.

Fog Model

First, the maximum sensing range is derived by the runway visual range

V =
−ln(CT )

β
(4.10)

based on the atmospheric extinction coefficient β and the observer’s contrast
threshold CT [155]. For LiDAR sensors, this threshold CT can be interpreted
as a detector threshold, whereby the sensor is capable of perceiving an object
above the noise floor [155]. Since LiDAR is an active sensor system, the

3 Editorial modifications have beenmade to improve readability and ensure consistency of nomen-
clature.
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Figure 4.9: Intensity distribution of points whose existence can be explained by weather influences
(e.g rain or fog). The data is based on the climate chamber recordings at 5 − 100 m
visibility and rainfall rates of 15 mm/h, 33 mm/h and 55. A logarithmic normal
distribution LN (µ, σ2) is assumed as the underlying probability density distribution
function.

maximum sensor range is equal to half the maximum viewing distance and
results in:

dmax =
−ln( n

L f og+g
)

2 · β
(4.11)

The sensor threshold is a function of the received laser intensity L f og, the
adaptive laser gain g and the detectable noise floor n. Scattering points due
to water droplets are added according to the model of [155]. In contrast
to [155], the intensities of augmented points are derived from a logarithmic
normal distribution LN(µ, σ2), which is assumed as the underlying probability
distribution function. Parameters µ and σ are derived from the intensities of
all clutter points based on the auto-labeled climate chamber data from the
previous section. We can therefore model the intensity distribution of fog at
10− 100 m visibility and for rainfall rates of 15 mm/h, 33 mm/h and 55 mm/h.
We preferred this method because in the model of [155], the original scene
is mirrored in the intensity distribution because the augmented intensities Ĩ
are a function of the perceived intensities I of the sensor (Ĩ = I · e−β ·d). The
resulting logarithmic normal distributions are shown in Figure 4.9, whereby
the rainfall rate of 33mm/h corresponds more to the intensity distribution of
fog than rain at 15 mm/h or 55 mm/h due to the technical characteristics of the
climatic chamber.
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4.3 Ground Truth Labeling and Data Augmentation

Algorithm 1: Point cloud rain augmentationmodel rain(D, I, β, R)with distance matrix
D, intensity matrix I , atmospheric extinction coefficient β and point scatter rate p.
Function rain(D, I, β, p)

B =betafunction(β)
Dmax = −ln(

n
I+g )/(2B)

Dr and =random.uniform(Dmax )
Plost = 1 − exp(−β · Dmax )

foreach d ∈ D, dm ∈ Dmax, ds ∈ Dscat ter , dr ∈ Dr and, pl ∈ Plost do
if dm < d then

if pl then
pass; . point is lost, do nothing

else if rand< p then
d = dr ; . random scatter point

i = LN (µ, σ2); . rain int.

else
pass

else
i = i · exp(−β · d); . attenuate int.

end
end
return D, I

end

The augmented fog corresponds to a visibility V of 30− 3000 m, which is why
we use an atmospheric extinction coefficient β of between 0.001 and 0.1.

Rain Model

In addition to our modifications of fog augmentation based on [155], we
optimized the rain augmentation system. The fog augmentation parameters
have been adapted to make the augmented scatter points equivalent to natural
rainfall. The atmospheric extinction coefficient β is set to 0.01 for rain aug-
mentation. The point scatter rate p defines the per-point probability of random
scatter points. The pointwise ground truth data obtained in this way enables
the calculation of p for raindrops, which is 10.61 %, 0.73 % and 4.70 % for
15 mm/h, 33 mm/h and 55 mm/h in the climate chamber. The distributions
of point-scatter rates are illustrated as a box plot in Figure 4.10. For the
applied augmentation we finally fixed p at 7.5 %, which stabilizes the CNN
training, matches the quantity of scatter points in natural rainfall and is within
the range of the derived probabilities from the climate chamber. Furthermore,

83



4 Concept and Method

0-25 25-50 50-75 75-100
visibility / m

0

10

20

30

40

50

fr
eq

u
en

cy
/

%

strongest return

0-25 25-50 50-75 75-100
visibility / m

0

10

20

30

40

50
last return

15 33 55

rainfall rate / mmh−1

0

5

10

15

20

fr
eq

u
en

cy
/

%

strongest return

15 33 55

rainfall rate / mmh−1

0

5

10

15

20
last return

Figure 4.10: Illustration of the meteorological visibility in m and rainfall rate in mm/h provided
by the climate chamber and the frequency for the number of scatter points during
rainfall or fog. The frequency is derived by the ratio of the number of scatter points
and the number of valid points.

the intensity distributions of the three different rainfall rates are used to sam-
ple the intensity of augmented scatter points caused by rain. In Figure 4.9,
the logarithmic normal distributions for 15 mm/h, 33 mm/h and 55 mm/h, as
captured in the Cerema climate chamber [62], is given. The rain augmentation
is described in detail in algorithm 1.
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5 LiDAR in Adverse Weather
Conditions

This chapter evaluates the aforementioned methods, which are applied to the
data recorded during this work. Section 5.1 provides an in-depth analysis of
weather influence on LiDAR sensors. Section 5.2 covers weather classification
based on the aforementioned machine-learning approaches. Section 5.3 covers
the pointwise segmentation for sparse LiDAR point clouds corrupted by rain
or fog.

5.1 Influence of Weather on Lidar Sensors

This section provides an in-depth analysis of weather influence on LiDAR
sensors, focusing on the alternation of the point cloud data due to the impact
of rain and fog.

5.1.1 Influence of Weather on Point Clouds

From the perspective of a LiDAR sensor, there are basically five different
back-scattering behaviors that affect the point cloud data (see Figure 5.1):

(a) Only returns from the cloud are received by the LiDAR sensor. Targets
behind the cloud are not visible in the point cloud data.

(b) The opposite behavior: Only the target behind the cloud is visible. The
cloud is not present in the point cloud data.

(c) A combination of (a) and (b) results in both, i.e. the cloud and target are
present in the point cloud.
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Sensor
Cloud Target

(a) returns from the cloud only

Sensor
Cloud Target

(b) returns from the target only

Sensor
Cloud Target

(c) returns from both (single return)

Sensor
Cloud Target

(d) returns from both (multiple return)

Sensor
Cloud Target

(e) no returns

Figure 5.1: The backscattering behavior of LiDAR sensors in conjunction with particle clouds in
the atmosphere, presented by [116] and including the possibility of multiple returns.

(d) If the sensor is capable of detecting multiple returns, the cloud and
the target can be perceived and are present in the point cloud for each
receiver component.

(e) The emitted light signal is absorbed by the cloud without backscattering
enough energy to the receiver or transmitting enough energy to objects
behind the cloud, which means that neither the cloud nor the object
behind the cloud are visible in the point cloud data.
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5.1 Influence of Weather on Lidar Sensors

Weather Information available in LiDAR Data

This section was previously published in [86] and [87]1.

Based on the dataset described in Section 4.2 and the corresponding ground
truth labels described in Section 4.3, we can analyze the influence of weather at
a point level (see Figure 5.2). The analysis shows that the LiDAR point cloud
reflects the weather conditions in a great detail, since the number of points
scattered by fog or rain is correlated with the visibility or rainfall rate. The
results also indicate that no points are being lost (case (e) in Figure 5.1e) and
so the sum of fog or rain and valid points is equivalent to the number of points
in reference conditions.

The point cloud thus contains the information required for estimating the
meteorological visibility or rainfall rate by determining the number of weather-
induced scattering points. Since an increase in the rainfall rate does not
necessarily result in an increase in scatter points, the rainfall rate cannot be
estimated directly, but the extent of the degradation of the LiDAR sensor
can be estimated. This information is incredibly valuable because it enables
autonomous vehicles to adapt their behavior in line with the environmental
conditions and sensor performance.

The low rainfall rate of 15 mm/h could be recreated in the rain simulation
only by generating drizzle instead of normal rain as was the case with rainfall
rates of 33 mm/h and 55 mm/h. The higher number of scattering points in
the drizzle at 15 mm/h (Figure 5.2) compared with the higher rainfall rate of
33 mm/h shows that the sensor is affected more by drizzle at low rainfall rates
than by rain at higher rainfall rates. This can also be observed in the point
scatter rate shown in Figure 4.10.

5.1.2 Influence of Weather on Object Perception

Following analysis of the impact of weather on the entire point cloud, this
section examines the impact on object sensing. On the basis of the static

1 Editorial modifications have beenmade to improve readability and ensure consistency of nomen-
clature.
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Figure 5.2: Illustration of the meteorological visibility in m and rainfall rate in mm/h provided
by the climate chamber, the number of valid points and the number of scatter points
during rainfall or fog [87].
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5.1 Influence of Weather on Lidar Sensors

(a) Reference Image (b) rain 55 mm/h (c) rain 34 mm/h (d) rain 15 mm/h

(e) reference (f) fog 30 m (g) fog 40 m (h) fog 51 m

(i) fog 54 m (j) fog 59 m (k) fog 71 m (l) fog 82 m

Figure 5.3: Influence of different fog and rain levels on point cloud data representation of a
passenger car at a distance of 20m, as captured by a LiDAR sensor. The corresponding
dataset is ’chambers32stat’, with its static scene ’setup 2’ (Figure 4.5a).

scenes of the climate chamber dataset, we can evaluate sections of the point
cloud for areas where prior known objects are located. The metrics mentioned
in the Section 4.1.1 are applied. Parts of this section have already been
published in [85]2. The analysis is performed with the ’chambers16’ and
’chambers32stat’ datasets, which were introduced in Section 4.2.3.

Point Cloud Representation of a Car in Adverse Weather

Regarding the influence of fog and rain on LiDAR object sensing performance,
we will illustrate some qualitative results directly on the point cloud first of
Velodyne VLP 32c [22] and second of Scala [24].

2 Editorial modifications have beenmade to improve readability and ensure consistency of nomen-
clature.
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6

5 4

3

2
1

Figure 5.4: Experimental setup in the fog chamber for dynamic scenes in reference condition
’clear’ without any rain or fog. The lane marking (1), reflector post (2), child and
woman mannequin (3,4) and man mannequin with reflective vest (5) are stationary
objects. The pedestrian, cyclist (both not shown) and car (6) are moving objects.

The representation of a car in the point cloud captured by Velodyne VLP 32C
during different rainfall intensities and visibility ranges can be seen in Fig-
ure 5.3. The car shown in the camera reference image (Figure 5.3a) is part of
the static scene (Figure 4.5a) and located at a distance of 20 m from and at an
angle of approx. 45 degree in front of the LiDAR sensor. As the reference
camera image shows, the left side of the vehicle is partially occluded by a
crossing pedestrian pushing a bicycle.

The first row of Figure 5.3 shows the reference camera image (5.3a) and the
point cloud captured during rain (5.3b, 5.3c and 5.3d). In the second row,
the point cloud under reference conditions can be seen in 5.3e, whereby the
remaining figures (5.3f, 5.3g, 5.3h, 5.3i, 5.3j, 5.3k, 5.3l) are captured during
increasing fog visibilities.

Comparing the reference scene (5.3e) with fog visibility above 71 m (5.3k and
5.3l) and with a rainfall of 34 mm/h (5.3d), the representation of the car is
nearly the same, except for the perception of low-reflective parts of the car like
the tire, which is visible only in the reference scene.

In the rain scenes at 15 mm/h and 55 mm/h, the vehicle as a whole is no longer
recognizable. So, for perception algorithms a classification as a vehicle is
most likely no longer possible, although, it is still recognizable as an object of
any shape. As already addressed in Section 5.1.1, the influence of drizzle at
15 mm/h is higher than rain at 33 mm/h.

In foggy conditions where visibility is less than 60m, the influence of the water
droplets is significantly visible and the perception of the vehicle is considerably
reduced. Below visibility of 50 m, the vehicle as a whole is no longer visible
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Figure 5.5: Bird’s-eye view of the Scala sensor point cloud for a single random but representative
frame k, split by echo number. An image from a sate-of-the-art automotive camera
is shown on the right; the meteorological visibility V is specified in meters on the far
right in the case of fog and the rainfall rate in mm/h. For reference conditions, the label
’clear’ is assigned. The pedestrian mannequin is highlighted with red boxes (object
no. 4 in Figure 5.4) and the car in blue stars (object no. 6 in Figure 5.4). All other
points are shown as black dots.

in the point cloud. Looking at the point cloud for visibility of 30 m, only
individual points are still visible, but the vehicle as a whole is no longer
recognizable. In this case, the visibility of the LiDAR sensor is less than the
human eye, which can detect a vehicle at a distance of 20 m in fog with a
visibility of 30 m.

In summary, the influence of fog on the LiDAR sensor under analysis here is
greater than on human perception, since the object is already hardly recogniz-
able at a visibility of 30 m. With decreasing visibility, low reflective surfaces
are initially no longer perceived. As visibility decreases further, even the
more-reflective surfaces can no longer be perceived, meaning that the object
as a whole and the characteristic object shape are no longer recognizable. A
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5 LiDAR in Adverse Weather Conditions

similar situation occurs in the case of rain. The evaluation is based on the per-
ception of a real vehicle by a Velodyne VLP32C sensor in simulated weather
conditions.

We then evaluate the bird’s-eye view of the Scala sensor point cloud for a single
random but representative frame k, split by echo number (see Figure 5.5).
Additionally, an image from a state-of-the-art automotive camera sensor can
be seen on the far right. The depicted point cloud is taken from ’chambers16’
dataset with its setup shown in Figure 5.4. The scene is the background setup
for the recorded dynamic scenarios, which are referred as ’chambers32dyn’.

The point cloud with strong rain (55mm/h) shows fewer points at the end of the
climate chamber comparedwith the point cloudwithout any simulatedweather.
This is due to the reduced detection range of the sensor. The detection quality
of objects such as cars is extremely important and interesting: For example, the
car at a distance of around 19m (highlighted in blue) is detected by both sensors
in all scenarios, as shown in Figure 5.6 and Figure 5.7. In clear conditions, the
first return is always received from the car; in fog and rain, however, the second
echo contributes the majority to the detection of this car. The occurrence of
second echoes from objects can therefore indicate for the presence of fog or
rain.

In fog, within a visibility range of 50 m-60 m, a large number of first echoes
is observed at a very short distance. Moreover, the detection quality and range
is expected to be impaired because significant laser power is scattered by the
atmospheric particles, leading to the other echoes. The environment perception
capability and sensor range are limited. Only a few secondary echoes can be
associated with fog because most coincide with the position of the car.

In dense fog (visibility of 20 m-40 m), the environment perception capability
is severely restricted. Nearly all primary echoes are observed at a range of less
than 5 m and are thus caused by fog. Nevertheless highly reflective targets
like the retro-reflectors of the tail lights are still correlated with secondary or
tertiary echoes. Comparing all fog and rain measurements with the clear ones,
the number of second and third returns increases (Figure 5.6 and 5.7). Our
evaluation also shows that a multi-echo sensor is beneficial because it also
returns weaker reflections such as fog and rain while maintaining reasonable
object detection performance compared with single-return sensors.
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5.1 Influence of Weather on Lidar Sensors

Comparing these results with the five range measurement behaviors of LiDAR
sensors in the presence of dust, as presented in [116] and illustrated in Fig-
ure 5.1, the influence of fog is similar to dust, in which the measuring range
is the front of the dust cloud. The influence of rain, however, seems to be
different.

Statistical Object Representation in Adverse Weather

For a statistical comparison of the object sensing performance, the accumula-
tion of points that correspond to a car or pedestrian of at least 1, 200 frames for
each weather condition are shown in a box plot in Figure 5.6 for a Scala and in
Figure 5.7 for a Velodyne VLP16 sensor. The corresponding dataset is ’cham-
bers16’ with only static scenes; the car is a Renault Zoe and the pedestrian is
a mannequin.

As shown in Figure 5.6 and Figure 5.7, the car and the pedestrian are perceived
mainly by the first echoes under clear conditions. In rain, only some of the
second and third echoes correspond to the objects. With decreasing visibility,
the car and the pedestrian are perceived mainly by the second and even third
echo in the case of the Scala sensor.

Furthermore, with decreasing visibility, the measured distance of the car de-
creases slightly, as does the number of outliers in terms of distance accuracy.

The variance of the EPW continuously decreases as the visibility range de-
creases. This observation holds true for the intensity measured by VLP16.
Object detection algorithms that leverage intensity or EPW information are
therefore likely to be strongly influenced by adverse weather conditions.

Finally, to access the influence on perception performance, a point density
is calculated as a key metric, quantifying the impact of missing points. The
metric used here is referred as object density and is presented in Section 4.1.1.
The density rate is based on the total number of points NO

t (k) from object O in
frame k and scaled by the mean over all frames in reference conditions without
any fog or precipitation. The object density is an indication of the degradation
of the object perception. In Figure 5.8 the resulting density is illustrated for
a pedestrian and a car for both sensors. As a result, the perception of the car
at 18 m remains quite robust during rainfall of 55 mm/h and degrades in fog
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Figure 5.6: Object perception for the ’Scala’ sensor with 1, 200 frames for each weather condition
(except for rain, 921 frames). The box plot shows the result of the corresponding
raw point cloud (x- and y-coordinate, echo and EPW) for a car and pedestrian. The
weather is shown on the ordinate axes, ordered by descending meteorological visibility
V . In case of fog, the visibility is stated in m; for rain the rainfall rate is stated in
mm/h; the label ’clear’ is used for reference conditions. The locations of the target
objects are given in Figure 5.5
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Figure 5.7: Object perception for the ’VLP16’ sensor with 1, 200 frames for eachweather condition
(except for rain: 921 frames). The structure of the figure is identical to Figure 5.6.

with a visibility range of 20 m−30 m to a median of 0.36 for VLP16 and to
as low as 0.04 for Scala. In contrast, the detection density for the pedestrians
at approximately 18 m declines significantly to 0.72 in rain for VLP16 but
remains quite robust for the Scala sensor. In fog with a visibility range of
50 m−60 m, the pedestrian is mostly not detected by the VLP16. The Scala
sensor is capable of detecting the pedestrian with a density of 0.87 down to a
visibility of 50 m−60 m. Below a visibility of 40 m, the detection density for
the pedestrian is 0. Consequently, objects without any retro-reflectivematerials
are not perceived by LiDAR sensors in dense fog, even at close range.
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Figure 5.8: Object point density for a car and pedestrian object. The density is the number of
points per object in one frame scaled by the average number of points per object in
clear conditions.

5.1.3 Influence of Weather on Extracted Features

Following analysis of the influence of weather on the complete point cloud and
areas that can be assigned to specific objects, this section covers the influence
of weather on the extracted features, which are stated in Section 4.1.1. This
investigation was already published in [85]3. The analysis of the extracted
features is performed using the ’chambers16’ dataset which was first presented
in Section 4.2.3.

Figure 5.9 shows selected features for more than 1, 200 frames for each weather
condition of the static setup. Considering the number of points for each return
Nt (k), it is to be expected that the number of second and third returns will
increase with the presence of fog and rain due to multiple reflections. In
Figure 5.9, the different weather conditions are discernible in the signal N1,2(k).
There is a significant difference in the variance of the second echo N2 in foggy,
rainy and clear conditions. It is also interesting, that there is no significant
difference in the N3 value for dense fog and rain.

3 Editorial modifications have beenmade to improve readability and ensure consistency of nomen-
clature.
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Figure 5.9: Analysis of environmental influences on LiDAR point clouds based on the chambers16
dataset for static scenes. To ensure that only the influence of the weather is investigated,
all the measurements represent the same static scene. Each column within a sub-
figure denotes one distinct weather condition with at least 1, 200 frames, ordered by
descending visibility. The stated mean intensity ( f13) is taken from the VLP16 LiDAR
sensor. All other signals are based on Scala measurements, because VLP16 behavior is
comparable, except for the fact that the VLP16 outputs only two echoes, which results
in differences in the number of points for the second and third echoes. The intensity
f13, EPW f13 and the distances r t ( f4,5,6) are the mean values over all points of one
frame. The number of points Nt ( f1,2,3) and mean distances r t are derived for each
echo t ∈ 1, 2, 3 for the first, second or last return separately. The eigenvalues ( f13,14,16)
were calculated from the covariance matrix of all points. The figure was published
in [85].
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Figure 5.10: Analysis of environmental influences on LiDAR point clouds based on the cham-
bers16 dataset for dynamic scenes. The structure of the figure is identical to Figure 5.9
and was already published in [85].
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Figure 5.11: Diagram showing the influence of fog on the received back scattered light signal with
a focus on the intensity and echo pulse width, which are commonly accessible in
state-of-the-art LiDAR point clouds.

The mean distance r t , which is calculated for each echo separately, seems to
be a good measure for determining the presence of fog or rain. The described
signal is illustrated in Figure 5.9 and shows a strong decrease for r1 in fog. At
the same time, the greatest variance can be seen with the rain. The mean and
variance of r2,3 increases in rain and fog compared to clear conditions.

The paradox of increased EPW and reduced intensity by fog is discussed
in [18]. Figure 5.9 confirms the claim of [18] as the EPW from the Scala sensor
increases in foggy conditions and is approximately inversely proportional to
the fog density. A diagram illustrating this effect is provided in Figure 5.11.
Furthermore, reflections from rain droplets show a smaller EPW because water
droplets in rain are less dispersed than in fog. As a result, the EPW is highly
influenced by weather and could be used as a signal to gain information about
the local environmental conditions. Regarding the intensity of the Velodyne
VLP16 sensor, there is only a small decrease in intensity in dense fog and the
greatest variance in rain.

Furthermore, rain and fog influence the eigenvalues of the covariance matrices
of x and y ( f14,15). While the presence of fog and rain influences the eigenvalue
cov(x), no dependency on eig(cov(y)) can be derived. This could be based
on the symmetrical structure of the setup related to the y-axis. Due to the
small field of view in the z-direction, the eig(z) is not evaluated. In summary,
the influence of rain and fog is visible in static scenes using the LiDAR point
cloud.

We will now evaluate dynamic scenarios with the same methods. A setup
of dynamic scenarios is repeated for the well-controlled environmental con-
ditions. The dynamic scenarios mimic an approaching car, crossing cyclists
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5 LiDAR in Adverse Weather Conditions

and a pedestrian walking on the sidewalk. Comparing the static scenes (Fig-
ure 5.9) with the dynamic ones (Figure 5.10) the variance increases for all
derived signals, while the difference of the mean decreases. In addition, the
number of outliers increases significantly, especially for the intensity of the
VLP16 laser scanner. This can be explained with the scenario of the approach-
ing vehicle, since in some frames of this scenario, retro-reflective objects were
in the immediate vicinity of the sensor. In conclusion, the pattern recognition
task of clustering the different environmental conditions is more challenging
in dynamic scenarios than in static ones.

5.1.4 Influence of Weather on Image Representation

Another way to visualize the impact of fog and rain involves the use of intensity
and distance images as shown in Figure 5.12. Since this representation is
similar to camera images, the impact is easy for human viewers to perceive.
This representation is also used as input data for CNN-based approaches,
another reason why it is useful to include this data.

The upper image in Figure 5.12 shows a camera reference image of the scene.
The first row of point cloud images shows the intensity and distance images
for reference images, split by the distance ordered first and second return.
The color coding for distance is brighter for increasing distances, and darker
for decreasing distances; no return is indicated with black. The intensities
are color-coded in a similar manner (i.e. a brighter color denotes increasing
intensity and vice versa).

In the intensity image of the first return, the zebra crossing is recognizable in
the lower part of the picture; the high intensity and, thus, the yellow area in
the lower left edge of the image are due to the parked vehicle and its license
plate number; in the upper-right corner, the high intensity can be attributed to a
traffic sign, which is not in the field of view of the camera image in Figure 4.5a.
However, the traffic sign is present in the upper image in Figure 4.5c. The
decreasing contrast with increasing fog or rain is clearly apparent, to the point
where only large retroreflective elements are recognizable in the intensity
image. In all instances, the information contained in the intensity of the
second return is very weak.
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Figure 5.12: Influence of fog and rain on the LiDAR sensor’s distance and intensity images. The
enumeration of the returns is performed with increasing distance, whereby there is no
measuring point in either returns. The sensor used here was a Velodyne VLP32C [22]
which captured the static scene 1 ’Pedestrian Crossing’ as shown in Figure 4.5a.
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5 LiDAR in Adverse Weather Conditions

Regarding the distance image under clear conditions, it can be seen that a
second return occurs mostly at edges of objects, when the laser beam hits an
object and divides it. In dense fog or heavier rain, the second return provides
valuable information about the scenery, while the first return is caused by
water droplets or disappears altogether, as in heavy dense fog (e.g. at 24 m
visibility).
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5.2 Weather Classification by LiDAR Sensors

This section analyzes the weather classificationmethods by LiDAR point cloud
data only. The weather classification is based, first, on the manual extracted
feature vector (see Section 4.1.1) as input data for an kNN and SVM classifier
and, second, based on distance and intensity images (see Section 2.1.2) as input
data for a CNN. The detailed CNN structure is presented in Section 4.1.2.

5.2.1 Weather Classification by Manually Extracted
Features

For the development of a weather detection algorithm a kNN with k = 10 and
an SVM are applied. The prediction feature vector is specified in Table 4.1.
The response of the classifier is ’clear’, ’fog’ or ’rain’. The different visibility
ranges in fog have not been taken into account for the classifier response, since
the features do not differ very much in these conditions.

The different setups in the chamber are used to reduce the time correlation
of the dataset. Setups A and B are therefore used for training, while setup C
is used for testing. The IoU for the VLP16 is 96.40% (kNN) and 97.14%
(SVM) and, thus, highly satisfactory. The classification result for the Scala
sensor is 58.89% for the kNN and 78.66% for the SVM classifier and thus
significantly lower than the results of the VLP16, which could be caused by the
significantly smaller vertical field of view and, in turn, fewer number of points
per frame. Since the number of samples per class is not evenly distributed,
the accuracy is not used to evaluate the classifiers in detail as illustrated in
Table 5.1. Regarding the IoU per class, the kNN approach obviously does
not yield good classification results for the classes ’clear’ and ’rain’ for the
Scala sensor. The SVM achieves slightly better results for the class ’clear’ and
significantly better results for the class ’rain’.

Since the weather conditions of the real-world and climate chamber data differ
significantly, they are considered separately. The training and verification of
the road-based data is also considered separately. Thus, four recordings under
clear conditions, three with occasional rain and two with permanent rain are
used for training, while the remaining recordings are used for testing purposed
(one recording under clear conditions, two with rain during the day and at
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5 LiDAR in Adverse Weather Conditions

Table 5.1: The overall classification testing results for climate chamber and road data. The number
of samples used for testing is stated in each row per class. The TPR, FPR and the IoU
are given as classification measures. The classes are numbered as follows: 1 clear,
2 rain and 3 fog. The classifiers with the greatest performance in terms of mean IoU
are printed in bold.

pl
ac
e

cl
f

cl
as
s # samples TPR [%] FPR [%] IoU [%]

VLP Scala VLP Scala VLP Scala VLP Scala

cl
im

at
e
ch
am

be
r

kN
N

1 5,558 5,643 93.91 66.47 6.09 33.53 93.85 41.37
2 10,566 14,115 97.52 64.13 2.48 35.87 95.86 43.68
3 92,708 101,707 99.98 94.43 0.02 5.57 99.48 91.61

SV
M

1 5,558 5,643 100.00 83.19 0.00 16.81 96.29 53.34
2 10,566 14,115 95.86 84.92 4.14 15.08 95.78 83.70
3 92,708 101,707 99.80 99.78 0.20 0.22 99.35 98.95

ro
ad kN

N 1 33,369 – 97.60 – 2.40 – 96.72 –
2 4,570 – 92.45 – 7.55 – 77.04 –

SV
M 1 33,369 – 97.34 – 2.66 – 96.47 –

2 4,570 – 92.25 – 7.75 – 75.17 –

night). The dataset was subdivided such that each dataset contains samples
from every traffic scenario (empty road, traffic jam, inner city, etc.) and every
weather condition and, at the same time, a subdivision of 80 % to 20 % is
given between training and testing. This avoids time series effects. The mIoU
achieved for the ’VLP16’ is 86.88% with the kNN classifier. The IoU for the
class rain is at 77.04 % significantly lower than the IoU of the class ’clear’
(96.72 %). The decrease of the IoU for rain in real-world environments could
be caused by the larger variety of rainfall rates and the lower accuracy of
ground truth.

5.2.2 Weather Classification by CNN

Weather classification byCNN is applied to and evaluated on multiple datasets,
allowing the basic capability ofweather classification by sensors to be analyzed.
The parameters of the proposed model are adjusted in line with the complexity
of the classification task in order to optimize the classification of on the utilized
data.

Due to the poor vertical resolution of the Scala and Velodyne ’VLP16’ LiDAR
sensors with only 4 and 16 layers respectively, the CNN-based classification
approach is not applied to datasets recorded with these sensors.
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Table 5.2: Class split for climate chamber framewise classifications. Due to the detailed ground
truth information, we can split the classes rain and fog to a high level of detail.

Weather Fog Class names Rain Class Names
Ground Truth 1 class 3 classes 4 class 5 class 3 classes
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Figure 5.13: LiDAR distance and intensity image for the climate chamber scene "pedestrian cross-
ing" shown in Figure 4.5a. The bottom images show the field of view used for CNN
training in order to prevent over-fitting and to reduce the impact of the local scenery.

Climate Chamber

We first evaluate the CNN-based weather classification on the climate chamber
data chambers32 with static and dynamic scenes. For these recordings, the
ground truth information is remarkably detailed, which means can split the
weather classes for each weather condition even further, as shown in Table 5.2.
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5 LiDAR in Adverse Weather Conditions

Table 5.3: Results of frame classification for climate chamber data with three different label map-
pings. The best performance in terms of IoU per column is printed in bold; the best
overall is shown in blue.

Classes Model Clear Fog1 Fog2 Fog3 Fog4 Fog5 Rain1 Rain2 Rain3 Mean

3
WeatherClass BN 94.87 93.04 − − − − 97.61 − − 95.17
WeatherClass DO 90.01 88.13 − − − − 97.25 − − 91.80

RangeClass 97.93 65.94 − − − − 50.53 − − 71.47

7
WeatherClass BN 83.80 42.26 46.59 75.55 − − 41.45 64.82 31.20 55.10
WeatherClass DO 76.07 46.54 65.12 83.33 − − 64.43 57.51 80.80 67.68

RangeClass 88.48 36.69 54.28 67.53 − − 46.34 40.58 39.02 53.27

9
WeatherClass BN 58.35 16.33 26.78 38.20 62.76 77.98 24.89 50.94 36.78 43.67
WeatherClass DO 54.86 18.52 25.29 41.09 68.73 81.64 55.85 44.97 60.81 50.20

RangeClass 55.37 3.28 31.75 33.02 66.34 82.69 54.17 36.17 48.04 45.65

Fog and rain class splitting is performed to obtain similar data distribution in
terms of sample per class. Due to the lack of data for fog densities above 80 m,
however, this is not completely possible, as shown in the class distribution for
the dataset in the appendix (Figure A.1a).

Section 5.1 analyzes the influence of weather on LiDAR point clouds in detail.
Figure 5.2 in particular shows that the weather information contained in the
point cloud is highly detailed. This information is therefore used for train a
model that is capable of distinguishing among three different rain levels and up
to five different fog densities. To avoid over-fitting to local dependencies, we
crop the input image drastically so that the ceiling and walls of the chamber are
almost invisible during CNN training as shown in Figure 5.13. In addition, the
different static and dynamic scenes reflect realistic situations that correspond
to road scenes and so further prevent the model from over-fitting to the climate
chamber data or scenarios.

The class distribution is imbalanced, as reflected in the appendix in FigureA.1a.
We therefore first evaluate the classification performance based on the IoU as
presented in Section 2.5.7 as a performance metric for imbalanced datasets.

In Table 5.3 the IoU values for each class and the mIoU are given for three
different CNN approaches:
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Figure 5.14: Framewise classification results for the chamber32 dataset with three different label
mappings and the CNN architecturesWeatherClass and RangeNet. For theWeather-
Class approach, the dropout variant is shown - except for the three class case - where
the batch normalization is given, which corresponds to the best results of Table 5.3.
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WeatherClass BN Our proposed approach from Figure 4.2 with batch nor-
malization.

WeatherClass DO The same asWeatherClass BN, but with a dropout layer
instead of batch normalization.

RangeClass Backbone architecture from RangeNet encoder as pre-
sented in [146], enlarged by our decoder for classifica-
tion as used in WeatherClass BN.

For improved generalization and less over-fitting, we propose theWeatherClass
with batch normalization or a dropout layer because the results do not clearly
show a superior architecture for different evaluations.

For each approach, the IoU values for the three different label mappings with
3, 7 and 9 classes are given. Furthermore, the best overall values are shown in
blue, while the best per column is printed in bold.

Unsurprisingly, the simpler classification taskswith a smaller number of classes
and less fine class subdivision, deliver superior performance. For example,
our proposed approach WeatherClass BN achieves an mIoU of up to 95 % for
three classes and so yields highly convincing results. Furthermore, the IoU per
class is very high and, for each class above 93 %. For the three-class approach,
the WeatherClass with batch normalization outperforms the dropout variant
because the normalization over an entire batch seems to yield better results
than the simple dropout method.

Regarding the results with increasingly finer class subdivisions, the mIoU
decreases as expected. To examine misclassifications in more detail, the con-
fusion matrix is used as a metric. This allows an analysis of permuted classes
to determine whether false classifications within a weather category lead to a
lower IoU, or the weather categories are completely permuted. The first has no
influence on the overall goal of recognizing the weather condition. Figure 5.14
shows the confusion matrices for the three different label mappings and two
different CNN architectures. Note that the confusion matrices in Figure 5.14
have the best results in terms of mIoU from Table 5.3.

First, the baseline experiment with three classes shows that the WeatherNet is
in principle capable of distinguishing between the three classes ’clear’, ’rain’
and ’fog’ (Figure 5.15a), as the IoU values already suggest. The WeatherNet
outperforms the modified RangeNet, which incorrectly and very frequently
classifies rain as fog.
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Figure 5.15: Framewise classification results for the chamber32 dataset evaluated on three classes.

Furthermore, the results show that a classification of different fog densities
and precipitation rates based on LiDAR data is possible. This approach is
very capable of distinguishing between three different fog and rain classes, as
shown in Figure 5.15b. Nevertheless, the confusion of the fog class above
80 m visibility increases with clear conditions and rain at 33 mm/h. This
confusion is understandable on the basis of the input data (see Figure 5.12).
For the results of RangeNet, the confusion is even more noticeable. However,
the mix-ups are mostly in the same weather category or in the neighboring
class (e.g. ’Clear’ and ’Fog 1’). Since the climate chamber used is only around
25 m long, the influence of fog above visibility of 80 m can barely be seen in
the range image (Figure 5.12). This explains, the confusion with the weather
class ’Clear’.

To compare the performance of the different class mappings, the 7- and 9-class
approaches are evaluated on the 3-class basis. Figure 5.15 shows the cor-
responding confusion matrices. Consequently, the WeatherClass approaches
for 7 and 9 classes provide satisfactory results on the 3-class task. However,
the results of the network trained and evaluated on 3-classes reveal the best
results. For the 9-class approach in particular the confusion between rain and
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Figure 5.16: LiDAR distance image for the road data ’NuScenes’. The bottom images show the
field of view used for CNN training in order to focus on the forward facing view.

fog increases. In contrast, the RangeNet trained and 9-classes and evaluated
for 3-classes provides the best results for this architecture and less confusion
among rain, fog and clear conditions. In conclusion, weather classification
based on LiDAR point cloud data with CNN approaches yields highly satis-
factory results and even predicts precise increments based on meteorological
metrics within identical weather conditions. Down-sampling in the RangeNet
architecture aims to understanding the scene globally but is not suited to the
task of weather classification for the the climate chamber data, where weather
effects partially appear inhomogeneously, such as fog or the artificial rain in
the climate chamber used. In contrast, our proposed WeatherNet - without
any downsampling layers - is capable of retrieving the weather information
from any fine structure of the input data and thus predict weather conditions
in great detail, albeit with some confusion within the same weather condition.
The results also reveal that the batch normalization aiming for better gener-
alization and less over-fitting does not provide the best results for the 7- and
9-class experiment. This might be due to the low sample counts per class
and the significant alterations of the input data in case of e.g. very dense fog,
whereby the normalization can vary significantly with each batch. In such
cases, the dropout layer provides better results (7- and 9-class experiment) for
the experiments on the chamber data.
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Table 5.4: Results regarding frame classification for the NuScenes dataset. The best performance
in terms of IoU per column is shown blue; the second best is printed in bold.

Model Name Layer Depth Clear Rain Mean

Baseline 2,4,8 86.14 87.83 86.99

NuScenes-WeahterNetDO 2,4,8,16 90.54 91.34 90.94
NuScenes-WeatherNetBN 2,4,8,16 96.68 96.77 96.72
NuScenes-WeahterNetDO 4,8,16,32 95.61 95.74 95.68
NuScenes-WeahterNetBN 4,8,16,32 96.78 96.82 96.80

NuScenes-RangeNet21 2,4,8,16 98.72 98.72 98.72
NuScenes-RangeNet21 2,4,8 97.51 97.52 97.52
NuScenes-RangeNet21 4,64 99.26 99.26 99.26

Nuscenes Data Set

To analyze the proposed CNN-based weather classification approach on road
data, we use the NuScenes dataset. Since the influence of the weather is
independent of the field of view, we crop the input data to a forward-facing
viewing region, as shown in Figure 5.16. The CNN architectures used are again
WeatherClass BN, WeatherClass DO and RangeClass; these were introduced
in previous section. Given that the classification task is less difficult in terms
of the number of classes, the depth of each filter and the number of layers
are reduced as long as the validation results are not affected. Furthermore,
the resulting number of filters per layer is optimized, which means that the
overall validation results remain without degradation. In principle, the task of
detecting whether or not it is raining is a much simpler 2-class problem than
the more complex task of detecting different weather conditions in detail. This
fact is reflected in the simplified network architecture without any compromise
in performance.

The results can be found in Table 5.4, whereby the baseline represents a
network architecture with single convolution layers. The best result in terms of
mIoU is obtained with the RangeClass approach with two layers to a depth of
4 and 64. The corresponding IoU results for each class are very high (99.26 %
for both classes). For the WeatherClass BN architecture, the best results are
96.78 % (’Clear’), 96.82 % (’Rain’) and 96.80 % for the mIoU, by applying
four layers to depths of 4, 8, 16 and 32. By significantly reducing the number
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Figure 5.17: Experimental results on Nuscenes dataset. The top row shows the forward facing
camera images, whereas the top right images are representing the LiDAR distance
and intensity image. In the center of the figure the point cloud is shown, color
coded by intensity. The plots on the right side shows the history of the ground truth,
prediction and the corresponding softmax.

of layers and filters, the resulting size of the CNN is reduced and so requires
much less computational power. This is also demonstrated by the baseline
experiment.

Figure 5.17 shows the classification result on a representative snapshot of
’scene-0475’ with the camera reference images (top left), point cloud (center),
distance and intensity images (top right). The results of the CNN can be seen
on the right side, along with the history of the ground truth and prediction.
Note only the distance and intensity image is fed into the CNN for classifying
the weather condition.

The result with the NuScenes dataset reveals that no one CNN architecture is
superior with all datasets. Since the classification task and data structure itself
differ very significantly in both experiments, the CNN architecture requires
some optimization in order to achieve optimal results. In the case of the
NuScenes experiment, the alteration of the input data, which were corrupted
by rain, is homogeneous over the entire field of view, at least for the parts that
were fed into the CNN (see Figure 5.17 and Figure 2.4). For the chamber data
- and especially with fog - this is not the case (see Figure 5.12). As a result,
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5.2 Weather Classification by LiDAR Sensors

the RangeNet architecture yields better results with the NuScenes dataset by
down-sampling the input image size and retrieving global scene understanding.
For the climate chamber data, deriving a global understanding of the scene is
impractical due to the inhomogeneous nature of the weather effect in the input
data space. The network architecture without down-sampling of the input data
space (WeatherClass) is capable of detecting these inhomogeneous effects and
so yields better results.

In summary, for weather detection with homogeneous influences on the 2D
input data (e.g. whether or not it is raining) an architecturewith down-sampling
- such as RangeNet - is preferable. That said, for weather with inhomogeneous
effects such as fog or spray, architectures without down-sampling - such as
WeatherClass - are more effective.
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5 LiDAR in Adverse Weather Conditions

5.3 Pointwise Weather Segmentation

This sectionwas previously published in [86] and [87] and contains information
about the experiments for pointwise weather segmentation for sparse LiDAR
point clouds 4. In contrast to Section 5.2, where a class label is obtained for a
single frame, this section determines a class label for each point with respect to
the weather condition. The classification of a single point - i.e. a single pixel -
is known as segmentation in computer vision, which is why we introduced the
term weather segmentation to distinguish from a frame-by-frame classification
approach.

5.3.1 Experiments

As described in Section 4.1.3 and 4.2.3, we obtained a large-scale dataset
recorded on public roads and in a dedicated climate chamber with different
types of point-wise annotations. In this section we will describe a number
of approaches for training the proposed WeatherNet in order to maximize the
performance and analyze the benefit ofweather augmentation, especially for the
generalization to natural rainfall recorded on roads. We apply the IoU metric
for performance evaluation, according to the Cityscapes Benchmark Suite
[83,145]. An overview of all experiments and their results is given in Table 5.5.
To evaluate the influence of weather augmentation in detail, we trained the
network on three different data subsets with and without augmentation (defined
as experiments 1, 2 and 3):

1. Chamber: only chamber data as baseline experiment.

2. Chamber and road: Climate chamber dataset and a subset of road data
without any augmentation or adverse weather on roads.

3. Chamber and road with augmentation: Climate chamber data set and
class-balanced road dataset without adverse weather, but with augmen-
tation.

4 Editorial modifications have beenmade to improve readability and ensure consistency of nomen-
clature.
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Figure 5.18: Confusion matrix for WeatherNet pointwise segmentation results. For each experi-
ment the confusion matrix is shown separately.

5.3.2 Results with Static Chamber Data

Note that all evaluations are based on the test dataset from experiment 2 ’Cham-
ber and Road’, which contains auto-labeled annotations and road data without
fog, rain or augmentation. Table 5.5 shows that the performance is significantly
increased by using road data and the proposed weather augmentation. In addi-
tion to validating the classes ’fog’ and ’rain’ only on chamber data, the use of
road data and augmentation leads to an increase in the overall performance and
per-class IoU. This indicates that the network is capable of identifying weather
influences in both domains and gains a general understanding of the scene.

The results of the baselineDROR filter in Table 5.5 indicate that sparsity might
not be a valid criterion by which to filter scatter caused by fog or drizzle as soon
as distribution density of water drops increases. The proposed CNN approach
outperforms DROR by an order of magnitude. In conclusion, the evaluation
demonstrates that filter approaches are prone to failure in the near and far range
when only the spatial neighborhood is used. The parameters for the DROR
are taken from [123] - with the exception of the horizontal sensor resolution,
which is adapted in line with ’VLP32C’.

We then compare our approach to the state-of-the-art semantic segmentation
models RangeNet21, RangeNet53 [146] and LiLaNet [137], which provide
comparable results. We can therefore prove that the basic idea of CNN-based
weather segmentation and de-noising is valuable and is superior to geomet-
rically based approaches. In addition, the proposed optimized WeatherNet
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5.3 Pointwise Weather Segmentation

mostly outperforms the other CNNs - especially in the final experiment 3 - and
has a significantly lower number of trainable parameters and inference time.
The network can therefore be applied as a pre-processing step.

The confusion matrices in Figure 5.18 show that the classes ’rain’ and ’fog’
are most likely to be mixed up. This is hardly surprising since fog and rain
ultimately consist of water droplets and differ only in terms of the distribution,
density and size of the water droplets. Moreover, LiDAR sensors are not
designed to detect this difference. For point cloud filtering, these mix-ups
are not important; any such confusion is a problem only with regard the
classification of distinct weather conditions. Furthermore augmentation results
in a significant decrease in confusion between rain and fog.

5.3.3 Results with Dynamic Chamber Data

This section presents qualitative results on challenging dynamic scenes, al-
though no ground truth data is available because the very same dynamic
scenes cannot be recorded under two different weather conditions. Our pro-
posed auto-labeling procedure therefore cannot be applied. Nevertheless, the
three representative results shown in Figure 5.19, Figure 5.20 and Figure 5.21
show that our approach is capable of handling dynamic scenes in various
domains and yields exceptionally good filter results. The results therefore
demonstrate that the network can generalize and is capable of distinguishing
VRU from the weather influence of fog or rain even in the close range of
the sensor. Consequently, in the examples presented, the VRU remains after
filtering, while the points due to fog and rain are filtered.

The de-noised point cloud reveals a pedestrian and a cyclist (highlighted by
black boxes) directly in front of the ego-vehicle, who almost disappear in the
scatter points of the haze (Figure 5.19, Figure 5.20). Although the evaluated
performance of RangeNet53 and WeatherNet are comparable (Table 5.5), the
qualitative results show that RangeNet53 does not preserve fine structures or
the edges of small objects (Figure 5.20b, Figure 5.19a or Figure 5.19b), since
most parts of the cyclist and pedestrian are filtered. WeatherNet, however,
is capable of distinguishing between the pedestrian/cyclist and scatter points
and so preserves the fine structures due to a network architecture without
down-sampling layer.
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5 LiDAR in Adverse Weather Conditions

DROR RangeNet53 RangeNet21 LiLaNet WeatherNet

(a) The highlighted cyclist is riding in fog at 30 m visibility.

DROR RangeNet53 RangeNet21 LiLaNet WeatherNet

Input Valid Fog Rain De-Noised
(b) The highlighted pedestrian is walking in fog at 20 m visibility.

Figure 5.19: De-noising results shown on two snapshots. Note that the VRU remains after filtering
by LiLaNet or WeatherNet while the fog clutter is discarded.
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RangeNet53 RangeNet21 LiLaNet WeatherNet

(a) The highlighted cyclist is riding in fog at 20 m visibility.
RangeNet53 RangeNet21 LiLaNet WeatherNet

Input Valid Fog Rain De-Noised
(b) The highlighted pedestrian is walking in fog at 20 m visibility.

Figure 5.20: De-noising results shown on two snapshots. Note that the VRU remains after filtering
by LiLaNet or WeatherNet while the fog clutter is discarded.
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5 LiDAR in Adverse Weather Conditions

Exp 2: No Augmentation

Exp 3: With Augmentation

Figure 5.21: WeatherNet segmentation results for road data recorded under light rainfall. The
result shows, that the approach is able to generalize the noise pattern and predicts
well results for recordings during natural rainfall. Note that the training data set
neither contains natural rain nor fog scenes on roads. The color coding is similar to
Figure 5.20 and the objects shown in the camera image are highlighted with a black
box. The training with augmentation (right) leads to a better segmentation result in
terms of number of detected raindrops and less false negatives for object detection
(e.g. left car).
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5.3 Pointwise Weather Segmentation

A filter algorithm based on the spatial distribution of the point cloud (see
Figure 5.19) is not capable of filtering the noise in this scenario, since the fog
points are as densely distributed as those of real objects. Nevertheless, the
cyclist can be recognized slightly better, thanks to the ability to filter single
scattering points. Note that the DROR also filters various single points at
greater distances and that are not caused by the weather due to the geometric
approach of filtering single points without neighboring points in the vicinity.

Another benefit of our CNN approach is its capability of detecting weather
conditions by means of LiDAR point clouds. As shown in Figure 5.2, the
number of scatter points caused by fog is correlated with the meteorological
visibility, which means that visibility can be estimated on the basis of the result
of our weather segmentation. Moreover, the level of degradation of the LiDAR
sensor could be estimated by taking into account the ratio of scatter to valid
points.

5.3.4 Results with Dynamic Road Data

Additionally, the proposed approach is capable of processing a point cloud
corrupted by natural rainfall recorded on roads. Figure 5.21 shows a key frame
where a pedestrian is crossing the street and several cars are passing by. Despite
the fact that the algorithm was trained only with data acquired in the climate
chamber and with augmented data from real-life traffic scenarios, it performs
very well in road traffic under real-life conditions with light rain and so proves
the generalization to another domain, as can be seen in Figure 5.21. In addition,
augmentation improves the result in that significantly fewer individual points
of the highlighted objects are falsely recognized as rain or fog. Furthermore,
more points are correctly classified as rain (cyan points) and not mixed up with
fog (purple points).

5.3.5 Visibility Estimation

As shown in Figure 5.2, the point cloud combined with the ground-truth
annotations for each single point reflects in great detail the fog density with
respect to visibility. The pointwise prediction of the class labels ’clear’ or ’fog’
therefore enables visibility to be estimated on the basis of the point cloud input
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5 LiDAR in Adverse Weather Conditions

data. To yield an end-to-end visibility estimation based on the point cloud data,
however, we have to adapt the aforementioned WeatherNet. We will therefore
introduce a regression head attached to the proposed CNN approach, which is
capable of predicting an MOR between 5 m and 100 m visibility based on the
point cloud data obtained in the climate chamber.

Due to the timescale of this work, the purpose of the approach is purely to
demonstrate the possibility of estimating the MOR by applying the proposed
architecture. It is not the goal to present a complete optimization of different
CNN architectures, review state-of-the-art regression models for the purpose
of visibility estimation or perform a detailed evaluation of accuracy compared
with other state-of-the-art methods. The results are simply discussed and
evaluated on the basis of Figure 5.22 and demonstrate extent to which it is
possible to estimate the MOR based on LiDAR point clouds. As Figure 5.22
shows, the results are summarized in one plot, whereas the ground truth and
prediction are presented. Each prediction result is grouped based on ground
truth visibility in 1 m increments and plotted with the mean and standard
deviation in the red curve. The corresponding number of samples is shown in
gray in the histogram.

Up to a visibility of 60 m, the visibility estimation is quite accurate, but slightly
overestimated. For greater visibilities, the estimation is far too inaccurate and
deviates from the ground truth. This can be explained, on the one hand, by the
significantly fewer samples for these visibility ranges; on the other hand, in the
climate chamber with a length of only about 25 m, the influence of fog with a
visibility greater than 60 m is no longer recognizable in the point cloud. This
can also be seen in Figure 5.3 and Figure 5.12.

In conclusion, the proposed approach enables not only segmentation but also
visibility estimation based on point clouds captured by LiDAR sensors, as long
as sufficient data is available for the corresponding use case.
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Figure 5.22: Estimation of the MOR based on LiDAR point-cloud data. The x-axis shows the
ground truth visibility obtained by the climate chamber reference system [62]. The
y-axis shows the predicted visibility based on the point cloud data of a Velodyne
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The corresponding number of samples per visibility bin is shown in light grey in the
bar chart.
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6.1 Summary and Conclusion

Autonomous driving requires robust and comprehensive environment percep-
tion capability under a variety of conceivable environmental conditions like
heavy rain and dense fog. In addition, a semantic understanding of the scene is
required for providing valuable information for subsequent signal processing
such as sensor fusion. We have shown that adverse weather has a significant
impact on LiDAR point cloud quality. While this might seem obvious, it is
not reflected in the public datasets currently available. We therefore recorded
the first LiDAR point cloud data set with an emphasis on adverse weather,
enabling in-depth analysis1. The dataset acquired under controlled conditions
contains four remarkably realistic static scenes in 73, 000 frames and dynamic
scenes with real pedestrians, cyclists and cars with six different complex traffic
trajectories in 35, 000 frames. The highly accurate ground truth weather infor-
mation was provided by the chamber’s closed-loop-controlled visibility from
5 m to 100 m and the precipitation intensity from 15 mm/h to 55 mm/h. We
also complemented the recordings with per-point weather labels.

This comprehensive dataset enables further optimization, development and
calibration of augmentation algorithms for adding realistic weather impacts on
LiDAR point clouds. We optimized a state-of-the-art algorithm to create more
realistic fog and introduced the first-ever - to the best of our knowledge - rain
augmentation for LiDAR sensors.

We leveraged available, newly recorded and augmented data to perform an
in-depth analysis of the influence of adverse weather on LiDAR sensors for
robotics and automotive applications. In conclusion, we quantified - for the first

1 The datasets were collected within the scope of this work or with the help of the publications
of [155] and [157].
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time to the best of our knowledge - sensor degradation based on representative
objects. As an example, the perception of a pedestrian at a distance of 18 m in
front of the sensor gradually degraded to approximately 50 m meteorological
visibility, after which perception capability deteriorates dramatically. It is
therefore apparent that LiDAR sensors do not fulfill the desired functionality
of a robust sensor that can operate flawlessly in any weather. To assess the
current perception performance, therefore, each LiDAR sensor needs to take
into account the current environmental conditions.

We developed a novel approach in order to classify the weather status based
solely on the LiDAR point cloud. We demonstrated a mean IoU of 95.17 %
and 99.25 % for controlled and uncontrolled environments respectively.

While it is extremely important to accurately classify weather and current
performance, ensuring safe operation is even more crucial. We investigated
various approaches for de-noising point clouds to enable robust perception
even in dense fog or heavy rain. State-of-the-art geometric approaches failed
to differentiate among points caused by solid objects or weather. Our CNN-
based implementation is capable of distinguishing between solid objects and
weather impacts. It can even separate a moving pedestrian from a waft of fog
within a single frame. We also demonstrated that the proposed CNN approach
is capable of estimating the MOR based solely on the LiDAR point cloud
data.

In addition, the dataset reveals in detail in which situations and weather condi-
tions state-of-the-art LiDAR sensors fail to provide realistic representations of
the environment. Detailed information on the meteorological conditions and
the various realistic scenarios enable comprehensive evaluations and detailed
statements regarding in the presence of which objects and under which weather
conditions the sensors fail to correctly perceive the environment.

6.2 Outlook

Recognizing and understanding adverse weather impacts on sensor perfor-
mance is crucial to the ability to operate autonomous systems in these weather
conditions. Combining this information in the subsequent fusion of several
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different sensor types enables the system to react appropriately to adverse
weather impacts in the planning and control steps.

Further extensions of our work can be achieved by applying an accumulation
over time for the classification methods. This can also result in a finer division
of classes, which could potentially enable the intensity of rain or fog to be
precisely determined. In addition, the approach for sparse point cloud de-
noising could be enhanced by the application of network structures which take
into account temporal dependencies like RNN.

In the context of road-based vehicles, the results of this work could be used
to warn drivers of adverse weather and prompt them to reduce their speed
accordingly. This alert could be issued to not only the vehicle that detected
the adverse weather but also to the vehicles following it, with the data be-
ing transferred by vehicle-to-vehicle communication. For example, partially
autonomous vehicles following the vehicle that detected the adverse weather
could send a request to the driver to take over the task of driving and slow
down accordingly.

Moreover, if multiple vehicles in different locations are capable of providing
valuable weather information, the resulting data could potentially prove ex-
tremely valuable for future weather analysis and forecasting systems. Due to
the large number of these sensors and the regional dispersion, forecasts about
the temporal and local occurrence of local rain showers, for example, can be
made with much greater precision. In summary, temporal and local weather
data is of enormous value even for applications beyond autonomous driving
and could potentially be leveraged for numerous applications without the need
for any additional hardware.

Regarding sensor development, the results of this work could potentially be
used to improve the robustness of future LiDAR sensors with respect to weather
effects and to extend data representations to include even more valuable infor-
mation about the backscattered light. This information can be leveraged by
algorithms in order to determine the weather condition or the nature of the
object from which the light was reflected.
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Figure A.1: Overview about the class distributions for the chamber32 data sets with dynamic and
static scenes.
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Figure A.3: Overview about the class distributions for data set used for frame-wise classifications.
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