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Abstract

Anisotropic fast-marching algorithms are computationally efficient tools for generating realistic maps of karst conduit networks,
constrained by both the spatial extent and the orientation of karstifiable geologic units. Existing models to generate conduit
network maps are limited either by high computational requirements (for chemistry-based models) or by their inability to
incorporate the effects of elevation and orientation gradients (for isotropic fast-marching models). The new anisotropic fast-
marching approach described here provides a significant improvement, though it imitates rather than reproduces actual
speleogenetic processes. It can rapidly generate a stochastic ensemble of plausible networks from basic geologic information,
which can also be used as input to karst-appropriate flow models. This paper introduces an open-source, easy-to-use implemen-
tation through the Python package pyKasso, then describes its application to a well-mapped geologically complex long-term
study site: the Gottesacker alpine karst system (Germany/Austria). Groundwater flow in this system is exceptionally well
understood from speleological investigations and tracer tests. Conduit formation primarily occurs at the base of the karst aquifer,
following plunging synclines. Although previous attempts to reproduce the conduit network at this site yielded implausible
network maps, pyKasso quickly generated networks faithful to the known conduit system. However, the model was only able to
generate these realistic networks when the inlet-outlet connections of the system were correctly assigned, highlighting the
importance of pairing modeling efforts with field tracer tests. Therefore, a model ensemble method is also presented, to optimize
field efforts by identifying the most informative tracer tests to perform.
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Introduction
Motivation and context
Numerical modeling is a powerful, widely used tool for

the understanding and management of groundwater re-
sources; however, applying numerical flow models in
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karst aquifers is challenging (Scanlon et al. 2003;
Jeannin et al. 2021). Unlike in porous aquifers, ground-
water flow in karst occurs primarily through conduits dis-
solved into a rock matrix. The matrix can also include
fissures and intergranular pores, resulting in double- or
even triple-porosity systems, which leads to complex, het-
erogeneous behavior that is highly dependent on the
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spatial structure of the conduit network (Ford and
Williams 2007).

Existing approaches to modeling groundwater flow in karst
aquifers generally take a lumped, distributed, or
semidistributed approach (Kovacs and Sauter 2007; Jeannin
et al. 2021). Lumped models transfer an input timeseries (typ-
ically recharge/precipitation and snowmelt) into an output
timeseries (typically spring discharge) at the scale of the entire
karst system, without explicitly describing the conduit net-
work (Hartmann et al. 2014). This approach has the advantage
of being able to represent the overall water balance and dy-
namics of the system using minimal data, but does not capture
spatial variability in hydraulic head or directions and rates of
groundwater flow within the aquifer (Scanlon et al. 2003).
Distributed models discretize the model domain and apply
spatially dependent parameters to each cell, thereby enabling
them to simulate the spatial dimensions of groundwater flow
in triple-porosity systems. To achieve this, they require the
spatial distribution of matrix and conduit geometry and hy-
draulic properties, which produces far more data than is need-
ed by lumped models (Hartmann et al. 2014). Semidistributed
models take an intermediate approach, simulating flow
through a spatially distributed pipe network representing the
conduits, but simplifying matrix flow, either by neglecting it
entirely or by representing it as a lumped entity (Jeannin et al.
2021). This makes them most appropriate for dual-porosity
karst systems where the matrix porosity is low.

The often-prohibitive data requirements of distributed and
semidistributed models have limited their use primarily to
either synthetic cases or well-understood, extensively-
studied systems such as the one presented in the second part
of this paper (Chen and Goldscheider 2014). Even in well-

a. cost map
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studied systems, the conduit network is impossible to fully
map, because small-diameter conduits (<0.5 m) are inaccessi-
ble and difficult to detect by geophysical methods (Jaquet and
Jeannin 1994). A relatively new approach for overcoming this
difficulty is the use of karst conduit evolution models to gen-
erate probable maps of the conduit network based on the geo-
logic setting of the study system (Borghi et al. 2012). These
simulated networks then serve as input for distributed ground-
water flow models, reducing the data requirements of the
modeling project.

Previous work reveals two significant hurdles to using
conduit evolution models as input to distributed ground-
water flow models: (1) uncertainties in the conduit net-
work structure contribute significantly more to prediction
uncertainty than uncertainties in the hydraulic parameters
(Refsgaard et al. 2006; Fandel et al. 2021); and (2)
existing conduit evolution models either are extremely
computationally and data intensive—if they solve the
physical and chemical equations driving speleogenesis
(Borghi et al. 2012; Dreybrodt et al. 2005)—or yield
hydrogeologically implausible networks in complex geo-
logic settings (Fandel et al. 2021). The strong influence of
conduit network structure on groundwater flow and trans-
port predictions means that relying on a single conduit
map does not adequately capture the range of possible
behaviors in a system. However, this problem can be ad-
dressed by using a multimodel approach, in which an
ensemble of competing structures is used to generate a
range of predictions (Enemark et al. 2019), following
the method of multiple working hypotheses advocated
for by Clark et al. (2011). This method was applied to
karst systems in a previous publication (Fandel et al.
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Fig. 1 A simple example of isotropic fast marching. a An expanding
front travels away from the point of origin through a heterogeneous
medium. b The time at which the front reaches each cell in the domain
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is recorded, resulting in a travel time map. ¢ Based on the travel time map,
the fastest path from any point to the point of origin can be calculated
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Fig. 2 Synthetic example problem: a simple valley with three geologic
units, drained by a single outlet at the contact between the karstifiable unit
and the underlying marl. a A 3D block view of the valley. b A 2D map
view of the conduit network expected to form based on synclinal geologic
structure. ¢ The 2D conduit network returned by the isotropic fast-
marching algorithm

2021). The topic of the present publication is the second
hurdle: generating realistic conduit networks using fewer
data and computational resources than existing models.

Challenge

The goal of this paper was to develop a karst conduit network
simulator that yielded hydrogeologically plausible networks
while requiring minimal data and computational power, so
that it could be run numerous times to generate an ensemble.
Six criteria for plausibility were defined, which the simulated
networks needed to meet, based on published conceptualiza-
tions of cave formation processes (Audra and Palmer 2011):

1. Conduits should connect chosen inlets to outlets by the
most efficient path.

2. Conduits should seek the steepest path down the hydrau-
lic gradient towards the outlets.

3. Conduits should seek more soluble formations and avoid
less soluble formations.

4. Conduits should seek high-conductivity features such as
fractures.

5. Newly-forming conduits should seek to merge with
existing conduits.

6. Conduits should connect into a cohesive network linking
multiple inlets and outlets.

Previous work

The evolution of karst conduit networks can be described by
several different conceptual models, depending on the geolog-
ic and hydrologic setting. Generally, solutional conduit net-
works form through a positive feedback loop in which greater
discharge along one path results in faster enlargement, thus
capturing more discharge and further increasing the enlarge-
ment rate, and so on. However, the shape of the resulting
conduit network also depends on (1) the type of initial poros-
ity (intergranular, bedding plane partings, or fractures), (2) the
source of solutionally aggressive water (focused surface re-
charge, diffuse recharge through an overlying unit, or deep-
seated hypogenic sources), (3) whether the conduit is forming
under vadose (unsaturated) or phreatic (saturated) conditions,
and (4) the amount of time that has passed since solutional
enlargement began. These factors combine to produce five
common network morphologies: branchwork systems, net-
work systems, anastomotic systems, spongework/ramiform
systems, and single-passage systems (Palmer 1991). When
generating simulated conduit networks, care must be taken
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Fig. 3 Anisotropic fast-marching. a An expanding front travels away
from the point of origin through a heterogeneous, anisotropic medium.
b The time at which the front reaches each cell in the domain is recorded,
resulting in a travel time map. ¢ Based on the travel time map, the fastest

to choose a method appropriate for the geologic and hydro-
logic conditions being modeled.

Existing methods of generating karst conduit network
maps generally rely either on manual delineation based on a
conceptual model of the aquifer (Jeannin et al. 2013), simula-
tion of hydrochemical dissolution processes (Duan et al. 2020;
Dreybrodt et al. 2005), or geostatistical approximations based
on simplified, spatially distributed representations of the karst
medium (Pardo-Iguzquiza et al. 2012). While the first two
approaches yield realistic conduit networks and can be applied
in a wide range of hydrogeologic settings, they tend to lead
towards a single conceptual model of the karst system, which
may obscure important structural uncertainties (Enemark et al.
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Fig. 4 Inputs to pyKasso: geologic map, inlet and outlet coordinates, and
scalar field (lower boundary of limestone unit, indicated by contour lines)
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2019). Most chemistry-based simulations are also extremely
computationally intensive and require knowledge of past con-
ditions during which the conduits formed, limiting their appli-
cation to advancing the understanding of basic processes
governing speleogenesis in more hypothetical or schematized
systems (Dreybrodt et al. 2005; de Rooij and Graham 2017).
For the purposes of efficiently generating numerous possible
conduit networks in real geologic settings with limited data
availability, stochastic geostatistical approaches remain one of
the most viable options.

Stochastic conduit generation models can be divided into
structure-imitating and process-imitating approaches (de
Rooij and Graham 2017). Structure-imitating models use
geostatistical methods such as diffusion-limited aggregation
(Pardo-Iguzquiza et al. 2012) or nonlooping invasion perco-
lation (Ronayne 2013) to reproduce the structure of the net-
works. Process-imitating approaches mimic speleogenesis
without solving the underlying physical and chemical reaction
equations, instead using iterative positive-feedback mecha-
nisms. As a result, they yield maps of the conduit network at
a certain point in time (generally after the system has reached a
stable maximum enlargement rate), but provide little insight
into how such a network came to exist. Examples of this
approach include lattice-gas automata (Jaquet et al. 2004),
heuristic erosion potential functions (Lafare 2011), and fast-
marching algorithms (Borghi et al. 2012).

This study focuses on improvements to the process-
imitating fast-marching approach, which has the advantages
of being designed to model real study sites constrained by the
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Table 1 Inputs to pyKasso:

fracture statistics Statistic

Values (one value per fracture family)

Fracture densities

[No. per unit area]
Minimum fracture orientation

[° east of north]
Maximum fracture orientation

[ east of north]

(5.83¢-5, 1.38e-5, 2.22e-5, 2.5¢-5, 4.16¢-5, 6.66¢-5, Se-5)

(0, 15, 30, 60, 105, 120, 150)

(15, 30, 45, 105, 120, 150, 180)

Fracture alpha (power law coefficient) [unitless] 2

Minimum fracture length [m]
Maximum fracture length [m]

50
800

regional geologic setting, being able to be conditioned to
available data but not requiring in-depth initial data availabil-
ity, and being computationally efficient (Borghi et al. 2012).
While this approach is able to recreate both vadose and phre-
atic settings, it is not applicable to karst systems in which the
presolutional porosity is primarily intergranular, or where the
source of water is primarily diffuse or hypogenic inflow—
such systems tend to form anastomotic, ramiform, or
spongework morphologies, and make up only a small percent-
age of all cave systems worldwide (Palmer 1991). This ap-
proach is also not appropriate for the purposes of modeling
single-passage systems early in their formation, nor is it
intended to simulate the geochemical dissolution reactions
that drive speleogenetic processes. The fast-marching ap-
proach is most appropriate for branchwork caves, which, in
number and in aggregate length, exceed all other cave mor-
phologies combined (Palmer 1991). Branchwork caves form
in settings where the source of presolutional porosity is dom-
inated by fractures and bedding planes, and where groundwa-
ter flow through caves originated primarily from concentrated
surface recharge through features such as sinkholes and sink-
ing streams. While it may be possible to adapt this approach to
network systems, the second-most-common morphology
worldwide, both the synthetic example and the real karst

Table 2 Inputs to pyKasso: travel costs associated with different
geologic features. Conduits form preferentially in cells with lower travel
cost values

Feature Travel cost
(O<cost<1)

Cells outside the model boundary 0.999

Aquifer (karstifiable unit) 0.4

Aquitard (all nonkarstifiable units) 0.8

Faults 0.2

Fractures 0.2

Conduits 0.1

Cost ratio 0.5

system presented in this paper are branchwork systems, and
no testing has yet been done on network systems.

Isotropic fast marching

The initial fast-marching approach presented by Borghi et al.
(2012), known as the Stochastic Karst Simulator (SKS),
mimics conduit evolution based on the assumption that water
will follow a minimum-effort path within the boundaries of
the karstifiable units, as computed by an isotropic fast-
marching algorithm (Sethian 1996). Fast-marching algorithms
are a family of numerical techniques originally designed to
track the evolution of expanding interfaces—such as the sur-
face of a growing soap bubble, or the front wave of an
earthquake—through a medium (Fig. 1a). The medium may
be heterogeneous, in that the expanding front can travel more
or less easily through different regions, but it must be isotro-
pic, in that the ease of travel is the same in each direction.
Fast-marching algorithms address the problem by calculating
a map of arrival times based on the map of travel cost, where
each location on the map is assigned a value indicating how
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Fig. 5 Karst medium through which conduits will form. Travel cost is
indicated by color (darker is higher cost), while the anisotropy vector field
is indicated by arrows (pointing in the direction of the maximum
downward gradient)
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Fig. 6 Conduit formation over three rounds of inlet iteration. After each
iteration, the cost map is updated so that cells containing a conduit have a
very low travel cost, attracting conduits during later iterations and
creating a hierarchical branching structure. A similar process allows for
iteration over multiple outlets

long it takes to get from the point of origin (e.g. the center of a
bubble or the epicenter of an earthquake) to that map location
(Sethian 2006; Fig. 1b). The shortest path from any given

@ Springer

point to the point of origin can then be calculated by following
the gradient of the travel time map (Fig. 1c).

To apply fast-marching methods to karst conduit genera-
tion, the outlet draining the system is used as the starting point
of the front propagation, and each model cell is assigned a
travel cost based on the geology (Borghi et al. 2012).
Karstifiable formations have a lower travel cost than
nonkarstifiable formations and fractures have a lower travel
cost than matrix, etc. The travel time map is then used to
calculate the fastest path from each inlet to the system (e.g.
dolines or sinkholes) to the outlet, resulting in a network of
conduits converging at the outlet.

Isotropic fast marching works well in many settings, but
cannot account for local structural controls on conduit orien-
tation such as when karst development follows a stratigraphic
slope. Furthermore, it requires simulating the saturated and
unsaturated zones separately to obtain a correct representation
(Borghi et al. 2012). In the extensively studied Gottesacker
karst system in the German-Austrian Alps, an ensemble of
100 networks generated using the isotropic fast-marching
method yielded only a single plausible configuration—all oth-
er networks in the ensemble included conduits climbing up
and across large anticlines, rather than following synclinal
axes, as would be expected from groundwater flowpaths con-
trolled by the dip direction of the underlying impermeable unit
(Fandel et al. 2021). To demonstrate the problem, consider a
simple synthetic system, consisting of a single outlet draining
a valley. There are only three geologic units—highly
karstifiable limestone folded into a syncline along the valley
axis, underlain by nonkarstifiable shale, with an obstacle in
the form of a nonkarstifiable granite intrusion. Five inlets are
randomly distributed across the upper part of the valley
(Fig. 2). In this example, conduits would be expected to travel
towards and along the synclinal axis before reaching the outlet
(Fig. 2a). However, the isotropic fast-marching algorithm
returns conduits that instead follow the most direct path to
the outlet as the crow flies (Fig. 2b).

Other limitations of the existing fast-marching-based
conduit-model implementation, are that it requires treating
the unsaturated and saturated zones separately, which is com-
putationally inefficient. Furthermore, the SKS code is written
as a procedure-oriented code in the proprietary MATLAB
language, limiting its widespread applicability, and it lacks
some useful features—for example, the code does not easily
allow assigning specific inlets to specific outlets, which limits
the use of tracer test data to condition and/or test the model.

New approach to karst modelling:
the anisotropic fast-marching algorithm

This paper addresses the limitations of existing stochastic
karst conduit generation models with an open-source



Hydrogeol J

Fig. 7 Outputs from pyKasso. a a. karst network

b. simplified karst network
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Table3  Outputs from pyKasso: statistical metrics describing the network geometry and topology (Collon et al. 2017), calculated using karstnet v.1.1.0
Metric Definition Value
Mean length Mean length of branches (set of edges between junction nodes) 177.04
Coefficient of variation of length Ratio of standard deviation over mean of branch lengths 0.88
Length entropy Variability of branch lengths in network (0 if all branches have same length) 0.74
Tortuosity Ratio of curvilinear branch length over Euclidean distance between its ends 1.02
Orientation entropy Variability of edge orientations in network (0 if all edges have same orientation) 0.89
Avg. shortest path length Mean of the smallest number of edges between each inlet and outlet 3.18
Central point dominance Measure of how centralized the network is (0 is decentralized, 1 is centralized) 0.52
Mean degree Mean number of edges connected to each node 2.0
Coefficient of variation of degree Ratio of standard deviation over mean of node degrees 0.50
Correlation vertex degree Pearson correlation coefficient of node degrees at both ends of an edge -0.41

Python-based tool for generating ensembles of conduit
network maps in complex geologic settings using aniso-
tropic fast-marching algorithms. The new tool, pyKasso,
is so named partly based on the acronym python karst
stochastic simulator, and partly because, like the great
painter, it aims to extract only the lines that make up the
essence of a thing. It relies on an object-oriented code
structure described in detail by Miville (2020) and the
Adaptive Grid Discretization package, described by

Fig. 8 Influence of algorithm 800 a.isotropic

Mirebeau and Portegies (2019), which implements a suite
of isotropic and anisotropic fast-marching algorithms. The
karstnet package is used to compute statistical indicators
for comparing karst networks, described in Collon et al.
(2017), and to analyze the quality of the results. By com-
bining these features, pyKasso enables quick iteration,
stochastic fracture network generation, conditioning to
field observations, calculation of network statistics, and
visualization and storage of results.

800 b. anisotropic

choice on conduit network. a
Isotropic fast marching results in
conduits that travel uphill or cross
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conduits. b Anisotropic fast
marching results in conduits that
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Fig.9 Influence of inlet/outlet assignment and iteration order on the final P> a.
network structure. The number next to each outlet indicates the order in 800 0
which the outlet was created. The number next to each inlet indicates 700
which outlet that inlet was assigned to. The arrows indicate the direction
of conduit formation. a An interconnected network with intersecting con- 600 1 0 1 outlet 0
duits. b Two disconnected networks. ¢ A misleadingly plausible-looking
network with loops that nevertheless involves a path crossing the syncline — 500 4
and climbing back up to outlet O via an existing conduit from the first £
iteration—this example highlights the importance of inlet/outlet Y 400 -
assignments s

B 300

©

~ 00

The principles of the approach used in this paper were intro- A
duced by Borghi et al. (2012). For the sake of brevity, the 100
underlying mathematical formulas and computations are there- .
fore not described in detail here. Instead, this paper focuses on 0 1000
novel work: the use of anisotropic fast-marching.
800
Anisotropic fast marching
700 1

Anisotropic fast marching allows the ease of travel through a 600 -
medium to vary by direction. It can be used, for example, to
calculate optimal paths for remote-controlled-undersea- € il
exploration robots operating in strong currents—traveling Y 400
with the current is easier than traveling against it (Garrido £
et al. 2020). In the context of karst systems, the anisotropy E e
field informs the preferential direction of conduit formation at 200
any given location (Fig. 3). Conduits should form in the di-
rection of the maximum downward hydraulic gradient, to- TG
wards the outlet (Fig. 2). For shallow, unsaturated karst sys- 0 -

tems such as the example presented here, the hydraulic gradi-
ent generally coincides with the topographic gradient. The

anisotropy field is therefore generated based on a proxy such 800

as .the topography of the lowe.r boundary of the karstiﬁal?le 700 -

unit. These data are converted into a vector field, from which

the maximum downward gradient at each location is 600

calculated. — 500 A l
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Implementation g 400 :
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Following Borghi et al. (2012), to simulate karst conduit net- - |

works, the spatially distributed properties of the medium must =L I

be defined, the inlets and outlets of the system identified, and 100

multiple generations of conduit formation iterated over using 0

fast-marching. The primary advance in this paper is the use of D 400 600

anisotropic fast marching. The code structure consists of sev- x distance [m]

eral classes describing different components of the model
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with built-in methods. The result is an efficient code that al- e outlet  — conduit mm shale

lows rapid iteration over multiple versions of the same model, = granite

without having to reload all inputs and variables at each
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Fig. 10 Influence of the travel cost through fractures on the final network P>

structure. a A fracture travel cost equal to or lower than the conduit travel
cost results in conduits closely following fractures. b A fracture travel
cost between the conduit cost and the matrix cost results in conduits
following fractures only when an existing conduit is not available to
follow. ¢ A fracture travel cost higher than the matrix travel cost results
in conduits avoiding fractures

iteration (Miville 2020). The code and a complete set of ex-
ample input data and files can be found in the pyKasso GitHub
repository (GitHub 2021).

Inputs

The main inputs are a geologic model, in this case, constructed
using the implicit method described in de la Varga et al.
(2019), indicating which lithologic unit is present in each cell,
the coordinates of the known inlets and outlets to the system,
the statistics describing the fracture network—discussed in
more detail in Bonnet et al. (2001)—and the relative travel
costs associated with different geologic features. The anisot-
ropy is expressed by computing a vector field derived from the
gradient of a potential—see section ‘Initial calculations’ for
more detail. Travel costs are given in reference to travel in the
direction parallel to the vector field (maximum gradient) in
each cell. A cost ratio is therefore also needed, to calculate
the travel cost perpendicular to the gradient.

In the synthetic example, the problem is further simplified
to consider only a two-dimensional (2D) geologic map, with
the elevation of the lower boundary of the limestone unit as
the scalar field (Fig. 4). The fracture statistics are given in
Table 1, and the travel costs in Table 2.

Initial calculations

First, pyKasso generates a set of arrays describing the
medium through which conduits will evolve (Fig. 5). A
discrete fracture network is stochastically generated inde-
pendent of the travel cost map or the anisotropy field,
based on the density, orientation range, and length range
of each fracture family. A cost map is then created by
calculating the difficulty with which a conduit could tra-
verse each cell. Low-cost regions are easy for conduits to
form in, while high-cost regions are more difficult and are
therefore avoided by evolving conduits. Generally, the
karstifiable unit should have a lower travel cost than
nonkarstifiable units, fractures should have a lower travel
cost than the surrounding matrix, and existing conduits
should have the lowest travel cost. The travel cost also
increases with increasing elevation, to discourage con-
duits from traveling upwards. Finally, a vector field
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describing the anisotropy of the system is calculated
based on the input scalar array. The scalar array repre-
sents a crude approximation to the hydraulic potential
surface. In shallow, unsaturated systems, several proxies
may be used to represent this surface: the land surface
topography, the topography of the bottom of the
karstifiable unit, or the potential array returned by geolog-
ic modeling software such as GemPy (de la Varga et al.
2019) or GeoModeller (Calcagno et al. 2008). In this ex-
ample, the lower boundary of the limestone unit is used.

Iteration structure

Although the entire conduit network could be simulated in a
single iteration, this approach rarely yields realistic results. In
real karst systems, the network often has a hierarchical struc-
ture. In many cases, there are known connections between
certain inlets and outlets. Occasionally, the purpose of the
modeling is to reconstruct different phases of karst develop-
ment. In all of these situations, it is preferable to iterate over
several phases of conduit formation, updating the travel cost
map and travel time map at each step. The iteration structure
of pyKasso is highly flexible to accommodate a range model-
ing needs.

Conduit formation can be separated into stages by outlet,
by inlet, or a combination of the two. If there are multiple
outlets from the system, each outlet can be given its own
iteration and assigned specific inlets (or the order may instead
be shuffled). Conduits will then form in the first iteration from
the first set of inlets to the first outlet, the cost map will be
updated to reflect the new low-cost travel paths along the new
conduits, and the next iteration will model the conduits from
the second set of inlets to the second outlet, and so on, stop-
ping when all inlets and all outlets have been accounted for.
Within the outlet iterations, it is also possible to iterate over
the set of inlets assigned to that outlet. Each inlet can be run in
its own iteration, or inlets can be grouped into stages, with
several inlets per iteration (Fig. 6). Each iteration stops once
the conduits departing from each inlet reach their assigned
outlet. It is already apparent at this stage that the conduits
are behaving as expected, based on Fig. 2a.

The conduit paths generated by the fast-marching algo-
rithm all go the entire way from inlet to outlet, overlapping
when they are attracted to the path of an older conduit, result-
ing in a collection of disconnected paths rather than a single
cohesive network. A special function is required within
pyKasso to connect the paths into a network and convert it
into a sequence of nodes and edges composing a graph. This
function iterates over each path and follows it towards the
outlet. At each point on the path, it adds a node and links it
to the previous node by an edge. If there is already a node in
that location, it links the existing node to the previous node

@ Springer

a. conduit cost = 0.01
800

700 4

£00 A

500 4

400 1

300

y distance [m]

200 A

0 200 400 600 800 1000

b. conduit cost = 0.1
0

800
700 1

0=
6004 -

w

500 4

400

y distance [m]

300 A
200 A

100 1

i 0 200 400 600 800 1000

c. conduit cost = 0.6
800

700 1

600 |

500

y distance [m]
5
(=]

0 200 400 600 800
x distance [m]

limestone
I shale
E granite

® inlet
e outlet
— conduit
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results in younger conduits seeking older conduits when possible,
forming a realistically branching network. ¢ A conduit travel cost
higher than the surrounding matrix results in conduits avoiding each other

and skips to the next point (see Appendix, which describes the
process of the path to network conversion).
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A cost ratio much lower than one results in conduits that follow the
steepest gradient almost to the exclusion of all else, ignoring fractures
or obstacles to do so. b A cost ratio slightly lower than one results in
conduits that prefer to follow the gradient, but will also avoid obstacles or
follow fractures if they offer a less resistant path. ¢ A cost ratio greater
than one results in conduits that follow contours, attempting to form
perpendicular to the gradient

Outputs

At the end of the model run, pyKasso outputs a karst network
object, which stores the conduit network as a graph composed
of nodes and edges (Fig. 7a). The network object also stores a
simplified version of the graph with intermediate nodes re-
moved. The simplified network is useful for flow modeling,
where the reduction in computation time gained from reduc-
ing the number of nodes may outweigh the loss of high-
resolution spatial information that was contained in the origi-
nal network. Figure 7b, and a set of statistical metrics (Collon
et al. 2017) describing the geometry and topology of the net-
work, were all calculated using the karstnet package v.1.1.0
(Table 3). Notice that the network returned by pyKasso using
anisotropic fast marching is much more reasonable than the
network returned using isotropic fast marching (Fig. 8).
Although inlet iteration can create the expected branching
structure in an isotropic simulation, new conduits can run
uphill to join existing conduits, because the algorithm has no
information about the structure and orientations of the base of
the aquifer (Fig. 8a). The anisotropic simulation, by contrast,
results in conduits that follow the gradient to merge with one
another (Fig. 8b).

Influence of parameters on model results

The simple one-valley system presented in the preceding can
be modified to demonstrate the influence of the various op-
tions and parameters available in pyKasso. Five are highlight-
ed here: inlet/outlet assignment, fracture travel cost, conduit
travel cost, and cost ratio. Two other ways to use pyKasso are
also demonstrated: to simulate a vertical cross-section of the
system in which conduits form through both the unsaturated
and saturated zones, and to generate probability maps of con-
duit locations through iteration.

1. Inlet/outlet assignment. While the outlets draining a karst
system are usually easily identifiable (springs), not every
karst system has distinct inlets corresponding to
hydrogeologic features identifiable in the field such as
sinkholes, sinking streams, ponors, etc. In many cases,
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Fig. 13 Cross-sectional view of a. anisotropy field

b. conduit network

the example system, for
simulating the unsaturated zone in
a single iteration. a An anisotropy
field imposing a downward
gradient in the unsaturated zone.
b The resulting conduit network
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the entire land surface acts as a diffuse recharge area.
Inlets can therefore be simulated in one of three ways:
(1) if specific inlet locations are known, they can be di-
rectly specified as inputs to the model, (2) if the entire area
is receiving diffuse recharge, inlets can be randomly gen-
erated across the recharge area, and (3) a combination of
known inlet locations and randomly generated inlets can
be used. Specific inlets or groups of inlets can then be
assigned to specific outlets (again, either explicitly speci-
fied if the connections are known from field data such as
tracer tests, or randomly assigned if not). To demonstrate
the importance of inlet/outlet assignment, a second, ran-
domly generated outlet is added to the example system.
By default, the inlets will be assigned to the outlets in the
order they are given in the model input, giving the same
result every time. Shuffling the order, however, can result
in strikingly different networks (Fig. 9). In this example,
the five inlets are randomly split between the two
outlets—two to one outlet, three to the other. The order
in which the outlets are created is indicated by the outlet
number. All conduits going to a given outlet are simulated
in a single iteration (though one could easily choose to
simulate each inlet in its own iteration as well). Outlet 0 is
created first, and all inlets labeled 0 go to outlet 0. Outlet 1
is created next, and all inlets labeled 1 go to outlet 1.
While randomly pairing inlets and outlets can be useful
in exploring a wide range of possible networks (Fig. 9a,b),
caution is needed, because the networks can quickly be-
come implausible if an inlet that would not logically con-
nect to a certain outlet is accidentally assigned to it (Fig.
9c)—the fast-marching algorithm will attempt to connect
the inlet to the outlet, no matter how unrealistic the result-
ing conduit. The two outlets may also be disconnected
(Fig. 9b), because the algorithm has no reason to connect
them. If a connected network draining to both outlets is
desired, an inlet connected to the lower outlet can be co-
located with the upper outlet (in Fig. 9b, for example, this
would connect outlet 0 to outlet 1).

2. Fracture travel cost. The cost of travel through fractures
is by default set higher than the cost of travel through
conduits, but lower than the cost of travel through the
karstifiable matrix (Fig. 10b). A lower travel cost will
encourage conduits to follow fractures more closely at
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the expense of merging with existing conduits
(Fig. 10a), while a higher travel cost simulates cemented
fractures that conduits will try to avoid (Fig. 10c).
Conduit travel cost. The cost of travel through the con-
duits controls how strongly younger conduits will be
attracted to older conduits (Fig. 11). By default, the con-
duit travel cost is set lower than any other feature. If the
conduit cost is dramatically lower than the travel cost
through any other feature, younger conduits will take un-
realistic routes through obstacles or upgradient in order to
reach older conduits more quickly (Fig. 11a). If the travel
cost is only slightly lower through conduits than through
other features, younger conduits will seek to merge with
older conduits through realistically branching paths
(Fig. 11b). If the conduit travel cost is higher than the
travel cost through the surrounding rock, conduits will
seek to avoid each other (Fig. 11c).

Travel cost ratio. The travel cost ratio is the travel cost
parallel to the gradient over the travel cost perpendicular
to the gradient (Fig. 12). If the ratio is one, the system
behaves as though it were isotropic. If the ratio is less than
one, the travel cost is lower parallel to the gradient, and
conduits will try to follow the direction of the steepest
gradient (Fig. 12a,b). The smaller the ratio, the stronger
the influence of the anisotropy field on conduit formation,
and the less likely conduits will be to deviate from the
steepest path. If the ratio is greater than one, the travel
cost is lower perpendicular to the gradient, and the con-
duits will try to traverse along contour lines (Fig. 12c).
Simulating the unsaturated zone. Thus far, the test system
has been considered only in map view, using the lower
boundary of the limestone unit to generate an anisotropy
field. However, the system can also be modeled in cross-
section, to simulate conduit development in the unsaturat-
ed zone. Generally, mostly vertical conduits are expected
to form, descending from the surface inlets to the water
table, then making their way to the outlet by the most
direct path. Previously, to achieve this with the isotropic
Stochastic Karst Simulator, the unsaturated zone was sim-
ulated first, with the target being the entire water-table
surface rather than the system’s outlet, then the saturated
zone was simulated separately, with the inlets being re-
placed by the endpoints of the unsaturated zone conduits.
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100 equiprobable realizations of the discrete fracture network. Darker
lines indicate a higher probability of conduit occurrence

While this approach works, it is computationally ineffi-
cient. Instead, an anisotropy field can be created to impose
a strong downward gradient in the unsaturated zone,
while leaving the saturated zone unaffected (Fig. 13a).
The resulting conduits travel mostly downwards until they

reach the water table, at which point they curve toward the
outlet (Fig. 13b).

6. Probability maps. Part of the appeal of using fast-
marching methods for conduit network simulation is
computational efficiency. If little is known about the karst
system being modeled, tens or hundreds of networks can
quickly be generated to establish an initial range of pos-
sibilities (Fig. 14). While each of the networks in this
initial ensemble has a low probability of reproducing the
true network, taken all together and displayed visually,
they can still provide useful information. For example,
they may be used to identify potential hazard zone bound-
aries or to guide additional, carefully targeted, data col-
lection such as tracer tests, that would allow the rejection
of networks that do not match the new information.

Application to a real-world karst system

The new approach was tested on a real, complex example: the
extensively studied Gottesacker karst system in the German/
Austrian Alps (Goldscheider 2005). This system consists of a
series of plunging synclines and anticlines draining to the
Schwarzwasser Valley, which cuts roughly perpendicularly
across the fold axes. The karst aquifer lies north and northwest
of the valley in a limestone unit locally overlain by sandstone
and younger units, and underlain by nonkarstifiable marl and
older units. Three major springs drain the system. South of the
valley, nonkarstifiable flysch lithology prevents conduit
development—for a full description of the geologic setting,
see Goldscheider (2005). Several other geologic units and
small springs are present, but for the purposes of generating
conduit network maps, the geology is represented by a sim-
plified model focused on delineating the boundaries of the
karstifiable limestone unit (Fig. 15).

Numerous tracer studies (Goldscheider 2005; Goeppert and
Goldscheider 2008; Goeppert et al. 2020) have yielded a good
understanding of the conduit network, which has been used suc-
cessfully for previous groundwater flow modeling efforts (Chen
and Goldscheider 2014) (Fig. 16a). The outlets in this flow mod-
el correspond to the three major springs draining the system,
while the inlets correspond either to tracer injection sites or to
locations selected based on a conceptual understanding of the
system. However, efforts to model the conduit system using
the isotropic Stochastic Karst Simulator yielded networks that,
while able to reproduce observed discharge dynamics at the three
major springs, did not match the spatial configuration of the
known network (Fandel et al. 2021; Fig. 16b).

To simulate the Gottesacker karst system with pyKasso, the
problem is considered in a simplified form—in two dimen-
sions, using a map view of the geologic model, the inlet and
outlet locations used in previous flow modeling efforts, the
fracture statistics reported in Goldscheider (2002), and the
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(Fandel et al. 2021). The karst aquifer is located in the limestone unit,
and drains to the three springs in the lower part of the system. The model
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is poorer south of the stream due to lower data resolution in that area. b
Location of the study site within central Europe. ¢ Schematic cross-
section of the fold and drainage structure (after Goldscheider 2005)

quality is fairly good within the karst catchment (north of the stream), but

Fig. 16 a Expected conduit
network in the Gottesacker karst
system, as determined by tracer
tests, field observations, and
previous modeling work (after
Chen and Goldscheider 2014). A
major conduit parallels the stream
along the valley, and is fed by a
set of four conduits draining the
upper part of the aquifer along
synclinal axes, which coincide
roughly with the major surface
valleys. b A representative sam-
ple of networks returned by pre-
vious modeling efforts using the
isotropic Stochastic Karst
Simulator (Fandel et al. 2021).
Note that they do not follow syn-
clines, and differ widely from the
expected network
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Fig. 17 A conduit network 5.250
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Fig. 18 Influence of fracture network and inlet/outlet assignment on sim-
ulated network structure. a When the inlet/outlet assignments are kept
fixed, the fractures add only a small amount of variability to the conduit
network structure. b When the inlet/outlet assignments are randomly

shuffled, the ensemble is more diverse, but includes many networks that
do not resemble the known network and many networks that are struc-
turally implausible
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Table 4 Network statistics for two ensembles of 100 conduit networks generated by pyKasso, as compared to the statistics describing the expected
conduit network. Calculated using karstnet v.1.1.0. For a full description of each metric, see Collon et al. (2017). SD standard deviation

Metric Expected network (n=1)

Ensemble A:
Stochasticity from fractures only (n=100)

Ensemble B:
Stochasticity from fractures
and inlet/outlet assignment (n=100)

Mean SD Mean SD
No. of nodes in simplified graph 14 35.05 9.78 40.89 10.67
Avg. shortest path length 3.40 7.89 1.95 8.44 2.10
Central point dominance 0.43 0.33 0.04 0.35 0.06
Mean degree 1.86 232 0.09 2.36 0.10
Coefficient of variation of degree ~ 0.55 0.38 0.03 0.37 0.04
Correlation vertex degree —0.44 —0.40 0.07 —0.39 0.12

surface topography as a proxy for the hydraulic potential field
(because in vadose systems the topographic gradient is an
acceptable representation of the hydraulic gradient, and in this
system, the surface topography roughly parallels the lower
surface of the karstifiable unit, with a few localized excep-
tions). A few iterations with different inlet/outlet assignments
immediately yielded a result quite visually similar to the ex-
pected network (Fig. 17).

To test the influence of changing the simulation parameters,
two parameters of interest were selected: the fracture network,
and the inlet/outlet assignments. An ensemble was created by
iterating over two sets of 10, 50, and 100 simulations. In the
first, only the fracture network was regenerated at each run
(Fig. 18a). In the second, the inlet/outlet pairings were also
randomly shuffled for each run (Fig. 18b). The resulting prob-
ability maps suggest that inlet/outlet assignment has a much
stronger influence than the fractures over the structure of the
simulated conduit networks, and that varying the inlet/outlet
assignment order adds diversity to the model ensemble even
with a small number of realizations. However, random inlet/
outlet pairings also introduce networks that are geologically
implausible—for example, conduits that climb up and over
anticlines. Caution and validation with field data are therefore
needed when using this feature. Many other parameters could

also be modified to add variety to the resulting conduit net-
works: the relative travel costs of different features, the travel
cost ratio, the surface used to generate the anisotropy field, or
the fracture network statistics, for example.

In addition to visually assessing the similarity of the simulated
networks to the expected network, their statistical similarity was
compared (Table 4). For both groups of 100 simulations—one
with variability due only to the fracture network, the other with
variability due to both the fracture network and the inlet/outlet
assignment order—the mean value and standard deviation of the
statistical metrics returned by pyKasso were calculated, and com-
pared to the values of each metric for the base model.

Several complicating factors must be considered regarding
the application of these metrics in this example. First, the
expected network map is simplified to only the major
branches and connections, and does not represent the detailed
network geometry; therefore, only topological (rather than
geometric) indicators were considered. Second, the mean
number of nodes in simulated networks was more than double
the number of nodes in the expected network, even after the
simulated networks were simplified. This is due to the diffi-
culty of automating graph simplification—the simulated net-
works were automatically simplified from the complex ren-
dering returned by pyKasso, while the expected network was

Table 5 Simulated network
configurations for the Gottesacker Inlet

Geologically plausible paths

Geologically implausible paths

karst system, when tracer test data

are withheld 0 a. The majority of simulations agree on the path leading from  None
inlet 0, paralleling the surface stream
1 a. Merges with main conduit immediately below inlet 0 c. Crosses anticline to merge with
b. Merges with main conduit further downslope conduit from inlet 2
2 a. Merges with conduit from inlet 3, bypassing spring 0 None
b. Merges with main conduit upstream of spring 0
3 a. Merges with main conduit upstream of spring 1 None
b. Merges with main conduit downstream of spring 1
4 a. Connects directly to spring 2 b. Crosses through marl to merge

with conduit from inlet 3
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hand-drawn and was already very simple. The difference in
number of nodes does not indicate actual discrepancies in
complexity of the networks. It does, however, mean that the
number of nodes and the average shortest path length are
applicable only when comparing between networks that were
generated using methods with similar resolutions (in terms of
the number of nodes and edges per length of conduit); thus,
networks simulated with pyKasso can be compared to each
other, but not to the expected network. Third, the simulated
networks sometimes include loops, a common feature of real
karst systems, which increases the value of the mean node
degree. The simplified expected network, however, does not
include loops (the real conduit network undoubtedly has them,
but their locations are difficult to determine without firsthand
cave exploration). The mean node degree of the simulated
networks is therefore not easily comparable to that of the
expected network. These multiple considerations indicate that
caution is required when making statistical comparisons be-
tween the expected network and the simulated network, but
comparisons across simulated networks remain of interest.

Since the ensemble of simulated networks with fracture-
induced stochasticity only (ensemble A) was less visually di-
verse than the networks simulated with fracture-induced and
inlet/outlet assignment-induced stochasticity (ensemble B), it
might be expected that the standard deviation of the statistical
metrics for ensemble B would be higher. This was indeed the
case, with the standard deviations 8-70% higher than in ensem-
ble A. However, a simple two-sample t-test indicated that the
two ensembles were only significantly statistically different
from each other according to two metrics: central point domi-
nance and mean degree (both higher for ensemble B). This is
likely because shuffling the inlet/outlet connections tends to
result in more loops and intersections within the network.

Since the simulated networks in ensemble A were also more
visually similar to the expected network than the simulations in
ensemble B, one might expect the mean statistical metrics for
ensemble A to also be more similar to the expected network.
However, while this assumption generally held true, the differ-
ences were slight, and, as already explained, comparing networks
with such different levels of complexity is inadvisable in this
case. Therefore, this study does not draw any conclusions about
structural similarity between the expected and simulated net-
works based on metrics of statistical similarity.

Discussion and conclusion

Advantages and limitations

This paper demonstrates that using anisotropic fast marching to
generate stochastic simulations of karst conduit networks has

several advantages. Most of the previous advantages of the
Stochastic Karst Simulator developed by Borghi et al. (2012)

remain—compared to existing conduit network generation
models, less input data is required, and the algorithm is compu-
tationally efficient. As compared to the original SKS algorithm
(based on isotropic fast marching), the use of anisotropic fast
marching yields karst networks that better follow geological
structures such as synclines or dipping layers, and are therefore
more realistic. Furthermore, anisotropic fast marching can repre-
sent the unsaturated zone in a simple manner. This simplifies the
algorithm and makes the calculations more efficient. These novel
features are implemented in the pyKasso Python package, which
is open-source and freely available.

These characteristics make this approach widely applicable
to modeling a variety of karst systems where minimal infor-
mation is available and resource limitations restrict the time,
software, and computational power that can be dedicated to a
modeling effort. It is useful for generating a range of hypoth-
eses as to the conduit network structure, which can be used as
a starting point for further study, or to guide data collection. It
is also effective in systems with strong elevation gradients and
a complex geologic structure, particularly where conduit for-
mation is structurally controlled.

The approach documented here is not, however, an accurate
representation of the speleogenetic process. It does not simulate
the physical and chemical reactions driving conduit formation,
nor does it simulate any internal conduit properties such as di-
ameter or roughness. If the inlet/outlet pairings are not well un-
derstood, it is likely to generate many networks that differ sig-
nificantly from the true conduit network. It is therefore not rec-
ommended when the goal of the modeling effort is to generate a
single most-probable network. If the goal is to generate networks
to serve as inputs to a flow model, it is strongly recommended
that an ensemble approach be used, in which flow simulations
are run on many competing possible networks.

Possible application: guiding data collection

In the ensembles tested in this study, the inlet/outlet assignment
has a strong influence on the resulting network, and certain inlet/
outlet pairings yield geologically implausible networks—when,
for example, a randomly assigned pairing forces a conduit to
connect an inlet to an outlet in a different subwatershed. The
ability to control the network structure based on inlet/outlet
pairings is an important feature, because inlet/outlet pairings are
relatively easy to test in the field using tracer methods, and do not
require continuous flow monitoring or additional flow or trans-
port modeling in order to be useful—for example, in the case of
the Gottesacker karst system, if the network configuration and
inlet/outlet connections were not already known, the simulated
network ensemble would encompass several dominant possibil-
ities (Fig. 19; Table 5).

Some of these possibilities should be rejected immediately
because they are geologically implausible—for example, in
No. 4b (Table 5), the conduits leading from inlet 4 to merge
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with the conduits from inlet 3. These conduits are the result of
random inlet/outlet pairing assigning inlet 4 to outlet 0 or
outlet 1, thereby forcing a connection across the anticline
and the nonkarstifiable marl unit that lie between inlet 4 and
these two outlets. Each of the remaining possibilities can be
tested in the field with tracer methods, in order of informative-
ness. Inlet 3, for example, appears to have a roughly equal
number of iterations with conduits following the two main
paths—Nos. 3a and 3b (Table 5)—which merge with the main
conduit above and below outlet 1, respectively. Previous trac-
er studies found that in fact the correct path connects above
outlet 1; however, if there was no prior information about the
site, and if limited resources restricted the number of tracer
tests that could be performed, inlet 3 would be a good choice
to test first, as it would allow the rejection of a large number of
networks and provide information about the source of water at
outlet 1. Conversely, there would be little point in injecting a
tracer at inlet O or inlet 4, because nearly all of the geologically
plausible iterations agree on the path of the conduit departing
from those inlets. Data collection needs can therefore be re-
duced from five tracer tests to three (Fig. 19).

In this example, a tracer injected at inlet 3 would be found
at outlets 1 and 2, allowing all networks in which inlet 3 is not
connected to outlet 1 to be rejected. A similar process would
narrow down the model structure based on tracer tests at inlets
1 and 2.

If not enough resources were available to perform any ad-
ditional tracer tests, the model ensemble would still be useful
in guiding decision-making because it identifies a range of

Fig. 19 Using an ensemble of

possibilities to consider and enables their presentation in an
easily digestible visual format. Potential hazard zones
(Fig. 19) can be identified from the conduit probability map:
these are zones that the model ensemble suggests are likely to
have a subsurface conduit network present and therefore are
potentially at higher risk for sinkhole hazards, potential con-
tamination pathways, etc. Identifying these zones could be
useful, as one example, in choosing the location of future
infrastructure projects.

Future work

The anisotropic fast-marching method, combined with the
code structure of pyKasso, allows for a wide range of appli-
cations to karst modeling problems. One logical next step is to
test flow through the simulated conduit networks. The node/
edge data structure returned by pyKasso to describe the net-
work can be easily used as input to a distributed flow model
that can consider discrete flow structures and can therefore be
used in karst—two examples of such models are
MODFLOW-CFP (Reimann and Hill 2009) or SWMM
(Rossman 2015). The next logical step is to simulate solute
transport as well as flow—considering transport can reduce
the nonuniqueness of simulated behaviors significantly more
than flow modeling alone (Kavousi et al. 2020; Sivelle et al.
2020). However, flow and transport models require internal
information about the conduits such as diameter and rough-
ness. Creating an add-on to pyKasso that could estimate these
parameters would therefore be a useful next step. Because

conduit network simulations to
guide data collection and risk
assessment
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groundwater flow models are computationally intensive, it
would also be interesting to test whether any statistical metrics
describing the network geometry and topology are correlated
with how well the network is able to reproduce observed flow

patterns such as discharge at the system outlet. Finally, al-
though the examples in this paper are two-dimensional, a 3D
version of pyKasso will be released in the near future.
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Fig. 20 Path to network conversion process diagram
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