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Zusammenfassung

Die in dieser Doktorarbeit vorgestellten Erkenntnisse tragen zur computergestützten Mo-

dellierung der Ionenaustauschchromatographie (ion exchange chromatography, IEX chro-

matography) bei. In Kombination mit anderen Chromatographieverfahren spielt die IEX-

Chromatographie eine wesentliche Rolle bei der Aufreinigung biopharmazeutischer Prote-

ine, sowohl in der Proteinanalytik als auch in der industriellen Produktion. Da sie einen

großen Einfluss auf die endgültige Reinheit und Qualität eines biopharmazeutischen Pro-

duktes haben, unterliegen die Entwicklung und der Betrieb von Chromatographieschritten

strengen regulatorischen Anforderungen. Selbst kleinste Änderungen im Herstellungspro-

zess können sich negativ auf die Qualität des Endproduktes auswirken und die Patienten-

sicherheit gefährden. Um sicherzustellen, dass das Endprodukt durchgängig vorgegebene

Qualitätsmerkmale erfüllt, verlangen Aufsichtsbehörden wie die U.S. Food and Drug Ad-

ministration und die Europäische Arzneimittelagentur daher ein fundiertes Verständnis

des Produktes und dessen Herstellungsprozesses, so wie es die Quality by Design (QbD)

Initiative vorgibt. Im Gegensatz zur Gewährleistung der Produktsicherheit allein durch

”Qualität durch Prüfung” (’Quality by Testing’ ), strebt QbD eine Qualitätssicherung an,

bei der sämtliche Quellen für Produkt- und Prozessvariabilität identifiziert, Beziehungen

zwischen Prozess- und Produktvariabilität verstanden und geeignete Prozesskontrollstra-

tegien entwickelt sind. Zudem sollte die Prozessentwicklung gemäß QbD auf wissenschaft-

lichen und risikobasierten Ansätzen beruhen.

Angetrieben durch die QbD-Initiative hat die mechanistische Prozessmodellierung in den

letzten Jahren zunehmend an Aufmerksamkeit gewonnen. Indem sie einen Prozess und die

ihm zugrundeliegenden biologischen, chemischen und physikalischen Mechanismen auf der

Basis von Naturgesetzen beschreiben, liefern mechanistische Modelle ein fundiertes wis-

senschaftliches Prozessverständnis und sind in der Lage, die Prozessentwicklung auf der

Grundlage wissenschaftlicher Prinzipien zu unterstützen, so wie es von QbD angestrebt

wird. Im Falle der Chromatographie bestehen diese mechanistischen Modelle meist aus

einem System von Kontinuitätsgleichungen, die die Migration von Proteinen und anderen

gelösten Stoffen innerhalb einer Chromatographiesäule beschreiben. Diese Kontinuitäts-

gleichungen berücksichtigen verschiedene Massentransfermechanismen, wie zum Beispiel

Konvektion und Diffusion. Sie sind mit einem Adsorptionsmodell gekoppelt, das Wech-

selwirkungen zwischen den Proteinen und dem Chromatographiemedium berücksichtigt.

Obwohl es bereits mehrere mechanistische Modelle für IEX-Prozesse gibt, finden sie in

der Industrie jedoch bislang nur selten konsequent Anwendung. Die Zurückhaltung der

Industrie bei der Verwendung mechanistischer Modelle lässt sich häufig auf zwei Fakto-

ren zurückführen: 1) Defizite der bestehenden Modelle bei der Beschreibung des realen

Prozessverhaltens und 2) mangelndes Vertrauen in mechanistische Modelle aufgrund des

Fehlens geeigneter Ansätze zur Bewertung von Modellunsicherheit und Modellrisiko.
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Das Ziel dieser Arbeit bestand darin, beide Probleme anzugehen und somit zu einer breite-

ren Anwendung mechanistischer Modelle für die Entwicklung von IEX-Prozessen beizutra-

gen. Die Arbeit besteht dabei aus vier Veröffentlichungen. In der ersten Veröffentlichung

(Kapitel 3) wurde ein statistischer Ansatz für die Kalibrierung und Unsicherheitsbewer-

tung von mechanistischen Chromatographiemodellen vorgestellt. In vorhergehenden Ar-

beiten beschränkte sich die Unsicherheitsbewertung von Chromatographiemodellen allein

auf Modellparameter. Es wurde kaum analysiert, wie sich die Unsicherheit in den Mo-

dellparametern auf Modellvorhersagen auswirkt. Darüber hinaus wird die Parameterun-

sicherheit eines mechanistischen Modells in der Regel mit Hilfe von Konfidenzintervallen

einzelner Parameter sowie anhand der Parameterkovarianz unter Verwendung der Fisher-

Informationsmatrix (FIM) bewertet. Es ist bekannt, dass eine auf der FIM basierenden

Berechnung für komplexe Modelle ungenau sein kann, da sie nur eine untere Grenze für

die Parameterunsicherheit liefert und nur für symmetrische Konfidenzintervalle gültig ist.

Die Defizite bestehender Ansätze wurden in dieser Arbeit mit Hilfe von approximate Baye-

sian inference unter Einsatz von Monte-Carlo-Techniken wie Markov Chain Monte Carlo

gelöst. Auf Grundlage des Gesetzes der großen Zahlen liefern diese Techniken eine Appro-

ximation multivariater posterior Parameter- und posterior Vorhersageverteilungen eines

Modells. Im Gegensatz zu vorhergehenden Ansätzen, die auf der FIM basieren, liefert der

vorgeschlagene Ansatz keine untere Grenze für die Modellunsicherheit. Darüber hinaus

ist der Ansatz nicht auf symmetrische Unsicherheitsintervalle beschränkt und liefert eine

systematische Bewertung der prädiktiven Modellunsicherheit. Mit Hilfe des statistischen

Ansatzes wurde gezeigt, dass mechanistische Chromatographiemodelle trotz erheblicher

Unsicherheiten in einigen Modellparametern genaue Vorhersagen jenseits des beobachte-

ten Prozessbereiches treffen können. Das gewonnene Verständnis von Unsicherheiten in

Modellsimulationen trägt dazu bei, das Vertrauen in die Vorhersagefähigkeit eines mecha-

nistischen Chromatographiemodells zu erhöhen.

Defizite bestehender Modelle bei der Beschreibung des realen Prozessverhaltens sind die

häufigsten Gründe dafür, dass mechanistische Modelle nicht für die Prozessentwicklung

eingesetzt werden können. Im Falle der IEX-Chromatographie spielt die Genauigkeit des

Adsorptionsmodells eine entscheidende Rolle, da die Migration von Proteinen durch ei-

ne Chromatographiesäule unter industriellen Prozessbedingungen insbesondere durch die

Thermodynamik beschrieben wird. In den letzten drei Jahrzehnten war das sogenannte

steric mass action (SMA) Modell das verbreitetste Modell zur Beschreibung der Prote-

inadsorption in IEX-Prozessen. Im Rahmen des SMA-Modells wird die Adsorption von

Proteinen an geladene IEX-Medien als eine stöchiometrische Reaktion dargestellt, bei der

ein Protein eine stöchiometrische Anzahl an Adsorber-Gegenionen reversibel verdrängt.

Die Proteinadsorption wird dabei physikalisch durch die Anzahl der verfügbaren Gegenio-

nen auf der Adsorberoberfläche begrenzt. Trotz der weiten Verbreitung des SMA-Modells

hat sich gezeigt, dass es das reale Prozessverhalten nur unter bestimmten Bedingungen

abbilden kann. Insbesondere für industrielle IEX-Prozesse, bei denen die Chromatogra-

phiesäule mit einer großen Menge an Protein nahe ihrer dynamischen Bindungskapazität

beladen wird, wurde festgestellt, dass das SMA-Modell das beobachtete Prozessverhalten

nicht mehr ausreichend abbilden kann. Aufgrund dieser Limitierungen des SMA-Modells

und anderer existierender Modelle, ist der Hauptteil dieser Arbeit der Entwicklung eines

alternativen Adsorptionsmodells gewidmet. Analog zum SMA-Modell und anderen Ad-

sorptionsmodellen versucht das entwickelte Modell eine Balance zwischen mechanistischer

Beschreibung und Empirie herzustellen. Ziel war es dabei, eine mathematische Formu-

lierung zu liefern, die computertechnisch einfach zu lösen und somit in der industriellen
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Praxis breit anwendbar ist. Im Gegensatz zum SMA-Modell basiert das entwickelte col-

loidal particle adsorption (CPA) Modell nicht auf einer vereinfachten stöchiometrischen

Beschreibung der Proteinadsorption, sondern auf einem strengeren physikalischen Ansatz

auf der Grundlage der Kolloidwissenschaft. Im Rahmen des CPA-Modells werden Proteine

als kolloidale Partikel mit einer perfekten sphärischen Form und homogener Oberflächenla-

dungsdichte idealisiert. Unter Verwendung der linearisierten Poisson-Boltzmann-Gleichung

berücksichtigt das Modell elektrostatische Wechselwirkungen zwischen geladenen Prote-

inen und geladenen IEX-Medien als die dominierende Kraft für die Adsorption. Nicht-

lineares Adsorptionsverhalten wird durch die Simulation sterischer und elektrostatischer

Wechselwirkungen zwischen adsorbierten Proteinen berücksichtigt. Im Gegensatz zu stö-

chiometrischen Modellen, bei denen die verfügbaren Gegenionen der limitierende Faktor

für die Proteinadsorption sind, berücksichtigt das CPA-Modell die tatsächliche Oberfläche

eines IEX-Mediums als den physikalisch begrenzenden Faktor für die Proteinadsorption.

Das CPA-Modell wurde im Laufe von drei aufeinander aufbauenden Veröffentlichungen

entwickelt. In er ersten Veröffentlichung dieser Reihe (Kapitel 4) wurde das Modell für

den Grenzfall des linearen Adsorptionsbereichs eingeführt und zur Simulation von Vertei-

lungskoeffizienten mehrerer Proteine in Abhängigkeit von dem pH-Wert und der Ionen-

stärke angewendet. Da Protein-Protein-Wechselwirkungen im linearen Adsorptionsbereich

vernachlässigt werden können, beschränkte sich das Modell in diesem Stadium auf die Be-

schreibung der elektrostatischen Wechselwirkungen zwischen einem einzelnen Protein und

dem geladenen IEX-Medium. Molekulare Strukturinformationen basierend auf bekannten

Proteinprimärstrukturen wurden verwendet, um die Oberflächenladungsdichte der ana-

lysierten Proteine abzuschätzen und elektrostatische Wechselwirkungen zwischen Protein

und Adsorber in Abhängigkeit von dem pH-Wert und der Ionenstärke zu simulieren. Es

wurde gezeigt, dass das Modell in der Lage ist, Verteilungskoeffizienten über einen weiten

Bereich von pH-Werten und Ionenstärken zu beschreiben und zuverlässige Extrapolationen

über den beobachteten pH-Bereich hinaus durchzuführen. Durch die Berücksichtigung von

Unterschieden in der molekularen Struktur eines monoklonalen Antikörpers (monoclonal

antibody, mAb) und dessen posttranslationalen Modifikationen war das Modell auch in

der Lage, das Adsorptionsverhalten von Antikörper-Ladungsvarianten vorherzusagen. Die

Menge und das Verhältnis von Protein-Ladungsvarianten ist ein gängiges Qualitätsmerk-

mal von biopharmazeutischen Arzneimitteln. Ladungsvarianten können bei der Protein-

aufreinigung eine Herausforderung darstellen, da sie sich in ihrer Struktur nur geringfügig

vom intakten Protein unterscheiden und und somit ähnliche physikochemische Eigenschaf-

ten aufweisen.

In der zweiten Veröffentlichung (Kapitel 5) wurde das CPA-Modell auf den nichtlinea-

ren Adsorptionsbereich ausgeweitet und zur Simulation von Adsorptionsisothermen eines

mAbs über einen weiten Bereich von Ionenstärke und pH-Wert angewendet. Ein detail-

lierter Vergleich des CPA-Modells mit dem traditionellen SMA-Modell zeigte vergleich-

bare Modellergebnisse im linearen Adsorptionsbereich, allerdings erhebliche Unterschiede

im nichtlinearen Adsorptionsbereich. Gemessene Adsorptionsisothermen wurden im All-

gemeinen besser durch das CPA-Modell beschrieben. Die in dieser Arbeit vorgestellten

Ergebnisse bestätigen, dass die Vereinfachungen und Annahmen im SMA-Modell nur in

bestimmten Regimen gültig sind und nicht alle Experimente angemessen beschreiben. Die

Ergebnisse deuten auch darauf hin, dass nichtlineare Adsorptionseffekte durch das SMA-

Modell erheblich überschätzt werden können und im Allgemeinen durch das CPA-Modell

besser wiedergegeben werden. Angesichts der besseren Beschreibung der experimentellen
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Isothermen durch das CPA-Modell stellt Letzteres eine Verbesserung des SMA-Modells

dar und trägt zu einem besseren Verständnis der Proteinadsorption bei.

Nach Entwicklung des CPA-Modells unter Gleichgewichtsbedingungen wurde in der letzten

Veröffentlichung (Kapitel 6) eine kinetische Herleitung des Adsorptionsmodells vorgestellt,

die eine Geschwindigkeitsgleichung für die Adsorption und Desorption von Proteinen lie-

fert. In Kombination mit einem Massentransportmodell wurde die kinetische Form des

CPA-Modells schließlich zur Simulation der Proteinretention in der präparativen IEX-

Chromatographie verwendet. Um die allgemeine Anwendbarkeit des CPA-Modells zu de-

monstrieren, umfasste die Studie mehrere industrielle Prozesse mit verschiedenen mAbs

und IEX-Medien. Die Proteinelution wurde durch eine lineare oder stufenweise Variati-

on der Ionenstärke und/oder des pH-Wertes der mobilen Phase kontrolliert. Trotz des

breiten Spektrums an Prozessbedingungen wurde das Elutionsverhalten in allen Fällen

zufriedenstellend durch das CPA-Modell beschrieben. Insbesondere hat sich gezeigt, dass

das Modell auch komplexes Elutionsverhalten von Proteinen beschreiben kann, welches in

der Vergangenheit nicht durch das SMA-Modell beschrieben werden konnte.

Zusammenfassend lässt sich sagen, dass diese Arbeit wertvolle Verbesserungen bei der

computergestützten Modellierung von IEX-Prozessen in zwei Aspekten liefert. Erstens

wurden Unzulänglichkeiten bestehender Theorien bei der Beschreibung von präparativen

IEX-Prozessen durch die Einführung des CPA-Modells überwunden. Zweitens wurde zur

Erhöhung der Glaubwürdigkeit mechanistischer Modelle ein statistischer Ansatz einge-

führt, der eine detaillierte Bewertung der Unsicherheiten in Modellparametern und Mo-

dellvorhersagen ermöglicht. Die in dieser Arbeit entwickelten Ansätze und Theorien tragen

zu einer vielfältigeren Anwendung mechanistischer Modelle bei, um die Prozessentwick-

lung der IEX-Chromatographie auf wissenschaftliche, aber auch risikobasierte Weise zu

unterstützen, so wie es von QbD befürwortet wird.



Abstract

The work presented in this thesis contributes to the computational modeling of ion ex-

change (IEX) chromatography. In combination with other types of chromatography, IEX

chromatography plays an essential role in the purification of biopharmaceutical proteins in

both protein analysis and industrial manufacturing. Since chromatography processes have

a major impact on the final purity and quality of a biopharmaceutical product, the de-

velopment and operation of these processes are subject to strict regulatory requirements.

Even small changes in the process during manufacturing can negatively affect the quality

of the final product and compromise patient safety. Thus, to ensure that the final product

consistently meets specified quality attributes, regulatory agencies like the U.S. Food and

Drug Administration and the European Medicines Agency require a sound understanding

of the product and its manufacturing process, as emphasized by the Quality by Design

(QbD) initiative. In contrast to ensuring product safety through ’Quality by Testing’ alo-

ne, QbD aims for quality assurance by identifying all sources of product and process

variability, understanding the relationship between process and product variability, and

developing appropriate process control strategies. According to QbD, process development

should further be informed by science and risk-based approaches.

Driven by the QbD initiative, mechanistic process modeling has attracted increased at-

tention in recent years. By describing a process and its underlying biological, chemical, or

physical mechanisms based on natural laws, mechanistic models provide sound scientific

process understanding and are able to support process development based on scientific

rationale, as emphasized by QbD. In case of chromatography, these mechanistic models

mostly consist of a system of continuity equations that describe the migration of proteins

and co-solutes within a chromatography column. These continuity equations account for

different mass transfer mechanisms including convection and diffusion. They are coupled

with an adsorption model that considers interactions between proteins and the chroma-

tography medium. Despite the existence of mechanistic models for IEX processes, their

application in industry remains sparse. The reluctance of the industry to use mechanistic

models can often be attributed to two factors: 1) Shortcomings of existing mechanistic mo-

dels in describing real process behavior and 2) a lack of confidence in mechanistic models

due to the absence of appropriate approaches to assess model uncertainty and risk.

The goal of this work was to address both issues and thus contribute to a more widespread

application of mechanistic models for the development of IEX processes. The thesis con-

sists of four publications. In the first publication (Chapter 3), a statistical framework

for the calibration and uncertainty assessment of mechanistic chromatography model was

introduced. In previous works, uncertainty assessment of chromatography models was li-

mited to model parameters alone. It was hardly analyzed how the uncertainty in model
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parameters propagates to model predictions. Additionally, parameter uncertainty of a me-

chanistic model is commonly assessed by means of single parameter confidence intervals

and parameter covariance using the Fisher information matrix (FIM). It is known that an

approximation based on the FIM can be inaccurate for complex models, as it only provides

a lower bound for the parameter uncertainty and is only valid for symmetric confidence

intervals. The shortcomings of existing approaches were resolved in this thesis by perfor-

ming approximate Bayesian inference using Monte Carlo techniques like Markov Chain

Monte Carlo. Based on the law of large numbers, these techniques provide an approxima-

tion of the joint parameter posterior distribution and posterior predictive distribution of a

model. In contrast to previous approaches based on the FIM, the proposed approach does

not only provide a lower bound for the model uncertainty. Moreover, the approach is not

limited to symmetric uncertainty intervals and provides a systematic assessment of the

predictive model uncertainty. Using the statistical approach, it was demonstrated that,

despite significant uncertainty in some model parameters, mechanistic chromatography

models can make accurate predictions beyond observed process conditions. By providing a

detailed understanding of the uncertainties in model simulations, the proposed statistical

framework helps to increase confidence in the predictive capability of a model.

Shortcomings of existing models in describing real process behavior are probably the most

common reasons that prevent mechanistic models from being used for process develop-

ment. In case of IEX chromatography, the accuracy of the adsorption model plays an

essential role, as protein migration through a chromatography column under industrial

process conditions is largely described by thermodynamics. For the past three decades,

the so-called steric mass action (SMA) model has been the most widely used model to

describe protein adsorption in IEX processes. Within the framework of the SMA model,

protein adsorption onto charged IEX media is described as a stoichiometric reaction in

which a protein reversibly displaces a stoichiometric number of adsorber counter-ions.

Protein adsorption is thereby physically limited by the number of available counter-ions

on the adsorber surface. Despite its widespread use, it has been shown that the SMA

model reproduces real process behavior only under certain limited conditions. Especially

for industrial IEX processes, where the chromatography column is loaded with a large

amount of protein close to its dynamic binding capacity, it was found that the SMA model

can no longer describe the observed process behavior. Motivated by these limitations of

the SMA model and other existing models, the main part of this work is devoted to the

development of an alternative adsorption model. Similar to the SMA model and other

adsorption models, the developed model seeks to balance a mechanistic description and

empiricism to provide a mathematical description that is computationally simple to sol-

ve and thus widely applicable to industrial practice. In contrast to the SMA model, the

developed colloidal particle adsorption (CPA) model is not based on a simplified stoichio-

metric description of protein adsorption but on a more rigorous physical approach using

colloid science. Within the framework of the CPA model, proteins are idealized as colloidal

particles with a perfect spherical shape and homogeneous surface charge density. Using

the linearized Poisson-Boltzmann equation, the model considers electrostatic double-layer

interactions between charged proteins and charged IEX media as the dominant force for

adsorption. Nonlinear adsorption behavior is considered by simulating steric and electro-

static interactions between adsorbed proteins. In contrast to stoichiometric models, for

which the available counter-ions are the limiting factor of protein adsorption, the CPA

model respects the actual surface area of an IEX medium as the physically limiting factor

for protein adsorption.
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The CPA model was developed over the course of three consecutive publications. In the

first publication of this series (Chapter 4), the model was introduced for the limiting case

of the linear adsorption range and applied to simulate partitioning coefficients of multiple

proteins as a function of the pH value and ionic strength. Since protein-protein interactions

can be neglected in the linear adsorption range, the model at this stage was limited to

a description of electrostatic interactions between a single protein and the charged IEX

medium. Molecular structural information based on known protein primary structures

was used to estimate the surface charge density of the analyzed proteins and to simulate

electrostatic protein-adsorber interactions as a function of the pH value and ionic strength.

The model was shown to be able to describe partitioning coefficients over a wide range of

pH and ionic strength and to make reliable extrapolations beyond the observed pH range.

By considering molecular structural differences between a monoclonal antibody (mAb)

and its post-translational modifications, the model was also able to predict the adsorption

behavior of antibody charge variants. The amount and ratio of protein charge variants

is a common quality attribute of biopharmaceutical drugs. Charge variants can pose a

challenge in downstream processing as they differ only slightly in structure from the intact

protein and therefore show similar physicochemical properties.

In the second publication (Chapter 5), the CPA model was extended to the nonlinear ad-

sorption range and applied to simulate adsorption isotherms of a mAb over a wide range of

ionic strength and pH. A detailed comparison of the CPA model with the traditional SMA

model showed comparable model results in the linear adsorption range but considerable

differences in the nonlinear adsorption range. Measured adsorption isotherms were in ge-

neral better described by the CPA model. The results presented in this work confirm that

the simplifications and assumptions in the SMA model are only valid in certain regimes

and do not adequately describe all experiments. The results also suggest that nonlinear

adsorption effects can be overestimated considerably by the SMA model and are in general

better reproduced by the CPA model. Given the better description of the experimental

isotherms by the CPA model, the latter provides an improvement to the SMA model and

helps to better understand protein adsorption.

After developing the CPA model under equilibrium conditions, the final publication (Chap-

ter 6) introduces a kinetic derivation of the adsorption model providing a rate equation for

protein adsorption and desorption. Combined with a transport model, the kinetic form of

the CPA model was finally used to simulate protein retention in preparative IEX chroma-

tography. To demonstrate the general applicability of the CPA model, the study included

multiple industrial processes using different mAbs and IEX media. The protein elution

was controlled by a linear or stepwise variation of the ionic strength and/or the pH value

of the mobile phase. Despite the wide range of process conditions, the elution behavior

was adequately described by the CPA model in all cases. Most significantly, the model has

been shown to be able to describe even complex protein elution behavior that could not

be described by the SMA model in the past.

In summary, this thesis provides valuable improvements in the computational modeling

of IEX chromatography in two areas. Firstly, limitations of existing theories in describing

preparative IEX processes were overcome by introducing the CPA model. Secondly, to

enhance the credibility of mechanistic models, a statistical framework has been introdu-

ced that enables a detailed assessment of uncertainties in model parameters and model

predictions. The approaches and theories developed in this thesis contribute to a broader



xiv

use of mechanistic models to support process development of IEX chromatography in a

scientific but also risk-based manner, as advocated by QbD.
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CHAPTER1
Introduction

To treat a broad spectrum of diseases and conditions, pharmaceutical companies own an

extensive drug portfolio or pipeline of drug candidates that, for practical reasons, are di-

vided into two main categories: small molecules (synthetics) and large molecules (biologics)

[31]. While the majority of drugs currently on the market are still synthetics, biologics

represent the fastest growing segment in the pharmaceutical industry [115]. In recent

years, recombinant proteins such as monoclonal antibodies have been among the most

important representatives of large molecules [85; 178; 179]. Due to their high specificity

and potency compared to small molecules, recombinant proteins have revolutionized the

treatment of many diseases including cancer, metabolic disorders, and other rare diseases

[93; 112; 179].

Despite the advantages of recombinant proteins, their size and complexity often pose sub-

stantial manufacturing challenges [132]. While most small molecule drugs are manufac-

tured through chemical synthesis, pharmaceutical proteins cannot be synthesized in this

way and need to be expressed in living cells. The host cell is genetically modified to pro-

duce the desired protein which can then be harvested from the so-called cell culture fluid.

As the cell produces not exclusively the active pharmaceutical ingredient, the harvested

cell culture fluid contains not only the desired protein, but also other components such as

DNA and other host cell proteins [107; 156]. In addition to these process-related impuri-

ties, there are also product-related impurities caused by aggregation, fragmentation, and

post-translational modifications of the actual desired recombinant protein [94; 106; 175].

To assure safety of the drug product, the protein of interest must be purified and isolated

from these potentially harmful impurities. Typically, a series of multiple consecutive pu-

rification steps is required to isolate the desired protein and to meet the high regulatory

requirements for product purity. This series of purification steps is also referred to as

downstream process.

Over the past decades, preparative liquid chromatography has been the workhorse of

almost every biopharmaceutical downstream process [35; 73; 85]. In general, liquid chro-

matography is a separation technique in which molecules are separated by their distribu-

tion between two phases; a solid stationary phase and a liquid mobile phase that flows

through the stationary phase. Due to differences in physicochemical properties, the differ-

ent molecules to be separated require different times to travel through the stationary phase.

1
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These properties include, inter alia, the molecule size, charge, hydrophobicity, and/or its

affinity to a particular ligand. Most downstream processes contain at least two orthogonal

chromatography steps. The focus of this thesis lies on ion exchange (IEX) chromatogra-

phy, in which molecules are mostly separated due to differences in their net charge. This

chromatography method is frequently used for the purification of recombinant proteins

due to its robustness, selectivity, and mild operating conditions [61].

Every downstream process used to commercially manufacture a biopharmaceutical prod-

uct must meet certain technical, economic, and regulatory requirements. The objective of

process development is to ensure that the final process meets all requirements and ensures

product safety. Today’s development workflows rely heavily on empiricism, using experi-

ence and knowledge from previous projects as well as extensive and expensive experimental

studies to achieve development goals [25; 117; 141; 160]. However, given the steady growth

and diversification of pharmaceutical pipelines, as well as increasing regulatory and eco-

nomic constraints [41; 42], there is a growing interest in adopting new and more efficient

development workflows. In this context, computer-aided process development using mech-

anistic process models has gained increasing interest in recent years [73; 117; 141; 160].

Mechanistic or first-principle models are based on a fundamental understanding of the

underlying physical phenomena of a process. Once generated, these models can be used

to digitally replicate the actual process. The digital evidence provided by the mechanistic

model about the behavior of a process can be used to augment or even replace empirical

evidence, reducing development time and costs.

In the following sections, an introduction to protein liquid chromatography is given along

with a brief review of biopharmaceutical process development. Subsequently, the theory

and mathematical description of protein chromatography is reviewed. The last section

addresses the description of protein systems and their properties from the perspective of

colloid science.

1.1 Introduction to Liquid Chromatography

This section introduces the basic concepts of liquid column chromatography. The general

structure of a liquid chromatography column is schematically shown in Fig. 1.1. In most

applications, the column contains a packed bed of spherical adsorber particles with a mo-

bile phase flowing through the void volume between the adsorber particles or beads. In

the context of this thesis, the mobile phase consists of an aqueous buffer that is applied

from the top of the column at a constant flow rate. Depending on the intended use of the

chromatography column, the size of the adsorber beads can range from a few micrometers

in analytical chromatography to ∼100 µm in preparative applications [89]. The adsorber

bead itself is commonly characterized by a high particle porosity εp, typically in the range

of 50 to 90 % [152]. This provides a high specific surface area required for preparative

applications. The functionalization of the adsorber surface defines the mode of chromatog-

raphy and thus the underlying separation principle. In IEX chromatography, the surface is

functionalized by ligands that contain at least one ionizable functional group. Depending

on the charge of the functional groups, we distinguish between positively charged anion

exchangers and negatively charged cation exchangers.
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Figure 1.1: Schematic of a chromatography column containing a packed bed of porous
adsorber particles. Figure is adapted from [152].

The migration of proteins and other solutes through the packed bed is governed by several

transport phenomena summarized schematically in Fig. 1.2. Inside the void volume of

the packed bed, mass transport is mostly defined by convection and axial dispersion. The

latter describes the backmixing that occurs during the flow through the packed bed. It is

caused by several effects, including eddy diffusion, molecular diffusion, and an uneven flow

distribution at the column wall and at the particle surface [68; 152]. Once transported

towards an individual adsorber particle, solutes can pass the stagnant boundary layer by

diffusion and enter the pore system of the adsorber bead. As the liquid phase inside the

pore system is stagnant, solutes inside the adsorber bead are transported solely by dif-

fusion, before they finally adsorb on the surface of the stationary phase. The velocity at

which a protein migrates through the column is strongly determined by its interaction with

the adsorber surface. In IEX chromatography, the interaction is in general strongly depen-

dent on how a solute is charged relative to the adsorber surface. While oppositely charged

solutes are retained and can spend a long time adsorbed on the adsorber surface, equally

charged solutes are not attracted and migrate almost unhindered through the column. As

solutes differ in their net charge, surface charge density, or surface charge distribution,

they migrate through the column at different velocities, resulting in a separation of the

applied mixture.

In IEX chromatography, the interaction between solutes and the adsorber is commonly

regulated by the pH and/or the ionic strength of the mobile phase. By changing both

modifiers in a controlled manner during the process, the separation efficiency can be op-

timized and the desired protein can be isolated with high purity. Depending on how the

composition of the mobile phase is selected and manipulated, several modes of operation

are distinguished, as depicted schematically by the chromatograms in Fig. 1.3. A chro-

matogram as shown in Fig. 1.3 summarizes essentially the result of a chromatography run.

It shows process readouts measured at the outlet of the column as a function of the process

time or volume of mobile phase applied to the column. In this case, the schematics show

the total protein concentration (black) and the modifier concentration (red). In general, it

is distinguished between bind-and-elute mode and flow-through mode. In the former, the
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(1)

(2) (3)

(4)

boundary layer

adsorber
bead

void volume

Figure 1.2: Mass transfer phenomena inside a chromatography column including con-
vection and dispersion inside the column void volume (1), diffusion of solute molecules
through the stagnant boundary layer (2), pore diffusion (3), and adsorption kinetics (4).
Figure is adapted from [152].

composition of the mobile phase is initially chosen so that, ideally, only the product and

a few impurities are bound to the adsorber surface. After loading the column, the protein

of interest is eluted and separated from remaining impurities by changing the composition

of the mobile phase (e.g. by increasing the ionic strength). Thereby, the composition of

the mobile phase is often changed in a linear or step-wise manner, as shown in Fig. 1.3(a)

and Fig. 1.3(b), respectively. In flow-through mode, on the other hand, the properties of

the mobile phase and adsorber are chosen so that the protein of interest hardly binds to

the adsorber surface and passes the column almost unhindered during the loading phase.

Ideally, only impurities are retained and can be removed during the regeneration of the

chromatography column.
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Figure 1.3: Modes of operation commonly used in preparative chromatography. (a) gra-
dient elution, (b) step elution, (c) flow-through operations.
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1.2 Development of Chromatography Processes

As mentioned earlier, every process step, downstream process, or pharmaceutical manu-

facturing process in general must meet a set of basic requirements, including economic

and especially regulatory requirements [85]. To ensure consistent manufacturing of an

efficacious product that is safe for patients, regulatory agencies such as the U.S. Food

and Drug Administration (FDA) and the European Medicines Agency (EMA) impose

stringent requirements on the design and validation of manufacturing processes, as out-

lined by the Quality by Design (QbD) initiative. The QbD initiative strives for holistic,

science-based, and risk-based development approaches, where product quality is ensured

not only through testing, but rather through sound product and process understanding

and process control [83]. The term process understanding means first and foremost a deep

understanding of how process changes or deviations, whether intended or not, affect the

quality of the product [72; 133; 192].

Today, process understanding is generated largely in an empirical fashion through a series

of development steps. Manufacturing processes are usually characterized by a large number

of process parameters that are optimized during the process design phase. In chromatog-

raphy, these process parameters can include, among others, the type of adsorber system,

modifier concentrations, and the amount of protein loaded onto the column. The optimized

process meets, inter alia, requirements in terms of product quality, as well as technical and

economic requirements. From a regulatory or QbD perspective, not all of these optimized

process parameters are critical. Only those process parameters whose variability has a

significant impact on product quality are considered critical and must be monitored and

controlled later on [83]. The goal of an initial risk-ranking and filtering (RFF) is to iden-

tify potential critical process parameters (pCPPs) and distinguish them from non-critical

process parameters. As many steps in process development, the classification of process

parameters into non-critical and potentially critical is a risk-based approach relying on

project-specific empirical knowledge gained during the process design phase, prior knowl-

edge from previous comparable projects, and small dedicated experimental studies in small

scale [72; 83]. Following the RFF, the identified pCPPs are analyzed in more detail as part

of a comprehensive process characterization and validation study. These studies encom-

pass elaborated experimental studies where process parameters are varied in a systematic

and statistically designed manner to analyze the interactive effects of all pCPPs on the

quality of the product. The generated understanding of the process behavior is used to

determine critical process parameters (CPPs) and their acceptable variability that will

ensure a consistent product quality [72]. Since performing experimental studies at the

manufacturing scale is not feasible, experiments for process optimization and characteri-

zation are performed predominantly on qualified scale-down models, i.e. miniaturized but

representative versions of the actual commercial manufacturing system. Although RRF

and scale-down models help to streamline experimental studies, the experimental effort to

derive profound process understanding empirically is still large.

Driven by the QbD initiative and economic constraints, there is a growing interest across

the biopharmaceutical industry to augment or even replace empirically derived process

understanding with scientific understanding in form of mechanistic process models [73;

117; 141]. Mechanistic models are based on first principles and capture the behavior of a

system by describing the underlying physical effects in terms of mathematical equations.
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Thus, they provide a systematic way to organize the physical or scientific understand-

ing of the process, as emphasized by QbD. Experiments usually performed on small-scale

systems or the commercial system itself can be reproduced in silico, i.e. by computer

simulations. Once calibrated, mechanistic models can be applied at all stages of develop-

ment to optimize the process, streamline experiments, scale-up, and ultimately producing

a comprehensive process understanding [27; 141]. While the application of mechanistic

models is highly desirable in terms of process understanding, it requires knowledge and es-

pecially a mathematical formulation of the underlying effects. The application is therefore

limited to operating units such as chromatography, for which theories exist.

1.3 Modeling of Chromatography

The schematic in Fig. 1.2 shows that chromatography is a process that involves an in-

tricate combination of different physical effects, including fluid dynamics, mass transfer

phenomena, and thermodynamics of adsorption [68]. In the following sections, we recall

most of these phenomena and their mathematical description. First, we will focus on

thermodynamics of adsorption and present the model commonly used to describe the in-

teraction between proteins and IEX adsorbers. Second, we review chromatography models

describing mass transfer effects inside the column void volume and the adsorber bead.

1.3.1 Protein Adsorption

The adsorption of proteins and other solutes onto the adsorber surface is described through

adsorption isotherms. Considering a protein i, an isotherm describes the functional rela-

tionship between the concentration of the protein in the liquid phase ci and the concen-

tration of adsorbed protein per adsorber skeleton volume qi at equilibrium and constant

absolute temperature T .

1.3.1.1 Stoichiometric Displacement Model

In IEX chromatography of proteins, the mathematical description of the adsorption isotherm

is mostly based on the stoichiometric displacement model (SDM) initially proposed by

Boardman and Partridge [13] in 1953 and further developed by Regnier and et al. [44;

98; 144]. According to the SDM, the adsorption of a protein Pi onto the adsorber surface

is accompanied by a reversible and stoichiometric displacement of counter-ions S bound

to the adsorber surface. Under the assumption of counter-ions with charge |z±| = 1, the

reversible exchange can be described by the stoichiometric reaction

Pνii + νiLSads 
 LνiP
νi
i,ads + νiS, (1.1)

where the subscript ads indicates the adsorbed state, L denotes a ligand (functional group)

on the adsorber surface, and νi represents the number of counter-ions displaced by the

i-th protein. The equilibrium constant keq,i for Eq. (1.1) can be written as

keq,i =
γLνiP

νi
i,ads

qi

γP
νi
i
ci

(
γScS

γLSads
q̄S

)νi
, (1.2)
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Figure 1.4: Protein adsorption on a cation exchange adsorber according to the SMA
model. (a) Schematic representation of the protein-ligand complex LνiP

νi
i,ads. The number

of ligands involved in the complex is indicated by the characteristic charge νi of the protein
i. Given the steric size of the protein, some of the ligands are sterically shielded. Counter-
ions bound to sterically shielded adsorber ligand (Ŝ+) cannot be replaced by other proteins.
The figure is adapted from [22]. (b) Adsorption isotherm according to the SMA model for
cS = 50 mol m−3, ΛIEX = 700 mol m−3, keq = 1× 10−6, ν = 7, and σ = 150.

where γ represents the activity coefficient, cS is the counter-ion concentration in the liquid

phase, and q̄S denotes the counter-ion concentration per adsorber skeleton volume available

for exchange.

1.3.1.2 Steric Mass Action Model

According to the steric mass action (SMA) model introduced by Brooks and Cramer [22],

not all counter-ions bound to the adsorber surface can be replaced by proteins in the

liquid phase. Given the steric size of macromolecules like proteins, some of the ligands are

sterically shielded, as schematically shown in Fig. 1.4(a). Counter-ions bound to sterically

shielded adsorber ligands, Ŝ+, cannot be replaced by other proteins. Considering the

total ionic capacity of the adsorber ΛIEX and n different proteins, q̄S is defined by the

electroneutrality condition

q̄s = ΛIEX −
n∑
i=1

(νi + σi)qi, (1.3)

where σi denotes the number of ligands shielded by the i-th protein. Assuming thermody-

namically ideal behavior in the liquid and stationary phase (γ = 1), Eq. (1.2) and Eq. (1.3)

lead to the equilibrium relationship

qi
ci

=

protein-adsorber interaction

keq,i

(
ΛIEX

cS

)νi steric hindrance(
1−

∑
j qj(νj + σj)

ΛIEX

)νi
. (1.4)

An exemplary isotherm according to Eq. (1.4) is shown in Fig. 1.4(b). For simplicity, the

shown isotherm considers only one protein species i. Based on the shape of the isotherm,
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adsorption can in general be divided into two ranges: a linear and a nonlinear range. In

the limiting case of linear adsorption qi → 0, the steric hindrance in Eq. (1.4) reduces to

unity and Eq. (1.4) is dominated by the first part, the protein-adsorber interaction. This

part defines the initial slope of the isotherm and thus the Henry coefficient

KH,i = keq,i

(
ΛIEX

cS

)νi
. (1.5)

It accounts for the interaction between an individual protein i and the adsorber surface as

a function of cS. The second part of Eq. (1.4) accounts for steric hindrance at the adsorber

surface and leads to a nonlinear adsorption behavior at higher concentrations qi. It also

defines the static binding capacity of the adsorber system, i.e. the maximum amount of

protein that can bind to the adsorber surface. For a system containing only one protein,

the static binding capacity is defined by the SMA model as qmax,i = ΛIEX(νi + σi)
−1. We

will discuss the SMA model and its underlying assumptions in more detail in Chapter 5.

1.3.2 Transport Models

To describe the migration of proteins and other solutes within a chromatography column,

several mathematical models have been introduced in the past. These models are based on

assumptions about the predominant physical effects in the real system and therefore allow

for specific simplifications in the mathematical description. In general, it is assumed that

the column is radially homogeneous. This means that all variables like the concentration

of the i-th solute in the void fraction cv,i are only a function of the process time t and

the axial column position x ∈ [0, Lc], where Lc is the length of the column. Furthermore,

the packed bed shown in Fig. 1.1(a) is considered to be homogeneous in x and consists of

perfect spherical adsorber particles with constant radius rp. Thus, the void fraction εv and

the particle porosity εp are constant and not a function of x. The system is isothermal

and perfused by an incompressible and inert mobile phase with constant viscosity and

linear velocity u. Depending on additional simplifications made, we distinguish between

several model types, which are reviewed in the following. For the sake of brevity, the

review is limited to a small number of models commonly used in model-based process

development and in this thesis. For a more detailed summary, it is referred to the text

books by Guiochon [68] and Schmidt-Traub [152].

1.3.2.1 General Rate Models

The most detailed models used in modeling chromatography processes are classified as

general rate models (GRMs). They account explicitly for all physical effects described

earlier in both the column void volume and the adsorber particle. According to the GRM,

mass transfer inside the column void volume shown in Fig. 1.1(b) can be described by the

continuity equation

∂cv,i
∂t

(x, t) =

Film mass transfer

− 1− εv

εv

3

rp
kfilm,i (cv,i(x, t)− cp,i(x, rp, t))

Convection

− u

εv

∂cv,i
∂x

(x, t)

Axial dispersion

+Dax
∂2cv,i

∂x2
(x, t) ,

(1.6)
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where kfilm,i is the film mass transfer coefficient, Dax is the axial dispersion coefficient, and

cp,i(rp) is the concentration at the particle surface. As highlighted, Eq. (1.6) describes the

local temporal change in cv,i due to convection, film mass transfer, and axial dispersion. It

is assumed that axial dispersion in the liquid phase can be defined in analogy to Fick’s laws

of diffusion. The axial dispersion coefficient Dax is considered to be independent of the

concentration and the type of solute. Due to the simplification of a homogeneous packed

bed, both kfilm,i and Dax are constants. However, it is important to note that both are

affected by u. The mathematical formulation of mass transfer in the column void volume

is completed with Danckwerts’ boundary conditions of dispersive systems at the column

inlet
∂cv,i
∂x

∣∣∣∣
x=0,t

=
u

εvDax
(cv,i(x = 0, t)− cinlet,i(t)) (1.7)

and the column outlet
∂cv,i
∂x

∣∣∣∣
x=Lc,t

= 0, (1.8)

where cinlet,i is the concentration of the i-th solute at the column inlet.

Inside the adsorber particle, the liquid phase is assumed to be stagnant and mass transfer

is driven only by diffusion according to Fick’s laws. Given the assumption of perfect

spherical adsorber particles, the concentration inside the adsorber pore system is only a

function of the radial position r. According to the GRM proposed by Gu et al. [62; 63],

mass transfer inside the adsorber particle can be described by the continuity equation

∂cp,i
∂t

(x, r, t) =
1

r2

∂

∂r

(
r2Dpore,i

∂cp,i
∂r

(x, r, t)

)
− 1− εp

εp

∂qi
∂t

(x, r, t), (1.9)

where εp is the particle porosity and Dpore,i denotes the pore diffusion coefficient of the

i-th component. For reasons of symmetry, the concentration gradient at the center of the

adsorber particle vanishes,
∂cp,i
∂r

∣∣∣∣
x,r=0,t

= 0. (1.10)

At r = rp, the concentration gradient is defined by the boundary condition

∂cp,i
∂r

∣∣∣∣
x,r=rp,t

=
kfilm,i

εpDpore,i
(cv,i(x, t)− cp,i(x, r = rp, t)) (1.11)

linking the mass balance for the void volume and adsorber pore volume.

1.3.2.2 Transport Dispersive Model

By simplifying the previously described GRM, several other model classes can be derived.

One of the most widely used chromatography models is the transport dispersive model

(TDM). The TDM assumes that mass transfer resistance is dominated by the external

mass transfer resistance due to the stagnant boundary layer. By neglecting mass transfer

resistance inside the adsorber bead (Dp,i → ∞), no concentration distribution inside the

adsorber particle is considered. Thus, the continuity equation inside the adsorber bead

simplifies to

∂cp,i
∂t

(x, t) = keff,i
3

εprp
(cv,i(x, t)− cp,i(x, t))−

1− εp

εp

∂qi
∂t

(x, t), (1.12)
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where keff,i denotes the effective mass transfer coefficient. Given the assumptionDp,i →∞,

keff,i is a lumped parameter that accounts for both external and internal mass transfer

resistance. Mass transfer inside the column void volume is still described by Eq. (1.6) as

in the GRM. However, the film diffusion coefficient kfilm,i in the linear driving force model

has to be replaced by keff,i.

1.3.2.3 Ideal Column Model

The ideal column model represents the simplest transport model described first by Wicke

[181], Wilson [183], and DeVault [39]. By assuming Dax → 0, Dpore,i → ∞, and kfilm,i →
∞, it neglects the influence of axial dispersion and all mass transfer resistances. Thus, the

ideal model accounts only for convective transport in the mobile phase and thermodynam-

ics. Introducing the total column porosity εt = εv + (1− εv)εp, the continuity equation

simplifies to
∂ci
∂t

(x, t) = − u
εt

∂ci
∂x

(x, t)− 1− εt

εt

∂qi
∂t

(x, t), (1.13)

where ci = cv,i = cp,i. The liquid phase and stationary phase are at equilibrium as defined

by the adsorption isotherm qi(ci). Considering the chain law, Eq. (1.13) can be rewritten

to describe the migration velocity

w(c
+
i ) =

u

εt

(
1 +

1− εt

εt

∂qi
∂ci

∣∣∣∣
ci=c

+
i

)−1

(1.14)

of an arbitrary concentration c+
i inside the chromatography column as a function of the

isotherm slope. In the case of linear or analytical chromatography, the condition qi → 0

holds and Eq. (1.14) simplifies to

w(c
+
i ) =

u

εt

(
1 +

1− εt

εt
KH,i

)−1

. (1.15)

Even though the ideal model is highly simplified, Eq. (1.14) illustrates the great impor-

tance of thermodynamics in preparative chromatography. While in linear or analytical

chromatography the migration velocity or retention time in the column is independent of

c+
i [see Eq. (1.15)], protein migration in preparative chromatography is strongly dependent

on the local protein concentration, as described by Eq. (1.14). Thus, the performance of a

preparative chromatography process in isolating a protein of interest is largely determined

by thermodynamics.

1.3.3 Parameter Estimation

The chromatography models introduced in the previous sections possess a vector of model

parameters θ = (keff,i, Dpore,i, ...) that is usually unknown and has to be inferred from

experimental data in order to make the chromatography model predictive. The inference

of θ from experimental data is also referred to as inverse problem. Once θ is known,

the forward problem can be solved: the prediction of an unobserved chromatography run.

Preparative experiments with pharmaceutical proteins are very cost-intensive and can only

be performed within a limited scope. Thus, experimental data to solve the inverse problem
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is often limited. As they can also contain experimental noise, parameter inference rarely

leads to a precise point estimate for θ. This section recalls statistical principles that

are necessary to perform parameter inference. In this context, the difference between

frequentist and Bayesian parameter estimation is briefly discussed.

In chromatography, an experimental observation ȳ usually represents a measured state

at the column outlet, e.g. the concentration of a protein at the column outlet ȳ(t) =

cv,i(Lc, t). All measurements can then be visualized as a function of the process time t, as

depicted by the chromatograms in Fig. 1.3. For the sake of simplicity, but without loss of

generality, we consider in the following only one experiment. In this case, the time series

of all experimental observations makes up the experimental data D = {(tk, ȳ(tk))}mk=1,

whereby m denotes the number of data points. Due to experimental noise, all measured

data have an inherent uncertainty about their true value. It is common to assume that

the model correctly represents the true underlying process and thus defines this true value

[12; 116]. In this case ȳ can be defined by

ȳ(tk) = y(t,θ) + ε, (1.16)

where y(t,θ) is the true value given by the model and ε represents the experimental error

or noise. In this thesis, we consider normally distributed measurement noise. Thus, the

uncertainty over ȳ is expressed by the normal distribution

ȳ(t) ∼ p(ȳ | t,θ) = N
(
ȳ | y(t,θ), σ2

)
, (1.17)

with y(t,θ) as mean and standard deviation σ. Considering Eq. (1.17) and independent

and identically distributed (iid) observations, the likelihood of observing D given θ is

defined by

p(D | θ)
iid
=

m∏
k=1

N
(
ȳ | y(tk,θ), σ2

k

)
=

m∏
k=1

1√
2πσ2

k

exp

(
−1

2

(
ȳ(tk)− y(tk,θ)

σk

)2
)
.

(1.18)

It is a well-known measure for the distance between model prediction and measured data

and plays a central role in both classical and Bayesian inference [46]. The way it is used,

on the other hand, is fundamentally different in these two statistical approaches. In the

classical or frequentist approach, the observed and noisy data D is considered as a random

variable, while θ is an unknown but fixed parameter. A widely used frequentist single

point estimate for θ is the maximum likelihood estimate (MLE)

θ̂DMLE = arg max
θ

p(D | θ) = arg min
θ

[− ln p(D | θ)] (1.19)

that is obtained by maximizing Eq. (1.18) or minimizing the negative logarithm of Eq. (1.18).

Determining the MLE corresponds to choosing the value of θ for which the probability of

the observed data set is maximized. The uncertainty in the estimate can be computed by

considering the distribution of possible data sets D. As θ̂DMLE depends on D, it is itself a

random variable. Thus, considering multiple experimental data sets provides a sampling

distribution that quantifies the uncertainty in θ̂DMLE. Note that each sampled set of ob-

servations provides only one single estimate. In Bayesian approach, the roles of D and
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θ are reversed. Here, θ is treated as a random variable and inference is performed by

conditioning on the actual fixed observed data. In Bayesian statistics we can also leverage

prior knowledge on θ according to the Bayes’ theorem

p(θ | D) ∝ p(D | θ)p(θ), (1.20)

whereby p(θ | D) is the posterior probability that incorporates both the evidence provided

by the measured data p(D | θ) [Eq. (1.18)] and the prior p(θ). Once p(θ | D) is estimated,

the model can be used to make a prediction for an unobserved measurement ỹ. In this

case, the posterior predictive distribution for ỹ

p(ỹ | t,D) =

∫
θ
p(ỹ | t,θ)p(θ | D)dθ (1.21)

can be determined by marginalizing the distribution of p(ỹ | t,θ) [Eq. (1.17)] over the

posterior distribution p(θ | D). The posterior predictive represents the uncertainty in the

predicted value of ỹ due to the uncertainty in θ and the experimental noise indicated by

σ2 in Eq. (1.17).

1.4 Colloidal Description of Proteins

Looking at proteins from the perspective of colloid science has a long tradition. The term

colloid (from ancient greek κόλλα: glue) was introduced in 1861 by the British chemist

Thomas Graham. In his research, he discovered that some substances can permeate a

fine membrane, while others, such as glue, starch or gelatin, are retained. Based on this

property, he referred to the first group of substances as crystalloids and the second group

as colloids [58]. Using this principle, Graham was able to isolate both substance classes

and introduced a method for separating and purifying colloids known as dialysis. Today,

the term colloid is usually applied to a heterogeneous system in which small insoluble

particles are dispersed throughout another medium [23; 56; 84]. As illustrated in Fig. 1.5,

the dispersed particles are typically in the range from 1 nm to 1 µm [56; 75]. Colloidal

systems differ from suspensions as Brownian motion keeps the particles dispersed and

prevents them from settling. At the same time, they differ from homogeneous true solutions

in that the dispersed particle is significantly larger than the solvent molecule or particle

itself (e.g. water). An essential characteristic of colloidal systems is that their behavior

is strongly governed by interfacial effects [23]. This characteristic can be attributed to

the small size of the dispersed particles and thus to the large interface-to-volume ratio

in colloidal systems. Thus, colloid science and interface science are closely related. In

the following, important properties of proteins as colloidal particles are summarized. In

addition, important surface interactions are described.

1.4.1 Protein Size

Although the aforementioned colloidal range from 1 nm to 1 µm is rather arbitrary and

may vary within the literature, the particle size plays a central role in colloidal systems as

it determines the interface-to-volume ratio and thus the significance of surface effects. If

one wanted to define colloids exclusively by their size, proteins would represent a class of
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Figure 1.5: Typical length scales of colloidal systems.

very small colloidal particles with a size ranging from approximately 3 to 20 nm. However,

given the complex structure of proteins, it is difficult to clearly define the size of a protein

based on a single value. A parameter commonly used to determine the size of a protein

is its hydrodynamic radius rh. It is related to the diffusion coefficient of the protein D0

according to the Stokes-Einstein equation

rh =
kbT

6πηD0
, (1.22)

where kb is the Boltzmann constant, T denotes the absolute temperature, and η is the

dynamic viscosity. Accordingly, rh represents the radius of a hypothetical spherical col-

loidal particle that diffuses at the same rate as the actual protein. The simplification of

colloidal particles as perfect spheres as in Eq. (1.22) is quite common in colloidal science

and is also used in this thesis.

1.4.2 Protein Charge

Most surfaces that are in contact with an electrolyte solution are charged either by the

ionization of functional surface groups or the specific adsorption of ions from the bulk

phase [23; 84; 171]. In the case of proteins, the surface charge can be attributed primarily

to amino acids, the building blocks of any protein. Some amino acids have acidic or basic

side chains which, if exposed to the electrolyte solution, define the surface charge. Such

”immobile” charges on the surface of a colloidal particle are also referred to as inner or

compact layer [171]. Given the amphoteric nature of proteins, the average surface charge

density of the inner layer σI can be positive or negative, dependent on the pH at the

protein surface.

To maintain electroneutrality, the charge of the inner layer is always balanced by an

oppositely charged layer of ions. Both the inner layer and the layer of ions surrounding

the colloidal particle form an electrostatic double layer that has a decisive influence on

the behavior of a colloidal system. One of the most widely used theories to describe the

electrostatic double layer is the theory of a diffuse double layer [59]. Due to thermal motion,
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ions surrounding the colloidal particle are considered to be spatially inhomogeneously

distributed within a diffuse layer surrounding the colloidal particle. Neglecting the finite

ion size and considering only electrostatic interactions, the electrochemical potential µ̄i of

an ion i with charge zi inside the diffuse layer is given by

µ̄i = µ∗i + kbT ln
( ci
c+

)
+ eziψ, (1.23)

where µ∗i is a reference potential at infinite dilution, ψ is the electrostatic potential, e

is the elementary charge, and c+ is a reference concentration. At equilibrium, the ion

concentration inside the diffuse layer is given by the Boltzmann relation

ci = c∞,i exp

(
−zi

eψ

kbT

)
, (1.24)

where c∞,i represents the concentration of the i-th ion inside the bulk where the electro-

static potential vanishes (ψ∞ = 0). The electrostatic force F = −ezi∇ψ acting on an ion

counteracts the concentration gradient and leads to an accumulation of counter-ions and

a depletion of co-ions near the surface of the colloidal particle. Considering a spherical

protein with radius a and a solution with constant relative permittivity ε, ψ within the

diffuse layer follows the Poisson equation

∇2ψ(r) = − e

εε0

∑
i

ziNAci(r), (1.25)

where ε0 represents the vacuum permittivity, NA is the Avogadro number, and r denotes

the radial position. Combining the Boltzmann relation (1.24) with the Poisson equation

leads to the Poisson-Boltzmann equation. It is a continuum mean-field approach assuming

point-like ions in thermodynamic equilibrium and neglecting ion-ion correlations [23].

The inner and diffuse layer may be considered as two adjacent subsystems that are in

constant equilibrium [6]. Electroneutrality requires that the charges of both layers com-

pensate each other. Considering that the electric field vanishes for r →∞, this equilibrium

condition is sufficed by Gauss’ law

∂ψ

∂r

∣∣∣∣
r=a

= − σI

εε0
. (1.26)

This boundary condition implies that σI or the charge of a protein is strongly affected by

its electrostatic environment, in particular the electrostatic potential at the protein surface

ψ0 = ψ(a). If the diffuse layer is manipulated, the inner layer has to regulate its charge

to maintain electroneutrality, and vice versa [171]. Thus, the charge of a protein can vary

not only with the pH in the bulk but also with the presence of another charged surface or

the ionic strength in the bulk.

1.4.3 Double Layer Forces

If two charged surfaces approach each other, their electrostatic double layers start to over-

lap and an electrostatic double layer force Fdl arises that can be attractive or repulsive.

According to the Derjaguin approximation, the force acting between two particles of ar-

bitrary shape can be related to the interaction free energy per unit area w between two
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(a) (b)

Figure 1.6: Schematic representation of the double layer interactions. (a) The disjoining
pressure between two planar surfaces separated by the distance h. The figure is adapted
from [23]. (b) Schematic representation of w between two oppositely charged planar sur-
faces separated by the distance h. The interaction profile is shown for the constant charge
(CC) and constant potential (CP) boundary condition. The gray shaded region between
both limiting cases indicates the area where the interaction profile is expected to be, con-
sidering charge regulation.

planar surfaces of the same surface charge density,

Fdl(h) = 2πreffw(h), (1.27)

where h denotes the distance between both planar surfaces and reff represents the effective

radius [148]. Common geometries considered include the interaction between two identical

spheres with radius a or the interaction between a sphere and a planar surface. In this

case the effective radius is given by reff = a/2 and reff = a, respectively. Considering two

parallel plates, w(h) in Eq. (1.27) can be derived from the disjoining pressure Π according

to

w(h) =

∫ ∞
h

Π(h′)dh′. (1.28)

As schematically shown in Fig. 1.6(a), the disjoining pressure Π(h) = p(h)−p∞ represents

the difference between the pressure within the gap between both plates p(h) and the

pressure in the bulk phase p∞. For double layer interactions, Π is given by

Π = kbT
∑
i

c∞,iNA

(
exp

(
−zi

eψ(x)

kbT

)
− 1

)
− εε0

2

(
∂ψ

∂x

)2

, (1.29)

where x denotes the position in between both plates, as shown in Fig. 1.6 [23; 84]. It can be

noticed that Π is composed of two contributions. The first contribution is always repulsive

(positive) and accounts for the osmotic contribution. When two equally charged plates

approach each other, the ion concentration in the gap increases with decreasing distance.

The osmotic pressure increases and leads to a repulsive force. The second quadratic part

is always attractive and represents the electrostatic field energy contribution (Maxwell

stress) [23]. While both contribution depend on the position within the gap x, it is
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important to note that the sum of both contributions and thus Π is constant throughout

the gap. Thus, Π can be evaluated at any x once ψ(x) is known by solving the Poisson-

Boltzmann equation. For this, boundary conditions must be defined at the surface of both

plates. Often it is assumed that either the surface charge density of the inner layer σI

or the electrostatic potential at the surface ψ0 remains unchanged during the approach.

This is also referred to as constant charge (CC) or constant potential (CP) boundary

condition, respectively. As an example, Fig. 1.6(b) shows schematically w acting between

two oppositely charged plates as a function of h. The interaction profile is shown for both

boundary conditions, CC and CP. Both boundary conditions represent limiting cases. The

gray shaded region between both limiting cases indicates the area where the interaction

profile is expected to be, considering the mutual interplay between inner and diffuse layer

and the regulation of σI and ψ0 during the approach, as discussed in the previous section.



CHAPTER2
Research Proposal

As pointed out in Sec. 1.2, downstream process development is a highly regulated environ-

ment. Within the QbD framework, regulatory agencies encourage the use of science- and

risk-based approaches to generate a sound understanding of the process and ensure the

safety and efficacy of the product. Despite these efforts, processes understanding to date is

largely based on experiential knowledge and empiricism rather than true scientific knowl-

edge. To meet the goals of QbD, process understanding in the form of mechanistic models

can serve as an alternative or addition to empirical evidence. Even though the benefits of

a model-based process development approach have been demonstrated by academia, there

are still unresolved issues that hinder the systematic application of mechanistic models in

the highly regulated environment of biopharmaceutical industry.

The major goal of this research is to solve problems that prevent mechanistic models

from being used in a more systematic way in the development of IEX processes. In an

industry where risk aversion is the cultural norm, it is particularly important to reduce the

intrinsic risk of mechanistic models by (a) developing mechanistic models that represent

the real process with as little error as possible, and (b) developing approaches to assess

the uncertainty of models to support decision making in process development not only in

a science-based manner, but also in a risk-based manner, as encouraged by QbD.

As described in Sec. 1.3.3, every mechanistic model contains model parameters that are

often unknown and need to be inferred from experimental data. Thus, even though the

model itself is based on first principles, it calls upon statistics for solving the inverse

problem. The solution of the inverse problem is rarely an exact solution, but leaves some

uncertainty in the model parameters. At the beginning of this work, frequentist approaches

already existed to analyze this parameter uncertainty in chromatography models, usually

based on confidence intervals as a measure for uncertainty. However, these approaches

do not adequately answer the question of how this parameter uncertainty affects model

predictions. Having a measure of the predictive uncertainty of a model is important in

industrial applications as it is the model predictions that support decision making, not the

model parameters themselves. Therefore, one goal of this work is to develop a workflow to

assess the predictive uncertainty of mechanistic chromatography models in a systematic

and especially quantitative way.

17
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The inference of model parameters relies on the assumption that the model is true and is

a perfect representation of reality. In fact, a mechanistic model - like any other model -

is always a simplification or approximation of reality, as pointed out in Sec. 1.3. To de-

scribe the system in a mathematical way, it is always based on certain assumptions or

simplifications. By repeatedly applying the model to new experimental data, it must be

ensured that the simplifications made are still valid and that the model structure itself

adequately represents the true process behavior. In the case of the adsorption of proteins

onto IEX media, the mathematical description is usually based on the assumption that

the interaction is defined by a stoichiometric reaction between the protein and adsorber

ligands. For the past three decades, the SMA model described in Sec. 1.3.1.2 has been

the most widely used stoichiometric adsorption model not only in academia but also in

industrial applications. However, with increasing application of the model in industry, it

has become apparent that only in limiting cases, the model provides an adequate descrip-

tion of the real process behavior. Discrepancies between simulated and observed process

behavior often limit the applicability of mechanistic models, making a purely empirical

understanding of the process the only option.

Motivated by the limitations of the SMA model and other adsorption models, the main

part of this work is devoted to the development of an alternative adsorption model. In

addition to increasing the accuracy of the mechanistic description, the focus is also on

the degree of mechanistic abstraction. Simplifications made during the derivation of a

model always lead to a certain level of model parameter abstraction. In case of the SMA

model, for instance, the charge of a protein is abstracted by a stoichiometric coefficient (see

Sec. 1.3.1.2). In this particular case, the degree of abstraction is very high. By describing

protein adsorption in IEX chromatography using a colloidal description of proteins, briefly

addressed in Sec. 1.4, the aim is to reduce the level of abstraction and provide a more

rigorous physical approach to describe protein adsorption.

In summary, this research addresses two important challenges related to mechanistic mod-

eling of IEX chromatography in industrial practice. The findings and resulting approaches

could contribute to a better understanding of protein adsorption in IEX chromatography

and a more widespread application of mechanistic models in process development.
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2.1 Manuscript Overview

This section provides an overview of all publications that constitute this publication-

based thesis. All articles are peer-reviewed and published in international, well-established

scientific journals and are not used in any other publication-based thesis. The full text of

all main contributions follows in Chapters 3 to 6.

Chapter 3: Prediction Uncertainty Assessment of Chromatography Models using
Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

T. Briskot, F. Stückler, F. Wittkopp, C. Williams, J. Yang, S. Konrad, K. Doninger, J.

Griesbach, M. Bennecke, S. Hepbildikler, J. Hubbuch

Journal of Chromatography A (1587), 2019, p. 101-110

This publication describes a statistical framework for the calibration and uncertainty as-

sessment of mechanistic chromatography models. Using Bayesian inference, the presented

framework exploits available experimental data to identify the uncertainties in model pa-

rameters. In contrast to previous approaches, the presented framework considers the

propagation of these parameter uncertainties to model simulations to provide a quanti-

tative assessment of the predictive performance and reliability of the mechanistic model.

The benefit of this uncertainty assessment is demonstrated using the example of a mech-

anistic model describing the separation of an antibody from its impurities on a strong

cation exchanger. Despite significant parameter uncertainty, it is demonstrated that the

mechanistic model can perform reliable extrapolations beyond observed process conditions.

Using Bayes theory of probability, the presented framework exploits information provided

by experimental data and prior knowledge

Chapter 4: Adsorption of Colloidal Proteins in Ion Exchange Chromatography
under Consideration of Charge Regulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37

T. Briskot, T. Hahn, T. Huuk, J. Hubbuch

Journal of Chromatography A (1611), 2020, p. 460608

In this publication, a mechanistic model is introduced that describes the adsorption of

proteins onto IEX media within the linear adsorption range. In contrast to the traditional

stoichiometric description of protein adsorption within the framework of the SMA model,

the proposed adsorption model is based on a non-stoichiometric description of electrostatic

interactions in IEX chromatography by means of a colloidal descriptions of proteins and

the Poisson-Boltzmann equation. The proposed model explicitly accounts for the effect of

pH and ionic strength on the adsorption equilibrium. Its capability of describing the ad-

sorption equilibrium is demonstrated by simulating Henry coefficients of multiple proteins

on different adsorber systems as a function of ionic strength and pH.
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In this study, the theory of the adsorption model presented in Chapter 4 is extended to

the nonlinear adsorption range. In addition to the electrostatic interactions between a

single protein and the adsorber surface, the developed colloidal particle adsorption (CPA)

model accounts for electrostatic and steric interactions between adsorbed proteins. The

advantage of the presented model in comparison to the traditional SMA model is demon-

strated by simulating adsorption isotherms of a monoclonal antibody over a wide range

of ionic strength and pH. It is shown that adsorption isotherms can be reproduced more

accurately by the developed CPA model than by the traditional SMA model.

Chapter 6: Analysis of Complex Protein Elution Behavior in Preparative Ion
Exchange Processes using a Colloidal Particle Adsorption Model . . . . . . . . . . . . . 77

T. Briskot, T. Hahn, T. Huuk, G. Wang, S. Kluters, J. Studts, F. Wittkopp, J. Winderl,

P. Schwan, I. Hagemann, K. Kaiser, A. Trapp, S. M. Stamm, J. Koehn, G. Malmquist, J.

Hubbuch

Journal of Chromatography A (1654), 2021, p. 462439

This publication describes a kinetic derivation of the CPA model providing an expression

for the rate of adsorption and desorption. Combined with a transport model such as the

GRM or TDM, the kinetic for of the CPA model can be used to simulate preparative

column chromatography. The general applicability of the model in describing preparative

IEX processes is demonstrated using multiple industrial case studies. It is shown that

the CPA model is able to describe complex protein elution behavior that could not be

described by the traditional SMA model in the past.
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Abstract

Mechanistic modeling of chromatography has been around in academia for decades and has

gained increased support in pharmaceutical companies in recent years. Despite the large

number of published successful applications, process development in the pharmaceutical

industry today still does not fully benefit from a systematic mechanistic model-based

approach. The hesitation on the part of industry to systematically apply mechanistic

models can often be attributed to the absence of a general approach for determining if a

model is qualified to support decision making in process development.

In this work a Bayesian framework for the calibration and quality assessment of mech-

anistic chromatography models is introduced. Bayesian Markov Chain Monte Carlo is

used to assess parameter uncertainty by generating samples from the parameter posterior

distribution. Once the parameter posterior distribution has been estimated, it can be used

to propagate the parameter uncertainty to model predictions, allowing a prediction-based

uncertainty assessment of the model. The benefit of this uncertainty assessment is demon-

strated using the example of a mechanistic model describing the separation of an antibody

from its impurities on a strong cation exchanger. The mechanistic model was calibrated

at moderate column load density and used to make extrapolations at high load conditions.

Using the Bayesian framework, it could be shown that despite significant parameter uncer-

tainty, the model can extrapolate beyond observed process conditions with high accuracy

and is qualified to support process development.

Keywords: Ion exchange chromatography; Monoclonal antibody; Mechanistic modeling;

Parameter estimation; Markov Chain Monte Carlo; Prediction uncertainty
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3.1 Introduction

Preparative chromatography is still the primary workhorse in the purification of high qual-

ity biopharmaceutical products [160]. In the development of chromatography processes,

mechanistic models play an increasingly important role. The possible applications of mech-

anistic models go far beyond the plain optimization of these processes [71; 80; 97; 100; 118;

122–124; 155]. They provide a way to perform process control [100; 165], root-cause in-

vestigation [18], process scale-up [53; 111; 123], and in silico process robustness studies

[14; 30; 37; 86–88; 92; 180]. Despite numerous successful applications in academia and in-

creased support for mechanistic modeling in pharmaceutical companies [77; 92; 180], many

decisions made in process development today still do not fully benefit from a systematic

mechanistic model-based approach. One possible explanation for this restraint is the lack

of confidence in mechanistic models because of the absence of a general approach to as-

sess model uncertainty. Due to the complexity of pharmaceutical products and processes

and the highly regulated nature of the industry, decision making is always a science- and

risk-based procedure [81–83]. Mechanistic models can only deliver their full potential in

identifying and reducing these risks if we understand the intrinsic risks of the models itself.

Mechanistic process models represent the current state of knowledge of a process and its

underlying physical principles in a mathematical manner. Due to the complexity of most

real-world processes, they are generally based on explicitly formulated assumptions and

hypotheses. In this way, a mechanistic model is always a simplification of reality. By re-

peatedly validating the model with new experimental data, it can be ensured that model

assumptions are valid and accurately represent the real process. Like statistical models,

mechanistic models contain parameters and thus call upon statistics to get high confidence

in these unknown model parameters. The estimation of these parameters belongs to the

class of so called inverse problems. Parameters which are difficult to assess or cannot be

measured directly are estimated by fitting the model to experimental data. The limited

amount of experimental data and the uncertainty in the data can lead to large parameter

uncertainties or even parameter non-identifiability [134], resulting in uncertainty in model

predictions. The computation of parameter uncertainty in mechanistic chromatography

models is usually based on a frequentist point of view using the Fisher information matrix

(FIM) to approximate the single parameter confidence intervals and parameter covariance

[18; 78]. Using the FIM has some important limitations, especially for nonlinear models.

It will only give a lower bound for the uncertainty, and uses symmetric confidence inter-

vals [91]. Uncertainty analysis for mechanistic models in systems biology showed that a

Fisher information based approach can lead to misleading results for the parameter un-

certainty [51; 91]. Another frequentist approach for the analysis of parameter uncertainty

is bootstrapping. The bootstrap is a Monte Carlo technique that uses data resampling

and parameter estimation using the resampled data to determine parameter confidence

intervals. Borg et al. [15; 16] and Zhang et al. [194] used the parametric bootstrap to

investigate the impact of measurement errors in process inputs and process outputs on

model parameter uncertainty, respectively. For both approaches, the bootstrap and FIM,

large parameter uncertainties have been reported in the past, but it was hardly analyzed

how this parameter uncertainty affects the predictive power of the mechanistic model.

In other research areas like climate research [47] cosmology [172], and systems biology

[173; 174], Bayesian inference has been used to assess prediction uncertainty of models.
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In systems biology, it has been concluded that a sole inspection of parameter uncertainty

is insufficient for evaluating the prediction uncertainty of a model [173; 174], making a

prediction-based uncertainty assessment inevitable.

Inspired by the aforementioned contributions this work introduces an approach to assess

the prediction uncertainty of arbitrary chromatography models using Bayesian inference.

Usage and benefit of the approach will be illustrated by applying it to a cation exchange

chromatography process of an industrial antibody. A mechanistic model was calibrated at

moderate column load density and used to predict the separation of the antibody from its

impurities at high load densities taking into account the model uncertainty. Such a model-

based approach is especially attractive for early-stage process development, as it can help

to reduce development time and feedstock consumption significantly. The application

of the Bayesian approach to this case study allowed for a prediction-based uncertainty

assessment of the model, increasing the confidence in the mechanistic model on the part

of the decision makers.

3.2 Theory

3.2.1 Transport Dispersive Model

In conformity with previous works [78; 80; 124], a column-wide mass balance equation

according to the transport dispersive model (TDM) is used to describe the migration of

solutes through the packed bed of length Lc [m] and average adsorber particle diameter

dp [m]. In the TDM, the temporal change of the solute bulk concentration cb,i [mol m−3]

in the interstitial volume is described by the differential equation [152]

∂cb,i
∂t

(x, t) =− 1− ε
ε

6

dp
keff,i (cb,i(x, t)− cp,i(x, t))

− uint(t)
∂cb,i
∂x

(x, t) +Dax
∂2cb,i

∂x2
,

(3.1)

where t [s] is the time, x [m] is the axial position, uint [m s−1] is the interstitial velocity,

Dax [m2 s−1] represents the axial dispersion coefficient, and ε [−] denotes the interstitial

bed porosity. The accumulation term in Eq. (3.1) is defined by the linear driving force

model, with the component specific effective film diffusion coefficient keff,i [m s−1] and so-

lute concentration cp,i [mol m−3] on the adsorber surface. The solute concentration cp,i

is assumed to be identical to the constant concentration inside the particle pore system.

Intra-particle and extra-particle mass transfer resistance is lumped together in keff,i. Equa-

tion (3.1) is completed with Danckwerts’ boundary conditions of dispersive systems at the

column inlet
∂cb,i
∂x

(x = 0, t) =
uint(t)

Dax
(cb,i(x = 0, t)− cinlet,i(t)) (3.2)

and the column outlet
∂cb,i
∂x

(x = Lc, t) = 0. (3.3)

The mass balance in the adsorber pore system can be described by the differential equation

εp
∂cp,i
∂t

(x, t) + (1− εp)
∂qi
∂t

(x, t) = keff,i
6

dp
(cb,i(x, t)− cp,i(x, t)) , (3.4)
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where qi [mol m−3] denotes the adsorbed solute concentration per adsorber skeleton volume

and εp [−] represents the particle porosity.

3.2.2 Generalized Ion Exchange Isotherm

According to the stoichiometric displacement model [176], the interaction mechanism in

ion exchange chromatography is primarily based on an exchange of counter-ions bound to

charged ligands on the adsorber surface with charged proteins in the mobile phase, and

vice versa. The stoichiometric exchange of a monovalent salt S from the stationary phase

by n different proteins Pi, i ∈ [1, n], can be described by the stoichiometric expression

Pνii + νiLSads 
 LνiP
νi
i,ads + νiS, (3.5)

whereby νi [−] represents the characteristic charge of the i-th protein, L is the ligand,

and the subscript ads depicts the adsorbed state. Due to the size of proteins, some of

the ligands on the adsorber surface are sterically shielded by adsorbed protein molecules.

Counter-ions bound to these shielded ligands cannot be replaced by protein molecules in

the mobile phase. To account for this steric shielding effect Brooks and Cramer introduced

a steric shielding parameter σi [−] [22]. To comply with the law of electroneutrality, the

sum of the charges of the counter-ions and the interacting charges on the proteins must

be equal to the ionic capacity of the ion-exchanger

ΛIEX = q̄s +
n∑
i=1

(νi + σi) qi, (3.6)

where q̄s [mol m−3] represents the bound salt concentration per adsorber skeleton volume

available for exchange [22]. It must be mentioned that Eq. (3.6) is only strictly valid for

strong cation exchangers, as used in this work [125; 184].

If we assume that the salt in both states and proteins associated with the ligands behave

thermodynamically ideal, the adsorption/desorption rate of the i-th protein is described

by the rate equation

ri =
∂qi
∂t

= kads,iq̄
νi
s γicp,i − kdes,iqic

νi
p,s, (3.7)

where γi [−] is the activity coefficient of the i-th protein in solution and

kads,i [s−1 (mol−1 m3)νi ] and kdes,i [s−1 (mol−1 m3)νi ] are the reaction rate constants of

adsorption and desorption, respectively. The original steric mass action (SMA) isotherm

by Brooks and Cramer was derived assuming a constant activity coefficient for the pro-

tein in the mobile phase (γi = 1) [22]. According to Huuk et al. [78], this simplification

is no longer valid for high load densities. To get an expression for the activity coeffi-

cient it is convenient to introduce the rational activity coefficient γ∗i = γi(γ
∞
i )−1 with

γ∞i = limci→0 γi [−] as the activity coefficient of the i-th protein at infinite dilution.

Mollerup used the van der Waals equation of state to get the expression

ln γ∗i = ks,icp,s +
n∑
j=1

kp,ijcp,j , (3.8)

with ks,i [mol−1 m3] and kp,ij [mol−1 m3] as constants [113].
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Using the Eq. (3.6) for the available salt concentration q̄s in Eq. (3.7) as well as the rational

activity coefficient, we get the final rate equation

∂qi
∂t

= kads,iγ
∞
i

ΛIEX −
n∑
j=1

(νj + σj) qj

νi

γ∗i cp,i − kdes,iqic
νi
p,s. (3.9)

Instead of the rate constants kads,i and kdes,i we will hereinafter use the equilibrium con-

stant keq,i = γ∞i kads,ik
−1
des,i [−] and the kinetic constant kkin,i = k−1

des,i [s (mol m−3)νi ] as the

reciprocal value of kdes,i.

3.2.3 Inverse Problem Formulation

To estimate the model parameters Θ = (keff,1, kkin,1, ...) by inverse modeling, experi-

mental data is collected in several experiments at discrete time points tk at the column

outlet. In the following we denote the measured molar concentration of the i-th compo-

nent at the column outlet as ȳi(tk) [mol m−3] and summarize all component concentra-

tions at time point tk in the vector ȳ(tk) = (ȳ1(tk), ..., ȳn(tk)). Under the assumption

of additive normally distributed and isotropic measurement noise, the measurement is

given by ȳi(tk) = yi(tk;Θ) + εi,k where yi(tk;Θ) [mol m−3] indicates the true model and

εi,k ∼ N (0, σ2
i,k) [mol m−3] represents the normally distributed measurement noise with

zero mean and variance σ2
i,k [(mol m−3)2]. Under these conditions, the likelihood of the

measured data D = {(tk, ȳ(tk))}mk=1 is given by

P (D | Θ) =
n∏
i=1

m∏
k=1

1√
2πσ2

i,k

exp

(
−1

2

(
ȳi(tk)− yi(tk;Θ)

σi,k

)2
)
, (3.10)

where n and m represent the number of components and number of observed time points,

respectively. The likelihood is a well-known measure for the distance between model

prediction and data [46]. To get an expression for σi,k in Eq. (3.10), a parameterized

function

σi,k = sa,i + sb,iyi(tk;Θ), (3.11)

can be used, where sa,i [mol m−3] and sb,i [−] represent the absolute and relative noise,

respectively [135; 182].

Parameter estimation is commonly performed from a frequentist viewpoint. In frequentist

statistics the parameters are considered as fixed but unknown and the experimental data

D as random samples from the true model [116]. The maximum likelihood estimate of the

parameters

Θ̂D = arg max
Θ

P (D | Θ) = arg min
Θ

[− lnP (D | Θ)] , (3.12)

is obtained by maximizing the likelihood [Eq. (3.10)] or by minimizing the negative log-

arithm of the likelihood. In contrast to frequentist inference, from a Bayesian viewpoint

the solution of the inverse problem with fixed D encompasses various possible parameter

values that have been chosen from some probability distribution. In this way, Bayesian

inference attaches a notion of probability to the parameter values [174]. Before performing

any experiment, the Bayesian assigns a prior probability distribution P (Θ) to the param-

eters that captures the knowledge of Θ before observing D. If the empirical evidence
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about the parameters is limited or not available at all, non-informative uniform priors can

be used. These priors are called non-informative as they do not favor certain parameter

values. According to the Bayes’ theorem, the prior probability is converted into a posterior

probability

P (Θ | D) =
P (D | Θ)P (Θ)

P (D)
(3.13)

by incorporating the evidence provided by the measured data P (D | Θ) [Eq. (3.10)]. The

denominator in Eq. (3.13) is the normalization constant, which ensures that the posterior

distribution on the left-hand side is a valid probability density that integrates to one.

Due to the high dimensionality of practical models it is usually not possible to calculate

this normalization constant analytically [12]. This problem can be circumvented by using

stochastic methods like Markov Chain Monte Carlo (MCMC), since they only need the

non-normalized numerator of Eq. (3.13). The basic idea behind MCMC is to construct

a Markov chain [12; 116] that generates a stochastic walk in the model parameter space

and whose stationary distribution is P (Θ | D). Over time, MCMC draws representative

parameter samples from P (Θ | D) that summarizes everything known about Θ [116], i.e.

prior knowledge and experimental evidence. The ”width” of P (Θ | D) can be used as a

measure of confidence in Θ, indicating how certain Θ is given the measured data D.

3.3 Material and Methods

3.3.1 Buffer System, Adsorber, and Protein

For all experiments described below, 50 mM sodium acetate (pH 5.0) was used as equili-

bration buffer. Product elution was performed using a high salt buffer consisting of 50 mM

sodium acetate (pH 5.0) and sodium sulfate ranging from 150 to 200 mM, depending on

the experiment. All chromatography runs were conducted with a ECOPLUS column (YMC

Europe, Dinslaken, Germany) packed with the strong cation exchanger Poros XS (Applied

Biosystems, Foster City, California, USA). The resin beads are comprised of an almost in-

compressible cross-linked poly[styrene divinylbenzene] backbone with an average particle

diameter of 50 µm. The resin bed volume and height were 16 ml and 205 mm, respectively.

A human IgG1 monoclonal antibody (mAb) with a molecular weight of approximately 150

kDa was used. The feed material for all chromatography runs consisted of Protein A pools

with a total protein concentration of approximately 4 mg mL−1 and an average product

purity of 98.5% according to size exclusion chromatography. Antibody charge heterogene-

ity was determined by analytical cation exchange chromatography (CEX). According to

the elution order in the analytical chromatogram, four major protein variants (Pro1- Pro4)

were identified. The average proportion of the four protein variants in the feed stock was

43.9%, 16.1%, 38.2%, and 1.8%, respectively.

3.3.2 Instruments

All experiments were performed on an ÄKTAexplorer equipped with a pump module P900,

UV monitor UV900, a conductivity cell pH/C 900, as well as a fraction collector Frac-950

(all GE Healthcare, Little Chalfont, Buckinghamshire, UK).
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3.3.3 Software

The ÄKTAexplorer was operated with the control software UNICORN 5.20 (GE Health-

care, Little Chalfont, Buckinghamshire, UK). The system of partial differential equations

described earlier were numerically solved by using ChromX (GoSilico GmbH, Karlsruhe,

Germany) [69] with a Python 3.6.2 interface. For all simulations, the variable time-

stepping scheme IDAS was used for discretization in time. The initial time step was

set to 0.2 s. Discretization in space was performed with 50 equidistant axial cells using a

linear Streamline-Upwind Petrov-Galerkin (SUPG) ansatz. Simulation accuracy was ver-

ified by regularly repeating simulations with a finer axial discretization of 100 equidistant

axial cells and a fractional step θ-scheme with a constant time step of 0.1 s. The Python

packages SciPy and emcee were used to solve the inverse problem and perform MCMC,

respectively.

3.3.4 System and Column Characterization

Extra column parameters describing the residence time distribution in the system pe-

ripheral were determined by conducting tracer pulse injections using 1% (v/v) acetone

in equilibration buffer and high salt buffer. Column porosities and the axial dispersion

coefficient were determined from pulse injection experiments using high salt buffer as

pore-penetrating, non-adsorbing tracer and 10 mg mL−1 dextran with an average molec-

ular weight of 2000 kDa as non-pore penetrating, non-interacting tracer. All experiments

were performed in triplicates. The axial dispersion coefficient was determined by fitting

the TDM [Eq. (3.1)] to the dextran peaks using the software ChromX. The mass transfer

term in Eq. (3.1) was neglected, since dextran is non-pore penetrating. The ionic capacity

of Poros XS was determined by acid-base titration according to [79]. The capacity value

was not determined specifically for the packed column but was taken from an in-house

database.

3.3.5 Column Experiments

For model calibration, three bind-and-elute experiments comprising of one linear gradient

experiment and two step elution experiments were used. All experiments were performed

at a constant flow rate of 2.6 mL min−1 and a column load density of 30 mg mL−1. For

the linear gradient experiment, 120 mL of feed material was injected on the equilibrated

column. After a post-loading wash step over 5 CV of equilibration buffer, elution was

performed by increasing the salt concentration linearly to 200 mM over 30 CV. For each

step elution experiment, the column was first equilibrated with 5 CV of equilibration

buffer. Subsequently, 120 mL load was injected. After a post-loading wash step over 5 CV

of equilibration buffer, the salt concentration was increased to 150 mM and 180 mM,

respectively. In all experiments, 8 mL fractions were collected at the column outlet and

analyzed by analytical CEX to determine the molar protein concentration.

For model validation, a third step elution experiment was performed at a load density

of 80 mg mL−1. The equilibrated column was loaded with 315 mL feed material and

washed with equilibration buffer over 5 CV. For product elution, the salt concentration

was increased to 150 mM. After the UV trace at 280 nm exceeded 100 mAU, the column

effluent was pooled. The collection of the column effluent was stopped once the declining

UV trace fell below 420 mAU. The collected product pool was analyzed by analytical CEX.
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3.3.6 Markov Chain Monte Carlo

First, the maximum likelihood estimate [Eq. (3.12)] for the three calibration experiments

was determined using simulated annealing and sequential least squares programming

(SLSQP) as global and local optimizer, respectively. Simulated annealing was used to

explore a wide range of the parameter space and find the global optimum. The result of

simulated annealing was further refined with the local optimizer. The measurement noise

parameters sa,i and sb,i were assumed to result from uncertainties in the concentration

determination and analytical CEX. Both parameters were derived a priori from internal

analytical method validation reports. The analytical methods were developed specifically

for the antibody system being studied in this work. The method validation reports ensure

that these analytical methods are suited for the quantitative evaluation of the analytes

and contain method characteristics like method sensitivity, accuracy, and precision [48].

To generate samples from the parameter posterior distribution, the Goodman & Weare

[55] affine invariant ensemble sampler was used for MCMC as implemented in the emcee

Python package [49]. An ensemble MCMC algorithm is a Markov Chain that operates

an ensemble of walkers in parallel. Fifty walkers were initialized around the maximum

likelihood estimate and evolved over 5000 steps per walker. For all model parameters, a

non-informative uniform prior in logarithmic parameter space was used. The convergence

of MCMC was assessed by visual inspection of the likelihood and parameter traces of the

walkers. Once the Markov chain reached the region of highest posterior density, samples

were acquired from the parameter posterior distribution.

3.3.7 Model Prediction and Extrapolation

After model calibration at a load density of 30 mg mL−1, the mechanistic model was

used to investigate the effect of the load density on the impurity pattern in the product

pool for a 150 mM salt step elution process. The process conditions were identical to

those of the 150 mM salt step elution experiment used for model calibration. Only the

load volume was adjusted to increase the load density stepwise from 30 mg mL−1 up to

110 mg mL−1. For each load density, a product pool was taken and analyzed in silico using

a UV-based pooling criterion of 100 mAU and 420 mAU for the pooling start point and

end point, respectively. The pooling criterion was defined based on previous experiments.

The transformation from molar protein concentration to UV absorption was performed

according to the Lambert-Beer law using the theoretical extinction coefficient of the mAb.

To assess the propagation of parameter uncertainty to model prediction, 500 parameter

sets were drawn randomly from the parameter posterior distribution. Model predictions

were performed for each of the drawn parameter sets. To verify the model predictions at

high load density, the predictions at 80 mg mL−1 were compared to experimental results.

3.4 Results and Discussion

3.4.1 System and Column Characterization

The system dead volume of 2.01 mL was determined from tracer pulse injections without

a column attached to the ÄKTA system. All experimental data from the system were
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Table 3.1: Results from the system and column characterization.

Parameter Unit Value
System dead volume [mL] 2.010
Column volume Vc [mL] 16
Column length Lc [mm] 205
Void fraction ε [−] 0.407
Bead porosity εp [−] 0.637
Axial dispersion Dax [mm2 s−1] 0.671
Ionic capacity ΛIEX [M] 0.673

corrected with respect to the measured dead volume. The void fraction, bead porosity,

and axial dispersion coefficient were determined from tracer pulse experiments with column

attached to the system. Since the external system dead volume was almost one order of

magnitude smaller than the column volume, axial dispersion due to extra-column and

intra-column effects were summarized in one single axial dispersion coefficient Dax [130].

As dextran peaks showed a noticeable tailing, only the non-diffusive peak front was used

for the estimation of Dax. It is safe to assume that this diffusion behavior is caused by the

polydispersity of dextran [129]. The ionic capacity was taken from an in-house database.

All results are summarized in Table 3.1.

3.4.2 Markov Chain Monte Carlo

To assess the propagation of parameter uncertainty to model predictions, MCMC was

first used to acquire samples from the parameter posterior probability distribution. For

high dimensional parameter spaces, MCMC can take impractically long to converge if

we initialize the walkers at random guesses. To reduce this burn-in phase, the walkers

were initialized around the maximum likelihood estimate [Eq. (3.12)] found by global and

local optimizers. The protein parameters kp,ij in Eq. (3.8) were neglected since Huuk

et al. observed almost no impact of the parameter on the model output for a mAb on

Poros 50HS and a load density of 90 mg mL−1 [78]. The measurement noise parameters

sa,i and sb,i quoted at the top of Table 3.2 were estimated a priori from internal method

validation reports. They result from the propagation of uncertainties in the concentration

determination and analytical CEX.

Starting around the maximum likelihood estimate, the chains were evolved over 5000

steps for each chain. For parameters that are by definition non-negative, non-informative

uniform priors in logarithmic parameter space were used. This applies for all model param-

eters, except ks,i. Since the ks,i values of the maximum likelihood estimate were negative

for all proteins, the parameter space for MCMC was restricted to negative ks,i values,

allowing a log-scale for all model parameters. As mentioned earlier, the uniform priors

do not favor certain parameter values but ensure that the parameters attain no physi-

cally unrealistic values. The convergence of MCMC was assessed by visual inspection of

the likelihood and parameter traces of the chains. As shown in Fig. A.1 in the appendix,

the chains converged and reached the region of highest posterior density after 3000 steps.

Parameter samples taken during this burn-in-phase were discarded to avoid assigning too

much weight to improbable samples. To get a sufficient approximation of the parameter

posterior distribution, the chains were run for an additional 2000 steps leading to 100,000

representative samples from the posterior distribution.
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Table 3.2: Model parameters estimated by MCMC. Quoted model parameters are the
medians of the parameter posterior distribution. Parameter uncertainty is expressed by
the 95% credible interval. The absolute noise parameter sa and relative noise parameter
sb were estimated a priori from internal method validation reports.

Parameter Pro1 Pro2 Pro3 Pro4

sa,i [M] 4.43e− 7 2.36e− 7 3.30e− 7 1.51e− 8

sb,i [−] 0.041 0.047 0.033 0.033

log
(
keff,i · 1 s mm−1

)
[−] −3.22 +0.05

−0.04 −3.03 +0.06
−0.07 −2.71 +0.07

−0.06 −2.52 +0.09
−0.06

log
(
kkin,i · 1 s−1 M−νi

)
[−] −3.26 +0.17

−0.18 −6.21 +0.25
−0.26 −6.30 +0.18

−0.21 −7.79 +1.06
−0.55

log (keq,i) [−] 0.38 +0.19
−0.18 −2.36 +0.33

−0.21 −2.62 +0.19
−0.21 −2.71 +0.23

−0.21

νi [−] 6.60 +0.19
−0.23 10.24 +0.25

−0.30 10.52 +0.20
−0.21 11.18 +0.32

−0.40

σi [−] 158.56 +6.29
−6.46 156.93 +13.74

−17.34 102.52 +5.52
−5.03 136.86 +31.06

−44.36

ks,i [M−1] −30.38 +1.41
−1.39 −13.72 +1.41

−2.37 −8.39 +1.32
−1.05 −7.37 +0.80

−0.96

kp,ij [M−1] - - - -

The computation time required was several days on a personal computer. However, since

MCMC allows efficient parallelization, the computation time can be reduced significantly

if the simulations are performed on a computer cluster. Figure A.2 in the appendix shows

the resulting histograms of marginal parameter distributions as well as the joint parameter

distributions. It is important to note that further samples would lead to a better resolution

of the posterior distribution but would also increase the computational effort. Table 3.2

quotes marginalized parameter values and uncertainties for all model parameters. The de-

picted model parameters are medians of the marginal parameter distributions. Parameter

uncertainty is expressed by the 95% credible interval. The estimated effective film diffusion

coefficient increases from Pro1 to Pro4, indicating a change in the hydrodynamic radius

from Pro1 to Pro4. The characteristic charge and keq values of Pro2, Pro3, and Pro4 are

very similar, indicating similar interaction characteristics. The ks values are negative for

all proteins which has also been reported in [78] for a mAb on Poros 50HS. The results

summarized in Table 3.2 indicate substantial uncertainty in the parameter estimates, es-

pecially for kkin and keq. As described by Eq. (3.9), the effect of the shielding parameter

σ is only visible in the non-linear region of the isotherm where protein molecules start to

compete for binding sites on the adsorber surface. Despite the moderate load density of

30 mg mL−1, the remaining uncertainty in the shielding parameter is relatively low. Only

Pro4 shows significant uncertainty in σ. It is safe to assume that the injected amount of

this component was not sufficient to estimate σ reliably.

In process modeling, more attention should be paid to the predictive uncertainty of the

model than on interpreting the model parameters and their uncertainty. Using the gen-

erated MCMC samples, the parameter uncertainty contained in the posterior parameter

distribution can be propagated accurately and easily to predictions of the mechanistic

model. Given samples of the parameter posterior distribution, predictions can be made

by solving the model for each of the parameter sets. The distribution of such predictions

is referred to as the predictive posterior distribution and reflects the prediction uncer-

tainty of the model. Figure 3.1 shows the experimental fraction data used for Bayesian

parameter estimation, along with the predictive posterior distribution of the model. Solid

lines indicate the median of the predictive posterior distribution. The transparent areas
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Figure 3.1: Propagation of parameter uncertainty to model predictions. (a)-(c) Compar-
ison of experimental fraction data (dots) and model predictions (lines). The salt concen-
tration is indicated by gray dashed lines. Solid colored lines indicate the median of the
predictive posterior distribution. The transparent areas indicate the 99%, 95%, and 68%
prediction intervals (PIs). (d)-(f) For the sake of clarity, experimental data and model
predictions for Pro4 are also shown separately. It is important to note that the upper
limits of the y-axes differ among the experiments.

indicate the 99%, 95%, and 68% prediction intervals (PIs), respectively. It is important to

note that the upper limits of the y-axes in Fig. 3.1 differ among the experiments. In very

good accordance with the experimental data, the mechanistic model describes the elution

behavior of Pro2 and Pro3. Deviations from the experimental data can be observed for

Pro1 at the peak maximum in Fig. 3.1(a) and at the peak tailing in Fig. 3.1(b). The sharp

increase in the predicted protein concentration at about 550 mL of the linear gradient was

caused by an unintended jump in the ionic strength and could also be observed in the

UV trace of the ÄKTA system. The reason for the jump in the ionic strength was not

investigated further. The predictive posterior distribution for the calibration runs reveals

spots where the uncertainty has the largest impact on the model. The spots of great-

est uncertainty are mainly concentrated close to the peak maximum of Pro1 and Pro2

under step elution conditions, as shown in Fig. 3.2. The large prediction uncertainty at

these spots can be ascribed to the steep elution profile of both components, which com-

plicates the exact localization of their peak maxima. Finer fractions close to the peak

maximum of Pro1 and Pro2 would reduce this uncertainty as they would provide more

detailed data. For the sake of clarity, the good agreement between experimental data and

model predictions for the lowest concentrated component Pro4 is also shown separately

in Fig. 3.1(d)-(f). The low concentration of Pro4 close to the analytical detection limit

increases the risk of experimental outliers as shown in Fig. 3.1(e). These potential outliers

were not removed prior to model calibration and are also an explanation for the significant

parameter uncertainty for Pro4. A spot of large uncertainty for Pro4 can be observed in
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Figure 3.2: Elution front of process 2 and 3 shown in Fig. 3.1. Comparison of experimental
fraction data (dots) and model predictions (lines). The salt concentration is indicated by
gray dashed lines. Solid colored lines indicate the median of the predictive posterior
distribution. The transparent areas indicate the 99%, 95%, and 68% prediction intervals
(PIs).

Fig. 3.1(f) in the range of 350 to 450 mL. Additional fractions in this range are also likely

to reduce the uncertainty for this component.

3.4.3 Model Prediction and Extrapolation

A major advantage of mechanistic models over purely empirical models is the ability to ex-

trapolate beyond observed process conditions. In process modeling, this capability is often

used for in silico process optimization, process scale-up, and root-cause-investigation. It

is, however, only possible if the model parameters are perfectly known. Uncertainty in the

model parameters can restrict this ability considerably. To assess the model’s ability to

extrapolate, the load density of the 150 mM salt step elution process shown in Fig. 3.1(b)

and Fig. 3.1(e) was increased in silico from 30 mg mL−1 up to 110 mg mL−1. For each

load density, product pools were taken and analyzed model-based using a pooling crite-

rion of 100 mAU and 420 mAU for the pooling start point and end point, respectively.

The predictive posterior distribution for protein recovery is shown in Fig. 3.3(a). It is

important to note that the upper limits of the y-axes in Fig. 3.3 differ among the pro-

teins. The percent recovery is shown since it enables a component-specific assessment of

the prediction uncertainty. The predicted protein purity shown in Fig. 3.3(b), which is

often used as a measure of product quality, is not suitable for such an assessment as it

depends on the protein sum signal. For Pro1, the load density has almost no effect on

protein recovery. The steady decline in Pro1 recovery from a load density of approxi-

mately 90 mg mL−1 can be ascribed to an increasing breakthrough of Pro1 during the

loading phase. Pro3 shows a significant increase in recovery, which leads to a significant

decline in the pool purity for Pro1 and Pro2. It is interesting to see that even though the

mechanistic model was calibrated at a moderate load density of 30 mg mL−1 and contains

significant parameter uncertainty, the prediction uncertainty for Pro1 to Pro3 increases

only slightly from 30 mg mL−1 to 110 mg mL−1. Only for Pro4, a significant increase in

the prediction uncertainty can be observed when increasing the load density beyond the

observed process conditions at 30 mg mL−1, as shown in Fig. 3.3(a). This indicates, that

the model predictions for Pro4 at load densities beyond 40 mg mL−1 should be used with

caution.
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Figure 3.3: Predicted effect of load density on protein recovery (a) and protein purity (b)
in the product pool. Solid colored lines indicate the median of the predictive posterior
distribution. The transparent areas indicate the 68%, 95%, and 99% prediction intervals
(PIs). It is important to note that the upper limits of the y-axes differ among the proteins.

To validate the model’s predictions at high load conditions, in silico data at a load den-

sity of 80 mg mL−1 were verified experimentally. The load density of 80 mg mL−1 was

chosen due to the decline in Pro1 recovery from a load density of 90 mg mL−1, as shown

in Fig. 3.3(a). The experimental results as well as the model predictions are quoted in

Table 3.3. As expected, model predictions for Pro1 to Pro3 are in good agreement with

experimental data. Taking into account the high parameter uncertainty and the consid-

erable extrapolation, the prediction uncertainty is fairly low. For all three components,

the experimental data are within the 95% PI, indicating that the parameter uncertainty is

propagated correctly to model predictions. As already suggested, the prediction for Pro4

disagrees with the experimental data. The measured Pro4 content in the product pool

is slightly outside the 95% PI which is not surprising considering the measured content

well below 1%, the experimental noise in Fig. 3.1(e), and the significant model uncer-

tainty regarding Pro4 shown in Fig. 3.3(a). The results quoted in Table 3.3 show that the

mechanistic model can perform reliable extrapolations at 80 mg mL−1 with a prediction

uncertainty below 1%. The model prediction for Pro4 deviates slightly from experimental

data but is greater than the experimental value. In a risk-based assessment of the model

quality this deviation may be tolerated since Pro4 has to be depleted and the model is

Table 3.3: Predicted and measured pool composition at a load density of 80 mg/ml.
Quoted model predictions are the medians of the predictive posterior distribution. The
quoted prediction uncertainty represents the 95% prediction interval.

Pro1 [%] Pro2 [%] Pro3 [%] Pro4 [%]

Model prediction 45.4 +0.5
−0.4 20.1 +0.3

−0.5 33.0 +0.7
−0.6 1.6 +0.2

−0.7

Measurement 45.5 20.4 33.6 0.5
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therefore on the ”safe side”.

3.5 Conclusion

We introduced a Bayesian framework for the calibration and prediction uncertainty assess-

ment of mechanistic chromatography models using the example of a CEX step to separate

an industrial antibody from its impurities. A mechanistic model was calibrated at mod-

erate column load density and used to make extrapolations at high load conditions. Due

to the small amount of experimental data for model calibration and noise in the exper-

imental data, estimated model parameters showed substantial uncertainty. Taking into

account this parameter uncertainty, the model’s ability to extrapolate was verified ex-

perimentally. Despite the significant parameter uncertainty, the mechanistic model could

perform reliable extrapolations at high load densities with a prediction uncertainty below

1%.

The advantage of the presented Bayesian framework is founded in the propagation of

information provided by experimental data and prior assumptions from general physical

knowledge and previous models to the posterior distribution of model predictions. The

concept of using both prior knowledge and experimental evidence is a concept firmly

anchored in the traditional development of chromatography processes but has sparsely

been used in the course of the modeling of such processes. The Bayesian prior used in

this study was a very weak prior, that does not favor any parameter sets but ensures

that parameters attain no physically unrealistic values. The more mechanistic models are

calibrated and the more empirical evidence about the model parameters is available, the

more informative priors can be formulated and converted into the parameter posterior

distribution using experimental data. Once the parameter posterior distribution has been

estimated, parameter uncertainty can be easily propagated to model predictions allowing a

prediction-based uncertainty assessment of the model. Having a measure for the prediction

uncertainty is crucial for a model-based decision making in process development, since

model predictions can only be verified after the decision has been made. Knowing the

predictive limits of the mechanistic model not only increases the modelers confidence

in the mechanistic model but increases also the confidence on the part of the decision

makers and authorities. This will help to develop more robust and efficient processes for

biopharmaceutical products.
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Abstract

Mechanistic modeling of protein adsorption has gained increasing importance in the devel-

opment of ion exchange (IEX) chromatography processes. The most common adsorption

models use a stoichiometric representation of the adsorption process based on the law of

mass action. Despite the importance of these models in model-based development, the

stoichiometric representation of the adsorption process is not accurate for the description

of long-range electrostatic interactions in IEX chromatography, limiting the application

and mechanistic extension of these models.

In this work an adsorption model is introduced describing the non-stoichiometric electro-

static interaction in IEX chromatography based on the linear Poisson-Boltzmann equa-

tion and a simplified colloidal representation of the protein. In contrast to most recent

non-stoichiometric models, the introduced model accounts for charge regulation during

the adsorption process. Its capability of describing the adsorption equilibrium is demon-

strated by simulating partitioning coefficients of multiple proteins on different adsorber

systems as a function of ionic strength and pH. Despite model simplifications the physical

meaning and predictive value of the model could be preserved. By transferring model pa-

rameters of a monoclonal antibody (mAb) from one adsorber system to another, it could

be demonstrated that protein parameters are theoretically not only valid on a specific

adsorber system but freely transferable to other adsorbers. The predictive value of the

mechanistic model on the new adsorber system was highlighted by predicting the elution

behavior of charge variants of the mAb.

Keywords: Mechanistic modeling; Charge regulation; Resin transfer; Monoclonal anti-

body; Charge variants
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4.1 Introduction

Ion exchange (IEX) chromatography still remains one of the most frequently used polishing

steps in the purification of recombinant proteins due to its moderate cost, high selectivity

under mild operating conditions, and its capability to deplete both, process-related im-

purities and product-related impurities [57; 156]. For the development of IEX processes,

mechanistic modeling has gained increasing importance in recent years. Efficient modeling

of these processes requires knowledge of the full adsorption isotherm that describes how

specific resin properties, buffer conditions, and other process parameters affect protein

adsorption.

The mechanistic description of protein adsorption in IEX chromatography was intro-

duced by Boardman and Partridge [13] and further developed by Regnier and co-workers

[44; 98; 144]. It is based on a stoichiometric exchange of counter-ions bound to the adsorber

surface with charged proteins in the mobile phase, and vice versa. This initial stoichiomet-

ric displacement model applies to the linear adsorption range of proteins. It was extended

to the nonlinear adsorption range by the introduction of the steric mass action (SMA)

model by Brooks and Cramer [22], which has been the most widely used adsorption model

for IEX chromatography ever since, both in academia [14; 71; 80; 87; 88; 97; 123; 124]

and industry [21; 77; 92; 180]. Mechanistic models like the SMA model have contributed

greatly to the understanding of protein chromatography and are still expedient for the

fundamental research on chromatography. However, the stoichiometric description of the

adsorption process according to the law of mass action implies short-range interactions be-

tween the protein and the adsorber surface and is therefore not an accurate representation

for the long-range electrostatic interactions determining the retention of proteins in IEX

chromatography [161–163]. The simplified representation of the adsorption process can

hamper the mechanistic extension of stoichiometric models and limits their application to

a specific adsorber system. Extensions of the SMA model trying to explicitly account for

pH-dependent protein adsorption, are therefore mostly performed on a purely empirical

bases [77; 92; 114], making the models valid only within a small pH range. More mecha-

nistically driven pH-dependent SMA extensions have been introduced by Shen and Frey

[153; 154] and Frech and co-workers [96; 97; 151]. However, due to the high degree of

mechanistic abstraction, these model are only valid within a narrow pH range around the

isoelectric point of a protein or contain a large number of model parameters which cannot

be determined a priori but have to be determined by inverse modeling.

The theoretical limitations of stoichiometric models to describe the electrostatic interac-

tions between charged proteins and the charged adsorber surface as a function of ionic

strength and pH has prompted the development of non-stoichiometric adsorption models.

These models are based on a more fundamental description of the electrostatic interactions

in IEX chromatography using an idealized colloidal representation of the protein and ana-

lytical solutions of the linear Poisson-Boltzmann equation. Models using a more complex

representation of the protein [142; 191] or solutions of the nonlinear Poisson-Boltzmann

equation [52] are only available through cumbersome numerical computations, which make

them of limiting practical use for model-based process development. Analytical expressions

are only available for the linear Poisson-Boltzmann equation and a simplified geometrical

representation of the protein. St̊ahlberg et al. [163; 164] and Guélat et al. [64–67] used

analytical expressions of the linearized Poisson-Boltzmann equation to calculate the in-

teraction energy between the protein and the adsorber surface. Oberholzer and Lenhoff
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[119; 120] used a solution of the based on the linear superposition approximation. All these

analytical expressions assume that the charge of the protein remains constant during the

adsorption process. This assumption has been questioned as the charge of the protein is

affected by the local electrostatic environment [74; 109; 153; 154; 162]. As the protein

approaches the adsorber surface, the local electrostatic environment changes, which can

induce a regulation of the protein charge [6; 24; 171]. The non-stoichiometric model pro-

posed by St̊ahlberg and Jönssen [162] considers protein charge regulation but does not

explicitly describe protein adsorption over a wide pH range.

This work introduces a mechanistic adsorption model which is based on a description

of the non-stoichiometric electrostatic interactions in IEX chromatography. The model

explicitly accounts for the effect of pH and ionic strength on the adsorption of a protein

with known primary sequence similar to [64–67], but considers charge regulation during the

adsorption process. The model’s capability of describing adsorption equilibria is illustrated

by simulating partitioning coefficients of multiple proteins on different adsorber systems as

a function of pH and ionic strength. Finally, the transferability of model parameters from

one adsorber system to another as well as the application of the model for product-related

impurities are discussed.

4.2 Theory

4.2.1 Charge Regulation

We consider an isolated protein i and adsorber A which are immersed in an electrolyte

solution with relative permittivity ε [−] and ionic strength Im [mol m−3]. The protein is

considered to be a perfect sphere with radius ai [m] which is characterized by its uniform

surface charge density σI,i [C m−2] or electric surface potential ψ0,i [V]. The adsorber is

considered to be a plane surface with uniform charge density σI,A and surface potential

ψ0,A. Charges localized on the surface of the protein and adsorber are hereinafter referred

to as the inner layer which is indicated by the subscript I. They originate from ionizable

surface groups or the specific adsorption of ions from solution [67; 84]. The ionization

of the j-th surface group R on the amphoteric surface of a protein is governed by the

dissociation reaction

−RHζj 
 −R(ζj−1) + H+ (4.1)

whereby ζj ∈ [0, 1] represents the charge of the protonated acidic (ζj = 0) or basic (ζj = 1)

site in units of elementary charge. The ionizable side chains include the imidazole moiety

of histidine (His), the carboxyl groups of aspartic acid (Asp) and glutamic acid (Glu), the

hydroxyl group of tyrosine (Tyr), the amino group of lysine (Lys), as well as the guanidino

group of arginine (Arg). In conformity with previous works [64], it is assumed that the

thiol group of cysteine does not contribute to the protein charge as it predominantly forms

disulfide bridges in proteins. Neglecting ion specific binding, σI,i can be written as

σI,i(ψ0,i) = eNA

∑
j

Γj,i

(
(ζj − 1)

[
1 +

cb,H+

Kj,i
exp

(
−eψ0,i

kbT

)]−1

+ ζj

[
1 +

Kj,i

cb,H+

exp

(
eψ0,i

kbT

)]−1
)
,

(4.2)
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where e [C] represents the elementary charge, NA [mol−1] is the Avogadro number, Γj,i
[mol m−2] is the surface density of the j-th ionizable residue, Kj,i [M] is the dissociation

constant of the functional group, kb [J K−1] is the Boltzmann constant, cb,H+ [M] is the

proton concentration in the bulk phase, and T [K] denotes the absolute temperature [171].

In the case of a cation exchanger the adsorber surface is solely covered by an acidic ligand

L with surface density ΓL. Its surface charge density is given by

σI,A(ψ0,A) = −eNAΓL

[
1 +

cb,H+

KL
exp

(
−
eψ0,A

kbT

)]−1

. (4.3)

In contrast to previous non-stoichiometric adsorption models [64–67], the dissociation re-

action in Eq. (4.2) and Eq. (5.15) is determined by the proton concentration at the charged

surface c0,H+ and not by the bulk concentration itself. Both are related by the Boltzmann

relation

c0,H+ = cb,H+ exp

(
− eψ0

kbT

)
. (4.4)

If we assume that all amino acids with ionizable side chains are located on the surface of

the protein, Γj,i in Eq. (4.2) is related to the number of amino acids Nj,i [−] in the primary

protein structure according to

Γj,i =
Nj,i

4πa2
iNA

. (4.5)

As the number of ionizable side chains in a protein is too large to calculate the ionization

state individually, Eq. (4.2) considers an average ionization state for each type of side

chain using a mean pKj,i = − log(Kj,i · 1M−1) [−] value. As a first approximation, one

may use the intrinsic pK values of the amino acids, as proposed by Guélat et al. [64–67].

However, due to charge-charge interactions, hydrogen-bonding, and burial of the ionizable

side chains, pK values of ionizable residues in proteins can deviate significantly from

intrinsic values [17; 60; 126]. Alterations in the pK value of histidine imidazole moieties

are particularly important as they strongly determine the protein charge profile within the

process-relevant pH range in cation exchange chromatography. The pK of an individual

imidazole moiety depends on whether the side chain is fully accessible or buried within the

protein. Measured pK values of buried imidazole moieties show a higher variability and

are often higher than those of fully accessible side chains [45]. To take this variation into

account, histidine side chains in a protein are divided into two groups with an average pK

value of pKHis1,i and pKHis2,i, respectively.

In some cases, it is convenient to approximate Eq. (4.2) or Eq. (5.15) linearly around a

reference potential ψ∗, as schematically shown in Fig. 4.1(a) for the inner charge of the

protein. The charge potential-relationship is then given by

σI(ψ0) = σI(ψ
∗)− CI(ψ

∗)(ψ0 − ψ∗), (4.6)

where σI(ψ
∗) and

CI(ψ
∗) = − ∂σI

∂ψ0

∣∣∣∣
ψ0=ψ∗

(4.7)

[C m−2 V−1] are the surface charge density and capacitance of the inner layer at ψ∗, re-

spectively [24].

The charge density of the inner layer is balanced by an equal but oppositely charged diffuse

layer D of spatial inhomogeneous distributed ions [84]. Neglecting the curvature of the
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ψ0,i [V]

σ
I,
i
[C
m

−
2
]

ψ∗

σI,i(ψ
∗)

inner layer

cb,H+ = const.
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σ
I,
i,
σ
D
,i
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−
2
]

cb,H+ = const.

(a) (b)

diffuse layer inner layer

increasing Im

Figure 4.1: Schematic representation of the charge-potential relationship at a constant
bulk pH. (a) Charge-potential relationship of the inner layer (solid black line) according
to Eq. (4.2). The dashed gray line represents a linear approximation of the relationship
around the reference potential ψ∗ according to Eq. (4.6). (b) Charge-Potential relationship
of the inner layer (solid black line) according to Eq. (4.2) and diffuse layer (gray lines)
according to Eq. (4.8) at varying ionic strengths. Intercepts of both relationships are
indicated by open circles. They define σI,i and ψ0,i for a given ionic strength and pH in
the bulk phase.

protein surface and considering a 1:1 electrolyte, the charge density compensated by the

diffuse layer σD is given by the Grahame equation

σD = 2εε0κ
kbT

e
sinh

(
eψD

2kbT

)
, (4.8)

where ψD denotes the electric potential at the origin of the diffuse layer, ε0 [C V−1 m−1]

is the vacuum permittivity, and

κ =

√
2e2ImNA

kbTεε0
(4.9)

[m−1] corresponds to the reciprocal Debye length. The Grahame equation derives from

the nonlinear Poisson-Boltzmann equation. For the linear Poisson-Boltzmann equation

(Debye-Hückel theory), Eq. (4.8) simplifies to

σD = εε0κψD. (4.10)

According to the Gouy-Chapman theory the diffuse layer potential is identical to the

surface potential, namely ψD = ψ0 [84; 171]. The charge-potential relationship of the

diffuse layer [Eq. (4.8)] is schematically shown in Fig. 4.1(b). The inner and diffuse layer

can be considered as two adjacent subsystems, each described by its charge-potential

relationship [6]. The intercept of both relationships satisfies the equilibrium condition

σI = σD and defines σI and ψ0 for a given ionic strength and pH in the bulk phase

[6; 24; 171]. If the diffuse layer or electrostatic environment is manipulated, the inner

layer has to regulate its charge density in order to satisfy electroneutrality, and vice versa

(see Fig. 4.1(b)). This effect is referred to as charge regulation [6; 24; 171]. Depending on
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whether Eq. (4.2) or Eq. (4.6) is used for σI, one distinguishes between full regulation and

constant regulation [171].

4.2.2 Double Layer Forces

Both, the charged protein and the charged adsorber surface are surrounded by a diffuse

layer. If the protein approaches the adsorber surface, the overlap of both diffuse layers gives

rise to a double layer interaction defined by an attractive Maxwell stress and a repulsive

osmotic pressure [121; 127]. These interactions are commonly described in the mean-field

approximation using the nonlinear or linear Poisson-Boltzmann equation [177]. Solutions

of the nonlinear Poisson-Boltzmann equation are only available through cumbersome nu-

merical computations which makes them of limiting practical use for model-based process

development. Analytical expressions are only available for the linear Poisson-Boltzmann

equation. St̊ahlberg et al. [163; 164] and Guélat et al. [64–67] used an analytical expres-

sion of the linearized Poisson-Boltzmann equation derived by Parsegian and Gingell [127]

to calculate the interaction energy between the protein and the adsorber surface within

the Derjaguin limit. Oberholzer and Lenhoff [119; 120] used a solution of the Poisson-

Boltzmann equation based on the linear superposition approximation. These analytical

expressions were derived assuming that the charge density of the interacting surfaces re-

mains constant during the adsorption process [127]. This assumption has been questioned

as the penetration of the diffuse layer of the protein into the diffuse layer of the adsorber

induces a change in their surface potentials, leading to a regulation of the surface charge as

described earlier in Fig. 4.1 [74; 162]. A simplified analytical solution of the linear Poisson-

Boltzmann equation which accounts for charge regulation was introduced by Carnie and

Chan [24]. Under the assumption of constant regulation for the inner layer [Eq. (4.6)] and

diffuse layer [Eq. (4.10)], the interaction free energy per unit area wi [J m−2] between the

protein and the adsorber at distance z [m] is given by

wi(z) =εε0κ
2ψ0,Aψ0,i exp (−κz)

1− (2pi − 1)(2pA − 1) exp (−2κz)

+ εε0κ

[
(2pi − 1)ψ2

0,A + (2pA − 1)ψ2
0,i

]
exp (−2κz)

1− (2pi − 1)(2pA − 1) exp (−2κz)
,

(4.11)

whereby

p = lim
z→∞

p(z) =
CD

CD + CI
(4.12)

[−] is the regulation parameter of the isolated surface (z → ∞) with the diffuse layer

capacitance CD = ∂σD/∂ψD [5; 6]. This parameter characterizes how the surface charge

density changes upon approach. If the charge density of the protein and adsorber remains

constant upon approach (pA = pi = 1), Eq. (5.19) simplifies to the expression of Parsegian

and Gingell used in [67; 163; 164].

In conformity with previous models [64–67], the Derjaguin approximation [84]

ui(z) = 2πai

∫ ∞
z

wi(z)dz. (4.13)

is used to derive the interaction free energy ui [J] between protein and adsorber. A closed-

form expression of Eq. (5.18) with Eq. (5.19) for wi(z) can be found in [24]. The Derjaguin
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Figure 4.2: Schematic representation of the interaction boundary layer. The interaction
free energy between protein and adsorber (black continuous line) is only relevant within
a boundary layer at the adsorber surface. The interaction profile inside the interaction
boundary layer is approximated by an idealized energy profile (dashed gray line).

approximation is accurate only for large κai when the diffuse layers are thin relative to

the colloid size [11]. This Derjaguin limit is commonly not fulfilled for small colloids like

proteins. Alternatives like the surface element integration [10] have shown to provide

more accurate predictions than Eq. (5.18). However, as these approaches do not provide

an analytical solution for ui, they have not been further investigated.

4.2.3 Adsorption Isotherm

We consider the interaction profile ui(z) between protein and adsorber schematically shown

in Fig. 4.2. Due to the finite extent of the diffuse layer, interactions between colloid and

adsorber surface are only relevant inside a boundary layer with thickness δ∗i [m] referred

to as interaction boundary layer [146; 147; 159]. If the interaction energy between colloid

and adsorber [Eq. (5.18)] has a minimum at

δm,i = arg min
z

ui(z), (4.14)

as shown in Fig. 4.2, a particle flux may be formed that accumulates protein inside

the interaction boundary layer. The surface density of protein bound to the adsorber

qi [mol m−2] can then be defined by

qi = c(δ∗i )Ki = c(δ∗i )
∫ δ∗i

δm,i

exp

(
−ui(z)
kbT

)
dz, (4.15)

whereby c(δ∗i ) corresponds to the colloid concentration in the bulk phase and Ki [m] is

the partitioning coefficient. For a steep increase in ui for z < δm,i, Eq. (6.5) introduces

little error but leaves δ∗i as additional parameter to be specified. To get a closed-form

expression for Ki in Eq. (6.5) we consider an idealized energy profile as shown in Fig. 4.2.
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Table 4.1: Functionalization and ligand density of the adsorber systems used.

Resin Functional group ΓL [µmol m−2] pKL [−]
Fractogel EMD SE HiCap sulfoisobutyl 5.64 [64; 67] 2.3 [89]
YMC BioPro SP (10 µm) sulfopropyl 1.90 [64; 67] 2.3 [89]
YMC BioPro SP (5 µm) sulfopropyl 1.22 [64] 2.3 [89]

Under these idealized conditions, the potential profile within z = [δm,i, δ
∗
i ] is given by

ui(z) = ui(δm,i)
δ∗i − z
δ∗i − δm,i

(4.16)

and Ki can be expressed as

Ki = k∗eq,i

kbT

ui(δm,i)

(
1− exp

(
−ui(δm,i)

kbT

))
, (4.17)

whereby k∗eq,i = (δ∗i − δm,i) [m] is a model parameter to be specified.

4.3 Materials and Methods

4.3.1 Buffer System, Adsorber, and Protein

The data analyzed in this study were obtained from the literature [64; 67] aiming to

describe the partitioning coefficient [Eq. (4.17)] of different proteins as a function of buffer

pH and ionic strength. For the sake of clarity, important information from [67] and [64]

are quoted below.

For all isocratic experiments, 20 mM sodium phosphate (pH > 5.5) and 20 mM sodium

acetate (pH ≤ 5.5) were used as buffer system. The ionic strength of the buffer system

was adjusted using sodium chloride. Experiments were performed on the strong cation

exchange resin Fractogel EMD SE HiCap (Merck KGaA, Darmstadt, Germany) and two

strong YMC BioPro SP resins (both YMC Europe GmbH, Dinslaken, Germany). The resin

beads of Fractogel EMD SE HiCap and YMC BioPro SP are comprised of an almost incom-

pressible methacrylate backbone with an average particle diameter of 40-90 µm, 10 µm,

and 5 µm, respectively. The adsorber surface of Fractogel EMD SE HiCap is grafted with

polymeric tentacles functionalized with sulfoisobutyl. YMC BioPro SP is functionalized

with sulfopropyl. Ligand densities and pKL values of the functional groups for Fractogel

EMD SE HiCap and both YMC BioPro SP resins are summarized in Table 4.1.

Partitioning coefficients of lysozyme (Chicken) and three monoclonal antibodies (mAbs)

were investigated. The three mAbs included Bevacizumab, Trastuzumab (both Roche,

Basel, Switzerland), and an anonymized mAb1 (Merck Serono S.A., Fenil-sur-Corsier,

Switzerland). Lysozyme has a theoretical molecular weight of 14.3 kDa and consists of a

single polypeptide chain with 129 amino acids. The third monoclonal antibody (mAb1)

contained six charge variants according to analytical cation exchange chromatography

[64; 66]. They were denoted according to their elution order with respect to most abun-

dant variant (P). The weak adsorbing isoforms (W1, W2, and W3) were ascribed to the
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Table 4.2: Number of ionizable groups for lysozyme (Lys), Bevacizumab (BmAb),
Trastuzumab (TmAb), and mAb1 isoforms. The primary sequence of Lys was taken
from the RCSB PDB data bank (PDB ID: 1GXV) [136]. The number of ionizable groups
for the mAbs were taken from [64].

Protein NLys NArg NHis NGlu NAsp NTyr NNterm NCterm

Lys 6 11 1 2 7 3 1 1
TmAb 90 40 26 60 58 62 4 4
BmAb 88 32 28 60 52 62 4 4
mAb1(P) 86 36 26 66 54 60 4 4
mAb1(S1) 87 36 26 66 54 60 4 4
mAb1(S2) 88 36 26 66 54 60 4 4
mAb1(W1) 86 36 26 66 56 60 4 4
mAb1(W2) 86 36 26 66 55 60 4 4
mAb1(W3) 86 36 26 66 55 60 4 4

deamidation of neutrally charged asparagine (Asn) residues to negatively charged aspar-

tate. In W2 and W3, a single Asn deamidation occured at two different sites. In W1,

two deamidation sites were transformed. The strong adsorbing isoforms S1 and S2 were

ascribed to C-terminal lysine truncation [64; 66]. The number of ionizable groups of all

proteins are summarized in Table 4.2.

4.3.2 Software

All calculations were performed in MATLAB R2018a (The MathWorks, Natick, Mas-

sachusetts, USA). Parameter estimation was performed using the nonlinear least-squares

solver lsqcurvefit in MATLAB. Parameter confidence intervals were estimated using the

MATLAB function nlparci.

4.3.3 Parameter Estimation

Model parameters were taken from the literature or determined by fitting the model to

experimental data. The model was calibrated on Fractogel EMD SE HiCap for lysozyme

and mAb1 and on YMC BioPro SP (5 µm) for Bevacizumab and Trastuzumab.

The average pK values of the ionizable groups used in Eq. (4.2) are summarized in Ta-

ble 4.3. Except for Arg, they represent average values of a total of 541 experimental pK

values from 78 proteins [60; 126]. Due to missing information in [60; 126], the mean pK

value of the Arg side chains was taken from the null model [17]. The mean pK values of

the histidine imidazole moieties were further refined using experimental data. For each

antibody, two imidazole groups were considered with a mean pK value of pKHis1,i and

pKHis2,i, respectively. Without further information about the ternary structure of the

antibodies, the ratio of the two imidazole groups was arbitrarily set to 50/50. Only for

lysozyme, a single pKHis was considered as the primary sequence of lysozyme contains

only one imidazole side chain. Other unknown model parameters were the protein size

ai used in Eq. (4.5) and Eq. (5.18), as well as k∗eq,i used in Eq. (4.17). Unlike previous

studies [64–66], δm,i [Eq. (5.1)] between protein and adsorber surface was not assumed to

be a constant model parameter, but was determined for each condition using the predicted
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Table 4.3: Average pK values used in this study. Except for Arg, they represent average
values of a total of 541 experimental pK values from 78 proteins [60; 126]. The average
pK value of Arg side chains was taken from the null model [17].

Ionizable group Average pK
Lys 10.59
Arg 12.00
His 6.55
Glu 4.18
Asp 3.53
Tyr 10.26
N terminus 7.66
C terminus 3.30

interaction profile ui(z). Parameter estimation was performed using experimental data at

a pH between 4.0 and 6.5. Experiments at pH 7.0 were used for model validation. In all

cases, dielectric decrement was neglected and a relative permittivity of pure water ε = 78.4

at 298 K was assumed.

4.3.4 Resin Transfer

After determination of the model parameters of mAb1 on Fractogel EMD SE HiCap,

the mechanistic model was used to describe partitioning coefficients on YMC BioPro SP

(10 µm) keeping the estimated protein parameters amAb1, pKHis1,mAb1, and pKHis2,mAb1

constant. The adsorber dependent parameter k∗eq,mAb1 was redetermined by using retention

data on YMC BioPro SP at pH 5.4. Model validation was performed at pH 4.9, 5.9, and

6.5.

4.3.5 Protein Isoforms

After determination of the protein parameters amAb1, pKHis1,mAb1, and pKHis2,mAb1 on

Fractogel EMD SE HiCap and k∗eq,mAb1 on YMC BioPro SP (10 µm), the model was used

to predict partitioning coefficients of mAb1 isoforms on YMC BioPro SP (10 µm). All

model parameters were kept constant. Only the number of amino acid side chains was

adjusted according to Table 4.2.

4.4 Results and Discussion

4.4.1 Parameter Estimation

The protein is characterized by its idealized size, the number of ionizable amino acid side

chains as well as their pK values. The average pK values of the imidazole side chains as well

as ai and k∗eq,i were determined using measured partitioning coefficients at varying ionic

strength and pH. The ionic strength was adjusted using sodium chloride which justifies the

assumption of a 1:1 electrolyte. Table 4.4 summarizes parameter values and uncertainties
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Table 4.4: Estimated model parameters of lysozyme and mAb1 on Fractogel EMD SE
HiCap and TmAb and BmAb on YMC BioPro SP (5µm). Parameter uncertainty is
expressed by the 95% confidence interval.

Parameter Unit Lys mAb1 TmAb BmAb
Resin Fractogel Fractogel YMC YMC
ai nm 0.96± 0.03 3.64± 0.40 2.81± 0.08 2.85± 0.30
pKHis1,i − 5.67± 0.15 7.68± 2.95 7.38± 0.26 7.49± 0.51
pKHis2,i − − 6.29± 0.12 5.61± 0.31 6.00± 0.22
log
(
k∗eq,i · 1m−1

)
− −10.53± 0.16 −10.36± 0.99 −12.97± 0.51 −12.25± 0.42

for all proteins. Parameter uncertainty is expressed by the 95% confidence interval. As

expected, the colloid radius of lysozyme is significantly lower than those of the three mAbs.

However, the determined radius of 0.96 nm deviates considerably from the experimental

Stokes radius of 1.83 nm [108]. The determined antibody radii are also not in agreement

with an average Stokes radius of 5.77 nm for mAbs, as reported in the literature [103].

The discrepancy between ai and the Stokes radius can most likely be attributed to the

different assumptions made. While the Stokes radius corresponds to a fictitious hard

sphere that diffuses at the same rate as the protein, ai corresponds to a fictitious sphere

that shows similar electrostatic properties as the protein assuming a uniform surface charge

density. Both assumptions, the consideration of a spherical colloid and the uniform charge

distribution, are significant simplifications that lead to an abstraction of ai. A perfect

sphere may be an appropriate representation of globular proteins but is inaccurate for

complex proteins like mAbs. Even the body of lysozyme is known to be a prolate ellipsoid

rather than a sphere [99]. It has also been shown that charge heterogeneity on the protein

plays a significant role in chromatographic separation of similarly charged proteins, both

experimentally [28; 105] and computationally [43; 50]. However, computational studies

accounting in detail for the protein shape and charge distribution also suggest that model

calculations can be quite robust to model idealizations, if the protein and the adsorber

surface are oppositely charged [4]. Since this condition is fulfilled in the experimental

study, the structural idealizations in the model are reasonable.

Determined average pK values of the imidazole side chains, on the other hand, are within

the distribution of experimental pK values reported in the literature [60; 126]. Due to

charge-charge interactions, hydrogen-bonding, and burial of the imidazole side chains,

parameter estimates deviate significantly from the intrinsic pK value of 6.06. The deter-

mined pK value of His-15 in lysozyme is also in good agreement with values reported in

the literature [17; 101].

The adsorber-dependent k∗eq,i is a measure for the thickness of the interaction boundary

layer. As the interaction between protein and adsorber arises from an overlap of their

diffuse layers, k∗eq,i depends on the extension of both diffuse layers. However, due to the

higher absolute charge density on the surface of strong cation exchangers in relation to the

protein surface, the thickness of the interaction boundary layer is expected to be mainly

determined by the diffuse layer of the adsorber. Therefore, k∗eq,i values of proteins on the

same adsorber, such as lysozyme and mAb1 or Trastuzumab and Bevacizumab, are very

similar. Parameter values of Trastuzumab and Bevacizumab on YMC BioPro SP (5 µm)

are lower than parameter values of lysozyme and mAb1 on Fractogel EMD SE HiCap, as

the interaction boundary layer thickness increases with increasing charge density on the

adsorber surface.
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Figure 4.3: Comparison of experimental (dots) and simulated (lines) partitioning co-
efficients of (a) lysozyme and (b) mAb1 on Fractogel EMD SE HiCap, as well as (c)
Trastuzumab and (d) Bevacizumab on YMC BioPro SP (5 µm). Solid black lines indicate
the model fit. Dashed black lines represent model extrapolations at pH 7.0. Partitioning
coefficients of lysozyme were measured at pH 4.4, 4.9, 5.4, 5.9, 6.4, and 6.8 (from right to
left).

Figure 4.3 shows experimental partitioning coefficients along with model predictions. Ex-

perimental data at a pH between 4.0 and 6.5 were used for model calibration. Solid black

lines represent the model fit. Experiments at pH 7.0 were used for model validation. Model

extrapolations for this pH are indicated as dashed black lines. In very good agreement

with the experimental data, the mechanistic model describes the elution behavior of all

four proteins as a function of pH and ionic strength. Slight deviations from the experimen-

tal data can be observed for lysozyme and the mAbs at pH 4.9. These deviations may be

explained by the model simplifications as described above. The Derjaguin approximation

in Eq. (5.18) can also explain deviations between model results and experimental data.

As described earlier, this expression is only correct within the Derjaguin limit κai � 1,

which is fulfilled for small colloids like proteins only at high salt concentrations. To keep

the model simple, k∗eq,i is also considered to be independent of the buffer pH and ionic

strength. However, as the pH and ionic strength affect the thickness of the interaction

boundary layer they should also affect k∗eq,i. For strong ion exchange resins, as used in this

study, the effect of pH and ionic strength on k∗eq,i is expected to be small. However, in the

case of weak ion exchange resins, this assumption is no longer justified since the adsorber
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surface charge density can vary with the pH. Deviations at pH 4.9 and below may also be

due to an increasing protonation of Glu and Asp. Instead of protein-specific parameter

values, empirical pK values were used for the carboxyl groups of Asp and Glu which could

lead to deviations at low pH values. Model predictions at pH 7.0, on the other hand, are in

very good agreement with experimental data. These data were used for model validation,

as model results in [64] showed a significant underestimation of protein adsorption for this

pH value, especially for mAb1 whose isoelectric point (pI ∼ 7.8) is close to pH 7.0. The

deviations between experimental data and model results were generally explained by a

nonuniform charge distribution on the protein surface, which can lead to a change in the

binding orientation [64]. The effect of charge regulation, on the other hand, was not taken

into consideration. Other research groups [153; 162] have postulated that the effect of

charge regulation is particularly relevant at pH values close to the isoelectric point of the

protein, as the relative change in protein charge upon adsorption is largest under these

conditions. This would explain the underestimation of mAb1 adsorption at pH 7.0 in [64],

as the applied non-stoichiometric model considered a constant protein charge. A change

in the binding orientation due to a nonuniform charge distribution cannot be ruled out.

However, the good agreement with experimental data at pH 7.0 demonstrates that the

proposed mechanistic model is capable of describing protein adsorption at high pH values

assuming a uniform but regulated surface charge density.

4.4.2 Resin Transfer

An advantage of the proposed non-stoichiometric adsorption model over traditional stoi-

chiometric models is that protein parameters are not defined in relation to adsorber prop-

erties and are therefore theoretically valid for different adsorber systems. Differences in

the adsorber properties are taken into account by the ligand density and the pK value of

the ligand. Variations in the surface morphology are not considered, as the model approx-

imates the adsorber surface as a flat surface and assumes a uniform charge distribution.

The extent of the ligands on the adsorber surface and the associated surface roughness

is thereby neglected. This assumption represents a considerable simplification, especially

for tentacular resins like Fractogel EMD SE HiCap. The morphology of the grafted poly-

electrolyte layer is reported to be dependent on the ionic strength, which can affect the

structural [9] and functional [8] properties of the adsorber system. In order to assess

whether the model can sufficiently reflect differences in adsorber properties, the mecha-

nistic model of mAb1 was transferred from Fractogel EMD SE HiCap to YMC BioPro SP

(10 µm). Only k∗eq,mAb1 is expected to change due to the difference in surface ligand den-

sity. Therefore, k∗eq,mAb1 was redetermined for the YMC resin using experimental data at

pH 5.4. The determined parameter value log(k∗eq,mAb1 ·1m−1) = −11.20±0.04 lies between

determined parameter values on Fractogel EMD SE HiCap and YMC BioPro SP (5 µm).

This is expected, since the ligand density of YMC BioPro SP (10 µm) is between that

of Fractogel EMD SE HiCap and YMC BioPro SP (5 µm), as shown in Table 4.1. Mea-

sured partitioning coefficients along with model predictions are shown in Fig. 4.4. Lines

indicate model predictions for the YMC resin. They show very good agreement with ex-

perimental data at pH 5.4 used to redetermine k∗eq,mAb1. Model predictions at pH 4.9,

5.9, and 6.5 deviate from experimental data. However, trends in the adsoption behavior

of mAb1 on the YMC resin are correctly reflected by the mechanistic model, although the

majority of the model parameters were determined on Fractogel EMD SE HiCap. Other
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Figure 4.4: Comparison of experimental (dots) and simulated (lines) partitioning coeffi-
cients mAb1 on YMC BioPro SP (10 µm). The dashed line indicates the model fit used
to redetermine k∗eq,mAb1. Solid lines represent model extrapolations.

than described for previous non-stoichiometric models [66; 67], protein parameters of the

proposed adsorption model are therefore theoretically not only valid on a specific IEX

adsorber system, but freely transferable to other adsorber systems.

4.4.3 Protein Isoforms

Efficient process modeling requires not only the description of the protein of interest but

also of important impurities. Antibody isoforms are product-related impurities that often

pose a difficult separation problem due to the similar physicochemical properties to the

main component. Depending on the post-translational modification (PTM), they differ

only slightly in the number of amino acids. Figure 4.5 shows measured partitioning coeffi-

cients of five mAb1 charge variants on YMC BioPro SP (10 µm) at varying ionic strength

and pH. Experimental data were taken from [66]. The charge variants were ascribed to

C-terminal lysine truncation and Asn deamidation. It is important to note that the weak

binding isoforms W1 and W2 are shown together in Fig. 4.5(b), as both isoforms are

characterized by a single Asn deamidation at different sites. Solid black lines in Fig. 4.5

represent predicted partitioning coefficients of the isoforms using the mechanistic model

of mAb1 on the YMC resin. For comparison, dashed gray lines indicate model predictions

for the main component also shown in Fig. 4.4. For the charge variants, only the number

of ionizable side chains was adjusted in the model according to the PTM. As the protein

conformation is generally not affected by C-terminal lysine truncation and Asn deamida-

tion [169; 193], amAb1 was assumed to be not affected by the PTM and kept constant. The

same applies to k∗eq,mAb1, which should be determined mainly by the adsorber properties.

Futhermore, it was assumed that the change in the number of ionizable amino acids does

not affect the average pK values used in Eq. (4.2). As can be seen, despite minor changes

in the primary sequence of mAb1, the charge variants show significantly different affinity

to YMC BioPro SP (10 µm). The binding behavior predicted by the model corresponds

very well with experimental data considering the high degree of model extrapolation. It
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Figure 4.5: Comparison of experimental (markers) and predicted (lines) partitioning co-
efficients of mAb1 isoforms on YMC BioPro SP (10 µm). Dashed gray lines represent
model predictions for mAb1(P) also shown in Fig. 4.4. Solid black lines indicate model
predictions for the charge variants (a) W1, (b) W2/W3, (c) S1, and (d) S2.

is important to note that differences between the two weak binding charge variants W2

and W3 cannot be resolved by the mechanistic model, since it assumes a uniform surface

charge density and neglects the location of specific amino acids. However, experimental

data for W2 and W3 in Fig. 4.5(b) show no significant difference, indicating that the

location of the deamidation site has no significant influence in this particular case.

4.5 Conclusion

We introduced a mechanistic adsorption model which is based on a fundamental descrip-

tion of the non-stoichiometric electrostatic interactions in IEX chromatography using the

linear Poisson-Boltzmann equation and a colloidal representation of the protein. The

model explicitly accounts for the effect of pH and ionic strength on protein adsorption.

Unlike most recent colloidal models, the proposed model does not assume a constant

surface charge density, but takes into account charge regulation of the protein and the

adsorber system during the adsorption process. Usage and benefit of the proposed model

was demonstrated by modeling the adsorption behavior of lysozyme and three mAbs on



4.5 Conclusion 53

different adsorber systems. Model results were in all cases in very good agreement with

experimental data. A model validation beyond observed pH conditions demonstrated that

the consideration of charge regulation can improve model quality at higher pH values close

to the protein pI in relation to previous non-stoichiometric models. To demonstrate that

protein parameters are theoretically not only valid on a specific adsorber sytem but freely

transferable to other adsorber systems, protein parameters of mAb1 were transferred from

Fractogel EMD SE HiCap to YMC BioPro SP (10 µm). Only one adsorber-dependent

model parameter had to be redetermined to extrapolate elution behavior of mAb1 on the

YMC resin. The recalibrated model was also able to accurately predict the elution be-

havior of five mAb1 charge variants on the YMC resin solely based on differences in the

protein primary structure.

The proposed mechanistic model is based on several simplifications to keep it compu-

tationally simple and applicable for model-based chromatography process development.

These simplifications include, inter alia, the use of the linear Poisson-Boltzmann equation

within the Derjaguin limit, a homogeneous surface charge density, and a spherical protein

shape. It is important to note that some of the assumptions made are justified only for the

investigated linear adsorption range. Despite these simplifications, the physical meaning

and predictive value of the model could be preserved. Estimated model parameters exhibit

only a low degree of abstraction, which simplifies model calibration and supports the use

of homology models in model calibration. As most of the protein properties are derived

directly from the primary structure of the protein, the model can be used to simulate the

separation of well-characterized product-related impurities like charge variants and low

molecular weight species.





CHAPTER5
Protein Adsorption on Ion Exchange

Adsorbers: A Comparison of a

Stoichiometric and Non-Stoichiometric

Modeling Approach

Till Briskot1,2, Tobias Hahn1, Thiemo Huuk1, Jürgen Hubbuch2

1 GoSilico GmbH, Karlsruhe, Germany
2 Karlsruhe Institute of Technology (KIT), Institute of Process Engineering in

Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe,

Germany

Journal of Chromatography A (1653), 2021, p. 462397

55



56 Nonlinear Protein Adsorption

Abstract

For mechanistic modeling of ion exchange (IEX) processes, a profound understanding of

the adsorption mechanism is important. While the description of protein adsorption in

IEX processes has been dominated by stoichiometric models like the steric mass action

(SMA) model, discrepancies between experimental data and model results suggest that the

conceptually simple stoichiometric description of protein adsorption provides not always

an accurate representation of nonlinear adsorption behavior.

In this work an alternative colloidal particle adsorption (CPA) model is introduced. Based

on the colloidal nature of proteins, the CPA model provides a non-stoichiometric descrip-

tion of electrostatic interactions within IEX columns. Steric hindrance at the adsorber

surface is considered by hard-body interactions between proteins using the scaled-particle

theory. The model’s capability of describing nonlinear protein adsorption is demonstrated

by simulating adsorption isotherms of a monoclonal antibody (mAb) over a wide range

of ionic strength and pH. A comparison of the CPA model with the SMA model shows

comparable model results in the linear adsorption range, but significant differences in

the nonlinear adsorption range due to the different mechanistic interpretation of steric

hindrance in both models. The results suggest that nonlinear adsorption effects can be

overestimated by the stoichiometric formalism of the SMA model and are generally better

reproduced by the CPA model.

Keywords: Protein purification; Mechanistic modeling; Colloidal particle adsorption

model; Steric mass action model; Adsorption isotherm; Scaled particle theory
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5.1 Introduction

For the last three decades, chromatography has been a pillar of commercial downstream

processes [157]. Ion exchange (IEX) chromatography in particular is frequently used for the

purification of recombinant proteins due to its robustness, selectivity, and mild operating

conditions [61]. For the development of IEX processes, mechanistic process models have

become increasingly important in recent years. By providing a digital replicate of the real-

world process, mechanistic models can help to support process optimization [71; 80; 118;

123; 124], process scale-up [7; 53; 111], and process robustness studies [14; 30; 88; 92; 180]

in a resource-efficient manner. As they rely on a description of the underlying physical

effects, a sound understanding of the protein retention mechanism in IEX processes is

important for a systematic application of mechanistic models.

In the past, the modeling of protein retention in IEX processes has been dominated by

stoichiometric adsorption models relying on the work of Boardman and Partridge [13]

and Regnier and co-workers [44; 98; 144]. The interaction between a protein and the

adsorber is thereby ascribed to a reversible stoichiometric displacement of counter-ions

bound to the adsorber surface by charged proteins within the mobile phase. Based on

the mass action law, this model explicitly accounts for the effect of the ionic strength on

protein adsorption. While the initial stoichiometric displacement model was limited to the

linear adsorption range, where only protein-adsorber interactions are relevant, it has been

extended to the nonlinear adsorption range with the introduction of the steric mass action

(SMA) model by Brooks and Cramer [22]. Within the framework of the SMA model,

nonlinear adsorption behavior up to adsorber saturation is attributed to a reduction of

available adsorber counter-ions due to adsorbed proteins. Counter-ions of the adsorber are

thereby either displaced from the surface by a protein or sterically shielded due to its size.

Thus, the model does not consider the surface of the adsorber as the sterically limiting

factor for adsorption, but its ionic capacity. Although stoichiometric adsorption models

like the SMA model provide a conceptually simple description of protein adsorption, their

ability to reflect electrostatic interactions between proteins and adsorbers has often been

questioned [161–163]. Reported deficiencies of the SMA model in describing experimental

adsorption isotherms [32; 34; 188] and chromatography elution profiles [40; 78] indicate

that nonlinear effects may be inadequately reflected by the stoichiometric interpretation

of protein adsorption.

In addition to the stoichiometric adsorption models, a further class of non-stoichiometric

adsorption models has been developed. Given the colloidal nature of proteins, these models

provide a more fundamental description of electrostatic interactions in IEX chromatogra-

phy based on the Poisson-Boltzmann equation. Since most of these models are limited to

a mechanistic description of electrostatic interactions between proteins and the adsorber

surface, they are often only valid for the linear adsorption range [19; 64; 67; 143; 163; 164].

Only a small number of models have been proposed that also cover the nonlinear ad-

sorption range [65; 119; 188]. In the model initially proposed by Oberholzer et al. [119],

nonlinear adsorption behavior is attributed to lateral interactions among adsorbed proteins

giving rise to a change in the internal energy as well as the surface pressure. Although

this model describes experimental data reasonably well, model parameters were often de-

termined individually for each pH and ionic strength [187; 188], which can make model

calibration cumbersome. A related model was introduced by Guélat et al. in which elec-

trostatic protein-adsorber interactions are described as a function of pH and ionic strength
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using the DLVO theory. The model was used to describe the elution behavior of antibody

charge variants in the linear and nonlinear adsorption regime based on molecular infor-

mation. Using statistical thermodynamics, the model accounts for surface coverage effects

and electrostatic protein-protein interactions.

This work introduces a colloidal particle adsorption (CPA) model describing protein ad-

sorption within the linear and nonlinear adsorption range as a function of ionic strength

and pH. Nonlinear adsorption behavior is described by a combination of steric surface

blocking effects and electrostatic interactions between adsorbed proteins. Steric effects

are accounted for by using a two-dimensional scaled-particle theory according to [104; 138;

139]. Electrostatic protein-protein interactions are estimated assuming a two-dimensional

Yukawa lattice. Similar to the SMA model and other adsorption models, the CPA model

seeks to balance a mechanistic description and minor empiricism to provide a mathemati-

cal description of the isotherm over a wide range of pH and ionic strength. To address the

question of how the CPA model differs from the traditional stoichiometric formalism of the

SMA model, both model approaches are analyzed and compared in detail. After model

calibration and comparison in the linear adsorption range, both models are extended and

discussed in the nonlinear adsorption range using adsorption isotherms of a monoclonal

antibody.

5.2 Theory

In this section, an adsorption theory of proteins on IEX resins in the linear and nonlinear

adsorption regime is developed. First, the equilibrium equation of the CPA model is

derived that accounts for electrostatic interactions between proteins and the IEX adsorber

as well as electrostatic and steric interactions between adsorbed proteins. The individual

interaction effects are described in more detail in Sec. 5.2.2 - Sec. 5.2.4. In Sec. 5.2.5, the

stoichiometric adsorption theory based on the SMA model is briefly summarized.

5.2.1 Colloidal Particle Adsorption Model

We consider a system at constant temperature T=298.15 K where the adsorber A and

proteins i are immersed in an electrolyte solution with relative permittivity ε = 78.3 and

ionic strength Im [mol m−3]. Proteins in the system are represented as perfect hard spheres

with radius ai [m] and net charge Zi [−]. Depending on the pH in the system and the pI of

the protein, Zi can be positive or negative. The adsorber surface is considered to be solid

and planar. The interaction free energy uA,i [J] between a single protein and the adsorber

surface separated by the distance z [m] is considered to be dominated by electrostatic

interactions. In this case, uA,i(z) follows a function schematically shown in Fig. 5.1 that

is characterized by a distinct minimum at

δm,i = arg min
z

uA,i(z). (5.1)

Due to the finite range of electrostatic interactions, uA,i is only relevant inside a bound-

ary layer with thickness δ∗i [m] referred to as interaction boundary layer [146; 147; 159].

Proteins inside this boundary layer are considered to be adsorbed to the adsorber surface,
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Figure 5.1: Schematic representation of the interaction profile between a single protein
and the adsorber surface separated by the distance z. Electrostatic interactions between
the protein and the adsorber surface are only relevant within an interaction boundary
layer. Proteins within the boundary layer are considered to be adsorbed to the adsorber
surface.

while proteins outside the boundary layer are not affected by the charged adsorber surface.

In this case the surface density of protein bound to the adsorber surface qi [mol m−2] may

be defined by

qi =

∫ δ∗i

δm,i

ci(z)dz, (5.2)

where ci [mol m−3] represents the concentration of the i-th colloid. This definition produces

little error if uA,i(z) is dominated by repulsive forces for z < δm,i as shown in Fig. 5.1. It is

often more convenient to relate the amount of adsorbed protein not to the adsorber surface

but to the skeleton volume of the adsorber qv,i [mol m−3]. According to qv,i = As,iqi, both

definitions are related by the specific adsorber surface per skeleton volume As,i [m−1]

accessible by the colloid.

Inside the interaction boundary layer, the electrochemical potential µ̄i [J] of a colloid can

be defined by

µ̄i(z) = µ∗i + kbT ln

(
ci(z)

c+

)
+ µex

i (z) + ui(z), (5.3)

where µ∗i is the reference potential at infinite dilution, kb [J K−1] is the Boltzmann constant,

c+ is a reference concentration to make the term inside the logarithm dimensionless, µex
i

represents the excess chemical potential, and ui is the interaction free energy accounting

for uA,i and electrostatic protein-protein interactions ulat,i. For simplicity and in accor-

dance with previous studies [65; 119; 120; 188], ui is defined by the superposition of both

contributions, namely ui = uA,i + ulat,i. While ui accounts for electrostatic contributions

within the boundary layer, the excess property µex
i represents the reversible work of in-

troducing a protein into the boundary layer while avoiding any steric overlaps with other

adsorbed proteins.

If we neglect protein-protein interactions outside the interaction boundary layer and as-
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sume µex
i = 0 and ci = cb,i for z > δ∗i , µ̄i in the bulk phase simplifies to

µ̄b,i = µ∗i + kbT ln
(cb,i

c+

)
. (5.4)

Using Eq. (5.3), Eq. (5.4), and the equilibrium condition µ̄i(z) = µ̄b,i, ci(z) in Eq. (5.2) can

be related to cb,i using the Boltzmann expression

ci(z) = cb,i exp

(
−
µex
i (z) + uA,i(z) + ulat,i(z)

kbT

)
. (5.5)

The interaction profile shown in Fig. 5.1 and Eq. (5.5) suggest that accumulation of colloids

inside the boundary layer occurs mainly at the minimum δm,i and results in the formation

of a monolayer of colloids close to the adsorber surface. The contribution of µex
i and ulat,i

is therefore considered to be independent of z and only a function of the arrangement of

proteins in the adsorption layer. Under this assumption, qv,i can be defined by

qv,i =cb,iAs,i exp

(
−µ

ex
i (Θ)

kbT

)
exp

(
−
ulat,i(Θ)

kbT

)
·
∫ δ∗i

δm,i

exp

(
−
uA,i(z)

kbT

)
dz,

(5.6)

where

Θ = πNA

∑
i

a2
i qi = πNA

∑
i

a2
i

qv,i

As,i
(5.7)

represents the surface coverage with NA [mol−1] being the Avogadro number. Since µex
i

accounts for steric hindrance between adsorbed proteins, the expression

Bi(Θ) = exp

(
− µ

ex
i

kbT

)
(5.8)

is often referred to as blocking or available surface function (ASF) [3; 167]. For the limiting

case Θ→ 0, Eq. (5.6) reduces to

qv,i = cb,iKH,i = cb,iAs,i

∫ δ∗i

δm,i

exp

(
−
uA,i(z)

kbT

)
dz (5.9)

that we used in [19] as an expression for the Henry coefficient KH [−]. As described in

[19], Eq. (5.9) can be further simplified to

qv,i = cb,iKH,i =cb,iAs,i(δ
∗
i − δm,i)

kbT

uA,i(δm,i)

·
(

1− exp

(
−
uA,i(δm,i)

kbT

)) (5.10)

using a linear approximation of uA,i(z) within z ∈ [δm,i, δ
∗
i ].

Inserting Eq. (5.10) in Eq. (5.6) finally yields

qv,i = cb,iKH,iBi(Θ) exp

(
−
ulat,i(Θ)

kbT

)
(5.11)

which describes protein adsorption in the linear and nonlinear adsorption regime. In
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contrast to previous works [119; 188], this expression does not only attribute the decrease

in the partition coefficient with increasing Θ to electrostatic protein-protein interactions,

but also takes into account steric hindrance using Bi(Θ). While Eq. (5.11) provides a

simple expression for the partitioning coefficient, it leaves ∆i = As,i(δ
∗
i − δm,i) as a model

parameter that needs to be determined based on experimental data. It also requires

functional descriptions of uA,i(δm,i), ulat,i(Θ), and Bi(Θ) that are derived in the following

sections.

5.2.2 Protein-Adsorber Interaction

Given the superposition approximation used in Sec. 5.2.1, uA,i(δm,i) accounts for the in-

teraction between a single protein i and the adsorber surface. Thus, it is a function of the

pH and Im, but independent of Θ.

Both the adsorber and proteins in the system are surrounded by an electric double layer

consisting of a diffuse layer D of mobile ions from the solution and a compact inner layer I

that is formed by immobile surface charges. The inner layer is characterized by the surface

charge density σI [C m−2] and electrostatic surface potential ψ0 [V]. Both are related by

the charge-potential relationship σI(ψ0). To comply with electroneutrality, σI is balanced

by the equal but oppositely charged diffuse layer. Neglecting the curvature of the surface

and considering a 1:1 electrolyte, the charge density compensated by the diffuse layer σD

is given by the Grahame equation

σD(ψD) = 2εε0κ
kbT

e
sinh

(
eψD

2kbT

)
, (5.12)

whereby

κ =

√
2e2ImNA

kbTεε0
(5.13)

represents the inverse Debye length, e [C] is the elementary charge, ε0 [C V−1 m−1] denotes

the vacuum permittivity, and ψD is the electrostatic potential at the origin of the diffuse

layer. The influence of the ionic strength on σD(ψD) is taken into account via κ. Within

the Gouy-Chapman theory, ψD = ψ0 is identical to the surface potential [6; 24; 171].

In the case of the adsorber surface, σI,A(ψ0,A) is governed by the ionization of ligands L

according to the dissociation reaction

LHζL 
 LζL−1 + H+, (5.14)

whereby ζL represents the charge of the fully protonated ligand. Neglecting the specific

adsorption of ions from the bulk phase, σI,A is only a function of the pH at the adsorber

surface pH0 and can be defined by

σI,A = eNAΓL

[
ζL −

(
1 + 10pKL−pH0

)−1
]
, (5.15)

whereby ΓL [mol m−2] is the surface density of the ligand which is characterized by pKL

[−]. The surface pH relates to the bulk pH according to the Boltzmann relation

pH0 = pH +
1

ln(10)

eψ0

kbT
. (5.16)
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Combining Eq. (5.15) and Eq. (5.16) defines σI,A(ψ0,A) for the adsorber at a constant bulk

pH. Since Eq. (5.14) considers only the protonation of the ligand but neglects other ion-

specific interactions, σI,A(ψ0,A) is only a function of the pH. Given the expression for

σI,A(ψ0,A), Eq. (5.12) and the general neutrality condition

σI(ψ0) = σD(ψ0) (5.17)

provide σI,A = σI,A(pH, Im) and ψ0,A = ψ0,A(pH, Im) for a given pH and Im. It is im-

portant to note that Eq. (5.15) applies to both anion exchangers (e.g. ζL = 1) and cation

exchangers (e.g. ζL = 0). Strong and weak ion exchangers are distinguished via pKL.

For proteins with known amino acid sequence, a similar charge-potential relationship can

be derived assuming that all ionizable amino acid side chains are located on the sur-

face of the protein [19]. However, in practice, the protein primary sequence is often

not known. Therefore, in the following, the characteristic protein net charge Zi(pH) =

4πa2
i e
−1σI,i(pH) is considered as a model parameter that is only a function of the pH and

must be determined by fitting the model to experimental data. Given Zi(pH) or σI,i(pH),

ψ0,i = ψ0,i(pH, Im) can again be determined using the neutrality condition Eq. (5.17) and

Eq. (5.12).

If the protein approaches the adsorber surface, its diffuse layer starts to overlap with the

diffuse layer of the adsorber which gives rise to a double layer interaction defined by an

attractive Maxwell stress and a repulsive osmotic pressure [121; 127]. Within the Derjaguin

limit κai � 1, uA,i(z) can be derived from the Derjaguin approximation [84]. According

to

uA,i(z) = 2πai

∫ ∞
z

wA,i(z)dz, (5.18)

it relates the interaction free energy per unit area wA,i [J m−2] between two flat plates

with surface charge density σI,i and σI,A to uA,i between the spherical protein and the

flat adsorber surface. Under the assumption that σI,i and σI,A remain constant during the

adsorption process, wA,i in Eq. (5.18) can be defined by the expression

wi(z) =εε0κ
2ψ0,Aψ0,i

exp (κz)− exp (−κz)

+ εε0κ

(
ψ2

0,A + ψ2
0,i

)
exp (−κz)

exp (κz)− exp (−κz)

(5.19)

derived by Parsegian and Gingell [127]. A closed-form expression of Eq. (5.18) with

Eq. (5.19) for wA,i(z) can be found in [24]. It is important to note that Eq. (5.19) is

based on the linear Poisson-Boltzmann equation. Thus, it is only accurate for low to

moderate surface potentials (eψ0(kbT )−1 � 1).

5.2.3 Protein-Protein Interaction

As described earlier, adsorbed proteins are assumed to be located predominantly at δm,i

forming a monolayer of colloids close to the adsorber surface. In the following, the adsorp-

tion layer is considered to contain n different protein species varying in size and charge.

The lateral interaction within the adsorption layer is a complex function that does not only
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Figure 5.2: Schematic representation of the considered protein arrangement within the
two-dimensional adsorption layer. (a) Top view: protein centers are assumed to be ar-
ranged on evenly spaced concentric circles. (b) Side view: protein centers are arranged
equidistantly to the adsorber surface.

depend on Θ but also on the spatial distribution of proteins. To simplify the calculation

of ulat,i, it is often assumed that proteins within the adsorption layer are arranged accord-

ing to ordered crystal-like structures [65; 90; 119; 137; 188]. In this work, the idealized

arrangement according to Fig. 5.2 is considered that has been used previously to calcu-

late the Madelung energy in two-dimensional ionic crystals [128]. Considering a protein

of interest indicated in gray, neighboring proteins are assumed to be arranged on evenly

spaced concentric circles and equidistantly to the adsorber surface.

In accordance with previous works [65; 119; 120; 188], the lateral interaction energy be-

tween the protein of interest and all other adsorbed proteins is calculated assuming pairwise

additive of two-body interactions. In this case, ulat,i can be approximated by

ulat,i ≈
n∑
j=1

∞∑
k=1

nk,jui,j(rk), (5.20)

where ui,j represents a electrostatic two-body interaction, rk is the center-to-center dis-

tance between the protein of interest and proteins on the k-th concentric circle, and nk,j
denotes the number of protein j on the k-th circle. At low salt concentrations where elec-

trostatic protein-protein interactions are relevant, ui,j in Eq. (5.20) can be described by
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the Yukawa potential

ui,j(rk) = βi,j
exp (−κrk)

rk
(5.21)

whereby

βi,j = Zlat,iZlat,j
e2

4πεε0

exp (κ(ai + aj))

(1 + κai)(1 + κaj)
(5.22)

is defined by the characteristic lateral charge Zlat of both proteins [54]. Due to the het-

erogeneity of charges on protein surfaces and different theoretical approaches, Zlat,i in

Eq. (5.22) can differ from Zi used to calculate uA,i. Given the Yukawa lattice that follows

Fig. 5.2, Eq. (5.20), and Eq. (5.21), ulat,i can be expressed by the closed-form expression

ulat,i = 3
√

3DhexNA
exp (−κDhex)

1− exp
(
−3
√

3
2π κDhex

) n∑
j=1

qjβi,j , (5.23)

whereby Dhex is defined by the maximum packing density of a hexagonal lattice

Θhex =
π

4
D2

hexNA

n∑
i=1

qi =

√
3π

6
. (5.24)

A detailed derivation of Eq. (5.23) can be found in the supplementary material.

Like previous colloidal adsorption models [65], Eq. (5.23) accounts for electrostatic inter-

actions between a protein of interest and all surrounding proteins in the adsorption layer.

Unlike [65], however, Eq. (5.23) does not assume that ulat,i is the same for all protein

species. Depending on the size and charge, proteins can experience different lateral inter-

actions. It is important to note that for electrostatic interactions, previous studies have

shown that the pairwise additivity of two-body interactions in Eq. (5.20) produces little

error for the limiting case κrk � 1, but may be inaccurate if the interparticle spacing

within the adsorption plane is smaller then the Debye length [137].

5.2.4 Available Surface Function

The ASF in Eq. (5.11) accounts for the reversible work required to introduce an adsorb-

ing protein into the multi-component adsorption layer without any steric overlaps with

other adsorbed proteins [139]. In contrast to Sec. 5.2.3, proteins are thereby considered to

interact according to the pair-potential

ui,j =

{
∞ for ri,j ≤ ai + aj

0 for ri,j > ai + aj .
(5.25)

In the following Bi(Θ) is determined by means of the scaled-particle theory [104; 138; 139].

For the limiting case where the adsorbing protein i may be considered as a point particle,

µex
i can be defined by

µex
i = −kbT ln(1−Θ) (5.26)

as described in close detail by [104]. This yields to the widely used Langmuirian ASF

Bi(Θ) = B(Θ) = 1−Θ. (5.27)
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Since the Langmuirian ASF neglects the finite size of proteins, Eq. (5.27) is only a func-

tion of Θ, but not ai. According to Widom [185], Bi(Θ) can also be considered as the

probability that an adsorbing protein encounters a free area on the adsorber surface that

is not occupied by other adsorbed proteins. Thus, according to the Langmuirian ASF,

all proteins have the same probability of encountering a free adsorption site, regardless of

their size. Equation (5.27) therefore produces a large error for large colloids adsorbing on

a continuous surface [2; 3].

The core assumption on which the scaled particle theory is based, is that the work for

an adsorbing protein with finite radius can be approximated by a Taylor series up to

second order around the reference point of a point particle [Eq. (5.26)] [104]. Using the

two-dimensional scaled particle theory where proteins are considered as hard discs, Bi(Θ)

is defined by [168]

Bi(Θ) = (1−Θ) exp

−πa2
i

∑
j qjNA + 2πai

∑
j ajqjNA

1−Θ

−
πa2

i

(∑
j ajqjNA

)2

(1−Θ)2

 .

(5.28)

Due to the Taylor series approximation, Eq. (5.28) still contains the Langmuirian part. In

contrast to the Langmuirian ASF and previous adsorption models [65], Eq. (5.28) explicitly

considers the size of the adsorbing protein. According to Eq. (5.28), large colloids have a

lower probability of hitting an unoccupied region on the adsorber surface and therefore

experience greater steric hindrance than smaller colloids.

5.2.5 Steric Mass Action Model

According to the SMA model, protein adsorption in IEX chromatography is based on a

stoichiometric exchange of counter-ions bound to charged adsorber ligands L with charged

proteins in the mobile phase, and vice versa. The exchange of monovalent counter-ions S

with a protein P, can be described by the stoichiometric expression

Pν̃ii + ν̃iLSads 
 Lν̃iPi,ads + ν̃iS
+, (5.29)

where ν̃i [−] represents the characteristic charge of the i-th protein in the SMA model

and the subscript ads depicts the adsorbed state. In the following, all model parameters

or functions related to the SMA model are indicated with a tilde. According to the SMA

model, not all counter-ions bound to the surface can be replaced by protein molecules in

the mobile phase [22]. Due to the steric extend of proteins, some of the adsorber ligands

are sterically shielded by adsorbed protein molecules. As described in more detail in [22],

the equilibrium state is defined by

qv,i = cb,ik̃eq,i

(
ΛIEX −

∑
i qv,i(ν̃i + σ̃i)

cb,S

)ν̃i
, (5.30)

where k̃eq,i is the equilibrium coefficient, ΛIEX denotes the ionic capacity of the adsorber

system, cb,S is the counter-ion concentration in the bulk phase, and σ̃i is the number of
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ligands shielded by the i-th protein. In reference to Eq. (5.11) in the CPA model, Eq. (5.30)

can be rewritten to

qv,i = cb,iK̃H,iB̃i(qv), (5.31)

whereby the Henry coefficient is given by K̃H,i = k̃eq,iΛ
ν̃i
IEXc

−ν̃i
b,S and B̃i(qv) is defined by

B̃i(qv) =

(
1−

∑
i qv,i(ν̃i + σ̃i)

ΛIEX

)ν̃i
. (5.32)

The latter accounts for steric hindrance at the adsorber surface within the framework of

the SMA model. Following Bi(Θ) [Eq. (5.28)] in the CPA model, B̃i(qv) is in the following

referred to as the ASF according to the SMA model.

5.3 Materials and Methods

The data analyzed in this study were obtained from the literature [32] aiming to describe

the adsorption of a mAb with molecular weight Mw ≈ 150 kDa on the strong cation

exchanger Poros XS as a function of buffer pH and ionic strength.

5.3.1 System Characterization

According to the manufacturer, the backbone of Poros XS is comprised of cross-linked

poly[styrene divinylbenzene] functionalized with sulphopropyl groups. With reference to

[89], the properties of the functional groups used in Eq. (5.15) are given by ζL = 0 and

pKL = 2.3. Due to a missing characterization of the adsorber system in [32], the ionic

capacity ΛIEX = 0.86 M of Poros XS was adopted from [166]. Using inverse size exclusion

chromatography (SEC) data also reported in [166], As,i used in Eq. (5.7) was characterized

as described by DePhillips and Lenhoff [38]. Accordingly, for a protein with radius ai, As,i

can be defined by

As,i(ai) =
εp

1− εp

∫∞
ai

2(r − ai)r−2f(r)dr∫∞
0 f(r)dr

, (5.33)

where f(r) denotes the pore size distribution. The limiting case As,0 = limai→0As,i(ai)

defines the total accessible surface area per adsorber skeleton volume As,0. In agreement

with previous studies [9; 38; 190], f(r) in Eq. (5.33) was assumed to follow a log-normal

distribution

f(r) =
1

r
exp

(
−1

2

(
ln(r/rp)

sp

)2
)

(5.34)

with the distribution parameters rp and sp. As described in [38], both parameters can be

related to the SEC distribution coefficient KD according to

KD(ah) =

∫∞
ah
f(r)

(
1− ah

r

)2
dr∫∞

0 f(r)dr
. (5.35)

Using the experimental KD values reported in [166], least squares fitting of Eq. (5.35)

allowed a determination of rp and sp, and As,0. Based on As,0, the ligand surface density

was derived from ΛIEX according to ΓL = ΛIEXA
−1
s,0 .
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5.3.2 Linear Gradient Experiments

The CPA and SMA model were calibrated using linear salt gradient experiments at very

low protein load density. Experimental data were generated at pH 5.5, 6.0, 6.5, and 7.0 and

with varying normalized gradient slope GH = ε(Im,B−Im,A)VcV
−1

g , whereby Vc = 1.96 mL

denotes the column volume, ε = 0.35 is the void fraction, Vg is the duration of the gradient

in volume, and Im,A and Im,B represent the ionic strength at the beginning and end of the

gradient, respectively. A detailed description of the experiments can be found in [32].

In alignment with previous works [32; 150; 189], model parameters were determined using

the measured ionic strength at the peak maximum as reference value. The simulated ionic

strength at peak maximum was calculated by solving the ideal mass balance equation

∂ci
∂t

(x, t) = −1− εt

εt

∂qv,i

∂t
(x, t)− u0

εt

∂ci
∂x

(x, t) (5.36)

described in [68; 152], where t [s] is the time, x [m] is the axial column position, εt = 0.76

represents the total column porosity, and u0 = 150 cm h−1 denotes the linear velocity.

This column model is highly simplified, but is sufficient for the determination of the ionic

strength at peak maximum and thus equilibrium parameters. The temporal change of qv,i

was described using the solid film linear driving force model [68; 152]

∂qv,i

∂t
(x, t) = kapp,i

(
q∗v,i(ci)− qv,i(x, t)

)
, (5.37)

where kapp,i [s−1] is the lumped mass transfer coefficient, and q∗v,i is the equilibrium solid

concentration given ci according to the CPA model [Eq. (5.11)] or SMA model [Eq. (5.31)].

The system of partial differential equations were numerically solved by using ChromX

(GoSilico GmbH, Karlsruhe, Germany). For all simulations, the variable time-stepping

scheme IDAS was used for discretization in time. Discretization in space was performed

with 200 equidistant axial cells using a linear Streamline-Upwind Petrov-Galerkin (SUPG)

ansatz.

For the CPA model, the radius of the mAb was estimated to be ai = 5.5 nm based on

literature data [26; 29; 103]. Following reported titration curves for antibodies [64], the

characteristic protein charge within the investigated pH range was approximated by the

quadratic function

Zi(pH) =Zi(pHref) + Z1,i(pH− pHref)

+ Z2,i(pH− pHref)
2,

(5.38)

where pHref = 6.25 represents a reference pH and Zi(pHref), Z1,i, and Z2,i are empirical

parameters determined by model fitting. As derived empirically in the supplementary

material, the pH dependence of ∆i can be described by

log10 (∆i(pH)) = log10 (∆i(pHref))

+ ∆1,i (|σI,i(pH)| − |σI,i(pHref)|)
(5.39)

where ∆i(pHref) and ∆1,i are fitting parameters and σI,i = eZi(4πa
2
i )
−1. In case of the

SMA model, the pH was not directly considered in the model. Instead, the SMA param-

eters ν̃i and k̃eq,i were determined independently for each investigated pH value.



68 Nonlinear Protein Adsorption

5.3.3 Batch Adsorption Experiments

The calibrated CPA model and SMA models were extended to the nonlinear adsorption

range and compared using adsorption isotherms of the mAb at varying ionic strength and

pH. For the CPA model, the adsorber surface accessible by the mAb As,i(ai = 5.5 nm)

was derived a priori from Eq. (5.33). To allow a direct comparison of the SMA and CPA

model with respect to the ASF, lateral electrostatic interactions between adsorbed proteins

were neglected by setting Zlat,i = 0. Experimental adsorption data were used for model

validation. In case of the SMA model, σ̃i was determined for each investigated pH by

fitting the SMA model to experimental adsorption data keeping ν̃i and k̃eq,i fixed.

5.4 Results and Discussion

5.4.1 Model Parameters

Both the CPA model and SMA model contain model parameters that can be determined

either a priori using literature data or by fitting the model to experimental data. In the

case of the SMA model, the adsorber system is thereby defined by the system parameter

ΛIEX. It can be determined by a combination of tracer pulse injections and acid-base

titration. For the CPA model, an additional characterization of the adsorbent system by

iSEC is required to determine As,0 and thus ΓL. Compared to the SMA model, this requires

about five additional pulse injections with tracer substances that differ significantly in size

and thus pore accessibility. The pKL of the ligand can usually be taken from the literature

and does not require an experimental determination. It allows an explicit distinction

between strong and weak ion exchanges in the CPA model.

In the linear adsorption regime and constant pH, the Henry coefficient is defined by addi-

tional protein-specific model parameters in both models. These include ai, ∆i, and Zi in

the CPA model and k̃eq,i and ν̃i in the SMA model. The radius of a protein ai can often be

derived empirically from its molecular weight and thus usually requires no experimental

effort. Following the approach described by Yamamoto [189], the SMA parameters k̃eq,i

and ν̃i are often determined using linear gradient elution experiments with varying gradi-

ent length and low protein load density. The same experiments can be used to determine

∆i, and Zi in the CPA model. However, given the mathematical complexity of the CPA

model, both parameters cannot be derived analytically from the normalized gradient slope

and the ionic strength at protein elution, as in the case of the SMA model.

In the case of the SMA model, the extension of the model to the nonlinear adsorption

region is performed by introducing the shielding parameter σ̃i. The parameter can be

determined using batch adsorption data or chromatography data at high load density. For

the CPA model, As,i can be estimated based on iSEC data using Eq. (5.33) and further

refined using data in the nonlinear adsorption regime. As the CPA model parameter Zlat,i

accounts for electrostatic protein-protein interactions, it can be accurately determined only

at high protein load density and low ionic strength.
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Table 5.1: System parameters of Poros XS

System parameter Unit Value
Pore size distribution parameter rp [nm] 11.46
Pore size distribution parameter sp [−] 0.01
Total accessible surface area As,0 [nm−1] 0.46‡

Theoretical surface area accessible by the mAb As,i(5.5 nm) [nm−1] 0.24‡

Ionic capacity ΛIEX [M] 0.86§

Ligand density ΓL = ΛIEXA
−1
s,0 [µmol m−2] 1.86

Column length Lc [mm] 100†

Column volume Vc [mL] 1.96†

Void fraction ε [−] 0.35†

Total column porosity εt [−] 0.76†
§ according to Steinebach et al. [166]
† according to Creasy et al. [32]
‡ according to Eq. (5.33)

5.4.2 System Characterization

Estimated parameters of the adsorber system Poros XS are summarized in Table 5.1.

The pore size distribution parameters rp and sp were determined by fitting Eq. (5.35) to

measured KD values for Poros XS published in [166]. A comparison between the fitted

pore model and experimental data can be found in Fig. B.1 in the appendix. Given rp , sp,

and Eq. (5.33), the theoretical adsorber surface accessible by the mAb As,i = 0.24 nm−1

corresponds to approximately 50% of the total adsorber surface As,0 = 0.46 nm−1.

5.4.3 Linear Gradient Experiments

To calibrate the CPA and SMA model for the limiting case Θ → 0, retention data of

linear gradient experiments at low protein load density and with varying GH were used.

Markers in Fig 5.3 indicate the measured ionic strength at protein elution as a function

of GH. Black lines represent fitted model curves based on the CPA model (Fig. 5.3(a))

and SMA model (Fig. 5.3(b)). In the case of the CPA model, model curves shown in

Fig. 5.3(a) are based on a single model that accounts explicitly for the pH. In case of the

SMA model, each pH is described by an individual model. A direct consideration of the

pH in the SMA model was not considered as there is no unified approach in the literature

to extend the original pH independent model. Both models the CPA and SMA model

are able to describe the experimental results adequately. While they show no significant

differences with respect to the data shown in Fig. 5.3, they differ significantly in the mech-

anistic description of the observed behavior. As schematically shown in Fig. 5.4(a), the

stoichiometric description of protein adsorption within the framework of the SMA model

[Eq. (5.29)] suggests that counter-ions of the adsorber surface are condensed at the adsor-

ber surface. Accompanied by the formation of a reversible protein-ligand complex, they

can be displaced from the adsorber surface. For a medium with high relative permittivity

like water, this state of adsorbed counter-ions has been questioned in the past as it would

result in a significant reduction of the entropy in the system [161]. Within the framework

of the CPA model, the system close to the adsorber surface is considered to be much more

disordered as schematically shown in Fig. 5.4(b). Given their thermal energy, counter-ions

are not expected to be condensed but diffusely distributed around charged surfaces. The
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Figure 5.3: Elution salt gradient as a function of the normalized gradient slope for a mAb
on Poros XS according to [32]. Experimental data are shown as markers. Continuous lines
represent fitted curves based on the CPA model (a) and SMA model (b). Experimental
data were generated at pH 5.5 ( ), 6.0 ( ), 6.5 ( ), and 7.0 ( ).

adsorption state of a protein is also not defined by a unique and ordered protein-ligand

complex. Instead, Eq. (5.5) and Eq. (5.6) in the CPA model propose a more disordered

state where adsorbed proteins are distributed within the interaction boundary layer.

The different mechanistic interpretation of protein adsorption has significant impact on

the characteristic protein charge Zi in the CPA model and ν̃i in the SMA model. While

the terminology is the same in both models, their physical interpretation is different.

In the SMA model, ν̃i describes the number of ligands involved in the formation of the

protein-ligand complex as indicated in red in Fig. 5.4(a). As expected from a protein

charge, determined model parameters summarized in Table 5.3 show a decrease of ν̃i with

increasing pH. However, given the stoichiometric description of the adsorption process in

the SMA model, ν̃i is rather abstract in nature and should not be compared with the

net charge of a protein. In the CPA model, on the other hand, the characteristic charge

Zi defines the effective charge density or electrostatic potential of the protein surface

directed towards the adsorber surface. Thus, in principle, the characteristic charge in

the CPA model has a comparable meaning as the net charge of a protein. However, due

to a number of assumptions and simplifications in the CPA model, Zi is also subject

to some model abstraction. Considering proteins as perfect spheres with homogeneous

surface charge density greatly simplifies the mathematical description of the adsorption

equilibrium, but is a considerable simplification for complex proteins such as mAbs. In

addition to geometrical simplifications, the description of electrostatic protein-adsorber

interactions is based on the linearized Poisson-Boltzmann equation. The accuracy of this

description is rather uncertain considering the high surface charge density of the adsorber

and the mAb. In the light of these simplifications, the fitting parameter Zi is also rather

abstract in nature. Thus, estimated characteristic charge values shown in Table 5.2 should

not be compared with the true net charge of a protein.

5.4.4 Batch Adsorption Experiments

With growing coverage of the adsorber surface, interactions between proteins become

increasingly important causing a nonlinearity in the adsorption behavior. In both models
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Table 5.2: CPA parameters of the mAb on Poros XS determined using linear salt gradient
experiments at low protein density. The calibrated model describes the adsorption as a
function of the ionic strength and the pH. Parameter uncertainty is indicated by the 95%
confidence interval.

Parameter Unit Value
Zi(pHref) [−] 63.32± 0.75
Z1,i [−] −26.23± 0.67
Z2,i [−] 4.07± 0.29
log10(∆i(pHref)) [−] −3.61± 0.19
∆1,i [m2 C−1] −94.11± 4.13

the SMA and CPA model, protein-protein interactions are mostly ascribed to steric or hard

body interactions that are mathematically described by the ASF Bi(Θ) in the CPA model

or B̃i(qv) in the SMA model. Similar to the protein-adsorber interaction discussed in

Fig. 5.4, both modeling approaches deviate considerably in the mechanistic interpretation

of steric effects. While according to Bi(Θ) protein adsorption is physically limited by the

accessible surface area of the adsorber system, B̃i(qv) defines the ionic capacity of the

adsorber system as the limiting factor. Within the stoichiometric framework of the SMA

model, steric effects are described by a shielding of adsorber ligands by adsorbed proteins,

as schematically shown in Fig. 5.5(a). The number of ligands shielded by a single protein

is defined by the SMA parameter σ̃i. For a sphere with radius 5.5 nm, the expected value

would be σ̃i = 107 using the ligand surface density of Poros XS in Table 5.1. According

to Eq. (5.30), the shielding of ligands is mathematically associated with a decrease in the

protein-adsorber interaction. With increasing coverage of the adsorber surface, adsorbed

proteins face only a fictitious reduced ligand density, resulting in a lower affinity to the

adsorber surface. As a consequence, the characteristic charge of the protein ν̃i enters

Eq. (5.32) as an exponent and has a significant effect on B̃i(qv). Proteins with a high

characteristic charge are more affected by the described steric effects as they are more

sensitive to a change in ΛIEX. A theoretical shortcoming of the stoichiometric description

of steric effects in the SMA model is that σ̃i depends physically on the ligand density. It

is therefore only valid for a specific ΛIEX and is expected to increase with an increase in

ΛIEX.

Unlike the SMA model, the CPA model treats the ionic capacity or ligand density of the

Figure 5.4: Mechanistic interpretation of the characteristic protein charge in the SMA
model (a) and CPA model (b). In the SMA model, νi defines the number of adsorber
ligands forming the protein-ligand complex. In the CPA model, Zi defines the effective
surface charge density or electrostatic surface potential of a perfect sphere.
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Figure 5.5: Mechanistic interpretation of the available surface function according to the
SMA model (a) and CPA model (b).

adsorber system as a constant and defines the accessible surface area as the physically

limiting factor. According to Widom [185], Bi(Θ) can be considered as a measure for the

probability of inserting a protein into the given configuration of adsorbed proteins so that

no overlap occurs. As schematically shown in Fig. 5.5(b) for the CPA model, a protein

can only adsorb if it encounters an unoccupied area on the adsorber surface. With grow-

ing coverage of the adsorber surface, there is an increased probability of encountering an

occupied region on the adsorber surface that prevents a protein from adsorbing, regardless

of its affinity. In contrast to the SMA model, Bi(Θ) is not affected by the characteristic

charge of a protein as it only accounts for hard-body interactions. Given a configuration of

adsorbed protein defined by Θ, smaller proteins have a higher probability of encountering

an unoccupied area than large proteins. Electrostatic protein-protein interactions induced

by the surface charge density of proteins are considered independently in the CPA model

by ulat,i. These soft-body interactions are not explicitly considered by the SMA model.

A fundamental difference to the SMA model is that the protein-adsorber interaction is

independent of the surface coverage according to the superposition in Eq. (5.3). As indi-

cated in Fig. 5.5(b), every adsorbed protein faces the bare adsorber surface with constant

ligand density. While the superposition approximation is justified for low values in Θ, it

is important to note that this assumption can lose its justification at very high surface

coverage where the distance between adsorbed proteins is small. The reason for this is that

proteins change the electrostatic environment close to the adsorber surface and therefore

affect the double layer of the adsorber surface locally. With decreasing distance between

adsorbed proteins, the protein-adsorber interaction becomes more and more a multi-body

problem which is not taken into consideration.

The superposition approximation in the CPA model is a crucial assumption as it also

implies that protein parameters determined in the linear adsorption range are valid over

the entire adsorption range Θ ∈ [0,Θmax]. To validate this assumption and compare

both adsorption models in the nonlinear adsorption range, both models were used to

describe experimental batch adsorption data of the mAb shown as markers in Fig. 5.6.

Using the theoretical accessible surface area As,i = 0.24 nm−1 in Table 5.1 and assuming

Zlat,i = 0, the CPA model calibrated in the linear adsorption range in Sec. 5.4.3 can

already be used to perform extrapolations across the entire adsorption regime. Adsorption

isotherms extrapolated by the CPA model are represented by continuous lines on the left

side of Fig. 5.6. As a measure of how well experimental data are replicated by the CPA

model, the predictive R2 is shown for each pH. The gray shading indicates the region

Θ ∈ [Θjam,Θhex] between the maximum surface coverage according to random sequential

adsorption Θjam = 0.547 [76] and hexagonal close packing Θmax = 0.907. Although the
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Figure 5.6: Adsorption isotherms of a mAb on Poros XS as a function of pH and ionic
strength. Markers represent experimental data according to [32] while lines represent
model curves. left: Comparison between experimental data and extrapolated adsorption
isotherms based on the CPA model ( ). The CPA model was calibrated in the linear
adsorption regime using linear gradient experiments shown in Fig. 5.3. As a measure of
how well experimental data are replicated by the CPA model, the predictive R2 is shown
for each pH. Gray shading indicates the region between the maximum surface coverage ac-
cording to random sequential adsorption and hexagonal close packing. right: Comparison
between fitted model curves based on the SMA model ( ) and experimental data. For
each pH, the goodness of fit is indicated by R2. Protein adsorption was investigated at an
ionic strength of 20 mM ( ), 45 mM ( ), 70 mM ( ), 95 mM ( ), 120 mM ( ), 145 mM
( ), and 220 mM ( ).
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Table 5.3: SMA parameters of the mAb on Poros XS determined using linear salt gradient
experiments at low protein density shown in Fig. 5.3 and batch adsorption data shown in
Fig. 5.6. Parameter uncertainty is indicated by the 95% confidence interval.

Parameter Unit pH 5.5 pH 6.0 pH 6.5 pH 7.0
ν̃i
§ [−] 11.35± 0.43 9.89± 0.34 9.34± 0.32 7.90± 0.28

log(k̃eq,i)
§ [−] −7.52± 0.31 −7.64± 0.28 −8.26± 0.30 −8.01± 0.30

σ̃i
† [−] 183.14± 18.86 142.07± 13.03 163.38± 16.40 148.08± 14.05

§ based on retention data shown in Fig. 5.3
† based on batch adsorption data shown in Fig. 5.6

CPA model was calibrated in the linear adsorption range and As,i was estimated a priori

using inverse SEC data, extrapolated adsorption isotherms are already in good agreement

with experimental data. Only experimental data close to or beyond Θmax cannot be

reproduced by the CPA model as they would result in a steric overlap between adsorbed

proteins. While the neglect of electrostatic protein-protein interactions (Zlat,i = 0) might

be a simplification for the gray shaded area, it has no affect for conditions Θ / Θjam given

the large distance between adsorbed proteins and the fact that electrostatic interactions

are screened at higher ionic strength. A posterior incorporation of electrostatic protein-

protein interactions in the calibrated CPA model was not considered in view of the already

good validation results. Furthermore, neglecting Zlat,i allows a direct model comparison

with respect to the ASF.

In case of the SMA model, σ̃i can hardly be estimated a priori and needs to be determined

by fitting the model to experimental data at high surface coverage. Therefore, dashed lines

on the right side of Fig. 5.6 represent fitted model curves based on the SMA model. As

in the case of the CPA model, model parameters determined earlier in Sec. 5.4.3 were

adopted. Only σ̃i was determined for each pH. Parameter estimates at pH 5.5, 6.0, 6.5,

and 7.0 can again be found in Table 5.3. With values around 150, estimates are larger than

the theoretical value of 107 derived earlier, but reasonable compared to values reported in

the literature [21; 34; 78]. They do not show a distinct pH dependence. Comparing model

curves based on the SMA model with those of the CPA model, significant differences

between both models can be observed. Although simulated curves based on the CPA

model are extrapolations, they show in general a better agreement with experimental data

than fitted curves based on the SMA model, as indicated by the R2 values in Fig. 5.6.

Only in the case of pH 7.0, data based on the SMA model are in better alignment with

measurements. Discrepancies between model predictions based on the CPA model and

experimental data at pH 7.0 may possibly be attributed to the assumption that only Zi
and ∆i are pH dependent. The protein radius ai, on the other hand, is assumed to be

constant and not affected by variations in pH. Given the ability of proteins to adjust their

conformation and thus their size in response to variations in pH and ionic strength, this

represents a simplification that may explain some discrepancies in Fig. 5.6.

As electrostatic protein-protein interactions were neglected in the CPA model (Zlat,i = 0)

and both models show comparable results in the linear adsorption range (Fig. 5.3), model

differences in Fig. 5.6 must be attributed to the different mechanistic interpretation of

steric interactions and thus the ASF. A comparison of Bi(Θ) and B̃i(qv) according to

the calibrated models is given in Fig. 5.7. As B̃i(qv) is a function of ν̃i, the profile of

B̃i(qv) shown in black is inherently affected by the pH. For the available surface function

of the CPA model shown in red, a single relationship is shown as Bi(Θ) is unaffected
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Figure 5.7: Available surface function according to the SMA and CPA model. Black lines
represent B̃i(qv) according to the SMA model at pH 5.5 ( ), 6.0 ( ), 6.5 ( ), and
7.0 ( ). The red line represents Bi(Θ) according to the CPA model.

by a change in pH. As can be seen steric effects described by the SMA model are much

more pronounced than in case of the CPA model. This can be attributed to the fact

that steric effects are described by a reduction in the ionic capacity. As described ear-

lier, this stoichiometric interpretation of steric hindrance implies also a reduction of the

protein-adsorber interaction. With decreasing characteristic protein charge, the interac-

tion between the protein and the adsorber becomes less sensitive to a change in ΛIEX. As

a consequence, steric effects in the SMA model are less pronounced with increasing pH

and B̃i(qv) approaches B(Θ). It is noticeable that discrepancies between the SMA model

and experimental isotherm data shown in Fig. 5.6 increase with decreasing pH. At pH

5.5 where B̃i(qv) deviates strongly from Bi(Θ), simulated data based on the SMA show a

significant overestimation of nonlinear adsorption effects. As the pH increases and B̃i(qv)

approaches Bi(Θ), simulated data based on the SMA model show increasing agreement

with experimental data. Results shown in Fig. 5.6 and Fig. 5.7 suggest that the simplified

stoichiometric description of steric hindrance in the SMA model can provide an overesti-

mation of nonlinear effects. The good agreement between experimental data and model

predictions in case of the CPA model shows that the model can provide in general a bet-

ter description of steric effects across the entire investigated pH range. Results support

further the superposition approximation in the CPA model and show that the majority

of model parameters can be determined at the limiting case Θ → 0 and used afterwards

across the entire adsorption range.

5.5 Conclusion

We introduced a colloidal particle adsorption model that describes protein adsorption

within the linear and nonlinear adsorption regime. The proposed CPA model is based
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on a non-stoichiometric description of electrostatic interactions between proteins and IEX

adsorbers combined with steric and electrostatic interactions between adsorbed proteins.

It was demonstrated that the majority of model parameters can be determined in the

linear adsorption range or estimated a priori using inverse SEC. Subsequently, the model

can be used to predict adsorption behavior in the nonlinear adsorption regime. If neces-

sary, the model can be extended or refined as soon as experimental data in the nonlinear

adsorption regime becomes available. Such a sequential approach is often preferred as it

can significantly reduce the amount of material needed to calibrate the mechanistic model.

The introduced model was compared with the SMA model commonly used in academia

and industry. By using the formalism of the available surface function for the SMA model,

a clear basis for distinguishing the CPA and SMA model in the nonlinear adsorption regime

was established. The model comparison showed consistent model results in the linear ad-

sorption regime but significant model differences in the nonlinear adsorption regime in

simulating adsorption isotherms and elution profiles under ideal chromatography condi-

tions. Observed model differences could be attributed to the varying interpretation of

steric hindrance in both models. Results suggest that the stoichiometric framework of the

SMA model leads to an inadequate description of steric effects between adsorbed proteins.

Given the overall better description of experimental adsorption isotherms of a mAb over a

wide range of pH and ionic strength by the CPA model, it can help to better understand

nonlinear protein adsorption.
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Abstract

A fundamental understanding of the protein retention mechanism in preparative ion ex-

change (IEX) chromatography columns is essential for a model-based process development

approach. For the past three decades, the mechanistic description of protein retention has

been based predominantly on the steric mass action (SMA) model. In recent years, how-

ever, retention profiles of proteins have been reported more frequently for preparative

processes that are not consistent with the mechanistic understanding relying on the SMA

model.

In this work, complex elution behavior of proteins in preparative IEX processes is analyzed

using a colloidal particle adsorption (CPA) model. The CPA model is found to be capable

of reproducing elution profiles that cannot be described by the traditional SMA model.

According to the CPA model, the reported complex behavior can be ascribed to a strong

compression and concentration of the elution front in the lower unsaturated part of the

chromatography column. As the unsaturated part of the column decreases with increasing

protein load density, exceeding a critical load density can lead to the formation of a

shoulder in the peak front. The general applicability of the model in describing preparative

IEX processes is demonstrated using several industrial case studies including multiple

monoclonal antibodies on different IEX adsorber systems. In this context, the work covers

both salt controlled and pH-controlled protein elution.

Keywords: Protein adsorption; Protein purification; pH gradient; Mechanistic modeling;

Steric mass action model; Poisson-Boltzmann
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6.1 Introduction

While the development of chromatography processes for the purification of biopharmaceu-

tical proteins is still predominantly based on an empirical approach, mechanistic process

models have gained increasing attention from pharmaceutical companies in recent years

[141; 145]. By providing a fundamental understanding of the behavior of a process, mech-

anistic models can play a decisive role in the optimization [71; 80; 118; 123; 124], char-

acterization [14; 30; 88; 92; 180], and scale-up of chromatography processes [7; 53; 111].

In particular, mechanistic modeling of ion exchange (IEX) chromatography has received

considerable attention, as IEX chromatography remains the most widely used chromatog-

raphy mode and is considered to be mechanistically understood.

Over the past three decades, the mechanistic description of protein retention in IEX pro-

cesses has been predominantly based on the steric mass action (SMA) isotherm introduced

by Brooks and Cramer [22]. By describing the interaction between proteins and IEX resins

based on a reversible exchange of adsorber counter-ions by proteins in the mobile phase,

the model explicitly accounts for the influence of the ionic strength on protein adsorption.

The nonlinear behavior of adsorption at high protein concentrations is described by con-

sidering a shielding of counter-ions bound to the adsorber surface due to steric hindrance

and repulsive forces between adsorbed proteins [22; 102]. The protein binding capacity

of an IEX adsorber is thereby physically constrained by its ionic capacity. Despite its

conceptual simple representation of protein adsorption, the model has successfully been

used in many cases and is therefore still the most widely used model in both academia

[14; 71; 80; 87; 88; 97; 123; 124] and industry [21; 77; 92; 140; 149; 150; 180]. However,

with the increasing application of the adsorption model for industrial IEX processes, dis-

crepancies between the model and experimental data have been observed more frequently

in recent years [32; 33; 40; 78]. In case of high protein load densities close to the dynamic

binding capacity of the column and protein elution based on linear salt gradients, the for-

mation of a shoulder in the front of the elution peak was observed for different proteins and

adsorber systems, which could not be interpreted based on the traditional SMA model.

Diedrich et al. [40] hypothesized that the observed elution behavior of a monoclonal an-

tibody (mAb) on the polymer-grafted adsorber system Fractogel EMD SO−3 is caused by

the existence of multiple binding configurations. Adsorbed proteins were thereby assumed

to be gradually wrapped by the tentacle structures grafted onto the surface of Fractogel

EMD SO−3 [40]. By extending the traditional SMA model to multiple binding configura-

tions, the elution behavior could be described adequately. While the mechanism proposed

by Diedrich et al. provides a vivid explanation for the observed behavior on polymer-

grafted adsorber systems, it does not provide a distinct explanation for the observation

of the same behavior on classical adsorber systems without tentacle structures. Huuk et

al. [78] explained the formation of a comparable peak shoulder for a mAb on the adsorber

Poros 50 HS by a non-ideal behavior of proteins in the mobile phase. Using an expression

for the protein activity coefficient initially introduced by Mollerup [114], the non-ideality

was mostly ascribed to interactions between proteins and ions at high salt concentrations.

While the proposed extension of the SMA model was able to describe the experimental

data, the assumed non-ideal behavior cannot be clearly verified in the linear adsorption

range due to the moderate salt concentrations used in IEX processes [19]. Both mecha-

nistic descriptions of the observed elution behavior are based on extensions of the original

SMA model and on the assumption that the underlying stoichiometric mechanism of the
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adsorption model is valid. An alternative approach of describing complex elution behavior

that cannot be described by existing adsorption models like the SMA model was proposed

by Creasy et al. [32–34]. Using high-throughput batch isotherm data and a systematic

interpolation method, mAb elution profiles could be described at high protein load den-

sities that could not be replicated using the traditional SMA model. However, since the

method is based on a statistical approach, the calibration of the model is resource and

time consuming, especially in the case of complex industrial multi-component systems.

In a previous study [20], we presented an alternative colloidal particle adsorption (CPA)

model that describes nonlinear protein adsorption on charged surfaces as a function of

ionic strength and pH. In contrast to the SMA model, the CPA model is not based on

a stoichiometric exchange of counter-ions by proteins but on a fundamental description

of electrostatic interactions within IEX columns using the colloidal nature of proteins.

The maximum protein binding capacity of an adsorber is thereby not limited by its ionic

capacity as in the SMA but by the accessible adsorber surface. Nonlinear adsorption be-

havior is described by considering steric blocking of the adsorber surface and electrostatic

interactions between adsorbed proteins. While the CPA model was initially derived un-

der equilibrium conditions to analyze batch adsorption data, the kinetic derivation of the

adsorption model in this work provides a mechanistic description of the adsorption and

desorption rate that can be used for the simulation of chromatography processes. The

general ability of the CPA model in describing complex protein elution behavior is illus-

trated by applying the model to several preparative chromatography processes of multiple

mAbs on adsorber systems differing in ligand structure and backbone.

6.2 Theory

6.2.1 Transport Dispersive Model

We consider a packed bed of length Lc [m] consisting of spherical adsorber beads with

an average particle diameter dp [m] and particle porosity εp [−]. The bed is considered

to be homogeneous, both in radial and axial direction x ∈ [0, Lc] [m]. According to the

transport dispersive model (TDM), the temporal change of the solute bulk concentration

cb,j [mol m−3] in the interstitial volume at time t [s] is described by the column-wide mass

balance equation

∂cb,j
∂t

(x, t) =− 1− εv

εv

6

dp
keff,j (cb,j(x, t)− cp,j(x, t))

− uint(t)
∂cb,j
∂x

(x, t) +Dax
∂2cb,j

∂x2
,

(6.1)

whereby uint [m s−1] is the interstitial velocity of the mobile phase, Dax [m2 s−1] denotes

the axial dispersion coefficient, εv [−] represents the void fraction, keff,j [m s−1] is the

effective mass transfer coefficient, and cp,j [mol m−3] represents the concentration of the

j-th solute on the particle surface [152]. The mass balance equation is completed with

Danckwerts’ boundary conditions of dispersive systems at the column inlet

∂cb,j
∂x

(x = 0, t) =
uint(t)

Dax
(cb,j(x = 0, t)− cinlet,j(t)) (6.2)
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and the column outlet
∂cb,j
∂x

(x = Lc, t) = 0, (6.3)

whereby cinlet,j is the concentration of the j-th solute at the inlet of the column [36].

In the TDM, the concentration inside the particle is assumed to be constant and identical

to cp,j . Under this assumption, keff,j in the linear driving force model accounts for both

internal and external mass transfer resistances. The mass transfer equation inside the

adsorber bead simplifies to

∂cp,j
∂t

(x, t) =
6

εpdp
keff,j (cb,j(x, t)− cp,j(x, t))

− 1− εp

εp

∂qv,j

∂t
(x, t),

(6.4)

where qv,j [mol m−3] denotes the adsorbed solute concentration per adsorber skeleton vol-

ume [152]. The surface density of protein bound to the adsorber surface qj = qv,jA
−1
s,j

[mol m−2] is related to qv,j by the specific adsorber surface per skeleton volume accessible

by the solute As,j [m−1].

6.2.2 Adsorption Rate

The mobile phase is considered to be an electrolyte solution at constant temperature

T = 298.15 K, ionic strength Im [mol m−3], and relative permittivity ε = 78.3. The

surface of the adsorber A immersed in the electrolyte solution is considered to be solid

and planar. It is characterized by the surface ligand density ΓL [mol m−2] and the surface

charge density σA [C m−2]. A protein i immersed in the electrolyte solution is represented

by a perfect sphere with radius ai [m]. In alignment with [20], two definitions of the surface

charge density of the sphere are considered in the following. The surface of the sphere

directed towards the adsorber surface is characterized by the surface charge density σi or

effective net charge Zi = 4πa2
i e
−1σi [−], whereby e [C] denotes the elementary charge.

The protein surface laterally facing other adsorbed proteins, on the other hand, is defined

by σlat,i = eZlat,i(4πa
2
i )
−1. The interaction free energy uA,i(z) [J] between the i-th protein

and the adsorber surface is governed predominantly by electrostatic interactions and is

a function of the distance z between the protein and the adsorber surface. Due to the

finite range of electrostatic interactions, the protein interacts only within an interaction

boundary layer with the adsorber surface [146; 147; 159]. The surface density qi may

therefore be describe by

qi =

∫ δ∗i

δm,i

ci(z)dz, (6.5)

where δ∗i is the thickness of the boundary layer and δm,i = arg minz uA,i(z) denotes the

position of the minimum of uA,i(z). Neglecting mass transfer lateral to the adsorber

surface, the mass transfer inside the stagnant boundary layer can be described by the

one-dimensional continuity equation

∂ci(z)

∂t
= −∂ji(z)

∂z
=

∂

∂z

(
ci(z)

Di(z)

kbT

∂µ̄i(z)

∂z

)
, (6.6)

where ji [mol m−2s−1] represents the colloid flux, kb [J K−1] is the Boltzmann constant,

Di [m2 s−1] is the diffusion coefficient, and µ̄i [J] represents the electrochemical
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potential [3]. The flux in Eq. (6.6) is considered to be negative if directed towards the

adsorber surface. The electrochemical potential within the boundary layer is given by

µ̄i(z) = µ∗i + kbT ln

(
ci(z)

c+

)
+ Φ(z), (6.7)

where µ∗i is the reference potential at infinite dilution, c+ is a reference concentration to

make the term inside the logarithm dimensionless, and Φ = uA,i + ulat,i + µex
i considers

uA,i, the lateral interaction between adsorbed proteins ulat,i, and the excess chemical

potential µex
i [20]. As described in [20], µex

i accounts for steric hindrance between proteins

within the boundary layer. Using Eq. (6.7), Eq. (6.6) can be rewritten to

∂ci(z)

∂t
=− ∂ji(z)

∂z

=
∂

∂z

(
Di(z)

∂ci(z)

∂z
+Di(z)

ci(z)

kbT

∂Φ(z)

∂z

)
.

(6.8)

If we assume that the relaxation time of establishing the quasi stationary transport con-

dition ∂ci(z)/∂t = 0 through the thin interaction boundary layer is very short, one can

treat j as quasi-stationary [1; 3; 146]. In this case j is given by the expression

−ji(z) = −ji = Di(z)

(
∂ci(z)

∂z
+
ci(z)

kbT

∂Φ(z)

∂z

)
(6.9)

which can also be written as

−ji = Di(z) exp

(
−Φ(z)

kbT

)
∂

∂z
exp

(
Φ(z)

kbT
+ ln (ci(z))

)
. (6.10)

Integrating Eq. (6.10) within the limits z ∈ [δm,i, δ
∗
i ], leads to

−ji =
cp,i exp

(
Φ(δ∗i )
kbT

)
− ci(δm,i) exp

(
Φ(δm,i)
kbT

)
∫ δ∗i
δm,i

1
Di(z)

exp
(

Φ(z)
kbT

)
dz

(6.11)

with ci(δ
∗
i ) = cp,i. Using Eq. (6.5) for qi and considering ideal protein behavior outside the

boundary layer (Φ(δ∗i ) = 0), Eq.(6.11) can be rewritten to

∂qi
∂t

= −ji = kkin,i (Kicp,i − qi) (6.12)

or
∂qv,i

∂t
= −As,iji = kkin,i (Kv,icp,i − qv,i) , (6.13)

whereby kkin,i [s−1] is a kinetic parameter defined by

kkin,i =
1∫ δ∗i

δm,i
1

Di(z)
exp

(
Φ(z)
kbT

)
dz
∫ δ∗i
δm,i

exp
(
−Φ(z)
kbT

)
dz

(6.14)

and Kv,i [−] represents an equilibrium coefficient given by

Kv,i = As,iKi = As,i

∫ δ∗i

δm,i

exp

(
−Φ(z)

kbT

)
dz. (6.15)
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As described in more detail in [20], it is assumed that both µex
i and ulat,i are not a function

of z, but depend only on the composition and configuration of the two-dimensional layer

of adsorbed proteins. If we further assume that Di is constant, Eq. (6.14) and Eq. (6.15)

can be simplified to

kkin,i =
Di∫ δ∗i

δm,i
exp

(
uA,i(z)
kbT

)
dz
∫ δ∗i
δm,i

exp
(
−uA,i(z)

kbT

)
dz

(6.16)

and

Kv,i = As,iBi(Θ) exp

(
−
ulat,i

kbT

)∫ δ∗i

δm,i

exp

(
−
uA,i(z)

kbT

)
dz, (6.17)

whereby Bi(Θ) = exp
(
−µex

i (kbT )−1
)

represents the available surface function,

Θ = πNA
∑
a2
i qi is the surface coverage, and NA denotes the Avogadro number.

To get closed-form expressions for Eq. (6.16) and Eq. (6.17), uA,i(z) is linearized within

z ∈ [δm,i, δ
∗
i ] as described in [19; 20] leading to

kkin,i = k∗kin,i

1

2

(
uA,i(δm,i)

kbT

)2 1

cosh
(
uA,i(δm,i)

kbT

)
− 1

(6.18)

and

Kv,i =∆iBi(Θ)
kbT

uA,i(δm,i)

· exp

(
−
ulat,i

kbT

)(
1− exp

(
−
uA,i(δm,i)

kbT

))
,

(6.19)

whereby ∆i = As,i(δ
∗
i − δm,i) and

k∗kin,i =
Di

(δ∗i − δm,i)2
= A2

s,i

Di

∆2
i

(6.20)

are fitting parameters. While k∗kin,i defines the rate of adsorption/desorption, the fitting

parameter ∆i is a measure for the thickness of the interaction boundary layer. In the

case of ∂qv,i/∂t = 0, Eq. (6.13) leads to qv,i = Kv,icp,i which is identical to the expression

previously derived in [20]. For a detailed description of uA,i(δm,i), Bi(Θ), and ulat,i in

Eq. (6.18) and Eq. (6.19), we refer to [20].

6.2.3 Counter-Ion Release

We assume an electrolyte solution that contains only ions with absolute charge z+ =

|z−| = 1 forming a diffuse layer around a protein of interest and the adsorber surface as

schematically shown in Fig. 6.1. At infinite distance between adsorber and protein surface,

the charge of the diffuse layer neutralizes the surface charge density of the corresponding

inner layer. As the protein approaches the adsorber surface, the oppositely charged diffuse

layers start to overlap causing an entropically driven release of counter-ions from the gap

between both surfaces into the bulk phase. A detailed mathematical description of the

amount of released counter-ions is complex and out of scope of this work. Instead, a

simplified model is used where the exchange of counter-ions between bulk phase and diffuse
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Figure 6.1: Schematic representation of the release of counter-ions upon protein adsorp-
tion.

layer upon protein adsorption and desorption is attributed to a mutual neutralization of

the inner layers within the gap. The charge compensated by the adsorbed protein

zc,i =
σi
e
Ai (6.21)

is thereby approximated using the projection surface of the protein Ai = πa2
i . If we assume

that the diffuse layer contains only counter-ions, the amount of adsorbed counter-ions per

adsorber surface qc can be described by the neutrality condition

σA − eNA

(
sgn(σA)qc −

∑
i

zc,iqi

)
= 0. (6.22)

Similar to the neutrality condition used within the framework of the SMA model [22], the

algebraic equation (6.22) accounts for the release of adsorber counter-ions during protein

adsorption and an update of counter-ions during protein desorption. To comply with

overall electroneutrality, the same amount of protein counter-ions are released into the

bulk phase as schematically shown in Fig. 6.1.

6.3 Materials and Methods

6.3.1 Proteins and Adsorber Systems

The retention behavior of five mAbs (mAb1-mAb5) with a molecular weight of approxi-

mately Mw,i = 150 kDa was investigated.

All experimental data were generated on the cation exchange resins Poros 50 HS (Thermo

Fisher Scientific, Waltham, Massachusetts, USA), the polymer-grafted Capto S ImpAct

(Cytiva, Uppsala, Sweden), and the polymer-grafted Fractogel EMD SO−3 (Merck Milli-

pore, Burlington, Massachusetts, USA). While the backbone of Capto S ImpAct consists of

a highly cross-linked agarose base matrix, Poros 50 HS and Fractogel EMD SO−3 are com-

posed of synthetic methacrylate based polymeric beads. All adsorbers are functionalized

with strong cation exchange ligands with a pK value of 2.3 according to [89].
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6.3.2 Software

The system of partial differential equations described earlier were numerically solved by

using ChromX (GoSilico GmbH, Karlsruhe, Germany). For all simulations, the variable

time-stepping scheme IDAS was used for discretization in time. Discretization in space

was performed using a linear Streamline-Upwind Petrov-Galerkin (SUPG) ansatz.

6.3.3 Parameter Estimation

As described in [70; 77; 79], the system parameters εv and εp used in the TDM were

determined by tracer pulse injections using a high salt buffer and dextran with a molecular

weight of 2000 kDa as pore penetrating and non-pore penetrating tracer, respectively.

The dispersion coefficient Dax used in Eq. (6.1) was derived from the column specific

height of an equivalent theoretical plate (HETP) measured by the dextran pulse injection

[68; 152]. As described in more detail in [20], the ligand surface density ΓL = ΛIEXA
−1
s,0 was

derived from the ionic capacity ΛIEX and the total accessible surface area per adsorber

skeleton volume As,0 of the adsorber systems. The ionic capacity was determined by

acid-base titration as described in [79], while As,0 was derived from inverse size exclusion

chromatography (iSEC) data following the procedure described by DePhillips and Lenhoff

[38]. For all resins, iSEC data were taken from [166]. Due to the lack of iSEC data for

Capto S ImpAct, iSEC data for Capto S reported in [166] were used instead.

In addition to column and system parameters, the chromatography model described in

Sec. 6.2 contains protein specific parameters that must be determined before the model can

be used to simulate the chromatographic behavior of proteins in ion exchange processes.

The radius of a protein ai was estimated from its molecular weight. For all mAbs with

Mw,i = 150 kDa, the radius was considered to be ai = 5.5 nm based on literature data

[26; 29; 103]. For product-related and process-related impurities with a molecular weight

not equal to 150 kDa, ai was determined using the empirical correlation

ai = a log10

(
Mw,i

1kDa

)
+ b (6.23)

whereby the empirical parameters a = 5.1 nm and b = −5.4 nm have been determined

based on literature data [95; 103; 131]. The remaining protein specific model parameters

keff,i, k
∗
kin,i, Zi, ∆i, Zlat,i, and As,i were determined by fitting the model to experimental

chromatograms. The least squares problem was solved using a combination of global and

local optimizers within the ChromX software environment. The accuracy of parameter

estimation was examined using the 95% confidence interval determined using the Fisher

information matrix [140].

As described in more detail in the following sections, the process behavior of mAb1-mAb3

was studied at constant pH. In the case of mab4 and mAb5, on the other hand, process

behavior was analyzed at varying pH conditions. To account for the pH-dependence in

case of mAb4 and mAb5, empirical pH-dependencies for Zi and ∆i were used, as derived

in [20]. The pH-dependence of Zi was approximated using a general polynomial expression

Zi(pH) = Zi(pHref) +
m∑
k=1

Zk,i (pH− pHref)
k (6.24)
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around a reference value pHref , where Zi(pHref) denotes the protein charge at the reference

pH, m is the degree of the polynomial, and Zk,i represent empirical parameters that define

the shape of the model titration curve. The selected value for pHref may vary among the

antibodies. Depending on the width of the analyzed pH range, the polynomial expression

(6.24) was either of second degree or third degree. In case of a pH variation over more than

one pH unit, a third-degree polynomial was used (m = 3). For variations smaller than

one pH unit, the approximation was reduced to a second-degree polynomial (m = 2) to

avoid an over-parameterization of the empirical equation. For pH variations over multiple

pH units, the pH-dependence of ∆i used in Eq. (6.19) can be described by the empirical

relation

log10 (∆i(pH)) = log10 (∆i(pHref))

+ ∆1,i (|σi(pH)| − |σi(pHref)|)
(6.25)

previously derived in [20]. The empirical parameters in Eq. (6.24) and Eq. (B.10) were

determined along the other model parameter by least squares fitting, as described above.

6.3.4 mAb1 and mAb2

Experimental data of mAb1 on Poros 50 HS and mAb2 on Fractogel EMD SO−3 were

taken from the literature. The data include salt gradient experiments at constant pH and

varying protein load density. For a detailed summary of the experiments, we refer to [78]

and [40], respectively. As no antibody isoforms are reported in [78] and [40], only one

protein component was considered in the model.

6.3.5 mAb3

Bind-and-elute experiments of mAb3 were performed on Capto S ImpAct packed in a

column with Lc = 97.2 mm and a bed volume of Vc = 1.9 mL. For all experiments, the

column was first equilibrated for 5 CV and then loaded to achieve a load density between

61 and 123 g L−1, depending on the experiment. After a post-loading wash step over

5.5 CV, product elution was performed by a linear increase in the salt concentration of

the mobile phase over 10, 25, or 30 CV, depending on the experiment. All experiments

were performed at a constant pH and a constant linear velocity of 100 cm h−1.

Based on analytical data, several product-related and process-related impurities were con-

sidered in the chromatography model, including three main charge variants of mAb3,

two low-molecular weight (LMW) species with an estimated molecular weight of Mw,i =

75 kDa, and one high-molecular weight (HMW) species with an estimated molecular weight

of Mw,i = 300 kDa. Considered process-related impurities involved host cell proteins

(HCPs) and leached Protein A. For simplicity and due to the lack of analytical informa-

tion on the number of species present, HCPs were considered as a single protein component

in the model. The model parameter As,i was considered to be the same for all proteins.

Due to the similar physicochemical properties of the charge variants, they were assumed to

have the same mass transfer resistance keff,i and steric size ai = 5.5 nm. For the HCPs and

leached Protein A, a molecular weight of 150 kDa and 50 kDa was assumed, respectively.

For both components, the radius was determined using Eq. (6.23).



6.4 Results and Discussion 87

6.3.6 mAb4

The strong cation exchanger Capto S ImpAct was prepacked in a column with Lc =

100 mm and Vc = 4.7 mL. All experiments were performed at a constant linear velocity of

100 cm h−1.

Linear salt gradient experiments at very low column load density were performed by

injecting a small protein pulse onto the equilibrated column. After a wash step, the protein

was eluted using a linear salt gradient over 20, 40, or 60 CV, depending on the experiment.

Experiments were performed at three different relative pH values pHrel = pH − pHref ,

including -0.3, 0, and +0.3. Four preparative experiments were performed at a constant

pHrel = 0. The experiments included two step elution experiments with a protein load

density of 20 g L−1 and 93 g L−1 as well as two salt gradient experiments with a gradient

length of 20 CV and a protein load density of 20 and 93 g L−1, respectively. Two additional

step elution experiments were performed at a protein load density of 45 g L−1. After

equilibrating, loading, and washing the column at pHrel = 0, protein elution was performed

at increased salt concentration and a relative pH of -0.2 and +0.1, respectively.

Based on analytical data, three main isoforms of mAb4 were considered in the model.

Due to similar physicochemical properties, keff,i and As,i were considered to be the same

for all three isoforms. Given the small investigated pH range and to avoid an over-

parameterization of the model, ∆i was considered to be independent of the pH and Zi(pH)

was approximated by a quadratic function assuming Z3,i = 0 in Eq. (6.24).

6.3.7 mAb5

Bind-and-elute experiments with mAb5 were performed on a Poros 50 HS column with

Lc = 100 mm and Vc = 5.0 mL. In four experiments, product elution was performed by

a linear or step-wise increase of the ionic strength keeping the pH constant at a reference

value pHref . In four additional experiments, product elution was performed by increasing

the pH linearly or step-wise by 3.5 pH units relative to pHref . For all experiments an

adapted multi-component buffer system according to [170] was used. The load density

varied between 60 and 130% of the dynamic binding capacity (DBC).

The model was calibrated using two salt elution and two pH elution experiments. The

remaining four experiments were used for model validation. Given the change in pH

over multiple pH units, a third-degree polynomial equation was used to describe the pH-

dependence of Zi. For ∆i, the pH-dependence given by Eq. (B.10) was used. The pH

and ionic strength during the process was simulated based on the buffer equilibrium, as

previously discussed by [32].

6.4 Results and Discussion

The elution profile of five mAb systems on three different CEX adsorber systems was

analysed using the chromatography model described in Sec. 6.2. Given the high protein

load densities considered in all case studies, the focus was primarily on the influence of the
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thermodynamics of adsorption on the shape of the elution profiles. Since thermodynamics

has a dominant influence on the overall elution profile in nonlinear chromatography [68],

the CPA model was combined with the TDM in this study. For studies that are more

focused on mass transfer effects at the particle level, the CPA model can also be combined

with more complex mass transfer models.

6.4.1 Parameter Estimation

System parameters of all used chromatography columns based on tracer experiments, acid-

base titration, and iSEC are summarized in Table 6.1 along with model parameters for

all investigated mAbs. The system parameters were considered constant under all process

conditions. Since εp of polymer-grafted adsorber systems has been reported to be affected

by the ionic strength, this assumption might be a simplification for Capto S ImpAct and

Fractogel EMD SO−3 [9]. Due to the lack of iSEC data for Capto S ImpAct, its ligand

surface density was approximated using iSEC data for Capto S. All other parameters were

determined specifically for the respective adsorber systems.

Protein specific model parameters summarized in Table 6.1 were determined by fitting

the model to experimental chromatograms at varying process conditions. Lumped mass

transfer coefficients keff,i determined for Poros 50 HS are in the range of previous studies

[21; 149]. They tend to be larger than those estimated on Capto S ImpAct and Fracto-

gel EMD SO−3 . A possible explanation for this could be the bimodal pore size distribution

of Poros 50 HS including large open pores transecting a network of smaller pores [186].

As described in Sec. 6.2.1, keff,i accounts for both external mass transfer resistance due

to film diffusion and internal mass transfer resistance due to pore diffusion. According to

the Mackie-Meares correlation [110], the internal mass transfer resistance decreases with

increasing εp. This would explain why among the native mAbs keff,i is lowest for mAb2 on

Fractogel EMD SO−3 . It is noticeable that mass transfer coefficients for mAb3 and mAb4

differ significantly from each other. This discrepancy may be due to complex transport

effects occurring within polymer-grafted adsorber systems. As all these effects are lumped

into one effective mass transfer coefficient, keff,i may become rather empirical in nature

and thus difficult to interpret.

Within the framework of the CPA model, proteins are primarily characterized by their

size ai and effective charge Zi. It is important to note that the charge values for the

individual mAb systems in Table 6.1 relate to different reference pH values. A quantitative

comparison of Zi between the different systems is therefore not possible. Among the mAb

charge variants, the acidic and basic variants have, as expected, the lowest and highest

charge values, respectively. Since the behavior of mAb1-mAb3 was studied at constant pH,

the parameters Z1,i, Z2,i (and Z3,i) describing the pH-dependence of Zi are shown only in

the case of mAb4 and mAb5. Given the small pH change of less than one pH unit in the

case of mAb4, the pH-dependence was only approximated by a second-degree polynomial

and thus only by Z1,i, Z2,i. The slope of the effective titration curve (Z1,i) must always

be negative. With parameter values of Z1,i = −51.07, Z2,i = 19.55, and Z3,i = −2.96, the

effective model charge of mAb5 follows qualitatively the shape of a titration curve. As

shown empirically in [20], in addition to the surface charge density, the thermodynamic

parameter ∆i strongly depends on the size of the protein. In general, large proteins have

lower parameter values in ∆i. The specific adsorber surface area As,i determined for
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Figure 6.2: Salt gradient experiments of mAb1 on Poros 50 HS (a) according to [78], mAb2
on Fractogel EMD SO−3 (b) according to [40], and mAb3 on Capto S ImpAct (c). Dashed
lines represent experimental data while continuous lines indicate simulated data based
on the CPA model. The ionic strength or conductivity of the mobile phase is shown in
gray. In case of mAb1 and mAb2, model simulations are based on one protein component.
Simulations for mAb3 include several product-related and process-related impurities. For
the sake of visualization, only the UV sum signal is shown.

Capto S ImpAct is significantly larger than the values determined for Poros 50 HS and

Fractogel EMD SO−3 . Since this parameter is related to the skeleton volume of the adsorber

system, this difference can be attributed to the large particle porosity of Capto S ImpAct.

In case of mAb3 and mAb4, it was assumed that proteins do not differ in As,i. This

assumption is reasonable for charge variants and other mAb isoforms, as they are not

expected to differ significantly in their steric size. However, for molecular species of the

mAb and process-related impurities, this assumption represents a model simplification, as

these components can differ in steric size and thus pore accessibility.

6.4.2 Peak Shoulder Formation at High Load Densities

Salt mediated elution behavior of proteins at high column load density was analyzed using

data on three strong cation exchange resins, including Poros 50 HS, Fractogel EMD SO−3 ,

and Capto S ImpAct. An exemplary chromatogram for each adsorber system is shown

in Fig. 6.2 along with fitted model curves based on the CPA model. For the sake of

visualization, only the UV sum signal is shown. Continuous lines represent fitted model

curves while dashed lines indicate experimental data. The slight increase in the simulated

conductivity trace during the loading phase can be ascribed to the release of counter-

ions described by Eq. (6.22). During protein elution, the decrease in conductivity due

to the re-adsorption of counter-ions is hardly noticeable. This can be explained by the

low protein concentration in the eluate and the superposition with the salt gradient. In

all experiments shown in Fig. 6.2, the chromatography column was loaded beyond protein

breakthrough and product elution was performed using a linear salt gradient while keeping

the pH of the mobile phase constant. For mAb1 and mAb2, data previously published

in [78] and [40] were used as the data could not be explained using the traditional SMA

model. According to [78], oscillations in the measured UV signal in Fig. 6.2(a) are caused

by flow rate limitations of the chromatography system. For a more detailed summary of

all experimental data and model results for mAb1 and mAb2, please refer to Fig. C.1 and

Fig. C.2 in the supplementary material.

On all adsorber systems, a comparable elution behavior can be observed that is charac-

terized by a distinct shoulder in the front part of the elution peak. Despite the complex
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Figure 6.3: Effect of protein load density on the elution profile of mAb2 on Fractogel
SO−3 . (a) Experimental data according to [40] at a load density of 72.5 ( ), 82.8 ( ),
93.1 ( ), and 118.2 g L−1 ( ). (b) Simulated elution profiles according to the CPA
model at a load density of 21.6 ( ), 55.5 ( ), 72.5 ( ), 82.8 ( ), 93.1 ( ), and
118.2 g L−1 ( ).

elution behavior, the experimental data on all three adsorber systems can be reproduced

adequately by the CPA model. As illustrated in Fig. 6.3 for mAb2 on Fractogel EMD

SO−3 , the extent of the peak shoulder is strongly affected by the load density and can be

observed only for experiments at very high protein load density. Please note that the data

shown in Fig. 6.3 were generated at a constant gradient slope. For a better interpretation

of the results, the retention time is shown relative to the starting point of the gradient.

The effect of the load density on the elution profile is further illustrated based on model

simulations for mAb2 in Fig. 6.3(b). According to the CPA model, an increase in the load

density initially leads to a shift of the peak maximum towards lower salt concentrations

and a strongly compressed peak front. After exceeding a load density of approximately

55 g L−1, the position and height of the peak maximum remains unchanged. Increasing the

load density further still leads to a shift of the elution front towards lower salt concentra-

tions. However, the protein concentration in the elution front decreases progressively and

the frontal part of the peak becomes more dispersed. This process behavior described by

the CPA model is also reflected by the experimental data shown in Fig. 6.3(a). Deviations

between model simulations and experimental data in Fig. 6.3 can possibly be ascribed to

dispersion effects caused by mass transfer limitations that cannot be fully covered by the

applied TDM model. However, as illustrated more closely by the overlay of simulated

and experimental chromatograms in Fig. C.2 in the supplementary material, deviations

are very small. In general, the elution behavior is adequately captured by the combina-

tion of the TDM and the CPA model. Given the good agreement between experiment

and simulation and the focus of this work on thermodynamic effects, a transition to the

more detailed general rate model was not considered. It is also important to note that

simulations shown in Fig. 6.3 are based on one protein component only, as no isoforms

are reported in [40] for mAb2. The presence of mAb isoforms or other product-related

impurities is also a possible explanation for minor discrepancies, especially in the peak

tailing.
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6.4.3 Model-Based Analysis of the Formed Shoulder

To provide a possible explanation for the observed elution behavior using the CPA model,

Fig. 6.4 shows the simulated axial distribution of adsorbed mAb2 within the chromatog-

raphy column at the beginning of the linear salt gradient. The black continuous line

represents qv,i or Θ as a function of the axial column position. The dashed black line

represents the available surface function B(Θ) given Θ. The gray shading indicates the

range Θ ∈ [Θjam,Θhex] between the maximum surface coverage of a hexagonal lattice

Θhex = 0.907 and the jamming coverage Θjam = 0.547. Due to the high load density of

72.5 g L−1 and favorable load conditions, Fractogel EMD SO−3 is highly saturated in the

upper part of the column with a maximum surface coverage of Θmax ≈ 0.658. Considering

a mAb radius of 5.5 nm and a molecular weight of 150 kDa, the predicted value for Θmax

corresponds to a saturation capacity of 1.725 mg m−2 which is in good agreement with the

experimental value of 1.897 mg m−2 reported in [166] for a mAb on Fractogel EMD SO−3 .

Given the high surface coverage in the upper part of the column, proteins in the mobile

phase have a very small probability of adsorbing by encountering an unoccupied area on

the adsorber surface which is indicated by B(Θ)→ 0. In the lower part of the column, on

the other hand, the adsorber surface is almost unoccupied. As indicated by B(Θ) → 1,

proteins in the mobile phase have a high probability of encountering an unoccupied area

and being adsorbed, provided that the electrostatic conditions are in favor. Increasing the

ionic strength at the beginning the salt gradient leads to protein desorption at the top of

the column and the formation of a concentration front migrating down the column. Given

the high steric hindrance, the velocity of a migration front w(c+) with concentration c+

is initially very high and can be close to the migration velocity of an unretained tracer

with comparable steric size um. Once the elution front reaches the unsaturated bottom

part of the column, it abruptly decelerates as the ionic strength is still low and favors a

re-adsorption of proteins to the unoccupied adsorber surface. Due to the slow migration

velocity of the elution front in the bottom part of the column and the steady arrival of

proteins from the saturated upper part, the elution front is steadily compressed and con-

centrated. The maximum concentration that can be achieved in the elution front until it

reaches the outlet of the column depends on several factors. In addition to the slope of the

salt gradient and the migration velocity of proteins in the saturated part of the column,

the length of the unsaturated bottom part plays a decisive role. Although an increase in

the protein load density leads generally to a compression and concentration of the elution

front, it also leads to a shortening of the unsaturated region. Once a certain load density

is exceeded, the concentration of the elution front at the column outlet is no longer lim-

ited by the increasing ionic strength, but by the length of the unsaturated region. The

elution front has less time or distance to be concentrated which leads to the formation

of the observed shoulder. It is important to note that the formation of a shoulder in the

peak front is in general also predicted by the SMA model. However, due to the highly

simplified stoichiometric description of steric effects in the SMA model, the shoulder is

predicted only for infeasible load densities far beyond the DBC of preparative columns.

As a consequence, the elution behavior shown in Fig. 6.3 can in general not be reproduced

by the SMA model, as already demonstrated by Diedrich et al. [40] and Huuk et al. [78].

While the simulated elution curves in Fig. 6.2(a) and Fig. 6.2(b) based on the CPA model

appear similar to the extended SMA models proposed by [78] and [40] from a visual point

of view, the proposed mechanistic models differ considerably with respect to the under-

lying physical mechanism. In [40], the elution behavior of mAb2 shown in Fig. 6.3(a)
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Figure 6.4: Concentration profile qv,i ( ) of mAb2 on Fractogel EMD SO−3 after loading
the column with a protein load density of 72.5 g L−1. Gray shading indicates the region
between the maximum surface coverage according to random sequential adsorption and
hexagonal close packing. The dashed line indicates the available surface function.

was explained by the existence of multiple binding configurations promoted by the prop-

erties of Fractogel EMD SO−3 as a polymer-grafted adsorber system. Adsorbed proteins

were thereby assumed to be gradually wrapped by tentacle structures grafted onto the

adsorber surface [40]. While the presence of multiple binding configurations cannot be

excluded based on existing experimental data, results on Poros 50 HS shown in Fig. 6.2(a)

and Fig. C.1 indicate that the analyzed elution behavior is not limited to polymer-grafted

adsorber systems, but can also be observed on adsorber systems with normal ligand struc-

ture. Furthermore, the behavior seems to be independent of the type of resin backbone

as it can be observed on both methacrylate-based adsorbers (Poros 50 HS and Fracto-

gel EMD SO−3 ) and adsorbers based on highly hydrophilic agarose (Capto S ImpAct). In

[78], the elution profile in Fig. 6.2(a) was explained by a non-ideal behavior of proteins

in the mobile phase. Using an expression for the protein activity coefficient initially in-

troduced by Mollerup [114], the non-ideality was mostly ascribed to the increasing salt

concentration during protein elution. While the proposed extension of the SMA model

was able to describe the experimental data in Fig. 6.2(a) similar to the CPA model, the

hypothesized non-ideal behavior of proteins in the mobile phase is questionable as it usu-

ally cannot be clearly reproduced for mAbs or other proteins in the linear adsorption

range [19].

6.4.4 Multi-Component Elution Behavior

The foregoing analysis of the observed peak shoulder is based on the assumption that the

considered protein system is composed of only one protein species. Although no isoforms

of mAb1 and mAb2 are reported in [78] and [40], mAb solutions are commonly complex

multi-component systems that do not only contain the protein of interest but product-

related and process-related impurities as well. Charge variants of the mAb pose a difficult

but common separation problem due to their abundance in the feed material and similar

physicochemical properties to the protein of interest. Since they differ only slightly in the
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primary sequence or glycosylation pattern, they usually coelute in preparative processes

which could also provide a potential explanation for the observed complex peak shape not

directly considered in the previous discussion. Due to the different adsorber affinity of

the charge variants, a competition for the available adsorber surface area arises in which

weaker binding isoforms can be displaced from the adsorber surface by stronger binding

isoforms. Given the similarity of charge variants with respect to their steric size, the mu-

tual displacement of these isoforms can likely be considered as a stoichiometric process

where one adsorbed protein is exchanged by another protein in the mobile phase. This sto-

ichiometric exchange leads to a change in the composition of the migrating concentration

front but not to a significant change in its total concentration. Regardless of its composi-

tion, the migrating elution front is decelerated and compressed in the lower unsaturated

part of the column as described above. The total protein concentration of the elution front

at the end of the column is still dependent on the slope of the gradient and especially the

length of the unsaturated part of the column. However, since displacement effects in the

upper part of the column cause the lower part to become enriched in weakly binding iso-

forms, the peak shoulder should be reflected not only in the measured UV absorbance or

total protein concentration, but also in the elution profiles of the individual isoforms. To

demonstrate the formation of the characteristic peak shoulder for multi-component sys-

tems, Fig. 6.5 shows experimental data and model results for mAb3 on Capto S ImpAct.

According to analytical data, the protein system contains numerous product-related im-

purities including charge variants shown in Fig. 6.5(d)-(f) as well as LMWs and HMWs

shown in Fig. 6.5(g)-(i). Process-related impurities including HCPs and leached Protein

A are reported as well Fig. 6.5(j)-(l). As described in Sec. 6.3.5, HCPs were treated as

a single component in the model. This treatment is certainly a significant simplification,

as the system is expected to contain a large number of different HCP species varying in

size and charge. As a result, discrepancies between model and experiment are more pro-

nounced in the case of HCPs. In general, however, experimental data can again be well

reproduced by the model, especially in the case of the charge variants. The experimental

data were chosen as they provide a precise analytical resolution of the elution profiles of

the individual charge variants. As shown in Fig. 6.5(a)-(c), the measured UV sum signal

is again characterized by the previously discussed shoulder in the front part of the elution

peak. Only the experiment at lowest load density shown in Fig. 6.5(a) reflects the classical

’shark fin’ profile characterized by a compressed peak front and a dispersed back. This

behavior is consistent with the results shown in Fig. 6.3. Given the low concentration of

HMWs, LMWs, and process-related impurities, it is unlikely that they are responsible for

the complex elution behavior. In contrast to mAb1 and mAb2, the measured sum signal

is composed of the elution profiles of the individual charge isoforms including one most

abundant acidic isoform, a main isoform, and a basic isoform. While the main and basic

isoform show a similar elution behavior and coelute in all three experiments, both iso-

forms differ strongly from the acidic form. With increasing load density from Fig. 6.5(d)

to Fig. 6.5(f), the front of the acidic elution profile itself becomes increasingly dispersed

reflecting the peak shoulder at the highest protein load density shown in Fig. 6.5(f). The

shoulder is formed by the acidic isoform as it shows the lowest affinity to the adsorber

surface. At the beginning of the salt gradient, it has the lowest probability of re-adsorbing

since it cannot displace the basic or main isoform from the adsorber surface. The main

and basic isoform, on the other hand, can displace the acidic isoform from the adsorber

surface and are therefore more likely to re-adsorb. As a consequence, the elution profiles

of both isoforms are less effected by an increase in the protein load density and follow a
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similar behavior in all three experiments. The change in the elution profile of the acidic

charge variant from Fig. 6.5(d) to Fig. 6.5(f) shows that the behavior described above is

reflected not only in the sum signal, but also in the individual elution profiles of mAb

isoforms.

To ensure that the CPA model cannot only describe the elution behavior at very high pro-

tein load densities, but the entire linear and nonlinear adsorption range simultaneously,

Fig. 6.6 and Fig. 6.7 show data of mAb4 on Capto S ImpAct at different pH values and

protein load densities ranging from small pulse injections up to the dynamic binding ca-

pacity of the adsorber. In all cases, black and gray dashed lines represent the measured

UV and conductivity signal, respectively. Simulated UV signals are indicated by continu-

ous black lines in Fig. 6.6 and Fig. 6.7, while continuous colored lines in Fig. 6.7 represent

simulated concentration profiles. For the sake of visualization, measured protein concen-

trations based on fraction analysis are represented by colored dots. All experiments show

good agreement between measured and simulated data indicating that the CPA model

can properly reflect the effect of load density on the elution profile ranging from analytical

pulse injections up to preparative load densities. Pulse injection experiments shown in

Fig. 6.6 were performed at different salt gradient slopes. Measured and simulated elution

peaks show no shoulder or split peaks suggesting unexpected elution behavior at higher

load densities. Due to the steep gradient slopes considered, no separation of the isoforms is

achieved. For the salt gradient experiment at very high load density shown in Fig. 6.7(b),

on the other hand, the previously discussed peak shoulder can again be observed. While

the isoforms show distinct elution profiles given their individual affinity to the adsorber

system and displacement effects, the main isoform follows the same behavior as mAb1 and

mAb2. For the remaining preparative experiments, no unexpected elution behavior can be

observed. It is worth noting that the salt gradient experiments shown in Fig. 6.7(a) and

Fig. 6.7(b) were performed under the same elution conditions but different protein load

densities. A comparison of both experiments in Fig. C.3 in the supplementary materials

suggests the same behavior as for mAb2 in Fig. 6.3.

6.4.5 pH Gradient Elution

Aside from regulating protein retention by the ionic strength, a regulation by the pH of

the mobile phase is common in analytical and preparative chromatography. To compare

both elution mechanisms at preparative conditions and verify if the CPA model is capable

of describing both mechanisms simultaneously, the model was calibrated and validated

using chromatography data of mAb5 on Poros 50HS. Protein elution was performed either

by a linear or step-wise increase of the ionic strength at constant pH, or vice versa, by a

linear or step-wise increase of the pH keeping the ionic strength almost unchanged.

In contrast to salt gradient experiments, the elution mechanism in pH gradients and steps

is not primarily based on an electrostatic screening of surface charges by an increase in the

ionic strength, but predominantly on a reduction or reversal of the surface charge density

itself. Depending on the strength of the adsorber system, the surface charge density of

both the protein and the adsorber can be affected.

A comparison between experimental data and model curves is shown in Fig. 6.8(a)-(d)

and Fig. 6.8(e)-(h) for the model calibration and validation, respectively. Experimental
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Figure 6.5: Linear salt gradient experiments of mAb3 on Capto S ImpAct. First column:
Salt gradient over 10 CV and a load density of 61 g L−1; Second column: Salt gradient
over 30 CV and a load density of 98 g L−1; Third column: Salt gradient over 25 CV and
a load density of 123 g L−1. (a)-(c): Comparison between measured ( ) and simulated
UV sum signal ( ). The conductivity is shown in gray. (d)-(f): Simulated concentra-
tion profiles of the acidic isoform ( ), main isoform ( ), and basic isoform ( ) of
mAb3 on Capto S ImpAct. Experimental fraction data are represented by colored dots.
(g)-(i): Simulated concentration profiles of LMWs ( ) and HMWs ( ) of mAb3 on
Capto S ImpAct. For the LMWs, the sum signal of both LMW species is shown. Ex-
perimental fraction data are represented by colored dots. (j)-(l): Simulated concentration
profiles of HCPs ( ) and leached Protein A ( ) on Capto S ImpAct. Experimental
fraction data are represented by colored dots.
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Figure 6.6: Linear salt gradient experiments of mAb4 on Capto S ImpAct at low column
load density and relative pH of -0.2 (a), 0 (b), and +0.2 (c). Black and gray dashed lines
represent the measured absorbance at 280 nm and the measured measured conductivity
signal, respectively. Continuous lines represent model simulations based on the CPA model
for three different isoforms of mAb4.
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Figure 6.7: Salt elution experiments of mAb4 on Capto S ImpAct at different column load
densities and a relative elution pH of 0 (a)-(d), -0.2 (e), and +0.2 (f). Black and gray
dashed lines represent the measured UV absorbance and conductivity signal, respectively.
Continuous lines represent model simulations based on the CPA model including the UV
sum signal ( ) as well as the concentration of isoform1 ( ), isoform2 ( ), and isoform3
( ) of mAb4.
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Figure 6.8: Experiments of mAb5 on Poros 50 HS used for the calibration (a)-(d) and val-
idation of the CPA model (e)-(h). Comparison between experimental data (dashed lines)
and simulations based on the CPA model (continuous lines). For the sake of visualization,
the simulated UV signal was limited to 3 AU. The conductivity and relative pH are shown
in gray and green, respectively. Experiments were performed at 130% (a), 80% (b), 60%
(c), 80% (d), 80% (e), 60% (f), 100% (g), and 115% (h) of the DBC.
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data are represented by dashed lines while continuous lines indicate model results. For

the sake of visualization, the simulated UV signal was limited to 3 AU. Experiments in

which protein elution was achieved by an increase in pH are shown in Fig. 6.8(a)-(b) and

Fig. 6.8(e)-(f). For the experiments shown in Fig. 6.8(c)-(d) and Fig. 6.8(g)-(h), elution

was performed by increasing the ionic strength while keeping the pH constant. In case

of the ionic strength and pH, solid lines represent theoretical values based on the buffer

equilibrium. The increase of the gradient slope at the end of the pH gradient can thereby

be ascribed to a decrease in the buffer capacity. Observable deviations between theoretical

and measured pH values of up to 0.5 pH units have also been reported in previous studies

using the in-line pH electrode of the chromatography system [66; 97]. The discrepancy

was mostly attributed to a systematic error of the in-line sensor identified by a drift of

the measured pH value over time [97]. Based on the previous reports, deviations between

simulated and measured pH values in Fig. 6.8 were not further analyzed. As the exper-

imental UV signal and the conductivity shown in Fig. 6.8 were measured by individual

in-line sensors, uncertainties in the measured pH have no effect on other measured process

variables. For all calibration and validation experiments shown in Fig. 6.8, a good agree-

ment between model results and experimental data can be observed. Despite the observed

complex elution behavior of mAb5 at high column load density, both the shape and posi-

tion of the elution peaks are adequately described by the CPA model. The sharp increase

in the measured and simulated UV signal at the back of the elution peak in Fig. 6.8(f) can

be attributed to the decreasing buffer capacity at the end of the pH gradient and a strong

decrease in the protein charge for pHrel > 3.0. The validation results shown in Fig. 6.8(e)-

(h) indicate that the CPA model can explain protein retention over a wide range of column

load density, pH, and ionic strength. It is worth noting that experimental data shown in

Fig. 6.8(a) and Fig. 6.8(f) were performed under the same elution conditions but different

load densities. A comparison of both pH gradient experiments in Fig. 6.9(a) reveals an

effect of the load density on the elution profile that is consistent with the observations

previously made in Fig. 6.3 for salt gradient experiments. For the sake of visualization,

the retention volume in Fig. 6.9 is again shown with respect to the starting point of the pH

gradient. As previously described for the salt gradient experiments and further illustrated

in Fig. 6.9(b) using the validated CPA model, an increase in the load density initially

leads to an increase in the peak height and a shift of the peak maximum towards lower

pH values, as expected. However, in accordance with previous observations in Fig. 6.3,

the position and height of the peak maximum remains unchanged again after exceeding

a load density of approximately 50% of the DBC. A further increase in the load density

leads to a significant increase in peak width and the formation of a shoulder in the peak

front. The peak height remains unchanged. As the ionic strength was kept very low in

the experiment shown in Fig. 6.9 it is very unlikely that the qualitative similar behavior

for salt and pH gradients can be ascribed to interactions between proteins and ions as

proposed by [78]. By ascribing the observed behavior to a combination of strong steric

hindrance in the upper part of the column and protein re-adsorption in the lower part of

the column, the CPA model provides an explanation for the observed behavior for both

salt and pH gradients.
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Figure 6.9: Effect of protein load density on the elution profile of mAb5 on Poros 50 HS
at a constant pH gradient slope. (a) Experimental data at a load density of 33 ( ) and
130% ( ) of the dynamic binding capacity. (b) Simulated elution profiles according to the
CPA model at a load density of 1 ( ), 10 ( ), 33 ( ), and 130% ( ) of the dynamic
binding capacity. The retention volume is shown with respect to the starting point of the
pH gradient.

6.5 Conclusion

In this work, complex protein retention behavior in preparative chromatography processes

was described and analyzed using a previously introduced CPA model. The model was

found to be capable of reproducing elution profiles at high protein load densities that

cannot be described by the commonly used SMA model. In agreement with reports from

the literature, the formation of a characteristic shoulder in the front part of the elution peak

was observed for salt gradients and protein load densities close to or beyond the dynamic

binding capacity. By considering several mAbs and multiple IEX adsorber systems, it was

demonstrated that the reported behavior appears to be independent of the ligand structure

and backbone of the adsorber system. Thereby, the formation of the peak shoulder could

also be demonstrated for pH gradients. According to the CPA model, the reported complex

behavior can be ascribed to a strong compression and concentration of the elution front

in the lower unsaturated part of the chromatography column. As the unsaturated part of

the column decreases with increasing protein load density, exceeding a critical load density

can lead to the formation of the observed peak shoulder.

By using the CPA model for several industrial case studies, it was shown that the model

can reproduce the elution behavior of proteins over a wide range of protein load densities,

spanning from analytical pulse injections to load densities beyond the dynamic binding

capacity. The applicability of the CPA model is not limited to salt gradient or salt step

elution experiments, but also includes protein elution controlled by the pH of the mobile

phase. The ability of the model to describe complex elution behavior can help to better

understand industrial IEX processes and to support the development of these processes in

a model-based approach.



CHAPTER7
Conclusion

This work was devoted to solve important challenges with the use of mechanistic models

for the development of preparative ion exchange (IEX) chromatography. Despite the

inherent advantages of mechanistic models, their application in an industrial setting is

often hindered by insufficient model accuracy or a lack of confidence in mechanistic models

on the part of decision-makers.

One key aspect of this work was to increase confidence in the predictive ability of mecha-

nistic chromatography models by developing a strategy to assess the uncertainty of these

models in a quantitative manner. Inspired by other research areas, a strategy based on

Bayesian inference was introduced and applied in an industry case study (Chapter 3).

Within the proposed framework, Monte Carlo techniques like Markov Chain Monte Carlo

were used to perform approximate Bayesian inference. Though Monte Carlo techniques

can be computationally expensive, they provide reliable information on the residual un-

certainty of model parameters as joint probability distributions. In contrast to frequentist

approaches used in previous works, the proposed uncertainty assessment does not only pro-

vide a lower limit for uncertainty of model parameters, it is also not limited to situations

with a symmetric uncertainty interval. Furthermore, the presented uncertainty assess-

ment is not limited to model parameters, but also provides a prediction-based uncertainty

assessment of the entire model. Understanding the predictive uncertainty of mechanistic

chromatography models is important as they are often used to perform extrapolations

beyond the observed range.

Driven by shortcomings of existing mechanistic models like the steric mass action (SMA)

model in adequately describing protein retention behavior in IEX chromatography, the

main part of this thesis (Chapters 4-6) was dedicated to the development of the colloidal

particle adsorption (CPA) model as an alternative adsorption model. The CPA model

was first introduced for the linear adsorption range capturing the adsorption equilibrium

of proteins onto charged IEX media in the presence of electrostatic double layer interac-

tions. To keep the model computational simple, electrostatic interactions were simulated

as a function of the pH value and ionic strength using the linearized Poisson-Boltzmann

equation and a simplified colloidal representation of proteins as perfect spheres with uni-

form surface charge density. The surface charge density was estimated using theoretical

101
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protein titration curves based on molecular structural information. The derived model

was found to be capable of describing protein partitioning coefficients over a wide range

of ionic strength and pH. By considering the molecular structural differences between a

mAb and its post-translational modifications, it was also possible to predict the adsorption

behavior of antibody charge variants. While the derivation of the protein surface charge

density from theoretical titration curves is beneficial in terms of model calibration, this

approach necessitates that the primary structure is known for all proteins. This require-

ment is usually not met in practice, as many process and product-related impurities are

less analyzed than the actual protein of interest. Thus, in the rest of the thesis, the surface

charge density was empirically derived from experimental data.

Subsequently, the model was extended to the nonlinear adsorption range by consider-

ing steric and electrostatic interactions between adsorbed proteins. A two-dimensional

scaled-particle theory was applied to simulate steric interactions. Electrostatic protein-

protein interactions were simulated using an approximation of adsorbed proteins as a two-

dimensional Yukawa system. Following the general notation, the contribution of steric

effects was expressed in terms of an available surface function (ASF). As a measure for the

conditional probability by which an adsorbing proteins finds an unoccupied area on the

adsorber surface, the ASF physically limits protein adsorption by the available adsorber

surface. This is in contrast to the SMA model, where protein adsorption is limited by

the ionic capacity of the adsorber system. Both the SMA model and the extended CPA

model were compared by simulating adsorption isotherms of a mAb over a wide range of

ionic strength and pH. While both adsorption models showed comparable results in the

linear adsorption range, they showed significant differences in the nonlinear adsorption

range. The comparison indicated that nonlinear adsorption effects can be overestimated

considerably by the stoichiometric approach of the SMA model and are in general better

represented by the CPA model.

After deriving the CPA model under equilibrium conditions, a kinetic derivation of the

model was presented to provide an expression for the rate of adsorption and desorption.

Combined with the transport dispersive model as column wide transport model, the kinetic

form of the CPA model was used to simulate protein retention behavior in preparative IEX

processes. The CPA model was found to be able to describe even complex elution behav-

ior that cannot be described by the traditional SMA model. In agreement with previous

reports, the formation of a distinct shoulder in the elution peak was observed at high

load densities close to or beyond the dynamic binding capacity of the column. The peak

shoulder formation was observed for both salt gradient elution and pH gradient elution.

According to the CPA model, the observed behavior can be attributed to a complex inter-

play between attractive electrostatic protein-adsorber interactions and a steric blockade

of the adsorber surface by adsorbed proteins. Shortcomings of the SMA model and other

models in describing the observed elution behavior often prevented the use of mechanistic

models in the past.

In conclusion, this work contributed to the computational modeling of IEX chromatog-

raphy by addressing important challenges that often prevent mechanistic models from

being used systematically in process development. It was shown that the developed CPA

model can overcome shortcomings of existing adsorption theories and explain even complex

industrial process behavior. Confidence in the predictive capabilities of mechanistic chro-

matography models was increased by introducing a strategy for assessing the uncertainty
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in model simulations. The approaches and theories developed in this work contribute

to a more widespread use of mechanistic models to support process development of IEX

chromatography in a scientific but also risk-based manner.





CHAPTER8
Outlook

Applying mechanistic models to support the development of chromatography processes has

gained increasing momentum in recent years. Thanks to the emergence of user-friendly

software tools, the barrier to entry for new users has been lowered significantly, making

the technology accessible not only to academia but also to industry. Driven by growing

regulatory and economic constraints, the use of mechanistic models is expected to continue

to increase in the coming years. Several industrial case studies already demonstrate the

potential of mechanistic models to support and streamline process optimization, charac-

terization, and scale-up. Thus, it is expected that the evidence of process and product

safety that companies provide to regulatory authorities such as the U.S. Food and Drug

Administration will in the future no longer be provided by experiments alone, but will

increasingly be supported by model simulations. The use of mechanistic models to inform

regulatory decisions will present new challenges in the future, especially with respect to

the qualification of these models. To date, there is no consensus on how to determine

and demonstrate the suitability of a mechanistic chromatography model for an intended

use, neither on the part of the industry nor on the part of the regulatory authorities.

As the application of mechanistic models is typically guided by experience and internally

developed best practices, modeling approaches and qualification standards can vary signifi-

cantly across the industry. Therefore, a major challenge will be to establish a more unified

modeling framework that can help to standardize the development and qualification of

mechanistic chromatography models.

A rigorous uncertainty assessment of a model, as described in Chapter 3, will be an im-

portant step in demonstrating model qualification. However, while the proposed Bayesian

framework provides higher rigor then commonly applied frequentist approaches, applied

sampling techniques to perform approximate Bayesian inference can be computationally

intensive. Especially if the parameter posterior distribution is not sufficiently constrained

due to a large number of unknown model parameters, weak priors, or limited experimental

data for model calibration. In this work, only weak priors were used, which contain only

little information on the model parameters and constrain the posterior distribution only

slightly. While the use of prior knowledge is firmly anchored in the traditional develop-

ment of chromatography processes, it has not been used extensively in the course of the

modeling of such processes. Future studies could focus on the definition of stronger prior
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distributions for unknown but physically constrained model parameters. This would help

to constrain the parameter posterior distribution, increase the efficiency of Monte Carlo

techniques like Markov Chain Monte Carlo, and ultimately simplify the calibration and

uncertainty assessment of mechanistic models.

While great progress has been made in understanding and simulating protein adsorp-

tion in ion exchange chromatography (IEC), the understanding of protein adsorption in

other chromatography modes such as hydrophobic interaction chromatography (HIC) and

mixed-mode chromatography (MMC) is still limited. Thus, to date, there are no adsorp-

tion models for HIC and MMC that are based on a strictly physical approach. Instead,

conceptually simpler stoichiometric models are used that show strong resemblance to the

stoichiometric approach used within the steric mass action model for IEC. Despite the

widespread use of HIC and MMC processes in modern downstream processing, existing

models for HIC and MMC have hardly been used for the simulation of preparative pro-

cesses. Thus, the validity and general applicability of these models for simulating complex

industrial processes is still quite unclear and should be evaluated in future work.

Even though the adsorption theory developed in this work is devoted primarily to IEC,

some aspects of this work can also contribute to the computational modeling of other

modes of chromatography such as HIC and MMC. While electrostatic interactions are

dominant in IEC, they also play a major role in MMC. The developed colloidal particle

adsorption model can therefore be used as a starting point for future work to develop

more sophisticated adsorption models for MMC. Furthermore, the description of nonlinear

adsorption effects by means of the scaled-particle theory is not limited to IEC but can also

be applied to describe nonlinear adsorption effects within other modes of chromatography.
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geschwindigkeit von Gasen an porösen Stoffen II. Kolloid-Zeitschrift, 86, 3 (1939),

295–313. doi:10.1007/BF01511392.

182. Wiczling, P.; Kubik,  L.; and Kaliszan, R., 2015. Maximum A Posteriori

Bayesian Estimation of Chromatographic Parameters by Limited Number of Exper-

iments. Analytical Chemistry, 87, 14 (2015), 7241–7249. doi:10.1021/acs.analchem.

5b01195.

183. Wilson, J. N., 1940. A Theory of Chromatography. Journal of the American

Chemical Society, 62, 6 (1940), 1583–1591. doi:10.1021/ja01863a071.

184. Wittkopp, F.; Peeck, L.; Hafner, M.; and Frech, C., 2018. Modeling and

simulation of protein elution in linear pH and salt gradients on weak, strong and

mixed cation exchange resins applying an extended Donnan ion exchange model.

Journal of Chromatography A, (2018). doi:10.1016/j.chroma.2018.02.020.

185. Wldom, B., 1963. Some topics in the theory of fluids. The Journal of Chemical

Physics, 39, 11 (1963), 2808–2812. doi:10.1063/1.1734110.

186. Wu, Y.; Simons, J.; Hooson, S.; Abraham, D.; and Carta, G., 2013. Protein

and virus-like particle adsorption on perfusion chromatography media. Journal of

Chromatography A, 1297 (2013), 96–105. doi:10.1016/j.chroma.2013.04.062.

187. Xu, A. and Lenhoff, A. M., 2008. A predictive approach to correlating protein

adsorption isotherms on ion-exchange media. Journal of Physical Chemistry B, 112,

3 (2008), 1028–1040. doi:10.1021/jp0754233.

188. Xu, X. and Lenhoff, A. M., 2009. Binary adsorption of globular proteins on

ion-exchange media. Journal of Chromatography A, 1216, 34 (2009), 6177–6195.

doi:10.1016/j.chroma.2009.06.082.

189. Yamamoto, S.; Nakanishi, K.; Matsuno, R.; and Kamikubo, T., 1983. Ion

exchange chromatography of proteins-prediction of elution curves and operating con-

ditions. I. Theoretical considerations. Biotechnology and Bioengineering, 25, 6 (1983),

1465–1483. doi:10.1002/bit.260250605.

190. Yao, Y. and Lenhoff, A. M., 2006. Pore size distributions of ion exchangers and

relation to protein binding capacity. Journal of Chromatography A, 1126, 1-2 (2006),

107–119. doi:10.1016/j.chroma.2006.06.057.



BIBLIOGRAPHY 123

191. Yoon, B. J. and Lenhoff, A. M., 1992. Computation of the electrostatic in-

teraction energy between a protein and a charged surface. The Journal of Physical

Chemistry, , 4 (1992), 3130–3134. doi:10.1021/j100186a064.

192. Yu, D.; McLean, M. D.; Hall, J. C.; and Ghosh, R., 2008. Purification

of monoclonal antibody from tobacco extract using membrane-based bioseparation

techniques. Journal of Membrane Science, 323, 1 (2008), 159–166. doi:10.1016/j.

memsci.2008.06.019.

193. Zhang, A.; Hu, P.; Macgregor, P.; Xue, Y.; Fan, H.; Suchecki, P.; Ol-

szewski, L.; and Liu, A., 2014. Understanding the conformational impact of chem-

ical modifications on monoclonal antibodies with diverse sequence variation using hy-

drogen/deuterium exchange mass spectrometry and structural modeling. Analytical

Chemistry, 86, 7 (2014), 3468–3475. doi:10.1021/ac404130a.

194. Zhang, L.; Selker, J.; Qu, A.; and Velayudhan, A., 2001. Numerical es-

timation of multicomponent adsorption isotherms in preparative chromatography:

Implications of experimental error. Journal of Chromatography A, (2001). doi:

10.1016/S0021-9673(01)01297-3.





Appendix A: Supplementary Material

for Chapter 3

Figure A.1: Parameter traces indicating the parameter values of the 50 walkers at each
step in the Markov Chain. The walkers were initialized around the estimated maximum
likelihood estimate and evolved over 5000 steps per walker. Samples taken during the
initial burn-in-phase were discarded.

125



126 Appendix A: Supplementary Material for Chapter 3

Figure A.2: Parameter posterior distribution. Shown on the diagonal are the marginal
distributions of the parameters. Off the diagonal are the joint probability distributions
between two parameters. Regions of highest posterior density are shown in yellow.
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B.1 System Characterization
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Figure B.1: System parameters of PorosXS. Markers represent experimental retention
data of tracer substances of varying molecular size according to [166]. Continuous lines
represent fitted pore model data.

B.2 Protein-Protein interaction

In alignment with [128], the two-dimensional adsorption plane is divided in a set of con-

centric annuli of same thickness D as shown in Fig. B.2. The average number of adsorbed

proteins of species i in the k-th annulus is given by

nk,i = 2πqiNA

∫ rk+D
2

rk−D2
rdr = 2πDrkqiNA, (B.1)

whereby rk = r1 + (k−1)D represents the average radius of the k-th annulus and r1 is the

average radius of the inner annulus. As shown in Fig. B.2, the number of colloids in the

inner annulus corresponds to the number of nearest neighbors, namely 6 in the case of a

hexagonal lattice. The average radius of the inner annulus r1 = Dhex corresponds to the

center-to-center distance Dhex in a hexagonal lattice. Using Eq. (B.1) and the condition

n1 =
∑

i n1,i = 6 for the inner annulus, D is defined by

D =
6

2πNADhex
∑

i qi
=

3
√

3

2π
Dhex. (B.2)
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Dhex

D

Figure B.2: Schematic representation of the considered protein arrangement within the
two-dimensional adsorption layer. Protein centers are assumed to be arranged on evenly
spaced concentric circles.

Assuming that proteins within an annulus are evenly distributed over the ring with radius

rk and pairwise additivity of two-body interactions, ulat,i can be approximated by

ulat,i ≈
n∑
j=1

∞∑
k=1

nk,jui,j(rk), (B.3)

whereby ui,j represents the electrostatic two-body interaction given by the Yukawa poten-

tial

ui,j(rk) = βi,j
exp (−κrk)

rk
(B.4)

and

βi,j = Zlat,iZlat,j
e2

4πεε0

exp (κ(ai + aj))

(1 + κai)(1 + κaj)
. (B.5)

Using Eq. (B.1) and Eq. (B.5), Eq. (B.3) can be rewritten to

ulat,i = 2πDNA

n∑
j=1

qjβi,j

∞∑
k=1

exp (−κrk) . (B.6)

Using the definition of rk it follows

ulat,i = 2πDNA

n∑
j=1

qjβi,j exp (−κ (Dhex −D))
∞∑
k=1

exp (−kκD) (B.7)

which can be expressed as the closed-form expression

ulat,i = 3
√

3DhexNA
exp (−κDhex)

1− exp
(
−3
√

3
2π κDhex

) n∑
j=1

qjβi,j , (B.8)

whereby D was substituted by Eq. (B.2).



B.3 Linear Gradient Experiments 129

B.3 Linear Gradient Experiments

Experiments were performed with seven proteins varying in molecular weight Mw and

isoelectric point (pI) as shown in Table B.1.

Table B.1: Proteins used for the linear salt gradient experiments in ascending order of
Mw.

Protein Oragnism UniProt pI [−] M§w [kDa] a†i [nm]
α-Lactalbumin Bovine P00711 4.3 14.2 1.50
Ovalbumin Chicken P01012 4.4-4.7 44.3 2.29
Bovine serum albumin Bovine P02769 4.7 66.4 2.66
Conalbumin Chicken P02789 6.1 77.0 2.79
Amyloglucosidase Aspergillus niger Q870G8 3.6 97.0 3.06
Glucose oxidase Aspergillus niger P13006 4.2 160.0 3.68
Catalase Bovine P00432 5.4 250 4.34
§ according to the manufacturer.
† according to Eq. (B.9).

The protein radius ai was derived from Mw according to the empirical relation

log10

( ai
1 nm

)
= a+ b log10

(
Mw,i

1 kDa

)
, (B.9)

whereby the parameters a = −0.25 and b = 0.37 have been determined based on light

scattering data of globular proteins [158].

Experiments were performed on an Ettan chromatography system equipped with a pump

unit P-905, dynamic single chamber mixer M-925 (90 µL mixer volume), UV monitor UV-

900 (3 mm optical path length), and a conductivity cell pH/C-900 (all GE Healthcare,

Little Chalfont, Buckinghamshire, UK). The strong anion exchanger Q Sepharose FF

(GE Healthcare, Uppsala, Sweden) was prepacked by GE Healthcare in a HiTrap column

with column volume Vc = 0.962 mL and column length Lc = 25 mm. According to the

manufacturer, the adsorber surface of Q Sepharose FF is functionalized with a quaternary

amine. With reference to [89], the properties of the functional groups are given by ζL = 1

and pKL = 12. The total column porosity and adsorber ionic capacity were determined

according to [79] using tracer pulse injections and acid-base titration. Dextran with an

average Mw of 2000 kDa and sodium chloride were used as non-pore penetrating and fully

pore penetrating tracer, respectively. The pore size distribution parameters rp and sp for

Q Sepharose FF were determined by inverse size exclusion chromatography as described in

Sec. 5.3.1 using sodium chloride, dextran, and all seven proteins at nonbinding conditions

as tracer substances. A comparison between the fitted pore model and experimental KD

values can be found in Fig. B.3. Based on rp and sp, As,0 and ΓL = ΛIEXA
−1
s,0 were

determined. All system parameters are summarized in Tab. B.2.

For all seven proteins, salt gradients were performed at different normalized gradient slopes

GH = ε(Im,B− Im,A)Vc/Vg, whereby Vg is the duration of the gradient in volume and Im,A

and Im,B represent the ionic strength at the beginning and end of the gradient, respectively.

A summary of the buffers, pH values, Im,A, and Im,B can be found in Table B.3. In all

cases, the ionic strength of the buffers was adjusted using sodium chloride. For each
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Figure B.3: System parameters of Q Sepharose FF. Markers represent experimental reten-
tion data of sodium chloride, dextran (both ×), α-Lactalbumin ( ), ovalbumin ( ), BSA
( ), conalbumin ( ), amyloglucosidase ( ), glucose oxidase ( ), and catalase ( ) at non-
binding conditions. Continuous lines represent fitted pore model data.

Table B.2: System parameters of Q Sepharose FF

System parameter Unit Value
Pore size distribution parameter rp [nm] 17.59
Pore size distribution parameter sp [−] 0.37
Total accessible surface area As,0 [nm−1] 0.48
Ionic capacity ΛIEX [M] 1.60
Ligand density ΓL = ΛIEXA

−1
s,0 [µmol m−2] 3.35

Column length Lc [mm] 25
Column volume Vc [mL] 0.96
Void fraction ε [−] 0.30
Total column porosity εt [−] 0.86

experiment, the protein was dissolved in the corresponding equilibration buffer (buffer A)

and injected via a 100 µL sample loop. After a wash step over 2 CV of buffer A, the linear

salt gradient from buffer A to buffer B was applied. All experiments were performed at

a constant flow rate of 0.75 mL min−1. Markers in Fig. B.4 indicate the measured ionic

strength at protein elution as a function of GH. Black lines represent fitted model curves

based on the CPA model. For Conalbumin and Catalase only data in the range of pH 6.5-

8.5 are shown, since both proteins showed non-binding behavior at pH 5.5. This behavior

is consistent with the published pI values of both proteins shown in Table B.1. Determined

model parameters are summarized in Table B.4 and Table B.5.

Table B.3: Buffers used for the linear gradient experiments at varying pH values. The
ionic strength of the buffers was adjusted using sodium chloride.

pH Buffer system Ionic strength [M]
Buffer A Buffer B

5.5 Piperazine 0.042 0.344
6.5 Bis-tris 0.010 0.404
7.5 Tris 0.016 0.500
8.5 Tris 0.006 0.512
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Table B.4: Model parameters determined for different proteins on Q Sepharose FF using
linear salt gradient experiments at low load density: Zi as a function of the buffer pH.

Zi [−]
Protein pH 5.5 pH 6.5 pH 7.5 pH 8.5
α-Lactalbumin −6.21± 0.04 −8.71± 0.09 −9.38± 0.07 −10.15± 0.0.14
Ovalbumin −14.49± 0.0.25 −18.98± 0.34 −19.18± 0.51 −20.35± 0.45
Bovine serum albumin −13.73± 0.20 −18.98± 0.22 −24.52± 0.51 −34.44± 0.81
Conalbumin - −7.65± 0.15 −9.21± 0.32 −13.20± 0.22
Amyloglucosidase −44.64± 0.15 −51.12± 0.13 −53.55± 0.13 −59.47± 0.19
Glucose oxidase −42.27± 0.52 −53.25± 0.69 −57.05± 2.35 −62.02± 0.90
Catalase - −24.56± 0.37 −38.96± 1.03 −42.10± 0.55

Table B.5: Model parameters determined for different proteins on Q Sepharose FF using
linear salt gradient experiments at low load density: ∆i as a function of the buffer pH.

log10 (∆i) [−]
Protein pH 5.5 pH 6.5 pH 7.5 pH 8.5
α-Lactalbumin −0.59± 0.02 −1.05± 0.03 −1.22± 0.03 −1.33± 0.06
Ovalbumin −1.25± 0.08 −1.91± 0.09 −1.84± 0.14 −2.02± 0.12
Bovine serum albumin −0.49± 0.05 −1.00± 0.05 −1.76± 0.11 −3.28± 0.17
Conalbumin - 0.31± 0.04 0.13± 0.08 −0.32± 0.05
Amyloglucosidase −3.22± 0.02 −3.85± 0.02 −4.06± 0.02 −4.83± 0.03
Glucose oxidase −2.86± 0.09 −3.87± 0.11 −4.05± 0.37 −4.50± 0.14
Catalase - −0.45± 0.05 −1.56± 0.14 −1.57± 0.07

Figure B.5(a) shows determined values of ∆i for all proteins in the pH range 5.5-8.5 as a

function of the absolute protein surface charge density. For all proteins, an exponential

relationship given by

log10 (∆i(pH)) = log10 (∆0,i) + ∆1,i|σI,i(pH)| (B.10)
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Figure B.4: Elution salt concentration as a function of the normalized gradient slope for
seven proteins on Q Sepharose FF. Markers represent experimental data at pH 5.5 ( ), 6.5
( ), 7.5 ( ), 8.5 ( ). Black lines represent fitted model curves.
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Figure B.5: Dependence of ∆i on σi and ai. (a) ∆i as a function of the absolute value of
σi for α-Lactalbumin ( ), ovalbumin ( ), BSA ( ), conalbumin ( ), amyloglucosidase ( ),
glucose oxidase ( ), and catalase ( ). Black dashed lines represent fitted curves according
to Eq. (B.10). (b) ∆1,i of Eq. (B.10) as a function of ai. The dashed line is for visual
guidance.

can be observed between ∆i and σI,i = eZi(4πa
2
i )
−1, whereby ∆0,i represents the intercept

at σI,i = 0 and ∆1,i is the slope of the dashed lines shown in Fig. B.5(a). According to

Eq. (B.10), the pH dependence of ∆i is dictated by the effective titration curve Zi(pH) of

the model protein. As shown in Fig. B.5(b), the relationship ∆i(σi) is strongly affected

by ai or Mw,i of the protein.
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Figure C.1: Salt gradient experiments of mAb1 on Poros 50 HS at different protein load
densities including 90 (a), 75 (b), and 2.6 g L−1 (c). Comparison between experimental
data ( ) according to [78] and simulated data based on the CPA model ( ). Black and
gray lines represent UV absorbance and the ionic strength, respectively.
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Figure C.2: Salt gradient experiments of mAb2 on Fractogel EMD SO−3 at different protein
load densities including 72.5 (a), 82.8 (b), 93.1 (c), and 118.2 g L−1 (d). Comparison
between experimental data ( ) according to [40] and simulated data based on the CPA
model ( ). Black and gray lines represent protein concentration and the ionic strength,
respectively.
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Figure C.3: Salt gradient experiments of mAb4 on Capto S ImpAct performed at a protein
load density of 20 ( ) and 93 g L−1 ( ). The retention volume is shown with respect
to the starting point of the salt gradient.
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