
K A S T E L

Modelling and Enforcing Access Control
Requirements for Smart Contracts

Master Thesis of

Jan-Philipp Töberg

at the Department of Informatics

Competence Center for Applied Security Technology (KASTEL)

Reviewer: Prof. Dr. Ralf H. Reussner

Second reviewer: Prof. Dr. Bernhard Beckert

Advisor: M.Sc. Frederik Reiche

Second advisor: M.Sc. Jonas Schi�

13. July 2021 – 13. January 2022

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 13.01.2022

. .

(Jan-Philipp Töberg)

Abstract

Smart contracts are software systems employing the underlying blockchain technology to

handle transactions in a decentralized and immutable manner. Due to the immutability of

the blockchain, smart contracts cannot be upgraded after their initial deploy. Therefore,

reasoning about a contract’s security aspects needs to happen before the deployment.

One common vulnerability for smart contracts is improper access control, which enables

entities to modify data or employ functionality they are prohibited from accessing. Due

to the nature of the blockchain, access to data, represented through state variables, can

only be achieved by employing the contract’s functions. To correctly restrict access on

the source code level, we improve the approach by Reiche et al. [1] who enforce access

control policies based on a model on the architectural level.

This work aims at correctly enforcing role-based access control (RBAC) policies for

Solidity smart contract systems on the architectural and source code level. We extend the

standard RBAC model by Sandhu, Ferraiolo, and Kuhn [2] to also incorporate insecure

information �ows and authorization constraints for roles. We create a metamodel to

capture the concepts necessary to describe and enforce RBAC policies on the architectural

level. The policies are enforced in the source code by translating the model elements to

formal speci�cations. For this purpose, an automatic code generator is implemented. To

reason about the implemented smart contracts on the source code level, tools like solc-
verify and Slither are employed and extended. Furthermore, we outline the development

process resulting from the presented approach.

To evaluate our approach and uncover problems and limitations, we employ a case

study using the three smart contract software systems Augur, Fizzy and Palinodia. Addi-

tionally, we apply a metamodel coverage analysis to reason about the metamodel’s and

the generator’s completeness. Furthermore, we provide an argumentation concerning the

approach’s correct enforcement.

This evaluation shows how a correct enforcement can be achieved under certain assump-

tions and when information �ows are not considered. The presented approach can detect

100% of manually introduced violations during the case study to the underlying RBAC

policies. Additionally, the metamodel is expressive enough to describe RBAC policies and

contains no unnecessary elements, since approximately 90% of the created metamodel are

covered by the implemented generator. We identify and describe limitations like oracles

or public variables.

i

Zusammenfassung

Ein Smart Contract ist ein auf der Blockchain basierendes Softwaresystem zur dezentralen

und unveränderlichen Behandlung von Transaktionen. Aufgrund dieser zugrundeliegenden

Unveränderlichkeit können Smart Contracts nach ihrer initialen Verö�entlichung nicht

mehr modi�ziert werden. Selbst Softwarefehler oder Sicherheitslücken können nicht im

Nachhinein behoben werden. Um die Korrektheit und Sicherheit der Contracts vor der

Verö�entlichung festzustellen, müssen statische Analysen verwendet werden.

Aufgrund der zugrundeliegenden Blockchain Technologie muss eine Funktion des

Smart Contracts genutzt werden, um eine Variable zu modi�zieren. Um Zugri�e auf diese

Variablen auf Implementierungsebene einzuschränken, erweitern wir in dieser Arbeit

den Ansatz von Reiche u. a. [1], welcher Zugri�skontrollrichtlinien auf Architekturebene

beschreibt und auf Implementierungsebene durchsetzt.

Diese Arbeit setzt sich als Ziel, modellierte rollen-basierte Zugri�skontrollrichtlinen

(RBAC) für Solidity Smart Contracts auf korrekte Weise auf Implementierungsebene zu

erzwingen. Dazu erweitern wir das Standard RBAC Modell von Sandhu, Ferraiolo und

Kuhn [2] um unsichere Informations�üsse zwischen Variablen und zusätzlichen Autho-

risierungseinschränkungen für Rollen. Um die daraus folgenden Richtlinien auf Archi-

tekturebene zu modellieren wird ein neues Metamodell entwickelt. Die so modellierten

Richtlinien werden auf Implementierungsebene in formale Spezi�kationen übersetzt, was

die korrekte Umsetzung dieser gewährleistet. Diese Übersetzung wird automatisch in

einem Generator implementiert. Um die generierte Implementierung anschließend zu

überprüfen, werden Werkzeuge wie solc-verify und Slither angewendet und erweitert.

Abschließend wird der Entwicklungsprozess skizziert, der sich aus diesem Ansatz ergibt.

Um diesen Ansatz zu evaluieren, und so Probleme und Limitierungen aufzuzeigen,

wird eine Fallstudie mithilfe der drei Smart Contract Systeme Augur, Fizzy und Palinodia

durchgeführt. Zusätzlich wird eine Metamodel Coverage Analyse eingesetzt, um die

Vollständigkeit des Metamodels zu veri�zieren. Abschließend argumentieren wir für die

korrekte Durchsetzung der modellierten Zugri�skontrollrichtlinien bei der Verwendung

unseres Ansatzes.

Wie die Evaluation zeigt, kann eine korrekte Umsetzung garantiert werden, solange

bestimmte Annahmen eingehalten und Informations�üsse nicht betrachtet werden. Um

dies weiter zu evaluieren wurden Verletzungen der zugrundeliegenden Richtlinien in die

Fallstudie eingefügt. Der vorgestellte Ansatz �ndet 100% dieser händisch hinzugefügten

Probleme. Zusätzlich wird gezeigt, dass das entwickelte Metamodel vollständig genug ist,

um rollen-basierte Zugri�skontrollrichtlinen zu beschreiben. Außerdem enthält es keine

unnötigen Elemente, da ungefähr 90% des Metamodels vom Generator abgedeckt werden.

Lediglich bestimmte Limitierungen wie ö�entliche Variablen oder die Verwendung von

Orakeln wird nicht abgedeckt.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1

2. Foundations 3
2.1. Model-Driven Software Development . 3

2.1.1. Eclipse Modeling Framework . 5

2.1.2. Modelling Constraints and Conditions 6

2.1.3. Model Transformations and Source Code Generation 7

2.2. Access Control . 8

2.3. Blockchain and Smart Contracts . 9

2.4. Solidity . 10

2.4.1. Language Features . 11

2.4.2. Formal Veri�cation Tools . 13

3. Related Work 19
3.1. Enforcing Access Control Using Formal Methods 20

3.2. Modelling and Generating Smart Contracts 21

3.3. Formal Veri�cation of Smart Contracts 23

3.4. Access Control Combined with Smart Contracts 25

3.4.1. Access Control Based on Smart Contracts 25

3.4.2. Access Control for Smart Contracts 26

4. Running Example: Auction 29

5. Defining Role-Based Access Control Policies for Solidity Smart Contracts 31
5.1. Formal Speci�cation of Role-Based Access Control Policies 31

5.2. Modifying and In�uencing Access to Variables 34

5.3. Covering Solidity and Smart Contract Elements 39

6. Description of Role-Based Access Control Policies on the Architectural Level 41
6.1. Describing the AccessControlMetamodel 41

6.2. Adding Explicit Constraints to the AccessControlMetamodel 46

7. Specification of Role-Based Access Control Policies on the Source Code Level 51

v

Contents

8. Identifying Insecure Information Flows in Smart Contracts 57
8.1. Analyzing Slithers Capabilities for Identifying Information Flows 57

8.2. Extending Slither to Cover Indirect In�uences and Transitive Function Calls 58

8.2.1. Slither’s Public API . 58

8.2.2. Identifying In�uences between State Variables 59

8.2.3. Calculating the Transitive Closure 61

8.2.4. Communicating Results Back to the Developer 64

9. Generation of Formal Specifications to Enforce Role-Based Access Control Policies 65
9.1. Mapping Metamodel Elements to Source Code Elements 65

9.2. Generating Solidity Smart Contracts . 68

9.2.1. Structure of the Generator . 69

9.2.2. Verifying Constraints and Soundness Check 70

9.2.3. Creating Solidity Smart Contracts 71

9.2.4. Creating Elements Enforcing the Policies 71

10. Outlining the Development Process Based on the Presented Approach 73
10.1. Verifying and Analyzing the Tool Results 74

10.1.1. Changes and Violations during the Implementation 75

10.1.2. Analyzing solc-verify’s Results 77

10.1.3. Analyzing Slither’s Results . 78

10.2. Communicating Results Back to the Stakeholders 79

11. Evaluation 81
11.1. Goal-Question-Metric Plan . 81

11.2. Reasoning About the Enforcement’s Correctness 83

11.3. Case Study . 86

11.3.1. Augur . 86

11.3.2. Fizzy . 89

11.3.3. Palinodia . 89

11.3.4. Preliminaries . 91

11.3.5. Introducing Violations to Augur and Fizzy 95

11.3.6. Results . 98

11.4. Metamodel Coverage Analysis . 102

11.5. Discussing the Results . 105

11.6. Threats to Validity . 106

12. Conclusion and Future Work 109
12.1. Conclusion . 109

12.2. Future Work . 110

Bibliography 111

A. Appendix 121
A.1. Implementation of the Auction Use Case 121

A.2. Complete Implementation of the Custom Slither Printer 124

vi

Contents

A.3. Slither Printer Results for the SingleAuction Contract 131

A.4. Generated Access Control Contract for the Auction Use Case 133

A.5. Results of the Soundness Check for the Malicious Models 135

A.6. Analyzing the Tool Results during the Case Study 137

A.6.1. Market contract of the Augur use case 137

A.6.2. Insurance contract of the Fizzy use case 142

A.6.3. Software contract of the Palinodia use case 143

A.6.4. IdentityManagement contract of the Palinodia use case 144

A.6.5. BinaryHashStorage contract of the Palinodia use case 145

vii

List of Figures

2.1. The general metamodel hierarchy . 4

2.2. The Ecore model and its connections to other model types 6

2.3. Process of solc-verify . 15

4.1. Explanation for the visual model elements to visualize use cases 30

4.2. Visualization of the auction running example 30

5.1. Visualizing insecure information �ows between state variables 35

6.1. The metamodel hierarchy applied on the AccessControlMetamodel . . . 42

6.2. ACM elements for modelling Solidity smart contracts 43

6.3. ACM elements for modelling the RBAC policies 44

8.1. Structure of Slither’s public API . 59

9.1. Package structure of the developed generator 69

10.1. Development process using the presented approach 74

11.1. Visualization of the simpli�ed Augur use case 88

11.2. Visualization of the Fizzy use case . 90

11.3. Layered architecture of the Palinodia system 91

11.4. Visualization of Palinodia’s Software contract 92

11.5. Visualization of Palinodia’s BinaryHashStorage contract 93

11.6. Visualization of Palinodia’s IdentityManagement contract 94

11.7. Coverage of the SmartContractModel from the ACM 102

11.8. Coverage of the AccessControlSystem from the ACM 104

ix

List of Tables

2.1. Comparing the syntax and functionalities of solc-verify and SciviK 17

8.1. Summarizing the example results of the influence-and-calls printer . . 63

10.1. In- and outputs for the phases of the envisioned process 75

11.1. Summary of the smart contracts implemented during the case study . . . 95

11.2. Describing the introduced violations to the Augur use case 96

11.3. Describing the introduced violations to the Fizzy use case 97

11.4. Summary of the introduced violations on the architectural level 99

11.5. Summary of the introduced violations on the source code level 99

11.6. Summary of the results found by the influence-and-calls printer regard-

ing variable in�uence . 100

11.7. Summary of the Metamodel Coverage Analysis 103

A.1. Example results of the influence-and-calls printer 132

A.2. Found information �ows for the Augur use case by the influence-and-calls

printer and their classi�cation . 138

A.3. Found information �ows for the Fizzy use case by the influence-and-calls

printer and their classi�cation . 143

A.4. Found information �ows for the Palinodia use case by the influence-and-calls

printer and their classi�cation . 144

xi

List of Algorithms & Code Listings

2.1. Example OCL constraint regarding the minimum driver’s age 7

2.2. Example contract showing the capability of the modifier keyword 12

2.3. Example contract showing solc-verify’s annotation language 15

5.1. Example Solidity code showing the di�erent kinds of in�uence 36

6.1. OCL constraints for the AccessControlContract element 47

6.2. OCL constraints for the Role element . 48

6.3. OCL constraints for the MutualRoleExclusion element 48

6.4. OCL constraints for the FunctionToVariableRelation element 49

6.5. OCL constraints for the FunctionToCsmRelation element 49

6.6. OCL constraints for the FunctionToStateVariableRelation element 50

6.7. OCL constraints for the BooleanVariableContext element 50

7.1. close function from the auction implementation in Listing A.1 53

8.1. withdrawMoney function from the auction implementation in Listing A.1 60

8.2. return_all_dependencies method . 61

8.3. get_influencers_for_var_in_func method 61

8.4. check_children_for_write method . 62

8.5. calculate_transitive_closure method 62

9.1. Generated solc-verify annotations based on the ACM elements 66

9.2. Example for a violations.log �le . 70

9.3. Functions to check timing and role assignment in the access control con-

tract from Listing A.4. 71

9.4. Function to assign the bidder role in the access control contract from List-

ing A.4. 72

10.1. Console instructions to start both tools 74

10.2. Violations found by solc-verify regarding the generated annotations . . . 77

11.1. checkAccess function from the generated access control contract 84

11.2. Enforcing the correct increase and decrease to role cardinality counters . 85

11.3. solc-verify results for an annotated access control contract 85

A.1. SingleAuction contract from the auction use case in Chapter 4 121

A.2. AuctionManagement contract from the auction use case in Chapter 4 . . 124

xiii

List of Algorithms & Code Listings

A.3. Complete implementation of the influence-and-calls printer from Sec-

tion 8.2 . 124

A.4. Generated access control contract for the auction use case from Chapter 4 133

A.5. Violations.log �le for the malicious Augur use case from Section 11.3.1 . 135

A.6. Violations.log �le for the malicious Fizzy use case from Section 11.3.2 . . 136

xiv

List of Abbreviations

ABAC Attribute-Based Access Control.

ACM AccessControlMetamodel.

API Application Programming Interface.

AST Abstract Syntax Tree.

BHS Binary Hash Storage.

BoD Binding of Duty.

BPMN Business Process Model and Notation.

CFG Control Flow Graph.

CSM Caller-Speci�c Mapping.

DSL Domain-Speci�c Language.

EMF Eclipse Modeling Framework.

EVM Ethereum Virtual Machine.

FOL First-Order Logic.

FSM Finite State Machine.

GDPR General Data Protection Regulation.

GemRBAC Generalized Model for RBAC.

GQM Goal-Question-Metric.

IDE Integrated Development Environment.

JML Java Modeling Language.

JSON JavaScript Object Notation.

LoC Lines of Code.

xv

List of Abbreviations

M2M Model-to-Model (Transformation).

M2T Model-to-Text (Transformation).

MDSD Model-Driven Software Development.

MOF Meta-Object Facility.

OCL Object Constraint Language.

PCM Palladio Component Model.

PoS Proof of Stake.

PoW Proof of Work.

RBAC Role-Based Access Control.

SDP Software Distribution Platform.

SMT Satis�ability Modulo Theories.

SoD Separation of Duty.

UI User Interface.

UML Uni�ed Modeling Language.

XACML eXtensible Access Control Markup Language.

XMI XML Metadata Interchange.

XML eXtensible Markup Language.

xvi

1. Introduction

Over the past decade, the in�uence of decentralized software platforms like blockchain

increased steadily. They allow for a cryptographically safe linking of data, which makes

them suitable for many areas of application, predominantly �nance and economics [3].

One addition to these platforms is the usage of smart contracts, which are programs

that can be deployed as a block on the blockchain instead of data. These programs are

used to algorithmically enhance contracts between at least two parties to help with the

automatic ful�llment of the contracts conditions. This approach is mostly used to manage

the resources of the blockchain like cryptocurrencies, tokens and generally valuable assets

but can also be employed to implement business work�ows as well.

Due to the immutable nature of the blockchain platform, data cannot be changed after it

is initially submitted. The same property holds true for smart contracts, which cannot be

modi�ed after their initial deployment. Therefore, upfront veri�cation of the contract is

necessary to detect vulnerabilities and malfunctions. Since no changes can be introduced

to already deployed contracts, the contract’s correctness needs to be validated as early in

the development process as possible. One security aspect is access to the assets managed

by the smart contract. These assets are represented using the contract’s state variables.

Due to the public nature of the blockchain, every address on the chain can access every

public function and read all variables. However, changes to the state variables of a contract

should be restricted to certain addresses instead of every possible blockchain user.

To address this problem, this thesis creates an approach where role-based access control

(RBAC) policies for smart contracts are modelled on the architectural level. This model

is employed as a foundation for the generation of formal speci�cations that correctly

enforce these policies on the source code level. For this enforcement, formal veri�cation

tools are employed and extended. The original concept was introduced by Reiche et

al. [1], who describe policies using the standard RBAC model in combination with the

Palladio Component Model (PCM) on the architectural level. Here, solc-verify by Hajdu

and Jovanović [4] veri�es the resulting formal speci�cations on the source code level.

This thesis expands on the original concept and circumvents the approaches limitations.

By employing the PCM as the metamodel to describe smart contracts and their RBAC

policies, the authors identify drawbacks when modelling smart contracts and their complex

data structures. Therefore, a new metamodel is created by employing the principles

for model-driven software development (MDSD) and expanding the Eclipse Modeling

Framework (EMF). Additionally, the underlying RBAC model is formally de�ned and

extended to include role authorizations [5] and secure information �ows [6]. To cover

these policies on the source code level, formal speci�cations are automatically generated

and veri�ed using the tools solc-verify [4] and Slither [7].

The metamodel and automatic generation we create as well as the formal speci�cations

we propose all follow the goal of correctly enforcing the modelled policies in the Solidity

1

1. Introduction

source code. To achieve this goal, we collect appropriate information to model these policies

on the architectural level. Additionally, we de�ne the necessary formal speci�cations

on the source code level. This includes the variables and data types it covers and the

underlying formal model it employs. The ful�llment of this goal is evaluated by providing

an argument for this correct enforcement as well as employing a case study using three

Solidity software systems.

The remainder of this thesis is structured as follows: Chapter 2 begins by explaining the

fundamental concepts necessary to understand the approach presented in the remainder

of this thesis. These fundamentals include model-driven software development (MDSD),

access control, blockchain, smart contracts and the Solidity programming language. We

summarize and categorize similar approaches and related work in Chapter 3. Chapter 4

introduces the running example of an auction system. The necessary information to

formally describe RBAC policies is collected throughout Chapter 5. Based on this informa-

tion, the AccessControlMetamodel (ACM) is created in Chapter 6 and Chapter 7 describes

how the formal model elements can be expressed on the source code level. In Chapter 8,

insecure information �ows are identi�ed by employing the Slither framework presented

in Section 2.4.2.1. To automatically translate ACM instances to the source code level,

we implement a generator in Chapter 9. Chapter 10 outlines the process resulting from

the application of our approach. To reason about the properties of the approach, we

present an evaluation in Chapter 11. It consists of a case study, an argument regarding the

enforcement’s correctness and a metamodel coverage analysis. Lastly, we conclude the

thesis and summarize future research directions in Chapter 12.

2

2. Foundations

The following chapter summarizes the fundamentals necessary to understand the approach

presented in the remainder of this thesis. We begin by introducing MDSD principles in Sec-

tion 2.1. For this, we describe the Eclipse Modeling Framework (EMF) as a basis for our

metamodel in Section 2.1.1 and the addition of constraints using the Object Constraint

Language (OCL) in Section 2.1.2. Additionally, we describe how source code can be gener-

ated using model transformations in Section 2.1.3. In Section 2.2 access control principles,

the general terminology as well as the relevant access control models for our approach are

summarized. Since our approach focuses on smart contracts, we introduce them and the un-

derlying blockchain technology in Section 2.3. Afterwards, we talk about the development

of smart contracts for the Ethereum blockchain using the programming language Solidity

in Section 2.4. To do so, we �rst introduce relevant keywords and functionality in which

Solidity di�ers to other programming languages like Java in Section 2.4.1. Additionally,

we look at three veri�cation tools that are relevant for the enforcement of our approach

in Section 2.4.2.

2.1. Model-Driven So�ware Development

With MDSD, programmers raise the abstraction level for developing software even more in

comparison to object-oriented languages. Here, models are handled as �rst-class artifacts

and the center of the development process instead of supporting documents. MDSD allows

developers to describe functionality or architecture on an abstract level, thus increasing

the value of the developed primary artifacts as well as reducing the amount and rate of

changes needed for these models [8]. To achieve this focus on models, MDSD proclaims

that "everything is a model" [9, p. 8], which can be used as the basis for transformations

between models and for code generation. Both concepts will be explained in more detail

in Section 2.1.3.

One problem regarding this formal de�nition is the lack of a universal de�nition for

model, since it is a term with many connotations that can be used in a wide range of �elds

and domains. One possible, often used de�nition comes from Stachowiak [10, p. 129], who

describes a model as the portrayal or example of a real-world object. This is similar to the

de�nition by Brambilla, Wimmer, and Cabot [9, p. 1-2], who de�ne models as abstractions

with two distinct features: reducing the amount of necessary information by focusing

only on the relevant aspects and representing an original in an abstract way for systems

or people to use. For our purpose the de�nition by Brambilla, Wimmer, and Cabot su�ces

and will be used in the remainder of this thesis, since the described abstraction helps us in

creating a concise yet complete concept.

3

2. Foundations

M3 Meta-
Metamodel

M2 Metamodel

M1 Model

M0 Real-World
Object

instantiation

representation

Modelling Level

Element

Figure 2.1.: The metamodel hierarchy using four hierarchical levels. Each model is an

instance of the model on the next higher level, except for the meta-metamodel,

which can describe itself. Simultaneously, each model represents the model

from its underlying level. This �gure is adapted from [9, Fig. 2.5].

In addition to the models that directly represent original objects, MDSD presents a

hierarchy of models through the usage of so called metamodels. This hierarchy is visualized

in Figure 2.1. A metamodel is a model that is used to represent another model, thus

describing how new, valid models can be created. This can be made even more abstract

with meta-metamodels, which are models that describe metamodels. Theoretically, this

abstract hierarchy can be continued endlessly, but, according to Brambilla, Wimmer, and

Cabot, practice has shown that most meta-metamodels can be used to describe themselves,

thus eliminating the need for more abstract models [9, p. 15-17]. One example for such

a meta-metamodel is the Meta-Object Facility (MOF), which is a standard de�ned by

the Object Management Group [11].

To describe such a metamodel, a formal modelling language is used. According to Bram-

billa, Wimmer, and Cabot [9, p. 63-64], such a language consists of three parts:

1. Abstract syntax: The abstract syntax describes the general structure of the language.

This consists of the di�erent elements and constructs available to describe the domain

the language wants to depict. This also includes the properties and relationships

between the model elements.

2. Concrete syntax: With the concrete syntax, the language de�nes how the elements of

the abstract syntax are represented. This can be either textual or visual, resulting in

either source code like structures or diagrams. For each abstract syntax, at least one

concrete syntax must to be de�ned.

3. Static Semantic: To give meaning to the elements from the language, the static
semantic is de�ned. According to Stahl et al. [12, p. 30], the static semantic includes

4

2.1. Model-Driven Software Development

all constraints and rules necessary to achieve well-formed models. This semantic

focuses on constraints that cannot be expressed with the abstract syntax.

2.1.1. Eclipse Modeling Framework

One framework when applying MDSD principles is the EMF, which uses the support given

by Eclipse to facilitate MDSD aspects like the model hierarchy. Eclipse is an open source

software framework consisting of many di�erent subprojects to allow for the creation

of integrated development environments (IDEs) and other applications like simulators

or generators. This creation is done by combining di�erent plug-ins, which are the basic

units for a component and provide a clearly de�ned functionality. This functionality can

be invoked, reused or extended to create new plug-ins, complete IDEs or tools. To carry

out the di�erent plug-ins, Eclipse uses a runtime engine that allows for a �exible handling,

deleting the necessity for restarts between the execution of di�erent applications. Lastly,

Eclipse provides an extra user interface, known as Platform UI, to enable a customizable

UI structure of the developed applications by employing appropriate views, editors or

perspectives [13, p. 3-9].

In addition to the Eclipse framework for developing IDEs, the EMF can be used to model

the program to develop. It concerns itself with the problems developers face regarding

their data model, which represents the data the developers want to work with (e.g. books

in a library). This data is translated into programming logic through interfaces, serialized

using formats like the Extensible Markup Language (XML) as well as documented and

modeled using e.g. the Uni�ed Modeling Language (UML). This separation of concerns

would lead the developer to have three di�erent representations of the same underlying

data model, which they would need to keep consistent once changes occur. To circumvent

this additional e�ort, EMF describes a central representation as a meta-metamodel called

Ecore. Ecore is based on the essential subset of MOF mentioned in Section 2.1 and evolved

to become its implementation [14].

This new model consists of a subset of the constructs used by UML class diagrams,

thus focusing on one the most commonly used diagram types [15]. Additionally, Ecore
uses XML Metadata Interchange (XMI), an XML based representation used to serialize

metadata, for persistent storing and data serialization [13, p. 20]. All of these connections

are visualized in Figure 2.2. They are necessary to develop models and generate code using

the EMF.

If a developer wants to create a new Ecore model, they have three possible approaches at

their disposal [13, p. 17-19]: First, they can create the required interfaces in Java and add

annotations to them. These annotations mark which aspects are part of the Ecore model

and which can be ignored, as well as speci�c information needed for more complex data

types like lists. For the second option, the developer describes the domain model using

an XML schema. Lastly, one can create the Ecore model based on an existing UML model.

Since Ecore describes only a subset of UML, there are multiple ways of getting the Ecore
model: The developer can either directly edit the UML like its Ecore, import the model

using an EMF tool or export the model using an UML tool.

After the initial creation of the metamodel is �nished and all subsequent changes

are made, the Ecore model is employed to generate Java code. For the generation, an

5

2. Foundations

Ecore Model Java Code

XMI
UML

Model

XML
Schema

RDB
Schema

Other

Serialization

Generation

Figure 2.2.: The Ecore model and its connections to other model types. This �gure is

adapted from [13, Fig. 2.5].

additional generator model is needed. This model provides additional information like

the necessary pre�xes and the resulting �le path by decorating the central Ecore model.

Apart from this extra model, the code generation creates an interface for each Ecore class

as well as the corresponding implementation, which allows for additional bene�ts like the

generation of Factory methods. These comprehensive possibilities allow for the generation

of complicated patterns like bidirectional references [13, p. 24-28].

2.1.2. Modelling Constraints and Conditions

As a developer, the usage of MDSD meta-metamodels can often be limiting due to the

di�erent capabilities and functionalities provided by the respecting technique. For example,

the Ecore meta-metamodel described in Section 2.1.1 is similar to UML class diagrams in

its notation and expressiveness. Both metamodels are focused on the static description

of the system’s structure. Therefore, describing constraints that rely on behavioural or

dynamic aspects complicates the formulation of speci�c requirements.

One approach for circumventing these limitations is the Object Constraint Language

(OCL) [16]. Originally developed by IBM as an extension to UML, it is widely integrated

and optimized for di�erent models or domain-speci�c languages (DSL), resulting in a

broad area of application. OCL is employed to describe queries on the architectural level,

express model manipulations or transform a model into another representation. In general,

it is a textual and formal speci�cation language that is statically veri�ed, making it a

�tting addition to the MDSD workbench [17]. OCL is used to describe additional rules,

patterns or constraints that apply in the metamodel and thus must be adhered to in the

resulting concrete instances. To do so, it utilizes invariants, pre- and postconditions to

specify the constraints for the element. An invariant is bound to a class object and describes

a single rule the element must follow [18]. Pre- and postconditions on the other hand are

6

2.1. Model-Driven Software Development

1 context Driver

2 inv DriverOldEnough:

3 self.age >= 18

Listing 2.1: Example OCL constraint regarding the minimum driver’s age

linked to an operation and are part of its method contract, describing the agreement

between the methods caller and callee [19, p. 196-198]. Preconditions describe expectations

regarding the execution state before a method execution, whereas postconditions formalize

the expectations towards the state after the method. Ful�lling all pre- and postconditions

enables formal veri�cation of the methods behaviour as expected.

In general, OCL constraints are always connected to one model element, speci�ed by

the context keyword, which they mainly refer to. Additionally, a constraint can access

all other elements referenced by its context element. As an example, a model includes

an element symbolizing the driver of a car with attributes like name, age and address.

However, the EMF does not provide the capabilities to add the constraint that the driver

must be old enough to legally drive. To prevent a model with an underage driver from

being consistent, we can add the constraint seen in Listing 2.1. Here, the context states

the model element for which the constraint is de�ned. After that, a number of invariants

(inv) or pre- and postconditions can be de�ned and named (DriverOldEnough). These can

cover the elements attributes as well as its references or use static references to certain

model elements.

2.1.3. Model Transformations and Source Code Generation

One key concept of MDSD aremodel transformations. These are used to convert one or more

source models into one or more target models [20]. In general, model transformations can

be sorted into two categories: Model-to-model transformations (M2M) are used to transform

one model into another one, whereas model-to-text transformations (M2T) are used to

translate a model into any kind of text (e.g. source code or documentation) [9, p. 123].

When using M2M transformations, the di�erent models can adhere to the same or

to di�erent metamodels, resulting in either exogenous or endogenous transformations.

An example for an exogenous transformation would be the creation of an artifact like

the serialization based on the model, so both the source and the target model adhere to

di�erent metamodels. An endogenous transformation on the other hand is used to refactor

or rewrite a model by changing its structure or contents by still adhering to the same

metamodel [9, p. 124]. Both of these transformation types can be correlated to the model

hierarchy visualized in Figure 2.1 since an endogenous transformation takes place on the

same level of abstraction whereas an exogenous transformation may increase or decrease

the model’s abstraction.

Model-to-text transformations (M2T) are mainly employed to generate source code

based on the source model. This generation does not necessarily cover the whole model or

create a completely functional software system, so the concrete implementation is up to

the developer. Theoretically, any programming language can be used to generate source

7

2. Foundations

code in text form based on a serialized model [9, p. 141-143]. However, due to speci�c

requirements, special DSLs have been developed to focus on model transformations

and their implementation. One example that is used in combination with the EMF is

called Xtend. This imperative and statically-typed programming language is based on

Java. However, to better support M2T transformations, it extends Java’s capabilities with

concepts like operator overloading or functionally querying the model for information [9, p.

149]. Additionally, it uses template expressions to allow for readable string concatenations,

embedding variable properties into static text templates in a structured way [21].

2.2. Access Control

With software systems becoming more complex and being accessible by a wider audience,

the need for sound and correct access control is rising. This domain focuses on stopping

unwarranted entities from accessing data or functionality they are not allowed to see,

use or change. An access control request consist of a subject, which can be a user or

anything that wants to access a resource, and an object, which is the resource or element

that should be accessed. According to Samarati and Vimercati [22], a policy de�nes the

rules describing which subjects are allowed to access which objects. Each policy is an

instance of the access control model, which formalizes the aspects that can be considered in

the policy. Additionally, the authors de�ne a mechanism as a description of the low-level

technical functions that are necessary to implement the restraints de�ned by the policy.

This mechanism is implemented using a system.

Multiple models exist for the formalization of the required properties, which di�er

regarding the description of policies and how access is granted or prevented. One model is

role-based access control (RBAC), where responsibilities are abstracted from single entities

to roles. These roles are based on the organizational structure the system tries to represent.

In general, the standard model for RBAC de�ned by Sandhu, Ferraiolo, and Kuhn [2] uses

a layered structure, where new elements are added and capabilities are extended with

increasing complexity. Beginning on the basic layer, three di�erent sets are de�ned: Users
U summarizes the subjects that want to access the system and its data, Roles R contains all

available abstract roles and Permission P combines the accessible objects with the kind of

access (e.g. read, write). To allow subjects to access objects, De�nition (2.1) by Sabri [23]

introduces the relation UserToRole (UtoR), connecting all users to the roles they currently

have. Similarly, the relation RoleToPermission (RtoP) from De�nition (2.2) connects the

roles to their permissions and is based on the APR relation from [24].

UserToRole ⊆ U ×R
(D, A) ∈ UtoR i� user u is assigned to role r

(2.1)

RoleToPermission ⊆ R × P
(A, ?) ∈ RtoP i� role r has permission p

(2.2)

The combination of both allows users to access objects if they have a role with a �tting

permission. This is formalized with the hasAccess predicate in De�nition (2.3), which takes

user u and permission p as input.

8

2.3. Blockchain and Smart Contracts

hasAccess(D, ?) ⇐⇒ ∃A ∈ R : (D, A) ∈ UtoR ∧ (A, ?) ∈ RtoP (2.3)

The �rst enhancement of this model adds a partial order in form of the hierarchical

relation RoleHierarchy (RH) to the roles, which is formalized in De�nition (2.4) and taken

from [24]. This hierarchy allows for an easier structuring of the roles and can be represented

using trees or inverted trees. These structures di�er in the way permissions are inherited

since it can either be done from the senior to the junior role or the other way round,

depending on the concrete de�nition.

RoleHierarchy ⊆ R ×R
(A1, A2) ∈ RH i� role A1 is superior to role A2

(2.4)

The next layer adds additional constraints to roles based on the Separation of Duty

(SoD) concept. This concept allows for the mutual exclusion of roles, restricting users from

having both roles at the same time. This restriction can be enforced either statically using

the model or dynamically by allowing each user to activate or deactivate their roles in a

session. The general mutual exclusion is formalized with the relation MutualExclusiveRoles
(MER) in De�nition (2.5).

MutualExclusiveRoles ⊆ R ×R
(A1, A2) ∈ MER i� role A1 is mutually exclusive to role A2

(2.5)

Another more abstract access control model, which was developed more recently than

RBAC, is attribute-based access control (ABAC) by Hu et al. [25], where each element

holds a number of attributes. The access policy depends on conditions that consider the

environment context as well as the attributes of the subject and object. Access is granted

once all conditions are met. This can be interpreted as a generalization of the RBAC model,

since roles are one example for an attribute that must match between subject and object.

One additional possibility to handle access control that is mainly used by �rewalls or

anti-virus software, is the application of a black- or whitelist [26]. Both concepts follow

similar principles but work in opposite ways. A whitelist assumes that every access is

forbidden but there are some exceptions. These exceptions are described in the whitelist,

which is a central control that must be updated when new systems or user roles are added.

The whitelist approach is used in the standard RBAC model, since the permissions always

describe positive access [2]. A blacklist approach on the other hand assumes that every

action and every access is allowed and only the exceptions marked by the blacklist are

prohibited. This contains access to certain functions or by certain addresses or roles.

2.3. Blockchain and Smart Contracts

In its earlier stages, blockchain technology sprang from the idea of adding a digital

timestamp to documents to have a better overview over the order in which di�erent

documents were created. This was soon extended to not only include the current timestamp

but information about the preceding document as well. For this, each document, which

is also called a block, contains a hash value of the previous block’s content, chaining

9

2. Foundations

all documents together in an extended linked list. Including this hashed value makes it

impossible for anyone to add changes to the previous block, since these changes would also

a�ect the hash values [27]. Due to this native immutability, which makes modi�cations

to a deployed block impossible, blockchain technologies were soon employed as ledgers

where transactions are saved in each block [3]. This does not only enable an accessible

history of past transactions but also prevents malicious modi�cations to these transactions.

In their current nature, blockchains are used as the underlying data structure for cryp-

tocurrencies like Bitcoin as well as distributed and decentralized peer-to-peer software

systems. In these systems, each node of the network maintains a complete local copy of the

main chain. Therefore, the addition of new blocks has to be communicated with the whole

network. To handle the creation of new blocks, di�erent consensus algorithms have been

created to determine how a new block can be validated and appended [3]. The two main

categories of algorithms are called Proof of Work (PoW) and Proof of Stake (PoS), which

are explained in more detail in [27]. In general, a miner tries to solve a computationally

expensive puzzle for which they are awarded the right to add the next block to the chain

as well as some of the chains resources (e.g. cryptocurrencies or tokens). This process

also mitigates risks, since the creation of a new block is more vulnerable for malicious

behaviour then the already chained blocks.

All data that is saved on the chain is available to all nodes in the network, which

depends on the deployed type of blockchain network. Access to permissioned blockchains

is monitored, resulting in a private network used by companies or similar entities. One

example is the Hyperledger Foundation [28] that provides open-source blockchain systems

for private and public organisations alike, resulting in multiple possible blockchains like

Hyperledger Fabric. Permissionless blockchains on the other hand are publicly accessible,

increasing the anonymity of its users but also their need for cryptographic algorithms [29].

One example for this is Ethereum, which is described in more detail in Section 2.4.

Programs that are deployed on the aforementioned decentralized peer-to-peer software

systems are called smart contracts. Smart contracts are employed to manage the resources

handled by the blockchain, like cryptocurrencies or tokens, by describing a digital contract

between two parties. Such a contract consist of execution statements that are stored on the

blockchain as immutable transactions [3]. Due to the underlying, immutable blockchain

technology, smart contracts cannot be modi�ed once deployed. Since all transactions are

duplicated for all nodes in the network, malicious modi�cations to the deployed contracts

are not possible. However, this introduces the biggest di�erence between smart contracts

and other software systems. Once a smart contract is deployed, changes and upgrades

cannot be introduced. This increases the need for extensive static analysis of the contracts

before their deployments, so possible security risks and erroneous behaviours are found

in advance.

2.4. Solidity

Currently, the most prominent platform for smart contracts is Ethereum, a permissionless

blockchain technology. According to Zheng et al. [3], Ethereum rewards miners with

its own cryptocurrency called Ether for mining a new block. To handle the execution of

10

2.4. Solidity

smart contracts, Gas is used as an internal price for executing transactions. Indicating how

resource-intensive the execution is and how much Ether must be paid by the developer,

gas can be used as an additional metric for developers to optimize.

For the development of smart contracts, Ethereum provides developers with a Turing-

Complete instruction set utilized by programming languages like Solidity or Serpent [30].

Once a smart contract is deployed, it is compiled into low-level, stack-based bytecode that

is executed on the Ethereum Virtual Machine (EVM). On the source code level, Solidity

is an object-oriented programming language with a similar structure to modern Java,

where a single contract can be compared to a Java class with the available transactions

substituting the Java methods. Solidity’s functional di�erences to other object-oriented

programming languages as well as language features relevant for the remainder of this

thesis are introduced in Section 2.4.1. Since the blockchain’s immutability makes formal

veri�cation of smart contracts necessary, three di�erent veri�cation tools are introduced

throughout Section 2.4.2.

2.4.1. Language Features

Due to Solidity being a programming language developed solely to implement smart

contracts on the Ethereum blockchain, it comes with a bunch of keywords and features

that are not provided by other programming languages. In this section, we present all of

these capabilities that are relevant for our approach.

To begin, we look at the two keywords require and assert, which are both applied

to verify the correct behaviour of the contract. If the condition speci�ed in a require

statement fails, the current function terminates and any changes to the contracts state

are reversed to the state before the function call. The assert keyword works in a similar

manner, except that all the remaining gas for this transaction is still consumed. Both

keywords are provided to specify pre- and postconditions described in Section 2.1.2 for

formal reasoning about the contracts behaviour. The require keyword should be applied

like a precondition to check for valid inputs at the beginning of a function whereas assert

describes the exceptions at the end of the function, similar to a postcondition [31].

Another important concept of Solidity are modi�ers, which are employed to change

or in�uence the behaviour of the function they annotate. There are two types available:

Standard and Self-de�ned modi�ers. Standard modi�ers are expressed using special

keywords and are helpful to summarize the behaviour of a function. If a function is

annotated as view for example, it is not allowed to modify the contracts state variables.

As the name suggests, a self-de�ned modi�er is implemented by the developer to provide

custom functionality. For this purpose, a new function is created with the modifier

keyword instead of the function keyword, whose name can be annotated to the signature

of any function in the source code. In the modi�ers behaviour, the sequence _; marks the

behaviour of the original function, so a modi�er can be used to add behaviour before or

after the original function [32, p. 68-70]. One example can be seen in Listing 2.2, where

the modifier is used to constrain access to certain functions to the entity that created and

thus owns the contract.

Since Solidity smart contracts are used on the Ethereum blockchain, they must be able

to handle Ether, the cryptocurrency supported by Ethereum. The payable keyword marks

11

2. Foundations

1 // SPDX-License-Identifier: GPL-3.0

2 pragma solidity >=0.7.0 <0.9.0;

3

4 contract ModiferExample {

5 address payable owner;

6

7 constructor() public {

8 owner = payable(msg.sender);

9 }

10

11 modifier onlyOwner {

12 require(msg.sender == owner, "Only the owner may access.");

13
_;

14 }

15

16 // Additional functionality

17

18 function destroy() public onlyOwner {

19 selfdestruct(owner);

20 }

21 }

Listing 2.2: Example contract showing the capability of the modifier keyword

variables and functions that are used to sent or receive ether. With this, an address variable

can be marked as an address to which the contract can send money and functions can

be marked as being able to receive money and change the contracts balance [32, p. 66].

If a function receives money, it can check the value using msg.value. To get the address

of the function caller, developers can use the msg.sender keyword, which is not limited

to work with payable functions but can also be used e.g. to check the credentials of a

caller. Similarly, the tx.origin keyword is used to get the �rst entity (i.e. external account)

starting the chain of transactions instead of the last entity calling a speci�c function.

However, using tx.origin for authorization purposes is discouraged since it is easy to

spoof [33].

The last property of Solidity we want to discuss is the location where data is stored.

Since every variable that is committed to the blockchain consumes memory and gas, thus

making the deployment of a contract more expensive, not all variables should be saved

on the blockchain. For this, Solidity provides three di�erent keywords that specify the

location [32, p. 61-62]:

• storage: These variables are permanently saved on the global blockchain as part

of the contract and can thus be accessed by every function and contract. All state

variables of a contract are storage variables per default.

12

2.4. Solidity

• memory: Variables marked as memory variables are only saved during a single transac-

tion in the local memory, which makes them consume much less gas than storage

variables [34]. Function parameters and return values are memory variables per

default.

• calldata: The last type is the forced default for function parameters of external

functions and has a constant gas cost. However, these variables are only saved

temporarily like the memory variables.

2.4.2. Formal Verification Tools

Due to the immutability of smart contracts, di�erent tools were developed by researchers

and practitioners alike to analyze the behaviour and structure of these contracts as early

in the development process as possible. By doing so, developers are supported in creating

safe and secure smart contracts that mitigate the possibility for attacks and exploitation.

These tools employ the capabilities of formal veri�cation [19] to reason about the system’s

properties. For this purpose, the tools provide a formal argument to show that a system

ful�lls a certain property. Both the system as well as the property are formalized using a

certain, underlying logic.

In the following sections, we introduce three of these tools that are especially relevant

for our approach. We introduce Slither, a static analysis framework, in Section 2.4.2.1.

This framework provides di�erent functionalities like failure detection or information

collection, thus supporting the developer in better understanding the smart contract and its

dependencies. The other two tools, solc-verify and SciviK, verify the given smart contract

using annotations and downstream Satis�ability Modulo Theories (SMT) solvers. We

summarize their functionality in Sections 2.4.2.2 and 2.4.2.3. In Section 2.4.2.4, we compare

the syntax and functionality of solc-verify and SciviK.

2.4.2.1. Slither

To reason about program correctness and additional properties, two main categories

of approaches have been established and re�ned: static software analysis and dynamic

testing [35]. The main di�erence between both is how they handle the program under

inspection. For static analysis, the analyzer inspects the program without looking at

its behaviour during the runtime by focusing on the programming code and all possible

execution paths. In contrast, dynamic testing looks for errors and weaknesses by executing

the code under certain conditions (e.g. di�erent inputs or changes in the environment).

This focuses on a single execution path but analyzes it more thoroughly. Both categories

can be seen as complementary and should be used in tandem to achieve an optimal analysis

of the inspected program.

One framework used for static analysis of solidity smart contracts is called Slither1

by Feist, Grieco, and Groce [7] and can be used to detect vulnerabilities and code opti-

mizations as well as supporting developers with understanding the source code. To begin

the analysis, Slither takes the abstract syntax tree (AST) created by the solidity compiler

1https://github.com/crytic/slither - Last accessed: 04.01.2022

13

https://github.com/crytic/slither

2. Foundations

as an input. After inferring additional information from this AST, the source code is

translated into an intermediate representation called SlithIR, which is based on single static

assignment and thus requires that each variable is assigned only one time and de�ned prior

to that. The framework utilizes this representation to run pre-de�ned detectors written in

Python, where each detector focuses on a single weakness or possible optimization. In

addition to these detectors, the previously collected information like contract inheritance

or function calls are printed.

Currently, the framework provides developers with 74 di�erent detectors and 18 di�erent

printers, in addition to a public python API enabling the development of new custom

detectors and printers. How this API is structured and used is explained in more detail

in Section 8.2.1, where it is applied to create a new custom printer. What all these utilities

have in common are the three built-in analyses that provide the foundation for further

detection or printing modules. The �rst analysis focuses on each variable and where they

are read and written. This allows Slither to examine which variables are in�uenced by

which function as well as �nding the set of variables all modi�ed by the same function.

The second kind of analysis identi�es functions that are not protected through access

control patterns like ownership. To �nd such functions, the framework looks for the

usage of the msg.sender keyword and checks if it is used directly in a comparison. Lastly,

Slither analyzes the dependencies of each variable and if they are tainted and thus can

be in�uenced by the user accessing the contract. With this, certain vulnerabilities like

reentrancy, where a function is called repeatedly (e.g. through recursion) before the

previous function invocation is �nished, are detected. This vulnerability can lead to funds

being transmitted repeatedly before the credit is updated, thus resulting in a possible

exploit that allows for an easy drain of complete accounts [33].

2.4.2.2. solc-verify

One tool which allows for the formal veri�cation of smart contracts is solc-verify2
by Ha-

jdu and Jovanović [4], which analyzes the correctness of Solidity smart contracts on a

functional basis. To do so, the tool provides an annotation language which can be added to

comments in the smart contract to express formal speci�cations. These can take the form of

contract-level invariants, functional pre- and postconditions as well as loop invariants and

are formulated by a combination of annotations in �rst-order logic (FOL) and the Solidity

source code. For example, the require and assert keywords described in Section 2.4.1 are

taken into consideration for the formalization as additional pre- and postconditions. One

example for the possible annotations are modi�cation speci�ers that can be used to allow

a speci�c function to change certain state variables. An example contract with solc-verify
annotations can be seen in Listing 2.3, where the increaseXByN function is annotated with

a modi�cation speci�er and a postcondition. The modi�cation speci�er in line 7 formally

expresses that the function is allowed to make changes to the state variable x, whereas

the postcondition in line 6 states that the value of x after the execution is the same as the

value before the execution plus the given parameter n.

2https://github.com/SRI-CSL/solidity - Last accessed: 04.01.2022

14

https://github.com/SRI-CSL/solidity

2.4. Soliditysolc-verify: A Modular Verifier for Solidity Smart Contracts 165

Fig. 3. Overview of the solc-verify modules. The extended compiler creates a Boogie
program from the Solidity contract, which is checked by the boogie verifier using SMT
solvers. Finally, results are mapped back and presented at the Solidity code level.

Specification. Solidity provides only a few error handling constructs (e.g.,
assert, require) for the programmer to specify expected behavior. Therefore,
solc-verify supports in-code annotations to specify contract properties, as
illustrated in Fig. 2. Annotations are side-effect free Solidity expressions, which
can reference any variable in the scope of the annotated element. Contract-level
invariants (line 1) must hold before and after the execution of every public
function and after the contract constructor. Non-public functions are inlined to
a depth of one by default, but can also be specified with pre- and postconditions
(lines 6–7). Moreover, loop invariants (line 16) can be attached to loops. As an
extension, we also provide a special sum function over collections (arrays and
mappings) in the specification language, as seen for example for SimpleBank in
Fig. 1. The sum function is modeled internally by associating a ghost variable to
the collection tracked by the sum: each collection update also updates the ghost
variable. This encoding is a sufficient abstraction for our needs.

Correctness. solc-verify targets functional correctness of contracts with
respect to completed2 transactions and different types of failures. An expected
failure is a failure due to an exception deliberately thrown to guard from the
user (e.g., require, revert). An unexpected failure is any other failure (e.g.,
assert, overflow). We say that a contract is correct if all transactions (public
function calls) that do not fail due to an expected failure also do not fail due to
an unexpected failure and satisfy their specification.

Translation to Boogie. solc-verify relies on the Solidity compiler that parses
the contracts and builds an abstract syntax tree (AST) where names, references
and types are resolved. solc-verify then traverses the internal AST and pro-
duces a Boogie [15,28] representation of the program. We discuss the details and
properties of the translation in more detail in Sect. 4.

Boogie and SMT. Boogie transforms the program into verification conditions
(VCs) and discharges them using SMT solvers. By default, Boogie can use z3 [33]
2 Due to the usage of gas, total and partial correctness are equivalent. Furthermore,

currently we do not model gas: running out of gas does not affect correctness as the
transaction is reverted. However, we might model it in the future in order to verify
liveness properties or to be able to specify an upper bound.

Figure 2.3.: Process of the solc-verify veri�cation tool. This �gure is extracted from [4, Fig.

3].

1 pragma solidity >=0.7.0 <0.9.0;

2

3 contract SolcVerifyExample {

4 uint private x;

5

6 /// @notice postcondition x == (__verifier_old_uint(x) + n)

7 /// @notice modifies x

8 function increaseXByN(uint n) public {

9 x += n;

10 }

11 }

Listing 2.3: Example contract showing solc-verify’s annotation language

To reason about these speci�cations, they are translated into the Boogie intermediate

veri�cation language. To start the reasoning process visualized in Figure 2.3, the authors

extend the default Solidity compiler with their tool. This begins with taking the contract

with its annotations and creating a Boogie program by traversing the AST. Based on this

program, quanti�er-free veri�cation conditions are generated and parsed to external SMT

solvers like z3 or CVC4. Afterwards, the results are mapped back to the original contract

and communicated to the developer, allowing for �ne-grained feedback where possible

veri�cation problems have been detected.

Since its original publication, the tool has gained a number of updates that increase its

functional capabilities. In one update, the authors add features for managing memory and

storage independently and in combination. To do so, they formalize the Solidity semantics

into an SMT-based intermediate language that can encode most Solidity elements in a

quanti�er-free manner. This supports an e�cient formalization of smart contracts, which

enables deep copy assignments and non-aliasing [34]. In another update, they allow for

the formal speci�cation and veri�cation of Solidity events. These events track a speci�ed

set of variables and are published, once any of the variables changes. By formalizing

events and their in�uence on the behaviour of a transaction, events are employed to reason

about functional correctness together with the already established parts of the Solidity

contract [36].

15

2. Foundations

2.4.2.3. SciviK

Similar to solc-verify, the formal framework SciviK3
[37] allows for the formal veri�cation

of smart contracts through FOL annotations. Again, the annotations are added to the

comments in the implementation and allow for the speci�cation of formal contracts,

loop and general invariants and checks for certain vulnerability patterns. With the last

annotation type, the developer can mark a function to be checked for e.g. the reentrancy

error. To reason about the speci�ed properties, SciviK translates the Solidity �le with

its annotations after the compilation to the Yul intermediate representation, annotated

with the EVM bytecode. In comparison to solc-verify, SciviK does not directly reason on

this intermediate representation but translates it again to another representation called

WhyML, where the annotations are directly inserted into the code. Lastly, this WhyML

program is combined with the EVM model to generate the veri�cation conditions that are

checked by employing external SMT solvers.

2.4.2.4. Comparing solc-verify and SciviK

In general, both tools provide the same basic functionality, only di�ering in the used syntax

to specify its annotation. These di�erences are summarized in Table 2.1. The di�erences

between these two tools are the additional functionality and the focus the developers

set during the tools development. For example, solc-verify was updated to include the

speci�cation of Solidity events whereas SciviK introduces a special annotation to check

for often occurring error patterns like Reentrancy.

However, there are still some functional di�erences that di�erentiate both tools. For

example, SciviK provides the capability to learn loop invariants and the usage of interactive

theorem provers. To make use of the learned loop invariants, the developer can use an

additional annotation that only speci�es the variable(s) of interest. To learn this loop

invariant, SciviK uses Continuous Logic Networks on the WhyML representation. For

the interactive proving of the annotations, SciviK uses Coq as the downstream proving

tool. However, this process is only started when a speci�cally marked annotation cannot

be solved by an automatic SMT solver. Therefore, a manual prove using Coq is started

instead [37].

Solc-verify on the other hand allows for a more detailed description when reasoning

about collections of elements. For this, it allows the usage of a sum function to summarize

integer collections and an equality predicate allowing for the comparison of complex data

types like mappings or structs.

3
As of the writing of this thesis, SciviK is not publicly available.

16

2.4. Solidity

Table 2.1.: Di�erences and similarities in the syntax and the possible functionality of

the annotation languages for the two tools solc-verify and SciviK.

Functionality solc-verify [4] SciviK [37]

Begin annotation /// @notice <ANNOTATION> /* <ANNOTATIONS> */

Precondition precondition <EXPR> @pre <EXPR>

Postcondition postcondition <EXPR> @post <EXPR>

Contract-Level invariant invariant <EXPR> @meta <EXPR>

Loop invariant (Manual) invariant <EXPR> @inv <EXPR>

Loop invariant (Learned) Not possible @learn <VARS>

Modi�cation speci�cation modi�es <VAR> [if <COND>] Not possible
Sum over collection __veri�er_sum_(u)int() Not possible
Old value __veri�er_old _<TYPE>()

4
old <VAR>

Return value <VAR>
5

result

Equality predicate __veri�er_eq(<REF1>, <REF2>) Not possible
Universal quanti�er ∀ forall (<VARS>) <QUANTEXPR> forall <VARS>, <QUANTEXPR>

Existential quanti�er ∃ exists (<VARS>) <QUANTEXPR> exists <VARS>, <QUANTEXPR>

Check for error patterns Not possible @check <PATTERN>

Interactive proving Not possible @coq <EXPR>

Specifying events emits <EVENTNAME> Not possible
Assumption require(<EXPR>) 6

@assume <EXPR>

Assertion assert(<EXPR>) 6
@assert <EXPR>

4
As of version 0.5.17, this keyword does not cover all available data types. It is missing for enum,

struct, string & mapping
5

To access the return value of a function, the developer must give the returned variable a name in

the function declaration. Then, the variable can be referenced by that name.

6 solc-verify takes the require and assert statements implemented in the contract into consideration

instead of providing this functionality with its annotation language [4].

17

3. Related Work

With the enforcement of modelled access control requirements, our approach can be

located at the intersection of di�erent computer science domains. One domain is the

application of MDSD to describe the structure and behaviour of smart contracts on an

architectural level. Another is the formal veri�cation of smart contract properties and

access control systems. Lastly, we consider the combination of access control policies and

smart contract systems.

Many approaches overlap in only one of the aforementioned domains with our approach,

whereas the number of related approaches that consider all domains we focus on is limited.

To distinguish between these approaches, we sort similar work into four main categories

that are looked at in more detail in the remainder of this chapter.

The category in Section 3.1 describes approaches that combine formal methods with

access control. These approaches use techniques like model checking or theorem proving

to reason about formally de�ned access control models and their properties. Mostly,

they verify the formal correctness of the model and its implementation. However, other

properties like soundness are also considered.

In Section 3.2 we describe approaches that apply the techniques of MDSD for the

development of smart contracts. This takes the form of a metamodel that is introduced

or expanded upon to describe smart contracts on an architectural level, generating smart

contract code based on an already existing model or the combination of both.

Focusing more on smart contracts, Section 3.3 considers approaches that employ formal

methods to evaluate smart contracts and their properties. These approaches may vary

in the programming language and underlying blockchain technology that they support.

However, most of them allow for the formal veri�cation of smart contracts. Additionally,

we describe approaches that reason about security properties other than access control on

a source code level using formal speci�cations.

section 3.4 contains approaches that combine access control with smart contracts. This

category can be divided into two subcategories. The category in Section 3.4.1 contains

approaches that use the possibilities provided by smart contracts and the blockchain to

develop access control systems for other areas of applications. This either results in a

tamper-proof system or in a general approach that can be applied by other developers.

Section 3.4.2 collects approaches that develop access control for smart contract applications,

focusing on their unique properties like immutability. All of these approaches utilize a

model to describe the access control requirements but only some of them also consider

formal methods.

19

3. Related Work

3.1. Enforcing Access Control Using Formal Methods

To reason about the correctness or security of access control models, many researchers have

employed the possibilities provided by formal methods. They combine formal speci�cations

with the elements given by the access control model of their choice to reason about them

using theorem proving or model checking. Despite these similarities, the approaches di�er

in multiple ways. For example, they choose di�erent access control models or focus more

on the veri�cation than the speci�cation. Some examples for these approaches will be

presented and compared to our approach in this section. Generally, the main di�erence

regarding our approach is that we do not focus solely on the formal speci�cation of the

RBAC model we use, but use it as a stepping stone to reason about smart contract security.

Additionally, most of the approaches presented here do either not use RBAC as their

model or they provide a broader approach, not limited to the restraints provided by smart

contracts.

In the approach by Abd-Ali, El Guemhioui, and Logrippo [38], a new metamodel

paradigm that enables the description of general access control policies is created. The

resulting metamodel elements, which are taken from the UML metamodel, are enhanced

using formal semantics written in FOL. Based on these formal semantics, reasoning about

security properties is simpli�ed. Despite the creation of a new metamodel, which is also

part of our concept, this approach does not focus on RBAC but provides a solution for

more general access control policies. Additionally, the approach does not reason about

the formal speci�cations but only provides the basis for other developers to reason about

their models more easily.

In contrast to the previous approach, the formal framework developed by Jaidi, Labbene

Ayachi, and Bouhoula [24] is mainly focused on the analysis and the risk assessment for

RBAC policies. To detect possible vulnerabilities, RBAC models are formalized using sets

for users, roles, objects, access modes and permissions as well as their combinations. These

sets are employed to describe a policy, which is compared to its implemented realization

by calculating their di�erences using set theory. By calculating these di�erences, special

problems like renamed roles or hidden users are detected. Although the framework has a

similar focus in reasoning about vulnerabilities in RBAC policies, it uses di�erent methods

to our approach since it relies on set theory. Additionally, the approach has a broader

�eld of application, since it is not limited on a special kind of software system like ours.

However, it focuses its assessment on the modelled RBAC policies on the architectural

level whereas we also enforce the policies in the implementation on source code level.

Focusing more on the formal veri�cation of RBAC than the previous approach is the

solution provided by Mustafa, Drouineaud, and Sohr [39], which employs the Java Modeling

Language (JML) to implement a role-based authorization engine. With this approach, the

functional behaviour of the engine is speci�ed using sets for users, roles, permissions and

sessions as well as their combinations. Based on these sets, the approach utilizes complex

equations based on the Z notation to describe functions for the developed engine. These

equations are then translated into JML constraints. Despite the approach also using formal

contracts to reason about the implementation, it does not cover RBAC policies directly but

focuses on an engine for de�ning and enforcing these policies. Additionally, this engine is

20

3.2. Modelling and Generating Smart Contracts

applied to Java projects whereas our approach focuses on smart contracts implemented

with Solidity.

A more practical approach was devised by Farah, Gadouche, and Tari [40], who created

correct-by-design speci�cations for RBAC policies using the Event-B framework. These

speci�cations and their declarative as well as behavioural aspects are focused on a health-

care information system, allowing practical reasoning about correctness and security

properties. Due to its application domain and the usage of the Event-B framework, this

approach di�ers heavily from ours.

Another approach is the formulation of RBAC policies using formal theories like FOL

or SMT and evaluating them and their properties using theorem proving. For example,

the approach by Arkoudas, Chadha, and Chiang [41], the one by Kolaczek [42] and the

approach by Sabri [23] all rely on a subset of FOL to specify RBAC policies. However, their

main di�erence being the tool they use for their reasoning: Arkoudas, Chadha, and Chiang

use the SMT solver Athena, Sabri uses the theorem prover Prover9 whereas Kolaczek

formalizes the policies using PROLOG. Another example relying on a state-based model

and formal state transitions is the approach by Yuan et al. [43], which additionally focuses

on the veri�cation of special RBAC constraints like SoD from Section 2.2. To reason

about the formal speci�cations, a theorem prover based on the Z speci�cation language is

employed. All in all, these approaches are quite similar to our approach in that they use

either FOL or theorem proving to reason about RBAC policies and constraints. However,

as mentioned earlier, they do not cover speci�c software systems like smart contracts.

Lastly, we look at the approach by Mondal and Sural [44] which uses timed automata

to reason about time-based constraints for RBAC policies. The reasoning about these is

done via model checking, focusing on security properties. The main di�erence to our

approach is the focus on the time-based constraints when analyzing RBAC policies, which

are only covered as additional conditions in our model. Also, we employ formal contracts

and theorem proving to reason about our policies instead of model checking.

3.2. Modelling and Generating Smart Contracts

In addition to formal methods. our approach relies on concepts of MDSD. Therefore,

this chapter describes related approaches that employ these concepts to model and im-

plement smart contacts. Most of the described approaches generate a smart contract

using M2T transformations. These generated smart contracts are compiled and often

include behaviour speci�ed by the corresponding models. This is the main di�erence

between our approach and theirs, since we focus on the de�nition of a metamodel for

correctly enforcing RBAC constraints in combination with formal speci�cations. We do

not concern ourselves with the generation of complete smart contract source code that

contains executable behaviour, only creating the smart contract structure with mostly

empty functions.

One approach called Caterpillar by López–Pintado et al. [29] is an execution engine for

smart contract applications. This approach allows developers to send the Business Process

Model and Notation (BPMN) of their application through a REST API to be compiled and

deployed on the Ethereum blockchain. In comparison to previous work regarding the

21

3. Related Work

execution of BPMN models, Caterpillar can handle sub-processes as well as complex BPMN

concepts like boundary events or multiple-instance activities. In comparison to our work,

Caterpillar lacks the means for describing access control requirements as well as using

BPMN as an existing notation for their input. This approach also focuses on the smart

contract’s behaviour instead of the structure and its relation to access control policies.

A framework with similarly exhaustive capabilities to Caterpillar is FSolidM by Mavridou

and Laszka [45], which allows for the modelling of smart contracts using transition-based

�nite state machines (FSMs). Based on such a FSM, the approach can automatically

generate Solidity source code. Additionally, the approach allows for an easy addition of

design patterns to provide common functionalities like automatically timed transitions or

diminishing the possibility of security vulnerabilities with e.g. access control based on

ownership. This ownership principle saves a single entity for each contract as the owner

who has additional permissions to access vulnerable parts of the contract. However, only

a single entity has these permissions. The di�erence to our approach is the coverage

of access control requirements since the approach is limited to a single role, the owner.
Additionally, they employ �nite state machines to model the contract and its behaviour,

whereas we rely on a metamodel focused on the system’s architecture and the RBAC

policies.

Focusing on the legal aspects of smart contracts as programmatic enhancements of legal

contracts, the unifying metamodel introduced by Ladleif and Weske [46] incorporates

aspects like the legal state, legal actions and participants. All these concepts work in

combination with each other to describe the operational as well as non-operational aspects

of smart contracts. With their unifying model, the authors collect all essential requirements

they identi�ed in the literature, which also includes the previously presented approaches

Caterpillar [29] and FSolidM [45]. Our approach di�ers from the one by Ladleif and Weske

since they emphasize the legal nature of smart contracts, whereas we focus more on the

technical and structural aspects. Additionally, despite including the concept of roles in

the unifying model, it is used to describe the participants in a legal contract instead of a

collection of permissions for access control as is done with the RBAC model.

Relying on models with more formalized foundations, Zupan et al. [47] developed

a framework for describing and generating smart contracts based on petri nets. The

approach focuses on security-by-design to reason about properties like soundness and

safety. To create a new smart contract, developers can either start with an empty petri net

or use an already existing SysML activity diagram. This model is veri�ed to check for the

correct adherence to the aforementioned security properties. Finally, the smart contract is

generated by translating each transition into a function and by using tokens to generate

variables. The main di�erence regarding our approach is the missing possibility to model

and reason about role-based access control.

Mostly, the metamodels presented in this section rely on a visual representation to

describe smart contracts. Another possibility, namely the textual description by applying

a DSL, is used by Wohrer and Zdun [48]. Their Contract Modeling Language is based

on an object-oriented abstraction of smart contracts, structuring each contract similar

to an object-oriented class. State variables are described independent from the possible

actions, but variables as well as actions are described using clauses that allow for granular

description of properties and functionality. For the code generation, a parser creates an

22

3.3. Formal Veri�cation of Smart Contracts

AST, which is traversed to translate each node into a corresponding Solidity element. This

approach does not use formal methods for the evaluation of the generated code nor does

it consider access control, which are the main di�erences to our approach.

Similar to the previous example, the approach by Syahputra and Weigand [49] describes

a smart contract model as well as an approach to generate source code using a M2T

transformation. However, their approach utilizes pro�les and stereotypes to extend UML

diagrams to be able to describe smart contracts. With this, the authors provide a platform-

independent description that is translated into either Ethereum or Hyperledger source

code. To support this generation, a smart contracts is described on three levels: Essential,

Infological & Datalogical. The main focus of this approach lies on the datalogical level,

where an UML pro�le is applied to describe all elements available in smart contracts. In

comparison to this approach, our approach focuses on describing and enforcing access

control as well as modelling and generating the smart contract, whereas this approach

focuses solely on the code generation. Additionally, this approach allows for the description

and generation of smart contract behaviour, whereas our approach focuses on the structure

and RBAC policies. Also, they describe smart contracts independent of the underlying

blockchain technology, whereas we focus on the Ethereum blockchain.

3.3. Formal Verification of Smart Contracts

Due to the immutability of smart contracts, verifying their behaviour and identifying

vulnerabilities is an important aspect. For this, the di�erent approaches rely on formal

methods like theorem proving or model checking to evaluate the given smart contracts.

The resulting tools either collect a number of vulnerability detectors in a single application

or provide developers with a framework for specifying properties that should hold in their

contract. Other approaches focus on a single aspect or problem regarding smart contracts

and their vulnerabilities.

Some examples for the �rst category are the tools we describe in more detail in Sec-

tion 2.4.2, which use formal methods or static analysis to provide developers with the

tools to automatically reason about their contract. Both solc-verify [4] and SciviK [37]

create an annotation language enabling the developer to describe formal contracts for

their implementation using FOL. However, despite being based on the same principles

and ideas, both vary in the functionality they provide. These di�erences are explained in

more detail in Section 2.4.2.4. In contrast, Slither [7] provides a static analysis framework

enabling the detection of certain security vulnerabilities. Additional information about

the implementation that can help developers to better understand the connections and

dependencies in their contracts is collected and rehashed.

Another available tool with a di�erent focus then the three mentioned before is VeriSolid1

by Mavridou et al. [50]. This tool provides a formal veri�cation framework using model

checking on transition-based models. To allow for the correct-by-design development of

smart contracts, the tool extends the FSolidM framework from Section 3.2 for modelling

and generating contracts with capabilities to reason about the model’s properties. The

underlying model is based on FSMs, so the reasoning of VeriSolid is based on the speci�ed

1https://github.com/anmavrid/smart-contracts - Last accessed: 05.01.2022

23

https://github.com/anmavrid/smart-contracts

3. Related Work

transitions and guards. The main properties it can validate are deadlock freedom, liveness

and safety. In comparison to our approach, VeriSolid provides only limited coverage for

RBAC policies since they support only a single role (owner). Also, this role cannot be

included in the formal veri�cation about the contracts properties. Our approach on the

other hand focuses on the formal enforcement of RBAC policies. So our approach allows for

more complete reasoning about RBAC, whereas VeriSolid focuses more on other security

aspects.

In comparison to the previously presented tools, the approach by Bhargavan et al. [51]

consists of Solidity* and EVM*. Both are prototypes employed by the authors to demon-

strate the general applicability of their approach. These prototypes are based on the

functional programming language F*, speci�cally developed for program veri�cation. The

tools are combined to reason about smart contracts on the source code as well as the

bytecode level, allowing for di�erent focuses. For example, Solidity* can verify safety or

functional correctness whereas EVM* can identify bounds on the amount of gas required

to complete a call or a transaction.

Another tool that is presented by Alt and Reitwiessner [31] is an extension to the

standard Solidity compiler consisting of an SMT-based formal veri�cation module. This

module employs bounded model checking to reason about properties like over-/under�ow,

divisions by zero or assertion fails. This reasoning is done by translating the Solidity code

into a combination of di�erent quanti�er-free theories like uninterpreted functions or

linear arithmetics. Due to current limitations, a complete reasoning about all aspects of

the Solidity language is not possible.

Since smart contracts and the blockchain technology are new technologies, there has

not been as much research about their formal correctness in comparison to other topics

in computer science. Approaches like [52, 53] try to use concepts from other domains to

reason about smart contracts. Both approaches translate a given smart contract into a

Java program with similar functionality and vulnerabilities and reason about its properties

using JML and the veri�cation approach KeY [19]. They both employ JML to specify

formal contracts that describe properties and expected behaviour, which are veri�ed using

KeY. The di�erence between both approaches is that Ahrendt et al. [52] translate Solidity

smart contracts to Java programs, using the JavaCard functionality of JML to model

transactions. Beckert, Schi�, and Ulbrich [53] on the other hand abstract the Hyperledger

Fabric computation model by interpreting the smart contract architecture as a single core

machine that employs an underlying database and relies on client requests.

The approach by Marjanovic and Milosevic [54] uses deontic and temporal constraints

to model the behaviour of smart contracts, independent of a speci�c implementation

language. To reason about these constraints, they visualize the constraints using newly

developed diagram types called role windows and time maps.

Lastly, the approach by Schi� et al. [55] formally proves the correctness of the Palinodia

system from Section 3.4.2 by verifying each function individually using pre- and postcon-

ditions. To also prove the security of the whole application, the authors provide a manual

proof using temporal constraints. In comparison to our approach, the authors focus on the

formal veri�cation of security properties using e.g. solc-verify as well. They also consider

access control requirements in their proof. However, their reasoning is not based on a

24

3.4. Access Control Combined with Smart Contracts

previously de�ned model and is speci�c to the Palinodia system. We focus on providing a

general approach and only employ Palinodia as a part of our case study in Section 11.3.

3.4. Access Control Combined with Smart Contracts

Due to their immutability and the decentralized technology they run on, smart contracts

are used to facilitate access control enforcement. In general, the resulting approaches can

be sorted in one of two categories: Approaches that use the cryptographic possibilities

provided by blockchain technology and smart contracts to provide a new and better way

to control access to applications that are not smart contracts itself. These approaches are

described in Section 3.4.1. The other category is summarized in Section 3.4.2 and contains

approaches that focus on handling access control for smart contract systems. For this, the

approaches keep in mind the di�culties related to the anonymity and immutability of

blockchain systems.

3.4.1. Access Control Based on Smart Contracts

The approach by Baby, Honnavalli, and Soman [56] implements a new identity and access

management system using the blockchain. For this, smart contracts are combined with

mobile devices to give individuals control over their own data. This decentralized approach

focuses on privacy protection for individuals where all data is saved on their device and

only provided to an interested organization if they permit the access. In addition, the

shared data is chosen individually for each identi�cation request, allowing users to only

share the minimal amount necessary to use the services by each organisation.

A similar approach is proposed by Davari and Bertino [57], who develop a blockchain-

based model for providing consent to the processing of personal data. In contrast to the

previous approach, the model adheres to the constraints provided by the General Data

Protection Regulation (GDPR). The GDPR is a law by enacted by the European Union in

2018. For this, the approach combines the usage of the Hyperledger Fabric blockchain

with external data management systems like MongoDB, where the personal data is stored.

Both systems communicate over a REST API that allows operations that are described

using an extension to the Extensible Access Control Markup Language (XACML). This

whole process complies to the aforementioned GDPR.

Focusing on a di�erent aspect of access control that can be supported by smart con-

tracts, Hirotsugu and Tetsuya [58] developed an approach to handle inference attacks based

on a metamodel. During an inference attack, a malicious user can get information they are

not allowed to have by inferring it from locations they are permitted to access. To prevent

this kind of information leakage, the approach models the access control dependencies in

the form of a hypergraph. A hypergraph is a generalization of a graph where a number of

vertices can belong to a single edge. To scan this graph for information �ows and possible

leakages, the approach uses a coloring algorithm. Additionally, it saves the access history

for each user encrypted on the blockchain. This enables the approach to evaluate which

information the current user already possesses and if access to more information should

be granted or not.

25

3. Related Work

In comparison to our solution, the presented approaches di�er mainly in the way that

they do not provide access control or identity management for smart contract systems but

rather use the possibilities given by this technology.

3.4.2. Access Control for Smart Contracts

With DistU, Khan et al. [59] present an extended usage control model for permissioned

blockchains like Hyperledger Fabric. Their system focuses on two concepts: Decision

continuity and attribute mutability. For the �rst concept, the approach constantly monitors

the resources after access is provided to intervene when malicious behaviour occurs and

enforce the access policies. With attribute mutability, the attributes of the accessing subject

or the accessed object can be changed dynamically based on the granted permissions.

This can be used to change the state of the accessed object so not all available informa-

tion can be accessed. By implementing both of these concepts, DistU can be used for a

dynamic enforcing of RBAC policies on permissioned blockchains. However, there are

many di�erences regarding our approach. For one, this approach neither uses MDSD

nor formal methods. It focuses solely on the security aspects of RBAC through constant

monitoring and dynamic changes to the attributes, whereas our approach focuses on an

enforcement based on a architectural model. Additionally, the system is limited to permis-

sioned blockchain systems like Hyperledger Fabric, whereas our approach is developed

for the permissionless Ethereum blockchain.

Similar to the previous example, the access control possibilities provided by the Open-

Zeppelin [60] framework do not rely on a prede�ned architectural model or formal methods.

In their approach, the developers provide special classes with structures to check for the

ownership of a smart contract or if other addresses possess a certain role necessary for

the access. However, in comparison to our approach the developers use only a single role

called owner, which is a limitation in comparison to the RBAC requirements we handle in

our approach.

Another approach by Amaral de Sousa, Burnay, and Snoeck [61] describes B-MERODE.

This is an extension to the MERODE method for designing and implementing inter-

organizational information systems. Their method employs MDSD and business processes

to generate smart contracts concerning cross-organizational collaboration like supply

chains. To do so, the approach extends the three layer architecture of the original MERODE
approach with two new layers: One responsible for handling permissions and access

control and one for managing all blockchain-speci�c operations. One advantage of this

approach is �exibility, since it can manage participants and permissions dynamically and

independent of the underlying blockchain technology. Our approach on the other hand

focuses on the Ethereum blockchain. Despite this advantage, this approach does not use

RBAC but an ownership-based permission system. Additionally, it does not use formal

methods for the veri�cation and enforcement of access control requirements, despite

claiming that it would be possible.

One approach that also uses RBAC for describing access control requirements is Block-
chain Studio by Mercenne, Brousmiche, and Hamida [62], which is an extension to the

smart contract modelling and generation tool Caterpillar described in Section 3.2. The

extension adds the possibility to model roles, users and organisations with their respective

26

3.4. Access Control Combined with Smart Contracts

connections. This means that each organization contains a list of users and roles in addition

to a connection between users and their roles inside of the organization. Finally, each

function is extended by describing the roles that are allowed to access it. These permissions

are checked at runtime using an additional smart contract that maps addresses to users

and roles. Despite providing a similar model to our approach, one important di�erence is

the level of detail. This approach only considers access to functions whereas our approach

explicitly models variables as well. Additionally, this approach is able to generate a running

smart contract based on their model due to extending Caterpillar whereas our approach

focuses on the formal veri�cation of the access control requirements, thus only modelling

and generating the contracts structure.

The approach by Stengele et al. [63] is called Palinodia and employs smart contracts

to manage access control for binary integrity protection. With this, the authors enable

users to verify binary �les supposedly containing software updates. For this, the approach

lets developers manage their software and maintainers manage their software distribution

platform (SDP), while administering an identity management that veri�es the role for each

user inside of the system. Since we identi�ed their approach as a proper use case for our

work, we describe it in more detail in Section 11.3.3. This approach allows for the handling

of smart contract access control on the source code level. However, it does not cover the

architectural level or the enforcement of security properties like correctness or safety.

Lastly, the approach by Reiche et al. [1] focuses on the generation of formal speci�cations

based on a previously de�ned model to realize RBAC policies. To describe the requirements

on the architectural level, the approach extends the Palladio Component Model (PCM)

to allow for the de�nition of Solidity functions and variables as well as their connection

to the di�erent roles. The approach generates a formal contract for each function in the

annotation language of solc-verify from Section 2.4.2.2 as well as function stubs for later

implementation of the remaining functionality. This work describes the original concept

our thesis is based on. In our thesis, we circumvent the limitations and problems found by

the authors. The main limitation is the extension of the PCM to describe RBAC policies on

the architectural model. To mitigate this, we create a new metamodel speci�cally designed

to support the goal of correctly enforcing the RBAC requirements. Additionally, the formal

speci�cations they generate are not complete and e.g. evaluations regarding complex data

structures are still missing.

27

4. Running Example: Auction

An auction system is used as a running example throughout this thesis. Originating in the

Solidity documentation [64], this system is based on the real-world scenario of an auction

where di�erent entities bid on items that are for sale. In the documentation, two versions

employing the underlying blockchain technology are distinguished: In the open version,

all participants see who is bidding what amounts of money on which item. In the blind

version on the other hand, the participants for the auction are kept secret.

The version introduced by the Solidity documentation [64] consists of a single smart

contract representing the sale of a single item. During a prede�ned bidding period,

every user can send money as their bid. In the open version, this money is sent directly

and thus can be examined by every other user, whereas the blind version only sends a

cryptographically safe hash of the money. If a new bid is identi�ed by the system as higher

then the currently highest bid, the highest bidder is updated. After the bidding period

is �nished, the money of the highest bidder is collected and all other bidders get their

invested money back.

An extension to the version of the Solidity documentation by Reiche et al. [1] adds two

more roles to the open version. By calling a publicly accessible function of an Auction-
Management contract, any entity creates a new auction, represented by a SingleAuction
contract. For this contract, the creator entity gets the seller role that de�nes the auctions

runtime as well as collecting the money after the auction ends. The second new role is

a manager that can shutdown all auctions in the case of an emergency (e.g. a security

breach in the contract). Similar to the version from the documentation, all subjects with

the role bidder are allowed to bid their money as long as the auction is still active.

To further specify the extension by Reiche et al. [1], we add an additional role marking

the currently highest bidder. This role is the only one allowed to collect the sold item

after the auction is �nished. Additionally, the bidders transfer their money directly by

sending the amount with the bid transaction instead of staking the amount which is only

collected at the end. To accommodate for this, any bidder can withdraw the money they

are currently bidding. To add temporal constraints, the auction can only be closed by the

seller a number of days after it was created. An earlier shutdown can only be started in the

case of an emergency. This version is visualized in Figure 4.2 and a manual implementation

is provided in Appendix A.1.

29

4. Running Example: Auction

Role Caller-Specific
Mapping

SmartContract

Function

StateVariables

Name : Datatype

Function writes to
variable

Role with same color
can access

Timed constraints for
the access

Role Caller-Specific
Mapping

Smart Contract

Function

State Variables

Name : Datatype

Function writes to variable

Role with same color can
access

Timed constraints for the
access

Function creates contract

Figure 4.1.: Explanation of the elements employed to describe the roles, smart contracts,

functions and state variables in the use case visualizations.

State Variables

SingleAuction

emergencyShutdown

collectMoney

bid

collectItem

close

withdraw

Seller Bidder Manager Highest
Bidder

public

AuctionManagement

createNewAuction

currentBids : Mapping
(Address int)

auctionClosed : bool

moneyCollected : bool

highestBid : bool

Figure 4.2.: Visualizing the two contracts AuctionManagement and SingleAuction for the

auction use case. This �gure employs the visual elements described in Fig-

ure 4.1.

30

5. Defining Role-Based Access Control
Policies for Solidity Smart Contracts

Before an architectural model to describe smart contract RBAC policies is created, we

summarize the necessary information for describing these policies. This includes a formal

de�nition of the underlying RBAC model as well as adapting this formalization to cover

elements from the smart contract domain like state variables. Additionally, this formal

model is extended to enable a more concise description of RBAC policies.

Section 5.1 describes the di�erences our domain introduces to the standard RBAC model

by Sandhu, Ferraiolo, and Kuhn [2] from Section 2.2. Additionally, the remaining model

elements are expanded upon using the authorization constraints by Ben Fadhel, Bianculli,

and Briand [5]. Section 5.2 de�nes the di�erences between modifying and in�uencing

access to state variables. Also, it explains the resulting changes and additions regarding the

RBAC model from Section 5.1. In addition to the formal RBAC model, Section 5.3 introduces

Solidity and smart contract speci�c elements that are considered when discussing access

control for smart contracts. This includes Solidity elements responsible for handling

monetary assets as well as the mapping data structure.

5.1. Formal Specification of Role-Based Access Control
Policies

Beginning with the underlying access control model, the domain we work in adds con-

straints to the standard �at RBAC model by Sandhu, Ferraiolo, and Kuhn [2] from Sec-

tion 2.2. There is no need to explicitly model the Users U since we focus on smart contracts

running on the Ethereum blockchain. As explained in Section 2.3, this blockchain is per-

missionless, meaning access to it is publicly available, thus the software architect cannot

know all users trying to access their contract beforehand. In addition, we aim at creating

an approach usable to statically verify and enforce the RBAC policies for smart contracts.

This veri�cation is performed before its deployment, so the dynamic handling of users is

not relevant on the architectural level. However, in the generated parts on the source code

level, the assignment of addresses to roles is still handled. We call anything represented

by these addresses, which can be a subject or another smart contract, an entity in the

remainder of this thesis.

Another aspect of the standard RBAC model by Sandhu, Ferraiolo, and Kuhn [2] that

needs adaptation before it can be included is the Permission set P. It describes how an

object can be accessed (e.g. read, write). However, in the context of smart contracts, there

is no way to restrict reading access to state variables, so keeping data secret relies on

31

5. De�ning Role-Based Access Control Policies for Solidity Smart Contracts

encryption [30]. Therefore, restricting reading access to state variables is irrelevant for

permissionless blockchains like Ethereum, so this thesis focuses on RBAC policies for mod-

ifying state variables. To accommodate for this, we cover access to state variables directly

in the model with the set S from De�nition (5.1), instead of relying on the abstraction

described with the permissions set. These state variables can only be modi�ed through

transactions [30], which are represented by the functions of the contract. Therefore, the

set F from De�nition (5.2) summarizes all functions.

S : Set of all state variables (5.1)

F : Set of all functions (5.2)

To express the permission to call a certain function, we introduce the RoleToFunction
(RtoF) relation in De�nition (5.3). This relation is a restatement of De�nition (2.2) by Jaidi,

Labbene Ayachi, and Bouhoula [24] and connects one role from R to one function from F.

RoleToFunction ⊆ R × F
(A, 5) ∈ RtoF i� role r is allowed to call function f

(5.3)

Similarly, a role is allowed to access a state variable if the corresponding tuple exists in

the RoleToVariable (RtoS) relation from De�nition (5.4).

RoleToVariable ⊆ R × S
(A, B) ∈ RtoS i� role r is allowed to make changes to state variable s

(5.4)

Similar to the standard RBAC model [2], both the RtoF and the RtoS relation model

access explicitly. Therefore, only permitted access is included and unwarranted access

are modelled implicitly by the abstinence of corresponding tuples. However, if no role is

allowed to access, functions and state variables are handled di�erently. A variable without

any accessing roles should not be accessed by anyone, neither inside nor outside the

contract. On the other hand, if no role is permitted to access a function, we de�ne that

function to be publicly available to any entity. This decision is based on the consideration

that a function inaccessible to any entity is not usable in the smart contract domain.

Based on these sets and relations, Reiche et al. [1] introduce Formula (5.5). This formula

applies FOL to describe the central constraint that the model must adhere to: If a role r is

allowed to access the function f but is not allowed to access the state variable s, f may

not modify s. For example, the system for the running example from Chapter 4 ensures

that the bidder cannot access any function that changes the auctionClosed variable.

∀5 ∈ F, B ∈ S, A ∈ R : ((A, 5) ∈ RtoF ∧ (A, B) ∉ RtoS) =⇒ ¬doesModify(5 , B) (5.5)

To model and verify the doesModify predicate, we introduce the FunctionToVariable (FtoS)

relation describing access to state variables by functions in De�nition (5.6).

FunctionToVariable ⊆ F × S
(5 , B) ∈ FtoS i� function f is allowed to make changes to state variable s

(5.6)

32

5.1. Formal Speci�cation of Role-Based Access Control Policies

With the FtoS relation, the doesModify predicate can be de�ned as seen in De�nition (5.7).

For the moment, this predicate solely depends on the direct changes made through function

f to state variable s. However, Section 5.2 introduces additional constraints that extend

the considerations collected in this predicate.

doesModify(5 , B) ⇐⇒ (5 , B) ∈ FtoS (5.7)

Further formalizing RBAC constraints introduces Formula (5.8). This formula states

that a role r that is permitted to access a state variable s also must be able to access at

least one function f that does modify s. For example, the seller is allowed to modify the

auctionClosed variable to close the auction. However, if the seller is not allowed to access

the close function, it may never conduct any changes to auctionClosed. By verifying

this formula, possible gaps in the architectural model can be detected. These gaps show

violations regarding the underlying RBAC model since permitted access is not enforced in

the model. Therefore, resolving these violations increases the conciseness of the modelled

system.

∀A ∈ R, B ∈ S : (A, B) ∈ RtoS =⇒ (∃5 ∈ F : (A, 5) ∈ RtoF ∧ doesModify(5 , B)) (5.8)

As the authors of the standard RBAC model [2] describe, increasing its expressiveness

introduces additional constraints like role hierarchy and mutual exclusion into the model.

These allow for a more distinct description of policies. However, as Ben Fadhel, Bianculli,

and Briand [5] describe, not all constraints that can occur in real-world RBAC systems

are covered by the standard model. To mitigate this limitation, the authors introduce the

Generalized Model for RBAC (GemRBAC) as a unifying framework. This framework adds

eight authorization constraints to the standard �at RBAC model. In the following, we

describe these constraints and whether they are relevant or irrelevant for our domain:

1. Prerequisite - A role X can have another role Y as its precondition. For example, if

an entity is assigned to the highest bidder role in our running example from Chapter 4,

it must have the bidder role �rst. This constraint can be applied to our domain, despite

the lack of formally represented users, since the role assignment on the source code

level is managed as well. This enables a more complete generation, since the role

assignment can be created once and should not be adapted by the developer in later

stages of development. This constraint is formally de�ned with the Prerequisite (Pr)
relation in De�nition (5.9).

Prerequisite ⊆ R ×R
(A1, A2) ∈ Pr i� role A1 is the prerequisite for role A2

(5.9)

2. Cardinality - There can only exist a constant number of users assigned to a role

at once. For example, only a single entity can be the seller for an auction from the

running example in Chapter 4. Similar to the prerequisite constraint, this constraint

can be applied to our domain to increase the extent of the role assignment on the

source code level. Therefore, it is enforced on the source code level by creating the

corresponding counting variable and checks during the generation.

33

5. De�ning Role-Based Access Control Policies for Solidity Smart Contracts

3. Precedence & Dependency - These constraints restrict a users possibility to activate

or deactivate a role at runtime. The underlying understanding from the GemRBAC

is that each user can choose in each session which roles they want to use. Since

sessions are not part of our domain and dynamic user to role assignments are not

handled on the architectural level, we do not include these constraints.

4. Role Hierarchy - This constraint describes the hierarchical connection between

roles and was already explained as part of the standard RBAC model [2]. This

constraint is included in our domain and the formal speci�cation from De�nition (2.4)

in Section 2.2 is applied. This relation is transitive, so a junior role also inherits its

access permissions from the superior roles of its superior. This transitive connection

is formalized in Formula (5.10).

∀A1, A2, A3 ∈ R : (A1, A2) ∈ RH ∧ (A2, A3) ∈ RH =⇒ (A1, A3) ∈ RH (5.10)

5. Separation of Duty (SoD) - Roles, users and permissions can be mutually exclusive.

Since our model is limited to roles, we only add SoD constraints for the mutual

exclusion of roles. This can be viewed in De�nition (2.5) in Section 2.2. An example

for this constraint from the auction use case are the seller and bidder role, who are

never assigned to the same entity.

6. Binding of Duty (BoD) - This complement to SoD constraints can only be de�ned for

permissions. In that case, two permissions ?1 and ?2 are linked together, forcing any

role assigned to ?1 to also be assigned to ?2. Since our access control model does not

include permissions, this constraint is not included.

7. Role Delegation & Revocation - A user is permitted to assign any of its role to another

user who meets the roles requirements. This assignment can also be revoked if

necessary. Since we do not cover the assignment of roles on the architectural level,

these constraints are not included.

8. Context - Specifying further restrictions regarding the access based on either the

current time or the current location. Adding the possibility to add more access

constraints to the model is sensible. However, from the two example types, only

temporal constraints make sense in the blockchain domain.

5.2. Modifying and Influencing Access to Variables

In addition to the formalized constraints in Section 5.1, our domain is susceptible to

violations to secure information �ows de�ned by Terauchi and Aiken [6]. The authors

de�ne a secure information �ow as a program, where the �nal values for the low-security

variables do not depend on the initial values of the high-security variables. In the domain

of smart contracts, we de�ne these secure information �ows in correspondence with the

roles from the formal model. Here, an information �ow is secure if all variables that cannot

be modi�ed by a role are independent from the variables a role can modify. So violations

34

5.2. Modifying and In�uencing Access to Variables

Smart Contract
Function f

Function g

Role B

State Variables

Variable y

Variable x

Role A

y = x
Read

Write

Figure 5.1.: Despite all access being modelled correctly (e.g. Role A cannot call function g

and thus not modify state variable y), role A in�uences state variable y through

state variable x despite not being permitted to access it directly, since the value

of x is assigned to y throughout the execution of function g. This means that

an insecure information �ow exists where x in�uences y. This visualization

employs the model elements introduced in Figure 4.1.

to these secure information �ows allow an entity to indirectly modify the value of another

variable it is not permitted to access. In the following, the connection between two

variables leading to insecure information �ows is also described as an in�uence relation.

Figure 5.1 visualizes an example containing an in�uence relation. In this scenario, two

roles (A and B) and one smart contract are modelled. The smart contract consists of two

state variables (x and y) and two functions (f and g). The model also de�nes that role A is

allowed to call f and modify x and role B can access g and modify y. If f is the only function

modifying x and g is the only function modifying y, then there are no violations to the

modelled RBAC policies since no malicious behaviour can occur. However, connections

between both variables on the source code level lead to an insecure information �ow when

x in�uences y in function g or vice versa.

Essentially, this in�uence can be achieved in multiple ways that are summarized in List-

ing 5.1. The direct form of in�uence occurs when the value of x is assigned to y in line 2.

This enables role A to in�uence the value of y despite not being allowed to access it directly.

Another way is indirect in�uence, where the value of y depends on the value of x through

a condition instead of direct assignment. This type of in�uence can be examined in line 4.

In addition, both kinds of in�uence can also be transitive, when the value of y depends on

another variable z that is directly or indirectly in�uenced by x, as presented in line 6 and

7. The running example from Chapter 4 contains an indirect in�uence since the seller can

close the auction after a certain point in time by modifying the auctionClosed variable.

However, bidding and thus changes to the currentBids mapping are only permitted while

the auction is still open.

To distinguish between modifying and in�uencing access in the formal RBAC model,

we split the RoleToVariable relation from De�nition (5.4) in Section 5.1 into two new

35

5. De�ning Role-Based Access Control Policies for Solidity Smart Contracts

1 // direct influence

2 y = x;

3 // indirect influence

4 y = (x == 5? 10: -10);

5 // transitive influence

6 z = x;

7 y = z; // y = x

Listing 5.1: Example Solidity code showing the di�erent kinds of in�uence

relations. The RoleModifiesVariable (RmS) relation from De�nition (5.11) maps roles to the

variables they are permitted to modify, whereas the RoleInfluencesVariable (RiS) relation

from De�nition (5.12) connects the roles to the variables they are allowed to in�uence.

The connection between these two relations is speci�ed in Formula (5.13). We de�ne

modifying access to be a stronger restriction compared to in�uencing access. So each role

that is allowed to modify a variable is also allowed to in�uence it.

RoleModifiesVariable ⊆ R × S
(A, B) ∈ RmS i� role r is allowed to modify the state variable s

(5.11)

RoleInfluencesVariable ⊆ R × S
(A, B) ∈ RiS i� role r is allowed to in�uence the state variable s

(5.12)

RoleModifiesVariable ⊆ RoleInfluencesVariable (5.13)

Additionally, we consider role hierarchy when checking for modifying or in�uencing

access to state variables as well as functions. To do so, we introduce three new predicates

that check if any superior role is allowed to access. All of them are de�ned recursively

to consider the complete hierarchical structure instead of only the direct superiors. Def-

inition (5.14) covers modi�cation access to variables by considering direct access and

access through a superior role. The De�nition (5.15) does the same but regarding in�u-

encing access. For functions, De�nition (5.16) provides the same check considering the

RoleToFunction relation.

modifiesVar(A, B) ⇐⇒ (A, B) ∈ RmS ∨ (5.14)

(∃Aℎ ∈ R : (A, Aℎ) ∈ RH ∧ modifiesVar(Aℎ, B))

influencesVar(A, B) ⇐⇒ (A, B) ∈ RiS ∨ (5.15)

(∃Aℎ ∈ R : (A, Aℎ) ∈ RH ∧ influencesVar(Aℎ, B))

callsFunc(A, 5) ⇐⇒ (A, 5) ∈ RtoF ∨ (5.16)

(∃Aℎ ∈ R : (A, Aℎ) ∈ RH ∧ callsFunc(Aℎ, 5))

36

5.2. Modifying and In�uencing Access to Variables

These predicates enable the update of Formula (5.8) from Section 5.1 to also cover

function calls and indirect in�uence. The result can be examined in Formula (5.17). Here,

for any role r that is permitted to modify a variable s, r must be able to call at least one

function that implements this modi�cation access.

∀A ∈ R, B ∈ S : modifiesVar(A, B)
=⇒ (∃5 ∈ F : callsFunc(A, 5) ∧ doesModify(5 , B))

(5.17)

To permit certain variables to in�uence other variables, the relation in De�nition (5.18)

is introduced. It connects the �rst variable of the tuple with the second by declaring that

the �rst is permitted to in�uence the second. The type of in�uence is irrelevant for this

relation. The relation is also transitive, as described in Formula (5.19).

VariableToVariable ⊆ S × S
(B1, B2) ∈ StoS i� an information �ow from state variable B1

to state variable B2 exists

(5.18)

∀B1, B2, B3 ∈ S : (B1, B2) ∈ StoS ∧ (B2, B3) ∈ StoS =⇒ (B1, B3) ∈ StoS (5.19)

By utilizing the VariableToVariable (StoS) relation from De�nition (5.18), an additional

constraint on the RBAC model is speci�ed. If a role r is allowed to modify a state variable

x but is not allowed to in�uence another state variable y, it is prohibited for x to in�uence

y. This constraint is formalized in Formula (5.20).

∀A ∈ R, B1, B2 ∈ S : (modifiesVar(A, B1) ∧ ¬influencesVar(A, B2))
=⇒ (B1, B2) ∉ StoS

(5.20)

To exploit unwarranted access to illegally in�uence state variables, a malicious role can

use modi�cation access to a variable by employing the VariableToVariable relation. Addi-

tionally, a function call to another function that is responsible for changing the prohibited

variable can also lead to unwarranted in�uence. To formally describe these function calls,

the FunctionToFunction (FtoF) relation in De�nition (5.21) is added to the model. Similar

to the VariableToVariable relation from De�nition (5.18), the FunctionToFunction relation is

transitive, as described with Formula (5.22). For each tuple, the �rst function describes the

caller whereas the second expresses the callee.

FunctionToFunction ⊆ F × F
(51, 52) ∈ FtoF i� function 51 calls function 52

(5.21)

∀51, 52, 53 ∈ F : (51, 52) ∈ FtoF ∧ (52, 53) ∈ FtoF =⇒ (51, 53) ∈ FtoF (5.22)

Integrating these function calls into our formal RBAC model allows for updates to the

doesModify predicate from De�nition (5.7). As we mentioned in Section 5.1, the predicate is

extended to consider function calls. The updated version is represented in De�nition (5.23)

and is applied in Formula (5.17).

37

5. De�ning Role-Based Access Control Policies for Solidity Smart Contracts

doesModify(5 , B) ⇐⇒ (5 , B) ∈ FtoS ∨
(∃52 ∈ F : (5 , 52) ∈ FtoF ∧ doesModify(52, B))

(5.23)

With all relevant relations de�ned, additional constraints can be speci�ed. Similar

to Formula (5.20), Formula (5.24) models that any role that can access a function f also

must be permitted to access all functions called by f. In reality, a function call can depend

on a case analysis, leading to cases where the accessing role would not need the permission

to call all called functions. However, formally de�ning these cases leads to information

from the source code level being modelled explicitly in the underlying formal RBAC model,

thus violating the separation of concerns.

∀A ∈ R, 5 , 52 ∈ F : (callsFunc(A, 5) ∧ (5 , 52) ∈ FtoF) =⇒ callsFunc(A, 52) (5.24)

Based on these new relations, Formula (5.5) by Reiche et al. [1] can be expanded to

also cover indirect access by roles. The result is displayed in Formula (5.25). Here, the

doesInfluence predicate is an extension of the doesModify predicate from De�nition (5.23)

to also consider variable in�uence and function calls.

∀5 ∈ F, B ∈ S, A ∈ R : (callsFunc(A, 5) ∧ ¬influencesVar(A, B))
=⇒ ¬doesInfluence(5 , B)

(5.25)

doesInfluence(5 , B) ⇐⇒ (5 , B) ∈ FtoS ∨
(∃B8 ∈ S : (5 , B8) ∈ FtoS ∧ (B8, B) ∈ StoS) ∨
(∃52 ∈ F : (5 , 52) ∈ FtoF ∧ doesInfluence(52, B))

(5.26)

Formula (5.25) formalizes that for each role r that can access a function f and not

in�uence a variable s, f is not allowed to in�uence s. This doesInfluence predicate checks

for three cases in which a function f in�uences a variable s:

1. Checking if the tuple (5 , B) ∈ FtoS. With this check, direct access by the function to

the variable is excluded. This was already considered in the previous de�nition for

the doesModify predicate from De�nition (5.7) in Section 5.1.

2. Validating indirect access through variable in�uence by searching for a single variable

B8 that is modi�ed by the function f and that in�uences s.

3. Analyzing the doesInfluence predicate recursively for all functions that f is allowed

to call. This analysis is similar to the recursive de�nition of the upgraded doesModify
predicate from De�nition (5.23).

Throughout this section we introduced multiple de�nitions and formulae. However,

not all of them are enforced directly by our approach since some describe supporting

aspects. All in all, the presented de�nitions describe relations, sets and predicates that

are combined to form the formulae the underlying RBAC model must ful�ll. The relevant

formulae our approach aims to enforce are Formulae (5.17), (5.20), (5.24) and (5.25).

38

5.3. Covering Solidity and Smart Contract Elements

5.3. Covering Solidity and Smart Contract Elements

In addition to the RBAC formalization from Section 5.1 and the di�erences between modi-

fying and in�uencing access from Section 5.2, the smart contract domain entails additional

aspects relevant for the correct enforcement of RBAC policies. However, handling the

access control for these aspects di�ers from the formal model described throughout this

chapter. This includes the mapping data structure and the handling of monetary assets

through special balance variables.

The mapping data structure provided by the Solidity programming language enables

developers to map a value to each possible key. Due to this property, the data structure is

used in many smart contract applications to map speci�c entities to values that only they

should access. This is employed to link a monetary value to the address that transferred

the amount, which happens for example in the auction use case from Chapter 4. Here, the

currentBids mapping saves the amount of Ether bid during the auction for each entity.

In the smart contract domain, mappings where the developer needs to verify that an

entity can only access the value corresponding to its key are important aspects of the

underlying programming language. This leads us to include every mapping that connects

entities to entity-speci�c values in our approach. We call a mapping that ful�lls these

requirements caller-speci�c. For each caller-speci�c mapping (CSM) we must ensure that

no changes are made to memory locations not associated with the current entity. In the

auction use case this would mean that each bidder should only access their current bid

and not increase the bid of another entity.

When using Solidity smart contracts, monetary assets (Ether) can be transferred between

contracts to use as currency. To keep track of the amount of money a contract has at

their disposal, it possesses a balance variable. This variable can only be changed by

sending or receiving Ether and not through direct assignment. Due to the importance of

balance modi�cations and their connection to monetary assets, access to these variables is

restricted as well. To handle these balance modi�cations in our approach, each function

can be explicitly permitted to make a certain type of change to the contract balances.

39

6. Description of Role-Based Access
Control Policies on the Architectural
Level

To achieve the goal of enforcing RBAC policies in the Solidity source code based on an

architectural description, this architectural descriptions must be created. To enable the

automatic generation of source code and annotations, the MDSD workbench is applied.

Previous work by Reiche et al. [1] found the PCM to be inappropriate for describing

the underlying smart contract architecture, since the PCM focuses on the description

of component-based software architecture [65]. Due to the mismatch between smart

contracts and components, smart contract speci�c aspects like addresses or complex data

types cannot be modelled correctly. To elude these shortcomings, our approach creates a

new metamodel based on the EMF by employing Ecore as its meta-metamodel. This new

AccessControlMetamodel (ACM) covers the information collected throughout Chapter 5.

The ACM is created and presented in Section 6.1. Since the model still includes im-

plicit assumptions regarding its elements, these assumptions are made explicit by OCL

constraints, which are explained in Section 6.2.

6.1. Describing the AccessControlMetamodel

After collecting the underlying information in Chapter 5, the metamodel to describe RBAC

policies and enable their correct enforcement is created. This AccessControlMetamodel

(ACM) utilizes the EMF by implementing the Ecore meta-metamodel. Integrating the ACM

in the metamodel hierarchy from Section 2.1, it is situated on the M2 layer. Concrete

instances of the ACM describe the M1 layer and the real-world scenario the instances

capture are placed on the layer M0. This structure is visualized in Figure 6.1.

The ACM is not only based on the Ecore meta-metamodel but also relies on the Solidi-
tyMetaModel [66] and the Metamodel-Modeling-Foundations [67]. Both metamodels are

de�ned on the M2 layer. The SolidityMetaModel by Dietrich and Reiche [66] is an extensive

metamodel for describing Solidity smart contracts using three packages: The SolidityCon-
tracts package is employed to describe the structure of a single Solidity Contract using e.g.

StateVariables, Functions and data Types. To model multiple smart contracts in conjunction

with each other, the SoliditySystem package is employed. In it, multiple Contract instances

are connected to each other through their provided or required functions. Lastly, the RBAC
package implements the approach by Reiche et al. [1] to enable the basic modelling of

RBAC policies by connecting Roles to operations and variables. Since the ACM focuses on

41

6. Description of Role-Based Access Control Policies on the Architectural Level

M3 Meta-
Metamodel

M2 Metamodel

M1 Model

M0 Real-World
Object

Ecore

AccessControl
Metamodel

Use Case
Instance

Solidity
Source Code

ascertainment

instantiation

representation

Modelling Level

Element

Figure 6.1.: Visualization of the metamodel hierarchy from Figure 2.1. Here, each level is

linked to a concrete implementation of its abstract concept, centered on the

AccessControlMetamodel.

describing RBAC policies and their source code enforcement, de�ning the basic structure

of the smart contracts is done by employing the SolidityMetaModel.
Another referenced metamodel is the Metamodel-Modeling-Foundations by Krach and

Seifermann [67], which is also employed in the SolidityMetaModel. The Metamodel-
Modeling-Foundations collects commonly use elements that are required to model di�erent

use cases [67], like providing a unique id or giving model elements a name. By referencing

the Metamodel-Modeling-Foundations, elements in the ACM are provided with a unique id

and an attribute for de�ning a name simply by inheriting from the Entity element.

The ACM separates its capabilities into the packages SmartContractModel and Access-
ControlSystem. The SmartContractModel is employed to describe the structure of the smart

contract and can be examined in Figure 6.2. With the AccessControlSystem, RBAC policies

can be described based on their formal de�nition from Sections 5.1 and 5.2. This package

can be viewed in Figure 6.3. By separating these concepts on the architectural level, the

general approach for describing RBAC policies can be adapted for other programming

languages than Solidity, increasing the model’s reusability.

The SmartContractModel package imports the Function, StateVariable, Contract and Type
element from the SolidityMetaModel. To expand the capabilities of the central Contract
element, the AccessControlContract is created by inheriting from the Contract element. To

access the created Functions directly through the AccessControlContract, a new containment

is added. This simpli�es the creation of new functions when modelling the smart contract

by enabling their direct connection to the contract. Additionally, the AccessControlContract
contains FunctionBalanceModification elements. These elements are employed to cover

the handling of monetary assets by restricting changes to the balance variables as stated

in Section 5.3. Each FunctionBalanceModification references a function and models, if that

function is allowed to modify the balance of either the function caller, represented by

42

6.1. Describing the AccessControlMetamodel

StateVariable

mutability : VariableMutability = default
visibility : VariableVisibility = public

Function

mutability : FunctionMutability = default
virtual : EBoolean = false
content : EString
returnVariables : ReturnVariable
modifiers : Modifier
parameters : FunctionParameter

Type

FunctionBalanceModification

modifiesMsgSenderBalance :
BalanceModificationType = modifiesBothWays
modifiesThisContractsBalance :
BalanceModificationType = modifiesBothWays

AccessControlContract
BalanceModificationType

modifiesBothWays
onlyIncrease
onlyDecrease
doesNotModify

Contract

 providedFunctions : GlobalFunction
 constructor : Constructor
 events : Event
 modifiers : Modifier
 requiredFunctions : GlobalFunction
 localFunctions : LocalFunction
 overrideFunctions : OverrideFunction

[1..1] type

[1..1] function

[1..*] functions

[0..*] balanceModifications

[0..*] variables

[0..*] parents

[0..*] localTypes

Figure 6.2.: Elements from the ACM to describe Solidity smart contracts. The elements

Function, StateVariable, Contract and Type are imported from the SolidityMeta-
Model [66].

the modifiesMsgSenderBalance attribute, or the contract it belongs to, represented by the

modifiesThisContractsBalance. The possible values for both attributes are summarized

in the BalanceModificationType enumeration. The four possible values are as follows:

1. modifiesBothWays - The function is allowed to modify the balance completely. This

includes increases as well as decreases.

2. onlyIncrease - The function is only permitted to increase the balance. This case

occurs in the auction example from Chapter 4 for the bid function. This function

transfers money to the SingleAuction contract as a bid, so the contracts balance is

increased by that amount.

3. onlyDecrease - The function is only permitted to decrease the balance. Similarly to

the onlyIncrease case, this occurs when a bidder withdraws previously bid money

using the withdrawMoney function, decreasing the contracts balance.

43

6. Description of Role-Based Access Control Policies on the Architectural Level

4. doesNotModify - The function is prohibited from modifying the balance in any way

possible. This enum value describes the default value.

Since doesNotModify is the default case, a FunctionBalanceModification does not need to

be created for Functions that are prohibited from modifying the balances.

FunctionToFunctionRelation

caller : Function
callee : Function

AccessControlSystem

VariableToVariableRelation

 influencer : StateVariable
 influenced : StateVariable

FunctionToVariableRelation

function : Function
RoleToFunctionRelation

 function : Function

Role

description : EString
cardinality : EInt = -1

RoleToVariableRelation

modifies : EBoolean = true
 variable : StateVariable

MutualRoleExclusion

Context

TimeContext

isUpperBound : EBoolean = false
timeValue : EInt
timeUnit : TimeUnits = second

TimeUnits

second
minute
hour
day
week
year

BooleanVariableContext

valueToCheck : EBoolean = false
variable : StateVariable

FunctionToCsmRelation

accessWholeMapping :
EBoolean = false
csm : StateVariable

FunctionToStateVariableRelation

variable : StateVariable

[1..1] role

[1..1] role

[2..2] roles

[0..*] prerequisite[0..*] superior

[0..*] roleToVariableTuples

[0..*] roles

[0..*] roleToFunctionTuples

[0..*] roleExclusions

[0..*] functionToVariableTuples

[0..*] functionToFunctionTuples

[0..*] variableToVariableTuples

[0..*] conditions[0..*] conditions

Figure 6.3.: Elements from the ACM to describe RBAC policies. These elements reference

the Solidity elements from Figure 6.2 to de�ne and enforce policies based on

the formal de�nitions from Sections 5.1 and 5.2.

To describe and enforce RBAC policies for smart contracts based on the formal de�nitions

from Sections 5.1 and 5.2, the AccessControlSystem package is employed. It relies on the

Metamodel-Modeling-Foundations metamodel to add an identi�er and a name to each

element, but it does not import any elements from the SolidityMetaModel. Only the

44

6.1. Describing the AccessControlMetamodel

ones imported into the SmartContractModel are referenced. The central element of the

AccessControlSystem package is the AccessControlSystem, which describes the top-level

container for all other model elements.

The Role element is contained in the top-level container and describes a single role in

the system. To provide additional information about that role, a description can be added.

To implement the authorization constraints described in Section 5.1, additional attributes

are de�ned. The cardinality attribute denotes the maximum amount of entities that are

assigned to that role at once. The default value of -1 represents that no maximum number

is speci�ed. For example, the amount of bidders in the auction use case from Chapter 4

is not restricted but there can only exist one highest bidder. To cover the role hierarchy

from De�nition (2.4) in Section 2.2, each role references an arbitrary amount of other roles

through the superior attribute. Similarly, the prerequisite relation from De�nition (5.9)

in Section 5.1 references an arbitrary amount of required roles. To model the SoD con-

straints described in Section 5.1, the MutualRoleExclusion element is used. It is contained

in the top-level container and references exactly two roles, which are marked as mutually

exclusive. This element directly covers the relation from De�nition (2.5).

To connect the three main elements (Functions, StateVariables and Roles), the formal

model from Sections 5.1 and 5.2 introduces relations where each tuple connects two of

these elements. These relations are directly modelled using the ElementToElementRelation
elements. All of these relations are contained in the AccessControlSystem element. Describ-

ing that one role is allowed to access one variable, the RoleToVariableRelation element

represents the general RoleToVariable relation from De�nition (5.4) in Section 5.1. To

distinguish between modifying and in�uencing access, the boolean attribute modifies is

utilized. Therefore, a RoleToVariableRelation element where modifies is set to true repre-

sents the RoleModifiesVariable relation from De�nition (5.11) in Section 5.2. If modifies is

set to false, the element covers the RoleInfluencesVariable relation from De�nition (5.12).

Similarly, the RoleToFunctionRelation represents the RoleToFunction relation from De�ni-

tion (5.3) by linking one role to one function it may access.

As described in Section 5.3, a caller-speci�c mapping (CSM) maps an entity to an arbi-

trary value. Access to this mapping should be restricted, so an entity is permitted to only

change the value it is connected to. However, this access is only restricted for certain

functions. As an example, consider the currentBids mapping from the auction use case

from Chapter 4. When this mapping is accessed through the bid or withdraw function, only

the caller-speci�c location is changed. However, when the emergencyShutdown is started,

all entries in the mapping are modi�ed. To allow for this distinction, the architect di�erenti-

ates between all other state variables and the CSMs when modelling the FunctionToVariable
relation from De�nition (5.6) in Section 5.1. Generally, this relation is covered by the

abstract FunctionToVariableRelation element, which includes the reference to a function.

This abstract element is modelled concretely using the FunctionToStateVariableRelation
element and the FunctionToCsmRelation element. The FunctionToStateVariableRelation con-

nects one variable of any type with one function, whereas the FunctionToCsmRelation
element references a mapping variable that is handled like a CSM. To distinguish the ac-

cess possibilities, the boolean attribute accessWholeMapping is used. With this attribute,

architects are enabled to enforce the CSM properties on a function to function basis.

45

6. Description of Role-Based Access Control Policies on the Architectural Level

To incorporate the temporal authorization constraint from Section 5.1, the abstract

Context element is added. Elements of this type are added to either RoleToFunctionRelation
or FunctionToVariableRelation elements through the conditions attribute. One Context
element describes a single condition that further restricts the modelled access. The kind

of restrictions can take multiple forms but due to the scope of our thesis, we create two

concrete examples with the BooleanVariableContext and TimeContext. However, future

additions are easily created by extending the Context element. If a condition has the

BooleanVariableContext type, it means that the referenced variablemust have the modelled

valueToCheck, otherwise access is prohibited. For example, calling the bid function in the

auction use case is only possible while the auction is open, which is represented by the

boolean variable auctionClosed.

By applying the TimeContext, software architects describe that an access must occur

either before or after a relative point in time. This point in time is de�ned in relation to

the creation of the smart contract. The timeValue describes the amount of time that needs

to pass and the timeUnit gives the unit, described with the TimeUnits enumeration. In

general, the de�ned units are based on the temporal capabilities of Solidity [32, p. 79].

To di�erentiate if a TimeContext describes an upper or lower border, the isUpperBound

attribute is used. For an example, the close function from the auction use case is considered.

Access to this function is only possible, when the auction was open for at least seven

days. Since the auction starts with the creation of the contract, a TimeContext element

with isUpperBound = false, timeValue = 7 and timeUnit = TimeUnits.day is created.

To model the relations describing function calls and variable in�uence from Section 5.2,

FunctionToFunctionRelation and VariableToVariableRelation elements are applied. Both of

them are contained in the AccessControlSystem and underlie a similar structure as the

other relation elements by connecting two elements. The FunctionToFunctionRelation is

based on De�nition (5.21) and de�nes a function call made by the caller to the callee.

The two referenced Functions do not have to reside in the same instance of the Smart-
ContractModel, allowing for the connection of di�erent contracts. In a similar manner,

VariableToVariableRelation describes the in�uence relation between two StateVari-

ables from De�nition (5.18). The influencer directly, indirectly or transitively in�uences

the influenced variable. However, it is not the only element to model the in�uence relation

since the BooleanVariableContext also describes the indirect dependence between two vari-

ables. If it is used as a condition for a FunctionToVariableRelation, the variable referenced

by the relation element is indirectly in�uenced by the boolean variable referenced by the

BooleanVariableContext.

6.2. Adding Explicit Constraints to the
AccessControlMetamodel

By employing Ecore as the meta-metamodel for creating the ACM, our metamodel is

susceptible to the same limitations regarding its expressiveness. Since Ecore focuses on

describing the structure of model elements similar to UML class diagrams, certain rules,

conditions or constraints focused on the behaviour cannot be expressed. This includes

46

6.2. Adding Explicit Constraints to the AccessControlMetamodel

1 context AccessControlContract

2 inv BalanceModificationsReferenceDifferentFunctions:

3 balanceModifications -> isUnique(function)

4

5 inv NoMoreBalanceModificationsThanFunctions:

6 functions -> size() >= balanceModifications -> size()

7

8 inv BalanceModificationsRegardingThisContractNeedPayableFunction:

9 balanceModifications -> forAll(b | (b.modifiesThisContractsBalance =

BalanceModificationType::modifiesBothWays or

b.modifiesThisContractsBalance = BalanceModificationType::onlyIncrease)

implies b.function.mutability =

soliditycontracts::FunctionMutability::payable)

10

11 inv NoFunctionOverrides:

12 overrideFunctions -> isEmpty()

13

14 inv NoAdditionalLocalFunctions:

15 localFunctions -> isEmpty()

Listing 6.1: OCL constraints for the AccessControlContract element

implicit assumptions the developers made during the creation of the metamodel that

cannot be added explicitly using the capabilities of the EMF. To circumvent the resulting

limitations, a static semantic is described using OCL, which was introduced in Section 2.1.

By adding the following OCL constraints, the implicit assumptions about the model

elements are made explicit and can be enforced for software architects using the ACM.

For the AccessControlContract element from the SolidityContractModel package from Fig-

ure 6.2, the �ve invariants from Listing 6.1 are added. Since every FunctionToBalanceMod-
ification element is only allowed to reference a single function, the constraint Balance-

ModificationsReferenceDifferentFunctions veri�es that all balanceModifications ref-

erence a di�erent function. Similarly, the NoMoreBalanceModificationsThanFunctions

invariant limits the amount of FunctionToBalanceModification elements to the amount of

Functions. The BalanceModificationsRegardingThisContractNeedPayableFunction val-

idates that each Function, for which a FunctionToBalanceModification element speci�es that

it can modify or increase the contract’s balance, has to be declared as payable. This enables

the Function to handle monetary assets, as explained in Section 2.4.1. The two constraints

NoFunctionOverrides and NoAdditionalLocalFunctions, are added to suppress function-

ality inherited from the Contract, since these concepts are not part of the domain the ACM

aims to support. Adding support for these functionalities would blur the line between the

architectural and the source code level.

To correctly enforce the authorization constraints from Section 5.1, the four invariants

from Listing 6.2 are added to the Role element. With the CardinalityIsValid constraint,

it is guaranteed that the cardinality contains a valid value. This can be any positive

47

6. Description of Role-Based Access Control Policies on the Architectural Level

1 context Role

2 inv CardinalityIsValid:

3 cardinality = -1 or cardinality > 0

4

5 inv NoRoleCanBePrerequisiteForItself:

6 prerequisite -> excludes(self)

7

8 inv NoRoleCanBeSuperiorToItself:

9 superior -> excludes(self)

10

11 inv NoRoleInPrerequisiteAndSuperiorSet:

12 prerequisite->excludesAll(superior)

Listing 6.2: OCL constraints for the Role element

1 context MutualRoleExclusion

2 inv RolesCannotBeInHierarchyOrPrerequisite:

3 roles -> excludesAll(roles -> first().prerequisite -> union(roles ->

last().prerequisite) -> union(roles -> first().superior) -> union(roles

-> last().superior))

Listing 6.3: OCL constraints for the MutualRoleExclusion element

integer or the default value of -1, representing an unlimited amount of possible entities.

The next constraints relate themselves to the role-to-role connections, validating that

the role does not depend on itself. This means that the role cannot be set as a superior

(NoRoleCanBeSuperiorToItself) or prerequisite (NoRoleCanBePrerequisiteForItself)

of itself. Similarly, the Role is prohibited from referencing the same Role as a prerequisite

and a superior with the NoRoleInPrerequisiteAndSuperiorSet constraint. Since the

prerequisite requires a speci�c role before the assignment and each entity is also assigned

to the role’s superior, de�ning the same role for both leads to problems.

Similar to the constraints on the Role element, the RolesCannotBeInHierarchyOrPrereq-

uisite constraint from Listing 6.3 on the MutualRoleExclusion element is used to validate

the authorization constraint from Section 5.1. It veri�es that the two roles marked as mu-

tually exclusive do not depend on each other through the other connections like superior

or prerequisite.

For the abstract FunctionToVariableRelation element the ForbidTimeContextConditions

constraint from Listing 6.4 is de�ned. This constraint limits the available conditions to

de�ne for this relation to only BooleanVariableContext by excluding TimeContexts. This ex-

clusion is implemented because temporal constraints on the modi�cation of a StateVariable
through a Function cannot be enforced using the veri�cation tools from Section 2.4.2.

To add an ascertainment for the abstract FunctionToVariableRelation, a FunctionToCsm-
Relation element is modelled to connect a function to a csm. However, not all mapping

variables ful�ll the necessary requirement to be handled as a CSM. Since entities are

48

6.2. Adding Explicit Constraints to the AccessControlMetamodel

1 context FunctionToVariableRelation

2 inv ForbidTimeContextConditions:

3 conditions -> forAll(c | c.oclIsTypeOf(TimeContext) <> true)

Listing 6.4: OCL constraints for the FunctionToVariableRelation element

1 context FunctionToCsmRelation

2 inv VariableTypeNeedsToBeMapping:

3 csm.type.oclIsTypeOf(soliditycontracts::Mapping)

4

5 inv MappingKeyTypeNeedsToBeAddressOrAddressPayable:

6 let map = csm.type.oclAsType(soliditycontracts::Mapping)

7 in map.keyType.oclIsTypeOf(soliditycontracts::PrimitiveType) and

(map.keyType.oclAsType(soliditycontracts::PrimitiveType).type =

soliditycontracts::PrimitiveTypeEnum::address or

map.keyType.oclAsType(soliditycontracts::PrimitiveType).type =

soliditycontracts::PrimitiveTypeEnum::address_payable)

Listing 6.5: OCL constraints for the FunctionToCsmRelation element

represented on the source code level by their address, a CSM must accommodate for this in

its key data type. In Solidity, two data types ful�ll this requirement: address and address

payable [32, p. 53]. The address payable data type extends the address data type by

marking the represented entity with the payable keyword as an entity that can receive

money, as we explained in Section 2.4.1. To validate that the referenced csm ful�lls this

requirement, the OCL constraints from Listing 6.5 are added. These constraints describe

two invariants that both must be ful�lled. The invariant VariableTypeNeedsToBeMapping

validates that the referenced variable has the mapping data type. The additional invariant

MappingKeyTypeNeedsToBeAddressOrAddressPayable checks if the referenced csm has the

required key data type. As mentioned before, this can either be a Solidity address or an

address payable. If both of these invariants are ful�lled, it is ensured that the referenced

mapping variable is enforced as a CSM on the source code level.

Since the FunctionToStateVariableRelation is another sub element to the abstract Function-
ToVariableRelation element, it inherits the ForbidTimeContextConditions constraint. Addi-

tionally, it adds the VariableTypeIsNoMappingWithAddressAsKeytype invariant from List-

ing 6.6. This invariant describes the complement to the constraints validating the Func-
tionToCsmRelation element. With this invariant, variables that ful�ll the requirement to be

handled as a CSM are excluded. This exclusion leaves only the FunctionToCsmRelation as a

valid modelling element to describe CSMs.

The BooleanVariableContext is restricted by the VariableTypeNeedsToBeBoolean con-

straint from Listing 6.7, which is employed to validate that the referenced variable has the

datatype bool. Otherwise the functionality connected to this model element isn’t enforced

since other data types cannot be compared to the boolean valueToCheck on the source

code level.

49

6. Description of Role-Based Access Control Policies on the Architectural Level

1 context FunctionToStateVariableRelation

2 inv VariableTypeIsNoMappingWithAddressAsKeytype:

3 not (variable.type.oclIsTypeOf(soliditycontracts::Mapping) and

variable.type.oclAsType(soliditycontracts::Mapping)

.keyType.oclIsTypeOf(soliditycontracts::PrimitiveType) and

(variable.type.oclAsType(soliditycontracts::Mapping)

.keyType.oclAsType(soliditycontracts::PrimitiveType).type =

soliditycontracts::PrimitiveTypeEnum::address or

variable.type.oclAsType(soliditycontracts::Mapping)

.keyType.oclAsType(soliditycontracts::PrimitiveType).type =

soliditycontracts::PrimitiveTypeEnum::address_payable))

Listing 6.6: OCL constraints for the FunctionToStateVariableRelation element

1 context BooleanVariableContext

2 inv VariableTypeNeedsToBeBoolean:

3 variable.type.oclIsTypeOf(soliditycontracts::PrimitiveType) and

variable.type.oclAsType(soliditycontracts::PrimitiveType).type =

soliditycontracts::PrimitiveTypeEnum::bool

Listing 6.7: OCL constraints for the BooleanVariableContext element

50

7. Specification of Role-Based Access
Control Policies on the Source Code
Level

After formally specifying the underlying RBAC model in Chapter 5 and creating the

AccessControlMetamodel (ACM) in Chapter 6, the presented relations, predicates and

formulae are described on the source code level. This description supports the enforcement

of the properties these de�nitions model. For this enforcement, we employ the capabilities

of solc-verify and Slither from Section 2.4.2 and discuss the resulting reasoning about the

implemented access control policies.

The three central sets R, F and S from Sections 2.2 and 5.1 include all roles, functions

and state variables in the system. The functions and state variables are represented by their

equivalent in the source code, so each function in the RBAC policies describes a function

in the smart contracts. The same applies to the state variables. However, roles have no

representation in Solidity. They are collected using an enum where each member describes

a single role A ∈ R. This enum is part of an access control contract that is generated in

addition to the modelled contracts and handles the role assignment as well as the checking

of roles.

As explained in Section 5.1, the FunctionToVariable relation from De�nition (5.6) in Sec-

tion 5.1 connects one function with one variable it is allowed to modify. To describe this

relation on the source code level, solc-verify provides two elements in its annotation lan-

guage that can validate whether a function has access to the contract’s state variables. One

option includes the creation of a postcondition for each (5 , B) ∉ FtoS. This postcondition

compares the value of s after the functions execution to its value from before the execution

by applying the __verifier_old_() keyword. However, in solc-verifys current version

(v0.5.17 released on the 29th of July, 2020) this keyword does not cover complex Solidity

data types like mappings, structs or strings. The other option includes the creation

of a modi�cation speci�er for each (5 , B) ∈ FtoS. This speci�er permits a function to

make modi�cations to the referenced variable. If no modi�cation speci�er exists for a

tuple (5 , B), f is not allowed to modify s and solc-verify returns an error. By applying the

modi�cation speci�er, no additional keywords except modifies are applied. Additionally,

the modi�cation speci�er covers all of Solidity’s data types, so the limitation reported

by Reiche et al. [1] regarding the usage of postconditions can be circumvented. However,

SciviK from Section 2.4.2.3, which is a formal veri�cation tool for Solidity smart contracts

with similar capabilities to solc-verify, does not provide a comparable element in its syntax,

as was analyzed in Table 2.1. Therefore, the usage of modi�cation speci�ers limits our

51

https://github.com/SRI-CSL/solidity/releases/tag/v0.5.17-solc-verify

7. Speci�cation of Role-Based Access Control Policies on the Source Code Level

approach to solc-verify instead of being general enough to be applied in combination with

di�erent formal veri�cation tools.

The presented postconditions are equivalent to the concept of blacklisting and modi-

�cation speci�ers are equivalent to the concept of whitelisting [26]. Both concepts are

described in Section 2.2. Applying a postcondition to validate that no changes have been

made to a variable is a concrete implementation of the blacklisting concept since unwar-

ranted access is explicitly limited. By employing the modi�cation speci�er, permitted

access is explicitly described as with the whitelisting approach. Impartial to the usage

of blacklisting and whitelisting is the handling of function calls from De�nition (5.21),

since solc-verify considers all function calls when validating annotations. Therefore, the

transitivity of the FunctionToVariable relation from Formula (5.22) is covered automatically.

In the remainder of this thesis, we apply whitelisting to express the FunctionToVariable
relation on the source code level. This option is also employed by the standard RBAC

model by Sandhu, Ferraiolo, and Kuhn [2] and the ACM. Additionally, whitelisting enables

the enforcement of the the CSM from Section 5.3, since changes to speci�c mapping

locations can be speci�ed when applying the modi�cation speci�er. In combination with

the msg.sender keyword, modi�cations to a mapping by a function are permitted to the

callers location. This enforces the CSM on the source code level, ensuring caller-speci�c

access on Solidity mappings.

To implement the roles from the formal model, an enum in the access control contract is

used. However, describing the RoleModifiesVariable relation from De�nition (5.11) in Sec-

tion 5.2 using this enum in combination with solc-verify is not possible. However, by also

considering the RoleToFunction relation from De�nition (5.3) in Section 5.1, these accesses

are covered indirectly by employing the modi�cation speci�er. Each function f that is

accessible by role r is annotated using the modi�cation speci�er for all variables s where

(A, B) ∈ RmS. In combination with the modi�cation speci�ers describing the function’s

access to the state variable, the following four cases occur:

1. (5 , B) ∈ FtoS ∧ (A, B) ∈ RmS: If both the function and the role may modify the

state variable, a single modi�cation speci�er is su�cient. An example from the

auction use case from Chapter 4 can be examined in Listing 7.1. Here, the close

function is employed to modify the auctionClosed variable. Additionally, the seller
role is allowed to access the close function and modify the auctionClosed variable,

resulting in a single modi�cation speci�er in line 1 to permit the close function to

make changes to the auctionClosed variable.

2. (5 , B) ∉ FtoS ∧ (A, B) ∉ RmS: If neither the function nor the role are permitted to

modify the variable, no annotation is created.

3. (5 , B) ∈ FtoS ∧ (A, B) ∉ RmS: When the function is permitted to access the state

variable but the role is not, violations to Formula (5.25) would occur, leading to

unwarranted access. Therefore, this violation is communicated to the developer.

However, our approach detects this case on the architectural level during a soundness

check, so it is communicated back to the architect before the source code generation.

4. (5 , B) ∉ FtoS ∧ (A, B) ∈ RmS: If the function is not allowed to access the variable but

the role may, no annotations are generated. The direct access through the function

52

1 /// @notice modifies auctionClosed

2 function close() public onlySeller {

3 require(auctionClosed == false, "Auction already closed.");

4 auctionClosed = true;

5 }

Listing 7.1: close function from the auction implementation in Listing A.1

provides the stronger restriction in comparison to the access for the role, since the

role may modify the variable through other functions.

Expressing tuples collected with the RoleToFunction relation from De�nition (5.3) on

the source code level is achieved by employing Solidity modi�ers from Section 2.4.1. Each

modi�er restricting access to a single function collects the roles permitted to access this

function using the set R5 ⊆ R, which contains all roles ful�lling the callsFunc predicate

from De�nition (5.16). To check if an entity is assigned to any of these roles, the access

control smart contract is employed to access the roles enum and check the role assignment.

The entity is represented by the msg.sender keyword. Applying modi�ers to handle

role-based function access has also been employed by Reiche et al. [1] and Mavridou and

Laszka [45].

To enforce the authorization constraints on roles from Section 5.1, additional restrictions

and conditions are implemented in the access control smart contract. These restrictions

rely on functionality provided by the require keyword from the Solidity programming

language.

• Prerequisite: To cover the Prerequisite relation from De�nition (5.9), one or more

role checks are added to the role assignment function in the access control contract.

These checks validate that an entity covers all roles that are de�ned as a prerequisite.

It is implemented by employing the require keyword in combination with the

contract’s function to check the role assignment for an entity.

• Cardinality: To count the number of entities assigned to a role, an integer variable

is de�ned. Before each new assignment, the variable is compared to the constant

limit of roles using the require keyword. After a new assignment, the counter is

increased.

• Role Hierarchy: Assigning a junior role to all its superior roles is implemented by

calling the corresponding assignment functions. Since these functions also call the

assignment functions for their superior roles, the transitivity of the role hierarchy

from Formula (5.10) is also covered.

• SoD: Similar to covering the Prerequisite relation, the MutualExclusiveRoles relation

from De�nition (2.5) in Section 2.2 is enforced by adding role checks to the assignment

function. However, these checks validate that the assigned role does not possess the

other role.

53

7. Speci�cation of Role-Based Access Control Policies on the Source Code Level

• Context: To cover the temporal constraints, the current timestamp during the

creation of the access control contract is stored in a variable using the block.time-

stamp keyword [68]. If temporally restricted access is done later on, the current time

is compared to the initially saved value, again by employing the block.timestamp

keyword. In addition to temporal constraints, the ACM also allows for conditions

depending on boolean variables. The corresponding checks are added to the modi�er

checking the role assignment or to the modi�cation speci�er.

The remaining relations to consider are the RoleInfluencesVar relation introduced in Def-

inition (5.12), the VariableToVariable relation from De�nition (5.18) and the FunctionToFunc-
tion relation from De�nition (5.21). However, none of these relations are covered by the

invariants, preconditions and postconditions available to solc-verify. Since its focus is on

the veri�cation of formal speci�cations, these relations are out of the tool’s scope. To

analyze these relations on the source code level, the static analysis framework Slither
from Section 2.4.2.1 is applied to analyze the contract’s information �ows, function calls

and variable in�uence. However, this functionality is not part of the current capabilities

provided by the Slither framework, prompting us to implement a custom printer in Sec-

tion 8.2. Despite this custom printer, no additional source code elements are created to

support this analysis.

Considering the transitivity of variable in�uences from Formula (5.19) and function

calls from Formula (5.22), both of them are covered by the static analysis performed by

Slither. However, enforcing the transitive role hierarchy from Formula (5.10) cannot be

achieved using Slither. Instead, the hierarchy is directly implemented by setting the junior

role to all of its superior roles. On a technical level, this means that the data structure

containing the role assignment stores a connection from the entity to the junior role as

well as the superior role. This enables a role to access all elements its superior roles can

access as well.

After summarizing how the predicates and relations from Sections 5.1 and 5.2 are

described on the source code level, we explain how the Formulae (5.20), (5.24) and (5.25) are

expressed on the source code level. Despite Formula (5.17) describing relevant properties

of the RBAC model, this formula is only validated on the architectural level, as explained

in Section 5.1. To reason about the properties represented by the remaining three formulae,

the veri�cation results regarding the predicates and relations are combined. All of these

formulae are additionally evaluated on the architectural level to �nd violations already

existent in the ACM instances.

To detect unwarranted in�uence to variables by roles, the ful�llment of Formula (5.20) is

validated. Here, a role is allowed to modify one variable x but prohibited from in�uencing a

second variable y. The presented approach must verify that x cannot in�uence y. However,

solc-verify does not cover variable in�uence, so the enforcement of this formula relies on

the static analysis performed by Slither. Similar to Formula (5.20), Formula (5.24) formalizes

that a role must be permitted to call all functions in a call chain instead of only a subset.

Again, this formula is covered by the static analysis done by Slither and not by the formal

veri�cation of solc-verify.

To uncover unwarranted access to variables, whether it’s modifying or in�uencing

access, the ful�llment of Formula (5.25) is validated. This formula expands on the ca-

54

pabilities of Formula (5.5), thus describing that for each role r that is forbidden from

in�uencing a state variable s but permitted to call function f, f is not allowed to in�uence

s. This in�uence is described with the doesInfluence predicate from De�nition (5.26) which

consists of three parts that are expressed on the source code level. To reason about unwar-

ranted modi�cation access or modi�cation access through function calls the capabilities

of solc-verify and its modi�cation speci�er are employed. To reason about information

�ows between variables, the static analysis capabilities of Slither are employed.

55

8. Identifying Insecure Information Flows
in Smart Contracts

Modifying data in a software system happens in either a direct, indirect or transitive manner.

The most obvious kind are direct changes by a subject through accessing and writing

to the data location. Another possibility is indirect or in�uencing access as explained

in Section 5.2, which allows a malicious subject to change data they do not have permitted

access to through other means. To identify these in�uences on the source code level, the

�ow of information in the system is analyzed using static analysis [35].

One available tool for the analysis of smart contracts is Slither by Feist, Grieco, and

Groce [7] from Section 2.4.2.1. In Section 8.1, the provided capabilities of Slither are

considered regarding the coverage of the formal sets, relations, predicates and formulae

as explained in Chapter 7. The found limitations in Slither’s standard set of printers are

avoided by creating a custom printer using the public API in Section 8.2. This API and

it’s functionality are described in Section 8.2.1. Section 8.2.2 explains the algorithms and

methods used for identifying indirect in�uence between variables. Section 8.2.3 summa-

rizes how the transitive closure for variable in�uence and function calls is calculated

and Section 8.2.4 describes how the results are communicated back to the developer.

8.1. Analyzing Slithers Capabilities for Identifying
Information Flows

To enforce the formal RBAC formulae from Sections 5.1 and 5.2, the static analysis must

cover information �ows between functions and variables. When analyzing the informa-

tion �ows between variables, all three types of in�uence (direct, indirect and transitive)

introduced in Section 5.2 are considered. Additionally, the transitivity of function calls

from Formula (5.22) should be involved in the analysis.

Since Slither is a framework employed for static analysis, it does not analyse the smart

contract elements directly but by calling printers or detectors. These provide functionality

to either print information regarding the smart contract or detect speci�c vulnerabilities

like reentrancy from Section 2.4.2.1. These printers or detectors have a speci�c goal and

are applied to achieve di�erent results. To cover the function calls, the function-summary

printer [69] provides the closest suitable behaviour. By employing this printer, Slither
summarizes each function by collecting the used modi�ers, which variables are read and

written and what functions are called. However, this collection of called functions only

includes the directly called functions, excluding transitive function calls.

To reason about information �ows between variables, Slither incorporates the data-

dependency printer [69]. This printer creates an overview for each function in the contract

57

8. Identifying Insecure Information Flows in Smart Contracts

based on the underlying AST. This overview summarizes the dependencies between

variables. Additionally, an overview over the whole contract is created that visualizes all

variable dependencies. However, the printer’s de�nition of dependency lacks relevant

considerations regarding the di�erent types of in�uence relation. Here, a variable depends

on another if direct in�uence occurs. Additionally, the data-dependency printer calculates

the transitive closure on these direct in�uences. This implementation excludes indirect

in�uences between variables and the corresponding transitive in�uences.

8.2. Extending Slither to Cover Indirect Influences and
Transitive Function Calls

Due to the limitations described in Section 8.1, Slither’s public API is employed to create the

influence-and-calls printer that covers all types of in�uence as well as the transitivity

of function calls. To implement this printer, the functionality of the data-dependency

printer is adopted to cover direct information �ows between variables. The complete

implementation of the influence-and-calls printer is presented in Appendix A.2.

If a developer wants to use a speci�c Slither printer, the name of the printer is given

as a parameter when employing the framework to analyze a speci�c contract. Internally,

each printer follows the same provided structure by extending the AbstractPrinter and

implementing the output method, so the framework maps a valid parameter to the class

implementing its behaviour. The returned results of this method are visualized to the

developer and can optionally be exported as a JSON (JavaScript Object Notation) �le using

another parameter.

The output method of the influence-and-calls printer is mainly concerned with

formatting the output the same way the data-dependency printer does. Both printers

di�er in the information that is collected and formatted. During the execution of the

influence-and-calls printer, the direct and indirect in�uences are collected before their

transitive closure is calculated. The transitive closure for the function calls is calculated

independently.

8.2.1. Slither’s Public API

To enable the extension of the framework’s functionality, Slither provides a public API

written in Python [70]. This API provides developers with the tools for creating their own

printers and detectors according to a prede�ned structure. As mentioned in Section 8.2, the

output method is employed as the starting point for a printers functionality. Each printer

references the central slither class, which implements the singleton pattern [71, p. 127].

The single instance is created after the framework initially iterates over the contract and

collects the contract’s general structure, as represented by Figure 8.1. Through this object,

the contract’s elements like functions and variables are accessed and analyzed by the

developer.

The API provided by Slither handles its information in an object-based hierarchical

structure that allows access to contracts, functions, state variables and single instructions

inside each function. These instructions are represented by the nodes of a control �ow

58

8.2. Extending Slither to Cover Indirect In�uences and Transitive Function Calls

Slither

Contract

Function Modifier

Node

Variable

State Variable …Local Variable

references

inheritance

Class

Figure 8.1.: Visualization of the general structure provided by Slither’s public API [70].

Except for the initial slither object, which is handled as a singleton, all other

objects can have multiple instances.

graph (CFG), which describes the underlying data structure employed to handle the

instruction sequence of each function. Each node contains the type of expression it encodes

as well as a list of children containing the directly following instructions. Additionally, a

list of read or written variables is accessible. This list is also available for functions and

modi�ers. Regarding these variables, the API distinguishes between multiple types by

employing an inheritance relation to the abstract variable class. The di�erent types cover

parameters, local and state variables, function type variables and event variables, enabling

developers to handle them di�erently.

8.2.2. Identifying Influences between State Variables

To cover all types of in�uence described in Section 5.2, the influence-and-calls printer

must identify direct and indirect in�uences by searching for information �ows between

two variables. These in�uences are summarized using a dictionary which maps all state

variables to their in�uencers. For this purpose, the return_all_dependencies method

depicted as pseudocode in Algorithm 8.2 is applied. This method is provided with the

current list of contracts for which the printer should analyze the �ow of information. These

contracts are analyzed by iterating over all state variables in line 4, only skipping the ones

that already exist as a key in the created temporary dictionary in line 5 and 6. Afterwards,

two identical loops are used to iterate over the potential in�uencers found by the direct and

indirect analysis. The get_dependencies method in line 8 is part of the Slither framework

and is employed by the data-dependency printer to collect the direct in�uences. The

get_indirect_dependencies in line 12 on the other hand is part of the influence-and-

59

8. Identifying Insecure Information Flows in Smart Contracts

1 function withdrawMoney() external {

2 uint amount = currentBids[msg.sender];

3 currentBids[msg.sender] = 0;

4 if(!msg.sender.send(amount)) {

5 currentBids[msg.sender] = amount;

6 assert(currentBids[msg.sender] == amount);

7 } else {

8 assert(currentBids[msg.sender] == 0);

9 }

10 }

Listing 8.1: withdrawMoney function from the auction implementation in Listing A.1

calls printer. This function is provided with a single contract and the current variable. It

applies the get_influencers_for_var_in_func method from Algorithm 8.3 to return all

indirect information �ows for the given variable in the given contract. After �nding the

set of possible in�uencers, both loops check the found variables for di�erent properties

that must be ful�lled. In line 9 and 13 it is veri�ed, that the found variable is a state

variable. These checks exclude parameters or local variables in the contract overview,

which are included in the function-speci�c summaries. These summaries also incorporate

the get_dependencies and get_indirect_dependencies functions. Additionally, line 10

and 14 verify that each in�uencer is only added once to the dictionary. The last property,

which is only checked for the direct in�uencers in line 10, is based on an issue in the

current implementation of the Slither framework and its data-dependency printer [72].

Due to this issue, a dependency between a variable and itself is found and returned, so

this redundant information is excluded in the influence-and-calls printer.

To �nd indirect in�uence relations in the contract, the get_influencers_for_var_in
_func method from Algorithm 8.3 searches for possible indirect information �ows to the

provided variable. In line 3, it checks whether the variable is written by the given function.

If that is not the case, the function ends by returning an empty set. In the other case, a loop

iterates over all conditional nodes in the function. These nodes represent the beginning of

an if clause and are marked by the node type IF. For each conditional node, the recursive

function check_children_for_write is called to traverse the CFG and check whether the

current condition node is used to access the variable. If that is the case, all variables read

in the conditional node are stored as possible in�uencers in line 7.

To recursively traverse the CFG and check whether the current variable is written

inside the conditional node the call sequence begins with, the check_children_for_write

method is applied. Its structure can be examined in the pseudocode in Algorithm 8.4.

This method is provided with the variable to search for and the current node of the CFG,

which is the conditional node in the beginning. The algorithm inspects all children of

this node, which are the instructions that can follow directly on the current node. For

normal expressions, there is exactly one child, whereas an if condition branches into two

possible nodes. Line 3 checks if the variable is written in any of the children node, which

terminates the recursive function by returning the boolean value true in line 4. If the

60

8.2. Extending Slither to Cover Indirect In�uences and Transitive Function Calls

Algorithm 8.2 Create and return dictionary, which maps all variables to their in�uencers

for the given list of contracts cons

1: function return_all_dependencies(List<Contract> cons)

2: A4B ← empty dictionary

3: for 2 ∈ 2>=B do
4: for E ∈ state variables of 2 do
5: if E ∈ A4B then
6: 2>=C8=D4

7: A4B [E] ← empty set

8: for 8=5 ∈ 64C_34?4=34=284B (E, 2) do
9: if 8=5 .C~?4 == (C0C4+0A801;4 then

10: if 8=5 ∉ A4B [E] & 8=5 ! = E then
11: A4B [E] ← 8=5

12: for 8=5 ∈ 64C_8=38A42C_34?4=34=284B (E, 2) do
13: if 8=5 .C~?4 == (C0C4+0A801;4 then
14: if 8=5 ∉ A4B [E] then
15: A4B [E] ← 8=5

16: return A4B

Algorithm 8.3 Collect indirect in�uencers for given variable v in given function f

1: function get_influencers_for_var_in_func(Variable v, Function f)

2: A4B ← empty set

3: if E ∈ variables written by 5 then
4: 2>=3#>34B ← conditional nodes in 5

5: for 2= ∈ 2>=3#>34B do
6: if 2ℎ42:_2ℎ8;3A4=_5 >A_FA8C4 (E, 2=) then
7: A4B ← variables read in 2=

8: return A4B

child is not a node representing the end of the current if condition, which is checked with

line 5, this function is called recursively for that node, returning a positive value when

any of these recursive calls returns a positive value. This enables positive results to be

handed upwards through the CFG back to the conditional node for which the function

was initially called. If the end of the condition is reached before the variable is written,

a negative value is returned. Therefore, the variable is not written in the initially given

conditional node.

8.2.3. Calculating the Transitive Closure

To fully cover the formal RBAC sets, predicates and formulae, the transitivity of function

calls and variable in�uences is analyzed as explained in Chapter 7. Since Slither does not

support this functionality as we laid out in Section 8.1, this functionality is added to the

influence-and-calls printer.

61

8. Identifying Insecure Information Flows in Smart Contracts

Algorithm 8.4 Recursively check if given variable v is written in any child node of given

node n using the CFG

1: function check_children_for_write(Variable v, Node n)

2: for 2 ∈ =.2ℎ8;3A4= do
3: if E ∈ variables written in 2 then
4: return CAD4
5: if 2.C~?4 ≠ �#�_�� then
6: if 2ℎ42:_2ℎ8;3A4=_5 >A_FA8C4 (E, 2) then
7: return CAD4
8: return 5 0;B4

Algorithm 8.5 Recursively calculate the transitive closure of the indirect in�uence for

the variable v

1: function calculate_transitive_closure(Dictionary[Variable -> Set[Variable]] d,

Variable v, Set[Variable] cov)

2: C4<? ← empty set

3: for 8=5 ∈ 3 [E] do
4: if 8=5 ∉ 2>E then
5: C4<? ← 8=5

6: 2>E ← 8=5

7: C4<? ← 20;2D;0C4_CA0=B8C8E4_2;>BDA4 (3, 8=5 , 2>E)
8: return C4<?

When calculating the transitive closure for information �ows between variables, the dic-

tionary from Section 8.2.2 is provided as an input. By applying the calculate_transitive
_closure method provided in Algorithm 8.5, the printer iterates over all state variables in

the dictionary. Each variable is added to the results and a set containing already covered

variables, so it is skipped in future recursive calls. This method is provided with the dictio-

nary, the current variable to calculate the transitive in�uencers for and the set of already

covered variables. Similar to Algorithm 8.4, this method also calls itself recursively to

cover transitive in�uence through more than one intermediate variable. For all in�uencers

that the method iterates over, line 4 checks whether any in�uencer has not yet been added

to the results. If this check succeeds, the in�uencer is added to the temporary result set in

line 5 as well as the set of already covered variables in line 6. Afterwards, the result set is

completed by recursively calling this method with the extended set of already covered

variables for the currently covered in�uencer in line 7. After all in�uencers have been

considered and added to the temporary set, it is returned as the set of variables with

transitive in�uence on the current variable.

In addition to the in�uence analysis, the described printer also helps to analyze the

transitive relationship between the functions to reason about Formula (5.24). Therefore, it

also calculates the transitive closure for function calls by applying the same idea imple-

mented in Algorithm 8.5. One modi�cation to this method is that only one function func

and the set of already covered functions are provided as input, so no dictionary is utilized.

62

8.2. Extending Slither to Cover Indirect In�uences and Transitive Function Calls

Table 8.1.: Summary of the variable in�uence results for the SingleAuction contract

from Listing A.1 using the influence-and-calls printer. The complete version

is represented in Table A.1.

O marks a found in�uence relation, and X symbolizes a cell connecting a variable

to itself.

In�uencers

Variables m
a
n

a
g

i
n

g
C

o
n

t
r
a
c
t

s
e
l
l
e
r
A

d
d

r
e
s
s

h
i
g

h
e
s
t
B

i
d

d
e
r

a
u

c
t
i
o

n
C

l
o

s
e
d

m
o

n
e
y

C
o

l
l
e
c
t
e
d

h
i
g

h
e
s
t
B

i
d

b
i
d

d
e
r
C

o
u

n
t
e
r

b
i
d

d
e
r
s

c
u

r
r
e
n

t
B

i
d

s

managingContract X

sellerAddress X

highestBidder O O X O O O O O

auctionClosed O O X

moneyCollected O O O O X O O O O

highestBid O O O O X O O O

bidderCounter O O O O O X O O

bidders O O O O O O X O

currentBids O O O O O O O X

This leads to a di�erence in line 3 as well, since the method iterates over the list of all

functions that func is calling, which is provided as an attribute of the Function class. The

handling of each function element afterwards is the same: If the function has not yet been

covered, it is added to the result set and to the set of covered functions before a recursive

call to that method is done with the current function from the iterated list. Additionally,

the loop from line 3 to 7 is copied and added between line 7 and 8, covering all external

function calls. Therefore, the method collects internal as well as external calls in the same

set before returning it.

As Anderson [73] explains, static analysis tools and frameworks are limited by the

amount of paths needed to consider. The inclusion of loops, exceptions and function

calls leads to an unbounded number of paths the tool considers in the worst case. To still

reason about these paths in a reasonable amount of time, approximations are applied and

certain paths are skipped. The Slither framework employed by the influence-and-calls

printer underlies the same limitations. Since the developers do not describe which paths

their framework focuses on, we cannot assume that the information �ows found by the

influence-and-calls printer are complete. Additionally, not considering all available

paths in a smart contract leads to an overapproximation regarding the transitive closure

since dependencies may be considered that cannot occur during the dynamic execution.

So any analysis relying on the transitive closure must consider these additional connec-

tions. An example for the analysis of information �ows between variables can be viewed

in Table 8.1, where variables like highestBidder are in�uenced by almost all of the other

state variables despite only depending on three when considering the direct and indirect

in�uence.

63

8. Identifying Insecure Information Flows in Smart Contracts

8.2.4. Communicating Results Back to the Developer

After the transitive closure has been calculated for the variable in�uence and the function

calls, the information is visually enhanced by employing functionality from the data-

dependency printer. The results of this output for the auction use case from Chapter 4 can

be examined in Table A.1. The shortened version collecting only the information �ow

between variables can be seen in Table 8.1. The results consist of a table where the �rst

column states the name of the variable or function and the second column summarizes all

in�uencers or called functions. Additionally, similarly structured tables are created for

each function to describe the information �ow between variables on a function-to-function

basis.

As mentioned in Section 8.2.1, the framework can also export the console output into a

JSON �le. This JSON export depends on the same output as the console, so no additional

formatting is done. Therefore, the resulting JSON �le contains the complete output as a

single string in one element, making further automated handling of these results di�cult.

However, this representation su�ces for the presented approach and enhancements like

an automatic reasoning about the results are part of future improvements on this approach.

More information on this step is provided in Section 10.1.3.

64

9. Generation of Formal Specifications to
Enforce Role-Based Access Control
Policies

After formalizing smart contract RBAC policies in Chapter 5 as a foundation for the

AccessControlMetamodel (ACM) from Chapter 6, their coverage on the source code level is

described in Chapter 7. To mitigate potential risks for developers and architects that occur

when manually implementing the proposed speci�cations based on the ACM instances,

an automatic generation of smart contracts and formal speci�cations is employed. To

automate this translation, M2T transformations from Section 2.1.3 are used. Especially the

Xtend language [21] is used as a foundation for implementing an automatic generator.

To achieve this goal, we de�ne a mapping between the metamodel elements, the source

code elements and the solc-verify annotations in Section 9.1. This resulting mapping de-

scribes the connections that are implemented in the Xtend generator. Section 9.2 presents

this generator, beginning with the packages and structure of the generator project in Sec-

tion 9.2.1. In Section 9.2.2, we describe the preprocessing performed by the generator.

This preprocessing step veri�es the OCL constraint and validates the model’s sound-

ness. Section 9.2.3 explains how the Solidity smart contract stubs are created based on the

ACM. Similarly, Section 9.2.4 describes how the formal speci�cations and other elements

responsible for enforcing the RBAC policies are created.

9.1. Mapping Metamodel Elements to Source Code Elements

To employ the developed formal speci�cations in the Solidity smart contracts from Chap-

ter 7, the metamodel elements representing these speci�cations are mapped to the Solidity

elements. This mapping describes the foundation for the generator. Additionally, the

mapping helps with the automatic enforcement of the modelled policies since ambiguities

during a manual implementation of the presented approach are minimized.

The ACM described in Section 6.1 consists of two di�erent packages containing elements

for modelling the structure of the smart contract and the RBAC elements. The elements

from the SmartContractModel package from Figure 6.2 are used to describe the structure

of the smart contract by de�ning Functions, StateVariables and data Types. Most of these

elements are taken from the SolidityMetaModel [66], so their implementation in Solidity is

already covered by the SolidityCodeGenerator [74]. This includes Function, State Variable
and Type. The AccessControlContract element, used as the top-level container for this pack-

age, is not directly covered by the generator. Since it inherits most of its attributes and

references from the Contract element, its attributes are handled equally. In general, a single

65

9. Generation of Formal Speci�cations to Enforce Role-Based Access Control Policies

1 /// @notice modifies msg.sender.balance

2 /// @notice postcondition msg.sender.balance >=
__verifier_old_uint(msg.sender.balance)

3 /// @notice postcondition msg.sender.balance <=
__verifier_old_uint(msg.sender.balance)

4

5 /// @notice modifies address(this).balance

6 /// @notice postcondition address(this).balance >=
__verifier_old_uint(address(this).balance)

7 /// @notice postcondition address(this).balance <=
__verifier_old_uint(address(this).balance)

8

9 /// @notice modifies <VariableOrMappingName>

10 /// @notice modifies <MappingName>[msg.sender]

11 /// @notice modifies <VariableOrMappingName> if <Boolean>

Listing 9.1: Generated solc-verify annotations based on the ACM elements

Solidity smart contract is generated for each AccessControlContract element. This contract

is �lled with the functions and variables speci�ed by the contained elements. Lastly,

the FunctionBalanceModification elements are used to create additional annotations to the

function element they reference. The two attributes modifiesMsgSenderBalance and modi-

fiesThisContractsBalance cover the balance of the function caller (msg.sender.balance)

as well as the balance of the AccessControlContract the referenced function belongs to

(address(this).balance). For both of them, the possible values are describe by the Bal-
anceModificationType enumeration. The resulting speci�cations based on these values are

shown in Listing 9.1:

1. doesNotModify: The referenced function is not allowed to modify the speci�c bal-

ance in any way. If this value is selected, no additional annotations are generated.

2. onlyIncrease: Here, the referenced function is only permitted to increase the bal-

ance. To enforce this, the annotations in line 2 or line 6 are generated (depending

on the attribute). With these postconditions, it is veri�ed that the balance after the

function execution is greater or equal to the value before the function execution.

3. onlyDecrease: Similar to the onlyIncrease contingency, the referenced function is

only permitted to decrease the balance. Here, the current value must be less or equal,

which can be examined in line 3 for the modifiesMsgSenderBalance attribute and

line 7 for the modifiesThisContractsBalance attribute.

4. modifiesBothWays: The function is allowed to increase and decrease the speci�c

balance. If this value is selected, one additional annotation is generated. When this

value is chosen for the modifiesMsgSenderBalance attribute, the annotation in line

1 is created. Line 5 is generated when modifiesThisContractsBalance is set to this

value.

66

9.1. Mapping Metamodel Elements to Source Code Elements

These postconditions allow for a more precise veri�cation of the generated smart

contracts using solc-verify. However, the current version of solc-verify cannot reason

about postconditions related to contract balances in its normal mode [75]. To handle these

aspects, modular arithmetic is used as the encoding for arithmetic operations, allowing

for range assertions as well as precise wraparound semantics [4]. This encoding can be

chosen when starting solc-verify using the mod parameter instead of the default int mode,

which encodes the arithmetics using integers. This integer mode "does not capture the

exact semantics" of e.g. over�ows or unsigned numbers [4, p. 166].

The elements from the AccessControlSystem package from Figure 6.3 are not covered by

the SolidityCodeGenerator, so their generation is originally de�ned. The central element of

this package is the AccessControlSystem, which contains all other elements. On the source

code level, this element represents the speci�c access control contract. This additional

smart contract should not be altered after the generation and is employed to handle

everything related to roles, their assignment and their inspection. To handle the assignment

of entities to roles, the access control contract employs a nested mapping. This mapping

stores whether an entity is assigned to a role (represented by an enum) by mapping each

role to a boolean value in a second, internal mapping. To restrict access to the access

control contract, an additional admin role is created that is the only one permitted to

access the role assignment functions. To check if an entity ful�lls a role, Solidity modi�ers

are implemented like the one from Listing 2.2. This technique for verifying an entities

role is also employed by Reiche et al. [1] and Mavridou et al. [50]. During the contracts

creation, the admin role is assigned to the caller of the contract in the constructor, which

is the contract for whom access control should be handled.

Using Solidity modi�ers for checking an entity’s role is also employed when translating

RoleToFunctionRelation elements. First, all roles that are allowed to access a function are

summarized by iterating over all RoleToFunctionRelation elements. Then, the roles are

combined disjunctively in a single condition to check if an entity has any of these roles.

The resulting modi�er is added to the function declaration. To further restrict the access

of roles to functions, a Context can be added to specify certain conditions that must be

ful�lled. As explained in Section 6.1, Context is an abstract super class which has no concrete

elements to translate to the source code level. However, both BooleanValueContext and

TimeContext can be added to RoleToFunctionRelation elements by conjoining their condition

with the role check. If a role’s access to a function is restricted by a BooleanValueContext
element, the modi�er also inspects if the referenced boolean variable has the modelled

valueToCheck. If a TimeContext element is used, a call to the access control contract is

made with the properties speci�ed by the model element. To handle this call, a function to

check the current time (represented by block.timestamp [68]) against the given limit is

created. This limit is given by the isUpper attribute and is calculated by converting the

timeValue to seconds using Solidity keywords [32, p. 79]. To get the reference value for

the time comparison, a new variable is added that holds the timestamp during the creation

of the access control contract.

Similar to the Context element is the FunctionToVariableRelation element, which also de-

�nes an abstract super class. Since no concrete instances can be created, no translation is

de�ned. However, it has two subclasses FunctionToStateVariableRelation and FunctionToC-
smRelation. Both contain a list of Context elements, which are limited to the BooleanValue-

67

9. Generation of Formal Speci�cations to Enforce Role-Based Access Control Policies

Context as explained in Section 6.2. For each FunctionToStateVariableRelation element, the

referenced variable is ingested into the solc-verify modi�cation speci�er in line 9 in List-

ing 9.1. FunctionToCsmRelation elements on the other hand can result in two annotations.

When the accessWholeMapping attribute is set to true, the FunctionToCsmRelation element

is handled like a FunctionToStateVariableRelation element. However, when it is set to false,

the restriction to the caller-speci�c location is applied as explained in Chapter 7. The result

can be examined in line 10 in Listing 9.1. If FunctionToStateVariableRelation or FunctionToC-
smRelation contain a BooleanValueContext, the referenced boolean variable is appended

to the generated modi�cation speci�er as an additional condition as implemented in line

11 in Listing 9.1.

For each Role element, a new entry is added to the roles enumeration in the access

control contract. This is re�ected in the functions since a new function is added to

assign entities to this role. These functions also cover the authorization constraints

from Section 5.1. When a role has a cardinality that is limited, an integer counting

variable is created. Before an entity is assigned to this Role, a check is made if the counter

does not exceed the modelled cardinality. If another assignment is permitted, the entity

is assigned to the role and the counter is increased. If the entity loses this role, the counter

is decreased. To handle the connections between roles like hierarchy and prerequisite,

additional checks are added to the role assignment function. If a Role has a prerequisite,

a check controls if the given entity also has that role. In this case, execution may continue,

otherwise the function is aborted. Any entity that is assigned to a Role is also assigned to

its superior’s by adding a call to the superior’s assignment function. The last constraint

on roles is handled by the MutualRoleExclusion element, which references two distinct

Role elements. This MutualRoleExclusion element is handled similarly to the prerequisite

relation. For each of the two referenced roles, a check is added to their assignment

function. These checks verify that an entity is not assigned to the other, mutually exclusive

role. Only if this check succeeds, the role assignment continues.

The remaining elements from the AccessControlSystem package are not utilized during

the generation, but for the soundness check in the preprocessing phase. This includes the

FunctionToFunctionRelation, RoleToVariableRelation and VariableToVariableRelation, which

are not mapped onto source code elements. However, they are still used to reason about

the soundness of the modelled system. Therefore, the formulae from Section 5.1 are

considered and veri�ed before the generation is employed. More information on this step

will be given in Section 9.2.2.

9.2. Generating Solidity Smart Contracts

To automatically and programmatically translate the ACM elements to elements on the

source code level, a code generator is implemented using Xtend [21]. This generator is

implemented according to the mapping from Section 9.1. As explained in that section, the

translation of some ACM elements is already implemented in the SolidityCodeGenerator
by Dietrich and Reiche [74]. Since this generator employs theXtend language, the presented

generator is also implemented with Xtend.

68

9.2. Generating Solidity Smart Contracts

Handlers

Templates

Generators Validation

AccessControl
System

SmartContract

<<import>> <<import>>

<<import>> <<import>>

<<import>>

Figure 9.1.: UML package diagram describing the structure of the generator. The ⊕-symbol

visualizes a containment relation between packages. Therefore, the generators
package consists of the three connected sub packages.

The SolidityCodeGenerator takes instances of the SolidityMetaModel [66] as input and

generates the modelled smart contracts. These generated contracts consist of variables,

modi�er and function stubs. Additionally, solc-verify annotations and access control modi-

�ers are created according to the approach by Reiche et al. [1]. This generator is based on

the Ecore2Txt project by Kramer et al. [76] which implements the basic structure for imple-

menting M2T transformations for Ecore-based models. This project is also implemented

using Xtend and enables the starting of the generator from the Eclipse context menu.

9.2.1. Structure of the Generator

The structure of the generator is visualized in Figure 9.1. It consists of three packages,

which all are responsible for a di�erent phase of the generation process. The entry

point of the generator when starting the process is the AccessControlGeneratorHandler
in the Handlers package. This class forwards the call from the context menu to the

AccessControlGenerator and AccessControlGeneratorModule from the Generators package.

This structure is prescribed by the Ecore2Txt project [77].

Before the generation is started by the AccessControlGenerator, the input �les are prepro-

cessed by employing the classes from the Validation package. This includes the validation

of OCL constraints as well as checking the ful�llment of the central RBAC formulae

from Section 5.1. More information on this process step is provided in Section 9.2.2.

If the validation succeeds, the sub packages of the Generators package are employed to

create the annotated smart contracts. The abstract templates that function as a blueprint

for the creation of either a Solidity smart contract or a Solidity function are collected in

the Templates package. These templates are implemented in the SmartContracts package

to enable the generation of Solidity smart contracts based on the model. This generation

69

9. Generation of Formal Speci�cations to Enforce Role-Based Access Control Policies

1 There are violations in the selected AccessControlSystem ’Auction’ and

SmartContracts ’AuctionManagement’ ’SingleAuction’:

2 1) Role ’Manager’ cannot modify variable ’Auction Closed’ through any

function

3 2) Role ’Manager’ - Violation for OCL constraint ’CardinalityIsValid’:

4 The role cardinality needs to be -1 or bigger than 0

5 3) Violation for OCL constraint

BalanceModificationsReferenceDifferentFunctions:

6 All balance modifications need to reference different functions

Listing 9.2: Example for a violations.log �le

is described in more detail in Section 9.2.3. Additionally, the classes in the AccessCon-
trolSystem package are employed to create the solc-verify annotations as well as creating

the access control modi�ers to enforce the RBAC policies in the smart contracts. The

additional access control contract is generated here as well. Section 9.2.4 provides more

details on this generation.

9.2.2. Verifying Constraints and Soundness Check

Before the generation of annotated smart contracts begins, the soundness of the ACM

instances is validated. This validation is performed by the AccessControlValidator from the

Validation package (see Figure 9.1). This class validates the OCL constraints in the model as

well as the central RBAC formulae from Section 5.1 by using the two available implementa-

tions of the ViolationGenerator interface. This interface and its implementations employ the

Strategy design pattern explained by Gamma et al. [71, p. 315-316]. The ViolationGenerator
describes the abstract Strategy that is implemented concretely in the OclViolationGenerator
and the RbacViolationGenerator. The enumeration IllegalInfluenceResults is employed to

di�erentiate the outcomes by the ViolationGenerators.

To communicate the found violations back to the architect, the AccessControlValidator
collects all error messages returned by the implementations of ViolationGenerator and

saves them to a text �le. An example for such an output is presented in Listing 9.2. These

violations are numbered and the models they stem from are annotated in the header in

line 1. To identify these violations, the OclViolationGenerator validates the modelled OCL

constraints from Section 6.2 using functionality provided by the EMF. For each constraint

that cannot be validated, the model element, name of the constraint and a more detailed

error message are connected and returned to the AccessControlValidator. An example can

be examined in line 3 and 5 of Listing 9.2. Similarly, the RbacViolationGenerator returns

detailed error messages like the ones in line 2, which include the concrete names of the

model elements responsible for the violation. For this purpose, it checks the Formulae (5.17),

(5.20), (5.24) and (5.25) from Sections 5.1 and 5.2 regarding their ful�llment. If no violations

are returned by either ViolationGenerator, the generation continues. Otherwise the log is

created and further generation is aborted.

70

9.2. Generating Solidity Smart Contracts

1 function checkAccess(address entity, Roles role) public view returns(bool

result) {

2 return roleAssignment[entity][role];

3 }

4

5 function checkTiming(bool upper, uint256 addition) public view returns(bool

result) {

6 if(upper) {

7 return block.timestamp >= timeAtStart + addition;

8 } else {

9 return block.timestamp <= timeAtStart + addition;

10 }

11 }

Listing 9.3: Functions to check timing and role assignment in the access control contract

from Listing A.4.

9.2.3. Creating Solidity Smart Contracts

As explained in Section 9.2.1, the Templates package contains blueprints for the creation

of Solidity smart contracts and Solidity functions. These blueprints employ Xtend string

templates [21] to describe the general structure of the source code elements on an abstract

level. The concrete implementations generate the di�erent parts of the templates to create

a complete smart contract or Solidity function.

The concrete implementations can be examined in the SmartContract package from Fig-

ure 9.1. Here, the SolidityContractGenerator and SolidityFunctionGenerator are employed to

generate a complete contract or a single function based on the architectural model. When

generating the complete contract, the SolidityFunctionGenerator is integrated to generate

a single function. Additionally, the ModifierGenerator and AnnotationGenerator from the

AccessControlSystem package are included to generate the access control modi�ers and

the solc-verify annotations for each function. For generating speci�c source code elements

like the constructor, events, state variables, modifiers, enums and function declarations,

the SolidityCodeGenerator [74] is employed.

The SmartContract package also includes the two classes SolidityNaming and SolidityCon-
stants. These utility classes are implemented to cover all constant values used at multiple

places throughout the generation and to cover all aspects related to naming in the created

contract. The latter is responsible for formatting the name a developer gives a variable to

a scheme that adheres to Solidity code styles [78] and can be compiled.

9.2.4. Creating Elements Enforcing the Policies

To enforce the modelled RBAC policies, in addition to the smart contract’s structure, the

generator creates annotations and modi�ers for the smart contract. Additionally, another

smart contract is generated that handles the role assignment and checking during the

execution, as was proposed by Reiche et al. [1]. The generated access control contract

71

9. Generation of Formal Speci�cations to Enforce Role-Based Access Control Policies

1 /// @notice modifies roleAssignment[entity][Roles.BIDDER]

2 function changeBidderRoleForEntity(address entity, bool giveRole) external

onlyAdmin {

3 if(giveRole) {

4 require(!checkAccess(msg.sender, Roles.SELLER), "The address

cannot be a Seller as well.");

5 }

6

7 roleAssignment[entity][Roles.BIDDER] = giveRole;

8 }

Listing 9.4: Function to assign the bidder role in the access control contract from Listing A.4.

for the auction use case from Chapter 4 can be viewed in Appendix A.4. The classes

employed to achieve these generations are located in the AccessControlSystem package of

the generator from Figure 9.1.

Similar to the SmartContract package from Section 9.2.3, this package also includes

multiple utility classes. Constant values that are related to the access control enforcement

(e.g. solc-verify keywords) are summarized in AccessControlConstants. Similarly, the Access-
ControlUtility class contains functionality that is not inherently related to any other class

but used throughout this package, like checking if access control references are necessary

for a speci�c contract. The last utility class ModifierRoleAndConditionsHelper describes a

data structure used to support the modi�er generation by collecting the necessary model

elements at a central location.

To create the access control elements, three generators are available. The Annotation-
Generator is employed to create solc-verify annotations for a function based on the proposed

implementation from Listing 9.1. The ModifierGenerator not only assembles an expressive

name for each modi�er but also constructs the concrete implementation located at the end

of a contract. To generate the access control contract, the AccessControlContractGenerator
is utilized. This generator also extends the SolidityContractGenerationTemplate but does

not rely on other generators for �lling the template methods. In addition, functions for

checking access, checking the temporal constraints and assigning roles are created during

the generation so no changes to this contract are necessary after its initial creation. To

check if an entity is assigned to a role, the checkAccess function from lines 1 to 3 in List-

ing 9.3 is employed. To verify the temporal constraints, the checkTiming function from

lines 5 to 11 in Listing 9.3 is executed. To assign an entity to the bidder role in the auction

use case from Chapter 4, the changeBidderRoleForEntity from Listing 9.4 is employed.

All other role assignment functions are generated by following the same structure.

72

10. Outlining the Development Process
Based on the Presented Approach

To summarize how the presented approach for modelling and enforcing RBAC policies

is employed, the resulting development process is outlined in Figure 10.1. Each phase is

annotated with either the responsible role or the tool category that is applied. Additionally,

the in- and outputs of each phase are stated in Table 10.1. During the process, the two

roles software architect and developer are summarized as the stakeholders of the system.

To begin, the software architect utilizes the ACM from Section 6.1 to create new instances

for the use case to be implemented based on its requirements and the RBAC policies. After

the model is created, the soundness check from Section 9.2.2 is applied as a preprocessing

step before the generation is started. If the soundness check detects any violations of the

OCL constraints from Section 6.2 or the formal RBAC model from Sections 5.1 and 5.2,

these violations are collected and communicated back to the architect. The generation

process is aborted. If no violations are found, the annotated smart contracts are generated

as explained in Section 9.2. Since the generated contracts consist of code stubs due

to missing behavioral information in the model instances, the software developer adds

the implementation to the empty methods in the next step. If the developer �nds any

shortcomings in the generated contracts like missing state variables, roles, functions or

connections between those, they communicate this back to the software architect. The

architect then re�nes the model, beginning the process anew. If no problems arise during

the implementation, the veri�cation of the implementation can be performed.

This veri�cation process begins by employing solc-verify from Section 2.4.2.1 and the

custom Slither printer from Section 8.2. Since both tools are employed independently

from each other, the order of execution does not matter. Solc-verify is used to compile the

contracts and verify the implementation regarding the speci�cations. The influence-and-

calls printer, on the other hand, checks the variable in�uences existing in the contracts as

well as calculating the transitive closure for the function calls. After the tools return their

results, these results are checked for violations. If no problems are found, the smart con-

tracts are deployed and the correct enforcement of the RBAC policies is enforced. However,

if any problems are found, these problems are communicated back to the stakeholders.

Since the problems are mostly resulting from a mismatch between the architectural model

and the implementation, they can be communicated either to the software architect or

the software developer. To inform the software architect, a correspondence model [79]

is employed to map source code elements back to the architectural elements. Based on

the communicated information, the ACM instances are adapted. Informing the software

developer is achieved by connecting the found violations to concrete lines in the source

code. Therefore, these lines are adapted to resolve the violations in the implementation.

73

10. Outlining the Development Process Based on the Presented Approach

Create instances
of ACM

Soundness
Check

Generate code
stubs & specifications

Add
implementation

Start
verification

Compile &
Verify

Discover in-
fluences & calls

Process tool
results

Output results

Deploy

Problems

Problems

No Problems

No Problems

Roles
Software Architect
Software Developer
any Stakeholder

adapt source code

Architecture Level
Source Code Level

R
ef

in
e

m
en

tn
e

ed
ed

No Problems

adapt ACM instances

Tools:
Generator
Formal Verification Tool (solc-verify)
Static Analysis Tool (Slither)

Legend:
responsible Role / Tool

Process phase

Process Flow

Figure 10.1.: The process envisioned for developers and architects using the presented

approach to enforce their smart contract RBAC requirements.

1 $ solc-verify.py <Filename>.sol --arithmetic mod

2 $ slither <Filename>.sol --print influence-and-calls

Listing 10.1: Console instructions to start both tools

The three phases Start Veri�cation, Process Tool Results and Output Results are employed

by any stakeholder, as is expressed in Figure 10.1. Here, future work must create an

approach for the automatic handling of these steps. However, due to the scope of this thesis,

the theoretical concepts behind these steps are explained and the practical implementation

is left open. Currently, any stakeholder must employ these steps manually according

to the theoretical foundations. For the Start Veri�cation step, both tools are started for

the smart contract �le by executing the console instructions from Listing 10.1. Ideas

for collecting and verifying the results in the Process Tool Results step are explained

in Section 10.1. Section 10.2 explains how the results are communicated back to either the

developer or the architect during the Output Results step.

10.1. Verifying and Analyzing the Tool Results

After the tools have been employed, their returned results are evaluated to �nd possible

violations to the created model instances. This is performed in the Process Tool Results step

in Figure 10.1. We introduce the possible changes the developer can introduce during the

74

10.1. Verifying and Analyzing the Tool Results

Table 10.1.: Summarizing the in- and outputs for the di�erent phases of the

envisioned process from Figure 10.1.

Phase Input Output

Create ACM instances Requirements & AC policies ACM instances

Soundness Check ACM instances Validation results

Generation ACM instances Contracts with code stubs &

Access control contract

Add Implementation Contracts with code stubs Fully implemented contracts

Start Veri�cation Contracts Commands to start tools

Compile & Verify Annotated Contracts Veri�cation errors

Discover In�uence & Calls Contracts Printer result

Process Results Tool results Error information for

stakeholders

Output Results Error information Feedback for Stakeholders

Deploy Contracts Deployment results

implementation in Section 10.1.1. Based on these changes, the analysis of the tool results

is explained in Section 10.1.2 for solc-verify and in Section 10.1.3 for the Slither printer.

10.1.1. Changes and Violations during the Implementation

When the soundness check �nishes without any problems, we assume that there are no

violations to the modelled access control policies in the ACM instances. An implementation

that adheres to these instances does not result in any problems when the tools are employed

for veri�cation. However, we distinguish two cases where problems are found. In the

�rst case, the developers implementation di�ers from the RBAC policies modelled by

the architect. This either happens through deliberate changes made by the developer or

through errors made during the implementation. In the second case, the developer changed

the automatically created parts of the generated contracts. This in�uences the elements

responsible for the RBAC enforcement on the source code level. Both of these cases can

also occur in combination when the developer changes the generated code elements as

well as implementing behaviour that di�ers from the one modelled by the architect.

At this point, it is assumed that errors found by our tools happened due to the �rst case,

since the goal of our approach is to generate parts of the code that enforce the modelled

RBAC policies. However, the distinction between deliberate changes and implementation

errors is irrelevant since both result in the same considerations. Despite this assumption,

there are possible changes that fall into the second category without undermining the

generated elements. For example, adding new solc-verify annotations utilized for functional

reasoning can be done without invalidating the generated annotations. These annotations

however cannot include modi�cation speci�cations. Another example would be the

implementation and addition of new modi�ers to a function declaration. This is only valid,

if the new modi�ers are evaluated after the generated ones, if they do not rely on the

access control contract and do not introduce any new in�uence relations.

The following enumeration summarizes all changes the developer makes that di�er

from the modelled RBAC policies. Adding the complete implementation is not considered

75

10. Outlining the Development Process Based on the Presented Approach

a change but the di�erent instructions the implementation comprises of are covered. For

each change, we analyze if it introduces any violations to the veri�cation results.

C1 Letting a function directly access a state variable it is not meant to modify. In this

case, Formula (5.25) is violated indirectly through a violation in the doesInfluence
predicate in De�nition (5.26).

C2 Not modifying a state variable through a function, despite the modi�cation being

modelled. This case violates Formula (5.17) if no other function modi�es the state

variable. However, this formula was introduced as a warning on the architectural

level. If it is violated, no unwarranted access is introduced that enables a role to

illegally access a variable. Therefore, this change does not lead to problems with the

correct enforcement of the modelled policies, if it is violated in the source code.

C3 Adding a new function call if the roles that accesses the caller are not allowed to

access the callee. In that case, Formula (5.24) is violated. Additionally, Formula (5.25)

could be violated through the doesInfluence predicate from De�nition (5.26), since the

correctness of Formula (5.25) depends on this predicate. The doesInfluence predicate

could be violated, since the callee could make changes to variables the caller is not

allowed to modify or in�uence.

C4 Removing a function call that is stated in the model. This case does not introduce

any violations to the model.

C5 Letting a variable in�uence another it is not meant to in�uence according to the

model. Here, Formula (5.20) is violated if a role that is allowed to modify the in�uencer

is not allowed to in�uence the in�uenced variable. Also, this introduces violations

to Formula (5.20) through the doesInfluence predicate (De�nition (5.26)) for the same

reason.

C6 Removing the in�uence of one variable to another, despite this in�uence being

modelled. This also does not result in any additional violations.

C7 Changing the way a function modi�es the contract’s balance and not updating the

model accordingly. This does not result in any violations to the formulae. However,

if this case occurs it is communicated back to the stakeholders since unwarranted

access to the functions balance can result in monetary losses and exploits.

Due to the transitivity of the FunctionToFunction relation formalized in Formula (5.22) and

the VariableToVariable relation in Formula (5.19), all changes except change C7 also lead

to each other, depending on the concrete implementation. We do not check change C2

on the source code level, as violations to this formula do not introduce violations to the

correct enforcement of RBAC policies. Therefore, only the changes C1, C3, C5 and C7

are checked by employing the veri�cation tools. This leads to solc-verify being used to

check Formula (5.25) directly and Formula (5.24) indirectly. The influence-and-calls

Slither printer on the other hand is employed to check Formulae (5.20), (5.24) and (5.25).

Despite both tools covering the same formulae, they identify di�erent violations by un-

covering violations to distinct parts of these formulae. No single tool veri�es all elements

76

10.1. Verifying and Analyzing the Tool Results

1 -- no Violation

2 <ContractName>::<FunctionName>: OK

3 -- Violation type 1)

4 <ContractName>::<FunctionName>: ERROR

5 - <ContractName>.sol:<Line>:<Column>: Function might modify ’<VariableName>’

illegally

6 -- Violation type 2)

7 <ContractName>::<FunctionName>: ERROR

8 - <ContractName>.sol:<Line>:<Column>: Postcondition ’address(this).balance

>= __verifier_old_uint(address(this).balance)’ might not hold at end of

function.

9 -- Violation type 3)

10 <ContractName>::<FunctionName>: ERROR

11 - <ContractName>.sol:<Line>:<Column>: Function might modify balances

illegally

Listing 10.2: Violations found by solc-verify regarding the generated annotations

of these formulae. The Slither printer uses static analysis to identify information �ows

between functions and variables whereas solc-verify validates the modifying access from

functions to variables as well as access to the contracts balance.

10.1.2. Analyzing solc-verify’s Results

Solc-verify detects three types of violation to the generated formal speci�cations. These

violations can be examined in Listing 10.2. Solc-verify analyzes all functions regarding

their speci�cation, resulting in messages that state the contract name followed by the

function name. If an error is found, the message begins with the contract name as well as

the line and column of the error. However, the line and column describe the beginning

of the function declaration and not the execution statement inside the function that is

responsible for the violation.

The �rst violation type shows a violation to the modelled RBAC policies since a function

has illegal modi�cation access to a state variable. There are two possible changes by the

developer from Section 10.1.1 that lead to this type of violation. Changes C1 and C3 both

lead to illegal variable access for a role by violating Formula (5.24) through the introduction

of a direct or indirect unwarranted access to a state variable. To communicate this violation

back to the stakeholders, the contract, function and variable name are extracted from the

error message. To also check if a role gains access to the illegally accessed state variable,

all roles that are allowed to call the function are considered. If any of those roles is not

allowed to access the state variable, this information is appended to the error message for

the next step of the process from Figure 10.1.

For the second type of violation to occur, the developer modi�es the contract balances

in a manner that di�ers from the modelled way of accessing the balances, as explained

77

10. Outlining the Development Process Based on the Presented Approach

in change C7 from Section 10.1.1. To communicate this violation back to the stakeholders,

the name of the function as well as the address of the endangered balances are extracted.

The last type of violation occurs if balances of addresses that are neither the function

caller nor the current contract are changed. This case cannot be covered with the model

due to limitations to the FunctionBalanceModification element, which only enables the

modelling of changes to the msg.sender or the current contract balance. Since the model

instances cannot be changed to handle this problem, the stakeholders are informed but

the process isn’t aborted.

10.1.3. Analyzing Slither’s Results

To analyze the implemented smart contracts regarding the variable in�uences and the

function calls, the influence-and-calls printer from Section 8.2 is employed. As presented

in Table 8.1, the printer summarizes for each state variable the other state variables it is

in�uenced by. Additionally, it shows all functions called by another function. This includes

direct as well as transitive calls. Both of these results are returned by the printer in form

of a table. To analyze these results, each combination found in the table is considered

independently.

If the printer returns that state variable var is in�uenced by the variable inf, the stake-

holder checks whether this in�uence is part of the model instances or if it was introduced

by change C5 from Section 10.1.1. Therefore, the stakeholder checks if a VariableToVari-
ableRelation element exists in the ACM instance, where the influenced variable is var

and the influencer is inf. If such an element exists, no changes have been made and no

violations are introduced. However, the absence of such an element introduces violations.

To �nd these violations, it is checked if any role exists that is allowed to modify inf but

not allowed to in�uence var. In that case, a direct violation to Formula (5.20) and to the

doesInfluence predicate from De�nition (5.26) is detected. Violating this predicate indi-

rectly violates Formula (5.25). These violations are communicated back to the stakeholders.

However, if no role gains unwarranted in�uence on the variable var, a VariableToVari-
ableRelation element connecting inf and var is missing in the model. The stakeholders are

informed about this missing element. In both cases, the error information can include the

name for both variables as well as the contracts name. For more information, the additional

tables can be analyzed which describe the in�uence relation on a function to function

basis. By searching for the functions where var is in�uenced by inf, the expressiveness

and helpfulness of the error message can be increased.

To analyze the transitive closure for function calls, a similar approach is used. For each

function func that calls function call, it is investigated if a FunctionToFunctionRelation
element exists in the ACM instance or if it was introduced by change C3 from Section 10.1.1.

If such an element exists, the analysis continues with the next function pair. However, if

no such element exists, it is reviewed if a role is allowed to call func that is not allowed to

call call. If this is the case, a direct violation to Formula (5.24) and an indirect violation

to Formula (5.25) has been found and is communicated to the stakeholders. However, if no

such role exists, the absence of a �tting FunctionToFunctionRelation element is returned.

Here, the error information consists solely of the two function names and the name of the

contract. No additional information is extracted from the printer results.

78

10.2. Communicating Results Back to the Stakeholders

Additionally, the influence-and-calls printer underlies the limitations to static analy-

sis tools mentioned by Anderson [73] and explained in Section 8.2.3. Therefore, calculating

the transitive closure cannot consider all possible execution paths, leading to an overap-

proximation. However, all information �ows are communicated to the stakeholders who

investigate the risk associated with each information �ow.

10.2. Communicating Results Back to the Stakeholders

After the tools have been applied and their results have been analyzed as described

in Section 10.1, the found violations are communicated back to the stakeholders. Since the

outlined process supports two stakeholders working on di�erent levels of abstraction and

at di�erent steps during the process, the results are not communicated to both of them

simultaneously.

Both tools verify the system’s implementation on the source code level and despite

solc-verify relying completely on the generated formal speci�cations from Section 9.2.4,

the influence-and-calls printer cannot detect violations without comparing the results

of its static analysis to the policies in the ACM instances, as explained in Section 10.1.3.

Therefore, the source code elements like functions or state variables are linked to their

counterpart in the architecture model. One approach employed for the connection of

elements from di�erent models are correspondence models [79]. A correspondence model

has a connection to the elements of both models it links together, describing a mapping

between two elements. For example, a StateVariable element from the ACM is connected

to the Solidity state variable in the smart contract.

Such a correspondence model is automatically created during the generation based on the

mapping from Section 9.1 and it stores a reference to each model and source code element

in its own elements [80]. To save these references, the model elements as well as the source

code elements must be unique. For the ACM elements, this is guaranteed through the

usage of the Metamodel-Modeling-Foundations [67] explained in Section 6.1, which equips

every element with a unique identi�er. Similarly, many source code elements are uniquely

identi�ed due to the name they are generated with. For example, two state variables with

the same name in the same contract cannot exist. Additionally, the EMF enables referencing

of the created model instances. However, model elements with no concrete equivalent

on the source code level like FunctionToFunctionRelation elements cannot be connected

to the source code level. Later in the process, the correspondence model is applied to

recover these connections, mapping source code elements back onto their architectural

counterparts. Therefore, analyzing the printer results as well as communicating violations

back to the architect is achieved.

Disclosing information about the violations to the developer is achieved directly on the

source code level once the tool results have been collected. Since all of the results from

both tools include at least the name of the contract and the responsible function and/or

variable, identifying the location of the violation in the source code is achievable even

without syntax highlighting or the addition of concrete line numbers. However, addressing

both stakeholders independently leads to additional communication e�orts since no clear

responsibilities have been speci�ed. Therefore, we propose to communicate the results

79

10. Outlining the Development Process Based on the Presented Approach

solely back to the software developer, assuming that the provided ACM instances provide

the ground truth of the RBAC policies. As explained in Section 10.1.1, we consider the only

changes leading to violations to come from a mismatch between the software architect’s

policy de�nition and the concrete implementation created by the software developer.

80

11. Evaluation

After the development process employing our approach is outlined in Chapter 10, the

ful�llment of the main goal described in Chapter 1 is evaluated. This goal focuses on the

correct enforcement of RBAC policies for smart contracts on the source code level based

on an architectural model. We introduce the following two research questions to reason

about the goal’s achievement:

RQ1 How can access control policies be modelled on an architectural level and translated

into formal speci�cations to ensure a correct implementation?

RQ2 Which information is necessary and appropriate on the architectural level to describe

smart contract RBAC policies?

To evaluate the goal and the research questions in a structured manner, the Goal-

Question-Metric (GQM) approach by Basili, Caldiera, and Rombach [81] is applied. This

approach de�nes an organized procedure for achieving certain evaluation goals and is

described in Section 11.1. In Section 11.2, an argument for the correct enforcement of the

modelled RBAC policies on the source code level is provided. To uncover limitations in

the outlined process, a case study is conducted throughout Section 11.3. This begins by

describing the underlying use cases, beginning with Augur in Section 11.3.1. We summarize

the other two use cases Fizzy and Palinodia in Sections 11.3.2 and 11.3.3. Section 11.3.4

describes the designed case study based on the guidelines by Runeson and Höst [82]. We

introduce violations to the Augur and Fizzy use cases in Section 11.3.5 and we examine

the results of the case study in Section 11.3.6. In Section 11.4, we apply a Metamodel

Coverage Analysis proposed by van Amstel and van den Brand [83]. Section 11.5 discusses

the results for the complete evaluation and answers the research questions accordingly.

Additionally, we state the threats to validity in Section 11.6.

11.1. Goal-Question-Metric Plan

To evaluate the presented approach, a structured top-down approach is desirable. Therefore,

the Goal-Question-Metric (GQM) approach by Basili, Caldiera, and Rombach [81] is applied.

Here, the evaluation is described on three di�erent layers. On the conceptual level, the

evaluation’s goals are stated and de�ned. This description includes the aspects to consider,

the target and the point of view. The qualities that are evaluated are related to the goals

using questions on the operational layer. Each question in�uences how the evaluation is

performed by stating a concrete point of view for the evaluation. To answer the questions,

multiple metrics are de�ned on the quantitative level. These metrics de�ne the data that is

collected to reason about the questions and thus measure the goals’ achievement.

81

11. Evaluation

We introduced two research questions to verify the ful�llment of the main goal of

our approach in the beginning of this chapter. This goal is the correct enforcement of

the modelled RBAC policies in the generated smart contract implementation. A correct

enforcement is achieved, when each role can only access the state variables it is permitted

to and no unwarranted accesses occur. This goal is examined in RQ1, from which we

derive the �rst goal G1 for our evaluation.

G1 Correct Enforcement: The generated smart contracts enforce the modelled RBAC

policies correctly.

Q1 Do the generated formal speci�cations enforce the modelled RBAC policies

correctly?

M1.1 Argument supporting the correct enforcement

M1.2 Percentage of introduced violations found during the case study

From this �rst goal G1, the question Q1 is directly derived. We collect the data necessary

to reason about Q1 with the metrics M1.1 and M1.2. M1.1 discusses the correctness of the

enforcement in Section 11.2 based on the mapping between the formal model, the ACM

and its enforcement on the source code level. Additionally, we manually add violations

during the case study in Section 11.3. These violations describe unwarranted access on

the architectural and source code level. To examine the correct enforcement, we examine

the percentage of detected violations with M1.2.

In addition to RQ1, RQ2 evaluates the expressiveness of the description on the archi-

tectural level. By asking, what information is necessary and appropriate to model on the

architectural level, it supports the ful�llment of our goal by reasoning about the metamo-

del’s capabilities to describe the policies to enforce. To evaluate RQ2, the metamodel’s

completeness is evaluated with the goal G2.

G2 Completeness: The AccessControlMetamodel contains all elements that are neces-

sary to model RBAC policies for smart contracts. Also, no unnecessary elements are

included on the architectural level.

Q2 Are the created metamodel elements su�cient to model smart contract RBAC

policies?

M2 Amount of limitations to the metamodel found during the case study

Q3 Does the ACM contain model elements that are not necessary to enforce RBAC

policies?

M3 Percentage of model elements covered by the generator

To examine the metamodel’s completeness in G2, we ask the question whether the ACM

has su�cient elements to model smart contract RBAC policies (Q2). The data to answer

this question is collected by relying on the same case study used for M1.2. However, only

problems or limitations with the model are considered for M2. Additionally, to evaluate

whether the ACM contains any redundant model elements, Q3 is examined. This question

considers the capabilities of the generator to reason about unnecessary model elements

82

11.2. Reasoning About the Enforcement’s Correctness

by looking at gaps in the coverage of the implemented generator. The data to answer

this question is collected by executing a Metamodel Coverage Analysis proposed by van

Amstel and van den Brand [83] in Section 11.4. This analysis identi�es and visualizes the

model elements handled during a model transformation, allowing for the identi�cation

of gaps in the model’s coverage (M3). For these gaps, we evaluate whether they were

introduced on purpose or if the corresponding model element is not necessary to enforce

RBAC policies on the source code level.

11.2. Reasoning About the Enforcement’s Correctness

The main goal of our approach is to provide architects and developers with the tools

to describe smart contract RBAC policies on the architectural level and automatically

translate the modelled policies into Solidity source code. This source code employs the

veri�cation tools presented in Section 2.4.2 to correctly enforce the policies on the source

code level. In the following section, we discuss the enforcement’s correctness. Therefore,

the presented argument shows how entities do not access smart contract state variables

that they are not allowed to access in the underlying model.

For this argument, we make multiple assumptions about the stakeholders and their

in�uence during the development process. As we explained in Section 10.1.1, we assume

that the developer does not change the generated elements in the smart contract, since these

elements are responsible for the correct enforcement of the modelled policies. Additionally,

we assume that the developer implementing the smart contract adds no unwarranted role

assignments using the access control contract.

To stop an entity from accessing prohibited state variables, we �rst consider the means

employed by an entity to modify a state variable. As we explained in Section 2.3, smart

contract systems commit their state variables to the underlying blockchain technology.

Due to the immutability of this technology, changes to these state variables can only be

induced through transactions. In Solidity, these transactions are represented as functions.

So for an entity to modify a state variable, it must access a function permitted to access

that variable.

To restrict function access to entities that possess the permitted roles in the ACM

instances, we employ Solidity modifiers in combination with the access control contract,

as we explained in Chapter 7. Inside each modifier, a require instruction checks the

entities assignment to any permitted role. As we explained in Section 2.4.1, the Solidity

programming language guarantees that both the modifier and the require keyword

provide correct functionality and can be utilized to restrict access to functions. However,

the checkAccess function of the access control contract is investigated further. This

function can be examined in Listing 11.1 and is responsible for checking whether a given

entity possesses a certain role. The returned value corresponds to the correct location in

the nested mapping describing the role assignment. Due to the simplicity of this function,

we determine its correctness through observation instead of providing a complex formal

reasoning. As this function is generated in the same manner for all ACM instances, the

correct execution is universal for all application scenarios. However, if entities are wrongly

assigned to roles through the access control contract, the checkAccess does not return

83

11. Evaluation

1 function checkAccess(address entity, Roles role) public view returns(bool

result) {

2 return roleAssignment[entity][role];

3 }

Listing 11.1: checkAccess function from the generated access control contract

a correct result. To prevent these incorrect assignments, access to each function that

assigns an entity to a role is limited to the admin role. This role is solely granted to the

contract which created the access control contract. This assignment to the admin role

is also checked with a modifier in combination with the checkAccess function. Since

we assume that no changes have been made to the access control contract and that the

developer only implements correct entity-to-role assignments, no entity is assigned to a

role that they are prohibited from possessing.

Now that access to functions has been correctly restricted to only cover permitted

roles, access of these functions to the state variables must be restricted. As we explained

in Chapter 7, we rely on the veri�cation capabilities provided by solc-verify. In particular,

we create a modi�cation speci�er for each variable that a function may modify. Therefore,

any change to a variable that is not represented by a modi�cation speci�er is found

during the veri�cation with solc-verify, as explained in Section 10.1.2. Due to the provided

functionality by solc-verify, all outgoing function calls are considered automatically when

verifying one function. The creation of these modi�cation speci�ers depends on the

FunctionToVariableRelation elements from the ACM, as explained in Section 9.1. Only

when such an element exists in the concrete model, a modi�cation speci�er is added.

Therefore, only access relations that are part of the modelled RBAC policies are translated

into modi�cation speci�cations.

To conclude, the unwarranted access to state variables by entities is prevented by em-

ploying our described approach. However, this correctness is only guaranteed as long

as the previously described assumptions hold. Additionally, the reasoning only concerns

modi�cation access to state variables. However, as we explained in Section 5.2, our ap-

proach also considers in�uence access based on information �ows between variables. We

employ the influence-and-calls Slither printer from Section 8.2 to uncover all types of

information �ows in Solidity: direct, indirect and transitive in�uence. By analyzing each

�ow independently according to the instructions from Section 10.1.3, insecure information

�ows in the implementation are discovered. If no insecure information �ows are discov-

ered, the correct enforcement of RBAC policies is achieved. However, detected insecure

information �ows are communicated back to the developer, who must change the source

code accordingly. Due to the scope of this thesis, we do not reason about the printer’s

completeness, so our approach does not guarantee that all in�uence relations are found.

Additionally, we check whether the authorization constraints introduced in Section 5.1

in�uence the correct enforcement of the RBAC policies. Connecting two roles using the

Prerequisite relation from De�nition (5.9) or the mutual exclusion from De�nition (2.5)

in Section 2.2 is covered on the source code level by adding more calls to the checkAccess

function in the corresponding role assignment functions. This coverage is explained in

84

11.2. Reasoning About the Enforcement’s Correctness

1 /// @notice modifies roleAssignment[entity][Roles.EXAMPLE]

2 /// @notice modifies exampleCounter

3 /// @notice postcondition (exampleCounter ==
__verifier_old_uint(exampleCounter) + 1) == giveRole

4 /// @notice postcondition (exampleCounter ==
__verifier_old_uint(exampleCounter) - 1) == !giveRole

5 function changeExampleRoleForEntity(address entity, bool giveRole) external

onlyAdmin {

6 if(giveRole) {

7 require(exampleCounter < 5, "...");

8 exampleCounter++;

9 } else {

10 require(exampleCounter > 0, "...");

11 exampleCounter--;

12 }

13

14 roleAssignment[entity][Roles.EXAMPLE] = giveRole;

15 }

Listing 11.2: Enforcing the correct increase and decrease to role cardinality counters

1 AccessControlContract::[constructor]: OK

2 AccessControlContract::checkAccess: OK

3 AccessControlContract::changeExampleRoleForEntity: OK

4 AccessControlContract::changeAdminRoleForEntity: OK

5 No errors found.

Listing 11.3: solc-verify results for an annotated access control contract

more detail in Chapter 7. Since the correctness of the checkAccess function under the

de�ned assumptions has been shown before, both constraints do not in�uence the correct

enforcement. Similarly, the RoleHierarchy relation from De�nition (2.4) is enforced by

adding additional calls to the assignment function for the superior role. This follows

the same principles applied to other role assignments, so it also does not in�uence the

enforcement’s correctness. To correctly enforce a role’s cardinality, we add a counter

variable that is compared to the allowed upper bound each time an entity is assigned to the

role. An example implementation can be examined in Listing 11.2. This private variable is

only modi�ed by the corresponding role assignment function by employing solc-verify
modi�cation speci�ers like the one in line 2. To reason about the correct increase and

decrease of this counter, the postconditions in line 3 and 4 are added and veri�ed using

solc-verify. The results can be examined in line 3 from Listing 11.3.

For the abstract concept of access context, two concrete implementations exist. Enforcing

the BooleanVariableContext is achieved by employing the functionality of Solidity or solc-
verify by adding the boolean conditions as explained in Chapter 7. To enforce a TimeContext,

85

11. Evaluation

Solidity’s block.timestamp keyword is employed to access the current time for a function

call. However, this time can be manipulated by the block’s miner in a range of 30 seconds,

according to Goldberg [68]. Due to this deviation, a correct enforcement of TimeContext
isn’t guaranteed.

To summarize, our approach correctly enforces modelled RBAC policies under the

explained assumptions. Therefore, it is guaranteed that entities cannot modify variables

they are prohibited from accessing. Additionally, unwarranted in�uencing accesses are

detected and removed.

11.3. Case Study

According to Gustafsson [84, p. 2], "a case study can be de�ned as an intensive study

about a person, a group of people or a unit, which is aimed to generalize over several

units". Adding to this de�nition, Runeson and Höst [82] state that the target of a case study

is a contemporary phenomena, which cannot be studied in isolation. Thus, real-world

applications are taken as the foundation for collecting data and reasoning about a system’s

properties.

We follow these de�nitions by studying three di�erent use cases describing real-world

smart contract applications. The resulting smart contracts describe the units of our case

study. By choosing these use cases independently from each other, we aim at reasoning

about general properties of our approach. The phenomena we examine are correct enforce-

ment and the completeness of the ACM, as we de�ned in the GQM plan from Section 11.1.

For this purpose, we consider three real-world software systems employing smart

contracts and the underlying blockchain technology to provide their functionality. The

Augur [85] use case, described in Section 11.3.1, implements a decentralized betting system

for sporting events. In Section 11.3.2, Fizzy [86], a blockchain-based �ight delay insurance,

is introduced. The last use case is Palinodia by Stengele et al. [63], which was already

mentioned in Section 3.4.2. It is a smart contract system for binary integrity protection.

To achieve a correct and repeatable case study, we follow the guidelines by Runeson and

Höst [82] to create the initial research design in Section 11.3.4. To underline the correct

enforcement provided by the approach, we introduce violations to the implementation of

the Augur and Fizzy use case in Section 11.3.5. We present the results of the case study

regarding the detection of these violations as well as violations in the Palinodia use case

in Section 11.3.6.

11.3.1. Augur

A more complex use case based on an already existing smart contract system is Augur [85],

which is a secure and decentralized betting and prediction platform. On the platform,

individuals speculate and bet on the outcome of real world events. Currently, only sporting

events are supported although events from other domains like political votes are planned

in the future. To allow users to bet on events without the need for a central organisation

to con�rm the outcome, Augur de�nes a �ve step process:

86

11.3. Case Study

1. Market Creation: A market for an upcoming event is created by an arbitrary user.

This user then chooses a designated reporter and a resolution source that should

be used by the reporter to get the event outcome. Lastly, they post two bonds, the

validity and creation bond. The validity bond is returned when the market is settled

with a valid outcome. The creation bond is given back once the assigned reporter

reports an outcome within the �rst 24 hours after the event has ended.

2. Trading: Market participants can trade shares of the di�erent event outcomes until

the event takes place. By doing so, they bid on the events development.

3. Reporting: After the event occurred, the outcome must be reported to the system in

a way that stops a single entity from cheating by changing the results. This process

begins with a 24 hour time window in which the designated reporter can employ the

resolution source to report how the event ended and what outcome was achieved.

If this report is not provided within the time period, the reporting is opened for all

participants. Here, the �rst participant that provides an outcome is rewarded with

the creation bond, when their reported results turns out to be the accepted outcome

in the end of this step.

4. Disputing: After the initial outcome is reported, a dispute round is started. During

this phase, any participant can dispute the tentative result by staking their system-

wide reputation. This round has di�erent outcomes, which either end the reporting

phase directly by accepting the current outcome or prolong the decision process for

up to 60 days. A more extensive summary can be found in [85].

5. Market Settlement: Finally, the results are evaluated, reporters and dispute partici-

pants are penalized or rewarded for their help and the market is settled. To do so, a

participant either sells their shares to other participants or trade with the market

platform directly.

Due to the complex nature of this use case, the system
1

consists of up to 30 di�erent

smart contracts. These are employed in combination with each other to achieve the

aforementioned process. Since modelling all of these contracts, their functions and state

variables as well as the di�erent roles would exceed the scope of our thesis, we use

a simpli�ed version with only two smart contracts that focuses more on the general

procedure than the technical details.

In the simpli�ed version summarized in Figure 11.1, the �rst smart contract MarketMan-
agement is used as a public starting point where any entity can call the createNewMarket

function to create a new market. This market is represented by an instance of the second

smart contract Market. For the Market contract, we establish the di�erent roles based

on the process description from [85]: The market creator is the address responsible for

starting the market and thus sets the validity and creation bond as well as de�ning the

designated reporter. This designated reporter can set the tentative outcome by reporting it

once the event occurred. The shareholder role contains every entity that bought shares

of the event during the Trading phase. They are permitted to dispute the outcome in the

1https://github.com/AugurProject/augur - Last accessed: 01.12.2021

87

https://github.com/AugurProject/augur

11. Evaluation

MarketManagement

createNewMarketMarket

designatedReport

buyShares

addOpenReport

sellShares

disputeOutcome

Market Creator

Designated
Reporter

Shareholder

State Variables

desReporter : address

setReporter

validityBond : uint

creationBond : uint

shares : Mapping
(address string)

outcome : string

disputes : Mapping
(address string)

public

Open
Reporter

setBonds

Figure 11.1.: Visualizing the simpli�ed version of the Augur use case. This use case consists

of the two smart contracts MarketManagement and Market. This diagram

uses the visual elements from Figure 4.1.

dispute round as well as closing their market position during the Settlement phase. If the

designated reporter fails to report within the �rst 24 hours after the event occurs, the �rst

shareholder to use the open report feature becomes the open reporter. In addition to these

restricted functions, the buying of shares is open to all users of the blockchain during the

Trading phase. However, only a shareholder can sell their acquired shares. The current

state of the system is represented through multiple boolean variables and functions that

enable a transition between the process states.

Our presented approach contains multiple concepts that are applied to the simpli�ed

version of the Augur use case. The di�erent roles with their di�ering access rights are

modelled and enforced. Additionally, to keep track of the shares, the CSM is employed.

Access is further restricted either through time (e.g. the designated reporter is only able to

report in the �rst 24 hours after the event occurred) or through the current state of the

smart contract (e.g. selling or buying shares is only allowed during the Trading phase).

Therefore, information �ows between variables are modelled and considered.

88

11.3. Case Study

11.3.2. Fizzy

Created in 2017 by the insurance company AXA, Fizzy [86] was an experiment for combin-

ing insurances and their handling with the blockchain technology. Through this system,

any user could purchase a �ight delay insurance by providing the corresponding �ight,

their data and account information. This information is saved on the blockchain by a

smart contract that connects to a global air tra�c database. When this database notices a

delay for the speci�ed �ight of more than two hours, the initially stipulated amount is

automatically transferred to the user’s account. Despite being one of the �rst applications

by a big insurance company that combined insurances with smart contracts, the system

was taken o�ine in 2019 due to a lack of interest from the public as well as the travel

and airline industry [87]. Additionally, the general approach of combining the outcome

of real world events with transactions on the blockchain is similar to the Augur use case

from Section 11.3.1. However, the technical realization is di�erent which leads us to

consider both as use cases for the evaluation.

This use case consists of two smart contracts with two roles, insurance company and

insurant, which are visualized in Figure 11.2. The �rst contract InsuranceManagement
represents a manager for all covered insurances. It handles the connection to the global air

tra�c database and is employed to take out a new insurance. Changing the database can

only be realized by the insurance company. Taking out a new insurance creates an instance

of the Insurance contract and is publicly available. The entity that called this function is

assigned the insurant role for the created Insurance contract. In this contract, the insurant
role can change the account where the insured amount is paid to and it can cancel the

insurance. The insurance company utilizes their connection to the air tra�c database to

check for a delay of the insured �ight. If that is the case, the payout is triggered and the

contract is closed.

With this setup, the Fizzy use case is used to explore the capabilities of the approach

regarding role management and access restrictions. For example, the payout depends on

the temporal constraint referencing the real-world time of the insured �ight. The CSM is

not necessary but balance modi�cations through functions are considered as well.

11.3.3. Palinodia

The Palinodia system developed by Stengele et al. [63] employs smart contracts to ensure

access control for binary integrity protection. The use case consists of three smart con-

tracts, which makes it suitable to handle the complete version of this use case instead

of a simpli�cation like with Augur from Section 11.3.1. The architecture of these three

contracts as well as the connection to two roles is visualized in Figure 11.3. The following

understanding of the smart contracts is based on the prototypical implementation by the

authors and the description from the publication instead of or our interpretation. Therefore,

the concrete technical details are integrated into our implementation and model.

One similarity of all three contracts is the role of the root owner, which is comparable

to an admin role that is employed to manage all aspects of the contracts for the case

that the other addresses are compromised. The �rst contract called Software describes a

single software identity independent of its version or platform. A visual summary can be

89

11. Evaluation

State Variables

Insurance

checkForDelay

payout

cancel

changeAccount

Insurant

State Variables

insuredFlight : string

insurant : Address

insuranceClosed : bool

InsuranceManagement

changeAirTrafficDB

Insurance
Company

public

takeOutInsurance

airTrafficDB : address

insurances : Insurance[]

insuranceAmount : uint

Figure 11.2.: Visualizing the two contracts InsuranceManagement and Insurance for the

auction use case. This diagram uses the visual elements introduced in Fig-

ure 4.1.

examined in Figure 11.4. In this contract, the root owner is permitted to add new developers
as well as changing the current root owner. The developer role is used to change the name

of the software as well as (de-)registering a certain binary hash storage through their

respective software distribution platform (SDP) ID. This ID can be changed later by the

platform itself.

The smart contract Binary Hash Storage (BHS) from Figure 11.5 abstracts the SDP for

a single software type, collecting all available versions as a hashed value. Similarly to

the previous smart contract, the root owner can either change the root owner or add a

maintainer for this platform. The roles developer and maintainer are mutually exclusive.

The platform’s maintainer is allowed to change the SDPs ID as well as publishing or

revoking the hash of a software version. Lastly, anyone can initially register the software

to maintain.

The developers also provide an Identity Management to store the addresses of authenti-

cated users. This contract is presented in Figure 11.6. It consists of the root owner role,

which is capable of changing the root owner as well a resetting the currently saved identi-

ties. Additionally, it can register new identities in the underlying data structure consisting

of an array in combination with a mapping. All already registered identities can add and

90

11.3. Case Study

Software
Contract

Binary Hash
Storage
Contract

Identity
Management
Contract

Software
Developer

Software
Maintainer

Blockchain
Client

User
Client

Blockchain Layer

Application Layer

controls controls

represents represents

uses

registers1 *

uses
*

1uses
*

1

Figure 3: Visualisation of the layer architecture of the de-
signed concept. In addition to that, the connections between
different smart contract types of the concept are depicted.

owner is not trusted by either Software Developers/Maintainers or
by Users, as any misbehaviour would immediately be noticed.

4 CONCEPT
With the system model in place, we now present a concept to store
and manage binary integrity protecting information on the Eth-
ereum Blockchain. The general structure of our concept is shown in
Figure 3. We distinguish between the Blockchain layer, which will
be the main focus of this paper, and the application layer, which
we only cover briefly. We employ three kinds of Smart Contracts
that will be covered in more detail in the following sections.

Common to all contracts is the concept of a Root Owner address.
This is a special public key which can be used to recover control of
a particular contract in case any of the key pairs in active use are
lost or compromised. The private key of Root Owner identitites is
meant to be stored offline and should only be used in emergencies.
All contracts allow the present Root Owner to replace the stored
public key. This can be used for both precautionary key rotation as
well as for transfer of ownership.

4.1 Software Contract
The Software (SW) Contract (Figure 4) establishes a Root Software
Identity independent of any particular version or binary. It is cre-
ated and managed by a Software Developer and functions as a
registry for multiple Binary Hash Storage (BHS) Contracts, keyed
by their respective SDP ID. By adding references to BHS Contracts,
a Software Developer establishes a binding to the corresponding
Intermediary Software Identity and thereby authorises a Maintainer
to publish binaries of this software on a specific SDP. In addition,
this contract also contains the name of the software as human read-
able metadata. It is worth pointing out that the address of an SW
Contract will be used to establish a ‘trust on first use’ association
with the User. While the owner or name of a software may change
and BHS Contracts may be added or removed, the address of the
Software Contract remains fixed and globally unique.

Software Contract

address

root owner

software name

developer

SDP store

SDP ID

SDP ID

address

address

. . .

address

Root Owner
g

Identity
Management

address

address

SDP ID

Binary Hash
Storage

SDP ID

address

Binary Hash
Storage

Figure 4: Inner structure of an SW Contract and relation to
other objects.

Binary Hash Storage Contract

address

root owner

software

maintainer

SDP ID

publish counter

hash store

HashID

HashID

counterhash

counterhash

. . .

address

Root Owner
g

Software

address

Identity
Management

address

Figure 5: Inner structure of a BHS Contract and relation to
other objects.

The interface of Software Contracts is presented in Table 1. The
most important functions, registerBHSContract and
deregisterBHSContract, revolve around the establishment and
rescindment of bindings between Root and Intermediary Software
Identities. During validation of a binary, the call getBHSContract
will be used to check the validity of said binding.

4.2 Binary Hash Storage Contract
Similar to Software Contracts, Binary Hash Storage Contracts (Fig-
ure 5) establish an Intermediary Software Identity and function as
a registry for binary hash statements for all binaries of a particular
software on a specific SDP. This registry is indexed by HashID,
which is also included in the binary metadata in order to establish a
verifiable correspondence between binary and hash. This contract
is created andmanaged by a SoftwareMaintainer and legitimised by
a Developer through a reference in the corresponding SW Contract,
thereby binding the Intermediary SI to the corresponding Root SI.

Session: Mechanisms and Structures SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada

7

Figure 11.3.: Visualization of Palinodia’s layered architecture containing three smart con-

tracts and the two roles Software Developer & Software Maintainer. This �gure

is extracted from [63, Fig. 3].

remove other identities as well as changing their ID. Lastly, anyone can use this contract

to verify the role and identify of a given address.

The Palinodia system enables the application of the role management in combination

with handling access restrictions. Here, no temporal constraints are necessary but further

role authorizations like role hierarchy and cardinality are employed. For example, the two

roles developer and maintainer both inherit from the same superior role called registered
identity in our implementation. However, balance modi�cations and the CSM are not

applicable here.

11.3.4. Preliminaries

To conduct the planned case study in a structured manner that also focuses on the repeat-

ability, we follow the case study guidelines presented by Runeson and Höst [82]. These

guidelines include a checklist with questions that need to be answered before the case

study is conducted. Due to the nature of our cases, not all of these ten questions provide

relevant information. Therefore, question six, eight and ten are not considered in this

section. In the following, the guidelines of Runeson and Höst [82] are mapped to our case

study evaluation.

1. What is the case and its units of analysis?
For our case study, we consider three di�erent, concrete software systems that have

been developed for the Ethereum blockchain. Augur [85] describes a decentralized

betting platform, Fizzy [86] introduces an automatic �ight insurance system and

91

11. Evaluation

Software

updateIDofSDP

changeRootOwner

registerBinaryHashStorageContract

deregisterBinaryHashStorageContract

State Variables

root_owner : address

sw_name : string

platforms_store : Mapping
(string uint)

storage_contracts :
BinaryHashStorage[]

developer_control :
IdentityManagement

Root Owner

Developer

setDeveloper

setSoftwareName

Platform

Figure 11.4.: Visualizing the roles, functions and variables as well as their connection to

each other for the Software contract from the Palinodia use case. The visual

elements are described in Figure 4.1.

Palinodia [63] concerns itself with binary integrity protection using smart contracts.

All three of them are susceptible to violations stemming from a lack of access control

or errors in the implementation of access control, so they all are suitable for the

application of our approach.

We use multiple use cases instead of a single one, since the combination and compar-

ison of their results allows for a stronger conclusion and di�erent �ndings than a

single use case [84].

For all three use cases, the created smart contracts describe the units of analysis.

For the Augur use case, this includes the Market and MarketManagement contracts.

Similarly, Fizzy implements the Insurance and InsuranceManagement contracts. The

prototype implementation of the Palinodia use case consists of the three contracts

Software, BinaryHashStorage and IdentityManagement.

2. Are clear objectives, preliminary research questions, hypotheses (if any) de-
�ned in advance?
We de�ned the research questions regarding our approach in Chapter 11. Addition-

ally, we created the GQM in Section 11.1, where we explain the questions we want

to answer with this case study.

The employed process is the same for all three use cases. We create instances of the

ACM according to the use case description and generate the formally speci�ed smart

contract stubs. Afterwards, the generated contract skeletons are manually �lled with

their implementation. This implementation is checked for its correctness using the

veri�cation tools from Section 2.4.2. All in all, we follow the process from Chapter 10

for each use case.

During this process, Augur and Fizzy are handled di�erently then Palinodia. Since

the implementation for Augur and Fizzy is based on our interpretation instead of a

92

11.3. Case Study

BinaryHashStorage

revokeHash

setSoftwareContract

changeRootOwner

setSDP_ID

setMaintainer

publishHash

State Variables

root_Owner : address

maintainer_control :
IdentityManagement

software_contract : Software

platformId : string

initialiseStatus : uint8

Root Owner

Maintainer

publishCounter : uint256

hash_store : Mapping
(string BinStatement (struct))

public

Figure 11.5.: Visualizing the roles, functions and variables as well as their connection to

each other for the BinaryHashStorage contract from the Palinodia use case.

The visual elements are described in Figure 4.1.

concrete implementation, we introduce violations to the underlying RBAC policies.

Therefore, we verify the capability of our approach to detect these violations on

the architectural and the source code level. This procedure evaluates whether the

generated formal speci�cations enforce the access control policies correctly and is

described in more detail in Section 11.3.5.

3. Is the theoretical basis—relation to existing literature or other cases de�ned?
The basic de�nitions of the three use cases have been taken from [63, 85, 86]. From

these three use cases, Palinodia was already covered by two other case studies.

However, Friebe et al. [88] employ it in a case study for a di�erent domain and the

study by Schi� et al. [55] applies a di�erent approach to reason about its security,

as explained in Section 3.3. Covered by one case study is Augur. However, the case

study by Hobeck et al. [89] focuses on process mining instead of policy enforcement.

Only the Fizzy use case has not yet been the target of any case studies.

4. Are the authors’ intentions with the research made clear?
Our intentions with the case study are explained in the GQM plan in Section 11.1.

5. Is the case adequately de�ned (size, domain, process, subjects. . .)?
The use cases are described in Sections 11.3.1 to 11.3.3 and the implementation of

their smart contracts is summarized in Table 11.1. However, the foundation for

the concrete implementation di�ers for each use case. For the Augur use case, we

describe a simpli�cation in Section 11.3.1 that is based on the original system but

is adapted to �t the scope of this thesis. Since Fizzy has been taken o�ine since its

93

11. Evaluation

Identity Management

checkIdentity

addIdentity

changeRootOwner

removeIdentity

resetIdentitySet

changeCertificateID

State Variables

root_owner : Address

arr_indents : Address[]

map_indents : Mapping
(address DevMainIdentity (struct))

Root Owner

Registered
Identities

public

Figure 11.6.: Visualizing the roles, functions and variables as well as their connection to

each other for the IdentityManagement contract from the Palinodia use case.

The visual elements are described in Figure 4.1.

original publication [87], we base the concrete implementation on our understanding

of the system’s description by Benichou [86]. For the Palinodia system, we rely on

the prototypical implementation provided by the authors. The three use cases have

no connection to each other.

7. Does the design involve data frommultiple sources (data triangulation), us-
ing multiple methods (method triangulation)?
As explained in the answer to the �rst question, we rely on three use cases as the

input for our case study. However, since we collect qualitative instead of quantitative

data, there is no need for data triangulation. Since we apply the same method on all

three use cases, there is no need for method triangulation.

9. Is the speci�ed case relevant to validly address the research questions (con-
struct validity)?
All three use cases describe a scenario that is either already employed for access con-

trol purposes (Palinodia) or covers a domain susceptible to access control violations

(Augur and Fizzy). Therefore, all use cases bene�t from the correct enforcement of

RBAC policies. Additionally, the detection of the manually introduced violations to

the Augur and Fizzy use case underlines the correct enforcement of RBAC policies

by demonstrating the capabilities of the presented approach.

94

11.3. Case Study

Table 11.1.: Summarizing the implemented contracts analyzed by the

case study. The number of roles per contract describes the

amount of roles that are represented in the contract through

Solidity modifers.

Case Contract #Functions #Variables #Roles LoC

Augur Market 13 19 5 269

Augur MarketManagement 1 2 0 21

Fizzy Insurance 4 6 2 78

Fizzy InsuranceManagement 2 4 1 44

Palinodia BinaryHashStorage 8 8 2 143

Palinodia IdentityManagement 6 5 2 119

Palinodia Software 9 6 4 135

Augur 2 Contracts 14 21 5 290

Fizzy 2 Contracts 6 10 2 122

Palinodia 3 Contracts 23 19 5 306

3 Use Cases 7 Contracts 43 50 12 718

11.3.5. Introducing Violations to Augur and Fizzy

To evaluate whether the presented approach detects violations to the RBAC policies,

we introduce violations into the ACM instances and the implementations for the Augur

and Fizzy use case. For both use cases, we added violations to the OCL constraints

from Section 6.2 and the RBAC policies discussed in Section 9.2.2 on the architectural

level. Therefore, we evaluate whether the generator’s preprocessing step and soundness

check succeed in identifying these cases. During the implementation, additional violations

are introduced to examine the capabilities of our approach on the source code level. An

overview for all violations introduced to the Augur use case can be examined in Table 11.2

and a similar overview for the Fizzy use case is presented in Table 11.3. In both tables, the

introduced changes are described in the Introduced Change column. For each change, the

Resulting Violations column summarizes the violations and problems that are introduced

through that change. For this purpose, we state the category of the violation and than

a speci�c description. For example, RBAC states that a violation to the RBAC formulas

from Chapter 5 was introduced. Additionally, the violated formula is referenced.

Section 6.2 enhances the ACM by adding 15 OCL constraints to the model elements

to explicitly formulate implicit assumptions about the model elements, their attributes

and relationships. As described in Tables 11.2 and 11.3, the introduced violations to these

15 constraints are distributed between the Augur and Fizzy model, with three being part

of the Augur use case and twelve being introduced to the Fizzy model. Additionally, the

soundness check of the generator covers four RBAC formulae, as described in Section 9.2.2.

We introduce one violation to each formula to the Augur use case. Since Formula (5.25)

distinguishes between illegal modi�cation and in�uencing access depending on the ele-

ments that are violated, we introduce one violation for each contingency. This results in

�ve violations introduced to the ACM instances for the Augur use case.

95

11. Evaluation

Table 11.2.: This table provides an overview over the changes made to the model and

implementation of the Augur use case from Section 11.3.1 during the case

study. For each change, we state the resulting violations.

The changes 1 to 5 introduce violations on the architectural level whereas the

changes 6 to 10 are implemented on the source code level.

Introduced Change Resulting Violations

1 FunctionToStateVariableRelation element ’Agree with the OCL - VariableTypeIs-

reported outcome’ references the CSM variable disputes. NoMappingWithAddressAsKeytype

2 FunctionToCsmRelation element ’Outcome disputes are OCL - VariableTypeNeedsToBeMapping

saved in CSM’ references the variable marketCounter, OCL - MappingKeyTypeNeedsToBe-

which is no mapping. This also grants the shareholder AddressOrAddressPayable

role unwarranted access to the marketCounter. RBAC - Formula (5.25) [modi�cation]

3 Role shareholder is allowed to modify the agreeCounter RBAC - Formula (5.17)

variable. However, it cannot access any function

that modi�es this variable.

4 Role market creator is allowed to modify the reporterSet RBAC - Formula (5.20)

variable, which in�uences the designatedReporter RBAC - Formula (5.25) [in�uence]
variable in the setReporter function. The market creator
is not allowed to in�uence the designatedReporter.

5 Role designated reporter is allowed to call the function RBAC - Formula (5.24)

designatedReport, which calls the function report.

The designated reporter is not allowed to call report.

6 The sellShares function is modelled to increase solc-verify - illegal balance

the contract’s balance. modi�cation

7 The closeDisputingWindow variable deletes the solc-verify - illegal access

reportedOutcome if a disagreement was found in the

disputeOutcome function.

8 The allowOpenReport function calls claimReporterRole Slither - illegal function call

function. This allows the allowOpenReport function to solc-verify - illegal access

modify the openReporter variable.

9 Changes to the designatedReporterReported variable Slither - missing VariableToVariable-

in the allowOpenReport function depend on the state Relation element

of the designatedReportAllowed variable. Both

variables can be modi�ed by the designated reporter.

10 Changes to the agreeCounter in the disputeOutcome func- Slither - insecure information �ow

tion depend on the state of the disputesAllowed variable.

This grants the designated reporter, open reporter and the

manager unwarranted in�uencing access.

11 Changes to the disagreeCounter in the disputeOutcome func- Slither - insecure information �ow

tion depend on the state of the disputesAllowed variable.

This grants the designated reporter, open reporter and the

manager unwarranted in�uencing access.

96

11.3. Case Study

Table 11.3.: This table provides an overview over the changes made to the model and

implementation of the Fizzy use case from Section 11.3.2 during the case study.

For each change, we state the resulting violations.

The changes 1 to 8 introduce violations to the OCL constraints on the archi-

tectural level. The changes 9 to 12 on the other hand are implemented on the

source code level.

Introduced Change Resulting Violations

1 Cardinality for the insurance company role OCL - CardinalityIsValid

is set to -2.

2 The insurance company role is set as a OCL - NoRoleCanBePrerequisiteForItself

superior and a prerequisite of itself. OCL - NoRoleCanBeSuperiorToItself

OCL - NoRoleInPrerequisiteAndSuperiorSet

3 The two roles insurant and insurance company OCL - RolesCannotBeInHierarchy-

are mutually exclusive. Additionally, the insurance OrPrerequisite

company is set as the superior to the insurant.

4 The set BooleanValueContext for the Function- OCL - VariableTypeNeedsToBeBoolean

ToStateVariableRelation ’Change the insured

account’ does not reference a boolean variable.

5 The FunctionToStateVariableRelation ’Checking OCL - ForbidTimeContextConditions

for a delay indirectly closes the insurance’

references a TimeContext element.

6 The model for the Insurance contract includes OCL - NoFunctionOverrides

one OverrideFunction and one LocalFunction. OCL - NoAdditionalLocalFunctions

7 The model for the Insurance contract includes one OCL - BalanceModificationsReference-

FunctionBalanceModification element for each DifferentFunctions

function. Additionally, a second element ref- OCL - NoMoreBalanceModifications-

erencing the payout function is added. ThanFunctions

8 One FunctionBalanceModification element referenc- OCL - BalanceModificationsRegarding-

ing the payout function allows for an increase ThisContractNeedPayableFunction

to the contract’s balance. However, the payout

function is not marked as payable.

9 The payout function is modelled to increase solc-verify - illegal balance

the contract’s balance. modi�cation

10 The cancelInsurance function calls the payout Slither - illegal function call

function. This allows the cancelInsurance solc-verify - illegal balance modi�cation

function to increase the contract’s balance.

11 The cancelInsurance function sets the solc-verify - illegal access

insurant variable to zero.

12 Changes to the insurant in the changeAccount Slither - insecure information �ow

function depend on the state of the insurance-

Closed variable. This grants the insurance
company unwarranted in�uencing access.

97

11. Evaluation

After removing the violations on the architectural level and generating the formally

speci�ed smart contracts, we introduce additional violations in the implementation to

show how our approach detects violations to the modelled RBAC policies on the source

code level. Beginning with the veri�cation done by employing solc-verify, we distinguish

between the three possible outcomes explained in Section 10.1.2. We introduce three

violations where a function modi�es a variable it is not meant to modify, possibly allowing

a role unwarranted access to that variable. Two of these violations are introduced directly

and one is a byproduct of the illegal function call by the allowOpenReport function to the

claimReporterRole function. This allows the allowOpenReport function to modify the

openReporter variable without permission. Additionally, we introduce three violations

to the generated postconditions validating the balance modi�cations as described in Sec-

tion 9.1. One of the two violations added to the Fizzy use case is a byproduct of the illegal

function call by the cancelInsurance function to the payout function, which allows the

cancelInsurance function to increase the contract’s balance. In all three cases, a function

that is only allowed to increase the contract’s balance decreases it instead.

In addition to solc-verify, the influence-and-calls printer from Section 8.2 is employed

to analyze the implemented contracts. To investigate its capabilities, we introduce three

types of violations to the implementation. These violations have been described in Sec-

tion 10.1.3. First, we add two illegal function calls. Additionally, we add four information

�ows that do not occur in the ACM instances. Of the three information �ows introduced to

the Augur use case in Table 11.2, the one introduced from the designatedReportAllowed

variable to the designatedReporterReported variable does not lead to a violation of the

modelled RBAC policies. The other two information �ows on the other hand, connecting

the designatedReportAllowed variable to the agreeCounter and disagreeCounter, lead

to insecure information �ows. The information �ow in the Fizzy use case, where the

insurant is in�uenced by the insuranceClosed variable, is also insecure. It allows the

insurance company to in�uence the insurant variable, despite being prohibited from doing

so.

11.3.6. Results

During the case study, we introduced violations to the Augur and Fizzy use case as

explained in Section 11.3.5. To examine the capabilities of the soundness check on the

architectural level, we introduced 15 violations to the OCL constraints and �ve violations

to the underlying RBAC model. All of these twenty violations are detected by employing

the presented approach, as is visualized in Table 11.4. The resulting logging �les for both

use cases can be examined in Appendix A.5.

After removing these violations and generating the formally annotated smart contracts,

we added twelve violations on the source code level. Six of these violations should be

detected by solc-verify and six should be uncovered by the influence-and-calls printer.

Both tools detect 100% of the violations that were manually introduced, as can be examined

in Table 11.5.

In addition to the detection of the manually introduced violations, the case study also

employs both veri�cation tools to analyze the implementation for additional violations not

introduced on purpose. Beginning with the veri�cation done by solc-verify, no additional

98

11.3. Case Study

Table 11.4.: Summarizing the amount of manually introduced violations to the RBAC

policies as well as the OCL constraints on the architectural level to the Augur

and Fizzy use case. Additionally, this table visualizes the amount of violations

that the generator’s preprocessing step detected.

All in all, 100% of the introduced violations are detected on the architectural

level.

Case OCL Violations RBAC Violations

Introduced Augur 3 5

Fizzy 12 0

Detected Augur 3 5

100% 100%

Fizzy 12 0

100% -

Table 11.5.: This table visualizes the amount of violations manually introduced in the

implementation of the Augur and Fizzy use case. The columns Illegal access
and Violated postconditions describe violations that can be identi�ed using solc-
verify, the other three columns represent violations detected by the influence-

and-calls Slither printer.

All in all, 100% of the introduced violations are detected.

Case Illegal Violated Illegal Missing Insecure infor-

access postconditions Function call element mation �ow

Introduced Augur 2 1 1 1 2

Fizzy 1 2 1 0 1

Detected Augur 2 1 1 1 2

100% 100% 100% 100% 100%

Fizzy 1 2 1 0 1

100% 100% 100% - 100%

violations were detected in the three use cases. However, in the BinaryHashStorage contract

from the Palinodia system, two functions could not be veri�ed by solc-verify. These two

functions rely on an unsupported binary operator, which cannot be veri�ed by the current

version of solc-verify [90].

To further analyze the implemented contracts, the influence-and-calls printer from

Section 8.2 is employed. This printer investigates each contract regarding the transitive

closure of function calls as well as information �ows between variables. The results are

categorized according to the explanations from Section 10.1.3. Regarding the function

calls, �ve calls have been detected by the printer for all three use cases. This does not

include the two erroneous function calls that we introduced in Section 11.3.5, since they

are summarized in Table 11.5 instead. From these �ve function calls, only one is not part of

the modelled ACM instances, the remaining four are described in the corresponding model

instances. This one illegal function call exists in the Software contract in the Palinodia use

case. However, after manually analyzing the two corresponding functions, we conclude

99

11. Evaluation

Table 11.6.: Summarizing the results found by the influence-and-calls printer for the

three use cases. This table summarizes the found information �ows between

variables and sorts the ones not modelled in theACM instances into one of

three categories. These categories have been de�ned in Section 10.1.3. The

manually introduced violations are already covered in Table 11.5 and are thus

not included in this table.

Case Contract I
n

f
o

r
m

a
t
i
o

n
�

o
w

s

F
l
o
w

s
n

o
t

i
n

A
C

M

N
o

t
h

i
n

g

M
i
s
s
i
n

g
e
l
e
m

e
n

t
s

V
i
o

l
a
t
i
o

n
s

U
n

i
q

u
e

v
i
o

l
a
t
i
o

n
s

Augur Market 33 28 1 5 22 13

Augur MarketManagement 0 0 0 0 0 0

Fizzy Insurance 3 3 0 3 0 0

Fizzy InsuranceManagement 0 0 0 0 0 0

Palinodia BinaryHashStorage 8 8 1 3 4 2

Palinodia IdentityManagement 5 5 3 2 0 0

Palinodia Software 3 3 1 1 1 1

Augur 2 Contracts 33 28 1 5 22 13

100% ∼ 4% ∼ 17% ∼ 79%

Fizzy 2 Contracts 3 3 0 3 0 0

100% - 100% -

Palinodia 3 Contracts 16 16 5 6 5 3

100% ∼ 31% ∼ 38% ∼ 31%

3 Use Cases 7 Contracts 52 47 6 14 27 16

100% ∼ 13% ∼ 30% ∼ 57%

that this illegal call does not introduce unwarranted access to variables for any role. If

unwarranted access would be granted through this call, solc-verify would detect a violation

to the modi�cation speci�ers.

To reason about insecure information �ows in the implemented contracts, the influence-

and-calls printer is employed as well. Its results can be examined in Table 11.6. Beginning

with the Information �ows column, all detected information �ows that were not delib-

erately introduced in Section 11.3.5 are collected. The information �ows that we added

in Section 11.3.5 are summarized in Table 11.5 instead. With the Flows not in ACM column,

the amount of information �ows that are not part of the ACM instances is summarized.

Each of these information �ows is categorized regarding the possible violations they

introduce, as we explained in Section 10.1.3. Since the transitive closure may discover

information �ows that do not occur in the implementation due to the overapproximation

explained in Section 8.2.3, these discoveries are counted in the Nothing column. If the

variable connection does not introduce an insecure information �ow, a missing VariableTo-
VariableRelation element in the ACM instances is reported in the Missing elements column.

However, all insecure information �ows are counted in the Violations column. To further

examine these violations, they are compared and only distinct access gained by a set of

100

11.3. Case Study

roles to a variable is counted in the Unique violations column. The concrete explanation

for the classi�cation of each information �ow can be examined in Appendix A.6, where

we also provide summaries with the Tables A.2 to A.4.

To describe some examples, three classi�cations from the Market contract from the

Augur use case are discussed. The �rst information �ow is an indirect in�uence detected

between the designatedReporterReported and the creationBondPaidOut variable and it

occurs inside of the sentCreationBond function. When analyzing the concrete implemen-

tation, this in�uence does not occur since the creationBondPaidOut is changed the same

way in either branch of the condition. Therefore, this information �ow is classi�ed as

Nothing. Another variable in�uencing the creationBondPaidOut variable in the sentCre-

ationBond function is the settlementPhaseActive variable. This indirect in�uence occurs

but both variables can be modi�ed by the manager role. Therefore, a missing VariableToVari-
ableRelation element is reported. Additionally, the openReporter variable also indirectly

in�uences the creationBondPaidOut variable in the sentCreationBond function. However,

the openReporter can be modi�ed by the shareholder role whereas the creationBondPaid-

Out variable can only be modi�ed by the manager. This leads to a violation where the

shareholder can illegally in�uence the creationBondPaidOut variable.

Regarding the information �ows between variables, 52 are detected throughout all

three use cases. 47 of these are not part of the underlying ACM instances and thus are

categorized regarding the risk they introduce. Approximately 57% of these in�uences

describe a possible violation to the underlying RBAC policies by allowing a role to in�uence

a variable they are prohibited from accessing. Only about 13% of these information �ows

are introduced by the overapproximation described in Section 8.2.3. Another aspect of

these results is identi�ed when comparing the results for the Augur and Palinodia use

case. As summarized in Table 11.1, both use case de�ne a similar scope regarding the

amount of Solidity code, variables and roles. However, Augur contains 13 unique insecure

information �ows whereas Palinodia only contains three, even though Palinodia contains

23 state variables instead of 14 state variables in the Augur use case.

During the case study, limitations to the ACM were discovered. For one, it provides

no capabilities for marking a variable as publicly accessible. For example, the soft-

ware_contract variable in the Palinodia use case can be modi�ed by any entity, which

cannot be expressed in the ACM. During the creation of the model, this was circumvented

by allowing all available roles to access this variable.

Additionally, as we mentioned in Section 6.1, BooleanVariableContext elements also

describe an indirect information �ow between two variables, if these elements are used

to restrict FunctionToVariableRelation elements. However, they are currently not analyzed

during the soundness check. The last limitation was found for the Fizzy and Augur use

case. Both rely on the input of external sources which provide the system with information

about a real-world event. According to Ladleif and Weske [46] and Zupan et al. [47], these

external sources are called oracles. Currently, the ACM does not model these oracles so

their behaviour is approximated by employing TimeContext elements.

101

11. Evaluation

11.4. Metamodel Coverage Analysis

To analyze the completeness of the ACM by detecting redundant model elements, we

employ a Metamodel Coverage Analysis proposed by van Amstel and van den Brand [83].

This analysis examines the input metamodel for a model transformation and visualizes

the elements, attributes and relationships that are utilized by the transformation. Based

on this visualization, the completeness of the transformation is analyzed by showing

whether any elements are not covered. For our approach, the input metamodel is the ACM

from Section 6.1 and the output is the annotated source code that covers the RBAC policies

as described in Chapter 7. The transformation we consider is the source code generation

described throughout Chapter 9.

Figure 11.7.: Metamodel coverage de�ned by van Amstel and van den Brand [83] for the

SmartContractModel from the ACM in Section 6.1. Here, any attribute or

relation that is covered by the generator is underlined. If a model element is

employed during the generation, it is colored in green. Any element that is

additionally employed during the soundness check is marked in blue. White

elements and not covered by the generator.

102

11.4. Metamodel Coverage Analysis

Table 11.7.: Summarizing the results found by the Metamodel Coverage

Analysis [83] for the two metamodel packages of the ACM.

This table summarizes the amount of elements, attributes

and relationships and whether they are covered by the imple-

mented generator or not. For the model elements the coverage

is categorized based on the part of the implementation that

covers them (the soundness check, the generation or both). Re-

garding the complete coverage of model elements, attributes

and relations, the generator reaches a coverage of approxi-

mately 90%.

Package #
E

l
e
m

e
n

t
s

S
o

u
n

d
n

e
s
s

C
h

e
c
k

G
e
n

e
r
a
t
i
o

n

B
o

t
h

N
o

t
c
o
v
e
r
e
d

#
A

t
t
r
i
b
u

t
e
s

&
R

e
l
a
t
i
o

n
s

C
o
v
e
r
e
d

N
o

t
c
o
v
e
r
e
d

SmartContractModel 7 0 2 4 1 24 20 4

AccessControlSystem 14 2 5 5 2 32 31 1

ACM 21 2 7 9 3 56 51 5

∼ 10% ∼ 33% ∼ 43% ∼ 14% ∼ 91% ∼ 9%

To visualize the metamodel coverage, the authors color every used model element in

grey. Attributes and relationships that are employed are marked by underlining them in

the visualization. To increase the expressiveness of this analysis, we distinguish for each

model element if it is used during the generation, during the soundness check or during

both phases. For this, we color model elements only employed during the generation

green, elements used to verify the systems soundness red and all elements that ful�ll both

criteria are marked in blue. If a model element is not covered, it stays white. Attributes

and relationships are handled the same way the authors propose and thus are underlined

when they are employed anywhere in the generator.

The visualization for both ACM packages can be examined in Figures 11.7 and 11.8. The

quantitative results are summarized in Table 11.7. Throughout the whole metamodel, only

three elements are not covered by the generator. Two of them are the FunctionToVariableRe-
lation and the Context from the AccessControlSystem package. Since both describe abstract

classes with concrete implementations through other elements, they do not express a gap

in the ACM coverage. Similarly, the Contract element from the SmartContractModel is indi-

rectly covered through the AccessControlContract class inheriting its properties. Regarding

the coverage of relationships between metamodel elements, all described connections are

covered by the generator.

Beginning with the SmartContractModel, the coverage of metamodel attributes are dis-

cussed. Here, the attributes that are not covered all belong to the Contract element and

are thus inherited to the AccessControlContract element. The two attributes providedFunc-

103

11. Evaluation

Figure 11.8.: Metamodel coverage de�ned by van Amstel and van den Brand [83] for the

AccessControlSystem from the ACM in Section 6.1. Here, any attribute or

relation that is covered by the generator is underlined. If a model element

is employed during the generation, it is colored in green, whereas elements

employed only during the soundness check are marked in red. If an element

is used for both phases, it is colored blue and white elements and not covered

by the generator.

104

11.5. Discussing the Results

tions and requiredFunctions are necessary for the connection of multiple smart contracts

in the SolidityMetaModel [66]. However, in the ACM this is done by connecting functions

directly using the FunctionToFunctionRelation element. The other two attributes that are

not covered (localFunctions and overrideFunctions) have been excluded deliberately, as

we explained in Section 6.2. In the AccessControlSystem, only one attribute is not covered

during the generation. As we explained in Section 6.1, the description of each role is

an optional parameter utilized to add more information to the model elements on the

architectural level.

11.5. Discussing the Results

This section summarizes the results of the evaluation by answering the questions from Sec-

tion 11.1. According to these answers, the ful�llment of the de�ned goals is evaluated.

Based on the achievement of these goals, the research questions from Chapter 11 are

resolved.

The �rst goal G1 focuses on the correct enforcement of modelled RBAC policies in

the generated source code. To support this goal, Q1 directly poses the question whether

our approach provides a correct enforcement. To evaluate this question, we present

the argument in Section 11.2 (M1.1), which reasons about unwarranted modi�cation

access and if it still occurs in our approach. The presented argument does not correspond

to a sound and formal proof. However, a correct enforcement is still achieved under

the given assumptions. As explained in Section 11.2, applying the TimeContext model

element introduces an attack surface for the miner by underlying uncertainties of up to

30 seconds [68]. Also, the analysis of insecure information �ows between variables is

handled correctly but the completeness of the found �ows is not guaranteed. To reason

about an additional metric M1.2, we introduced twenty violations to the RBAC policies

on the architectural level and twelve on the source code level, visualized in Tables 11.4

and 11.5. All of these violations are detected by employing our approach, resulting in a

coverage of 100%.

However, additional limitations have been uncovered by the employed case study. As

described in Section 11.3.6, the veri�cation by solc-verify does not handle the usage of

binary operators, aborting the veri�cation of two out of 43 functions that apply them. This

describes a limitation in the current implementation of solc-verify [90] that restricts the

correct enforcement to contracts that do not employ binary operations in Solidity.

Apart from this limitation to solc-verify, detecting insecure information �ows is problem-

atic in sequential use cases like Augur, where 28 information �ows between 19 variables

in the Market contract have been detected. From these information �ows, 79% lead to

22 violations with 13 of them being unique. In the Palinodia use case with a comparable

amount of variables (19) and similar size (both have about 300 lines of code (LoC)), only

16 information �ows have been discovered. From these, only approximately 31% lead

to violations, with three of them being unique. One di�erence between both use cases

that could have lead to this discrepancy is the sequence of states inside the contracts. In

the Augur use, the di�erent process states are modelled in a linear sequence, meaning

that each process phase relies on the completion of the previous phase. If a role like

105

11. Evaluation

the market creator is responsible for the market creation and set up, this role in�uences

almost all aspects of the remaining process. The Palinodia system on the other hand

arranges its states in a non-linear sequence where di�erent process phases do not depend

on each other but happen in parallel. Therefore, the Augur use case entails more insecure

information �ows then the Palinodia use case. However, further research needs to be done

to empirically con�rm or deny this interpretation.

From these metrics, it is concluded that G1 is achieved under the explained restrictions.

Our approach enforces the modelled RBAC policies regarding modi�cation access correctly,

as long as the assumptions from Section 11.2 are not violated. Additionally, the smart

contracts are prohibited from employing binary operations or the TimeContext element

from the ACM, if a correct enforcement is guaranteed. When in�uence relations through

information �ows are considered, the completeness is not guaranteed so the enforcement’s

correctness is limited.

To evaluate the completeness of the created metamodel, G2 is evaluated. Regarding

the metric M2, the case study from Section 11.3 is analyzed regarding limitations to the

ACM. Therefore, limitations regarding the expression of aspects relevant to model RBAC

policies are investigated, beginning with the modelling of publicly available variables. As

explained in Section 11.3.6, a state variable cannot be marked as accessible to any entity.

Additionally, including information from external sources through the employment of

oracles [46, 47] cannot be achieved using the ACM.

In addition to these identi�ed limitations, the metamodel coverage analysis from Sec-

tion 11.4 (M3) is employed to answer Q3. By visualizing the elements that are utilized

throughout the generation, possible overhead in the ACM is identi�ed. However, no unnec-

essary elements are discovered since approximately 86% of model elements are employed

during the generation. Regarding the attributes and element relationships, approximately

91% are covered by the generator, resulting in a coverage of approximately 90% for the

whole ACM. The remaining elements and attributes are either abstract or inherited from

the extensive SolidityMetaModel [66], as explained in Section 11.4. Therefore, they are

excluded on purpose.

Based on the executed evaluation, the ACM does not consist of any unnecessary model

elements since all relevant elements are employed during the generation and thus enforced

through the source code elements. However, some limitations to the expressiveness are

detected regarding public variables and oracles. These limitations must be addressed in

the future.

11.6. Threats to Validity

According to Runeson and Höst [82, p. 153], "the validity of a study denotes the trust-

worthiness of the results". This is in�uenced by di�erent factors like the researcher’s bias

or the selected use cases we investigated during the case study. To address the possible

threats to our evaluation’s validity, we examine internal, external and construct validity

as well as repeatability separately.

Construct Validity: This validity explores the connection between the measurements

and the questions these measurements should answer. To support a structured evaluation

106

11.6. Threats to Validity

where the connection between metrics, questions and goals is clear, we created the GQM

plan from Section 11.1, which we followed with our evaluation. As we already explored in

question nine of the case study checklist from Section 11.3.4, the chosen use cases for the

case study all describe real-world smart contract system whose process relies on RBAC

policies. By manually introducing violations to two of the three use cases, the detection of

these violations further supports the reasoning about the thesis’ goals.

Internal Validity: If the evaluation is in�uenced by another factor than the one it

focuses on, threats to the internal validity are introduced. As we explained in Section 11.3,

for two of the three use cases we studied (Augur and Fizzy), the implementation is based

on our interpretation instead of a prototype. Additionally, the de�nition of roles is not

directly given by the use case authors but based on the perceived roles mentioned in

the use case description. Also, example violations were introduced to the architectural

model and the implementation of these two use cases. For the Palinodia use case, the

implementation as well as the concrete de�nition of roles are provided by Stengele et

al. [63]. These interpretations, as well as the introduction of violations, are done solely

by the author of this thesis, who is also the only one executing the evaluation. Both of

these aspects introduce possible threats due to the author’s bias towards their approach.

Additionally, the concrete implementation was created by the author using the Solidity

programming language, with whom the author had no prior experience. This lack of

experience introduces additional threats to the internal validity as more experienced

developers would have implemented more optimized code, possibly negating violations

found during the case study.

External Validity: The goal of our case study from Section 11.3 is to reason about the

three investigated use cases in a way that allows us to generalize about the approaches

properties for all possible use cases. How well our study supports this goal is examined

with the external validity. As we explained in Section 11.3.4, we chose three use cases as

the input for our case study instead of one to increase its generalisability [84]. However,

the selection of these three use cases was not done at random but by choosing systems

that are suitable for describing RBAC constraints. Additionally, the inclusion of aspects to

consider for the two use cases based on the authors interpretation (Augur and Fizzy) was

done to support the applicability of RBAC constraints. Also, the amount of use cases is not

su�cient to conclude general statements about our approach but it is su�cient enough

regarding the scope of this thesis.

Repeatability: As the name suggests, threats to this validity describe problems when

other researchers try to emulate and repeat this evaluation. To allow for the repetition of

the case study, we introduce the goals and questions to answer before creating the use

case artifacts with the GQM plan. Additionally, all artifacts we created for the use cases as

well as the used metamodel and generator are available in our GitLab repository [91].

107

12. Conclusion and Future Work

12.1. Conclusion

In this thesis, we created an approach to correctly enforce RBAC policies for smart con-

tracts in the source code after initially describing them on the architectural level. This

thesis addresses and mitigates the limitations to the original concept by Reiche et al. [1].

To formally de�ne the underlying RBAC policies, we formalized and extended the standard

RBAC model by Sandhu, Ferraiolo, and Kuhn [2]. This extension includes the role autho-

rization constraints by Ben Fadhel, Bianculli, and Briand [5] and information �ows between

variables that allow roles to in�uence variables they are prohibited from accessing.

To describe these extended policies on the architectural level, we designed the Access-

ControlMetamodel (ACM). It extends the SolidityMetaModel by Dietrich and Reiche [66]

to describe the smart contracts structure as well as incorporating the extended formal

RBAC model. To correctly enforce these policies on the source code level, we employ

solc-verify and Slither. For the purpose of reasoning about access control policies with

solc-verify, formal speci�cations are generated for each function. To support the anal-

ysis of insecure information �ows, we extended the Slither framework by creating the

influence-and-calls printer.

For the purpose of automatically enforcing the modelled policies, we implemented a

source code generator with Xtend. This generator creates the modelled smart contract, an

additional access control contract and the formal speci�cations and Solidity modi�ers to

enforce the RBAC policies. For this generation, we introduced a mapping between the

metamodel and source code elements. Additionally, we de�ne the resulting process when

applying the presented approach. This de�nition includes the process phases, the artifacts

connected to each phase and which roles and tools are responsible for the creation of these

artifacts.

To evaluate di�erent properties of the presented approach, we execute an evaluation

that follows a prede�ned GQM plan [81]. It consists of an argument for the approach’s

correctness, a case study employing three di�erent, real-world use cases and a metamodel

coverage analysis [83]. To verify that the presented approach detects violations to the

underlying RBAC model, we introduced twenty violations on the architectural level and

twelve violations on the source code level during the case study. All of these violations are

uncovered by applying the presented approach. Additionally, the argument for correctness

shows that the presented approach correctly enforces the modelled RBAC policies as

long as the assumptions from Section 11.2 hold and no in�uence relations are considered.

These in�uence relations are handled correctly but the completeness of the influence-and-

calls printer is not guaranteed. Regarding the completeness of the ACM, the metamodel

109

12. Conclusion and Future Work

coverage analysis demonstrates that approximately 90% of the model elements are covered,

with the remaining 10% being excluded on purpose.

12.2. Future Work

To provide directions for future research, we summarize possible extensions to the pre-

sented approach. Beginning with the ACM described in Chapter 6, the role assignment

could be incorporated into the metamodel to restrict functions from setting any role and

thus mitigating the possible errors during the implementation. Additionally, incorporat-

ing the role assignment would allow the reasoning about the enforcement’s correctness

from Section 11.2 to rely less on assumptions about the developer’s behaviour. Addition-

ally, the ACM could extend its coverage of possible balance modi�cations by enabling the

architect to de�ne a balance modi�cation restriction for every variable with the address

data type. Similarly, the coverage of the CSM can be extended to allow for more complex

descriptions of the access location or cover other complex data types like struct or arrays.

For the purpose of increasing the metamodel’s expressiveness, the limitations described

in Section 11.5 can be circumvented by adding support for oracles and public variables.

Regarding the enforcement of RBAC policies on the source code level, the current

approach relies heavily on the functionality provided by solc-verify. However, as we

explained in Section 2.4.2.4, similar formal veri�cation tools like SciviK exist. By adapting

the enforcement on the source code level to use e.g. postconditions, multiple formal

tools could be employed and their results compared or used in tandem with each other.

However, this adaption to the RBAC enforcement can lead to other disadvantages we

examined in Chapter 7. In combination with the implementation of SciviK, which is not

yet publicly available, this improvement can be considered once additional veri�cation

tools are available.

To decrease the overhead when analyzing the results provided by the influence-and-

calls printer from Section 8.2, it could be transformed into a Slither detector searching for

speci�c violations in the implementation instead of printing a summary that is analyzed

manually by the stakeholders. This improvement could be combined with adding an auto-

matic implementation supporting the last steps of the development process from Chapter 10

that are currently handled manually. This includes starting the veri�cation by employing

the veri�cation tools, analyzing their results and communicating these results back to the

stakeholders.

Mitigating the threats to validity from Section 11.6, the evaluation could be improved

by employing a more extensive case study relying on even more di�erent smart contract

systems. This second case study could also be employed to investigate the relationship

between sequential smart contracts and insecure information �ows described in Sec-

tion 11.3.6. Additionally, a formal and sound proof regarding the correct enforcement

of RBAC policies can be conducted to enhance the reasoning provided in Section 11.2.

Since our approach involves interaction with stakeholders, a usability study can also

be employed in the future to identify potential optimizations regarding the support for

architects and developers.

110

Bibliography

[1] Frederik Reiche et al. Modeling and Verifying Access Control for Ethereum Smart
Contracts. Preprint. Ed. by Karlsruher Institut für Technologie. Karlsruhe: Kompe-

tenzzentrum für angewandte Sicherheitstechnologie, Institut für Programmstruk-

turen und Datenorganisation, and Institut für Theoretische Informatik, 2021. doi:

10.5445/IR/1000129607. url: https://publikationen.bibliothek.kit.edu/

1000129607 (visited on 05/05/2021).

[2] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. “The NIST Model for Role-Based

Access Control. Towards A Uni�ed Standard”. In: 5th ACM Workshop on Role-based
Access Control (RBAC’00). Proceedings: 26-28 July 2000 (Berlin, Germany,). Ed. by

Klaus Rebensburg, Charles Youman, and Vijay Atluri. Association for Computing

Machinery. New York: ACM, 2000, pp. 47–63. isbn: 158113259X. doi: 10.1145/

344287.344301.

[3] Zibin Zheng et al. “An Overview on Smart Contracts: Challenges, Advances and

Platforms”. In: Future Generation Computer Systems 105 (2020), pp. 475–491. issn:

0167739X. doi: 10.1016/j.future.2019.12.019.

[4] Ákos Hajdu and Dejan Jovanović. “solc-verify: A Modular Veri�er for Solidity Smart

Contracts”. In: 11th International Conference on Veri�ed Software, Theories, Tools and
Experiments (VSTTE 2019). Proceedings: 13-14 July 2019 (New York City, NY, USA,

). Ed. by Supratik Chakraborty and Jorge A. Navas. Cham: Springer International

Publishing, 2019, pp. 161–179. isbn: 978-3-030-41600-3.

[5] Ameni Ben Fadhel, Domenico Bianculli, and Lionel Briand. “A comprehensive

modeling framework for role-based access control policies”. In: Journal of Systems
and Software 107 (2015), pp. 110–126. issn: 01641212. doi: 10.1016/j.jss.2015.05.

015.

[6] Tachio Terauchi and Alex Aiken. “Secure Information Flow as a Safety Problem”. In:

12th International Static Analysis Symposium (SAS 2005). Proceedings: 07-09 September
2005 (London, United Kingdom,). Ed. by Chris Hankin and Igor Siveroni. Lecture

notes in computer science, 0302-9743 3672. Berlin and London: Springer, 2005,

pp. 352–367. isbn: 978-3-540-28584-7. doi: 10.1007/11547662_24.

[7] Josselin Feist, Gustavo Grieco, and Alex Groce. “Slither: A Static Analysis Framework

for Smart Contracts”. In: 2nd International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB 19). Proceedings: 27. May 2019 (Montreal, QC,

Canada,). IEEE, 2019, pp. 8–15. isbn: 978-1-7281-2257-1. doi: 10.1109/WETSEB.2019.

00008.

111

https://doi.org/10.5445/IR/1000129607
https://publikationen.bibliothek.kit.edu/1000129607
https://publikationen.bibliothek.kit.edu/1000129607
https://doi.org/10.1145/344287.344301
https://doi.org/10.1145/344287.344301
https://doi.org/10.1016/j.future.2019.12.019
https://doi.org/10.1016/j.jss.2015.05.015
https://doi.org/10.1016/j.jss.2015.05.015
https://doi.org/10.1007/11547662_24
https://doi.org/10.1109/WETSEB.2019.00008
https://doi.org/10.1109/WETSEB.2019.00008

Bibliography

[8] Colin Atkinson and Thomas Kühne. “Model-Driven Development: A Metamodeling

Foundation”. In: IEEE Software 20.5 (2003), pp. 36–41. doi: 10 . 1109 / MS . 2003 .

1231149.

[9] Marco Brambilla, Manuel Wimmer, and Jordi Cabot. Model-Driven Software Engineer-
ing in Practice. Second Edition. Vol. 4. Synthesis lectures on software engineering.

San Rafael, California: Morgan & Claypool, 2017. 191 pp. isbn: 1627057080.

[10] Herbert Stachowiak. Allgemeine Modelltheorie. German. Wien: Springer, 1973. isbn:

3-211-81106-0.

[11] Object Management Group. OMG Meta Object Facility (MOF) Core Speci�cation.
Version 2.5.1. 2019. url: https://www.omg.org/spec/MOF/2.5.1/PDF (visited on

06/14/2021).

[12] Thomas Stahl et al. Modellgetriebene Softwareentwicklung. Techniken, Engineering,
Management. German. 2. aktualisierte und erweiterte Au�age. EBL-Schweitzer.

dpunkt.verlag, 2007. isbn: 9783898648813. url: http://swb.eblib.com/patron/

FullRecord.aspx?p=1049742.

[13] Dave Steinberg et al. EMF - Eclipse modeling framework. Second Edition. The eclipse

series. Boston, Mass.: Addison-Wesley, 2009. isbn: 0321331885. url: http://bvbr.

bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014933667&

line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.

[14] Lars Vogel. Eclipse Modeling Framework (EMF) - Tutorial. 2019. url: https://www.

vogella.com/tutorials/EclipseEMF/article.html (visited on 06/09/2021).

[15] Philip Langer et al. “On the Usage of UML: Initial Results of Analyzing Open UML

Models”. In: Modellierung 2014. Proceedings: 19-21 March 2014 (Vienna, Austria,).

Ed. by Hans-Georg Fill, Dimitris Karagiannis, and Ulrich Reimer. Bonn: Gesellschaft

für Informatik e.V, 2014, pp. 289–304.

[16] Jordi Cabot and Martin Gogolla. “Object Constraint Language (OCL): A De�nitive

Guide”. In: 12th International School On Formal Methods For The Design Of Computer,
Communication, and Software Systems (SFM 2012). Formal Methods for Model-Driven
Engineering. Proceedings: 18-23 June 2012 (Bertinoro, Italy,). Ed. by Marco Bernardo,

Vittorio Cortellessa, and Alfonso Pierantonio. LNCS sublibrary. SL 2, Programming

and software engineering 7320. Heidelberg: Springer, 2012, pp. 58–90. isbn: 978-3-

642-30981-6. doi: 10.1007/978-3-642-30982-3_3.

[17] Christian Damus et al. OCL Documentation. 2021. url: https://download.eclipse.

org/ocl/doc/6.15.0/ocl.pdf (visited on 01/11/2022).

[18] Bernhard Beckert, Uwe Keller, and Peter H. Schmitt. “Translating the Object Con-

straint Language into First-order Predicate Logic”. In: 2nd Veri�cation Workshop
(VERIFY’02). Proceedings: 25-26 June 2002 (Copenhagen, Denmark,). Ed. by Serge

Autexier and Heiko Mantel. Vol. 2. 2002, pp. 113–123.

112

https://doi.org/10.1109/MS.2003.1231149
https://doi.org/10.1109/MS.2003.1231149
https://www.omg.org/spec/MOF/2.5.1/PDF
http://swb.eblib.com/patron/FullRecord.aspx?p=1049742
http://swb.eblib.com/patron/FullRecord.aspx?p=1049742
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014933667&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014933667&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=014933667&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
https://www.vogella.com/tutorials/EclipseEMF/article.html
https://www.vogella.com/tutorials/EclipseEMF/article.html
https://doi.org/10.1007/978-3-642-30982-3_3
https://download.eclipse.org/ocl/doc/6.15.0/ocl.pdf
https://download.eclipse.org/ocl/doc/6.15.0/ocl.pdf

[19] Wolfgang Ahrendt et al. Deductive Software Veri�cation - The KeY Book. From Theory
to Practice. Vol. 10001. LNCS Sublibrary: SL2 - Programming and Software Engineer-

ing. Cham: Springer, 2016. isbn: 978-3-319-49811-9. url: https://link.springer.

com/book/10.1007/978-3-319-49812-6 (visited on 01/11/2022).

[20] Shane Sendall and Wojtek Kozaczynski. “Model Transformation: The Heart and Soul

of Model-Driven Software Development”. In: IEEE Software 20.5 (2003), pp. 42–45.

doi: 10.1109/MS.2003.1231150.

[21] Xtend - Documentation. Eclipse Foundation. 2020. url: https://www.eclipse.org/

xtend/documentation/index.html (visited on 11/01/2021).

[22] Pierangela Samarati and Sabrina Capitani de Vimercati. “Access Control: Policies,

Models, and Mechanisms”. In: Foundations of Security Analysis and Design. Tutorial
Lectures. Ed. by Riccardo Focardi and Roberto Gorrieri. Lecture Notes in Computer

Science 2171. New York: Springer, 2001, pp. 137–196. isbn: 978-3-540-42896-1. doi:

10.1007/3-540-45608-2_3.

[23] Khair Eddin Sabri. “Automated Veri�cation Of Role-Based Access Control Policies

Constraints Using Prover9”. In: International Journal of Security, Privacy and Trust
Management 4.1 (2015), pp. 01–10. issn: 23194103. doi: 10.5121/ijsptm.2015.4101.

[24] Faouzi Jaidi, Faten Labbene Ayachi, and Adel Bouhoula. “A Comprehensive Formal

Solution for Access Control Policies Management. Defect Detection, Analysis and

Risk Assessment”. In: 8th International Symposium on Symbolic Computation in
Software Science (SCSS 2017). Proceedings: 06-09 April 2017 (Gammarth, Tunisia,).

Ed. by Mohamed Mosbah and Michael Rusinowitch. EPiC Series in Computing.

EasyChair, 2017, pp. 120–132. doi: 10.29007/q916.

[25] Chung Tong Hu et al. Guide to Attribute Based Access Control (ABAC) De�nition and
Considerations. Gaithersburg, MD: National Institute of Standards and Technology,

2014. url: https : / / www . nist . gov / publications / guide - attribute - based -

access-control-abac-definition-and-considerations (visited on 06/28/2021).

[26] Stefan Luber and Peter Schmitz. Was ist eine Whitelist und Blacklist? De�nition
Whitelist / Blacklist. German. 2017. url: https://www.security-insider.de/was-

ist-eine-whitelist-und-blacklist-a-667574/ (visited on 09/15/2021).

[27] Arvind Narayanan et al. Bitcoin and Cryptocurrency Technologies. A Comprehensive
Introduction. Princeton University Press, 2016.

[28] Daniela Barbosa. Sta� Corner: Introducing Hyperledger Foundation. Hyperledger

Foundation. 2021. url: https://www.hyperledger.org/blog/2021/10/27/staff-

corner-introducing-hyperledger-foundation (visited on 11/24/2021).

[29] Orlenys López–Pintado et al. “Caterpillar: A business process execution engine on

the Ethereum blockchain”. In: Software: Practice and Experience 49.7 (2019), pp. 1162–

1193. doi: 10.1002/spe.2702.

113

https://link.springer.com/book/10.1007/978-3-319-49812-6
https://link.springer.com/book/10.1007/978-3-319-49812-6
https://doi.org/10.1109/MS.2003.1231150
https://www.eclipse.org/xtend/documentation/index.html
https://www.eclipse.org/xtend/documentation/index.html
https://doi.org/10.1007/3-540-45608-2_3
https://doi.org/10.5121/ijsptm.2015.4101
https://doi.org/10.29007/q916
https://www.nist.gov/publications/guide-attribute-based-access-control-abac-definition-and-considerations
https://www.nist.gov/publications/guide-attribute-based-access-control-abac-definition-and-considerations
https://www.security-insider.de/was-ist-eine-whitelist-und-blacklist-a-667574/
https://www.security-insider.de/was-ist-eine-whitelist-und-blacklist-a-667574/
https://www.hyperledger.org/blog/2021/10/27/staff-corner-introducing-hyperledger-foundation
https://www.hyperledger.org/blog/2021/10/27/staff-corner-introducing-hyperledger-foundation
https://doi.org/10.1002/spe.2702

Bibliography

[30] Dominik Harz and William Knottenbelt. “Towards Safer Smart Contracts: A Survey

of Languages and Veri�cation Methods”. In: Computing Research Repository (CoRR)
abs/1809.09805 (2018). url: https : / / arxiv . org / pdf / 1809 . 09805 (visited on

05/05/2021).

[31] Leonardo Alt and Christian Reitwiessner. “SMT-Based Veri�cation of Solidity Smart

Contracts”. In: 8th International Symposium on Leveraging Applications of Formal
Methods, Veri�cation and Validation: Industrial Practice (ISoLA 2018). Proceedings: 05-
09 November 2018 (Limassol, Cyprus,). Ed. by Tiziana Margaria-Ste�en and Bernhard

Ste�en. LNCS sublibrary. SL 1, Theoretical computer science and general issues

11247. Cham, Switzerland: Springer, 2018, pp. 376–388. isbn: 978-3-030-03426-9. doi:

10.1007/978-3-030-03427-6_28.

[32] Gavin Zheng et al. Ethereum Smart Contract Development in Solidity. Singapore:

Springer, 2021. isbn: 978-981-15-6218-1. doi: 10.1007/978-981-15-6218-1.

[33] Alexander Mense and Markus Flatscher. “Security Vulnerabilities in Ethereum

Smart Contracts”. In: 20th International Conference on Information Integration and
Web-Based Applications & Services (iiWAS2018). Proceedings: 19-21 November 2018
(Yogyakarta, Indonesia,). Ed. by Maria Indrawan-Santiago et al. New York, NY, USA:

ACM, 2018, pp. 375–380. isbn: 9781450364799. doi: 10.1145/3282373.3282419.

[34] Ákos Hajdu and Dejan Jovanović. “SMT-Friendly Formalization of the Solidity Mem-

ory Model”. In: 29th European Symposium on Programming (ESOP 2020). Proceedings:
25-30 April 2020 (Dublin, Ireland,). Ed. by Peter Müller. Lecture Notes in Com-

puter Science. Cham: Springer International Publishing, 2020, pp. 224–250. isbn:

978-3-030-44913-1. doi: 10.1007/978-3-030-44914-8_9.

[35] Cypress Data Defense. Di�erences Between Static Code Analysis and Dynamic Testing.

2020. url: https://cypressdatadefense.com/blog/static-and-dynamic-code-

analysis/ (visited on 08/28/2021).

[36] Ákos Hajdu, Dejan Jovanović, and Gabriela Ciocarlie. “Formal Speci�cation and

Veri�cation of Solidity Contracts with Events. Short Paper”. In: 2nd Workshop on
Formal Methods for Blockchains (FMBC 2020). Proceedings: 20-21 July 2020 (Online,

). Ed. by Bruno Bernardo and Diego Marmsoler. Vol. 84. OpenAccess Series in

Informatics (OASIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, 2020, 2:1–2:9. isbn: 978-3-95977-169-6. doi: 10.4230/OASIcs.FMBC.2020.

2.

[37] Shaokai Lin et al. SciviK: A Versatile Framework for Specifying and Verifying Smart
Contracts. 2021. url: https://arxiv.org/pdf/2103.02209 (visited on 08/19/2021).

[38] Jamal Abd-Ali, Karim El Guemhioui, and Luigi Logrippo. “Metamodelling with

Formal Semantics with Application to Access Control Speci�cation”. In: 2015 3rd In-
ternational Conference on Model-Driven Engineering and Software Development (MOD-
ELSWARD). Proceedings: 09-11 February 2015 (Angers, Loire Valley, France,). Ed. by

Slimane Hammoudi. Piscataway, NJ: IEEE, 2015, pp. 354–362. isbn: 9789897581366.

114

https://arxiv.org/pdf/1809.09805
https://doi.org/10.1007/978-3-030-03427-6_28
https://doi.org/10.1007/978-981-15-6218-1
https://doi.org/10.1145/3282373.3282419
https://doi.org/10.1007/978-3-030-44914-8_9
https://cypressdatadefense.com/blog/static-and-dynamic-code-analysis/
https://cypressdatadefense.com/blog/static-and-dynamic-code-analysis/
https://doi.org/10.4230/OASIcs.FMBC.2020.2
https://doi.org/10.4230/OASIcs.FMBC.2020.2
https://arxiv.org/pdf/2103.02209

[39] Tanveer Mustafa, Michael Drouineaud, and Karsten Sohr. “Towards Formal Speci�-

cation and Veri�cation of a Role-Based Authorization Engine using JML”. In: 2010
ICSE Workshop on Software Engineering for Secure Systems (SESS’10). Proceedings: 02
May 2010 (Cape Town, South Africa,). Ed. by Seok-Won Lee, Mattia Monga, and Jan

Jürjens. New York, New York, USA: ACM Press, 2010, pp. 50–57. isbn: 9781605589657.

doi: 10.1145/1809100.1809108.

[40] Zoubeyr Farah, Hania Gadouche, and Abdelkamel Tari. “A Correct-by-Design Role-

Based Access Control Model for Healthcare Information Systems”. In: CEEE (In-
ternational Journal of Control, Energy and Electrical Engineering) 7 (2019), pp. 12–

17.

[41] Konstantine Arkoudas, Ritu Chadha, and Jason Chiang. “Sophisticated Access Con-

trol via SMT and Logical Frameworks”. In: ACM Transactions on Information and
System Security 16.4 (2014), pp. 1–31. issn: 1094-9224. doi: 10.1145/2595222.

[42] Grzegorz Kolaczek. “Speci�cation and Veri�cation of Constraints in Role Based

Access Control for Enterprise Security System”. In: 12th IEEE InternationalWorkshops
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE 2003).
Proceedings: 09-11 June 2003 (Linz, Austria,). IEEE Computer Society. IEEE Computer

Society, 2003, pp. 190–195. isbn: 0-7695-1963-6. doi: 10.1109/ENABL.2003.1231406.

[43] Chunyang Yuan et al. “A Veri�able Formal Speci�cation for RBAC Model with

Constraints of Separation of Duty”. In: 2nd SKLOIS International Conference on
Information Security and Cryptology (Inscrypt 2006). Proceedings: 29 November - 01
December 2006 (Beijing, China,). Ed. by Helger Lipmaa, Moti Yung, and Dongdai Lin.

Lecture notes in computer science, 0302-9743 4318. Berlin and London: Springer,

2006, pp. 196–210. isbn: 978-3-540-49608-3. doi: 10.1007/11937807_16.

[44] Samrat Mondal and Shamik Sural. “A Veri�cation Framework for Temporal RBAC

with Role Hierarchy (Short Paper)”. In: 4th International Conference on Information
Systems Security (ICISS 2008). Proceedings: 16-20 December 2008 (Hyderabad, India,).

Ed. by R. Sekar and Arun K. Pujari. Lecture notes in computer science, 0302-9743

5352. Berlin: Springer, 2008, pp. 140–147. isbn: 978-3-540-89861-0. doi: 10.1007/978-

3-540-89862-7_11.

[45] Anastasia Mavridou and Aron Laszka. “Designing Secure Ethereum Smart Con-

tracts: A Finite State Machine Based Approach”. In: 22nd International Conference
on Financial Cryptography and Data Security (FC 2018). Proceedings: 26 February - 02
March 2018 (Nieuwpoort, Curaçao,). Ed. by Sarah Meiklejohn and Kazue Sako. LNCS

sublibrary. SL 4 - Security and cryptology 10957. Berlin: Springer, 2018, pp. 523–540.

isbn: 978-3-662-58386-9. doi: 10.1007/978-3-662-58387-6_28.

[46] Jan Ladleif and Mathias Weske. “A Unifying Model of Legal Smart Contracts”. In:

38th International Conference on Conceptual modeling (ER 2019). Proceedings: 04-
07 November 2019 (Salvador, Brazil,). Ed. by Alberto H. F. Laender et al. LNCS

sublibrary. SL 3, Information systems and applications, incl. Internet/Web, and HCI

11788. Cham, Switzerland: Springer, 2019, pp. 323–337. isbn: 978-3-030-33222-8. doi:

10.1007/978-3-030-33223-5_27.

115

https://doi.org/10.1145/1809100.1809108
https://doi.org/10.1145/2595222
https://doi.org/10.1109/ENABL.2003.1231406
https://doi.org/10.1007/11937807_16
https://doi.org/10.1007/978-3-540-89862-7_11
https://doi.org/10.1007/978-3-540-89862-7_11
https://doi.org/10.1007/978-3-662-58387-6_28
https://doi.org/10.1007/978-3-030-33223-5_27

Bibliography

[47] Nejc Zupan et al. “Secure Smart Contract Generation Based on Petri Nets”. In:

Blockchain Technology for Industry 4.0. Secure, Decentralized, Distributed and Trusted
Industry Environment. Ed. by Rodrigo Rosa Da Righi, Antonio Marcos Alberti, and

Madhusudan Singh. Blockchain Technologies. Singapore: Springer, 2020, pp. 73–98.

isbn: 978-981-15-1136-3. doi: 10.1007/978-981-15-1137-0_4.

[48] Maximilian Wohrer and Uwe Zdun. “Domain Speci�c Language for Smart Contract

Development”. In: 2020 IEEE International Conference on Blockchain and Cryptocur-
rency (ICBC). Proceedings: 02-06 May 2020 (Toronto, ON, Canada,). Ed. by Kostas

Plataniotis and Andreas Veneris. IEEE, 2020, pp. 1–9. isbn: 978-1-7281-6680-3. doi:

10.1109/ICBC48266.2020.9169399.

[49] Henry Syahputra and Hans Weigand. “The Development of Smart Contracts for

Heterogeneous Blockchains”. In: Enterprise interoperability VIII. Smart Services and
Business Impact of Enterprise Interoperability. Ed. by Keith Popplewell et al. Vol. 9.

Proceedings of the I-ESA Conferences Volume 9. Cham, Switzerland: Springer, 2019,

pp. 229–238. isbn: 978-3-030-13692-5. doi: 10.1007/978-3-030-13693-2_19.

[50] Anastasia Mavridou et al. “VeriSolid: Correct-by-Design Smart Contracts for Ethereum”.

In: 23rd International Conference on Financial Cryptography and Data Security (FC
2019). Proceedings: 18-22 February 2019 (Frigate Bay, St. Kitts and Nevis,). Ed. by

Ian Goldberg and Tyler Moore. Lecture Notes in Computer Science. Springer Inter-

national Publishing, 2019, pp. 446–465. isbn: 978-3-030-32100-0. doi: 10.1007/978-

3-030-32101-7_27.

[51] Karthikeyan Bhargavan et al. “Formal Veri�cation of Smart Contracts. Short Paper”.

In: 2016 ACM Workshop on Programming Languages and Analysis for Security (PLAS
2016). Proceedings: 24 October 2016. 2016 ACM SIGSAC Conference on Computer

and Communications Security (CCS’16) (Vienna, Austria,). Ed. by Toby Murray and

Deian Stefan. New York, NY, USA: ACM, 2016, pp. 91–96. isbn: 9781450345743. doi:

10.1145/2993600.2993611.

[52] Wolfgang Ahrendt et al. “Veri�cation of Smart Contract Business Logic”. In: 8th
International Conference on Fundamentals of Software Engineering (FSEN 2019). Pro-
ceedings: 01-03 May 2019 (Tehran, Iran,). Ed. by Hossein Hojjat and Mieke Massink.

LNCS sublibrary. SL 2, Programming and software engineering 11761. Cham, Switzer-

land: Springer, 2019, pp. 228–243. isbn: 978-3-030-31516-0. doi: 10.1007/978-3-

030-31517-7_16.

[53] Bernhard Beckert, Jonas Schi�, and Mattias Ulbrich. “Smart Contracts: Application

Scenarios for Deductive Program Veri�cation”. In: 1st Workshop on Formal Methods
for Blockchains (FMBC 2019) at the 23rd Symposium on Formal Methods (FM 2019).
Proceedings: 07-11 October 2019 (Porto, Portugal,). Ed. by Emil Sekerinski et al. Cham:

Springer International Publishing, 2019, pp. 293–298. isbn: 978-3-030-54994-7.

[54] Olivera Marjanovic and Zoran Milosevic. “Towards Formal Modeling of e-Contracts”.

In: 5th IEEE International Enterprise Distributed Object Computing Conference (EDOC’01).
Proceedings: 04-07 September 2001 (Seattle, WA, USA,). NW Washington, DC, USA:

IEEE Computer Society, 2001, pp. 59–68. isbn: 0-7695-1345-X. doi: 10.1109/EDOC.

2001.950423.

116

https://doi.org/10.1007/978-981-15-1137-0_4
https://doi.org/10.1109/ICBC48266.2020.9169399
https://doi.org/10.1007/978-3-030-13693-2_19
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1007/978-3-030-32101-7_27
https://doi.org/10.1145/2993600.2993611
https://doi.org/10.1007/978-3-030-31517-7_16
https://doi.org/10.1007/978-3-030-31517-7_16
https://doi.org/10.1109/EDOC.2001.950423
https://doi.org/10.1109/EDOC.2001.950423

[55] Jonas Schi� et al. “Towards Correct Smart Contracts: A Case Study on Formal

Veri�cation of Access Control”. In: 26th ACM Symposium on Access Control Models
and Technologies (SACMAT’21). Proceedings: 16-18 June 2021 (Virtual Event, Spain,).

Ed. by Jorge Lobo, Roberto Di Pietro, and Omar Chowdhury. New York, NY, USA:

ACM, 2021, pp. 125–130. isbn: 9781450383653. doi: 10.1145/3450569.3463574.

[56] Solaman Baby, Prasad B. Honnavalli, and S. Rajashree Soman. “Identity & Access

Management System Based on Blockchain”. In: 3rd International Conference on
Innovative Computing & Communication (ICICC 2020). Proceedings: 21-23 February
2020 (New Delhi, India,). Ed. by Deepak Gupta et al. 2020, pp. 1–6. doi: 10.2139/

ssrn.3599868.

[57] Maryam Davari and Elisa Bertino. “Access Control Model Extensions to Support

Data Privacy Protection based on GDPR”. In: 2019 IEEE International Conference on
Big Data (IEEE BigData 2019). Proceedings: 09-12 December 2019 (Los Angeles, CA,

USA,). Ed. by Roger Barga and Carlo Zaniolo. Piscataway: IEEE, 2019, pp. 4017–4024.

isbn: 978-1-7281-0858-2. doi: 10.1109/BigData47090.2019.9006455.

[58] Kinoshita Hirotsugu and Morizumi Tetsuya. “Access Control Model for the Inference

Attacks with Access Histories”. In: 41st IEEE Annual Computer Software and Applica-
tions Conference (COMPSAC). Proceedings: 04-08 July 2017 (Turin, Italy,). Piscataway:

IEEE, 2017, pp. 498–503. isbn: 978-1-5386-0367-3. doi: 10.1109/COMPSAC.2017.41.

[59] Muhammad Yasar Khan et al. “An extended access control model for permissioned

blockchain frameworks”. In: Wireless Networks 26.7 (2020), pp. 4943–4954. doi:

10.1007/s11276-019-01968-x.

[60] OpenZeppelin.Access Control - OpenZeppelin Docs. url: https://docs.openzeppelin.
com/contracts/3.x/access-control (visited on 07/05/2021).

[61] Victor Amaral de Sousa, Corentin Burnay, and Monique Snoeck. “B-MERODE:

A Model-Driven Engineering and Artifact-Centric Approach to Generate Smart

Contracts”. In: 32nd International Conference on Advanced Information Systems
Engineering (CAISE’20). Proceedings: 08-12 June 2020 (Grenoble, France,). Ed. by

Camille Salinesi and Dominique Rieu. LNCS-Springer-Verlag, 2020, pp. 117–133. doi:

10.1007/978-3-030-49435-3_8.

[62] Lucie Mercenne, Kei-Leo Brousmiche, and Elyes Ben Hamida. “Blockchain Studio: A

Role-Based Business Work�ows Management System”. In: 9th IEEE Annual Informa-
tion Technology, Electronics and Mobile Communication Conference (IEEE IEMCON
2018). Proceedings: 01-03 November 2018 (Vancouver, BC, Canada,). Ed. by Victor

Leung, Son Vuong, and Satyajit Chakrabarti. Piscataway, New Jersey: IEEE, 2018,

pp. 1215–1220. isbn: 978-1-5386-7266-2. doi: 10.1109/IEMCON.2018.8614879.

[63] Oliver Stengele et al. “Access Control for Binary Integrity Protection using Ethereum”.

In: 24th ACM Symposium on Access Control Models and Technologies (SACMAT’19).
Proceedings: 03-06 June 2019 (Toronto, ON, Canada,). Ed. by Florian Kerschbaum et al.

ACM Digital Library. New York, NY, USA: ACM, 2019, pp. 3–12. isbn: 9781450367530.

doi: 10.1145/3322431.3325108.

117

https://doi.org/10.1145/3450569.3463574
https://doi.org/10.2139/ssrn.3599868
https://doi.org/10.2139/ssrn.3599868
https://doi.org/10.1109/BigData47090.2019.9006455
https://doi.org/10.1109/COMPSAC.2017.41
https://doi.org/10.1007/s11276-019-01968-x
https://docs.openzeppelin.com/contracts/3.x/access-control
https://docs.openzeppelin.com/contracts/3.x/access-control
https://doi.org/10.1007/978-3-030-49435-3_8
https://doi.org/10.1109/IEMCON.2018.8614879
https://doi.org/10.1145/3322431.3325108

Bibliography

[64] Alex Beregszaszi and Christian Reitwiessner. Solidity by Example. 2019. url: https:

//docs.soliditylang.org/en/develop/solidity-by-example.html# (visited on

07/22/2021).

[65] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. “The Palladio component model

for model-driven performance prediction”. In: Journal of Systems and Software 82.1

(2009), pp. 3–22. issn: 01641212. doi: 10.1016/j.jss.2008.03.066.

[66] Michael Dietrich and Frederik Reiche. SolidityMetaModel. 2021. url: https : / /

github.com/KASTEL-CSSDA/SolidityMetaModel (visited on 09/20/2021).

[67] Sebastian Krach and Stephan Seifermann. Metamodel-Modeling-Foundations. 2019.

url: https://github.com/MDSD-Tools/Metamodel-Modeling-Foundations (visited

on 08/02/2021).

[68] Phillip Goldberg. Smart Contract Best Practices Revisited: Block Number vs. Time-
stamp. 2018. url: https://medium.com/@phillipgoldberg/smart-contract-best-

practices- revisited- block- number- vs- timestamp- 648905104323 (visited on

12/07/2021).

[69] Josselin Feist et al. Printer documentation. Slither. 2021. url: https://github.com/

crytic/slither/wiki/Printer-documentation (visited on 12/10/2021).

[70] Josselin Feist. Python API. 2019. url: https://github.com/crytic/slither/wiki/

Python-API (visited on 11/28/2021).

[71] Erich Gamma et al. Design Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley professional computing series. Reading, Mass. and Wokingham:

Addison-Wesley, 1995. isbn: 0-201-63361-2.

[72] Josselin Feist. Incorrect data dependency print information. Slither Issue #337. 2019.

url: https://github.com/crytic/slither/issues/337 (visited on 11/29/2021).

[73] Paul Anderson. “The Use and Limitations of Static-Analysis Tools to Improve Soft-

ware Quality”. In: CrossTalk: The Journal of Defense Software Engineering 21.6 (2008),

pp. 18–21.

[74] Michael Dietrich and Frederik Reiche. SolidityCodeGenerator. 2021. url: https:

//github.com/KASTEL-CSSDA/SolidityCodeGenerator (visited on 09/20/2021).

[75] Michael Emmi, Ákos Hajdu, and Dejan Jovanović. Unable to verify non-decreasing
balance. Solc-Verify Issue #58. 2019. url: https://github.com/SRI-CSL/solidity/

issues/58 (visited on 11/29/2021).

[76] Max Kramer et al. Ecore2Txt. 2021. url: https://github.com/kit-sdq/Ecore2Txt

(visited on 12/05/2021).

[77] Max Kramer and Erik Burger. Generating code with Xtend and Xtext triggered from the
Eclipse context menu. 2021. url: https://sdqweb.ipd.kit.edu/wiki/Generating_

code _ with _ Xtend _ and _ Xtext _ triggered _ from _ the _ Eclipse _ context _ menu

(visited on 12/05/2021).

[78] Tutorials Point. Solidity - Style Guide. 2021. url: https://www.tutorialspoint.

com/solidity/solidity_style_guide.htm (visited on 12/05/2021).

118

https://docs.soliditylang.org/en/develop/solidity-by-example.html#
https://docs.soliditylang.org/en/develop/solidity-by-example.html#
https://doi.org/10.1016/j.jss.2008.03.066
https://github.com/KASTEL-CSSDA/SolidityMetaModel
https://github.com/KASTEL-CSSDA/SolidityMetaModel
https://github.com/MDSD-Tools/Metamodel-Modeling-Foundations
https://medium.com/@phillipgoldberg/smart-contract-best-practices-revisited-block-number-vs-timestamp-648905104323
https://medium.com/@phillipgoldberg/smart-contract-best-practices-revisited-block-number-vs-timestamp-648905104323
https://github.com/crytic/slither/wiki/Printer-documentation
https://github.com/crytic/slither/wiki/Printer-documentation
https://github.com/crytic/slither/wiki/Python-API
https://github.com/crytic/slither/wiki/Python-API
https://github.com/crytic/slither/issues/337
https://github.com/KASTEL-CSSDA/SolidityCodeGenerator
https://github.com/KASTEL-CSSDA/SolidityCodeGenerator
https://github.com/SRI-CSL/solidity/issues/58
https://github.com/SRI-CSL/solidity/issues/58
https://github.com/kit-sdq/Ecore2Txt
https://sdqweb.ipd.kit.edu/wiki/Generating_code_with_Xtend_and_Xtext_triggered_from_the_Eclipse_context_menu
https://sdqweb.ipd.kit.edu/wiki/Generating_code_with_Xtend_and_Xtext_triggered_from_the_Eclipse_context_menu
https://www.tutorialspoint.com/solidity/solidity_style_guide.htm
https://www.tutorialspoint.com/solidity/solidity_style_guide.htm

[79] Robert Heinrich et al. “Integrating Run-Time Observations and Design Component

Models for Cloud System Analysis”. In: 9th Workshop on Models@run.time. Proceed-
ings: 30 September 2014 (Valencia, Spain,). Ed. by Sebastian Götz, Nelly Bencomo,

and Robert France. 2014, pp. 41–46.

[80] Robert Heinrich. “Architectural Run-Time Models for Performance and Privacy

Analysis in Dynamic Cloud Applications”. In: SIGMETRICS Perform. Eval. Rev. 43.4

(2016), pp. 13–22. issn: 0163-5999. doi: 10.1145/2897356.2897359.

[81] Vic Basili, Gianluigi Caldiera, and H. Dieter Rombach. “The Goal Question Metric

Approach”. In: Encyclopedia of Software Engineering. Ed. by John J. Marciniak. 2nd

Edition. John Wiley & Sons, Inc., 2002, pp. 1–10. isbn: 0471028959. doi: 10.1002/

0471028959.sof142.

[82] Per Runeson and Martin Höst. “Guidelines for conducting and reporting case study

research in software engineering”. In: Empirical Software Engineering 14.2 (2009),

pp. 131–164. doi: 10.1007/s10664-008-9102-8.

[83] Marcel F. van Amstel and Mark G. J. van den Brand. “Model Transformation Analysis:

Staying Ahead of the Maintenance Nightmare”. In: 4th International Conference on
Theory and Practice of Model Transformations (ICMT 2011). Proceedings: 27-28 June
2011 (Zurich, Switzerland,). Ed. by Jordi Cabot and Eelco Visser. LNCS sublibrary. SL

2, Programming and software engineering 6707. Heidelberg: Springer, 2011, pp. 108–

122. isbn: 978-3-642-21731-9. doi: 10.1007/978-3-642-21732-6_8.

[84] Johanna Gustafsson. Single case studies vs. multiple case studies: A comparative study.

Engineering and Science: Halmstad University, Halmstad, Sweden, 2017.

[85] Jack Peterson et al. Augur: A Decentralized Oracle and Prediction Market Plat-
form (v2.0). Whitepaper. Forecast Foundation, 2021. url: https://github.com/

AugurProject/whitepaper/releases/latest/download/augur-whitepaper-v2.

pdf (visited on 05/31/2021).

[86] Laurent Benichou. �zzy. Innovation at AXA. 2017. url: https://laurentbenichou.

medium.com/fizzy-innovation-at-axa-2304bb71e0f7 (visited on 11/22/2021).

[87] Miranda Wood. AXA withdraws blockchain �ight delay compensation experiment.
2019. url: https://www.ledgerinsights.com/axa-blockchain-flight-delay-

compensation/ (visited on 07/24/2021).

[88] Sebastian Friebe et al. “Coupling Smart Contracts: A Comparative Case Study”. In:

3rd Conference on Blockchain Research & Applications for Innovative Networks and
Services (BRAINS). Proceedings: 27-30 September 2021 (Paris, France,). Ed. by Andreas

Veneris and Abdelkader Lahmadi. IEEE, 2021, pp. 137–144. isbn: 978-1-6654-3924-4.

doi: 10.1109/BRAINS52497.2021.9569830.

[89] Richard Hobeck et al. “Process Mining on Blockchain Data: A Case Study of Au-

gur”. In: 19th International Conference on Business Process Management (BPM 2021).
Proceedings: 06-10 September 2021 (Rome, Italy,). Ed. by Artem Polyvyanyy. LNCS

sublibrary, SL 3, Information systems and applications, incl. internet/web, and HCI

12875. Cham, Switzerland: Springer, 2021, pp. 306–323. isbn: 978-3-030-85468-3. doi:

10.1007/978-3-030-85469-0_20.

119

https://doi.org/10.1145/2897356.2897359
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1002/0471028959.sof142
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1007/978-3-642-21732-6_8
https://github.com/AugurProject/whitepaper/releases/latest/download/augur-whitepaper-v2.pdf
https://github.com/AugurProject/whitepaper/releases/latest/download/augur-whitepaper-v2.pdf
https://github.com/AugurProject/whitepaper/releases/latest/download/augur-whitepaper-v2.pdf
https://laurentbenichou.medium.com/fizzy-innovation-at-axa-2304bb71e0f7
https://laurentbenichou.medium.com/fizzy-innovation-at-axa-2304bb71e0f7
https://www.ledgerinsights.com/axa-blockchain-flight-delay-compensation/
https://www.ledgerinsights.com/axa-blockchain-flight-delay-compensation/
https://doi.org/10.1109/BRAINS52497.2021.9569830
https://doi.org/10.1007/978-3-030-85469-0_20

Bibliography

[90] Dejan Jovanović. Unsupported features. Solc-Verify Issue #1. 2019. url: https://

github.com/SRI-CSL/solidity/issues/1 (visited on 12/13/2021).

[91] Jan-Philipp Töberg and Frederik Reiche. JanPhilippToeberg. Modelling and Enforcing
Access Control Requirements for Smart Contracts. 2021. url: https://git.scc.kit.

edu/i43/stud/abschlussarbeiten/masterarbeiten/janphilipptoeberg (visited

on 12/12/2021).

120

https://github.com/SRI-CSL/solidity/issues/1
https://github.com/SRI-CSL/solidity/issues/1
https://git.scc.kit.edu/i43/stud/abschlussarbeiten/masterarbeiten/janphilipptoeberg
https://git.scc.kit.edu/i43/stud/abschlussarbeiten/masterarbeiten/janphilipptoeberg

A. Appendix

This appendix collects additional information to support the contents of the thesis. This

includes the concrete implementations for the mentioned smart contracts as well as the

created Slither printer. These implementations are written in Python and Solidity and can

also be examined in our GitLab repository [91].

Appendix A.1 provides the manual implementation for the running example from Chap-

ter 4. This implementation consists of the SingleAuction and the MarketManagement
contract. We provide the Python implementation for the influence-and-calls Slither
printer described in Section 8.2 in Appendix A.2. The complete results of this printer for

the SingleAuction contract from Appendix A.1 are provided in Appendix A.3. During the

generation, the generator creates an additional access control smart contract according to

the explanations from Section 9.2.4. Appendix A.4 provides a complete access control con-

tract for the auction use case from Chapter 4. As described in Section 11.3.5, we manually

added violations to the Augur and Fizzy use case on the architectural level. Appendix A.5

summarizes the resulting log �les containing the violations. Appendix A.6 categorizes

the information �ows between variables found during the case study according to the

categories presented in Section 10.1.3.

A.1. Implementation of the Auction Use Case

1 // SPDX-License-Identifier: GPL-3.0

2 pragma solidity >=0.7.0 <0.9.0;

3

4 contract SingleAuction {

5 address payable private managingContract;

6 address payable private sellerAddress;

7 address private highestBidder;

8

9 bool private auctionClosed;

10 bool private moneyCollected;

11 uint private highestBid;

12 uint private bidderCounter;

13

14 mapping(uint => address payable) private bidders;

15 mapping(address => uint) private currentBids;

16

17 constructor(address seller) {

18 managingContract = payable(msg.sender);

121

A. Appendix

19 sellerAddress = payable(seller);

20

21 auctionClosed = false;

22 moneyCollected = false;

23 highestBid = 0;

24 bidderCounter = 0;

25 }

26

27 function bid() external payable {

28 require(auctionClosed == false, "Auction already closed.");

29 require(currentBids[msg.sender] > 0, "Please withdraw your bid

before staking a new one.");

30

31 bidders[bidderCounter] = payable(msg.sender);

32 currentBids[msg.sender] = msg.value;

33 bidderCounter++;

34

35 if(msg.value > highestBid) {

36 highestBid = msg.value;

37 highestBidder = msg.sender;

38 }

39 }

40

41 function close() public {

42 require(msg.sender == sellerAddress, "Only the seller can close

the auction.");

43 require(auctionClosed == false, "Auction already closed.");

44

45 auctionClosed = true;

46 }

47

48 function collectMoney() external {

49 require(msg.sender == sellerAddress, "Only the seller can

collect the money.");

50 require(auctionClosed == true, "Auction is still active.");

51 require(moneyCollected == false, "The money has already been

collected.");

52

53 moneyCollected = true;

54 if(!sellerAddress.send(highestBid)) {

55 moneyCollected = false;

56 }

57 }

58

59 function collectItem() external {

122

A.1. Implementation of the Auction Use Case

60 require(msg.sender == highestBidder, "Only the highest bidder

can collect the item.");

61 require(auctionClosed == true, "Auction is still active.");

62

63 // sent the item, whatever form it may have

64 }

65

66 function withdrawMoney() external {

67 require(msg.sender != highestBidder, "The highest bidder cannot

withdraw their money.");

68 require(currentBids[msg.sender] > 0, "No money to withdraw.");

69

70 uint amount = currentBids[msg.sender];

71 currentBids[msg.sender] = 0;

72 if(!msg.sender.send(amount)) {

73 currentBids[msg.sender] = amount;

74 assert(currentBids[msg.sender] == amount);

75 } else {

76 assert(currentBids[msg.sender] == 0);

77 }

78 }

79

80 function emergencyShutdown() public {

81 require(msg.sender == managingContract, "Only the manager can

start the emergency shutdown.");

82 auctionClosed = true;

83

84 for(uint i = 0; i < bidderCounter; i++) {

85 uint amount = currentBids[bidders[i]];

86 if(amount > 0) {

87 currentBids[bidders[i]] = 0;

88 if(!bidders[i].send(amount)) {

89 currentBids[bidders[i]] = amount;

90 assert(currentBids[bidders[i]] == amount);

91 } else {

92 assert(currentBids[bidders[i]] == 0);

93 }

94 }

95 }

96

97 selfdestruct(managingContract);

98 }

99 }

Listing A.1: SingleAuction contract from the auction use case in Chapter 4

123

A. Appendix

1 // SPDX-License-Identifier GPL-3.0

2 pragma solidity =0.7.0 0.9.0;

3

4 import .SingleAuction.sol;

5

6 contract AuctionManagement {

7

8 SingleAuction[] private auctions;

9 uint private auctionCounter = 0;

10

11 function createNewAuction() public {

12 auctions[auctionCounter] = new SingleAuction(msg.sender);

13 auctionCounter++;

14 }

15 }

Listing A.2: AuctionManagement contract from the auction use case in Chapter 4

A.2. Complete Implementation of the Custom Slither Printer

1 """

2 Module enhancing the data-dependency printer.

3 Detecting and Printing indirect influence as well as direct and transitive

influence.

4 Additionally, it also calculates the transitive closure for function calls.

5

6 Indirect Influence Example:

7 if(influencer > 5) {

8 x = 20;

9 }

10 => Here, "influencer" indirectly influences "x"

11 """

12

13 from typing import Union, Set, List

14 from slither.core.variables.variable import Variable

15 from slither.core.variables.state_variable import StateVariable

16 from slither.core.declarations import Contract, Function, Modifier

17 from slither.core.declarations.function_contract import FunctionContract

18 from slither.core.cfg.node import Node, NodeType

19 from slither.printers.abstract_printer import AbstractPrinter

20 from slither.analyses.data_dependency.data_dependency import get_dependencies

21 from slither.slithir.variables import TemporaryVariable, ReferenceVariable

22 from slither.utils.myprettytable import MyPrettyTable

124

A.2. Complete Implementation of the Custom Slither Printer

23

24 # Dictionary mapping each variable name to the list of variables it is

influenced by.

25 # It is used to keept track of the influence overview created at the

beginning (over all functions).

26 influence_dict = dict()

27

28 """

29 This function maps each variable to its influencers once at the beginning of

the printing process.

30 It is given the list of contracts to analyte and iterates over it to look at

each contract independently.

31 For all variables in each contract that has not yet been considered, it

finds all direct

32 (using the normal data-dependency printer through get_dependencies) and

indirect dependencies.

33 They are returned, the transitive closure is calculated and saved in a local

dictionary for later use.

34 """

35 def return_all_dependencies(cons):

36 temp_influence_dict = dict()

37

38 for c in cons:

39 for v in c.state_variables:

40 if v in temp_influence_dict:

41 continue

42

43 #print(’Var: ’, v.name, ’Context: ’, c.name, ’Type: ’, type(c))

44 temp_influence_dict[v] = set()

45 for inf in get_dependencies(v, c):

46 if isinstance(inf, StateVariable):

47 if inf not in temp_influence_dict[v] and inf.name !=

v.name:

48 temp_influence_dict[v].add(inf)

49

50 for inf in get_indirect_dependencies(v, c):

51 if isinstance(inf, StateVariable):

52 if inf not in temp_influence_dict[v] and inf.name !=

v.name:

53 temp_influence_dict[v].add(inf)

54

55 return temp_influence_dict

56

57 """

125

A. Appendix

58 This function takes all found dependencies, calculates the transitive

closure and then saves

59 the results in the influence_dict dictionary to map each variable to its

influencers.

60 To do so, it iterates over all state variables and calculates the transitive

closure recursively.

61 """

62 def fill_dictionary(d):

63 for var in d:

64 already_considered = set()

65 already_considered.add(var)

66 influence_dict[var] = calculate_transitive_closure_recursively(d,

var, already_considered)

67

68 """

69 To calculate the transitive closure for the given variable, this function

looks at all influencers

70 and their influencers recursively. While doing so, it keeps track of the

already considered influencers

71 to prevent unnecessary recursive steps.

72 """

73 def calculate_transitive_closure_recursively(d, var, already_considered):

74 temp = set()

75 for inf in d[var]:

76 if inf not in already_considered:

77 temp.add(inf)

78 already_considered.add(inf)

79 temp.update(calculate_transitive_closure_recursively(d, inf,

already_considered))

80

81 return temp

82

83 """

84 This function calculates the transitive closure for the function calls,

beginning with the given function.

85 In each recursive call, it looks at the internal and external (= high_level)

calls made by that function and

86 adds all functions that have not yet been considered to the result set. When

no more functions can be traversed,

87 the function returns the set of functions.

88 """

89 def calculate_transitive_closure_for_function_recursively(func,

already_considered):

90 temp = set()

91

126

A.2. Complete Implementation of the Custom Slither Printer

92 if not isinstance(func, FunctionContract):

93 return temp

94

95 for called in func.internal_calls:

96 if called not in already_considered and isinstance(called,

FunctionContract):

97 temp.add(called)

98 already_considered.add(called)

99

temp.update(calculate_transitive_closure_for_function_recursively(called,

already_considered))

100

101 for called in func.high_level_calls:

102 if called not in already_considered and isinstance(called,

FunctionContract):

103 temp.add(called)

104 already_considered.add(called)

105

temp.update(calculate_transitive_closure_for_function_recursively(called,

already_considered))

106

107 return temp

108

109 """

110 Function taken from the original data-dependency printer but adjusted to

better incorporate

111 the additional functionality for indirect influence. The function is given a

variable v and

112 either a contract or a function (represented by c). If a contract is given,

the variables

113 that influence v are returned from the influence_dict dictionary. If a

function is given,

114 the variables are directly collected and returned. To do so, for both cases,

the results of

115 the normal data-dependency printer (get_dependencies) and our extension are

combined.

116 """

117 def _get(v, c):

118 if isinstance(c, Contract):

119 return [inf.name for inf in influence_dict[v]]

120

121 elif isinstance(c, Function):

122 res = set()

123 for inf in get_dependencies(v, c):

124 if not isinstance(inf, (TemporaryVariable, ReferenceVariable)):

127

A. Appendix

125 if inf not in res and inf.name != v.name:

126 res.add(inf.name)

127

128 for inf in get_indirect_dependencies(v, c):

129 if not isinstance(inf, (TemporaryVariable, ReferenceVariable)):

130 if inf not in res and inf.name != v.name:

131 res.add(inf.name)

132

133 return list(res)

134

135 """

136 This function returns the variables that indirectly influence the given

variable var.

137 To do so, it differentiates between contracts and functions and either

iterates over

138 all available functions to collect the variables or directly analyzes the

given

139 function.

140 """

141 def get_indirect_dependencies(

142 var: Variable,

143 cont: Union[Contract, Function]

144) -> Set[Variable]:

145

146 assert isinstance(cont, (Contract, Function))

147 #print(’Var: ’, var.name, ’Context: ’, cont.name, ’Type: ’, type(cont))

148 res = set()

149

150 if isinstance(cont, Contract):

151 for func in cont.functions:

152 res.update(get_influencers_for_var_in_func(var, func))

153 return res

154 elif isinstance(cont, Function):

155 return get_influencers_for_var_in_func(var, cont)

156

157 """

158 This function takes a variable var and a function func and returns all

variables that

159 influence var inside of the function. To do so, it uses the CFG by looking

at all

160 conditional nodes in the function and checking if var is written inside its

children

161 nodes.

162 """

163 def get_influencers_for_var_in_func(

128

A.2. Complete Implementation of the Custom Slither Printer

164 var: Variable,

165 func: Function

166) -> Set[Variable]:

167

168 res = set()

169 # print(’Func: ’, func.name)

170 # print(’Written: ’, *func.variables_written)

171 # print(’Read: ’, *func.variables_read)

172 if var in func.variables_written:

173 condNodes = [n for n in func.nodes if n.is_conditional()]

174 for node in condNodes:

175 if check_children_for_write(var, node):

176 res.update(node.variables_read)

177

178 return res

179

180 """

181 This function is used to check if the given variable is written by any

children

182 of the given node. To do so, it checks all child nodes recursively. If any

check is positive,

183 these results will be returned. If an END_IF node is found during the

traversal of the CFG,

184 a further look at those children nodes is not necessary.

185 """

186 def check_children_for_write(

187 check_for: Variable,

188 node: Node

189) -> bool:

190

191 for son in node.sons:

192 if check_for in son.variables_written:

193 return True

194 if son.type != NodeType.ENDIF:

195 if check_children_for_write(check_for, son):

196 return True

197 return False

198

199 """

200 This class is mainly the same as the printer class for the standard

data-dependency printer.

201 The only changes are how the data is collected beforehand and the addition

of a table summarizing

202 the transitive closure for function calls before the results for each

function are displayed.

129

A. Appendix

203 """

204 class InfluenceAndCallsPrinter(AbstractPrinter):

205 """

206 Documentation

207 """

208

209 ARGUMENT = "influence-and-calls"

210 HELP = "Prints all influencing relations between variables and the

transitive closure for function calls."

211

212 WIKI = "ToDo"

213

214 def output(self, _filename):

215 """

216
_filename is not used

217 Args:

218
_filename(string)

219 """

220

221 fill_dictionary(return_all_dependencies(self.contracts))

222

223 all_tables = []

224 all_txt = ""

225

226 txt = ""

227 for c in self.contracts:

228 if c.is_top_level:

229 continue

230 txt += "\nContract %s\n" % c.name

231 table = MyPrettyTable(["Variable", "Influencers"])

232 for v in c.state_variables:

233 table.add_row([v.name, _get(v, c)])

234

235 txt += str(table)

236

237 txt += "\n"

238 table = MyPrettyTable(["Function", "Internal & External Calls"])

239 for f in c.functions_and_modifiers_declared:

240 already_considered = set()

241 already_considered.add(f)

242 called_funcs =

calculate_transitive_closure_for_function_recursively(f,

already_considered)

243 temp = set()

244 for f2 in called_funcs:

130

A.3. Slither Printer Results for the SingleAuction Contract

245 if not isinstance(f2, tuple):

246 temp.add(f2.full_name)

247 table.add_row([f.full_name, [cf for cf in temp]])

248

249 txt += str(table)

250

251

252 for f in c.functions_and_modifiers_declared:

253 txt += "\nFunction %s\n" % f.full_name

254 table = MyPrettyTable(["Variable", "Influencers"])

255 for v in c.state_variables:

256 table.add_row([v.canonical_name, _get(v, f)])

257 txt += str(table)

258

259 self.info(txt)

260

261 all_txt += txt

262 all_tables.append((c.name, table))

263

264 res = self.generate_output(all_txt)

265 for name, table in all_tables:

266 res.add_pretty_table(table, name)

267

268 return res

Listing A.3: Complete implementation of the influence-and-calls printer

from Section 8.2

A.3. Slither Printer Results for the SingleAuction Contract

131

A. Appendix

T
a
b
l
e

A
.1

.:
R

e
s
u

l
t
s

r
e
g
a
r
d

i
n

g
v
a
r
i
a
b
l
e

i
n

�
u

e
n

c
e

a
n

d
f
u

n
c
t
i
o

n
c
a
l
l
s

f
o

r
t
h

e
Si
ng
le
A
uc
tio

n
c
o

n
t
r
a
c
t

f
r
o

m
L

i
s
t
i
n

g
A

.1
u

s
i
n

g

t
h

e
i
n
f
l
u
e
n
c
e
-
a
n
d
-
c
a
l
l
s

p
r
i
n

t
e
r
.

V
a
r
i
a
b
l
e

I
n

�
u

e
n

c
e
r
s

m
a
n

a
g

i
n

g
C

o
n

t
r
a
c
t

[
]

s
e
l
l
e
r
A

d
d

r
e
s
s

[
]

h
i
g

h
e
s
t
B

i
d

d
e
r

[
c
u

r
r
e
n

t
B

i
d

s
,
h

i
g

h
e
s
t
B

i
d

,
s
e
l
l
e
r
A

d
d

r
e
s
s
,
a
u

c
t
i
o

n
C

l
o

s
e
d

,
b
i
d

d
e
r
s
,
b
i
d

d
e
r
C

o
u

n
t
e
r
,
m

a
n

a
g

i
n

g
C

o
n

t
r
a
c
t
]

a
u

c
t
i
o

n
C

l
o

s
e
d

[
s
e
l
l
e
r
A

d
d

r
e
s
s
,
m

a
n

a
g

i
n

g
C

o
n

t
r
a
c
t
]

m
o

n
e
y

C
o

l
l
e
c
t
e
d

[
c
u

r
r
e
n

t
B

i
d

s
,
h

i
g

h
e
s
t
B

i
d

,
s
e
l
l
e
r
A

d
d

r
e
s
s
,
a
u

c
t
i
o

n
C

l
o

s
e
d

,
b
i
d

d
e
r
s
,
b
i
d

d
e
r
C

o
u

n
t
e
r
,
m

a
n

a
g

i
n

g
C

o
n

t
r
a
c
t
,
h

i
g

h
e
s
t
B

i
d

d
e
r
]

h
i
g

h
e
s
t
B

i
d

[
c
u

r
r
e
n

t
B

i
d

s
,
h

i
g

h
e
s
t
B

i
d

d
e
r
,
s
e
l
l
e
r
A

d
d

r
e
s
s
,
a
u

c
t
i
o

n
C

l
o

s
e
d

,
b
i
d

d
e
r
s
,
b
i
d

d
e
r
C

o
u

n
t
e
r
,
m

a
n

a
g

i
n

g
C

o
n

t
r
a
c
t
]

b
i
d

d
e
r
C

o
u

n
t
e
r

[
c
u

r
r
e
n

t
B

i
d

s
,
h

i
g

h
e
s
t
B

i
d

d
e
r
,
s
e
l
l
e
r
A

d
d

r
e
s
s
,
a
u

c
t
i
o

n
C

l
o

s
e
d

,
b
i
d

d
e
r
s
,
h

i
g

h
e
s
t
B

i
d

,
m

a
n

a
g

i
n

g
C

o
n

t
r
a
c
t
]

b
i
d

d
e
r
s

[
c
u

r
r
e
n

t
B

i
d

s
,
h

i
g

h
e
s
t
B

i
d

d
e
r
,
s
e
l
l
e
r
A

d
d

r
e
s
s
,
a
u

c
t
i
o

n
C

l
o

s
e
d

,
b
i
d

d
e
r
C

o
u

n
t
e
r
,
h

i
g

h
e
s
t
B

i
d

,
m

a
n

a
g

i
n

g
C

o
n

t
r
a
c
t
]

c
u

r
r
e
n

t
B

i
d

s
[
b
i
d

d
e
r
s
,
h

i
g

h
e
s
t
B

i
d

d
e
r
,
s
e
l
l
e
r
A

d
d

r
e
s
s
,
a
u

c
t
i
o

n
C

l
o

s
e
d

,
b
i
d

d
e
r
C

o
u

n
t
e
r
,
h

i
g

h
e
s
t
B

i
d

,
m

a
n

a
g

i
n

g
C

o
n

t
r
a
c
t
]

b
i
d

(
)

[
r
e
q

u
i
r
e
(
b

o
o

l
,s

t
r
i
n

g
)
]

c
l
o

s
e
(
)

[
r
e
q

u
i
r
e
(
b

o
o

l
,s

t
r
i
n

g
)
]

c
o

l
l
e
c
t
M

o
n

e
y

(
)

[
r
e
q

u
i
r
e
(
b

o
o

l
,s

t
r
i
n

g
)
]

c
o

l
l
e
c
t
I
t
e
m

(
)

[
r
e
q

u
i
r
e
(
b

o
o

l
,s

t
r
i
n

g
)
]

w
i
t
h

d
r
a
w

M
o

n
e
y

(
)

[
a
s
s
e
r
t
(
b

o
o

l
)
,
r
e
q

u
i
r
e
(
b

o
o

l
,s

t
r
i
n

g
)
]

e
m

e
r
g

e
n

c
y

S
h

u
t
d

o
w

n
(
)

[
a
s
s
e
r
t
(
b

o
o

l
)
,
r
e
q

u
i
r
e
(
b

o
o

l
,s

t
r
i
n

g
)
,
s
e
l
f
d

e
s
t
r
u

c
t
(
a
d

d
r
e
s
s
)
]

132

A.4. Generated Access Control Contract for the Auction Use Case

A.4. Generated Access Control Contract for the Auction Use
Case

1 // SPDX-License-Identifier: GPL-3.0

2 pragma solidity >=0.7.0 <0.9.0;

3

4 contract AccessControlContract {

5 enum Roles { SELLER, BIDDER, HIGHEST_BIDDER, MANAGER, ADMIN }

6

7 mapping(address => mapping(Roles => bool)) private roleAssignment;

8 uint256 private timeAtStart = 0;

9 uint private sellerCounter = 0;

10 uint private highestBidderCounter = 0;

11

12 constructor(address admin) {

13 roleAssignment[admin][Roles.ADMIN] = true;

14 timeAtStart = block.timestamp;

15 }

16

17 function checkAccess(address entity, Roles role) public view

returns(bool result) {

18 return roleAssignment[entity][role];

19 }

20

21 function checkTiming(bool upper, uint256 addition) public view

returns(bool result) {

22 if(upper) {

23 return block.timestamp >= timeAtStart + addition;

24 } else {

25 return block.timestamp <= timeAtStart + addition;

26 }

27 }

28

29 /// @notice modifies roleAssignment[entity][Roles.SELLER]

30 /// @notice modifies sellerCounter

31 function changeSellerRoleForEntity(address entity, bool giveRole)

external onlyAdmin {

32 if(giveRole) {

33 require(!checkAccess(msg.sender, Roles.BIDDER), "The

address cannot be a Bidder as well.");

34 require(!checkAccess(msg.sender, Roles.MANAGER), "The

address cannot be a Manager as well.");

35 require(sellerCounter < 1, "There are already 1

Seller(s).");

133

A. Appendix

36 sellerCounter++;

37 } else {

38 require(sellerCounter > 0, "There needs to be at least one

Seller before any role can be removed.");

39 sellerCounter--;

40 }

41

42 roleAssignment[entity][Roles.SELLER] = giveRole;

43 }

44

45 /// @notice modifies roleAssignment[entity][Roles.BIDDER]

46 function changeBidderRoleForEntity(address entity, bool giveRole)

external onlyAdmin {

47 if(giveRole) {

48 require(!checkAccess(msg.sender, Roles.SELLER), "The

address cannot be a Seller as well.");

49 }

50

51 roleAssignment[entity][Roles.BIDDER] = giveRole;

52 }

53

54 /// @notice modifies roleAssignment[entity][Roles.HIGHEST_BIDDER]

55 /// @notice modifies highestBidderCounter

56 function changeHighestBidderRoleForEntity(address entity, bool

giveRole) external onlyAdmin {

57 if(giveRole) {

58 require(checkAccess(msg.sender, Roles.BIDDER), "The

address needs to be a Bidder as well.");

59 require(highestBidderCounter < 1, "There are already 1

Highest Bidder(s).");

60 highestBidderCounter++;

61 } else {

62 require(highestBidderCounter > 0, "There needs to be at

least one Highest Bidder before any role can be removed.");

63 highestBidderCounter--;

64 }

65

66 roleAssignment[entity][Roles.HIGHEST_BIDDER] = giveRole;

67 }

68

69 /// @notice modifies roleAssignment[entity][Roles.MANAGER]

70 function changeManagerRoleForEntity(address entity, bool giveRole)

external onlyAdmin {

71 if(giveRole) {

134

A.5. Results of the Soundness Check for the Malicious Models

72 require(!checkAccess(msg.sender, Roles.SELLER), "The

address cannot be a Seller as well.");

73 }

74

75 roleAssignment[entity][Roles.MANAGER] = giveRole;

76 }

77 /// @notice modifies roleAssignment[entity][Roles.ADMIN]

78 function changeAdminRoleForEntity(address entity, bool giveRole)

external onlyAdmin {

79 roleAssignment[entity][Roles.ADMIN] = giveRole;

80 }

81

82 modifier onlyAdmin {

83 require(checkAccess(msg.sender, Roles.ADMIN), "Access denied due

to missing role!");

84
_;

85 }

86 }

Listing A.4: Generated access control contract for the auction use case from Chapter 4

A.5. Results of the Soundness Check for the Malicious Models

1 There are violations in the selected AccessControlSystem ’Augur’ and

SmartContracts ’Market’ ’MarketManagement’:

2 1) Role ’Designated Reporter’ can access function ’Report’ indirectly

through function ’Designated Report’

3 2) Role ’Shareholder’ cannot modify variable ’Agree Counter’ through any

function

4 3) Role ’Market Creator’ can illegally influence variable ’Designated

Reporter’ by modifying variable ’Reporter Set’

5 4) Role ’Market Creator’ can illegally influence variable ’Designated

Reporter’ through function ’Set Reporter’

6 5) Role ’Shareholder’ can illegally modify variable ’Market Counter’ through

function ’Dispute Outcome’

7 6) FunctionToStateVariableRelation ’Agree with the reported outcome’ -

Violation for OCL constraint

’VariableTypeIsNoMappingWithAddressAsKeytype’:

8 The referenced variable is not allowed to be mapping with ’address’ as its

key data type

9 7) FunctionToCsmRelation ’Outcome disputes are saved in CSM’ - Violation for

OCL constraint ’VariableTypeNeedsToBeMapping’:

10 The referenced variable needs to be a mapping

135

A. Appendix

11 8) FunctionToCsmRelation ’Outcome disputes are saved in CSM’ - Violation for

OCL constraint ’MappingKeyTypeNeedsToBeAddressOrAddressPayable’:

12 The referenced mappings key needs to have the data type ’address’ or

’address payable’

Listing A.5: Violations.log �le for the malicious Augur use case from Section 11.3.1

1 There are violations in the selected AccessControlSystem ’Fizzy’ and

SmartContracts ’Insurance’ ’InsuranceManagement’:

2 1) Role ’Insurance Company’ - Violation for OCL constraint

’CardinalityIsValid’:

3 The role cardinality needs to be -1 or bigger than 0

4 2) Role ’Insurance Company’ - Violation for OCL constraint

’NoRoleCanBePrerequisiteForItself’:

5 The prerequisites need to be different from the role itself

6 3) Role ’Insurance Company’ - Violation for OCL constraint

’NoRoleCanBeSuperiorToItself’:

7 The superior roles need to be different from the role itself

8 4) Role ’Insurance Company’ - Violation for OCL constraint

’NoRoleInPrerequisiteAndSuperiorSet’:

9 One role cannot be a prerequisite and a superior role

10 5) MutualRoleExclusion ’Exclusion of Insurant and Company’ - Violation for

OCL constraint ’RolesCannotBeInHierarchyOrPrerequisite’:

11 The two mutually exclusive roles cannot be superiors or prerequisites to

each other

12 6) FunctionToStateVariableRelation ’Change the insured account’ - Violation

for OCL constraint ’VariableTypeNeedsToBeBoolean’:

13 The referenced variable needs to be a boolean variable

14 7) FunctionToStateVariableRelation ’Checking for a delay indirectly closes

the insurance’ - Violation for OCL constraint

’ForbidTimeContextConditions’:

15 FunctionToVariable relations are not allowed to have time-based constraints

16 8) Violation for OCL constraint ’NoMoreBalanceModificationsThanFunctions’:

17 There are more function balance modifications than functions

18 9) Violation for OCL constraint

’BalanceModificationsReferenceDifferentFunctions’:

19 All balance modifications need to reference different functions

20 10) Violation for OCL constraint

’BalanceModificationsRegardingThisContractNeedPayableFunction’:

21 A function that is allowed to increase the balance of this contract needs to

be marked as ’payable’

22 11) Violation for OCL constraint ’NoFunctionOverrides’:

23 The generator does not support the usage of function overrides

24 12) Violation for OCL constraint ’NoAdditionalLocalFunctions’:

25 Local functions defined not as ’Function’ are not covered by the generator

136

A.6. Analyzing the Tool Results during the Case Study

Listing A.6: Violations.log �le for the malicious Fizzy use case from Section 11.3.2

A.6. Analyzing the Tool Results during the Case Study

In the following, all found in�uence relations during the three use cases in the case study

from Section 11.3 are enumerated. Each in�uence is analyzed according to the guidelines

from Section 10.1.3 and the results are collected in Table 11.6. If an information �ow is

introduced through the calculation of the transitive closure, we brie�y analyze whether

the information �ow occurs in the implementation. The reasoning for this analysis is

provided in Section 10.1.3.

For each use case, a summary of the enumeration is provided in Tables A.2 to A.4. Here,

the In�uencer and the In�uenced variable are stated. Additionally, the Function where

the information �ows is located in the source code is described. If no Function is stated,

the information �ow is introduced by the transitive closure. Lastly, the Classi�cation is

summarized. For this purpose, each information �ow is numbered to show how many

unique information �ows occur in the contract.

A.6.1. Market contract of the Augur use case

1. openReportAllowed in�uences openReporter in the claimReporterRole function:

The variable openReportAllowed is modi�ed by the designated reporter, the open
reporter and the manager whereas the openReporter variable is modi�ed by the

shareholder.
⇒ Communicate that the designated reporter, open reporter and manager could

in�uence openReporter illegally

2. designatedReporterReported in�uences openReporter through transitive closure:

This information �ow occurs in the implementation. The variable designatedReporter-

Reported is modi�ed by the designated reporter whereas the openReporter variable

is modi�ed by the shareholder.
⇒ Communicate that the designated reporter could in�uence openReporter illegally

3. designatedReportAllowed in�uences openReporter through transitive closure:

This information �ow occurs in the implementation. The variable designatedRepor-

tAllowed is modi�ed by the designated reporter, the open reporter and the manager
whereas the openReporter variable is modi�ed by the shareholder.
⇒ Communicate that the designated reporter, open reporter and manager could

in�uence openReporter illegally

4. tradingActive in�uences shares in the buyShares and sellShares function:

The variable tradingActive is modi�ed by the manager and in�uenced by the market
creator whereas the shares variable is modi�ed by the shareholder and in�uenced

by the market creator.
⇒ Communicate that the manager could in�uence shares illegally

137

A. Appendix

Table A.2.: This table summarizes the classi�cation of the 31 information �ows found by

the influence-and-calls printer for the Market contract from the Augur use

case from Section 11.3.1.

From these 31 information �ows that are not modelled with the ACM, one

cannot occur, six occur due to a missing VariableToVariableRelation element in

the ACM instances and 24 introduce insecure information �ows. From these

24 violations, 14 are unique.

In�uencer In�uenced Function Classi�cation

1 openReportAllowed openReporter claimReporterRole Insecure inf. �ow #1

2 designatedReporter- openReporter Insecure inf. �ow #2

Reported

3 designatedReport- openReporter Insecure inf. �ow #1

Allowed

4 tradingActive shares buyShares & Insecure inf. �ow #3

sellShares

5 reporterSet shares Missing element

6 createdBonds shares Missing element

7 disputesAllowed disagreeCounter disputeOutcome Insecure inf. �ow #4

8 disputesAllowed agreeCounter disputeOutcome Insecure inf. �ow #5

9 disagreeCounter reportedOutcome closeDisputing- Insecure inf. �ow #6

Window

10 agreeCounter reportedOutcome closeDisputing- Insecure inf. �ow #6

Window

11 disputesAllowed reportedOutcome Insecure inf. �ow #7

12 disputesAllowed disputes disputeOutcome Insecure inf. �ow #8

13 designatedReporter- designatedReport- allowOpenReport Missing element

Reported Allowed

14 designatedReport- designatedReporter- designatedReport Insecure inf. �ow #9

Allowed Reported

15 designatedReporter- openReportAllowed allowOpenReport Missing element

Reported

16 designatedReport- openReportAllowed Missing element

Allowed

17 disagreeCounter settlementPhaseActive closeDisputing- Insecure inf. �ow #10

Window

18 agreeCounter settlementPhaseActive closeDisputing- Insecure inf. �ow #10

Window

19 disputesAllowed settlementPhaseActive Insecure inf. �ow #11

20 designatedReporter creationBondPaidOut sentCreationBond Insecure inf. �ow #12

21 creationBond creationBondPaidOut sentCreationBond Insecure inf. �ow #12

22 settlementPhaseActive creationBondPaidOut sentCreationBond Missing element

23 openReporter creationBondPaidOut sentCreationBond Insecure inf. �ow #13

24 designatedReporter- creationBondPaidOut sentCreationBond Nothing

Reported

25 disputesAllowed creationBondPaidOut Insecure inf. �ow

26 createdBonds creationBondPaidOut Insecure inf. �ow #12

27 reporterSet creationBondPaidOut Insecure inf. �ow #12

28 disagreeCounter creationBondPaidOut Insecure inf. �ow #13

29 agreeCounter creationBondPaidOut Insecure inf. �ow #13

30 designatedReport- creationBondPaidOut Insecure inf. �ow #14

Allowed

31 openReportAllowed creationBondPaidOut Insecure inf. �ow #14

138

A.6. Analyzing the Tool Results during the Case Study

5. reporterSet in�uences shares through transitive closure:

This information �ow occurs in the implementation. The variable reporterSet is

modi�ed by the market creator, who is allowed to in�uence the shares variable.

⇒Missing VariableToVariableRelation element

6. createdBonds in�uences shares through transitive closure:

This information �ow occurs in the implementation. The variable createdBonds is

modi�ed by the market creator, who is allowed to in�uence the shares variable.

⇒Missing VariableToVariableRelation element

7. disputesAllowed in�uences disagreeCounter in the disputeOutcome function:

The variable disputesAllowed is modi�ed by the designated reporter, the open re-
porter and the manager whereas the disagreeCounter variable is modi�ed by the

shareholder.
⇒ Communicate that the designated reporter, open reporter and manager could

in�uence disagreeCounter illegally

8. disputesAllowed in�uences agreeCounter in the disputeOutcome function:

The variable disputesAllowed is modi�ed by the designated reporter, the open reporter
and the manager whereas the agreeCounter variable is modi�ed by the shareholder.
⇒ Communicate that the designated reporter, open reporter and manager could

in�uence agreeCounter illegally

9. disagreeCounter in�uences reportedOutcome in the closeDisputingWindow func-

tion:

The variable disagreeCounter is modi�ed by the shareholder whereas the reported-

Outcome variable is modi�ed by the designated reporter and the open reporter.
⇒ Communicate that the shareholder could in�uence reportedOutcome illegally

10. agreeCounter in�uences reportedOutcome in the closeDisputingWindow function:

The variable agreeCounter is modi�ed by the shareholder whereas the reportedOut-

come variable is modi�ed by the designated reporter and the open reporter.
⇒ Communicate that the shareholder could in�uence reportedOutcome illegally

11. disputesAllowed in�uences reportedOutcome through transitive closure:

This information �ow occurs in the implementation. The variable disputesAllowed

is modi�ed by the designated reporter, the open reporter and the manager whereas

the reportedOutcome variable is modi�ed by the designated reporter and the open
reporter.
⇒ Communicate that the manager could in�uence reportedOutcome illegally

12. disputesAllowed in�uences disputes in the disputeOutcome function:

The variable disputesAllowed is modi�ed by the designated reporter, the open reporter
and the manager whereas the disputes variable is modi�ed by the shareholder.
⇒ Communicate that the designated reporter, open reporter and manager could

in�uence disputes illegally

139

A. Appendix

13. designatedReporterReported in�uences designatedReportAllowed in the allowO-

penReport function:

The variable designatedReporterReported is modi�ed by the designated reporter,
who is allowed to in�uence the designatedReportAllowed variable.

⇒Missing VariableToVariableRelation element

14. designatedReportAllowed in�uences designatedReporterReported in the desig-

natedReport function:

The variable designatedReportAllowed is modi�ed by the designated reporter, the

open reporter and the manager whereas the designatedReporterReported variable

is modi�ed by the designated reporter.
⇒ Communicate that the open reporter and manager could in�uence designate-

dReporterReported illegally

15. designatedReporterReported in�uences openReportAllowed in the allowOpenRe-

port function:

The variable designatedReporterReported is modi�ed by the designated reporter,
who is allowed to in�uence the openReportAllowed variable.

⇒Missing VariableToVariableRelation element

16. designatedReportAllowed in�uences openReportAllowed through transitive closure:

This information �ow occurs in the implementation. The variable designatedRepor-

tAllowed is modi�ed by the designated reporter, the open reporter and the manager,
who are also allowed to in�uence the openReportAllowed variable.

⇒Missing VariableToVariableRelation element

17. disagreeCounter in�uences settlementPhaseActive in the closeDisputingWindow

function:

The variable disagreeCounter is modi�ed by the shareholder whereas the settle-

mentPhaseActive variable is modi�ed by the manager.
⇒ Communicate that the shareholder could in�uence settlementPhaseActive ille-

gally

18. agreeCounter in�uences settlementPhaseActive in the closeDisputingWindow

function:

The variable agreeCounter is modi�ed by the shareholder whereas the settlement-

PhaseActive variable is modi�ed by the manager.
⇒ Communicate that the shareholder could in�uence settlementPhaseActive ille-

gally

19. disputesAllowed in�uences settlementPhaseActive through transitive closure:

This information �ow occurs in the implementation. The variable disputesAllowed

is modi�ed by the designated reporter, the open reporter and the manager whereas

the settlementPhaseActive variable is modi�ed by the manager.
⇒ Communicate that the designated reporter and the open reporter could in�uence

settlementPhaseActive illegally

140

A.6. Analyzing the Tool Results during the Case Study

20. designatedReporter in�uences creationBondPaidOut in the sentCreationBond

function:

The variable designatedReporter is modi�ed by the market creator whereas the

creationBondPaidOut variable is modi�ed by the manager.
⇒ Communicate that the market creator could in�uence creationBondPaidOut ille-

gally

21. creationBond in�uences creationBondPaidOut in the sentCreationBond function:

The variable creationBond is modi�ed by the market creator whereas the creation-

BondPaidOut variable is modi�ed by the manager.
⇒ Communicate that the market creator could in�uence creationBondPaidOut ille-

gally

22. settlementPhaseActive in�uences creationBondPaidOut in the sentCreationBond

function:

The variable settlementPhaseActive is modi�ed by the manager who is also allowed

to in�uence the creationBondPaidOut variable.

⇒Missing VariableToVariableRelation element

23. openReporter in�uences creationBondPaidOut in the sentCreationBond function:

The variable openReporter is modi�ed by the shareholder whereas the creation-

BondPaidOut variable is modi�ed by the manager.
⇒ Communicate that the shareholder could in�uence creationBondPaidOut illegally

24. designatedReporterReported in�uences creationBondPaidOut in the

sentCreationBond function:

This in�uence does not occur since creationBondPaidOut is changed independent of

designatedReporterReported’s value.

⇒ Nothing

25. disputesAllowed in�uences creationBondPaidOut through transitive in�uence:

This information �ow occurs in the implementation. The variable disputesAllowed

is modi�ed by the designated reporter, the open reporter and the manager whereas

the creationBondPaidOut variable is modi�ed by the manager.
⇒ Communicate that the designated reporter and the open reporter could in�uence

creationBondPaidOut illegally

26. createdBonds in�uences creationBondPaidOut through transitive in�uence:

This information �ow occurs in the implementation. The variable disputesAllowed

is modi�ed by the market creator whereas the creationBondPaidOut variable is mod-

i�ed by the manager.
⇒ Communicate that the market creator could in�uence creationBondPaidOut ille-

gally

27. reporterSet in�uences creationBondPaidOut through transitive in�uence:

This information �ow occurs in the implementation. The variable reporterSet is

141

A. Appendix

modi�ed by the market creator whereas the creationBondPaidOut variable is modi-

�ed by the manager.
⇒ Communicate that the market creator could in�uence creationBondPaidOut ille-

gally

28. disagreeCounter in�uences creationBondPaidOut through transitive in�uence:

This information �ow occurs in the implementation. The variable disagreeCounter

is modi�ed by the shareholder whereas the creationBondPaidOut variable is modi�ed

by the manager.
⇒ Communicate that the shareholder could in�uence creationBondPaidOut illegally

29. agreeCounter in�uences creationBondPaidOut through transitive in�uence:

This information �ow occurs in the implementation. The variable agreeCounter is

modi�ed by the shareholder whereas the creationBondPaidOut variable is modi�ed

by the manager.
⇒ Communicate that the shareholder could in�uence creationBondPaidOut illegally

30. designatedReportAllowed in�uences creationBondPaidOut through transitive in-

�uence:

This information �ow occurs in the implementation. The variable designatedRepor-

tAllowed is modi�ed by the designated reporter, the open reporter and the manager
whereas the creationBondPaidOut variable is modi�ed by the manager.
⇒ Communicate that the designated reporter and the open reporter could in�uence

creationBondPaidOut illegally

31. openReportAllowed in�uences creationBondPaidOut through transitive in�uence:

This information �ow occurs in the implementation. The variable openReportAl-

lowed is modi�ed by the designated reporter, the open reporter and the manager
whereas the creationBondPaidOut variable is modi�ed by the manager.
⇒ Communicate that the designated reporter and the open reporter could in�uence

creationBondPaidOut illegally

A.6.2. Insurance contract of the Fizzy use case

1. insuranceClosed in�uences insurant in the changeAccount function:

The variable insuranceClosed is modi�ed by the insurance company whereas the

insurant variable is modi�ed by the insurant.
⇒ Communicate that the insurance company could in�uence insurant illegally

2. insuranceAmount in�uences insurant through transitive closure:

This information �ow occurs in the implementation. The variable insuranceAmount is

not modi�ed by any roles whereas the insurant variable is modi�ed by the insurant.
⇒Missing VariableToVariableRelation element

142

A.6. Analyzing the Tool Results during the Case Study

Table A.3.: This table summarizes the classi�cation of the four information �ows found by

the influence-and-calls printer for the Insurance contract from the Fizzy use

case from Section 11.3.2.

From these four information �ows that are not modelled with the ACM, three

occur due to a missing VariableToVariableRelation element in the ACM instances

and one introduce an insecure information �ow.

In�uencer In�uenced Function Classi�cation

1 insuranceClosed insurant changeAccount Insecure information �ow

2 insuranceAmount insurant Missing element

3 insuranceAmount insuranceClosed payout Missing element

4 insurant insuranceClosed payout Missing element

3. insuranceAmount in�uences insuranceClosed in the payout function:

The variable insuranceAmount is not modi�ed by any roles whereas the insurance-

Closed variable is modi�ed by the insurant and the insurance company.

⇒Missing VariableToVariableRelation element

4. insurant in�uences insuranceClosed in the payout function:

The variable insurant is modi�ed by the insurant who is, together with the insurance
company, allowed to in�uence the insuranceClosed variable.

⇒Missing VariableToVariableRelation element

A.6.3. So�ware contract of the Palinodia use case

1. accCtrl in�uences rootOwnerAddress in the changeRootOwner function:

The variable accCtrl is not part of the model but created during the generation, so

it does not lead to anything illegally.

⇒ Nothing

2. storageContracts in�uences platformsStore in the registerBinaryHashStorage-

Contract function:

The variable storageContracts is modi�ed by the developer who is, together with

the platform and the maintainer, allowed to in�uence the platformsStore variable.

⇒Missing VariableToVariableRelation element

3. platformsStore in�uences storageContracts in the registerBinaryHashStorage-

Contract function:

The variable platformsStore is modi�ed by the developer, the platform and the main-
tainer whereas the platformsStore variable is modi�ed by the developer.
⇒ Communicate that the platform and the maintainer could in�uence storageCon-

tracts illegally

143

A. Appendix

Table A.4.: This table summarizes the classi�cation of the 16 information �ows found by

the influence-and-calls printer for the Palinodia use case from Section 11.3.3.

From these 16 information �ows that are not modelled with the ACM, �ve

cannot occur, six occur due to a missing VariableToVariableRelation element in

the ACM instances and �ve introduce insecure information �ows. From these

�ve violations, three are unique.

Contract # In�uencer In�uenced Function Classi�cation

Software 1 accCtrl rootOwnerAddress changeRootOwner Nothing

2 storageContracts platformsStore registerBinary- Missing element

HashStorageContract

3 platformsStore storageContracts registerBinary- Insecure infor-

HashStorageContract mation �ow #1

Identity- 1 accCtrl identitiesArray changeRootOwner Nothing

Manage- 2 accCtrl identitiesMap changeRootOwner Nothing

ment- 3 rootOwnerAddress identitiesArray resetIdentitySet Missing element

4 rootOwnerAddress identitiesMap Nothing

5 identitiesArray identitiesMap addIdentity Missing element

Binary- 1 accCtrl rootOwnerAddress changeRootOwner Nothing

Hash- 2 softwareContract initializeStatus setSoftwareContract Missing element

Storage 3 initializeStatus publishCounter publishHash Insecure infor-

mation �ow #2

4 softwareContract publishCounter Insecure infor-

mation �ow #2

5 hashStore publishCounter publishHash Missing element

6 publishCounter hashStore publishHash Missing element

7 initializeStatus hashStore publishHash Insecure infor-

mation �ow #3

8 softwareContract hashStore Insecure infor-

mation �ow #3

A.6.4. IdentityManagement contract of the Palinodia use case

1. accCtrl in�uences identitiesArray in the changeRootOwner function:

The variable accCtrl is not part of the model but created during the generation, so

it does not lead to anything illegally.

⇒ Nothing

2. accCtrl in�uences identitiesMap in the changeRootOwner function:

The variable accCtrl is not part of the model but created during the generation, so

it does not lead to anything illegally.

⇒ Nothing

3. rootOwnerAddress in�uences identitiesArray in the resetIdentitySet function:

The variable rootOwnerAddress is modi�ed by the root owner who is, together with

the developer and the maintainer, allowed to in�uence the identitiesArray variable.

⇒Missing VariableToVariableRelation element

144

A.6. Analyzing the Tool Results during the Case Study

4. rootOwnerAddress in�uences identitiesMap through transitive closure:

Due to the structure of the contract, this case does not occur since the rootOwn-

erAddress is explicitly removed from the set of addresses that is added from the

identitiesArray and thus from the identitiesMap.

⇒ Nothing

5. identitiesArray in�uences identitiesMap in the addIdentity function:

The variable identitiesArray is modi�ed by the same roles as the identitiesArray

variable.

⇒Missing VariableToVariableRelation element

A.6.5. BinaryHashStorage contract of the Palinodia use case

1. accCtrl in�uences rootOwnerAddress in the changeRootOwner function:

The variable accCtrl is not part of the model but created during the generation, so

it does not lead to anything illegally.

⇒ Nothing

2. softwareContract in�uences initializeStatus in the setSoftwareContract func-

tion:

The variable softwareContract is modi�ed by the same roles as the initializeSta-

tus variable.

⇒Missing VariableToVariableRelation element

3. initializeStatus in�uences publishCounter in the publishHash function:

The variable initializeStatus is modi�ed by the developer, the maintainer and the

root owner whereas the publishCounter variable is modi�ed by the maintainer.
⇒ Communicate that the developer and the root owner could in�uence publish-

Counter illegally

4. softwareContract in�uences publishCounter through transitive closure:

This information �ow occurs in the implementation. The variable softwareContract

is modi�ed by the developer, the maintainer and the root owner whereas the publish-

Counter variable is modi�ed by the maintainer.
⇒ Communicate that the developer and the root owner could in�uence publish-

Counter illegally

5. hashStore in�uences publishCounter in the publishHash function:

The variable hashStore is modi�ed by the maintainer who is also allowed to in�uence

the publishCounter variable.

⇒Missing VariableToVariableRelation element

6. publishCounter in�uences hashStore in the publishHash function:

The variable publishCounter is modi�ed by the maintainer who is also allowed to

in�uence the hashStore variable.

⇒Missing VariableToVariableRelation element

145

A. Appendix

7. initializeStatus in�uences hashStore in the publishHash function:

The variable initializeStatus is modi�ed by the developer, the maintainer and the

root owner whereas the hashStore variable is modi�ed by the maintainer.
⇒ Communicate that the developer and the root owner could in�uence hashStore

illegally

8. softwareContract in�uences hashStore through transitive closure:

This information �ow occurs in the implementation. The variable softwareContract

is modi�ed by the developer, themaintainer and the root owner whereas the hashStore

variable is modi�ed by the maintainer.
⇒ Communicate that the developer and the root owner could in�uence hashStore

illegally

146

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	Model-Driven Software Development
	Eclipse Modeling Framework
	Modelling Constraints and Conditions
	Model Transformations and Source Code Generation

	Access Control
	Blockchain and Smart Contracts
	Solidity
	Language Features
	Formal Verification Tools

	Related Work
	Enforcing Access Control Using Formal Methods
	Modelling and Generating Smart Contracts
	Formal Verification of Smart Contracts
	Access Control Combined with Smart Contracts
	Access Control Based on Smart Contracts
	Access Control for Smart Contracts

	Running Example: Auction
	Defining Role-Based Access Control Policies for Solidity Smart Contracts
	Formal Specification of Role-Based Access Control Policies
	Modifying and Influencing Access to Variables
	Covering Solidity and Smart Contract Elements

	Description of Role-Based Access Control Policies on the Architectural Level
	Describing the AccessControlMetamodel
	Adding Explicit Constraints to the AccessControlMetamodel

	Specification of Role-Based Access Control Policies on the Source Code Level
	Identifying Insecure Information Flows in Smart Contracts
	Analyzing Slithers Capabilities for Identifying Information Flows
	Extending Slither to Cover Indirect Influences and Transitive Function Calls
	Slither's Public API
	Identifying Influences between State Variables
	Calculating the Transitive Closure
	Communicating Results Back to the Developer

	Generation of Formal Specifications to Enforce Role-Based Access Control Policies
	Mapping Metamodel Elements to Source Code Elements
	Generating Solidity Smart Contracts
	Structure of the Generator
	Verifying Constraints and Soundness Check
	Creating Solidity Smart Contracts
	Creating Elements Enforcing the Policies

	Outlining the Development Process Based on the Presented Approach
	Verifying and Analyzing the Tool Results
	Changes and Violations during the Implementation
	Analyzing solc-verify's Results
	Analyzing Slither's Results

	Communicating Results Back to the Stakeholders

	Evaluation
	Goal-Question-Metric Plan
	Reasoning About the Enforcement's Correctness
	Case Study
	Augur
	Fizzy
	Palinodia
	Preliminaries
	Introducing Violations to Augur and Fizzy
	Results

	Metamodel Coverage Analysis
	Discussing the Results
	Threats to Validity

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix
	Implementation of the Auction Use Case
	Complete Implementation of the Custom Slither Printer
	Slither Printer Results for the SingleAuction Contract
	Generated Access Control Contract for the Auction Use Case
	Results of the Soundness Check for the Malicious Models
	Analyzing the Tool Results during the Case Study
	Market contract of the Augur use case
	Insurance contract of the Fizzy use case
	Software contract of the Palinodia use case
	IdentityManagement contract of the Palinodia use case
	BinaryHashStorage contract of the Palinodia use case

