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Abstract
Aim: The spectral variability hypothesis (SVH) suggests a link between spectral varia-
tion and plant biodiversity. The underlying assumptions are that higher spectral vari-
ation in canopy reflectance (depending on scale) is caused by either (1) variation in 
habitats or linked vegetation types or plant communities with their specific optical 
community traits or (2) variation in the species themselves and their specific optical 
traits.
Methods: The SVH was examined in several empirical remote-sensing case studies, 
which often report some correlation between spectral variation and biodiversity-
related variables (mostly plant species counts); however, the strength of the observed 
correlations varies between studies. In contrast, studies focussing on understanding 
the causal relationship between (plant) species counts and spectral variation remain 
scarce. Here, we discuss these causal relationships and support our perspectives 
through simulations and experimental data.
Results: We reveal that in many situations the spectral variation caused by species 
or functional traits is subtle in comparison to other factors such as seasonality and 
physiological status. Moreover, the degree of contrast in reflectance has little to do 
with the number but rather with the identity of the species or communities involved. 
Hence, spectral variability should not be expressed based on contrast but rather 
based on metrics expressing manifoldness. While we describe cases where a certain 
link between spectral variation and plant species diversity can be expected, we be-
lieve that as a scientific hypothesis (which suggests a general validity of this assumed 
relationship) the SVH is flawed and requires refinement.
Conclusions: To this end we call for more research examining the drivers of spectral 
variation in vegetation canopies and their link to plant species diversity and biodiver-
sity in general. Such research will allow critically assessing under which conditions 
spectral variation is a useful indicator for biodiversity monitoring and how it could be 
integrated into monitoring networks.
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1  |  INTRODUC TION

Biodiversity conservation has become a matter of international con-
cern over the last decades. One challenge in the current efforts to 
conserve the remaining biodiversity is the development of a global 
biodiversity monitoring and early-warning system. This challenge 
is being addressed by the activities of, among others, the Group 
on Earth Observation's Biodiversity Observation Network (GEO 
BON) (Scholes et al., 2008; Walters & Scholes, 2017). A central task 
of GEO BON is to develop a set of essential biodiversity variables 
(EBV) that includes variables describing community composition, 
ecosystem structure, ecosystem function, genetic composition, spe-
cies populations and species traits (Pereira et al., 2013). Given the 
global scale of the task, remote sensing (RS) is expected to make an 
important contribution to monitor some of these EBVs, particularly 
those describing species traits and ecosystem structure (Skidmore 
et al., 2015, 2021).

Besides this globally concerted effort to develop metrics and 
variables suitable for a global monitoring system, RS has also been 
invoked to describe and monitor local biodiversity patterns ex-
pressed for example by the number of plant species per unit area, 
also called (plant) species density or species count (Schmidtlein & 
Fassnacht, 2017). However, studies attempting to establish relation-
ships between RS data and species counts are always of a correla-
tive nature because it is not the taxonomic assignment but rather 
the traits of the species that affect the RS signal. Additionally, since 
RS of terrestrial biodiversity is mostly able to capture information 
about plant traits, most of the studies are uniquely addressing floris-
tic diversity. This is a shortcoming because plant species diversity is 
not always a good proxy for the diversity of other taxonomic groups 
(Ritter et al., 2019).

Despite this, recent years have witnessed the emergence of sev-
eral approaches to assess plant biodiversity via RS. In their review, 
Wang and Gamon (2019) differentiate between four approaches: 
(1) habitat mapping; (2) direct species mapping; (3) mapping func-
tional diversity via functional plant traits; and (4) spectral diversity-
based approaches. Here, we focus on the spectral diversity-based 
approaches and discuss conceptual and technical challenges related 
to the underlying spectral variability hypothesis (SVH) (Palmer et al., 
2002). However, to provide some context, we briefly introduce the 
other approaches as well. 

1.	 Habitat mapping —  Inferring species counts from the mapping 
of habitats or linked vegetation types is a straightforward ap-
proach. It assumes that each type can be directly related to 
a number of species (e.g., Braun & Koch, 2016). For example, 
the approximate plant species numbers of particularly species-
rich or species-poor forest or grassland types are often well 
known from field surveys. By mapping these types using RS 
(which essentially is the same task as creating a land-cover 
map with a quite detailed thematic differentiation) and option-
ally also considering spatial context (size of habitat patches, 
and composition of habitats), reasonable estimates of plant 

species numbers can be obtained. To obtain reliable results, 
profound knowledge of the plant species richness of the sam-
pled habitats and their precise classification is required. The 
most important drawback is that this approach is based on 
categorical types. Hence gradients of species richness within 
a habitat or vegetation type are difficult to capture. Further, 
subtle degradations may be missed because only a categorical 
shift from one type to another would result in a change of 
the estimated species numbers (see also Schmidtlein & Sassin, 
2004 and Feilhauer et al., 2020).

2.	 Direct species mapping — The feasibility to map individual plant 
species (particularly the classification of larger trees and shrubs or 
mono-specific stands) from RS data has been proven (e.g., review 
by Fassnacht et al., 2016). Particularly high spectral and spatial 
resolution data (e.g., airborne hyperspectral data or data from un-
manned aerial systems) were found to accomplish this task with 
good accuracy (e.g., Modzelewska et al., 2021; Müllerová et al., 
2017). However, the direct mapping of species over wider areas is 
typically limited by the trade-off between spatial resolution and 
coverage in most RS systems. Furthermore, the number of spe-
cies that can be identified within a given data set may also be lim-
ited due to the lack of clear species-specific spectral signatures, 
or other characteristics (shape, texture) enabling distinguishing 
the species from their surroundings. Currently, most existing RS 
data sets seem to be unable to reliably separate more than 10–
15 dominating species based on their optical traits as mirrored in 
the amount of target species typically considered (see Figure 3 
in Fassnacht et al., 2016). However, given the fast development 
of methodical advances in the field of deep learning, these num-
bers may increase in the future, particularly if very high spatial 
resolution and/or time-series data are available (e.g., review by 
Kattenborn et al., 2021).

3.	 Mapping functional diversity  —  One approach to bypass cur-
rent limitations of discriminating large numbers of plant spe-
cies from RS data is to focus on plant functional types instead 
of individual species. This also takes into account the fact that 
the occurrence of such types can be of more direct relevance 
to ecosystem function. It is known that certain biochemical 
and structural plant traits have a clear effect on the reflected 
electromagnetic radiation (e.g., Jacquemoud et al., 2009; 
Kattenborn et al., 2019; Ollinger, 2010). Hence, the range and 
variation of these traits can be captured and mapped by RS data. 
Because areas with higher trait diversity tend to harbour more 
species (Biswas & Mallik, 2011), it is assumed that it is possible 
to indirectly quantify species counts based on the functional di-
versity patterns obtained by RS. The suitability of this approach 
has been demonstrated in a few case studies (e.g., Schweiger 
et al., 2018) but the verification across ecosystems is still miss-
ing. Furthermore, the mapping of trait diversity has a value in 
itself (and many applications) as functional traits are not only 
related to biodiversity but also to ecosystem functions and ser-
vices, which ultimately constitute a conservation priority (Díaz 
& Cabido, 2001).
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4.	 Spectral diversity-based approaches  —  Finally, the spectral 
variability hypothesis (SVH) suggests a more generic relation-
ship between biodiversity and remotely sensed spectral infor-
mation which can be used to estimate species counts or other 
biodiversity-related metrics from RS data. The SVH as originally 
suggested by Palmer et al. (2000, 2002) states that the biodiver-
sity of a given area is positively related to the spectral variation 
of the same area captured by an RS image. The underlying as-
sumption is that a higher spectral variation can be interpreted 
as a higher variation in (number of) habitats or linked vegetation 
types and hence a larger number of species (referred to as ‘origi-
nal SVH’ hereafter). In the case of very fine spatial resolution, an 
increased spectral variation may also directly relate to a higher 
number of species with a higher diversity in the corresponding 
species-specific optical traits (hereafter, ‘species SVH’). Both are 
closely related and sometimes difficult to untangle because opti-
cal community traits, which allow for differentiating habitats or 
vegetation types, can be traced back to optical species traits. It 
is hence rather a matter of scale which of both drives variation 
across pixels in a place. The intriguing simplicity of the SVH hy-
pothesis may, however, suggest at first glance that this relation-
ship can hold true across ecosystems and scales.

The SVH has been extensively tested in case studies sum-
marized for example in Rocchini et al. (2010), Schmidtlein and 
Fassnacht (2017) and Wang and Gammon (2019). The strength of 
the observed correlations between spectral variation and plant 
species counts (the most frequently applied biodiversity metric) 
varied strongly in these studies which raises doubts about the gen-
eral validity of the SVH. Schmidtlein and Fassnacht (2017) pointed 
out several situations where the original SVH did not hold true 
and even found areas with the opposite relation, that is, increased 
plant species counts with lower spectral variation. These inverse 
relationships between spectral variation and plant species counts 
could be explained by the landscape composition of the region, 
proving that the original SVH does not hold true across all spa-
tial scales and ecosystems. In this regard, earlier studies mention 
several more factors that potentially complicate the relationship 
between spectral variation and plant species counts, including for 
example seasonality, spatial resolution and the applied metrics to 
describe spectral variation (Rocchini et al., 2010, 2018; Schmidtlein 
& Fassnacht, 2017). Despite the controversy on the validity or ap-
plicability of the SVH, it still constitutes an intriguing idea, particu-
larly due to its generic approach which in theory does not require 
a priori knowledge on the examined area. And even if it is clear by 
now that the SVH will not hold across all scales and ecosystems, it 
might still work well in selected environments and under certain 
pre-conditions (Schmidtlein & Fassnacht, 2017).

The aim of this study is to conceptually discuss and question 
causal relationships between spectral variation and species diversity 
(mainly plant species counts) considering the most important factors 
influencing spectral variation and hence this relationship. These fac-
tors include: (1) considered scale; (2) effects of reflectance changes 

over time; (3) effects of the method chosen to quantify spectral di-
versity; and (4) the weak link between habitat or ecosystem numbers 
and species counts. We support our perspectives by presenting ex-
amples including some data simulations and experimental data. With 
this, we seek to clearly point out the limitations of the SVH but at the 
same time also carve out the conditions under which spectral varia-
tion can make meaningful contributions to the RS-based monitoring 
of biodiversity.

The paper is structured as follows: we will first discuss scale-, 
phenology- and habitat-identity-related factors influencing the rela-
tionship between spectral diversity and plant species counts. Then 
we will briefly address some technical aspects related to the calcula-
tion of spectral-variation metrics and finally discuss and summarize 
our findings in a wider context.

2  |  SC ALE EFFEC TS

With ‘scale effects’ we here refer to effects related to spatial extent 
(size of the study area) and spatial grain (pixel size, ground sampling 
distance or spatial resolution) of the spectral (RS) and biodiversity 
data. In ecology, the species–area relationship is one of the best-
established concepts that describes the observation that the larger 
the extent of a given area is, the more species you can find in it 
(Rosenzweig, 1995). The exact relationship between species counts 
and area will depend on the characteristics of the ecosystem under 
analysis, its history and its surroundings. However, this relationship 
is always positive if the different-sized areas are nested. We can as-
sume that the coarser the spatial grain of a given RS data set is at a 
given location, the more species are likely to occur within an indi-
vidual pixel.

In contrast, we can assume that the coarser the spatial grain of 
the RS data is, the smaller is the overall spectral variation across 
all pixels of a given area. This is related to the general rule that 
aggregating fine-grain data will reduce extreme values (smoothing 
effect). In other words, RS data with fine spatial grain are more 
likely to differentiate among the spectral response of individual 
species, and capture land-cover types or individual objects with 
extreme spectral behaviour (e.g., at the landscape scale, a narrow 
bright dust road surrounded by dark forest; or a small dark pond 
in a bright savannah; and at fine scales, a bright white flower in 
front of darker green leaves). The coarser the pixels become, the 
more averaged out (i.e., smoothed) the reflectance values will be 
(Figure 1). Hence, for a given area, it can be assumed that any 
spectral-variation metric for a given area will decrease with pixel 
size (Figure 2). Furthermore, the coarser the grain of the RS data is, 
the fewer pixels are available for a given plot size to calculate the 
spectral-variation metric.

Based on these simple and known effects of scale on species 
counts and spectral-variation metrics, it can be deduced that if a re-
lationship between spectral variation and species counts exists in a 
given region, the form of this relationship cannot be stable across 
scales, as seen also in the experimental work by Wang et al. (2018).
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A further important aspect related to the topic of scale refers to 
the visibility of plant individuals or stands, which are relevant to the 
species SVH. At fine grains, some individual species may be clearly 

identifiable in the RS data. However, rare species or species with 
small individuals might not show or be missed even at fine spatial 
grains. To provide a chance of capturing the contributions of the 

F I G U R E  1 Scale effects on the distribution of spectral values. Depicted are histograms of digital number values of the blue band of an 
RGB-UAS (red–green–blue unmanned aerial system) image at different spatial grains (3-, 48- and 384-cm pixels). The UAS image shows 
a landscape with a mix of native shrubs, secondary natural forests, and plantation species in south-central Chile in the region of Maule 
(for exact location see Figure 2). The coarser the spatial resolution of the image, the less extreme the observed values are and the more 
intermediate values occur

F I G U R E  2 The right panel shows the development of spectral variation with changing pixel size (3 to 384 cm) for eight plots sized 630 m2 
within the area described briefly in Figure 1. The location of the plots is shown in the left panel. The spectral-variation measure for any plot 
is calculated based on the mean Euclidean distance of all pixels in the plot using the pixel values of the first two components of a Principal 
Components Analysis applied to the three bands of the red–green–blue imagery collected with the unmanned aerial system. The number of 
pixels used to calculate the spectral-variation measure decreases with increasing pixel size
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visible species in the framework of the species SVH, the spatial grain 
of the RS data should be adapted to the size of individuals or species 
stands occurring in a given ecosystem. For example, grasslands may 

require a notably finer spatial grain than forests to capture import-
ant patterns in spectral variation (see also section 3 Phenology and 
other temporal effects).

F I G U R E  3 Degree of contrast-based spectral variation of simulated grassland plots. One hundred hyperspectral images were simulated, 
each at four spatial grains: from left to right, the original 100 × 100 pixels composed of spectra from 4, 8, 12, 16 and 20 species (a), then 
aggregated to 50 × 50 pixels (b), 25 × 25 pixels (c), and 10 × 10 pixels (d). Images were created by randomly filling up a 100 × 100 pixel array 
with spectra from 4–20 species. In total 21 species were available. Spectral variation was calculated in the same way as for Figure 2 (see 
Appendix S1 for more details). Indicated correlations are Spearman correlations between spectral variation and species counts

F I G U R E  4 Manifoldness-based spectral variation of simulated grassland plots. One hundred hyperspectral images were simulated 
each at four spatial grains: from left to right, the original 100 × 100 pixels (a), then aggregated to 50 × 50 pixels (b), 25 × 25 pixels (c), and 
10 × 10 pixels (d) and composed of spectra from 4, 8, 12, 16 and 20 species (100 images for each number of species). Images were created 
by randomly filling up a 100 × 100 pixel array with spectra from 4–20 species. In total 21 species were available. Spectral variation was 
calculated by first applying a K-means clustering with 100 clusters to a mosaic including all synthetic images (of a given grain); then the 
number of unique classes assigned by the unsupervised K-means classification was determined for each individual image
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It follows that the choice of spatial scale for capturing spe-
cies richness has severe consequences for SVH-based counts. 
Considering that even within the same vegetation type, the size of 
stands and individuals differs between species, it becomes clear that 
a single ‘correct’ or ‘ideal’ spatial scale for capturing species richness 
using RS does not exist. Further pitfalls are to be expected when 
several ecosystems are considered simultaneously.

Another example of how spatial grain influences the relationship 
between spectral variation and species counts is given in Figures 3 
and 4. Here, the spectral variation of synthetic hyperspectral im-
ages of grasslands expressed with two different types of spectral-
variation metrics is depicted in relation to the number of species and 
the spatial grain of the images. Each of the synthetic hyperspectral 
images was created by randomly filling up an array of 100  ×  100 
pixels in the x and y dimensions with species-specific spectral sig-
natures. In total, we used 21  spectral signatures corresponding 
to 21 herb and grass species of Central Europe, thus reducing the 
real-world complexity by neglecting infra-specific variation. We cre-
ated 100 of these images for each number of species tested (4, 8, 
12, 16, 20, 21), with one species per pixel. Then we calculated two 
spectral-variation metrics for the original images with 100 ×  100 
pixels (Figures 3a,4a) as well as for the same images after they were 
spatially aggregated to 50 × 50 pixels, 25 × 25 pixels, and 10 × 10 
pixels (Figures 3b–d,4b-d). The spatial aggregation was conducted 
with a simple calculation of means using the ‘aggregate’-function of 
the raster package (Hijmans & van Etten, 2012) in R (R Core Team, 
2013) (see Appendix S1 for more details). The first spectral-variation 
metric (SV_continuous) was calculated based on the mean Euclidean 
distance of all pixels in the plot using the pixel values of the first 
two components of Principal Components Analyses applied to the 
85 bands of the synthetic hyperspectral images and calculated for 
a mosaic of the 500 synthetic images of a given aggregation level 
(see Supplementary material for more details). This metric captures 
the degree of contrast of the pixels. Following the species SVH, the 
higher the mean Euclidean distance is, the more species should be 
present. The second spectral-variation metric (SV_categorical) was 
derived from an unsupervised K-means clustering with 100 clusters 
applied to a mosaic of all synthetic images of a given spatial grain. We 
selected more clusters than species in order to allow for more clus-
ters forming after aggregating pixels with the corresponding increase 
in reflectance types. In the original image, where each of the species 
corresponds to a single spectrum, the clustering stops after having 
derived the number of classes that fits the number of species. After 
the clustering, the number of unique classes to which the pixels of an 
individual synthetic image within the mosaic were assigned during 
the unsupervised K-means classification was determined. This met-
ric captures the manifoldness of the pixels in the image. Following 
the species SVH, it is assumed that the more unique classes exist 
in the image, the more species are present. These simulations serve 
to make three important points: (i) in the results for the original im-
ages and SV_continuous metric, we can see that the median spectral 
variation increases from 4 to 20 species. However, at the same time, 
numerous (approximately 25%) of the simulated images (even those 

composed of only four species) have higher spectral variation than 
the highest spectral variation observed for 20 species (Figure 3a). 
The number of K-means clusters in the SV_categorical metric neces-
sarily matches the species numbers perfectly for the original images 
since no intraspecific spectral variation was considered (Figure 4a). 
(ii) Both metrics (expectedly) decrease with increasing level of aggre-
gation of the pixels (coarser spatial grain). (iii) Differences in median 
spectral variation between images with differing numbers of species 
decreases with increasing level of aggregation (Figures 3a–d, 4b–d).

This example is highly simplified by assuming an approximately 
equal cover and a random distribution of each species in each image 
and by assuming that each species individual has exactly the same 
spectral signature. Nevertheless, the example illustrates a key weak-
ness of spectral-variation metrics capturing the degree of contrast 
in the visible to shortwave–infrared region (SV_continuous): even if 
only four species are present, the spectral variation can be very high 
(higher than the variation of 20 species) in case the amplitudes of the 
reflectance values of these four species differ a lot.

This problem is closely related to the fact that healthy plant spe-
cies’ spectral signatures all follow a similar typical reflectance curve 
and hence the overall spectral variation is limited from the start. If 
even under such simplified and ‘close-to-perfect’ conditions, the link 
between spectral variation and plant species counts (within a single 
ecosystem type) is weak (Spearman correlation of 0.35 in the origi-
nal data with 100 × 100 pixels for SV_continuous), it is very unlikely 
that it will improve under natural conditions with notably increased 
complexity in species' vertical and horizontal arrangements. On the 
other hand, the spectral-variation metric based on K-means clus-
tering (SV_categorical) which imitates the spectral-species concept 
(e.g., Féret & Asner, 2014) will in theory result in a perfect relation 
between the number of species and the number of clusters if there 
is just one species per pixel and species feature a unique spectral sig-
nature. Although these preconditions are unrealistic, the experiment 
still prooves that the species SVH concept may have its applications 
if metrics capturing the manifoldness of the pixels in the image are 
applied.

3  |  PHENOLOGY AND OTHER TEMPOR AL 
EFFEC TS

The majority of Earth's ecosystems is influenced by daily, seasonal 
and stochastic dynamics in terms of environmental conditions. 
Physiological processes such as photosynthetic activity are strongly 
coupled with these dynamics, and in turn vegetated surfaces also 
show daily, seasonal or random variation in the related optical traits 
that shape the electromagnetic signal captured by RS sensors. 
Species may have more unique spectral signatures at one time but 
less pronounced differences at another time, meaning that the spe-
cies SVH will lead to varying results over time. Corresponding pro-
cesses may affect the original SVH as well. For example, meadow 
types may be well distinguishable before mowing but loose this 
separability afterwards.
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3.1  |  Daily variation

Simple examples of daily variation are changes in leaf orientation 
to reduce or increase the amount of captured incoming radiation 
and to thereby regulate evapotranspiration (Chávez et al., 2014). 
Regular daily variation may be considered less problematic for most 
polar-orbiting satellite systems with fixed fly-over times. However, 
there might be related changes in spectral variation in airborne data 
and in longer time series in the case of orbit shifts of polar-orbiting 
satellites. For example, vegetation in (semi-)arid regions may adapt 
its leaf orientation in rather short time periods (Chávez et al., 2014) 
and a shift in overflight time of one hour as for example reported 
for Landsat 5 (Zhang & Roy, 2016) may result in notably different 
spectral signatures and hence spectral variation even though no true 
change in plant species counts has occurred.

3.2  |  Seasonal variation

Seasonal variation is quite well predictable but still poses problems 
with respect to the SVH because it may be responsible for a nota-
ble share of the overall spectral variation at a given location, even if 
focussing only on the main vegetation period. Furthermore, in many 

types of ecosystems, e.g., dryland, grassland and savanna ecosys-
tems as well as in forests' understorey layers, the development of 
annual herbs and grasses and short-lived species, as well as flower-
ing events and leaf phenology are important. They can lead to a high 
degree of variation in important optical traits such as leaf area index 
(LAI), leaf-angle distribution and pigments (colours) (e.g., Landmann 
et al., 2015; Qi et al., 2014; Spanner et al., 1990). The large influence 
of flowering events on the spectral signal has been discussed for 
example in Schiefer et al. (2021).

Figure 5  shows an example of the seasonal variation in spec-
tral signatures of a few common grass and herb species of Central 
Europe. The spectra were collected during an outdoor cultivation 
experiment (see Appendix S1). We can see that some of the grass-
land species strongly differ in their spectral behaviour depending on 
the phenological state in which their spectral signature is captured.

If we relate this phenological behaviour of herbs and grasses 
to the species SVH, it becomes clear that all typically used contin-
uous spectral-variation measures would be notably influenced by 
this phenomenon (corresponding effects on the original SVH can 
also be assumed). In Figure 5 we can also see that the similarity 
of the spectra of the six species varies a lot over the year. While 
at the beginning of the vegetation season (31 May) the six spe-
cies have widely varying optical traits and corresponding diverse 

F I G U R E  5 Field-collected spectra of six species plotted for different timepoints in the year. Water absorption bands at 1400–
1500 nm and 1800–2000 nm were excluded. Different colours represent the different species in this case (red = Calamagrostis epigejos; 
orange = Geum urbanum; blue = Nardus stricta; green = Agrostis capillaris; violet = Aegopodium podagraria; yellow = Festuca ovina). For 
explanations of the methodology to create the spectral curves, see Appendix S1
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spectra, they have a very comparable spectral behaviour at the 
peak of the vegetation period (7 July). Assuming an equal fractional 
cover of the six species for which a continuous spectral-variation 
(SV_continuous) measure would be derived, the variation measure 
will change dramatically while the plant species number remains 
the same. Other spectral-variation metrics based on unsupervised 
clustering (SV_categorical) may be less influenced, but flowering 
and co-occurrence of the same species in different phenological 
stages (e.g., in areas with strong environmental gradients) might 
also affect the captured manifoldness (as for example represented 
by the number of classes identified by an unsupervised clustering 
algorithm in a given area).

Another example for SV_continuous is given in Figure 6. Here it 
can again be seen that the spectral variation hardly serves as indi-
cator for differing numbers of species. More importantly, it is also 
apparent that depending on which species were selected in one of 
the fixed amounts of species examined, the spectral variation can 
drastically vary over the course of a year. While this is a simplified 
example, it can still be assumed that the corresponding effects will 
be visible in real data sets and might be even more complex due to 
higher intermixture of species canopies. In addition, it should be con-
sidered that phenology is only one driver of intraspecific variation in 
optical traits and hence spectral variation. The health status, growth 
form due to adaptations to the abiotic and biotic environment and 
stress events are examples for additional intraspecific variation in 
optical traits that are likely to occur, particularly when focussing on 
larger spatial extents.

3.3  |  Unpredictable variation

Apart from phenological and daily sources of variation some im-
pacts are more difficult to predict. Such impacts embrace temporary 
stresses and disturbances including for example droughts in forests 
(e.g., Asner & Alencar, 2010), mowing of grassland or laying down of 
plants after rainfall and wind (Feilhauer & Schmidtlein, 2011). Such 
non-regular variation caused by disturbance or sudden weather 
conditions is difficult to take into account. An extreme temporal ex-
ample occurs in arid and semi-arid ecosystems where most of the 
species are hidden for most of the time, becoming visible only after 
rare and irregular rainfall events. Similar dynamics may also exist in 
wetlands where the occurrence of vegetation as well as the optical 
signal observed by RS data may fluctuate seasonally with the water 
table which in turn may relate to varying precipitation patterns. 
Similarly, precipitation-induced rapid vegetation developments can 
also be observed in other ecosystems and might be hard to describe 
with spectral-variation measures, particularly if RS data acquisitions 
are available at a limited temporal resolution.

In summary, seasonal and other temporal differences in optical 
traits can make up for a notable portion of the overall spectral vari-
ation in certain ecosystems and hence have a direct effect on both 
the original and the species SVH. A relationship between spectral 
variation and plant species counts (or an alternative biodiversity 

metric) found in one part of the year may not exist in another (see 
also Schmidtlein & Fassnacht, 2017). Hence, establishing a stable link 
between spectral variation and biodiversity (at least in terms of plant 
species counts) seems highly challenging in ecosystems with a pro-
nounced temporal dynamic. To use spectral variation as a proxy vari-
able for biodiversity, identifying suitable time windows or including 
the temporal dimension into the applied spectral-variation measure 
may hence be important prerequisites. Studies based on repeated 
RS measurements throughout the season coupled with repeated 
in-situ sampling of vegetation could help to better understand the 
influence of phenological changes and other temporal effects. From 
RS data alone, it is difficult to disentangle the seasonal variation of 
optical traits of the same species from the seasonal exchange in dif-
ferent species' presence or detectability, and from other unpredict-
able variation introduced by abiotic and biotic drivers.

4  |  HABITAT T YPE MAT TERS AT LE A ST A S 
MUCH A S HABITAT NUMBERS

An example for why habitat type (or vegetation type) matters at 
least as much as habitat numbers are Central European calcareous 
grasslands. These are very species-rich habitats, but at the spatial 
resolution of common satellite sensors their spectral variation is low. 
The area marked in green in Figure 7 shows such a calcareous grass-
land, the Garchinger Heide, near Munich. This area of 27 ha contains 
more than 240 species (Bayerisches Landesamt für Umwelt, 2020). 
However, when visually and numerically (Table 1) comparing the 
spectral variation within this area (polygon 1 in Figure 7) with the 
spectral variation of areas of the same size in the surrounding in-
tensively used agricultural landscape (polygons 2–7 in Figure 7), it is 
obvious that, at the spatial resolution of a Sentinel-2 satellite image, 
most of the other areas have (in some cases notably) higher spectral 
variation, despite having a far lower number of species.

The example of the Garchinger Heide relates to the issue of (rare) 
species-rich habitats that has been already discussed in one of the 
earliest works on the SVH (Palmer et al., 2002). In the example of 
the Garchinger Heide, a small habitat with a comparably homoge-
neous spectral signature contains a high number of plant species. 
Including or excluding this habitat type from a given area will have a 
tremendous effect on the plant species count but hardly any effect 
on the spectral variation. This is a major flaw of the original SVH and 
strong assumptions have to be made to still enable a general validity 
of the concept: it is valid to assume that if an additional habitat is 
added to a given area, the spectral variation of the area will increase, 
along with the species count (at least it will not diminish). However, 
comparing for example two areas A and B in which A has two and B 
has three habitats, B will only have more species than A in the case 
that B includes all the habitats that are also occurring in A. If this is 
not the case, it is easily possible that area A has two species-rich 
habitats and area B has three species-poor habitats and hence, area 
A could harbour more species than area B while B might still have 
a higher spectral variation. This problem persists independently 
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from the applied type of spectral-variation metric (SV_continuous 
or SV_categorical).

Following the species SVH, spectral variation would be used to 
characterize biodiversity patterns only within a single patch (habitat) 
such as the Garchinger Heide; however, what might be problematic 
is that there is patchy structure within that area as well. Hence, it 
would quickly become hard to decide at which scale a between-site 
approach finishes and at which scale a within-site approach starts. 
Nevertheless, we can assume that the more we zoom into patches, 
the more relevance gains the ‘species SVH’. The predictive power of 
the latter has been discussed above and is summarized in Figures 3 
and 4.

A further related problem is that habitats that may appear spec-
trally very similar in the RS data due to shared canopy-dominating 
species, may still differ widely in species counts. A related example 
from Central Europe is the various European beech (Fagus sylvatica)-
dominated forest communities which range from species-poor 
(Luzulo-Fagetum beech forests) to species-rich (Cephalanthero-
Fagetum beech forests) forests. The biodiversity of those habitats is 
dominated by the herb layer which is hardly visible below the dense 
canopies of the beech forests and hence cannot be captured by RS.

5  |  SPECTRAL-VARIATION METRICS

5.1  |  Technical considerations

5.1.1  |  Choice of the spectrum/spectral regions — 
radiometric resolution

Spectral-variation (SV_continuous) metrics calculated based on 
the variation of the reflectance values of the wavebands in the 
RS image are affected by the spectral coverage of the bands as 
well as the radiometric resolution of the bands and sun-sensor 
geometry (Schaepman-Strub et al., 2006). While differences in ra-
diometric resolution of different sensors can be accounted for by 
using standardized data or physical units (e.g., surface reflectance 
values), differing numbers and widths of wavebands are harder 
to address. Hence, the same metric calculated for different satel-
lite sensors may have notably different meanings and capture dif-
ferent processes leading to the observed spectral variation. This 
might be a problem with respect to the SVH, especially if data 
from different sensors are compared and SV_continuous metrics 
are used.

F I G U R E  6 Changes of degree of contrast-based spectral variation during the vegetation period (SV_continuous). In the panels, each 
colour indicates one random composition of species and the line indicates how the spectral-variation value for this composition changes 
over time. The ‘pixels’ of each species of the synthetic images were filled with the corresponding field-measured spectra from the 
corresponding time step. For better visual interpretation we only plotted 8 of the 100 random compositions of 4, 8, 12 and 16 species 
summarized in Figure 3. Since not for all species spectra were measured at each timepoint, we only plot spectral-variation values of time 
points where spectra were available for each of the respective species. As can be seen, the higher the number of species is, the less likely it 
is, that spectra were measured for all species. This is why for 12 and 16 species only spectral-variation values for the first three time steps 
were available
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5.1.2  |  High contrast land surfaces will increase 
spectral variation

Areas with particularly high or low reflectance values in some wave-
bands (e.g., bare-soil areas, rocks, sealed surfaces etc.) will have a 
notable influence on any spectral-variation measure capturing the 
degree of spectral contrast (SV_continuous). So far, no clear indica-
tions were made how this should be considered in the framework of 
the SVH. An obvious solution could be to exclude all non-vegetated 
areas by applying a vegetation mask before calculating the spectral-
variation metrics. While this is feasible for very fine-grain RS data, it 
might already become challenging for intermediate spatial resolution 

data sets including Sentinel-2 and Landsat which typically contain 
a large number of mixed pixels. Furthermore, scarcely vegetated 
patches can also contribute to species numbers. For example, in 
harsh environments such as coastal dune ecosystems, many focal 
species are small and occur in a very fine mosaic pattern of bare 
sand and vegetation (e.g., Ewald et al., 2020). Such areas may face 
the risk of being masked even though making a notable contribution 
to the species numbers. This problem may be less prominent for SV_
categorical metrics but depending on the number of non-vegetated 
surface types present in an area, it might still cause some additional 
unwanted variability.

5.2  |  Discrete vs continuous data

The above discussions have demonstrated advantages of SV_cate-
gorical over SV_continuous metrics. The continuous approach is the 
one proposed originally by Palmer et al. (2000) who emphasize con-
tinuity in the spatial analysis as a major advantage of the SVH. The 
SV_categorical approach is closely related to the spectral-species ap-
proach originally suggested by Féret and Asner (2014), where class 
numbers (typically obtained by a spectral clustering approach) are 
considered proxies of species numbers (thus relating to the ‘species 
SVH’). Recently, this approach has been scaled up to wider spatial 
extents and to a higher level of biological organization (e.g., vegeta-
tion types or habitats) (Rocchini et al., 2021). The approach has some 
obvious advantages: (1) consistency over time may increase as even 
if the optical traits of plant species change over the year, the land-
cover patches or landscape elements may be more persistent (e.g., a 
broad-leaved forest stand may look very different in a satellite scene 
acquired in summer and winter but may be detectable as a spectrally 
homogeneous spatial unit/patch in both scenes); (2) spectrally ex-
treme pixels or land-cover types will not have unproportionally large 
influence on the spectral-variation metric but will rather represent 
individual discrete classes amongst a plethora of other classes; and 
(3) the approach is essentially summarizing the continuous spectral 
values into spatial objects that represent landscape elements or in-
dividual species and hence mirror the core assumption of the origi-
nal SVH or species SVH better. Schmidtlein and Fassnacht (2017) 
reported persistently higher correlations between species counts 
and an SV_categorical metric compared to an SV_continuous met-
ric based on Euclidean distances calculated in the spectral feature 
space of several MODIS bands, but the approach could still not re-
move the problems of individual habitats with very high (or very low) 
species numbers discussed in section 4 Habitat type matters at least 
as much as habitat numbers.

6  |  FINAL REMARKS

Most of the issues related to the SVH as described in this study pose 
challenges not only to the SVH but also to other commonly applied 
RS-based biodiversity assessments outlined in section 1 Introduction. 

F I G U R E  7 The ‘Gachinger Heide’ near Munich, Germany 
(marked in green with id = 1), a species-rich calcareous grassland 
embedded in a landscape of intensive agriculture. The spectral 
diversity of this grassland is compared to other landscape elements 
of the same size (marked in white with id = 2–7). Area #1 contains 
many more species than the other areas although only one habitat 
type is included in this patch. Its spectral variation is accordingly 
low (Table 1)

TA B L E  1 Overview of spectral diversity values calculated with 
a spectral variation (SV_continuous) metric for landscape patches 
shown in Figure 7

Landscape element id (Figure 7)
Spectral 
variationa

1 – Species-rich calcareous grassland 319

2 – Urban area 2041

3 – Agricultural/urban interface 1544

4 – Forest 595

5 – Agriculture 1778

6 – Agriculture (bare) 1022

7 – Agriculture/forest/road/water 1557

aMean Euclidean distance of all Sentinel-2 pixels within the polygons 
calculated from the first two Principal Components Analysis (PCA) 
components of the Sentinel-2 raster stack. PCA components were 
calculated based on digital numbers of the L1C product of Sentinel-2 
(nominal value range between 0 and 10000).
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A commonly claimed advantage of RS-based biodiversity monitoring 
is that repeated and standardized measurements are possible with 
comparably little effort which enables capturing temporal changes. 
This is an important requirement for any monitoring. As discussed 
in this study, establishing a direct and universally valid link between 
the RS signal and biodiversity information collected in the field is 
extremely challenging due to the nature of optical RS which does not 
allow to address the different biodiversity facets equally. Instead of 
focussing on taxonomic or phylogenetic differences (as typically fo-
cused on in field surveys), RS and particularly the spectral-variation 
approach relies on optical traits that are driven by functional and 
morphological differences between the species (such as the archi-
tecture of leaves and branches, size, width and colour of the leaves, 
size and colour of inflorescences, etc.). In case a species shows high 
and spatially differentiated variation in morphology during the life 
cycle or due to plasticity or disease or pests or disturbance (Feilhauer 
& Schmidtlein, 2011), it can falsely increase or lower the spectral 
variation and hence the species number predictions.

One question that could be raised, however, is whether search-
ing for this generalized direct link between biodiversity and RS data 
is useful in the first place. Most RS-based approaches attempt to 
identify the link between biodiversity and RS signal in the spatial 
rather than temporal dimension. This is in direct contradiction to the 
proclaimed most important property of RS data, that is, the option 
for repeated acquisitions and monitoring over time. Most ecologists 
and biodiversity experts agree that detailed biodiversity surveys on 
the ground are the most reliable way to correctly assess biodiversity 
of a given region. One could assume that once the current biodiver-
sity of a given area is inventoried and well understood (and the best 
way to do so is going to the field), the main task would be to monitor 
whether the biodiversity at this location is changing or remaining 
constant within a certain level of expected natural fluctuations. RS 
might be a suitable technology for addressing such task, with spec-
tral variation being a key variable.

Adapting to this scenario, the central task of RS would lay in the 
change detection aspect, that is, in the identification of changes in 
the spectral and structural properties of the ecosystem rather than 
describing or mapping the ecosystem/biodiversity state. This type 
of RS-based monitoring is theoretically possible without support of 
any field data by simply comparing the current (spectral/structural) 
state of an area against an expected state derived from earlier ob-
servations. It is important that this comparison must occur on multi-
ple spatial and temporal scales to account for the natural dynamics 
of a given ecosystem (which may widely differ, for example a fire 
may not have a notable effect on biodiversity in a savanna but may 
make a huge difference in a temperate ecosystem, natural succes-
sion cycles may be fast in one area and very slow in another, etc.). 
Spectral variation measured at multiple spatial grains and for various 
extents (window sizes) could be, amongst others, an efficient metric 
contributing to such a ‘real’ monitoring scheme.

In this study, we pointed out issues that question a universal, 
causal direct link between spectral variation and species counts. The 

reflective properties and hence the spectral variation of a given area 
in an RS data set is affected by numerous factors including the land-
scape composition, spatial grain of the data, the acquisition time and 
corresponding sun-sensor geometry and the methodical approach 
to calculate the spectral variation. In some ecosystems, the spatial 
non-stationarity in the link between spectral variation and species 
numbers introduced by these factors is likely to be an insurmount-
able obstacle. Based on the points raised here and considering the 
results from earlier studies (e.g., Schmidtlein & Fassnacht, 2017) we 
recommend to carefully revise under which condition a link between 
spectral variation and biodiversity can be assumed. As demon-
strated in this study, simple simulation experiments can support this 
task and are an efficient means to identify conceptual weaknesses 
of some aspects of the SVH and to compare different methodical 
approaches to calculate spectral variation. Making valuable field-
collected biodiversity data openly available and testing the links be-
tween biodiversity and spectral variations in a more systematic way 
using multiple metrics and approaches could further contribute to 
an improved understanding of the link between spectral variation 
and biodiversity.

The need for a more systematic testing of the links between bio-
diversity and spectral variations applies not only in the context of 
SVH but also with respect to other RS-based approaches to map and 
monitor biodiversity as it is likely that the factors influencing spectral 
variation discussed here do not apply solely for the SVH but also for 
other commonly discussed approaches to estimate (spatial) biodiver-
sity patterns from RS data. We hence recommend that future stud-
ies should focus more on efficiently capturing changes in landscapes 
over time (and hence a potential change of biodiversity) rather than 
solely on the direct mapping of biodiversity patterns across space. 
The latter can be achieved with field surveys at much higher quality 
but might nevertheless benefit from an indirect integration of RS 
data. RS data can for example guide and improve the sampling de-
sign of biodiversity surveys by providing a pre-stratification of the 
study area, which also was the original motivation for developing 
the SVH (Palmer et al., 2002). Similar approaches have successfully 
been applied in forest inventories for decades and have proven to 
increase their efficiency.
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