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Abstract
We investigate plasma oscillations in long electromagnetically coupled superconducting nanowires. We demonstrate that in the
presence of inter-wire coupling plasma modes in each of the wires get split into two “new” modes propagating with different veloc-
ities across the system. These plasma modes form an effective dissipative quantum environment interacting with electrons inside
both wires and causing a number of significant implications for the low-temperature behavior of the systems under consideration.

292

Introduction
Physical properties of ultrathin superconducting nanowires
differ strongly from those of bulk superconductors owing to a
prominent role of fluctuation effects in a reduced dimension
[1-3]. Such fluctuations cause a reduction of the supercon-
ducting critical temperature [4] and yield a negative correction
to the mean field value of the order parameter Δ0. In particular,
at T→0 for the absolute value of the order parameter |Δ| in
superconducting nanowires one finds [5]:

(1)

where Rξ is the normal-state resistance of the wire segment of
length equal to the superconducting coherence length ξ and
Rq = 2π/e2 ≃ 25.8 kΩ is the quantum resistance unit. For generic
metallic nanowires one typically has Rξ ≪ Rq, implying that
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fluctuation correction to the mean value of the superconducting
order parameter (Equation 1) remains weak and in the majority
of cases can be neglected.

Is the condition Rξ/Rq ≪ 1 sufficient to disregard fluctuation
effects in superconducting nanowires? The answer to this ques-
tion is obviously negative since even in this limit fluctuations of
the phase φ(x,t) of the order parameter Δ = |Δ|exp(iφ) survive
being essentially decoupled from those of the absolute value |Δ|.
Such phase fluctuations are intimately related to sound-like
plasma modes [6,7] (the so-called Mooij–Schön modes), which
can propagate along the wire playing the role of an effective
quantum dissipative environment for electrons inside the wire.
The frequency spectrum of this effective environment is similar
to that of the celebrated Caldeira–Leggett model [8], which is
widely employed in order to account for both quantum dissipa-
tion and quantum decoherence in normal [9,10] and supercon-
ducting [11,12] metallic structures, see also the book [1] for an
extensive review on this issue.

The presence of Mooij–Schön plasma modes is an important
feature inherent to long superconducting nanowires that leads to
a number of interesting effects. One of them is the theoretically
predicted [13,14] and experimentally observed [15,16] smearing
of the square-root singularity in the density of states (DOS) near
the superconducting gap accompanied by a non-vanishing tail in
DOS at subgap energies. Mooij–Schön plasmons also mediate
the interaction between quantum phase slips (QPS) [1,2,17,18]
causing Berezinskii–Kosterlitz–Thouless-like [17] and Schmid-
like [19-21] quantum phase transitions in structures involving
superconducting nanowires.

In this work we are going to investigate propagation of plasma
modes in a system of two long capacitively coupled supercon-
ducting nanowires. We are going to demonstrate that in the
presence of electromagnetic interaction between the wires their
plasma modes get split into a pair of “new” modes propagating
along the system with two different velocities. This effect may
have various implications for the low-temperature behavior of
the structures under consideration.

Results and Discussion
Consider a system composed of two long parallel to each other
superconducting nanowires. This structure is schematically
depicted in Figure 1. The wires are characterized by kinetic
inductances  and  (times unit wire length) and geometric
capacitances C1 and C2 (per unit length). In the absence of any
interaction between the wires they represent two independent
transmission lines where low-energy plasma excitations propa-
gate with velocities  and , respec-
tively, in the first and the second wires.

Figure 1: The system of two capacitively coupled superconducting
nanowires.

Note that the wires can be treated as independent only provided
that they are located far from each other. If, on the contrary, the
distance between the wires becomes sufficiently short they
develop electromagnetic coupling even though there exists no
direct electric contact between them. In this case each fluctua-
tion associated with an electromagnetic pulse in the first wire
induces an electromagnetic perturbation in the second one and
vice versa. Accordingly, propagation of plasma modes along the
wires gets modified and is not anymore described by two inde-
pendent velocities v1 and v2. The task at hand is to investigate
the effect of electromagnetic coupling on plasma excitations in
the system of two superconducting nanowires.

To this end, we will routinely model electromagnetic coupling
between the wires by introducing mutual geometric inductance

 and capacitance Cm for these wires. All geometric induc-
tances for ultrathin superconducting wires are typically much
smaller than kinetic ones and, hence,  can be safely
neglected as compared to . On the contrary, the mutual ca-
pacitance Cm can easily reach values comparable with C1,2 and
for this reason it needs to be explicitly accounted for within the
framework of our consideration.

As a result, making use of the microscopic effective action anal-
ysis [17,18,22] we arrive at the following Hamiltonian that
includes both electric and magnetic energies of our supercon-
ducting nanowires [23,24]

(2)
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where x denotes the coordinate along the nanowires,

(3)

(Cm < C1,2) are the inductance and capacitance matrices and
Φ0 = π/e is the superconducting flux quantum (here and below
we set Planck constant ℏ, speed of light c and Boltzmann con-
stant kB equal to unity).

The Hamiltonian in Equation 2 is expressed in terms of the dual
operators  and  [25] obeying the canonical commuta-
tion relation

(4)

and are linked to the charge density and the phase operators
 and  as

(5)

Physically,  represents the magnetic flux operator, while
the operator  is proportional to that for the total charge

 that has passed through the point x of the i-th wire up to
the same time moment t, that is, 

As we already pointed out above, in the case of two capaci-
tively coupled wires any perturbation that occurs in one of the
wires generates charge redistribution and voltage pulses in both
wires. The corresponding voltage drop in these wires  can
be expressed in terms of the local charge operators by means of
the following equation [23]:

(6)

In what follows, it will be convenient for us to go over to the
phase representation and to express the equation of motion for
the phase perturbations φ1,2 in both wires in the form of

(7)

that follows directly from the Hamiltonian for our structure
(Equation 2). Here is the velocity matrix that
accounts for plasma modes propagating along the wires.

In order to evaluate the velocities of plasma modes in the pres-
ence of electromagnetic coupling between the wires it is neces-
sary to diagonalize the velocity matrix  and to determine its
eigenvalues v±. Making use of Equation 3 after a trivial algebra
we obtain

(8)

where we defined 

Equation 8 represents the central result of our present work. It
demonstrates that in the presence of electromagnetic coupling
plasma modes in each of the wires are split into two “new”
modes being common for both wires and propagating along
them with velocities v±. As we expected, no independent
plasma modes in each of the wires could exist in this case.
Only in the absence of inter-wire interaction (i.e., for κ = 1)
Equation 8 yields v+ = v1 and v− = v2.

In the case of identical wires with C1 = C2 = C,  and
v1 = v2 = v the result (Equation 8) reduces to a particularly
simple form

(9)

Provided the parameters of both wires differ in such a way that
one of the unperturbed velocities strongly exceeds the other
one, v1 ≫ v2, Equation 8 yields

(10)

Equation 8–Equation 10 demonstrate that one of the plasma
modes may propagate much faster than any of such modes in
the absence of inter-wire interaction. This situation can be real-
ized provided the wires are located close enough to each other
in which case the cross-capacitance Cm may become of the
same order as C1,2 implying κ ≪ 1.

Provided the wires are thick enough, the low-energy Hamil-
tonian in Equation 2 is sufficient. However, for thinner wires
one should also take into account the effect of quantum phase
slips [1,2,17,18], which correspond to a fluctuation-induced
local temporal suppression of the superconducting order param-
eter inside the wire accompanied by the phase slippage process
and quantum fluctuations of the voltage in the form of pulses.
Here, it will be sufficient for our purposes to account for QPS
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Figure 2: Time-dependent phase configurations describing a QPS event at t = 0 (red) and t > 0 (blue) together with propagating voltage pulses gener-
ated by this QPS event in a single superconducting nanowire.

effects only in the first wire and ignore these effects in the
second one. In this case, the Hamiltonian in Equation 2 should
be replaced by that for an effective sine-Gordon model [25]

(11)

where the last term describes QPS effects in the first wire and γ1
defines the QPS amplitude (per unit wire length) in this wire. In
simple terms, the last term in Equation 11 can be treated as a
linear combination of creation ( ) and annihilation ( )
operators for the flux quantum Φ0 and accounts for tunneling of
such flux quanta Φ0 across the first wire.

It is well known that any QPS event causes redistribution of
charges inside the wire and generates a pair of voltage pulses
propagating simultaneously in opposite directions along the
wire. Assume that a QPS event occurs at the initial time
moment t = 0 at the point x = 0 inside the first wire. This event
corresponds to the phase jump by 2π, as it is shown in Figure 2.
Provided the first wire is electromagnetically decoupled from
the second one, at t > 0, voltage pulses originating from this
QPS event will propagate with the velocity  along
the first wire, see Figure 2. Obviously, the second wire remains
unaffected.

Let us now “turn on” capacitive coupling between the wires. In
this case, quantum phase slips in one of the wires generate
voltage pulses already in both wires. Resolving Equation 7
together with proper initial conditions corresponding to a QPS
event, we arrive at the following picture, summarized in
Figure 3 and Figure 4. In the first wire each of the two voltage
pulses propagating in opposite directions is now, in turn, split
into two pulses of the same sign moving with different veloci-
ties v+ and v−, as it is illustrated in Figure 3. Voltage pulses
generated in the second wire by a QPS event in the first one
have a different form. There are also two pairs of pulses propa-
gating in opposite directions with velocities v+ and v− along the
second wire. However, the signs of voltage pulses moving in
the same direction are now opposite to each other, cf. Figure 4.
This result clearly illustrates specific features of voltage fluctua-
tions induced in the second wire by a QPS event in the first
wire: Such fluctuations are characterized by zero average
voltage and non-vanishing voltage noise [24].

Conclusion
In this work we have investigated plasma oscillations in capaci-
tively coupled superconducting nanowires. We have shown that
in such structures there exist two plasma modes propagating
with different velocities along the wires. We have explicitly
evaluated these velocities and demonstrated that these plasma
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Figure 3: The same as in Figure 1 in the first of the two capacitively coupled superconducting nanowires. Each of the voltage pulses is split into two
propagating with different velocities v±.

Figure 4: Time-dependent phase configurations at t = 0 (red) and t > 0 (blue) together with propagating voltage pulses in the second of the two capac-
itively coupled superconducting nanowires generated by a QPS event in the first one.
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modes are the same for both wires forming a single effective
dissipative quantum environment interacting with electrons
inside the structure. Our results might have significant implica-
tions for the low-temperature behavior of coupled supercon-
ducting nanowires. For instance, electron DOS in each of the
wires can be affected by fluctuations in a somewhat different
manner as compared to the noninteracting case [13-16]. Like-
wise, the logarithmic interaction between different quantum
phase slips mediated by such plasma modes gets modified,
implying a shift of the superconductor–insulator quantum phase
transition in a way to increase the tendency towards localiza-
tion of Cooper pairs [23]. Further interesting effects are ex-
pected that can be related to the correlated behavior of quantum
phase slips in different superconducting nanowires. This prob-
lem, however, goes beyond the scope of the present paper and
will be studied elsewhere.
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