KIT | KIT-Bibliothek | Impressum | Datenschutz

The potentialities of ultrasound as an alternative to chemical etching for proton beam writing micropatterning

Vila Bauer, Deiverti; Debastiani, Rafaela ORCID iD icon 1,2; Telles de Souza, Claudia; Amaral, Livio; Ferraz Dias, Johnny
1 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
2 3D Matter Made to Order (3DMM2O), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we explore the potentialities of using ultrasound waves as a post-irradiation treatment after proton beam writing (PBW) patterning of PTFE. To that end, 2-mm-thick foils of PTFE were irradiated with 2.2 MeV protons with an average current of 50 pA. Straight line structures were patterned on the polymer with a 3.5 × 3.5 μm$^2$ focused proton beam. Post-irradiation polymers were placed in a heat bath at 60 °C and immersed either in distilled water or in a 6 M solution of NaOH under the action of 40 kHz ultrasound waves for developing the patterned structures. The results indicate that distilled water submitted to ultrasound waves is very efficient for removing rough structures created by the proton irradiation and thus providing a good aspect ratio to the PBW microstructures. On the other hand, the use of 6 M NaOH instead of water did not improve the quality of the structures patterned with the proton beam. The results are discussed in terms of the parameters that characterize the interaction of ultrasound waves with the liquid media and the polymer.


Verlagsausgabe §
DOI: 10.5445/IR/1000144360
Veröffentlicht am 31.03.2022
Originalveröffentlichung
DOI: 10.1002/app.52407
Scopus
Zitationen: 1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT 3D Matter Made to Order (3DMM2O)
Institut für Nanotechnologie (INT)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2022
Sprache Englisch
Identifikator ISSN: 0021-8995, 1097-4628
KITopen-ID: 1000144360
HGF-Programm 43.31.01 (POF IV, LK 01) Multifunctionality Molecular Design & Material Architecture
Erschienen in Journal of Applied Polymer Science
Verlag John Wiley and Sons
Band 139
Heft 25
Seiten Art.-Nr.: e52407
Vorab online veröffentlicht am 30.03.2022
Nachgewiesen in Scopus
Dimensions
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page