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Abstract

Industrial event streams are an important cornerstone of Industrial Internet of Things
(IIoT) applications. For instance, in the manufacturing domain, such streams are typically
produced by distributed industrial assets at high frequency on the shop floor. To add
business value and extract the full potential of the data (e.g. through predictive quality as-
sessment or maintenance), industrial event stream analytics is an essential building block.
One major challenge is the distribution of required technical and domain knowledge
across several roles, which makes the realization of analytics projects time-consuming
and error-prone. For instance, accessing industrial data sources requires a high level
of technical skills due to a large heterogeneity of protocols and formats. To reduce the
technical overhead of current approaches, several problems must be addressed. The
goal is to enable so-called "citizen technologists" to evaluate event streams through a
self-service approach. This requires new methods and models that cover the entire data
analytics cycle.

In this thesis, the research question is answered, how citizen technologists can be facil-
itated to independently perform industrial event stream analytics. The first step is to
investigate how the technical complexity of modeling and connecting industrial data
sources can be reduced. Subsequently, it is analyzed how the event streams can be au-
tomatically adapted (directly at the edge), to meet the requirements of data consumers
and the infrastructure. Finally, this thesis examines how machine learning models for
industrial event streams can be trained in an automated way to evaluate previously
integrated data. The main research contributions of this work are:

1. A semantics-based adapter model to describe industrial data sources and to auto-
matically generate adapter instances on edge nodes.

2. Anextension for publish-/subscribe systems that dynamically reduces event streams
while considering requirements of downstream algorithms.

3. A novel AutoML approach to enable citizen data scientists to train and deploy
supervised ML models for industrial event streams.

The developed approaches are fully implemented in various high-quality software arti-
facts. These have been integrated into a large open-source project, which enables rapid
adoption of the novel concepts into real-world environments. For the evaluation, two
user studies to investigate the usability, as well as performance and accuracy tests of the
individual components were performed.
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Introduction

The Industrial Internet of Things (IIoT) is an enabler for data-driven analytics as more and
more machines within industrial production facilities are able to communicate with each
other. Based on this large amount of data, generated by machines and their integrated
sensors, there is the potential to create added value for companies. This added value can
differ greatly among a variety of use cases, e.g. improvement of production processes
and product quality [Rehman et al. 2019], increased autonomy of machines [Maier et al.
2017], or increase of productivity and efficiency [Xu et al. 2018]. The produced data can
be very complex, of high volume, and high velocity, requiring methods from the field of
Artificial Intelligence (AI) in order to evaluate them automatically. However, to be able to
use these methods, a lot of domain knowledge as well as technical knowledge is needed
e.g. to connect data sources, process data, or to train Machine Learning (ML) models.
The domain knowledge is necessary to understand the production process as well as the
meaning of data. People with domain knowledge typically lack the technical and data
science expertise necessary to build an environment for analytics. Therefore, technical
specialists are often needed even though they are not experts in the domain. This means
either that domain experts have to be trained, or they must work closely with technical
specialists. In the past, it has been shown that advances in Information Technology (IT)
often make it possible that tools and techniques that previously were addressed only for
technical specialists, are additionally available for less technical users. One such example
are Online Application Generators (OAG), which facilitate the creation of applications
with little technical knowledge [Oltrogge et al. 2018]. In this work we try to bridge the
gap between technical specialists and business domain specialists in the field of industrial
analytics.

Business domain specialists usually have a comprehensive knowledge about the domain
and the manufacturing processes, but typically only have basic computer science or
data science knowledge [Groger 2018]. However, since they already understand the
meaning of the data, they should be enabled to evaluate it. In this work, we refer to citizen
technologists, which "are able to do things that previously required discipline experts"!.
These are business domain specialists with special technical training. The goal of this
thesis is to reduce the required technical knowledge and therefore to facilitate citizen

thttps:/ /chiefmartec.com/2018/05/democratizing-martech-marketing-technologists/ (accessed on
04/10/2021)



2 1. Introduction

technologists to use advanced analytics by introducing methods, models and tools that
enable the automation of industrial event stream analytics. To make this possible, three
phases must be considered: data must first be ingested from a data source, then integrated
from multiple data sources, before it can be analyzed.

The process of fetching raw data from data sources and providing it in a format that can
be used for further processing is called data ingestion [Hueske and Kalavri 2019]. This
is especially challenging in IloI scenarios, due to the high heterogeneity of sensors and
machine interfaces. Therefore, we try to enable citizen developers® to connect such sources.
Citizen developers are citizen technologists, who have a basic understanding of the com-
monly used communication protocols and formats in industrial environments. They do
not need to know how to implement software to connect machines, but they must be able
to provide the necessary configurations of the various protocols. In industrial environ-
ments a variety of different systems exist that produce data which might be relevant. Such
systems can range from Enterprise Resource Planning (ERP), Manufacturing Execution
Systems (MES), Supervisory Control and Data Acquisition (SCADA) systems, sensors, to
Programmable Logic Controllers (PLCs) controlling machines [Rehman et al. 2019]. In
this work we focus on data primarily produced by sensors and machines. A major issue
is to deal with the various available communication protocols and data representations
that machines from different vendors or domains have. There is no standard protocol or
principle of communication that covers them all [Gosewehr et al. 2017]. Therefore, a flex-
ible solution is needed that can handle all these different sources and harmonize the data
to make it processable. More importantly, it needs to describe its semantics in a machine
processable way. Additionally to the already described challenges of heterogeneity in
data sources, the machines and sensors often do not provide the necessary infrastructure
(e.g. computation, storage) to process the data. The reason for this is that they were
designed to automate production processes, consequently data should be stored and
processed in separate systems [Trunzer et al. 2019]. Usually adapters are used to read
data from the data sources, however, the creation of those is often hard to automate.

After a connection is established, data generated by the different data sources must be
aggregated and integrated before it can be analyzed [Trunzer et al. 2017]. As data is
produced constantly by sensors and machines, it is referred to as event streams, a set of
associated events that are usually temporarily ordered [Etzion and Niblett 2010]. In this
work, we refer to event streams in the context of IIoT as industrial event streams because of
its special characteristics, which are explained in this work in more detail. To cope with
those characteristics (e.g. potentially high volume, high frequency), the transmission
must be optimized and the size of data to be transmitted should be minimized to reduce
the network load [Xu et al. 2018]. This especially means that data must not only be sent
to a central instance, furthermore it should be processed in close proximity to the source
to harmonize it before it is transmitted. Techniques from the field of edge computing can

Zhttps:/ /www.gartner.com/en/information-technology / glossary / citizen-developer (accessed on
04/10/2021)



1.1. Research Questions 3

be used, where it is possible to collect and process data based on its geographic location
without transmitting it to the cloud [Shi et al. 2016]. These local compute capabilities
can be leveraged to intelligently route the data and thus reduce the overall load on the
network.

Due to the ever-increasing amount of data and high dimensionality, it can become
quite complex to apply classic methods such as rule-based approaches to analyze data.
Learning-based techniques from the field of analytics and ML can be used to train models
once enough "good quality" data is available. To train such models, usually data scientists
are required. They are capable of getting answers to important business questions, by
analyzing large amounts of data [Davenport and Patil 2012]. To understand the business
problems as well as the problems of the domain, data scientists must work closely together
with domain specialists, which are able to explain the meaning of the data (e.g. effects on
the production process). In this work, we take a slightly different approach, since data
science knowledge is still rare, especially in manufacturing companies. Our aim is to
enable citizen data scientists to perform such tasks. These are business domain specialists
that know how to generate models using techniques from the field of advanced analytics
even if their primary job is outside of the field of statistics and analytics®. Their main
expertise is not technically-focused, rather they have the necessary domain expertise as
well as a basic understanding of data analytics to be able to assess how well the generated
models perform. Citizen data scientists are needed because the meaning of industry data
is highly dependent on the domain and the specific application. The training process
should be automated as much as possible to reduce the technical complexity of selecting
the parameters and ML models. Recent developments in the field of self-service data
analytics and Automated Machine Learning (AutoML) reduce the complexity for the
training process and make it available for less technical users. However, the goal of this
thesis is not to fully automate the process, but to keep the human in the loop. Citizen
technologists should be supported by introducing methods, models, and tools to perform
the analytics task themselves. As an important requirement this should be done in a
user-friendly way and data visualizations should be used to ease the interaction with the
data [Han et al. 2011; Michalczyk et al. 2020]. To ensure this, we evaluated our approach
in two different user studies, showing that even less technical users are able to perform
those tasks.

1.1. Research Questions

The main goal of this thesis is to enable citizen technologists to connect and analyze
industrial event streams. Therefore, data of machines and sensors must first be con-
nected and ingested, then the data of the different data sources must be integrated into a

Shttps:/ /blogs.gartner.com/ carlie-idoine/2018/05/13/citizen-data-scientists-and-why-they-matter/ (ac-
cessed on 04/10/2021)



4 1. Introduction

harmonized data foundation. Based on this integration, it is possible to combine data
from multiple sources and analyze it to create new insights. All this has to be feasible
for business domain specialists. Both the technical requirements to work with industry
data and the analytics of this data are very complex and requires specialized knowledge.
Consequently, we introduce citizen technologists, which are business domain specialists
with additional technical training, who are not necessarily able to implement solutions in
programming languages, but are able to solve technical tasks with the appropriate tooling.
Furthermore, we distinguish between citizen developers focusing on connecting machines
and citizen data scientists focusing on the analytics tasks. Both of them do not have a
complete computer science or data science education, but have a basic understanding
of the field and are able to accomplish technical tasks with the appropriate methods,
models, and tools. Hence, many challenges remain to be addressed, like the provisioning
of a model to describe the high heterogeneity of different data sources, or the integration
of different data sources in a distributed environment. To analyze data, a lot of domain
knowledge as well as data science knowledge is required to have both the skills to process
the data, as well as to understand its meaning. The demand for all these different skills
leads to the fact that IIoT data science projects involve many different roles from different
areas (e.g. domain expert, data scientist, IT administrator, ...). This results in a high
communication overhead, which makes these projects quite time consuming. Our goal is
to enable citizen technologists to evaluate data and to carry out such projects themselves.
This leads us to the following research question:

How to facilitate data-driven analytics of industrial event streams by citizen
technologists?

In the main research question, the term industrial event streams is used. Industrial event
streams can be described by the following characteristics. They have a high frequency,
individual event streams are homogeneous, and multiple streams can be produced by
geo-distributed assets using heterogeneous event types (e.g. sensor measurements, or
images). Due to those characteristics, it is often required to leverage edge processing
techniques to process data in close proximity to its source. This thesis tries to facilitate
data-driven analytics, enabling citizen technologists to leverage machine data by connect-
ing it themselves. Based on this data, learning techniques should be applied to train ML
models that are deployed on real-time event streams to generate new business relevant
insights (e.g. reduce scrap rate). To overcome the limitations of rule-based analytics,
techniques from data driven analytics can be leveraged. Instead of defining a rule, a
model is trained on historic data to detect certain situations directly on event streams.
The main research question is further divided into three sub-research questions.

Research Question 1 (Ingest). How can we support citizen developers in modeling and con-
necting heterogeneous industrial event streams?
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The first research question targets the data ingestion by connecting new industrial data
sources. The question is, how citizen developers with basic technical understanding
are able to extract data from such sources. For example, they are not able to implement
data adapters in a programming language, but have the knowledge about the concepts
of industrial protocols. The main challenge is to deal with the technical complexity
of different protocols, formats, and standards that are used in industry settings and
provide a solution that can support old legacy machines and is extensible to support
future standards. Additionally, the characteristics of industrial event streams have to be
handled. Since the data quality of various sources can be quite different, a possibility
for harmonizing it directly upon ingestion time is required. This research question is
answered in Chapter 6 (and evaluated in Chapter 9).

Research Question 2 (Integrate). Based on semantic event models, how can we automatically
adapt industrial event streams to meet the demands of infrastructure and subscribers?

The second research question focuses on integrating data from different industrial event
streams and adapt the transmission of the data based on the requirements of the algo-
rithms processing the data. The previously ingested data must be integrated to form
a foundation for the analytics tasks, with the goal of reducing the impact on the in-
frastructure. This should be done without manual effort, by leveraging the semantic
data model (a result of research question one). The technical complexity of distributed
data processing should be abstracted. A challenge here is to optimize the data flow in a
geo-distributed environment while satisfying the different requirements of individual
subscribers. Therefore, a distributed architecture is required that is capable to support
those functionalities, especially in dynamic changing environments. Based on the struc-
ture of the event streams and the performed analytics pipelines, the stream might be
adapted while ensuring the correct performance of the analytics task. All changes on
the data should happen within the transportation layer, without affecting the analytics
algorithms evaluating the event stream. This research question is answered in Chapter 7
(and evaluated in Chapter 9).

Research Question 3 (Analyze). How can citizen data scientists be enabled to use automated
machine learning to analyze industrial event streams themselves?

This research question addresses the automatic analytics of industrial event streams to
gain new insights from the integrated data. How can supervised ML tasks be defined
by citizen data scientists and how can this model be trained automatically on industrial
event streams? The main challenge is to automate the data science process to create new
ML models. Furthermore, trained models must be deployed in a distributed streaming
environment and applied on industrial event streams, where the data distribution might
change over time. This research question is answered in Chapter 8 (and evaluated in
Chapter 9).
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1.2. Research Methodology

In this work, we use the research methodology of Design Science. This paradigm "seeks
to extend the boundaries of human and organizational capabilities by creating new and
innovative artifacts" [Hevner et al. 2004]. The aim is to solve human or organizational
problems with the help of IT artifacts. These artifacts can take different forms, ranging
"from software, formal logic, and rigorous mathematics to informal natural language
descriptions" [Hevner et al. 2004]. To perform effective design-science research, seven
guidelines are introduced: Design as an Artifact (G1), Problem Relevance (G2), De-
sign Evaluation (G3), Research Contributions (G4), Research Rigor (G5), Design as
a Search Process (G6), and Communication of Research (G7). All these guidelines are
considered in this thesis and explained in the following.

The main parts explain how citizen technologists are enabled to perform industrial event
stream analytics and are presented in Chapter 6 (Ingest), Chapter 7 (Integrate), and
Chapter 8 (Analyze). Software artifacts were developed based on the novel concepts
presented in this thesis. Most of them were integrated into the open source software
project Apache StreamPipes (incubating)* (G1). StreamPipes was transferred to the
Apache Software Foundation and is part of the Apache Incubator Program at the time of
this writing. The relevance of the problem (G2) is motivated in Chapter 3, by showing
the need to reduce the technical complexity for industrial event stream analytics. (G3)
Both performance and usability were considered in the evaluation. Different evaluation
methods were chosen and performed for the different contributions of this thesis. All
results of the evaluation are presented in Chapter 9. The main contribution of this
work (G4), is to enable citizen technologists to apply advanced analytics themselves on
industrial event streams. In order to follow the guidelines (G5) and (G6), the foundations
are presented in Chapter 2 and the related work is discussed in detail in Chapter 4. Early
feedback from open source users, as well as from participants of the conducted user
studies, were taken into account to improve and validate the developed approaches. To
reach a wide audience from the research, technology, and business domain, the results
of this research were published and discussed at research conferences, as well as on
international fairs and technology conferences (G7).

1.3. Contributions

In this thesis, we enable citizen technologists to ingest, integrate, and analyze industrial
event streams. To accomplish this, we provide several contributions, which are outlined
in this section.

“https:/ /streampipes.apache.org (accessed on 04/10/2021)
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¢ (C1) Adapter Model With this model, it is possible to describe data sources and
automatically generate adapter instances to connect to those sources based on a
semantically-enriched description. This model is extensible and supports both
standard protocols and formats as well as custom and legacy interfaces. As data
can come from many heterogeneous sources, an adapter must be able to harmonize
data. Therefore, we introduce transformation rules, that can be used to preprocess
and clean data on ingestion. To meet the potentially high frequency requirements
of industrial event streams the adapters can be deployed on edge nodes. On those
they can access and preprocess the data in close proximity to the source, before the
harmonized data is forwarded onto a distributed message broker to be analyzed by
upstream services.

¢ (C2) Intelligent data reduction A distributed master- / worker-based approach is
used for the architecture. This allows workers to handle most of the data load in
close proximity to the source, and leaves the master in charge of communicating
and managing the entire system. To be capable to process the potentially large
event streams, event reduction strategies are proposed, reducing the event size and
transmission frequency. A concept for a message broker, automatically adapting
the industrial event streams according to the requirements of the subscribers, is
developed as a wrapper around existing topic-based message brokers . The terms
virtual and partial events are introduced, where virtual events are reconstructed
at the subscriber without transmitting all information. Partial events contain only
parts from the original event and are used as a basis for the reconstruction of virtual
events.

¢ (C3) Enable ML for citizen data scientists We provide a holistic approach with
focus on citizen data scientists, to explore and train ML models specially designed
for industrial event streams. It is possible to train and deploy supervised ML models
based on previously integrated data. Therefore, three types of Machine Learning
Pipeline Agents (MLPAs) are provided that can be applied on event streams, directly
after training. A standardized workflow of defining the ML problem is introduced
and the model is then automatically trained on data from industrial event streams.
Based on the results of this training, citizen data scientists can select the best model
for their use case and directly deploy it on event streams.

¢ (C4) Software Prototype Contributions C1-C3 are realized in software prototypes.
Most of them are integrated into the Apache StreamPipes project and are made
available as open source software to the community. The software is designed
to cover the whole lifecycle, starting with connecting different machines over a
graphical user interface. The connected event streams leverage the newly developed
message broker to intelligently reduce the transmitted data. Furthermore, a data
explorer was developed to get insights into the data by visually analyzing it, as well
as manually adding labels for supervised learning tasks. A guided workflow is
introduced to define the ML problem based on the labeled data. The ML model is
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trained automatically in the background, then stored in a model repository, from
where it can be deployed to process event streams.

1.4. Research Projects and Publications

The concepts, methods and implemented prototypes of this work were developed in
two projects funded by the German BMVI (Federal Ministry of Transport and Digital
Infrastructure) as well as further projects and collaborations. Conceptual contributions are
peer-reviewed and were presented at various research conferences as outlined below. In
addition, the results were showcased at international exhibitions and technical developer
conferences. In the following, the projects and publications are listed.

WEKOQVI (Tools for the simple creation of complex comparison indicators,
07/2017-07/2019, BMVI)

In WEKOV], a user-friendly, extendable software platform was developed that enables
users to use open data sources (e.g. environment sensors) and calculate complex com-
parison indicators, such as an air quality index. Those indicators can be used to calculate
a rating and compare different locations with each other. In WEKOV], the architecture
for integrating heterogeneous data sources as well as the data model for connecting new
data sources and automatically deploying adapters was developed. For processing those
sources, the concepts for data reduction in a distributed broker-based architecture were
developed.

Publications

¢ Philipp Zehnder, Dominik Riemer. Modeling self-service machine-learning agents
for distributed stream processing. Proceedings of the IEEE International Confer-
ence on Big Data (BigData). 2017, Boston, MA, USA. (see [Zehnder and Riemer
2017]).

¢ Philipp Zehnder, Dominik Riemer. Representing Industrial Data Streams in Dig-
ital Twins using Semantic Labeling. Proceedings of the IEEE International Con-
terence on Big Data (BigData). 2018, Seattle, WA, USA. (see [Zehnder and Riemer
2018]).

OCROSS (Open Data Crowd Sensing Service for the easy fusion of annotated and
swarm-based mass data, 10/2018 - 05/2021, BMVI)

In OCROSS, the aim was to record the condition of roads using video, image, and sensor
data. A smartphone app is used to collect mass data from the crowd. This data has to be
anonymized, combined with other data sources and analyzed to detect the conditions
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of the road. In addition to monitoring the road condition, image and sensor data was
used to check, whether road construction sites have been set up correctly or not. For this
purpose, traffic signs are recognized in the images and their position is compared with a
control plan. In OCROSS, the methods and concepts for automated data analytics was
developed (AutoML). It was examined how it is possible to train ML models in a way
that is feasible for citizen data scientists and deployed them on live event streams.

Publications

¢ Philipp Zehnder, Patrick Wiener, Dominik Riemer. Using Virtual Events for Edge-
based Data Stream Reduction in Distributed Publish/Subscribe Systems. Pro-
ceedings of the 3rd IEEE International Conference on Fog and Edge Computing
(ICFEC). 2019, Larnaca, Cyprus. (see [Zehnder et al. 2019]).

¢ Philipp Zehnder, Patrick Wiener, Tim Straub, Dominik Riemer. StreamPipes Con-
nect: Semantics-Based Edge Adapters for the IIoT. Proceedings of the 17th Inter-
national Conference - The Semantic Web (ESWC). 2020, Heraklion, Crete, Greece.
(see [Zehnder et al. 2020]).

Projects & Cooperations

Additionally to the previously mentioned projects, the requirements for the developed
concepts were collected and tested in further projects and cooperations. This gave us
the chance to validate the approaches in different real-world scenarios as well as with
data from different domains. The following list shows the various projects, research and
industry collaborations.

¢ Test Field Autonomous Driving Baden-Wiirttemberg is an area to test drive au-
tonomous vehicles in normal road traffic. In this project, the developed concepts
and prototypes are used as part of the backend for ingesting and integrating data
from multiple sensors and services.

¢ HoLL-Therm The thermal storage capacity of buildings should be used to control
energy consumption, both in a grid-serving and efficient manner with the aid of
sensors and actuators. Therefore, different kinds of data sources were integrated,
in order to evaluate the performance of the event stream adaption and reduction.

¢ Industry & Research Cooperations In addition to the previously mentioned re-
search projects, the concepts and prototypes were tested in industry projects as
well as further developed in research cooperations, where we collected valuable
feedback. Also we had the chance to test the prototypes in different machines and
production facilities, which helped to optimize the concepts.
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1.5. Guide to the Reader

This section presents the structure of this thesis and gives an overview of the individual
chapters, which is depicted in Figure 1.1. Chapter 1 provides an introduction into the
topic of industrial event stream analytics and why it is important to enable people with
little technical knowledge to perform this task. Chapter 2 highlights the foundations in the
areas of industrial systems, event streams and how to process them, as well as automated
analytics. Chapter 3 first provides a deep dive into the subject of industrial event stream
analytics. Second a motivating example is illustrated, which is used throughout this work
to introduce the models and concepts. Finally, the different problems that are addressed
in this work are depicted and a requirements elicitation is performed. The related work
is introduced in Chapter 4 and structured as follows: First, research approaches in
the field of integrated IloI systems are introduced, then related work in the context of
connecting and modeling IIoT data sources is presented. Further, relevant approaches
for data processing and self-service data analytics are introduced. Chapter 5 provides an
overview of the three main parts of this work. Chapter 6 shows how data can be ingested
from heterogeneous industrial data sources. It begins by introducing a model that can be
used to describe the individual sources. Based on this model, adapters can automatically
be instantiated on edge devices. A particular focus of this chapter is how to enable citizen
developers to perform this task themselves. Chapter 7 deals with the integration of
different data sources and event reduction strategies, to dynamically reduce the amount
of transferred data. Chapter 8, the last of the three main chapters, shows how previously
connected data can be analyzed by citizen data scientists, who are able to train supervised
ML models with the introduced approach. Chapter 9 reports the evaluation of the main
contributions of this thesis. Both usability and performance of the system are evaluated.
In the last chapter, the work is concluded and potential future research directions are
presented.
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Foundations

In this chapter, the foundations for the rest of this thesis are presented by introducing
definitions and concepts from the field of automated industrial event stream analytics. The
chapter is structured according to the three areas of the terms: First, Section 2.1 deals
with the term industrial data management, then Section 2.2 introduces event streams, and
finally, Section 2.3 is about (automated) analytics. The following section describes different
foundations in the field of industrial data management, focusing on the Industrial Internet
of Things (IloT). The concepts and technologies behind this term are introduced and
placed in the context of industry 4.0 and cyber-physical systems. After that, different
concepts and terms related to event streaming are introduced, which are relevant because
the data in this thesis is processed according to these principles. The chapter concludes
with different data processing methodologies (cloud and edge computing). For data
analytics, mainly the differences between rule-based and learning-based approaches are
explained. Furthermore, terms from the area of Machine Learning (ML) are introduced
and how the training process of a ML model can be further automated.

2.1. Industrial Data Management

In industry settings there are two main technologies that are the driver for analytics on
industrial data. Operational Technology (OT) is already used for a long time to automate
production processes, whereas Information Technology (IT) is an enabler for exchanging
and analyzing data. These two areas are merging more and more. In the first section,
terms like Industrial Internet of Things and Industry 4.0 are introduced, which were
originally driven by computer scientists [Jeschke et al. 2017]. Then, Industrial Control
Systems are discussed, which are responsible for controlling processes of plants and
machines. These systems are getting smarter and more connected. The individual areas
are increasingly merging, which leads to a greater intertwining between OT and IT.
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2.1.1. Industrial Internet of Things (110T)

The term Internet of Things (IoT) "generally refers to scenarios where network connectiv-
ity and computing capability extends to objects, sensors and everyday items not normally
considered computers, allowing these devices to generate, exchange and consume data
with minimal human intervention" [Rose et al. 2015]. This means that more and more
things obtain computing and networking capabilities, which enables them to communi-
cate with each other independently of humans. In industrial applications, these things are
often sensors and machines on shop floors. The combination of industrial applications
and IoT is a different world, both in meaning and concepts, so a deep understanding of
the term industrial is necessary [Xu et al. 2018]. The potential of the industrial internet is
seen particularly by the industry, as a report by GE and Accenture shows. It describes that
the "Industrial Internet enables companies to use sensors, software, machine-to-machine
learning and other technologies to gather and analyze data from physical objects or other
large data streams and then use those analyses to manage operations and in some cases
to offer new, value-added services” [GE 2015]. One of the key features of machine-to-
machine interaction is the merging of physical und digital processes [Schilberg et al.
2017]. Those two worlds open the possibility for companies to break new ground. As a
consequence the Industrial Internet of Things (IloI) plays a key role. It is defined as: "A
system comprising networked smart objects, cyber-physical assets, associated generic
information technologies and optional cloud or edge computing platforms, which enable
real-time, intelligent, and autonomous access, collection, analysis, communications, and
exchange of process, product and/or service information, within the industrial environ-
ment, so as to optimize overall production value. This value may include; improving
product or service delivery, boosting productivity, reducing labour costs, reducing energy
consumption, and reducing the build to-order cycle" [Boyes et al. 2018]. A special focus
in this work is on machine data, how it is exchanged, stored, and analyzed. In IIoT it
is particular essential to store historical and real-time data and integrate it at different
levels [Rehman et al. 2019]. Additionally, this data enables the incorporation of ML into
all IToT systems [Xu et al. 2018].

Another frequently used term is Industry 4.0. It represents the fourth industrial rev-
olution, "in which information communication technologies are applied to industrial
manufacturing and automation so that the productivity and efficiency can be improved"
[Xu et al. 2018]. Both terms, IIoI' and Industry 4.0, are often used synonymously [Rehman
et al. 2019]. The term IloT often describes the technology movement, whereas Industry
4.0 is often more associated with the economic impact [Jeschke et al. 2017]. In this work,
we use those terms as synonymes, since industrial event streams play a key role in both
of them. Both, IIoT and Industry 4.0, have a high complexity, which is why there is no
single standard. This requires to combine different standards from multiple domains
to cover all aspects [Schleipen et al. 2016]. As mentioned before, the view on physical
systems in industrial settings is very important, so the notion of cyber physical systems
will be explained in the next section.
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2.1.2. Industrial Control Systems

The central role in IIoT play industrial machines. These machines are already equipped
with a lot of different sensors and actuators. However, data of those sensors has been used
mainly for direct feedback control in real-time, or for forensic use, when it was archived
[Lade et al. 2017]. The main purpose was to ensure that the machines operate as expected.
Such systems are often referred to as Industrial Control Systems (ICS). It "is a collective
term typically used to describe different types of control systems and associated instru-
mentation, which include the devices, systems, networks, and controls used to operate
and/or automate industrial processes" [Boyes et al. 2018]. Traditionally, ICS systems were
independent of IT systems, often used in isolated settings running proprietary control
protocols for specialized hardware [Boyes et al. 2018]. Programmable Logic Controllers
(PLCs) are normally used to execute predefined, fixed logical programs implemented
in a proprietary language. Those automation systems used to be closed loop control
systems on the shop floor connected through a field bus protocol [Schilberg et al. 2017].
To connect several of them, Supervisory Control and Data Acquisition (SCADA) systems
are often used to control entire plants and distributed systems. SCADA represents the
largest subgroup of ICS [Boyes et al. 2018]. It is used for high-level management of
processes and is connected to several other systems like PLCs, computers or networking
devices. Standards like Open Platform Communication Unified Architecture (OPC UA)
try to bride this gap between IT and OT, by making machine data available, providing a
client-server architecture and a rich meta-data model. Communication within a factory
used to be rather simple, sensors, actors, and controllers were only connected for a specific
task [Neumann 2007]. Sensors measure target parameters and provide the unfiltered
output to a controller. Controllers receive those measurements and store, process, or
provide them to a function to calculate an output value, which is sent to actuators. The
actuators act upon the received commands from the controller and are able to directly
influence the physical environment [Riith et al. 2017]. Nowadays, this data is used and
combined with other sources into Cyber Physical Systems (CPS), which are defined as "a
new generation of systems with integrated computational and physical capabilities that
can interact with humans through many new modalities" [Baheti and Gill 2011]. The
challenge addressed in this work, is to bridge the gap between the data sources within
ICS systems by making this data easier accessible, and enable people with less technical
knowledge to analyze the resulting event streams, which is explained in the following.

2.2. Event Streams

In this section, the basics of event streaming technologies are presented and the publish-/-
subscribe paradigm is introduced. This is followed by the paradigm of edge computing,
showing how data can be processed in close proximity to the data source.
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2.2.1. Event Streaming

The most basic element for event streaming is an event that is a "record(s) of an activity
in a System" [Luckham 2002]. In this work, we define events as: "An occurrence within a
particular system or domain; it is something that has happened or is contemplated as
having happened in that domain" [Etzion and Niblett 2010]. The structure of an event is
described by an event schema, defining the event type. Events usually occur in an event
stream, which is defined as a set of associated events, that are often totally temporally
ordered [Etzion and Niblett 2010]. Such event streams can be evaluated with event
processing that is defined as "computing that performs operations on events"[Etzion
and Niblett 2010]. Common event processing operations include reading, creating,
transforming, deleting events.

Producer Channel Event S
Processing
Agent anne -
Event N Event = vent_ Event Event
Producer Channel rcnge:nstlng Channel Consumer
Event Event
Producer Channel
Figure 2.1.: Example Event Processing Network (EPN) consisting of Event Producer, Event
Processing Agents, Event Channels, and Event Consumer

In event processing, events are processed in an event driven architecture, which is called
an Event Processing Network (EPN). EPNs can be described as a graph where events
are produced by Event Producers (EPs), processed by Event Processing Agents (EPAs)
and consumed by Event Consumers (ECs) [Etzion and Niblett 2010]. To forward events
between the individual components, event channels are used that establish a connection
between these components. Figure 2.1 shows such a network with three different EPs,
two EPAs performing operations on the events, and one EC. Several realizations for
modeling EPNs exist, for example programmatically, via a Domain Specific Language
(DSL), or graphically. A DSL is a computer programming language addressing a specific
domain with limited expressiveness [Fowler 2010]. Graphical tools can also be used by
by non-technical users. In [Riemer 2016] a graphical approach is presented that allows
users to express their interest in certain situations or perform data harmonization by
defining EPNs in the form of pipelines. Those pipelines are then deployed as distributed
EPNSs. In this work, the word pipeline is used as a synonyme to EPN.

2.2.2. Publish- / Subscribe

When dealing with large-scale distributed systems, the publish-/subscribe paradigm
is often used to route data between services. In such systems, subscribers register their



2.2. Event Streams 19

interest in events or event patterns and are then asynchronously notified, when a pub-
lisher emits a new event that match their registered interest [Eugster et al. 2003]. In this
paradigm the individual components have a "full decoupling in time, space, and syn-
chronization between publishers and subscribers" [Eugster et al. 2003]. This decoupling
reduces the dependencies between the individual components. Furthermore, it reduces
the complexity, because subscribers are usually not interested in every event from all
publishers.

There are three main types of publish-/subscribe systems: topic-based, content-based,
and type-based. In topic-based systems, events are published on a topic or subject, and
subscribers can register and receive all events published to a certain topic or subject. In
content-based systems, a subscriber can register to a specific content of events, and it
is ensured that only events fulfilling those requirements are received. Events within
each topic often have the same event schema. This led to the development of type-based
publish-/subscribe systems, where subscribers do not subscribe to a topic, they rather can
subscribe to events of a specific type [Eugster et al. 2003]. The decoupling of publishers
and subscribers means in particular that they have no knowledge of each other. The
publisher can act independently of potential dependent services that consume the data
and reduce the complexity of the logic from the individual components. In this work, we
focus on topic-based publish-/subscribe systems, because they are well established and
are already used in the context of IloT.

2.2.3. Edge Computing

So far in this chapter, we showed what events are and how they are processed in a
streaming fashion, e.g. using a publish-/subscribe approach. We will now briefly intro-
duce a processing paradigm that enables location-aware data processing in distributed
IIoT scenarios. In recent years, there has been a strong trend to run applications and
data processing in the cloud, where "cloud computing refers to both the applications
delivered as services over the Internet and the hardware and systems software in the
data centers that provide those services" [Armbrust et al. 2010]. Accordingly, there is a
centralized compute infrastructure, which is easy to scale through virtualization, but
does not leverage compute resources that are available near the data sources. This is
important in IIoI scenarios, because those sources are usually highly distributed and
require a low latency. Figure 2.2 shows the cloud computing paradigm on the left. Raw
data is produced by data producers on the top left and sent to the cloud. On the bottom,
some computing devices are illustrated. Their main purpose is to consume data from the
cloud. This is mainly achieved via sending requests to the cloud and receiving the results.
When the data sources are distributed, one possibility is to transmit all data to the cloud.
However, this could lead to an overload of the network infrastructure. Additionally, the
latency introduced in transmitting data might be too high for some analytics tasks [Xu
et al. 2018]. Privacy policies cannot be adhered, because all the data must be shared and



20 2. Foundations

no local (pre-)processing takes place [Shi et al. 2016]. Transmitting all data might result in
a high consumption of bandwidth, which could be reduced when the data is processed
locally [Satyanarayanan 2017]. To achieve this, data can be processed close to the data
source at the network edge [Shi and Dustdar 2016]. We define edge as "any computing
and network resources along the path between data sources and cloud data centers"
[Shi et al. 2016]. Edge computing is different from cloud computing, because it "tends
to leverage the computing and storage capabilities from edge devices (e.g., computing
edge nodes)" [Xu et al. 2018]. Both processing paradigms are not distinct, they often can
be combined to leverage the individual advantages and find the best solution for the
respective application.
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Figure 2.2.: Cloud computing is illustrated on the left, edge computing on the right [Shi et al.
2016]

Figure 2.2 on the right illustrates the edge computing paradigm. There a very hetero-
geneous set of devices exist, not restricted to compute devices such as computers and
smart phones, which are depicted at the bottom. In the context of this work, these are
mostly machines or compute resources that are located at the shop floor. These devices
do not only consume data, they also provide data to the cloud. This potentially large
volume of data is indicated with the blue arrow. In order to not send all data to the
cloud, it is necessary to leverage local compute resources at the edge to process parts
of this data. There is still bidirectional communication between devices and the cloud,
but the goal is to offload compute from the cloud to the edge. Various allocation strate-
gies can be used to allocate the workload, e.g., to distribute it across all available nodes.
The entire spectrum can be exploited from performing all processing in the cloud, to
a complete edge computing scenario where everything is processed locally and only
results are shared. Edge computing devices consume and produce data and are capable
of performing computing tasks, because they have data storage, caching, and processing
capabilities [Shi et al. 2016]. In this work, we leverage edge computing techniques to run
and instantiate adapters to connect directly to industrial machines.
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2.3. (Automating) Analytics

This section focuses on how event streams can be analyzed. First, rule-based analytics are
introduced by presenting how this is performed on event streams. Then, limitations of
such approaches are shown and how they can be overcome by leveraging ML. Different
types of learning-based analytics approaches are presented. Additionally, it is shown
how the training process for learning-based methods can be further automated.

2.3.1. Rule-Based Analytics

Event streams can be exploited by leveraging rule-based analytics. Therefore, rules must
be defined that are then applied on the event streams. One such technique is Complex
Event Processing (CEP), where mainly declarative queries are formulated that are then
executed in a CEP engine. Such queries are often formulated in an Event Processing
Language (EPL), a high-level language to define the behavior of event processing agents'.
In such languages, Structured Query Language (SQL) like queries can be defined, which
are deployed into a query engine. Once a query is deployed it is constantly applied on
incoming events, e.g. to detect patterns or certain situations.

For analytics algorithms it is important not only to look at individual events, but to
consider instead the context of an event. Therefore, windows are an essential concept.
Different types of windows exist and they can be based either on time or on counting
the amount of events. In sliding windows, a "window will move or “slide” in time
with a period that is usually smaller than the size of the window" [Ari et al. 2012].
This means, there is an overlap of windows and events are usually part of multiple
windows. For tumbling windows there is no overlap, so the offset is equal to the size of
the window, meaning there is no event that is part of two different windows [Ari et al.
2012]. Tumbling windows are also sometimes referred to as batch windows. Another
window type are session windows. Those are "dynamically-sized, non-overlapping,
data-driven windows"2. Session windows are grouped by a certain key and have no fixed
window size. A session is comprised by "a series of events happening in adjacent times
followed by a period of inactivity" [Hueske and Kalavri 2019]. Consequently, the window
size is not fixed, it rather depends on how long the session is active. Further types of
windows exist, but those are not relevant in the context of this work.

Multiple operations can be applied on events, which is usually done within EPAs that are
part of an EPN, presented earlier in this chapter. In [Etzion and Niblett 2010], a hierarchy
for different types of those agents is introduced. This hierarchy contains filters, different
transformations, and pattern detections, which are defined declaratively. However, this

Thttps:/ /complexevents.com/2011/08/23/event-processing-glossary-version-2/  (accessed  on
04/10/2021)
thtps: / /katka.apache.org/ (accessed on 04/10/2021)
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requires that such rules must be defined by an expert in the domain who is capable to
create rules. Furthermore, such rules can become quite complex and sometimes it is
impossible to formulate a rule. In those cases, learning-based analytics can be applied
that are described next.

2.3.2. Learning-Based Analytics

In learning-based analytics data is not analyzed by predefined rules, rather historical data
is used to train a corresponding ML model. Those models are then applied on new data
to generate new insights. This is especially interesting for cases where the underlying
relationships in the data should be learned, which are often complex and non-linear
[Lade et al. 2017]. To do that, analytics software can be used to make predictions about
unknown events [Rehman et al. 2019]. Data analytics is defined as: "the application of
computer systems to the analysis of large data sets for the support of decisions" [Runkler
2016]. Furthermore, "advanced analytics is a general term which simply means applying
various advanced analytic techniques to data to answer questions or solve problems"
[Bose 2009].
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Figure 2.3.: Generic supervised machine learning workflow [Landset et al. 2015]

This especially includes techniques from the fields of ML and Artificial Intelligence (AI)
[Groger 2018]. In this work, we focus on ML for event streams where ML is defined as:
"A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure D, if its performance at tasks in T, as measured by P,
improves with experience E" [Mitchell 1997]. One distinguishes between supervised
ML, where a label exists for given instances, and unsupervised ML when the data is
unlabeled [Kotsiantis 2007]. This thesis focuses on supervised ML models, because we
want to leverage the knowledge of domain specialists to generate labels for the data. In
general, the workflow for a supervised ML task consists of three steps as depicted in
Figure 2.3. First, the data from the data source is divided into a training and test set. A
model is trained on the training data and evaluated on the test data. Then the model is
deployed into a production system on the right. Based on feedback from the production
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deployment, the model is further tuned [Landset et al. 2015]. In supervised ML it is
distinguished between classification and regression. Unknown labels, representing a class
are predicted by classification models, based on the known features for the prediction
[Kotsiantis 2007]. For regression, the learning task is to predict a numerical value, instead
of a categorical label. Both, classification and regression require a proper set of labeled
example data to train a model in order to predict unseen examples [Bifet et al. 2018].
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Figure 2.4.: Example of different components of an AutoML pipeline [Feurer et al. 2015]

Defining and tuning ML models is a time intensive task and requires a lot of data science
expertise [Gijsbers et al. 2019]. Automated Machine Learning (AutoML) has the goal to
automate this process of finding the best model and parameters for a specific problem. It
is defined as: "the problem of automatically (without human input) producing test set
predictions for a new dataset within a fixed computational budget" [Feurer et al. 2015].
Figure 2.4 shows such an AutoML pipeline. As input, a training data set X;,,;, and the
corresponding labels Y;,.;, are given. Additionally, a test data set X, is provided as
well as a a resource budget, and a loss metric. The goal is to calculate the optimal labels
for the test set }A/test regarding the loss metric and given resource budget.

In this chapter, foundations from the field of industrial data management, event process-
ing and learning-based analytics were given. The introduced terms and concepts are an
important basis for the rest of this work.






Motivation

After introducing the foundations in the previous chapter, this chapter provides the
motivation for this thesis. It is organized in four sections as follows: First, Section
3.1 provides a definition and an introduction into industrial event stream analytics.
Then, in Section 3.2 an example production line is presented that is used throughout
this work to illustrate the introduced methods, models, and tools. Section 3.3 identifies
problem statements that are relevant to enable industrial event stream analytics for citizen
technologists. In the last section of this chapter requirements based on the previously
discussed problem statements are elicited.

3.1. Industrial Event Stream Analytics

Within industrial scenarios, machines often communicate over proprietary protocols.
However, this communication usually only takes place within machines and is not
synchronized with other machines. Data produced by sensors and actors is used for
process control and is usually not persisted for further analytics [Maier et al. 2017]. In
this work, we define data produced by such data sources (e.g. machines, sensors, ...) as
industrial event streams (Section 1.1), because they introduce new challenges that must
be handled when processing and analyzing them. Events are potentially sampled in
a high frequency, because sensors and actuators are designed to control processes in
real-time. Results must also be available with a low latency [Riith et al. 2017], which
requires computing devices in close proximity to the machine, to avoid transmission of the
data over a large network. The physical assets that produce the data are geographically
distributed, with multiple assets usually grouped on one shop floor in one building.
Such production facilities can be distributed over the whole world. There is a high
heterogeneity in both the different event types (e.g. sensor measurements, images), as
well as in protocols and interfaces to access the data. However, data produced within
one event stream has a homogeneous event schema. This might evolve over time, but
such changes are rare. One of the major challenges is to extract business insights and
knowledge from this data [Groger 2018]. To do this, data must not only be processed.
Data analytics is required to draw new conclusions or get new insights (exploratory or
predictive) [Cao 2017]. Even though production processes are becoming increasingly
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automated, it is still important to include a verification by humans [Groger et al. 2016].
Those processes are always very specialized and specific domain knowledge is required
to understand and interpret the data and results. Therefore, domain specialists should
be included into the analytics task and results must be provided in a way that they can be
used by humans. To perform analytics, it is particularly challenging to take into account
the high heterogeneity of data sources and the high number of different sensors. This
leads to a high dimensionality of the data to be analyzed [Rehman et al. 2019]. To handle
this type of data, advanced analytic techniques are required. In order to create them by
citizen technologists, they must be automated as much as possible. Additionally, it is
important to note that event streams might change over time and specific techniques are
required to train and execute Machine Learning (ML) models on them.

Industrial Event Stream Analytics

Machines

C Citizen Technologists )

Figure 3.1.: Different phases of industrial event stream analytics

In this work, we describe three phases in industrial event stream analytics, as can be seen
in Figure 3.1. On the left are industrial assets, like machines providing the interfaces to
access data. First, data must be ingested, then data of multiple devices must be integrated
in a harmonized message broker, before it can be analyzed by applying advanced analytics
techniques. All of this is done by citizen technologists, which are domain specialists with
the necessary technical knowledge.

3.2. Running Example

In this section, an example production line is presented that is used as a motivating
scenario throughout this thesis. Although this production line is used as an illustrative
example that presents a simplified view, it contains all the relevant characteristics to
introduce the problems addressed in this work. The production line manufactures a
metal cover, that is later installed in a machine. For this purpose, structures are milled into
a raw piece of metal and three screws are pre-assembled, which are later used to fixate it
during assembly. Such production lines are usually highly customized, according to the
goods they produce. Therefore, it is important to develop a flexible solution that can be
easily used in other scenarios and is not just implemented for one case. State-of-the art
production lines are highly automated, but often function as a black box for the operator.
In this case for example, a camera is used to inspect the milled parts, to confirm that
everything is in order for further processing, but there are no possibilities to use other
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sensor data to track the quality or detect deviations in the process. If a part is bad it is
separated and reworked manually or thrown away. This can significantly increase the
overall production costs. The business goal is to constantly improve the quality of the
produced goods and keep the scrap rate as low as possible, to ensure a high quality for
customers. To further improve this processes, sensor data and analytics from the field
of Artificial Intelligence (AI) should be used. For implementation, complex technical
solutions must be developed by technical experts to connect, process and evaluate the
data. Therefore, the aim of this thesis is to enable citizen developers and citizen data
scientists to perform those tasks by providing them with methods, models, and tools to
connect, process, and analyze the industrial event streams.
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Figure 3.2.: Example production line with the goals to predict @ tool wear and @ monitor
screwing station

Figure 3.2 shows our example production line, where raw metal parts are put on a
conveyor on the left, processed at two different stations and then the finished metal
covers are placed on a pallet by a robot arm on the right. The conveyor forwards the
workpiece from machine to machine for further processing. The first station is a CNC
machine that mills a structure into the workpiece and drills three holes for the screws.
After the CNC machine, a camera is mounted that verifies if the holes are in the right
place and no milling chips are in the holes, because otherwise the screwing station would
not be able to tighten the screws. The camera sends the result to the screwing station.
When the part is good the screwing station attaches three screws and forwards it to the
robot arm. If the result was bad no screws are attached and the part is directly forwarded
to the robot. The robot arm puts the finished covers either on a pallet for good parts or if
there was a problem on one of the previous steps on the pallet with bad parts. All sensors
and actuators in the system are currently used only to control the process, which was
designed and built by the machine builder. Now the efficiency shall be further increased
by leveraging the sensor data and analytics methods. Tool wear and tool breakage are
often the source of failures [Berger et al. 2017]. Therefore, as shown in @, the wear of the
milling head should be monitored. Another goal is to achieve zero-defects, which is a
great challenge [Rehman et al. 2019]. The CNC machine already has a quality control
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with the camera system, additionally, the sensor data of the screwing station @ should be
monitored to validate that the screws are assembled correctly. To achieve these business
goals, all data produced by different machines must be ingested and integrated before it
can be analyzed.

In this scenario, many different assets produce heterogeneous data, ranging from status
information (e.g. conveyor on/off), over sensor data (e.g. temperature in machine, joint
states of robot) to images (e.g. camera monitoring quality). All those assets typically
use various industrial protocols and interfaces to provide data (e.g. Open Platform
Communication Unified Architecture (OPC UA), Modbus, Message Queuing Telemetry
Transport (MQTT), Programmable Logic Controllers (PLCs), ...). In a first step, the data
must be ingested, then it must be harmonized (e.g. measurement units might differ
between machines or vendors). Once the data can be read from the different assets it
must be integrated and combined. This is especially relevant for geo-distributed assets
since their only connection might be over the internet. Industrial assets can produce a lot
of data, but not all of this data is relevant for analytics. Often it is not known in advance,
which data is relevant, requiring dynamic reduction strategies capable of intelligently
reducing the event streams. Collecting and combining data is the foundation to train ML
models to analyze the data. The citizen data scientist needs to visually explore the data
to gain a better understanding of the measured values and combine it with the domain
knowledge. Based on this initial exploration, labels (e.g. manually monitored quality of
milling head or classify scrap parts) must be provided to train a supervised ML model
on historic data. Once this model is trained, it must be deployed to automatically analyze
the industrial data streams produced by the assets.

This example is used throughout this thesis, especially in the main parts Section 6, Section
7, and Section 8 to illustrate the main ideas.

3.3. Problem statements

Based on the example presented in the previous section, problem statements are derived.
These problems exist when trying to enable business users to evaluate industrial event
streams. Special attention is paid to the shortcomings of existing approaches and solutions
in order to illustrate which problems still need to be solved. The first subsection deals with
organizational problems mainly related to the people involved in performing industrial
event stream analytics. Whereas the second subsection focuses on technical problems of
the individual phases when ingesting, integrating and analyzing industrial data.
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3.3.1. Organizational Problems

In this section, several organizational problems are discussed that occur when industrial
assets should be connected and analyzed. First, it is introduced what kind of communi-
cation between all the different involved roles is required and how this communication
overhead can be reduced by enabling citizen technologist to perform more tasks them-
selves. Then, the technical debt is elaborated, which must be mastered in order to analyze
industrial event streams.

Communication Overhead

To realize projects that leverage industrial event stream analytics, typically teams involv-
ing several different roles are required. On the one hand domain experts are needed
that have the necessary domain knowledge and on the other hand, technical experts are
required to realize and implement the solutions. It takes a long time to build such skillsets
and teams and they cause high running costs [Khalajzadeh et al. 2018]. Figure 3.3 shows
typical roles that are part of such a project. A business domain specialist, e.g. manufacturing
process engineer, is an expert in the domain and understands all the processes as well as
the data sources [Groger 2018]. However, they usually lack the technical ability to use
advanced analytics or to implement technical solutions. Device developers are responsible
to write drivers for sensors, actuators, storages or other end user applications of the
domain and have a deep understanding of protocols and individual devices [Patel and
Cassou 2015]. Data from the connected devices is handled by data engineers to build
a clean foundation as a basis for analytics tasks. Therefore, a computing and storage
infrastructure must be created that is capable of ingesting, cleaning, conforming, shaping,
and transforming data [Rehman et al. 2019]. This data is then used as a foundation by
data scientists to generate learning models. Data scientists can be defined as "people
who understand how to fish out answers to important business questions from today’s
tsunami of unstructured information" [Davenport and Patil 2012]. Once a model is found
and properly evaluated, it can be deployed and integrated into an application.

All of those roles play a key part in the realization of industrial event stream analytics
and it is important that they work closely together in the development process. A good
communication is key to the success of a project, especially because such projects are de-
veloped agil and conditions might change over time. This results in high communication
overhead between the roles. Communication is made more difficult because everyone
has their own area of expertise and a common language must be developed first. The
structural differences between each role and their area of expertise cause inefficiencies
and increase the complexity of collaboration [Groger 2018].

To reduce the technical complexity, there has been an increasing effort to enable business
domain specialists to handle technical tasks. We call them Citizen Technologists in this



30 3. Motivation

Business
Domain
Specialist

Domain Knowledge

Communication

.

‘ Device . °  Data “ /7 Data
... Developer .  Scientist .’ ‘. Engineer

-
- S~

Figure 3.3.: Communication in an industrial event stream analytics project

thesis and they are able to perform tasks that usually requires technical specialists'.
Figure 3.4 shows an overview of different types of citizen technologists. It should be
noted that these are roles and a single person can take several of these roles. Furthermore,
there are additional roles, but the ones shown in the figure are the relevant ones for this
work.

Business Domain Specialist

Citizen Technologist

Citizen
Data
Engineer

Citizen
Data
Scientist

Citizen
Developer

Figure 3.4.: Overview of different citizen technologists

Gartner defines a Citizen Developer as "a user who creates new business applications for
consumption by others using development and runtime environments sanctioned by
corporate IT"?. Such applications can also be mobile apps, so that users can interact via
their smartphone with the system [Oltrogge et al. 2018]. In this work, one of the main
tasks of a citizen developer is to connect industrial assets by modeling adapters that
read sensor values. A Citizens Data Engineer’s main task is to prepare the data in a way
that it can be analyzed. This role is closely related to the so called Pattern Engineer, who

Thttps:/ /chiefmartec.com/2018/05/democratizing-martech-marketing-technologists/ (accessed on
04/10/2021)

Zhttps:/ /www.gartner.com/en/information-technology / glossary / citizen-developer (accessed on
04/10/2021)
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composes processing pipelines by choosing appropriate event streams and transforms
them with processing elements [Riemer 2016]. The resulting events are then stored and
can be used by Citizen Data Scientists as a foundation for the training of ML models. A
citizen data scientist is defined by Gartner as "a person who creates or generates models
that use advanced diagnostic analytics or predictive and prescriptive capabilities, but
whose primary job function is outside the field of statistics and analytics".> Since these
are people from the domain, they are also responsible for providing or verifying the
labels for supervised ML. The gap between the technical and business role must further
be reduced to enable citizen technologists to perform such tasks themselves. However, a
very deep technical understanding is often still required, which is why solutions have
to be developed to target less technical users [Khalajzadeh et al. 2018]. The technical
debt that must be handled by the presented roles is explained in more detail in the next
section.

Technical Debt

In order to perform analytics on data from all assets of a company, a distributed system is
necessary that is capable of applying ML on this data. In such systems, many components
must work together and the ML part is relatively small compared to the whole system,
as depicted in Figure 3.5. It is “common to incur massive ongoing maintenance costs
in real-world ML systems” [Sculley et al. 2015], which is mainly due to all the different
components that are required. This shows that a holistic solution is needed and that the
focus should not only be on the training of ML models.

Data
Verification Monitoring

Machine

ML Resource
Data Management

Collection
Confi- Analysis Tools
guration Feature Serving
Extraction Infrastructure
Process

Management Tools

Figure 3.5.: Parts of a machine learning solution [Sculley et al. 2015]

Figure 3.5 shows the different parts that need to be addressed when applying ML models
on production data. For example, on the right side the serving infrastructure is de-

Shttps:/ /blogs.gartner.com/ carlie-idoine/2018/05/13/citizen-data-scientists-and-why-they-matter/ (ac-
cessed on 04/10/2021)
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picted. It must be capable of processing all data in a distributed environment and be
flexible enough to deploy new models dynamically on event streams. Additionally, this
infrastructure must be monitored to ensure that there are no problems during runtime.
Besides the infrastructure, a large configuration effort exists, as shown on the left side
of the figure. This concerns both the configuration of the ML parameters, as well as the
configuration for the different services that are part of the serving infrastructure. Further,
data collection, data verification, and feature extraction must be considered. Often many
different technologies are used to solve the individual tasks of a data analytics workflow,
as can be seen in the example environment in [Lade et al. 2017]. Each of those systems
must be administered by a technical expert, therefore, an integrated overall solution is
preferred which can be administered automatically to a large extent. A system that is
used by citizen technologists must be able to automate most of those tasks, because they
do not have the technological know-how to perform them manually. To enable this, we
introduce concepts for a holistic solution targeted at citizen technologists. It must support
the connection of data sources, transmit and process event streams in a distributed broker
based architecture, as well as training and deploying supervised ML models.

3.3.2. Technical Problems

In the previous section the organizational problems that arise when applying analytics
on industrial event streams were presented. Now, the focus is on the technical problems
that occur with existing solutions. First, the machine connectivity is targeted and what
the technical obstacles are to ingest and integrate data from industrial sources. Then,
rule-based analytics is introduced and what the limitations are for those techniques. In
the last subsection the complexity of data science is discussed and how automation can
help to lower the technical barriers.

Machine Connectivity

Data is the foundation to perform any advanced analytics, so the first goal is to collect
this data. It is not only important to have a high quantity of data, it must also be of high
quality to achieve good analytics results. This means the data does not only need to be
extracted from the physical assets, like machines and sensors. But it further needs to be
preprocessed and prepared. In a first step data must be ingested, which is a challenging
task due to the high heterogeneity of protocols and formats, as well as the high technical
complexity of the industrial domain. Additionally, it is very likely that similar machines
of different vendors have diverse data models, adding even more complexity. This means
we need a way to connect to the external data sources and make the data processable.
Several new technologies and standards were developed to ease and standardize the
machine connection. OPC UA* for example is such a standard that is getting more and

4h’ctps: / /opcfoundation.org/ (accessed on 04/10/2021)
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more popular in resent years. Further standards exist, unfortunately there is not one
standard and it is likely to assume that there always will be many different standards.
Also machines have a rather long live time, which makes it likely that there are many
legacy machines on the shop floor as well.

PLC controllers are often used in automated production lines to control machines by
implementing execution logic. Often, they only provide proprietary interfaces requiring
custom solutions to read data. Open Source libraries such as Apache PLC4X® introduce
a unified interface to such devices, but still a lot of programming effort and knowledge
is required that usually cannot be performed by citizen technologists. For the different
standards and protocols (e.g. Robot Operating System (ROS), MQTT, Hypertext Transfer
Protocol (HTTP)) multiple libraries are available. In this section we use PLC4X as a
representative example to illustrate the technical barrier for none technical users. Listing
3.1 shows a code snipped of the Apache PLC4X library, connecting to and reading data
from the PLC controlling the conveyor in our example in Section 3.2. First, a connection
to the PLC has to be established (line 1). Then a builder request, containing the PLC
registers to read is constructed and executed (line 4 - line 10). The values can then be
read from the response in order to work with them (line 12 - line 13). With PLC4X, an
abstraction layer was created that allows developers to connect such data via multiple
software programming languages (e.g. Java).

1 try (PlcConnection plcConnection = new PlcDriverManager ()

2 .getConnection("s7:192.168.188.22")) {
3

4 PlcReadRequest .Builder builder = plcConnection.readRequestBuilder();
5 builder.addItem("I_entry", "%IO0.3:BO0L");

6 builder.addItem("I_speed", "%I1.0:INT");

7

8 PlcReadRequest readRequest = builder.build();

9

10 PlcReadResponse response = readRequest.execute().get();

11

12 boolean entry = response.getBoolean("I_entry");

13 int speed = response.getInteger ("I_speed");

14}

Listing 3.1: Java code to read the speed and status of a light barrier from a PLC

To connect data sources with such libraries, it is still necessary to write, compile and
deploy code using the respective programming language. However, there are solutions
(e.g. Kafka Connect®) that try to reduce this implementation effort. Kafka Connect
provides a toolbox of different connectors where users only have to define configuration
parameters to start and execute those adapters. It is not necessary to write software, but it
still requires a deep technical understanding. In addition to the connection, data has to be
(pre-) processed and cleaned, which is often done manually. For this purpose, rules are
implemented to run at the message broker used for data integration. Examples for such

Shttps:/ /plcdx.apache.org/ (accessed on 04/10/2021)
6ht’fps: / /www.confluent.io/connectors/ (accessed on 04/10/2021)
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message brokers are Apache Kafka’ or Eclipse Mosquitto®. Often, tooling is provided to
facilitate the work with those brokers and integrate data, like the previously introduced
Kafka Connect. Such brokers can be used to process industrial event streams, however,
they lack the ability to dynamically adapt the event stream at the producer. Consumers -
like ML algorithms - do not always need data in the original quality and frequency, since
features are often calculated before the learned model is applied. Depending on those
consumer demands, the event stream could be reduced early in the producer, resulting
in a lower consumption of the network bandwidth. To reduce the complexity of the
algorithms consuming the data, this reduction logic should be performed by the broker
itself not effecting the consumer.

So far, the technical problems of ingesting and integrating industrial event streams were
illustrated, which are usually solved by software engineers. In this work, we try to enable
citizen developers to perform those tasks.

Limitations of Rules

In this section the focus is on the analytics part. First, it is shown how rule-based
approaches are used to evaluate event streams and what the limits for those approaches
are. Then, techniques from the field of data science are shown and how they can solve
those limitations.

Rule-based methods are a common way of evaluating event streams. Users can define
rules that are then constantly applied on event streams. This can range from simple rules
(e.g. filters and aggregations to clean up data), up to more complex rules (e.g. detect
complex time dependent patterns). This is a well established field, with different existing
solutions. Two main user interaction methods exist, either providing a Domain Specific
Language (DSL) or a Graphical User Interface (GUI) for users to define rules manually.

As introduced in the foundations in Section 2.2, streaming engines often provide a Struc-
tured Query Language (SQL) based DSL to define queries for event streams. Examples
for such engines are Esper’, Apama by Software AG', or Siddhi''. All of those tools
have different features, however, their core functionality is similar and will be explained
using Siddhi. For this example, we use the previously connected data from the conveyor
PLC containing the speed. Due to operating errors of a shop floor worker it is possible
that the speed of the conveyor is set too high. To detect this situation, a rule should
be established that constantly monitors the data. Listing 3.2 shows the resulting query.
Line 1 contains the from statement, where the conveyor stream and a time window of
tive seconds is specified. From this stream, the property converyorld is selected and the

"https:/ /kafka.apache.org/ (accessed on 04/10/2021)

8https:/ /mosquitto.org/ (accessed on 04/10/2021)

“https:/ /www.espertech.com/ (accessed on 04/10/2021)
Ohttps:/ /www.apamacommunity.com/ (accessed on 04/10/2021)
11h’ttps://sicldhi.io/ (accessed on 04/10/2021)
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average speed within the time window is calculated. This smoothens the curve and ensures
that individual outliers do not have a big impact. The event stream is grouped by the
conveyorld and events are only forwarded when the having statement is fulfilled and the
average conveyor speed is higher than five. Such DSLs are quite flexible and the queries can
be adapted for different use cases, however, they are still quite technical and users have
to learn the syntax. That is why graphical solutions are often used.

1 from ConveyorStream#window.time (5 sec)
> select conveyorld, avg(speed) as avgSpeed
s group by conveyorld

+ having avgSpeed > 5

Listing 3.2: Siddhi Query to aggregate and filter events

Tools with a GUI often allow users to model data flows, which are commonly used to
process and harmonize data from various sources. Examples for such tools are Talend'?,
or StreamSets'3. They are usually used for Extract, Transform, Load (ETL) tasks, where
one of the main goals is to gather data from many heterogeneous sources and store it in
a database. Another such tool is Node-RED', which provides a graphical user interface
to create event-driven applications. These solutions are more tailored to citizen technolo-
gists, but the focus is on rule-based analytics rather than learning-based approaches, and
they do not cope with the characteristics of industrial event streams.
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Figure 3.6.: Screenshot of Apache StreamPipes (left) and NodeRed (right)

Figure 3.6 shows the same example as before, that is now realized with two graphical
tools. On the left Apache StreamPipes' is used and on the right NodeRed. In both

2https:/ /www.talend.com/ (accessed on 04/10/2021)
Bhttps:/ /streamsets.com/ (accessed on 04/10/2021)
Yhttps:/ /nodered.org/ (accessed on 04/10/2021)

15ht’fps: / /streampipes.apache.org/ (accessed on 04/10/2021)
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cases the previously described rule to detect the maximum speed is modeled and a
peak detection is added. Peaks of the speed mean that the conveyor is accelerated for a
short period of time and then breaks again. As this behavior might damage the motors
and therefore it should be avoided. This shows the flexibility of graphical approaches,
because the rule can be modeled in a drag-and-drop-like interface and results can be
turther reused by adding splits in the pipeline.

So far, we have shown different approaches on how to define rules that are then applied
on event streams. Next, we want to describe limitations of rule based approaches. The
chart in Figure 3.7 on the left shows the time-series for the speed value of the conveyor.
The patterns can be clearly detected visually and rules can be derived from them and
executed with one of the shown approaches (DSL or GUI).
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Figure 3.7.: On the left speed data. On the right data of an acceleration and power consumption
sensor

However, patterns are not always easy to detect and the data can have high dimensionality.
This is especially true for industrial event streams, where we often have a lot of different
properties and also specific sensor types. One such an example is shown in Figure 3.7
on the right where we have an acceleration sensor and a power consumption sensor.
The goal is to detect whether the produced part is ok or not ok. In this case, no simple
threshold can be defined and additionally, such thresholds might be slightly different in
another machine, depending on factors like temperature. In such cases rules often become
too complex or it is not even possible to define a rule. Therefore, advanced analytics
techniques could be helpful, where a ML model is trained on data and can then be applied
on new data. Those models are often capable of detecting non-linear correlations. In
order to train a model, training data must be available and model parameters must be
defined. This will be discussed in more detail in the next section.

Complexity of Data Science

Specially qualified data scientists are used to analyze data and train ML models. However,
in order to create good models, it is not sufficient to only have analytical skills, the related
domain expertise is required as well [Huber et al. 2019]. A widely adopted approach
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for data science projects is the Cross-Industry Standard for Data Mining (CRISP-DM)
[Shearer 2000] that is often applied by data scientists. It consists of six different phases

shown in Figure 3.8.
Data
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Figure 3.8.: CRISP-DM cycle [Shearer 2000]

Evaluation

The CRISP-DM cycle is an iterative approach to evaluate the data in an exploratory way.
It starts with business understanding and the definition of the desired goal. This is followed
by the data understanding phase where the availability of the necessary data is checked.
Hereafter, the data is prepared, harmonized and cleaned in the data preparation phase.
During the modeling phase, a model is created that is then evaluated in the following
phase. If the model results are satisfactory it is deployed into production and the gained
knowledge is used again in the business understanding phase. In the previous sections,
the technical debts of the implementation of analytic projects have already been discussed.
The CRISP-DM cycle is a methodology that describes how data can be analyzed, however,
there is no focus on those technical realizations. Additionally, the data acquisition phase
is not considered in CRISP-DM. Therefore extensions, like the one presented in [Huber
et al. 2019], have been developed. As the data foundation is an important building block
for good analytics results, this is a major focus in this work. Especially, because we
target citizen technologists, it is important that this step is covered in a way that it can be
performed with little technical know-how. After the data is available a model has to be
trained. Therefore, it is necessary to perform the steps of data preparation, modeling, and
evaluation. Those usually require a good understanding about data science techniques.
There are efforts to automate these steps and provide Automated Machine Learning
(AutoML) [Feurer et al. 2015]. These automations can be used by data scientists to find
good models more efficiently, but they can also be used by citizen data scientists to
train models. The goal of this work was not to develop a fully autonomous system, but
rather to support humans in decision making, by automation of some technical steps
and presentation of results. Current solutions do not focus on industrial event streams
and often require the data to be in a form where the features and labels are present. This
affects also the deployment of the trained models, because the time-series data must be
transformed before the model can be applied. Current solutions also mainly focus on the
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data preparation and model training steps of the CRISP-DM cycle and pay less attention
to the data acquisition and deployment of the models.

Next, we will present different tools that are used by data scientists within the CRISP-DM
cycle to create models. Usually, the definition of the training task is done programmati-
cally or with a graphical tool. In the end of this section, solutions are presented that use
AutoML procedures and enable the user to create models in a guided process.

Several different programming libraries exist that allow users to train and apply ML
models in the programming language of their choice. Examples for such libraries are
scikit learn [Pedregosa et al. 2011], H20 [Cook 2016], or tensorflow!®. Many other libraries
exist and some are even available as open source software. Developers can choose one
depending on the given requirements. Listing 3.3 shows an example how the training
of models can be defined in scikit learn using python. First, the (tree-based) model that
should be used is imported in line 1. Then, the training data is specified in line 3. This
is an array of feature vectors for each training example. The label for each example is
defined in line 4. After that, the model is initialized and the fit method is called to train
the model. Once the model is trained, it can be applied on new feature vectors as can
be seen in line 8. It is important that the feature vectors contain the same information
in both the training data, as well as the new instances that should be predicted. The
example only illustrates the base functionality, usually more code is required (e.g. create
a train / test split of the data before training).

from sklearn import tree

(2,21, [1,1]]

[1,0]
tree.DecisionTreeClassifier ()
it (train, label)

train
label
model
model.

® N U W N e
oo

result = model.predict([2.,2.])

Listing 3.3: Python code training a decision tree with scikit-learn

Figure 3.9 shows two examples for graphical approaches to define and train ML models.
Again, there are many different solutions available, both open source and also commercial
products. The shown examples are only to illustrate the core functionality of tools within
this category. On the left is KNIME [Berthold et al. 2009]. Analytics workflows can be
defined in a drag-and-drop-like interface. On the right is the GUI for H20 Flow!”, where
the configuration parameters can be defined and then the model is trained. H2O also
has a programmable interface similar to the one shown in Listing 3.3. Such graphical
tools focus on users with a deep data science knowledge, that do not prefer to define
their analytics workflows in code.

The examples show that either a few lines of code or with a configuration in a GUI
it is possible to train ML models. However, the complexity lies within the amount of

®https:/ /www.tensorflow.org/ (accessed on 04/10/2021)
https:/ /www.h20.ai/ (accessed on 04/10/2021)
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Figure 3.9.: Definition of a tree-based model using graphical tools. KNIME on the left and H20
flow on the right

configuration possibilities. There is not a single best model for all problems and each
model type has many different configuration possibilities, which must be specified and
might differ between data sets. To overcome this problem, solutions that use AutoML
to find a good model for a specific ML problem were developed. Several open source
libraries (e.g. auto-sklearn [Feurer et al. 2019], TPOT [Olson and Moore 2016]) exist.
Their programming interfaces are similar to the one shown in Listing 3.3, but instead of
specifying all model parameters, the frameworks search for the best configurations. A
benchmark for the different approaches can be found in [Gijsbers et al. 2019]. Several
commercial solutions exist, mostly from companies that already provide analytics solu-
tions like RapidMiner!®. Additionally, big technology companies like Microsoft provide
solutions for AutoML within their cloud services. Those solutions mainly focus on citizen
data scientists, but they target the data science workflow. Users are able to upload files
and define their ML problem in a guided workflow. In this work, we focus on time-series
data created by industrial machines, where the model should be directly deployed into a
production system. Most of the existing tools focus on the low-level data analytics process
of coding and providing basic visualizations of results [Khalajzadeh et al. 2018]. It is
also challenging to develop standardized, generic reusable analytics services, therefore,
a feasible approach is to create a domain-specific data analytics solution [Groger 2018].
Current techniques tend to focus on automation of the training process, lacking a holistic
approach to train models for industrial event streams and even applying them directly
on real-time data.

18ht’fps: / /rapidminer.com/ (accessed on 04/10/2021)
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3.4. Requirements Elicitation

In this section, we discuss requirements for methods, models, and tools that enable
citizen technologists to analyze industrial event streams. Requirements elicitation is
defined as "the process of seeking, capturing and consolidating requirements from
available requirements sources" [Glinz 2011]. The requirements are elicited based on
the previously discussed problem statements, as well as on various papers from the fiel
of IIoT analytics. Figure 3.10 depicts an overview of the three steps of industrial event
stream analytics and highlights the different requirements for each step. It begins with
some overall requirements for the whole approach, continuing with requirements related
to ingesting data. After that, requirements focusing on the integration of data from
multiple sources are presented, closing with requirements that are related to analytics of
industrial event streams are discussed.

* R1: Accessibility for Citizen Technologists
* R2: Reduce Technical Complexity

* R3: Support Heterogeneous * R8: Use of Publish- « R12: Definition of ML Task
Types of Sources /Subscribe Paradigm « R13: Automated Training of

¢ RA4: Unified Data Model « R9: Reduce Events when ML models

* R5: Modelling Support Transmitting « R14: Fast Time to Model

* R6: Harmonize Data * R10: Quality Awareness + R15: Fast Deployment

* R7: Extensibility * R11: Dynamic Adaptation » R16: Adaptation

Figure 3.10.: Overview of the requirements for this work

3.4.1. Overall requirements

In this section, two overall requirements are presented, which permeate the entire work.
We mainly target citizen technologists by providing an integrated approach to automate
industrial event stream analytics.

Requirement R1: Accessibility for Citizen Technologists
Citizen technologists should be facilitated to perform industrial event stream analytics themselves.



3.4. Requirements Elicitation 41

The main expertise of citizen technologists lies usually in the subject domain and not in
technical fields. Therefore, it is necessary to provide technical support for such roles and
facilitate them to analyze the data on their own instead of relying on technical experts.
This reduces the required communication overhead in data analytics projects.

Requirement R2: Reduce Technical Complexity
An integrated approach is necessary to realize data collection, training of MIL models, and execution
of those models.

There is a high technical debt when realizing systems for industrial event stream analytics,
as introduced in the previous section. An integrated approach is required that covers
all of the mentioned functionalities (e.g. data collection, model training, ...). Since the
targeted user group are citizen technologists, it is important that the technical integrations
can be guided and automated as much as possible.

3.4.2. Model & ingestion requirements

This requirements category focuses on ingesting data from industrial data sources. It
covers both the model to describe different data sources as well as the description of the
data itself and how the modeling can be achieved by citizen developers.

Requirement R3: Heterogeneous Types of Sources
Different kinds of industrial data sources as well as different types of data can be connected.

In industrial settings, many different standards and interfaces exist that can be used to
collect data from machines. There is especially a wide heterogeneity of different machine
types, all producing different kinds of data. Therefore, the model for accessing those
data sources must be able to cope with such differences and support a wide variety of
them. Here, the focus lies in particular on machines and sensor data, which was the most
frequently mentioned content of data in a study of requirements for industry 4.0 data
processing [Golzer et al. 2015].

Requirement R4: Unified Data Model
A unified data model for consuming and processing connected event streams.

Once data sources are connected they must be described in a unified way. Both the seman-
tic meaning and the technical interfaces should be harmonized to ease the subsequent
analytics of this data [Golzer et al. 2015]. There must be (semantic) meta information,
such as a common vocabulary, that facilitates the integration and the analytics tasks.

Requirement R5: Modeling Support
Modeling support is provided to enable citizen developers to connect new industrial data sources.

A guided way to integrate new data sources is required that supports a citizen developer
by reducing the technical complexity. The heterogeneity of different data sources makes it
difficult to fully automate the whole process, especially as there is often a lack of (machine
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readable) meta-information. Hence, the goal is to provide a flexible way to quickly add
new data sources in agile environments [Groger et al. 2016].

Requirement R6: Harmonize Data
In order to ensure a harmonized data basis, preprocessing rules are required for the transformation
of data upon ingestion.

Due to the different representations of data it must be possible to preprocess and harmo-
nize the data on ingestion, in order to provide a clean data basis. This is one of the key
requirements for analytics systems working on IIoI data [Rehman et al. 2019]. It should
be done directly during ingestion to ensure that further calculations are performed on
harmonized data.

Requirement R7: Extensibility
To be able to cope with changes in the future the approach should be extensible.

Due to the very high heterogeneity and still active development of new standards, the
model describing the ingestion of industrial data sources must be extensible. It must be
able to handle new types of data sources which might be implemented in the future, as
well as domain specific standards that are not already integrated. Further, it is necessary
to extend the model with new transformations when necessary, for example when some
domain specific type of data requires certain preprocessing.

3.4.3. Integration requirements

The following requirements focus on the integration of industrial event streams. Data of
different assets must be integrated and combined to create a basis of data for analytics. In
particular, the distributed infrastructure must be taken into account and the transmission
of data should be optimized to reduce the load in the network.

Requirement R8: Use of Publish-/Subscribe Paradigm
Already existing publish-/subscribe systems should be used and extended to process industrial
event streams.

Existing solutions of message brokers realizing the publish-/subscribe paradigm are
often already capable of routing data and making it available for different analytics
algorithms. Those already existing technologies should be reused and extended to cope
with the characteristics of industrial event streams. This can be achieved by designing a
wrapper around existing technologies that provides functionalities while reusing already
well established concepts.

Requirement R9: Reduce Events when Transmitting
Machines can produce large amounts of data, which should be (pre-)processed on the edge and
intelligently reduced when transmitting, to reduce the load of the network.
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Sensors and actuators in machines or production lines are designed to control processes
in real-time and, therefore, often have a high sampling rate. If this information should
now be used for analytics purposes, large amounts of data can be generated due to the
high frequency and number of sensors. Analytics systems must be able to handle such
enormous amounts of data and generate results with low latency [Rehman et al. 2019].
Therefore, edge computing devices are needed that can process data locally and possibly
reduce the quantity before transmission over the network.

Requirement R10: Quality Aware
Subscribers must be able to define the quality of the required data.

When analyzing data, different subscribers might have different quality requirements
for the same data, such as the required event stream frequency. To be able to realize
this, it must be possible to define the quality requirements per subscriber instance and
transmit the data accordingly. These quality requirements may change over time, as
shown next.

Requirement R11: Dynamically Adapt Industrial Event Streams
Quality requirements might change over time, therefore, it must be possible to dynamically adapt
streams itself according to the requirements of the consumers.

In order to apply ML models on event streams, it is not always necessary to transmit all
the information. This should be exploited to reduce the events accordingly at the edge.
Since the requirements of consumers can change constantly, it is necessary to dynamically
adapt event streams automatically without the intervention of a citizen technologist.

3.4.4. Analytics-related requirements

The requirements in this subsection focus on analyzing industrial event streams by
training and deploying supervised ML models. To do this, no specialized data scientist
is required, rather citizen data scientists should be empowered because they have the
necessary domain expertise to be able to understand the meaning of the data.

Requirement R12: Definition of ML Task
Citizen data scientists are able to define a machine learning task based on integrated data.

Business and domain decision parameters should be predicted on past data [Golzer
et al. 2015]. Therefore, citizen data scientists must be able to define ML tasks, which are
then executed automatically and train a model. A guided workflow based on previously
collected data can help the citizen data scientist to create a task definition. Once the
training is completed, the resulting model should be presented to the citizen data scientist
to validate its performance.

Requirement R13: Automated Training of ML Models on Industrial Event Streams
Supervised ML models for time-series data should be trained automatically on the basis of (labeled)
industrial event streams.
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Techniques and approaches from the field of AutoML should be used to automatically
train supervised ML models on time-series data. Data should not be preprocessed or
edited, before the AutoML approach can be applied. The previously created description
of the data streams should be sufficient to define the ML problem and to train a model
automatically.

Requirement R14: Fast Time to Model
For citizen data scientists it should be possible to define ML models with limited time effort.

The manual effort for training a ML model should be low due to the automatic search for
the best configuration settings for a given data set. The training itself might take longer,
but is completely automated, and does not need any manual input. Once the training
is complete, it should be possible to evaluate the results in order to be able to directly
deploy the best model.

Requirement R15: Fast Deployment of ML Models
Trained machine learning models can be deployed to process industrial event streams.

Previously trained and evaluated ML models can be deployed in a distributed environ-
ment as reusable components without any implementation effort. A graphical modeling
interface should be provided for citizen technologists to integrate those models into
pipelines and constantly process industrial event streams.

Requirement R16: Adaptation
As circumstances or data changes, it should be possible to (re-)train new models.

Data itself, or the distribution of the data might change over time. Therefore, event stream
should be monitored if there are structural data drifts that might effect the quality of
the predictions. All of this should be overseen by a citizen data scientist who can add
additional domain knowledge as to why these changes occurred in the first place and
retrain the model accordingly.



Related Work

In this section, related work in the context of industrial event stream analytics is presented
and discussed. The main goal of this thesis is to facilitate data-driven analytics for citizen
technologists. Therefore, an infrastructure and systems must be provided that are capable
of performing Industrial Internet of Things (IloT) analytics. Such systems are often
complex and consist of multiple components. Figure 4.1 depicts the relationship between
the different areas of related work and how they are linked to the different parts of this
thesis. Section 4.1 presents research from architectures for IIoT analytics that are capable of
supporting the whole data analytics workflow. After architectures have been assessed,
the focus is placed on the three sub-aspects. First, the related work from the area of 4.2
connect & model IloT data sources is presented, then from 4.3 data processing & reduction, and
lastly discuss the area of 4.4 self-service data analytics. These areas are important building
blocks that must be considered in order to achieve the overall goal of providing a holistic
solution for citizen technologists.

4.1 Architectures for lloT Analytics

A 4 A 4 v
4.2 Connect & Model 4.3 Data Processing & 4.4 Self-Service Data
lloT Data Sources Reduction Analytics
A v e

Figure 4.1.: The different areas of related work

4.1. Architectures for lloT Analytics

IIoT analytics places special demands on the infrastructure and systems that process
streaming data. Especially, the distributed setup and high heterogeneity of data sources
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introduces new challenges that must be covered by the system architecture and data mod-
els. In this section, we first introduce some reference architectures for IIol analytics. Then,
further approaches are presented, which are able to analyze data from heterogeneous
data sources.

The PERFoRM [Gosewehr et al. 2017] project introduces a middleware-oriented architec-
ture. The middleware acts as a mediator, allowing systems to communicate with multiple
formats [Trunzer et al. 2019]. An information model for the semantic description is
specified and “tools, which are developed within the project directly are expected to
implement the standard interfaces” [Gosewehr et al. 2017] to communicate over the mid-
dleware. There are five main requirements on the middleware 1. aggregation, 2. processing,
3. presentation, 4. publication, and 5. protection. These are important requirements that
we also consider for the concepts of our message broker. The system provides a loosely
coupled solution that is easy to extend since the middleware is the central exchange link.
However, for legacy systems "tool-specific adapters need to be developed to expose its
data" [Gosewehr et al. 2017]. This takes a lot of manual implementation effort, which is
why we try to partially automate the adapter creation to speed up the process of data con-
nection. Another flexible architecture for data mining in automated production systems
is introduced in the IMPROVE project [Trunzer et al. 2017]. It is a "layered architecture
[that] differentiates between data suppliers, data users, and dashboards” [Trunzer et al.
2019]. Likewise, a middleware is used for data management and integration. It is a
four layer architecture consisting of a data source layer, integration layer, analysis layer,
and a dashboard layer. The authors state that "programming adapters for legacy systems
is a major obstacle”[Trunzer et al. 2017]. Inspired by the two previously introduced
approaches the paper [Trunzer et al. 2019] proposes a reference architecture for IloT
applications. This reference architecture shows the importance to provide interfaces for
humans to interact with the data, because they control the processes of the machines.
Further, it is described that adapters are relevant to retrieve data out of all the different
systems. At the "heart [of the architecture is] the data management and integration bus"
[Trunzer et al. 2019]. Several technologies (e.g. Open Platform Communication Unified
Architecture (OPC UA) or RabbitMQ) are proposed to implement this integration bus. In
this thesis, we decided to rely on message brokers since they allow us to build a flexible
distributed system processing streaming data. Here, also adapters are used to "translate
between different information models and protocols" [Trunzer et al. 2019]. However, it is
also stated that those adapters must be "programmed individually for each information
model and protocol” [Trunzer et al. 2019], which leads to additional manual work. A
more advanced architecture is introduced in the COGNITWIN project. In [Abburu et al.
2020] the authors state that a typical set-up requires a sensor network to continuously
collect data and monitor different assets and processes. All this data should be stored in
a database. At the center of the architecture for a cognitive digital twin is also a message
broker to exchange data that is provided by adapters connected to machines supporting
multiple formats. The so-called COGNITWIN Toolbox (CTT) consists of five layers. First,
the data ingestion and preparation layer, where data and metadata is stored in repositories
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and several data ingestion and cleaning services are provided. With the adapter concept
introduced in our work, it is possible to automatically create adapters without any imple-
mentation effort. Second, there is the model management layer ensuring access and storage
of different types of models. Third, the service management layer processes data produced
by the related physical assets. In our work, we try to enable citizen technologists by
leveraging Automated Machine Learning (AutoML) approaches to train models with
a service. The resulting models are then executed on event streams. The fourth layer
focuses on visualizations & reporting, which is important for users to interact with the
system. The last and fifth layer handles the management of the digital twins.

All the previously introduced reference architectures have in common that adapters
connect machines to a central broker for data exchange, from which further analytics
services can process the data and provide an additional interaction layer for users. Our
approach is based on these concepts, but aims to reduce the technical complexity for the
user. This was chosen, among other reasons, to ease the data exchange between different
network zones, which are common in manufacturing setups.

There are more approaches to connect and process data from distributed systems, as
presented in [Kirmse et al. 2018]. The authors describe a lightweight approach for data
integration and big data analytics, that copes with the distributed nature of IloI data
sources. All raw events are stored in a distributed storage, where they are later available
for analytics jobs. The complexity of data integration is reduced by only adding a minimal
set of additional meta-information to the events, without further transforming them.
The data is then analyzed at a central location with no network restrictions. Due to
the high heterogeneity of data sources, we try to leverage the semantic knowledge to
describe the data and (pre-)process it in close proximity to the source, which in the
end eases the downstream analytics tasks. However, there are other approaches that
deal with the semantic heterogeneity of IloI systems. In [Jirkovsky et al. 2017], several
types of semantics heterogeneity are described and an ontology (called SHS ontology) is
introduced that is used to transform and harmonize the data into a unified triple store
optimized for big data applications. SHS is based on the SSN ontology'. Additionally, an
architecture with four layers is proposed. First, the data acquisition layer is used to connect
the different sources, then, in the transformation layer data is transformed according to
the SHS ontology and stored in the data storage layer. Then, data can be queried via
SPARQL queries and further analyzed with analytics frameworks in the analytic layer.
In our approach, we use the flexibility of ontologies to harmonize data from different
sources, but we use a more lightweight way for the events. Semantic descriptions are
only used as meta-data and event streams are not transformed into triples. In this way,
we can integrate existing data sources without having to change the data and still benefit
from the advantages of machine readable semantic descriptions. We do not provide an
ontology to describe domains, rather we leverage existing ontologies like the SSN to add
meta-information to the data and create a domain model. As stated before, we rely on

1ht’fps: / /www.w3.org/2005/Incubator/ssn/ssnx/ssn (accessed on 04/10/2021)
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a message broker for data integration and automatically generate adapters based on a
semantic description of the data source.

Data integration can also be automated by model-based approaches, like in [Hufnagel and
Vogel-Heuser 2015]. Adapters connect all IT systems to a data backbone, where the data is
stored in a harmonized form. Users can integrate different data sources by modeling the
harmonization steps in a Unified Modeling Language (UML)-like fashion and adapters are
generated based on this model for the specific systems. Another model-based approach
is presented in [Pauker et al. 2016], where the modeling of the virtual representation of
machines is simplified. UML can be used to model the domain, which is then transformed
into other models like OPC UA, MTConnect, or even programming languages (e.g. .NET).
For each of those model transformations, the meta-model with corresponding mapping
rules is used. This approach reduces the technical complexity for data integration, but
users need to understand the UML syntax and explicitly create a model, sometimes even
some code must be implemented manually. In our approach, we infer the model in the
background by interaction of the user with a GUIL Additionally, we try to support the user
during the modeling process by leveraging meta-information of the data source, when
available. No explicit modeling is required. Furthermore, we provide meta-information
about the data source that can be used for additional processing.

In this section, several approaches for systems that provide analytics on industrial event
streams were introduced. It was shown that those systems consist of multiple components
/ layers (data acquisition, data processing, data analytics) that are required to analyze
data from multiple heterogeneous industrial assets. All of those systems introduce a
lot of technical complexity that must be processed by users. These areas of connecting,
processing, and analyzing data will be examined in more detail in the following sections,
as they need to be solved in order to provide an overall solution for citizen technologists.

4.2. Connect & Model IloT Data Sources

To ingest data into an analytics systems, different physical assets must be connected. In
this section first, several standards and protocols for IIoI systems are introduced. Then,
approaches for semantic data modeling in the context of IloT systems are shown. At the
end of this section, several open source solutions are derived that are used for connection
and modeling of IIoT data sources.

Nowadays, there is no universal standard that defines how all industrial assets communi-
cate [Gosewehr et al. 2017; Berger et al. 2017]. However, several different standardization
efforts exist, which are presented in the following:

OPC UA is a platform-independent protocol for IIoI communication, which is standard-
ized in the IEC 62541 series [Commission et al. 2016]. It does not only describe how
machines can exchange data, it is further possible to provide a semantic description for
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the data. Architecture-wise, it uses a Service-Oriented Architecture (SOA) consisting of
multiple layers. "OPC UA does not only deal with simple data access, but also with a wide
range of other aspects e.g. security, reliability, access control, alarming, or historical data"
[Schleipen et al. 2016]. OPC UA is an integration standard enabling the cooperations of
multiple stakeholders from different domains. Multiple joint working groups and com-
panion specifications exist, which can be found on their website?. One such a companion
specification is the universal machine technology interface (umati)®. It is developed by
a community of members from the machine construction industry together with their
customers and provides a standardized open interface based on OPC UA. Our aim is
to leverage knowledge provided by the rich data-model of such information models.
However, not all machines provide such an interface. In contrast to consumer hardware,
machines in the production environment have a very long lifespan, which is partly due
to the often immense investment costs. This means in particular that solutions must
be applied in brownfield deployments, containing legacy systems, adding additional
complexity [Boyes et al. 2018].

MTConnect [MTConnect 2021] is a data and information exchange standard that also
defines a semantic data model for the manufacturing domain. Adapters are used to
communicate with pieces of equipment and provide information to the MTConnect
agent. Agents are responsible for handling the data in a structured way and provide it to
clients (e.g. applications) that use the data. Data is exchanged as XML via HTTP as a
transport protocol. Two main communication methods are provided request/response
and publish-/subscribe. A companion specification for OPC UA also exists for MTCon-
nect that defines mappings between the two standards [Foundation and Institute 2019].
The authors of [Liu et al. 2019] show, how a combination of OPC UA and MTConnect can
look like as a standardized efficient data exchange between machines and tools. They
state that "MTConnect provides a concrete information modeling method specifically
designed for CNC machine tools with some predefined data structures and rules" [Liu
et al. 2019]. However, "OPC UA offers a more generic information modeling method in
order to cover a broader range of industrial equipment and systems" [Liu et al. 2019].

Another approach to standardize communication between machines on the shop-floor
is the Asset Administration Shell (AAS) [Adolphs et al. 2016]. It provides a unified
description for assets introduced by the initiative "Platform Industrie 4.0". It defines
a unified wrapper around assets, its representation, and technical functionality. In
[Tantik and Anderl 2017], a realization of the concept is introduced. Several options to
serialize the models from the AAS exist (e.g. XML, JSON, RDF, OPC UA data model
and AutomationML) [Abburu et al. 2020]. In our approach, the data source does not
have to conform to a fixed standard. We do not necessarily need a wrapper like the AAS
around the data source. However, if such a model exists, we try to leverage the provided

Zhttps:/ /opcfoundation.org/ (accessed on 04/10/2021)
Shttps:/ /umati.org/ (accessed on 04/10/2021)
4https: / /www.plattform-i40.de/ (accessed on 04/10/2021)
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meta-data to complete the configurations automatically and ease the adaption process.
With Eclipse BaSyx3, an open source implementation based on the concepts of AAS is
available [Abburu et al. 2020]. It provides common industry 4.0 components, as well
as a SDK for a fast development. In our approach, we also provide a SDK, to allow the
integration of new adapters in case further requirements arise.

The World Wide Web Consortium (W3C)° provides with the W3C Web of Things (WoT) ® a
specification that has the goal "to improve the interoperability and usability of the Internet
of Things (IoT)". It consists of multiple building blocks, like the WoI Thing Description, as
well as an abstract architecture. The WoI Things Description (TD) specification provides
a meta-model with a "thing" at its core. A thing is described as "an abstraction of a
physical or a virtual entity whose metadata and interfaces are described by a WoT TD'”.
The TD does not define an API how to access "things", it rather requires one (or even
more) description of existing API endpoints [Abburu et al. 2020]. The goal of this thesis
is not to define a new standard that competes with the previously introduced standards,
but focuses on industrial event stream analytics, where it is necessary to connect to data
sources. We leverage existing and widely adopted standards to ease the ingestion process
for citizen technologists.

Semantic descriptions play a key role in the previously introduced data models. Next,
we introduce several approaches that use semantic technologies for data integration
and harmonization. Winte.r [Lehmberg et al. 2017] for example supports standard data
formats, like CSV, XML, or RDF. Data sets with different schemas can be merged, as
well as units can be harmonized. We use similar techniques, but focus on streaming
data of industrial assets instead of data sets. In Spitfire [Pfisterer et al. 2011], the goal
was to develop a Semantic Web of Things. It focused on REST-like sensor interfaces,
leveraging semantic technologies for interoperability. In our work, we concentrate on
industrial protocols with high-frequency event streams that require local preprocessing.
We use semantic descriptions for meta-information describing the streams. In the Big
IoT' API [Broring et al. 2018], the focus lies on the interoperability between IoI platforms.
In contrast, we focus on citizen developers to connect data, especially from Ilol data
sources.

So far, standards and semantic models for IIoT systems and data modeling were intro-
duced. In the following, several open source solutions are presented that can be used to
integrate and model data. Initially, there are libraries that directly communicate with
PLCs in machines. This used to be a very complex technical problem, because the APIs of
manufacturers are not compatible and, therefore, individual implementations are always
necessary. With Apache PLC4X?, a solution was developed that solves this challenge. It
provides a unified API for PLCs, similar to what JDBC does for databases. This makes it

5h’rtps: //www.w3.org/ (accessed on 04/10/2021)

®https:/ /www.w3.org/TR/wot-architecture/ (accessed on 04/10/2021)

"https:/ /www.w3.org/ TR /wot-thing-description/#thing (accessed on 04/10/2021)
8h’ttps: / /plcdx.apache.org/ (accessed on 04/10/2021)
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possible to write reusable, vendor-independent code. We leverage such tools to enable
an easy configurable and reusable approach. Even if such libraries greatly reduce the
technical complexity, a software developer is still necessary to connect data. Therefore,
we use such solutions for the technical connections, but in a way that end users only need
to provide some initial configuration parameters.

With Eclipse Vorto?, it is possible to describe the capabilities and functionalities of devices.
The description of the devices can be defined using a Domain Specific Language (DSL).
Based on this description, code can be automatically generated in a device agnostic way.
An open online repository is provided that already contains several models for devices.
In [Laverman et al. 2016] it is shown, how Eclipse Vorto can be used to integrate vehicle
data into a smart home IoT system. In contrast to our work, Eclipse Vorto focuses on the
model for the devices, which is described in the DSL. We try to infer the model based on
runtime data and automatically create a data adapter. If a data source already provides a
rich model like Vorto, we could leverage this meta-information to ease the configuration
effort for users.

In this section, we presented several standards and approaches on how to model and
connect IIol data sources. Most of these approaches still require a certain level of technical
expertise. In our method, we provide a guided workflow to support the user to connect
new data sources by creating a model and automatically instantiate the adapters.

4.3. Data Processing & Reduction

Once data sources are connected, the data they produce must be processed and evaluated
by algorithms and services. In the previous sections, it was shown that message brokers
are generally used as a unified data backbone in distributed IloT systems. A distributed
based message broker ensures that the data is available for all services requiring it. In this
part, approaches for different message broker systems are introduced first. Next, methods
from Wireless Sensor Networks (WSN) are presented, which are capable of dynamically
reducing the information before transmission. Finally, the influence of serialization on
transmission performance is discussed.

There are different types of message brokers. In this work, we focus on content-based and
topic-based publish-/subscribe systems. We see these as the most promising solutions
for IloT scenarios, because it is possible to subscribe to data of individual or multiple
assets. In content-based publish-/subscribe systems, subscribers can define individual
restrictions and the message broker ensures the routing of the messages that fulfill
these restrictions. This could, for example, be used for an analytics algorithm, which
is only interested in specific data produced by some assets (e.g. of critical situations).
A popularity-based routing approach to optimize the data flow within the broker is

9ht’fps: / /www.eclipse.org/vorto/ (accessed on 04/10/2021)
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proposed in [Salehi et al. 2017]. The authors of [Bhowmik et al. 2016] propose a different
approach, using Software Defined Networking (SDN) techniques to reduce events on
network devices. This makes it possible to filter events earlier, before they are transmitted
to the subscriber, and reduces network load. In our approach, we also try to filter events
early on edge devices close to the source. But we rely on topic-based brokers, as the
analytics methods do mainly not rely on single contents of events. Usually all events of a
certain asset are required.

In [Sommer et al. 2018], four broker technologies are compared, three of which are
topic-based: Message Queuing Telemetry Transport (MQTT), AMQP, Apache Kafka.
Their evaluation shows that all of the systems have a "throughput of more then 1000
mps [Messages per Second] for all tested payload sizes, which is relevant for industrial
applications, as most control cycle times are between 1 and 10 ms" [Sommer et al. 2018].
Based on the technical and security capabilities of the examined message brokers, the
authors argue that all of the systems can be used in industrial settings. However, the
brokers have many differences and must be selected according to the specific use cases.
In this work, we decided to introduce a wrapper around existing topic-based message
brokers, to leverage the already available functionalities and extend them with dynamic
reduction strategies. Latency is a big influencing factor in the evaluation of IIoI event
streams. This plays a key role especially in distributed systems, because events have
to be transmitted over a network. To reduce this influence, different proximity-based
middleware technologies were developed to optimize the routing of events that use local
compute power on edge resources. PubSubCoord [An et al. 2017] is such a solution,
which supports scenarios where multiple Local Area Networks (LANSs) are connected
over a Wide Area Network (WAN). Each local network contains an edge broker that
is linked to a routing broker. This routing broker acts as a mediator and routes data
between the edge brokers. The goal is to reduce the latency for the clients by optimizing
the routes. Another solution is EMMA [Rausch et al. 2018b], a QoS aware middleware
based on MQTT. It consists of four components (gateway, broker, controller, monitoring
protocol): First, gateways are used as buffers between the clients and the broker. With
those gateways, it is possible to switch the broker during runtime. Second, there are brokers
that implement the MQTT server protocol that also act as a topic bridge to forward events
to other brokers. Third, there is the controller orchestrating the whole system and fourth,
a monitoring protocol that monitors the network QoS in the distributed environment. With
this solution, it is possible to dynamically adapt to changing conditions in the system.
The concept of dynamic adaptation are inspired by principles of the field of osmotic
computing [Rausch et al. 2018a]. In cloud-based systems, the configuration is usually set
on deployment time. In [Rausch et al. 2018a] it is argued that edge-based brokers must
be able to react to changes dynamically, since the network or clients in the system might
change during runtime. They introduce the term osmotic pressure that is "calculated
based on the amount of clients and their proximity to the resource" [Rausch et al. 2018a].
The goal is to share information between the clients as fast as possible, therefore, they
introduce an indicator for proximity based on the network latency between clients. All
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of those concepts and message brokers focus on how to optimally route data between the
clients. It is agnostic to the payload of events and it does not optimize what is transmitted,
because no semantic understanding of the data is available. In this thesis, the content of
the event schema is semantically described and this knowledge is used to dynamically
reduce the payload. Since our solution is designed as a wrapper around topic-based
approaches, it can be combined with the approaches from this field.

In Wireless Sensor Networks (WSNs), approaches exist that attempt to optimize data
transmission according to the information represented in the data. WSN consist of
distributed sensing devices connected via a wireless network. Often, these devices
have limited resources and power, which means they must optimize the transmission of
sensed information to reduce power consumption. Two approaches where individual
sensors decide whether they transmit data or not are proposed in [Jiang et al. 2011]
and [Harth and Anagnostopoulos 2017]. Receivers are capable of reconstructing the
measurements based on previously transmitted data, although they are not actually
being sent. Computing the data locally results in lower energy consumption versus
sending the raw data to a central node. We use similar techniques and apply them on
industrial event streams transmitted over message brokers. In addition, the subscribers
are capable of dynamically changing the data quality. Most of the previously discussed
approaches are independent of serialization, but this can have a significant impact on
performance, as described in [Maeda 2012]. There are several techniques for performing
specific compression algorithms, e.g., using shared dictionaries to compress events in
publish/subscribe systems [Doblander et al. 2016]. Our approach focuses on reducing
the content of event streams. Serialization and compression techniques are also combined
to further reduce network load, but are not particularly part of this thesis.

This section discussed related work in the field of data processing and reduction of
industrial event streams. Existing solutions do not leverage the semantics of the events or
the characteristics of industrial event streams (e.g. high sampling rate and some values
do not change too often) to reduce the amount of transmitted data. Often, no knowledge
about the analytics algorithms is available that processes the data. With this information,
dynamic reduction strategies can be applied on the event streams to automatically adapt
them according to the requirements of publishers and subscribers.

4.4. Self-Service Data Analytics

In this section, related work in the field of data analytics and self-service data analytics is
discussed. First, state-of-the art analytics approaches are presented, which often provide
a programmable interface to define analytics tasks. Then, different approaches that
try to reduce required technical knowledge are introduced, using DSLs to define the
analytics task. In the end of this section, we describe different approaches from the field
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of AutoML that try to automatically search for the best configuration parameters for
Machine Learning (ML) models.

Analyzing IIoT data with ML-based approaches can help to improve the productivity
and reduce maintenance costs in manufacturing environments. For example, machines
can automatically be monitored and early warnings can be created based on generated
predictions. This is shown in [Kanawaday and Sane 2017], where a forecast with ARIMA
is performed. Based on this forecast, a classifier is trained that predicts the quality of
a part that is currently produced. Solutions are often tailored for individual use cases
with a specific model at its core. Therefore, approaches and tools are required that
enable the quick definition and training of ML models on historic data. Multiple open
source analytics approaches exist to assist with the creation of ML models. Often, they
were developed in academia, an excerpt of these is investigated in the following study
[Landset et al. 2015], where the advantages and disadvantages for individual solutions
are outlined. Additionally, commercial approaches from cloud vendors like Microsoft
Azure'® or Amazon AWS! exist, providing the ability to scale and integrate diverse
third party solutions and sometimes even provide one click deployments. The main
focus of such tools is on creation of ML models and manually implementing aspects
of the software development lifecycle. They are technically too complex for citizen
technologists with little to no data science experience, because all the configurations (e.g.
model parameters) must be provided manually.

Once a new model is trained, the challenge is to deploy this model on new data (e.g.
event streams). A common approach is to train the model offline with historic data and
then apply it in a streaming environment. Therefore, the model parameters must be
serialized and loaded into the streaming engine. To do this in a technology agnostic way,
a standard like PMML [Guazzelli et al. 2009] can be used. After training, the model is
written into a PMML file, which is then loaded into a scoring engine [Chaves et al. 2006]
and applied on new data instances. Since the training phase and the usage of the model
are separate, it is not possible to adequately react to changes in the data. To make this
possible, one can use algorithms from the field of data stream mining, where the main
algorithms are focused on classification, regression, clustering, and frequent pattern
mining [Bifet et al. 2018]. Online training methods are used that constantly update the
models. Different frameworks exist in this area, e.g. MOA [Bifet et al. 2010] or SAMOA
[Morales and Bifet 2015] that provide an interface to define tasks for stream ML. New
labels are constantly required in order to update the models online. However, it cannot
be assumed that these labels will always exist, therefore, these often have to be created
manually for industrial event streams. For all the solutions presented above, a high
level of technical understanding is required in order to use them. Often, programming

10https: / /azure.microsoft.com/en-us/services/machine-learning/automatedml/ (accessed on
04/10/2021)
11h’ttps: / /aws.amazon.com/de/sagemaker/autopilot/ (accessed on 04/10/2021)
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languages must be used directly to preprocess data and define the configuration for the
ML task.

To lower this technical hurdle, DSLs were developed that can be used in a self-service
fashion. Thereby citizen technologists are enabled to analyze data without implementing
the solution in a programming language, rather defining the task in some DSL. This is
already often used in Business Intelligence (BI) systems and the survey in [Michalczyk
et al. 2020] provides an overview of state-of-the-art self-service BI and analytics tools.
In the survey, the authors distinguish between the technical experience of the different
kinds of users, all having the main focus on analyzing data. A concrete example is given
in [Plazas et al. 2020], where a self-service BI approach with IoI data in the context of
industry 4.0 is presented. BI experts and Iol experts work together and a UML model
is provided for each of them. With those UML models, the authors try to improve the
communication of the different roles involved in the complex task of data analytics. The
process consists of six steps, starting with requirements of a business user and resulting
in a final BI solution. Here, the focus is on creating database queries and not on the
training of machine learning models.

DSLs can also be used to describe ML tasks to train models. As shown in the survey
[Portugal et al. 2016], a distinction is made between textual and graphical approaches.
BiDaML [Khalajzadeh et al. 2019] introduces a suite of visual languages to support end
users in the data analytics process. They tackle the problem of communication between
individual roles by providing five different diagrammatic notations. The main focus is on
data scientists and software engineers, but the diagrams allow them to communicate with
business owners and business analysts as well. Itis described as a novel integrated suite of
visual languages that supports end users in designing analytics solutions. The approach
is similar to UML for the software development process. However, such solutions still
require data scientists to build the models with a deep technical understanding about
data analytics. Another approach is introduced in [Mahapatra 2019] where a graphical
flow-based programming approach is presented. Source code is generated based on these
data flow descriptions, and then executed in a (distributed) processing environment. The
descriptions can also be used to define the training task of ML models, as well as the
deployment of those models on new data. This reduces the required technical knowledge,
especially because code for distributed systems is automatically generated based on the
defined graphical flow. But ML models must still be configured manually for the training.
Even if way less technological and software development know-how is required for the
presented approaches, it is still necessary to provide the learning parameters to train a
ML model. In order to reduce this effort, we will next discuss methods from the field of
AutoML.

AutoML can be used to automatically find the best parameters for an ML task given a data
set. Several approaches for batch data exist, however, there is no wholistic approach that
enables citizen technologists to analyze industrial event streams. A challenge for event
streams is how to deal with changes in data. The authors of [Celik and Vanschoren 2020]
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discuss several strategies how to handle such changes. They discuss different AutoML
frameworks and state that those do not cover online learning algorithms. We decided
to build a wrapper around existing frameworks to be able to reuse strategies for the
automated search of a data science pipeline (e.g. model selection) and extend them with
a parameter search required for industrial event streams. In [Madrid et al. 2019], the
authors apply AutoML in the presence of drift. An extension of auto-sklearn, combined
with a drift detector is proposed that automatically triggers a retrain of the model, once
a drift is detected. In our work, we also use a drift detector when the model is applied on
event streams, to notify a citizen data scientist that data has changed. We do not assume
that there is always labeled data, so the citizen data scientist can decide if the model
should be retrained.

AutoML on event streams is an active research topic. Automations for different learning
algorithms are developed, but they are not yet integrated into a holistic framework, as
realized for batch learning approaches. In [Bahri et al. 2020], a stream k-nearest neighbors
(kNN) algorithm is introduced that performs an internal dimension reduction to reduce
the resource usage. It monitors the system and dynamically tunes the parameters of the
kNN algorithm in a streaming fashion. Our work leverages the variety of existing AutoML
approaches and creates a wrapper to apply them on time-series data. There are already
many different batch training algorithms integrated into AutoML frameworks and can
therefore be used. This is especially helpful since different algorithms may perform
differently on individual data. Mcfly [Kuppevelt et al. 2020], is a python package that
provides a deep learning AutoML approach for time-series data. It delivers an automated
parameter selection method for neural networks, but only supports classification-based
approaches. Further, it requires manual programming to transform data into the right
format and define a size for the sliding window. The presented approaches are designed
to automate a specific task. Our goal is to provide a wholistic conceptual solution that
supports citizen technologists during the whole data analytics cycle from connecting
new sources, to deploying the trained ML model without writing code.

This section first introduced different analytics solutions, then related work that uses
DSLs to reduce the technical complexity of the analytics tasks were presented. Followed
by several approaches from the field of AutoML to show how the parameters for the ML
task can be set automatically.

4.5. Conclusion

In this chapter, we presented related work in the field of industrial event stream analytics
for citizen technologists. First, several approaches for architectures and systems were
presented that enable the usage of data produced by machines. In many of these archi-
tectures it can be seen that data connection is mainly done manually. A central message
broker is used to share the data between the different distributed services. Afterwards,
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state-of-the-art from the fields of data connection and model creation was discussed.
Especially, the connection and modeling of data is often still a very technical task that
requires knowledge of the used standards and protocols. Subsequently, processing and
reduction of data using broker technologies was described. Message brokers are already
widely used in IIoT systems, but current solutions lack the ability to dynamically adjust
to changes of the subscribers by leveraging the semantics of the events to reduce the
transmitted data. Finally, related work from the field of self-service analytics was pre-
sented. It is shown how ML can be used to perform those analytics tasks and different
approaches to reduce the technical complexity are discussed. All this describes the
current state-of-the-art on how to process machine data.
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Overview

This chapter provides an overview of the main part of this thesis. In the beginning,
a high-level structure of the three main phases is given, which is followed by a more
detailed walkthrough of the individual components, to show how industrial assets are
connected and industrial event streams are analyzed.
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Figure 5.1.: Industrial event stream analytics

Figure 5.1 depicts an overview of the structure of this work and how industrial event
stream analytics can be realized by citizen technologists. On the top, the three main
phases, ingest, integrate, and analyze are illustrated. Each of these phases will be discussed
individually in the next chapters. Chapter 6 (Ingest) focuses on citizen developers and
how they are enabled to connect data from physical assets like machines and sensors. To
achieve this, a user models the data sources, based on which the adapters that create
industrial event streams are automatically generated. Chapter 7 (Integrate) focuses
on how data of multiple sources can be harmonized in a message broker. Further, the
event streams are automatically adapted based on the previously created model and
requirements of the data subscribers. The process is fully automated, so no user role
directly interacts with the message broker. Chapter 8 (Analyze) describes the last phase,
where a ML service is introduced that is capable of training and deploying supervised
machine learning models. This service focuses on citizen data scientists, by enabling them
to define a desired training configuration and train the model automatically. Since we
focus on event streams, a streaming infrastructure is required that is capable of executing
pipelines. This is used for both, preparing data for the ML service and deploying the
trained models. Citizen data engineers mainly interact with this service, however, in this
work, we reuse existing streaming approaches, which is why we do not focus on this role.



62 5. Overview

Next, we will give a more detailed overview and show how the individual components
interact with each other.

Figure 5.2 presents an overview of how the data is processed. The industrial assets @ are
located at the shop floor and provide data via interfaces. The figure depicts machines
from the production line of the example in Section 3.2. In the first step, data is ingested
and prepared to be available for further analytics, using the connect framework.
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Figure 5.2.: End-to-end view of the developed approach

On the left are the different components of the connect framework. It consists of a master,
containing all the adapter descriptions of the semantic adapter model. Furthermore, it is
also responsible for managing all the workers. Within the workers, the adapter instances
are running. These instances are directly connected to the assets, from where they read
data. To instantiate an adapter instance, a user (citizen developer) has to provide a
semantic description based on the adapter model. To simplify this process, user support
is given that leverages already existing meta-information of the endpoints. Such an
adapter instance representation can be seen at @. The first component is responsible
for connecting the data source, reading the data, interpreting it, and translating it into a
harmonized format. Then, transformations are applied to preprocess events (e.g. convert
units) before they are transmitted with a publisher P to a topic in the message broker @.
This message broker is used to integrate data from multiple sources. The main goal
is to dynamically adapt the event streams to reduce the load on the network. For this,
reduction strategies on event streams are needed, which can be applied automatically.
Those strategies run within the publisher P;, as well as within the subscription-transformer
(STh, ST5) to prepare the data individually for each subscriber (Si, S;). Industrial event
streams are usually processed in a streaming infrastructure and the data can for example
be stored in a time-series database @. In the analyze phase, data stored in the time-series
database is used as the foundation of the training service @. This service supports three
different kinds of machine learning problems, forecasting, sliding window classification, and
session window classification. Citizen data scientists are provided with a guided workflow
to specify the training task, which is then performed automatically. Once the training is
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complete, the resulting models are stored in the model repository @, where they can be
inspected by the citizen data scientist. The best model can then be used by a citizen data
engineer in event processing pipelines @ to analyze event streams.

In the following chapters, the individual contributions of this thesis are explained in
detail. At the beginning of each chapter, a walkthrough section refers to this graphic
and explains the individual components in more detail. In order to be able to use the
components in a modular way, they were designed in a microservice fashion. Individual
services are provided via container technologies, as these are particularly well suited in
edge processing scenarios [Ismail et al. 2015; Rehman et al. 2019].






Ingest

This chapter deals with the ingestion of data and is the first of the three main research
parts of this thesis. It tackles the question how citizen developers can be supported
in modeling and connecting heterogeneous industrial data sources. To cope with this
technical complex challenge, an adapter model is introduced which can be used to in-
stantiate adapters automatically. Furthermore, data quality is relevant for good analytics
results, so it is necessary to preprocess and harmonize data. Overall, this task should be
performed by users with little technical knowledge, which is why a good user support
for the individual steps is necessary.

The chapter is structured as follows, first a walkthrough is provided in Section 6.1, to
give a high-level overview. Then, some terms & definitions are introduced in Section
6.2. It discusses how the event model looks like, further it introduces virtual sensors
and the concept for adapters. In Section 6.3, the model for adapters and transformation
rules is introduced and how this model can be used to connect and transform data of
industrial assets. After that, Section 6.4 shows the advantages of the model and how
the system leverages the different characteristics to support users when connecting new
data sources. At the end of this chapter a full example is presented in Section 6.5 that
illustrates how the introduced concepts can be applied to ingest data of a production line
before the chapter is concluded in Section 6.6.

6.1. Walkthrough

The main goal of this chapter is to connect different industrial assets and make its data
processable. Therefore, a citizen developer can create a model of the data source (adapter
description), which is then used to automatically instantiate adapters. Those adapters
are deployed using a master/worker paradigm, where the master manages the workers.
The adapter instances are then launched on workers. It is also taken into account that it
is possible to harmonize the data directly on ingestion by applying transformations on
the data before forwarding it onto a harmonized message broker.

Figure 6.1 depicts the ingest part from the overview of the previous section (see Figure
5.1). It presents the different components used to ingest data of the industrial assets
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Figure 6.1.: Overview of components in the ingest chapter

(e.g. the production line @ from our motivation). Those assets provide sensor values
via interfaces. The blue dotted line illustrates the event stream from the source over an
adapter instance, running in a worker. At @, the connect master can be seen, that manages
all workers, adapter instances, as well as the data models (e.g. adapter descriptions). It
turther provides an interface for citizen developers to interact with the system. Adapter
instances run within @ worker nodes, which are usually deployed on edge nodes near
the data sources. Multiple of those workers can be deployed, each of which is registered
at the master. Every worker can contain multiple adapter instances, which process the
data. The reason for this design decision was to connect and preprocess data in close
proximity to the data source. A single adapter @ is responsible for connecting to the data
source and perform preprocessing functions on the data before it is forwarded onto a
message broker.

6.2. Terms & Definitions

In this section data models are presented, which serve as a basis for the concepts in the
further course of this thesis. To describe events, an event model is introduced which
describes the event schema consisting of multiple individual event properties. Based
on this event schema, the similarity between two data sources can be described, with
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the concept of virtual sensors. In the end of this section adapters are introduced and the
differences between generic and specific adapters are defined.

6.2.1. Event Model

Events are a basic concept used throughout this thesis. The foundation of events was
introduced in Section 2.2. In this section, the characteristics of events that are especially
relevant for industrial event streams are described. The event model distinguishes
between event instances, produced by assets containing the actual data and the event
description containing meta-information. The event schema is described in a machine
readable format, the Resource Description Framework (RDF)!, representing context
information to the observed values [Riemer 2016]. This description does not change very
often over time and can contain further (domain specific) knowledge.

Figure 6.2 depicts a speed event produced by the conveyor belt from the example pro-
duction line of our motivating scenario. On the left, the stream of speed events is shown,
serialized in the JavaScript Object Notation (JSON) format containing three values times-
tamp, conveyorld, and speed. On the right, the description for each event property of the
event schema is presented. For better clarity, it only contains a small part of the model.
RDF was chosen because of its flexibility and possibility to add more domain specific
knowledge. Each description, contains the runtime name, as well as the property type
for each property. The timestamp additionally has a semantic type that specifies it to be
a unix timestamp. For the speed property the unit is defined as meter per second and a
semantic type is set that specifies the value as the speed of a conveyor. In this example,
only a flat hierarchy is shown. However, it is also possible for events to contain nested
structures as well as lists.

The structure of an event as defined in [Etzion and Niblett 2010] has three parts. Header
properties, payload properties, and an open content. We only use header and payload
properties, because we expect that the event produced by one data source has a fixed
schema with predefined properties. Additionally, in this work payload properties are
split up into dimension and measurement properties. This information can be specified
via the property scope for each event property. Dimension properties contain identifiers
(usually of real world assets) that can be used to partition or group an event stream.
Measurements contain the actual data that usually changes over time and should be
observed by algorithms. Figure 6.2 shows an example for each of the property scopes.
The timestamp is a header property, representing the occurrence time of the event. The
conveyor id is a dimension property, that can be used for example to calculate the average of
measurement properties (e.g. speed) over a certain time for each conveyor. This information
helps to group event streams in a platform independent way.

1ht’fps://www.w3.org/RDF/ (accessed on 04/10/2021)
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Figure 6.2.: Left: speed events. Right: metadata description of speed events

6.2.2. Virtual Sensor

Different event streams have an independent event schema and so far we have not defined
how similar two event streams are, or whether they represent the same information. This
is particularly relevant for data produced by different assets, for example when there
are two machines of the same type from different vendors. Data produced by those
machines can contain similar information, but the representation might differ. In order to
unify such event streams and analyze them with the same components, the event schema
must be comparable according to its meaning. This helps to achieve the goal of a better
interoperability, because not only the representation, but also the semantics is taken into
account. Virtual Sensors, presented in this section, are a representation of a particular
event scheme.

Figure 6.3 shows an example of a virtual sensor measuring the conveyor speed. This
sensor can be used by all conveyor belts that have the capability to measure the current
speed. For all event streams that have an event schema with all these properties, the
predicate hasVirtualSensor is added. This information can be used to suggest only suit-
able analysis algorithms to users (e.g. monitor the speed of a conveyor for predictive
maintenance). To ensure that an event schema represents a virtual sensor, all individual
event properties must be present in the schema. Therefore, the equality of properties is
checked. In order to perform this check, the following conditions must be met:

o epl.runtimeType equals ep2.runtimeType
* epl.hasUnit equals ep2.hasUnit
o epl.semanticType equals ep2.semanticType
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Figure 6.3.: Example model of a conveyor speed event stream

Virtual sensors can also have relations to other virtual sensors. If all properties of a sensor
are subsumed by another sensor, the predicate hasVirtualSensor is added. For example
:vs2 contains all the properties that :vs1 has, according to the previously shown rules,
then there is a relation :vs1 :hasVirtualSensor :vs2 between the two virtual sensors. This
means in particular, if a component requires :vs1, then :vs2 also fulfills this requirement.
With that relation the backward compatibility for algorithms is ensured, for example
when newer sensor models differ in terms of provided values. In this work we use this
concept for the trained machine learning models. The selected event properties during
training are used in the definition of the virtual sensor, to ensure they contain the relevant
data for the feature extraction of the machine learning model.

6.2.3. Adapters

As already shown in Section 4.1, adapters are usually used in Industrial Internet of Things
(IToT) systems to ingest data onto a unified middleware. This provides a decoupling
mechanism between the heterogeneous data sources and the downstream analytics
algorithms, helping to reduce complexity. Adapters can be used to connect and harmonize
different, formats, protocols, and data representations (e.g. different units). Therefore, the
data has to be transformed to an internally used standard. However, it is not only the form
of the events that needs to be adjusted, it is also important to adjust and possibly normalize
the data itself. To do this, we present a model for adapters including transformation
rules.

For the adapters we distinguish between two different types, generic adapters and specific
adapters. Generic adapters are defined for protocols, independent of the format of transmit-
ted events. A generic adapter is able to read data from a generic protocol regardless of the
format representation of transmitted events. For many protocols (e.g. Hypertext Transfer
Protocol (HTTP), Message Queuing Telemetry Transport (MQTT)) this format is not fixed,
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therefore it must be specified how to read data from a protocol and how to deserialize
the events. Specific adapters are defined for specific data sources or types of data sources.
This can range from standards using a fixed (proprietary) format to specialized data
sources, requiring custom implementations. Both adapter types have in common that
it is possible to define individual configuration parameters. This is explained in more
detail in the next section.

6.3. Connect

This section presents how streaming data from multiple different industrial data sources
can be connected to perform IloI analytics. At the core of this section is the adapter model
that is used to describe time-series data sources. Based on that model adapter instances
are automatically generated and executed on edge devices in close proximity to the data
source. The goal of the model is to enable citizen developers to ingest data of different
sources themselves, by providing configuration parameters. In this section, first the
adapter model is introduced and it is shown how it can be used to describe different data
sources. Then the model for transforming and harmonizing data directly on the ingestion
in the adapter is shown. In the last part, the transformation rules that are executed during
runtime on the events in the adapter instance are presented.

Adapter Instance

Preprocessing

F(x) = funit(x, ¢1)

Figure 6.4.: Adapter instance connected to the CNC machine, preprocessing events x and pub-
lishing data to the message broker

Figure 6.4 shows an example adapter instance that is connected to the Open Platform
Communication Unified Architecture (OPC UA) interface of the CNC machine from
our example in Section 3.2. First, data is collected from the machine and preprocessing
functions are applied on the events for harmonization. In this case the original unit of the
temperature value is represented in degree Fahrenheit and should be transformed into
degree Celsius to be comparable with temperature values of other machines. After the
preprocessing the events are forwarded to the massage broker. For the description of the
adapter model RDF is used because it is possible to reuse already existing vocabularies
and extend them. Especially for preprocessing it is helpful to reuse vocabularies and
ontologies to leverage already formalized and machine-readable knowledge. Models can
be serialized to JavaScript Object Notation for Linked Data (JSON-LD) as an exchange
format between different microservices.
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6.3.1. Adapter Model

Figure 6.5 shows the semantic adapter model. At its core is the Adapter concept, high-
lighted in grey. On the left is the StreamGrounding and TransformationRules. Once events
are processed they are sent onto a unified message broker, which is described in the
StreamGrounding. It describes the target protocol and format used by the running adapters.
The StreamGrounding can potentially be different for each adapter, but in most cases
it will be the same for all adapter instances to provide a unified access to the data for
downstream algorithms. TransformationRules describe how events from the source should
be transformed before forwarding them onto the grounding. Those rules are explained
in more detail in Section 6.3.2.

In the model, it is distinguished between DataStreamAdapters and DataSetAdapters to
support both DataStreams and DataSets. In this work we use data streams as a synonyme
for event streams. Both have a fixed EventSchema consisting of a set of event properties
[Riemer 2016]. For a better overview, we present a compact version of the model with
the notation {Stream, Set}, meaning there is one class for streams and one for sets. From
a modeling point of view, there is no difference between the two types, they are only
distinguished during runtime. Data sets are bounded data streams, this means they stop
at some point while a stream never ends. Since the modeling process is the same for both
types, from now on we will always refer to data streams.

Adapter Data{Stream,Set}
has Tem;l)l ate —
Grounding 1| hasAdapterDescription fhasData{Stream,Set} Specific
StreamGrounding [«- - Y ] Data{Stream,Set}
| D Adapter
. Adapter < ata{:(:re?m,Set} .
I : apter Generic
Transformation ) i Data{Stream, Set}
Rule hasRule 1 hasConfig Adapter
1
hasConfig hasFormat .
*_ —-- Format |[&---=-==-==----- I| hasProtocol
Static (—
Property -:_ -1 Protocol e Data{Stream,Set}
hasConfig rotoco Protocol

Figure 6.5.: Core of our adapter model

As defined in the previous section, there are two types of Data Stream Adapters, Generic-
DataStreamAdapters and SpecificDataStreamAdapters. A GenericDataStreamAdapter con-
sists of a combination of a DataStreamProtocol (e.g. MQTT), that describes how the data
source can be connected and a Format (e.g. JSON) representing the serialization of events.
Some machine interfaces can not be separated between protocol and format and require
custom solutions (e.g. OPC UA). Therefore, the concept of a SpecificDataStreamAdapter
can be used. Specific data stream adapters support custom solutions as well as imple-
mentations of proprietary data sources.
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To be able to reuse adapters in multiple different scenarios they should be as generic as
possible and citizen developers must be able to configure them by providing configu-
ration parameters. Therefore, the concept of StaticProperties is used as a configuration
template [Riemer 2016]. There are several types of static properties, which are auto-
matically validated (e.g. strings, Uniform Resource Locators (URLs), numeric values).
Adapters, Formats, and Protocols use StaticProperties to define custom configurations. Those
configurations can also be stored as an Adapter Template. This is a description about the
data source that contains all the necessary information that is required to instantiate an
adapter. With those adapter templates it is possible to share adapter descriptions and
thereby reduce the modeling effort for others.

Next, we present two examples of adapter descriptions which are connecting to a tem-
perature sensor. In the first case, temperature values are read from a MQTT broker and
in the second case, the current state of a conveyor is read from a Programmable Logic

Controller (PLC).

Generic Adapter

Events transmitted over a protocol like MQTT, can be represented in multiple formats.
Therefore, a generic adapter allows to define a combination of a protocol, to read the data
from the source, and a format to parse the events into an internal representation. Listing
6.1 shows an instance of a GenericDataStreamAdapter, with MQTT as the protocol and
JSON as the format connecting a temperature sensor. Such a sensor could for example
be used as retrofitting for an already existing production line, to see if the environment
temperature influences the production process. The adapter is defined in line 3 with
"Temperature Sensor” as the name. The MQTT protocol description (line 10) has two static
properties, one defining the broker URL (line 19) and one for the topic (line 24). For
formats it is also possible to provide configurations with static properties. Line 15 shows
the JSON format, which does not need any further configurations in this case.

@prefix sp: <https://streampipes.apache.org/vocabulary/v1/> .

1
2
3 <sp:adapteril>

4 a sp:GenericDataStreamAdapter ;

5 rdfs:label "Temperature Sensor" ;

6 sp:hasProtocol <sp:protocol/stream/mqtt> ;
7 sp:hasFormat <sp:format/json> ;

8 sp:hasDataStream <sp:dataStreaml> .

9

10 <sp:protocol/stream/mqtt>

11 a sp:DataStreamProtocol ;

12 rdfs:label "MQTT" ;

13 sp:config <sp:staticpropertyl>, <sp:staticproperty2> .
14

15 <sp:format/json>

16 a sp:Format ;

17 rdfs:label "JSON" .

18

19 <sp:staticpropertyl>

20 a sp:FreeTextStaticProperty ;
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21 rdfs:label "Broker URL" ;
22 sp:hasValue "tcp://mqtt-host.com:1883"

24 <sp:staticproperty2>

25 a sp:FreeTextStaticProperty ;

26 rdfs:label "Topic"

27 sp:hasValue "sensor/temperature"

Listing 6.1: Example for a MQTT adapter instance

Specific Adapter

With specific adapters, it is possible to support data endpoints that have specific interfaces.
Further, custom solutions can be provided, that do not need many configurations. Often
only the endpoint (e.g. IP-address) is required to connect a data source. This can be used
by sensor vendors to provide adapters for their sensors, or build custom solutions for
individual data sources, that do not need any further configurations. Listing 6.2 shows
an example of an adapter connecting to a Siemens PLC. This is the same example as
used in Listing 3.1 in Chapter 3. The adapter is described in line 3 with the name "Light
barrier conveyor” and has three static properties. First the IP address of the PLC must be
defined (line 9), then the polling interval for reading the data is specified (line 14). A
PLC represents data in registers, therefore a user has to specify the value of the register
that should be read. From line 19 to line 32 the configuration for the event property of
the entry barrier sensor is defined.

@prefix sp: <https://streampipes.apache.org/vocabulary/vi/>

<sp:adapter2>
a sp:SpecificDataStreamAdapter ;
rdfs:label "Light barrier conveyor" ;
sp:hasDataStream <sp:dataStream2> ;
sp:config <sp:staticproperty3>, <sp:staticproperty4>, <sp:staticpropertyb>, <sp:
staticproperty6>

N G W N e

9 <sp:staticproperty3>

10 a sp:FreeTextStaticProperty ;
11 rdfs:label "PLC IP-Address"
12 sp:hasValue "192.168.188.22"
13

14 <sp:staticproperty4>

15 a sp:FreeTextStaticProperty ;
16 rdfs:label "Polling Interval [ms]" ;
17 sp:hasValue "1000"

18

19 <sp:staticpropertyb>

20 a sp:FreeTextStaticProperty ;
21 rdfs:label "Runtime Name"

22 sp:hasValue "I_entry"

23

24 <sp:staticproperty6>

25 a sp:0neOfStaticProperty ;

26 rdfs:label "Node Name"

27 sp:hasValue "JI1.0"

28 sp:hasOption <sp:optionBoolean>, <sp:optionByte>
29
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30 <sp:optionBoolean>

31 sp:hasName: "Bool" ;
32 sp:isSelected: true .
33

34 <sp:optionByte>

35 sp:hasName: "Byte" ;
36 sp:isSelected: false .

Listing 6.2: Siemens S7 PLC adapter instance to read the status of a light barrier from a PLC
controlling a conveyor

The configurations for the adapters can get quite complex, this is why we provide user
support during the modeling process introduced later in this section.

6.3.2. Transformation Rule Model

Production lines in manufacturing companies often use different machines from different
vendors. Therefore, it is required to harmonize data before it can be analyzed. To achieve
this, the possibility of transforming, reducing, and/or anonymizing directly on ingestion
is required. In this section the TransformationRules (Figure 6.6) are introduced, that are
used by our adapter model in Figure 6.5. There exist three types of transformation rules
depending on which part of the event stream or event model needs to be transformed.
SchemaTransformationRules transform the structure of the event schema. ValueTransforma-
tionRules change values of event properties and StreamTransformationRules change the
data stream itself. In the following the different transformation rules for the three types
are explained in detail.

Transformation

Rule
3
[ ] |
Schema Value Stream
Transfromation Transfromation Transfromation
Rule Rule Rule

Figure 6.6.: Model of the transformation rules with schema-, value-, and stream transformation
rules

Figure 6.7 shows the model for all SchemaTransformationRules. Those rules change the
schema of the event by adding, moving, or removing individual properties. On the
left is the AddFixedPropertySchemaTransformationRule, the hasRuntimeName defines the
name of the property and hasValue specifies the value that is added to that property.
This fixed event property will be added to each event in the event stream. Next is
the AddTimestampSchemaTransformationRule, it will append the current timestamp to
the event, when it is processed in the adapter. To rename individual properties the
RenameSchemaTransformationRule can be used. It needs the old and the new runtime
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name for the property. The structure of events is not required to be flat, especially nested
structures are also supported. The AddNestedSchemaTransformationRule appends a new
(empty) nested property to the event. With the hasRuntimeName predicate it is defined
what the name for the property is. The MoveSchemaTransformationRule describes how to
move individual properties between nested properties within an event. The predicate
hasOldRuntimeName defines which property should be moved and hasNewRuntimeName
defines the new location of the property. To delete individual properties the delete rule
can be used by specifying the runtime name of the property to delete.

Schema
Transfromation
Rule
Ly
[ I I I I 1
AddFixedProperty AddTimestamp Rename AddNested Move Delete
Schema Schema Schema Schema Schema Schema
Transformation Transformation Transfromation Transfromation Transfromation Transfromation
Rule Rule Rulle Rulle Rulle Rulle
T hasOld ' hasNew ,'hasRuntirne hasOld :hasNew : hasRuntime

1 .
hasRuntime 1 has Runtime 1 RuntimeName Name Runtime  1\RuntimeName Name

Figure 6.7.: Model of schema transformation rules

Figure 6.8 depicts ValueTransformationRules that always affect a single EventPropertyPrim-
itive of an event. There are four ValueTransformation rules, the first one is a Number-
ValueTransformationRule, this can perform simple mathematical functions like adding or
subtracting a fixed number, to harmonize data.

Value _ gfg;g@’em
Transfromation [-------+ v
Rﬂe EventProperty
Primitive
| | |
Number Unit Privacy Timestamp
Value Value Value Value
Transformation Transformation Transformation Transformation
Rule Rule Rule Rule
: hasFromUnit : hasToUnit *
hasNumber :hasOperator __________ | | |
Value rTTTTTT : qudt: Unit qudt:Unit RegexTimestamp NumberTimestamp
! I ; Value Value
y : Transformation Transformation
l Rule Rule

T T
| hasRegex 1 hasMultiplier

Figure 6.8.: Model of value transformation rules
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The second is a UnitTransformationRule that changes the unit of a property value. For
the description of the units the QUDT ontology? is reused for specifying the unit as
well as for conversion between units. The third one is a PrivacyTransformationRule, to
anonymize values of event properties. The fourth type of value transformation rules are
TimestampValueTransformationRules that are able to transform different representations
of timestamps in the events into an internal representation (UNIX timestamp). It is
distinguished between a rule transforming a date string by providing a regular expression
(RegexTimestampValueTransformationRule) and converting a number into a UNIX timestamp
in milliseconds (NumberTimestampValueTransformationRule).

The last type of transformation rules are StreamTransformationRules shown in Figure 6.9,
that influence the data stream and the events within that stream. Data streams can
be aggregated either by counting (CountAggregateStreamTransformationRule) or by time
(TimeAggregateStreamTransformationRule) windows. Sometimes, event streams contain
duplicates (events were all property values are equal), which can be removed with the
RemoveDuplicatesStreamTransformationRule. It will remove all duplicates from the event

stream and ensure that each event is just published once to the harmonized message
broker.

Stream
Transfromation
Rule

AY
\

Aggregate

RemoveDuplicates

A Stream Stream
hasAggregation Transformation Transformation
Type Rule Rule

*

[ |
CountAggregate TimeAggregate
Stream Stream
Transformation Transformation
Rule Rule

: hasCountWindow I hasTimeWindow

Figure 6.9.: Model of stream transformation rules

The introduced rules were selected to cover a wide range of cases that can occur when
connecting and harmonizing data of machines. However, sometimes there are new
requirements which require new rules. For such cases the model is designed to be
expandable. New rules can be added in the future to accommodate new situations.

Each adapter instance contains a set of rules that are modeled by a user. Listing 6.3
shows an example of a UnitTransformationRule. It describes the unit transformation of a
temperature sensor (line 3) from degree Fahrenheit (line 4) to degree Celsius (line 5). All
instances of rules are basic changes to the events and have a similar structure. A set of

2h’ttps: //www.qudt.org/ (accessed on 04/10/2021)
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rules can be used for more complex transformations to be applied by concatenating their
execution, which is explained in more detail in the next section.

1 <sp:transformationrulel>

2 a sp:UnitTransformRule ;

3 sp:runtimeKey "temperature" ;

4 sp:fromUnit "http://www.qudt.org/2.1/vocab/unit#DegreeFahrenheit" ;
5 sp:toUnit "http://www.qudt.org/2.1/vocab/unit#DegreeCelsius" .

Listing 6.3: Unit transformation rule example

6.3.3. (Edge-) Transformation Functions

In the previous sections, the model for adapters and transformation rules was introduced.
In this section, it is presented how the transformation model can be used to configure
transformation functions that are applied on the actual event streams. Those functions are
concatenated into a preprocessing pipeline, which is automatically instantiated. These
functions usually run directly at the edge within a worker, leveraging local compute
power to only transmit already cleaned and harmonized data. This is especially important
for high frequency event streams (e.g. sensors in machines), they can be early aggregated
which reduces the load on the network infrastructure significantly.

Functions take an event e and configuration ¢ containing multiple values as an input and
return a transformed event ¢’. Each function has a corresponding transformation rule and
adapter instances contain a set of functions to form a preprocessing pipeline. Equation 6.1
shows the definition of the function for the preprocessing pipeline. It is a concatenation
of multiple transformation functions, that take the event e as an input and calculate the
resulting event ¢’. The rules must be applied in a fixed order to ensure the correctness of
the transformations, first the schema, then the value, and last the stream transformations
are applied.

F(e) - fn(f(fl(e7 Cl)a )7 Cn) = (61)

In the following tables, for each transformation rule type (schema, value, stream) an
example transformation function is presented. On the left, the name of the transformation
function is given, in the middle an example event instance (serialized in JSON), and on the
right the corresponding configuration C for the example. The functions are independent
of the serialization of events, JSON is used in our examples as a representation because it
is human readable.

Table 6.1 shows six schema transformation functions. The first one is add fixed property, it
adds a new property to the event with a fixed value. In the example a new property
with the runtime name ¢;="id” is added with the value cy="sensor5” to an empty event.
The add nested function adds a new empty nested event property, it can be used to add
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further nested information (e.g. add an object representing a geo coordinate with latitude
and longitude values). In the example a new nested property with the runtime name
c1="a" is added to an empty event. With the move function the parent property can be
changed. It does not change the property itself, it only changes the location within the
event schema. For the configuration the names of the properties are used delimited by
colons ¢;="a:b". The new location is defined in the second parameter c,="b". To add the
current timestamp to the event, the add timestamp function can be used, which doesn’t
need any further configurations. Renaming runtime names of event properties can be
done using the rename function. The individual properties are referenced again by the
runtime name, c¢;="0ld” is the old name and c,="new” the new runtime name. The last
function is removing individual properties and is done with the delete function, the only

" _n

configuration is the runtime name of the property to delete ¢;="a".

Table 6.1.: Schema transformation functions

Rule Example Function [e — €] Configuration [C]
Add Fixed Property {} = {"id": "sensor5"} c1="id" ca="sensor5"
Add Nested {} = {"a" {}} c1="a"

Move {"a" {"b": 1}} — {"a" {}, "b": 1} c1="a:b" co="b"

Add Timestamp {} — {"timestamp": 1575476535373}

Rename {"old": 1} — {"new™: 1} c1="o0ld" co="new"
Delete {"a"™: 1} — {} c1="a"

Functions that affect values of event properties are shown in Table 6.2. With the number
rule, numerical values can be changed via basic mathematical operations (e.g. add,
subtract, multiply with a fix number). The value of property c;="x" should be changed
by adding (co="ADD") an offset of (c3=10) . To anonymize individual values, the privacy
rule can be used. In the example the value c¢;="name” is anonymized by applying a
hash function. With the hashed value it is still possible to perform a grouping, but
the original value can no longer be reproduced. Different units often make it difficult
to analyze data, because the unification has to be done manually and adds additional
complexity. Therefore the unit function is introduced to harmonize data at ingestion time.
In the example the unit of the property ¢;="temp” is changed from degree Fahrenheit
co="unit:DEG_F" to degree Celsius c3="unit:DEG_C". The values are changed according
to the transformation factor specified in the QUDT-ontology?. Time is often represented
in different forms in events, for example as a formatted string (shown in the example) or
as a number (e.g. unix timestamp). Similar to the problem with different units, it is much
easier to perform calculations on different data streams when the representation of the
time is consistent. A unix timestamp is used for the representation, therefore this function
transforms the time into a unix timestamp in milliseconds. For the configuration the name

3h’ftp: //www.qudt.org/ (accessed on 04/10/2021)
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c1="time" of the event property is required and a regular expression cy="yyyy/mm/dd
hh:mm” how to interpret the string value.

Table 6.2.: Value transformation functions

Rule Example Function [e — ¢'] Configuration [C]
Number {"x": 5} — {"x": 15} c1="x" ca="ADD" ¢3=10
Privacy (SHA-256) {"name": "Pia"} — {"name": "ca9..."} c1="name"

Unit (°C — °F) {"temp": 41} — {"temp": 5} c1="temp"

co="unit:DEG_F"*
c3="unit:DEG_C"3

Timestamp {"time": "2021/02/25 16:29"} — c1="time"
{"time": 1614270540000} c2="yyyy/mm/dd hh:mm"

In the last Table 6.3, two different stream transformation functions are shown. First the
remove duplicates function, which removes duplicates from the event stream. Duplicates
are defined as events where all properties are equal. Two properties are defined as equal
when their values are equal, for primitive properties this equality check is simple because
the values have a basic type (e.g. boolean, number, string). For nested event properties
this check is performed recursively for each primitive property within the nested property.
Only equal events are filtered out of the stream. E.g. when all sensor values are the same,
but the timestamp is different events are not filtered. With the aggregate transformation
rule the frequency of the event stream is reduced by aggregating multiple events into one
event. For the aggregation two different window types are possible, time based windows
and counting based windows c¢,="time window”. The window size c,="5sec” must be
specified for those windows and how the values should be aggregated c3="mean". This
is especially relevant for the different data types. For boolean and numerical properties
it is possible to calculate a single value from the different events. For strings, however,
it must be defined how multiple instances within the aggregation can be reduced to a
single value.

Table 6.3.: Stream transformation functions

Rule Example Function [e — €] Configuration [C]

Remove Duplicates {"a": 1},...,{"a"™: 1} — {"a"™ 1}

Aggregate {"a": 2},...{"a": 1} — {"a": 1.5} c1="time window"
co="5sec"
c3="mean"

4 unit: http:/ /www.qudt.org/2.1/vocab/unit
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6.4. User Interaction

In the previous section, the adapter model and the transformation rules were defined.
In this section it is shown how such models can be created by citizen developers. For
them it can be difficult to specify a model because they often lack the necessary modeling
expertise. There is no need of explicitly modeling an adapter instance in a RDF-Editor.
Rather, we use an approach that users are more familiar with by providing user input over
automatically generated forms that use RDF as a representation format in the background.
The user input is directly validated and the system additionally tries to provide useful
information, that reduces the complexity of the modeling process. Based on the user
interaction with the Graphical User Interface (GUI), the adapter model is derived and
the adapter is automatically instantiated.

6.4.1. Adapter Marketplace

The adapter marketplace is the central location where users can create and manage their
adapters and data sources. Figure 6.10 shows a screenshot of the adapter marketplace in
StreamPipes. It lists all the available adapters (generic and specific) as well as running
adapter instances. For each of the listed adapters an implementation is provided with
the application logic to handle the connection and processing of the events from the
respective data source type. It is also possible to store and share user configurations of
adapters over adapter templates. These templates also appear in this view and can be
used directly by other users. To export and share the description, the adapter information
is serialized (e.g. JSON, JSON-LD).

In this work, we developed models and concepts, as well as a SDK to add new adapters.
Furthermore, we provided already several implementations that cover a wide range
of standard protocols and formats. Additionally, some members of the StreamPipes
community have already used the SDK to create more adapters. So far, over 30 adapters
are integrated and new types are added regularly. Table 6.4 gives an overview of the
current available adapters which are so far integrated into Apache StreamPipes.

Table 6.4.: Overview of implemented adapters

Adapters Generic Specific
Stream MQTT, MySQL, HTTP, InfluxDB, File, Apache Katka, OPC UA, PLC Modbus, PLC S7, Robot Operating
Apache Pulsar, HDFS, Image Zip’s System (ROS), Slack, Random Generator, TI Sensor,

Flic Button, NETIO, Coindesk, GDELT, IEX News,
Wikipedia Edits, ISS Location, Machine Simulator

Set HTTP, InfluxDB, MySQL, File, Images Zip’s Random
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Figure 6.10.: Overview of the data marketplace

6.4.2. Adapter Modeling Process

Figure 6.11 depicts the four different steps a user has to follow to create a new adapter
instance. The first step is to select the adapter type from the marketplace (Figure 6.10). In
step 2, the information for the adapter model (Figure 6.5) must be provided and in step
3 and 4 the information for the transformation rule model (Figure 6.6) must be given.
The configuration process of the selected adapter differs slightly depending on whether
it is a generic or a specific adapter. For generic adapters, the protocol and the format
must be configured via static properties. For specific adapters, only the configuration of
the adapter itself must be provided. The configuration process is the same for data sets
and data streams. Once the adapter model is configured in step 2, the event schema is
defined in step 3.

Adapter Model

Specific 2.1 Configure Transformation-Rule Model
Adapter
1. Select @ 4. Start
A E h A
dapter 2.2 Configure 2.3 Configure vent Schema dapter
Generic Protocol Format

Figure 6.11.: Adapter configuration process

Therefore, sample events are collected from the previously configured data source. Based
on those samples an initial proposal for the event schema is provided by the system.
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The level of detail of this suggestion depends very much on the selected adapter type.
Often some additional meta information (e.g. unit) has to be added. In the fourth and
last step, further configurations such as the adapter name or a description can be added.
Furthermore, settings can be selected which influence the resulting event stream, such as
a maximum event frequency. Once the adapter has been modeled, the adapter model is
transmitted to the master, which triggers the instantiation of an adapter instance in the
worker. After the successful deployment, the instance automatically starts processing
data.

6.4.3. (Semantic) User Guidance

In step 2 in Figure 6.11 a user has to provide information about the data source and
how to retrieve data from it. Therefore, values for the defined static properties must be
provided. To reduce this configuration effort, the system tries to support the user as
much as possible by leveraging the semantic model and meta-data provided by the data
sources. Since the data sources are heterogeneous, the availability and quality of this
meta-data differs between adapter types. However, the system tries to provide a guided
process for the user.

The most basic user support of the system is a validation of all user inputs according
to the requirements of the static properties, e.g. ensure correct data type, or formatting
of URLs. When the entered value does not conform with the requirements of the static
property a warning message is provided to the user (Figure 6.12 on the left).

Topic
Broker Port Example: test.topic

9092
RELOAD
Broker Port *

909F @ flowrate

(O temperature

Figure 6.12.: Screenshots of configuration with static properties

For most adapters, some initial information like the address of the endpoint (e.g. IP-ad-
dress) must be provided manually. Whenever possible, the system uses this initial
information to collect meta-information from the data endpoint, which is used for input
validation or automatic setting of configuration parameters. For example, some message
brokers provide an API to pull a list of all available topics (Figure 6.12 on the right). A
user can then chose a topic from that list, which eases the configuration process, as well
as reduces a possible source of errors compared to entering the topic name manually.
If this information is not available, for example in PLC controllers, it must be provided
manually. However, for this case it is possible to export the register addresses from other
software solutions that are used to program those devices (e.g. the TIA portal, used for
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programming Siemens S7 PLCs) and import it as a file. This speeds up the configuration
process and only the IP address and polling interval for the adapter must be provided
manually. Once the information is entered, a connection to the PLC is established to
check if the entered values are valid and are readable. Otherwise a warning message
is shown to the user that some configuration parameters must be changed. Since each
adapter type has different capabilities, our approach is flexible to provide a good user
experience for each of those and reduce the configuration effort when connecting new
sources.

After configuring all the information of step 2, a connection is established to the source
and sample data is extracted. Based on this sample data the event schema is derived and
presented to the user in the GUI, as shown in Figure 6.13 on the left. A user can further
change the provided event schema via dragging and dropping event properties. New
event properties, can be added or unwanted once can be deleted. The example from
the figure shows a temperature event. The event has an id property as well as a nested
value containing the temperature value, named temp. On the right side is the event after
editing, the nested structure was removed and the temperature property is renamed.
Additionally, the current timestamp will be added to each event when it is processed in
the adapter.

Add Nested Add
Property Timestamp

Add Fixed Reset Delete
Property Schema | Selected

id Measurement ~ o id Measurement ¥

V4
value ,.

temp Measurement ~ o Timestamp ©®  Dimension ~

P/
Property

Figure 6.13.: Screenshots of configuration of the event schema

temperature Measurement ¥

Property
Scope

Other meta information can be added as well. For example the property scope for each
event property or the data type. Again, the system tries to automatically fill out as many
fields as possible, but some information must be provided by the user. An example
where almost no information is provided in advance are CSV files read from an FTP
server that do not contain a header. Only the amount of properties is known and the
data type for each column can be guessed by reading some sample events. All the other
missing information must be provided by a user. Another example would be a message
broker (e.g. MQTT) sending JSON object, as shown in the example in Figure 6.13. The
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event schema and data types can be inferred, but no additional meta-information like the
semantic type or the unit is available. Other data sources (e.g. OPC UA) already have a
rich meta-model that can be used to enrich the event schema with this information, so
the user does not need to provide the units manually.

Figure 6.14 shows how the configuration parameters for an individual event property
can be provided. First of all, it is possible to change the name, further the semantic type
can be added for each property. A domain specific vocabulary can be provided in the
background, that provides suggestions for the semantic type. This information can later
help when the pipeline is build, by providing suggestions and semantic validations to
the user. Additionally, the data type is presented. The system can derive the data type
for almost all data sources. Also a value for the unit can be provided in the unit field.
When the unit should be changed it is possible to specify it directly in the GUI (on the
right side). Only semantically correct transformations are suggested to the user.

Edit field temp

Label temperature

Semantic
Type

hllp:}/my—domaln‘orgnemperau. Degree Centigrade

Kelvin

Data Type Float - A number, e.g., 1.25'
Degree Celsius

Degree Celsius -

CLOSE SAVE

Figure 6.14.: Screenshots of the configuration of an event property

e

Based on the user interaction in the GUI, the model of the transformation rules is derived
in the background. This is done once a user finished editing the event schema. Then the
system compares the ‘original” schema that was suggested in the beginning with the "new’
configured event schema to calculate the transformation rules based on the difference of
those schemas. The new schema is later used in the adapter model to describe how the
data in the event stream looks like.
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6.5. Running Example

In this section, a complete example is presented that is based on the scenario introduced
in Section 3.2. It is explained how the methods, models and tools presented in this chapter
can be used by citizen developers to ingest IloT data from industrial assets.

—————————————————————————————

............................
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Figure 6.15.: Using adapters to connect the different machines of the running example

Figure 6.15 shows the example production line with the various interfaces of the machines
that should be connected as data sources. For each of those sources, an adapter model
has to be defined that is used to automatically create the event stream containing sensor
values. The model creation is performed with the workflow introduced in Section 6.4 by
citizen developers. To start the workflow, a user selects the type of adapter that should be
connected in the adapter marketplace and follows the guided configuration process. One
example workflow is illustrated in Figure 6.16 for a PLC controlling a conveyor. There
are multiple values that can be read from the PLC, like whether the conveyor is running
or not (O_on). Furthermore, a boolean value represents when a package is entering or
leaving the conveyor (I_entry, I_exit), and the speed (I_speed) at which the conveyor is
running at. In step @, the basic configurations like IP address, polling interval and a
file with the variables must be provided. The file contains all the register names and
addresses for which values should be included into the event stream. After that, the
event schema can be seen and edited, (e.g. remove unused properties or transform the
unit etc.). At step @, the resulting event schema of the data stream is shown. In step ©,
the final parameters can be set, by providing a name and a description for the adapter.
This adapter description is transmitted to the master and forwarded to a worker. There,
the adapter is started and directly produces an event stream that is sent to the message
broker for further processing.

As previously mentioned, based on the user interaction the preprocessing rules are
created in the model. Figure 6.17 shows an example that illustrates how those rules
are applied on a sample event e from the PLC. On the left is the raw input event e that
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Figure 6.16.: Connecting the Conveyor PLC

is collected from the interface of the PLC and forwarded to the first function f;. The
runtime name of the speed property is changed from I_s to I_speed. Then the property
I_high is removed because the user decided that this property is not relevant for the
analytics tasks. Since the events do not have a timestamp, it is added within the adapter
in function f5. In the last step of the preprocessing pipeline in function f, the unit of the
speed property is changed from foot per second to meters per second. After applying all
the functions, the resulting event ¢’ is sent to the defined unified broker of the adapter.
This preprocessing pipeline is performed for each event in the adapter to ensure that all
events of the resulting event stream are consistent. By ensuring this within the adapter,
it reduces the complexity of the implementation for downstream analytics algorithms.

[7/]

c

2 key: |_speed

b . eyl

’g’ {L?T-sl_zed key:1_high from: qudt:FT-PER-SEC

s -l-sP to: qudt:M-PER-SEC

e e e, e; e’

(2]

"é I_entry: False I_entry: False I_entry: False I_entry: False I_entry: False

o I_exit: False I_exit: False I_exit: False I_exit: False I_exit: False
I_s:1,3 I_speed: 1,3 I_speed: 1,3 I_speed: 1,3 I_speed: 0,4
I_high: True I_high: True O_on: False O_on: False O_on: False
O_on: False O_on: False timestamp: 1561363201 timestamp: 1561363201

Configuration

Figure 6.17.: Example of a preprocessing pipeline
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After users have created an adapter for each of the different data sources, they are able to
analyze the data directly by processing it from the harmonized message brokers. Several
different tools can be used to accomplish this analytics task, either graphically-based
(e.g. Apache StreamPipes) or code-based (e.g. Apache Flink). The adapters ensure
the harmonization of the technical parts (format, protocol) reducing the complexity of
the component subscribing to this data. Both the format and protocol are not fix and
could be changed in the future by changing the defined event grounding in the adapter
descriptions.

Lastly we want to present a simple real-world example were the approach is used. Figure
6.18 shows a production line on the left, which is controlled by several PLCs. On the right
is a dashboard that contains the results of the calculations performed on the ingested
data. It contains live information about the conveyer speed and temperature within the
machine. Additionally, some numbers are presented to monitor the current production
performance and scrap rate. Also the image of the last processed part can be seen on the
bottom right.

Speed Conveyor

0.4

# Good Parts #Bad Parts
29.00 3.00

Temperature CNC Machine

Figure 6.18.: Example dashboard for the example production line

Based on the contribution of this section, citizen developers are able to connect hetero-
geneous industrial sources themselves. These event streams can then be used to apply
further analytic algorithms. As a first step, the data is often made available in a dash-
board to users, in this case operators on the store floor, to provide live insights into the
production process. The time as well as the complexity is reduced to connect the data
sources and citizen developers are enabled to quickly adapt to changing conditions on
the shop floor without the need of a software developer. They are able to provide the
necessary information to the shop floor workers themselves, without the involvement of
other people.
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6.6. Summary

In this chapter, we presented how this work enables citizen developers to ingest data
from industrial data sources, such as machines and their sensors.

First, basic data models that are relevant for the whole work were introduced in Section 6.2.
The event model describes the structure of events consisting of a set of event properties.
Those event properties can be described with multiple attributes, such as the type,
semantic type or property scope. This static information can for example be used to
automatically configure analytic algorithms. With the introduced virtual sensors it is
possible to specify the similarity between different event streams. Therefore, it is defined
how the equality of event properties can be checked. Further, the definition for adapters
is provided.

Based on this adapter definition an adapter model was presented in Section 6.3. Adapter
models can be created for data streams as well as data sets and are distinguished between
generic and specific adapters. Generic adapters describe a protocol and a format. Specific
adapters can be created for specific types of data sources. All the configurations are
provided with static properties by the user. Additionally, the adapter model uses trans-
formation rules to describe transformations to harmonize events at the edge. There exist
three different types of rules. The type is defined by the part of the event the rule affects
(schema, value, or stream). The model for the rules can be extended to cope with new
situations in the future. For example, if there is a need to create new domain-specific rules.
Based on those rules, transformation functions can be instantiated that are concatenated
in a preprocessing pipeline at the edge to directly transform events on ingestion. These
features ensure that the quality of event schema and property type is guaranteed and that
subscribers of the data do not have to deal with inconsistencies. Extensive tool support
has been created to validate the developed methods in various real-world settings as
shown in Section 6.4. It starts with the adapter marketplace that already contains many
different adapters. The configuration of them is done in a guided process with four basic
steps providing user support in each of them. For this support, the semantics of the
adapter model and available meta-data from the data sources is used. Additionally, the
vocabulary of existing ontologies is reused.

In the last section an example from the motivating scenario is used to show the whole
process of connecting new data sources with the developed approach. Based on that
example the preprocessing pipeline for those events is explained in detail and how the
individual functions work together. In the end a dashboard based on the connected data
shows real-world data to illustrate a basic example how the ingested data can be used to
monitor a production line.
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In the previous chapter, data was ingested from multiple heterogeneous data sources onto
a harmonized message broker working as the transport layer. This chapter presents how
this distributed message broker works, with the main goal to automatically adapt indus-
trial event streams to reduce the network demands on the infrastructure. It is exploited
that not all subscribers need every event with all the properties for their calculations. The
basic idea is to use local compute resources to dynamically adapt the event stream based
on the semantic description of the event stream that was introduced in the previous
chapter as well as the requirements of the subscribers.

Section 7.1 gives a detailed overview of the concepts introduced in this chapter and shows
how they fit into the context of this thesis. Then, in Section 7.2, event reduction strategies
are presented and how they can be applied to different kinds of data. Afterwards, Section
7.3 introduces a wrapper for message brokers. First, the basic approach is explained, then
the individual components like publishers and subscribers. At the end of the chapter,
the running example is used to illustrate the whole process in Section 7.4, followed by a
summary in Section 7.5.

7.1. Walkthrough

In this section, an overview is given by introducing the individual components of this
chapter. One result of the previous chapter were adapters that connect different data
sources. In this chapter, it is shown how this connected data can be integrated in a
message broker, and how the event streams are dynamically adapted. The whole concept
of the broker is designed as a wrapper around existing topic-based message brokers.
Figure 7.1 shows two different execution pipelines processing data. The first pipeline
stores raw data in a time-series database with the goal to persist the original values for
offline analytics. In the second pipeline, a machine learning model that does not require
all event properties for feature calculation is applied on the event stream. Therefore, not
all information must be transmitted. This illustrates that different subscribers might have
different requirements on the data and that the broker dynamically adjusts the event
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streams according to those requirements. How these event streams can be reduced is
shown in the next section.

:( Streaming

Message Broker
! Infrastructure

i Schema )

\ | Registry |

i d 1
Adapter !

S
i TOpiC1 ?.} ST2 ......

P4

Legend

El Publisher Subscription- @Subscriber --p Events

Transformer

Figure 7.1.: Overview of the message broker and its individual components

On the left of Figure 7.1 is the adapter that connects the physical assets and publishes
the data in the publisher P, @ to the broker. It takes the original events and reduces the
content of those events. Only partial events, explained later in more detail, are transmitted
onto a topic in the message broker @. Within the broker the events are prepared for the
individual subscribers in a subscription-transformer @. At @ there is a subscriber receiving
the partial events and reconstructing so called virtual events that are then forwarded to
the application logic. The application logic is not aware of the transformations that
happen within the broker. The broker has a high-level overview of existing publishers
and subscribers and the event schema, stored in a schema registry @.

7.2. Event Reduction

In this section, data reduction techniques are presented, which allow to reduce the
amount of data that needs to be transmitted when working with event streams. These
techniques are especially useful when processing industrial event streams as they have
a high volume and are often transmitted in a high frequency. First, different reduction
strategies are presented which reduce the size as well as the frequency of events. Then,
different reduction rules that can be applied to different types of data are discussed.

7.2.1. Reduction Strategies

There are various approaches to compress data, but these are usually only partially
applicable to event streams, where events are not processed in a batch, but one after
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the other (event-at-a-time). In this section, we present different data reduction methods
that exploit the structure in events or semantic event schema in order to optimize the
transmission. Figure 7.2 gives an overview of the different reduction methods which are
divided into two main categories.

Event Reduction

Techniques
t

| |

Event Size Event Frequency

Reduction Reduction
E) t

[ [ | [ | |
Format Format Event Send on Information Quality
Transformation Reduction Compression Change Buffer Reduction
f
Event
Factorization

Figure 7.2.: Hierarchy of reduction strategies

First, the event size can be reduced, meaning the amount of bits transmitted for each event,
secondly the frequency of events can be reduced, meaning that less events are sent. For
both reduction strategies, there are different techniques. The main advantage of an event
stream are that measurements and header information do not always change, or patterns
in the data can be exploited. In the following, techniques are explained which reduce the
event size directly at the publisher.

¢ Format Transformation Different formats can be used for serialization of events.
These have different characteristics and often differ in the size of the resulting events.
In cases where the size is particularly relevant, binary formats can be used, but these
have the disadvantage of not being human-readable. The following example (Figure
7.3) shows the representation of a simple event as Extensible Markup Language
(XML) on the left side and in JavaScript Object Notation (JSON) on the right side. It
can be seen that the information is the same, namely the "id" and the value for the
"temperature"”, but XML serializations tend to require more characters because it
contains more boilerplate with the opening and closing tags.

<id>machine1</id>
<temperature>5.0<temperature>

~ Format < { “id*% “machine1
~| Transformation “temperature: 5.0 }

Figure 7.3.: Example format transfromation from XML to JSON

¢ Format Reduction With Format Reduction the size of events is reduced, by leaving
parts out that are not transmitted. This is especially useful for parts of the event
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that have not changed or are not relevant for subscribers. In this case only values
that have changed could be transmitted. Thus the receiver knows what is the new
value and less data can be exchanged. In the example in Figure 7.4, the "humidity"
value of the event is deleted and not transferred.

‘id“: “machine1“
< Format S| “temperature®:. 5.0
]l  Reduction i

“id“: “machine1”
“temperature®: 5.0
“humidity“: 20

Figure 7.4.: Example of format reduction, the "humidity" value is not transmitted

Event Factorization A special case of Format Reduction is Event Factorization. Instead
of transmitting all of the information, data is factored out of the event and stored
at a central location that can be accessed by a receiver. This information is then
dynamically added to the event without transmitting it. The example (Figure 7.5)
shows how meta-data of machines (e.g. its location) is stored in a central storage.
The id of the event is used to find the appropriate meta-information and this is
then added to the event payload. This also reduces the size of the event that is
transmitted without loosing information. Event factorization can either be applied
as a static process where it is defined offline which values are loaded from the
central location, but it can also be applied dynamically, in a way that the event
stream is monitored and information that does not change is extracted.

“id“: “machine1“ S Event ~ 'id": “machine1”

“temperature;: 5.0 | | Factorization i “temp_e rafu:e : 5.0 «
location®: “Germany

“machine1“:

“location®: “Germany*
,machine2“:

Jocation“: JUSA"

Figure 7.5.: Example for event factorization, the location is not transmitted, but appended to the

final event

¢ Compression Another technique to reduce the size of data is to compress it before

it is transmitted and decompress it at the receivers side. Several different com-
pression techniques exist for that (e.g. GZIP'), but also techniques designed for
publish-/subscribe systems are proposed [Doblander et al. 2016]. Those compres-
sion techniques can be used in addition to the other presented methods in this

1h’ttps: / /www.ietf.org/rfc/rfc1952.txt (accessed on 04/10/2021)
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section since they mostly leverage the structure of the serialized data to reduce the
size of the message.

So far, we have presented various reduction techniques to reduce the size of events,

next,

we focus on reducing the frequency of events. This can be particularly efficient

for high frequency industrial event streams especially in situations when a machine is
idle or performing standard cycles. In the following we present different techniques for
frequency reduction:

Send on Change Often, data is transmitted at a static sampling rate that generates
one event after another at a fixed time interval. Thus the receiver iteratively receives
an event with the current value of the sensor instead of only state changes. This also
means that redundant information is transmitted. Therefore, instead of sending at
a fixed sampling rate, events can be emitted when the value of the sensor changes.
This is especially efficient in inertial systems where values do not change very
quickly. In the following example (Figure 7.6), it can be seen that only at time t=1
and t=4 the event is transmitted instead of all five measurements. This can be easily
realized for simple events, but becomes more complicated for more complex event
structures (e.g. nested properties). Then it must be decided which data to transmit.
In such scenarios, the next technique information buffer can be helpful.

t: 5
v:1.1

t 4 |t 3 |t 2 [t 1 < Send on - t: 4 t 1
vill |vil.2 [vi1.2 [w:1.2 i Change vill vil.2

Figure 7.6.: Example for send on change, event is only transmitted when the value v changes

Information Buffer With an information buffer, an event can be reconstructed at
the receiver without sending all information by using previously transmitted values
stored in a buffer. This buffer is located at the receiver and usually holds the last
transmitted value for each field. It is also possible to use more complex buffers and
reconstruction techniques. The example in Figure 7.7 uses the same sensor values
as before for send on change, but this time with an additional information buffer at
the receiver. As before only the events at time t=1 and t=4 are transmitted, but the
resulting event stream contains values for each time step because of the used buffer.
This technique allows an event stream to be processed at a constant frequency while
reducing data, especially if the values change infrequently.

Quality Reduction A third technique to reduce the frequency is quality reduction.
So far, the receiver got the same information as the sender, but in many cases this
is not necessary. Therefore, the quality of the event stream can be reduced by not
transmitting all the information. Figure 7.8 depicts such a situation, where the
frequency of the event stream is halved by only transmitting every second event.
Simple strategies can be used as shown in the example, or more complex ones like
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Buffer

v:1.1
t 5 |t 4 |t 3 [t 2 |t 1 | [Information Jt 5 [t 4 [t 3 |t 2 [t 1
vill |v:11 [vi1.2 [v:i1.2 |v:1.2 i Buffer Twvi11 (w11 |wv:12 [wv:1.2 |v:1.2

Figure 7.7.: Example for information buffer, the receiver contains a buffer to reconstruct values
that are not transmitted

aggregations or thresholds. It depends on the performed algorithm whether the
reduction of data quality has an impact on the result or not.

tt 5 (tt 4 [ttt 3 |ttt 2 |t 1 Quality t: 5 t: 3 t. 1
vill [v:1.1 |[v:i1.2 |v:i1.2 [v:1.2 “|  Reduction “lvi1a v:i1.2 v:1.2

Figure 7.8.: Example for quality reduction, the frequency is reduced by only sending every
second event

In this section, different techniques of data reduction on event streams were presented.
Those are used as a basis for the stream adoptions within the message broker in Section
7.3 to adapt the event stream. In the following, we present special reduction rules for
different data types and semantic types. This is a representative set of reduction rules
that can be extended.

7.2.2. Reduction Rules

In this section, it is shown how to apply rules on events to reduce their size without
losing relevant information for the subscriber. An event always consists of multiple event
properties as introduced in Section 6.2.1. To reduce and reconstruct an event, a reduction
rule has to be applied on all of those properties when transmitting the event. First, four
different data type rules are introduced which are used as a basis if no information about
the semantic type is provided. For all of the four types, a loss-free reduction is possible.
If additional information about the semantic type is available this can be leveraged to
apply specific adaptations to this event property. All those rules define whether a value
must be transmitted or not. A receiver uses a previously introduced information buffer to
reconstruct the values.
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Data Type Rules

Four primitive data types are supported (Boolean, Number, Enum, and String) which are
explained in more detail in the following:

* A Boolean property can take two different values (true or false). Since there are only
two possible values, it must only be transmitted if it changes.

¢ For Strings, reduction is more difficult, because often they do not contain redun-
dant information. Usually strings are compressed before they are sent, as suggested
in [Doblander et al. 2016], where a shared dictionary is used within a publish-/sub-
scribe system. However, if some domain knowledge is available, this can also be
leveraged for reduction. One example would be if there are a fixed number of static
error messages of a machine. Instead of transmitting the error string a mapped
status code could be used.

¢ Enums have a fixed number of possi