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Tofu is a toolkit for processing large amounts of images and for tomographic

reconstruction. Complex image processing tasks are organized as workflows of

individual processing steps. The toolkit is able to reconstruct parallel and cone

beam as well as tomographic and laminographic geometries. Many pre- and

post-processing algorithms needed for high-quality 3D reconstruction are

available, e.g. phase retrieval, ring removal and de-noising. Tofu is optimized

for stand-alone GPU workstations on which it achieves reconstruction speed

comparable with costly CPU clusters. It automatically utilizes all GPUs in

the system and generates 3D reconstruction code with minimal number of

instructions given the input geometry (parallel/cone beam, tomography/

laminography), hence yielding optimal run-time performance. In order to

improve accessibility for researchers with no previous knowledge of program-

ming, tofu contains graphical user interfaces for both optimization of 3D

reconstruction parameters and batch processing of data with pre-configured

workflows for typical computed tomography reconstruction. The toolkit is open

source and extensive documentation is available for both end-users and

developers. Thanks to the mentioned features, tofu is suitable for both expert

users with specialized image processing needs (e.g. when dealing with data from

custom-built computed tomography scanners) and for application-specific end-

users who just need to reconstruct their data on off-the-shelf hardware.

1. Introduction

X-ray microtomography (mCT) is an invaluable non-invasive

imaging technique for examining the internal structure of

objects and organisms. Depending on a particular geometry

[parallel or cone beam, tomography or laminography (Helfen

et al., 2011)] and source (X-ray, neutron, . . . ), 3D recon-

struction workflows may contain a lot of pre- and post-

processing steps, including image normalization (Van Nieu-

wenhove et al., 2015; Jailin et al., 2017), phase retrieval

(Paganin et al., 2002; Moosmann et al., 2011), de-noising

(Buades et al., 2005) and artifact removal (Hsieh et al., 2000;

Münch et al., 2009; Vo et al., 2018; Croton et al., 2019). The

final, high-quality workflow may contain a lot of image

processing algorithms and parameters which need to be

adjusted for each data set separately in an iterative manner

and this might become overwhelmingly difficult for inexper-

ienced users. Moreover, such workflows may be computa-

tionally demanding, which is not an issue for large facilities
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because they typically have access to computer clusters, but it

becomes a problem for smaller laboratories that do not have

access to such equipment where scientists must process the

data on their own, often on relatively inexpensive hardware.

Computational speed is even more important if we consider

the technological progress in imaging instrumentation. Thanks

to continuous new developments in radiation sources

(Raimondi, 2016; Schroer et al., 2018), imaging detectors

(Mokso et al., 2017), and automation (Vogelgesang et al., 2016;

Marone et al., 2017; Hashem et al., 2021), the throughput of

imaging systems is increasing. It is common that during one

experimental day at a synchrotron imaging station researchers

collect hundreds of data sets amounting to several terabytes of

data. Even in a laboratory environment, modern mCT scan-

ners enable data acquisition at the rate of just several tens of

seconds per scan. This is highly demanded in order to capture

transient processes and conduct in situ and operando studies.

In this case, as well as when studying live animals under

anesthesia, being able to preview and evaluate the image

quality very quickly is extremely important for making a

decision about repeating the scan or proceeding to the next

specimen or operating point.

Based on the above observations, reconstruction software

should be fast, versatile, user-friendly and scalable (capable of

processing large volumes of data on inexpensive, off-the-shelf

hardware). Fast reconstruction immediately after the data

acquisition is needed to quickly assess the measurement

results. A selection of common image pre- and post-processing

operations, alongside suppression of typical artifacts, must be

available in order to create flexible data processing workflows.

It is beneficial to avoid using several different software tools

since this always slows down the reconstruction process and

creates unnecessary copies of data. In addition, a simple user

interface is necessary for researchers without prior experience

in scripting and programming. Scalability is very important for

those who do not have access to a computer cluster but still

need to process large amounts of data in their home labora-

tories.

Several open-source tomographic reconstruction tools are

available. Astra toolbox (van Aarle et al., 2016) offers multiple

algorithms for both parallel and cone-beam computed tomo-

graphy (CT) geometries; PyHST2 (Mirone et al., 2014) offers

excellent run-time performance; Tomopy (Gürsoy et al., 2014),

Savu (Atwood et al., 2015) and the Syrmep Tomo Project

(Brun et al., 2017) provide complex capabilities by auxiliary

pre- and post-processing algorithms and interfaces to other 3D

reconstruction tools. They provide command line interfaces

(CLI), graphical user interfaces (GUI), or both.

In contrast to the flexibility of open source projects,

reconstruction software supplied with laboratory scanners and

commercially available reconstruction software like Octopus

(Vlassenbroeck et al., 2006) or VG Studio Max (https://www.

volumegraphics.com/en/products/vgsm/ct-reconstruction-data

-quality-analysis.html) are normally a black box, albeit with a

very nice GUI, which reconstructs data following a predefined

workflow. However, most of these systems cannot be modified

to incorporate external algorithms into the reconstruction

chain, for instance, trying a new phase-retrieval method. At

the same time, there are more and more communications on

custom-build laboratory systems for X-ray mCT [see Müller et

al. (2017) and references therein, and Polyakov et al. (2017)].

Availability of user-friendly, easily extensible, and open-

source software which can be used for phase-retrieval and

reconstruction of cone-beam data can certainly facilitate new

developments.

Here, we present tofu, a Python software package for

general image processing, but with special emphasis on

tomographic reconstruction that supports parallel, cone beam,

tomographic and laminographic geometries. It is user-friendly

without compromising processing speed and flexibility

provided by the ufo framework (Vogelgesang et al., 2012)

back-end.

Unlike the existing open source tools, tofu connects the

image processing algorithms into a workflow on the ufo

framework (OpenCL) layer. Once the data is loaded, it stays

in the GPU memory as it passes through the workflow. Hence,

the processing time is significantly reduced as there is no need

to download intermediate results to the main memory in order

to pass them to the the subsequent stages of the workflow.

Tofu is further equipped with versatile graphical user inter-

faces. Tofu flow is a GUI for visual programming of image

processing workflows. Thanks to the fast execution, one

can vary the parameters and observe changes in the output

interactively. Once the optimal combination of algorithms and

parameters is found, tofu ez can be used to automatically

reconstruct multiple tomographic data sets.

In addition to the GUIs, there is a multitude of command

line interface (CLI) sub-commands for experienced users,

which can be embedded into scripts and other programs.

Three-dimensional (3D) reconstruction in tofu is flexible

and supports complex scanning scenarios, such as helical CT. It

includes algorithms for reduction of typical artifacts, e.g. rings,

‘zingers’ and noise. Several phase retrieval algorithms and

many general image processing filters (e.g. pad, crop, blur) are

available as well.

Scalability for 3D reconstruction is achieved by auto-

matically splitting the data to all available GPUs in the system

and by sub-dividing the final volume into several sub-volumes

if needed. Tofu is open source with extensive documentation

available online for both end-users and developers.

In the next section a brief description of the software

structure is presented; the most important and frequently used

algorithms are listed and the implementation of filtered back

projection is described in more detail. Section 3 is dedicated

to the user interfaces. Section 4 presents several application

highlights, while Section 5 contains benchmarking results.

2. Ufo framework

Tofu is based on the open source ufo framework (Vogelgesang

et al., 2012), which (1) provides a large library of image

processing algorithm implementations, (2) connects them into

a workflow (a directed acyclic graph), and (3) executes these

workflows on a broad range of computer systems. The

computer programs
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framework is written in C in a cross-platform and binding-

friendly way, so that it can be used on different operating

systems (Linux, Mac, Windows) and accessed from different

programming languages (e.g. Python). It uses OpenCL for

hardware-agnostic parallelization which allows for efficient

execution on both CPUs and GPUs from various vendors,

including NVIDIA, AMD and Intel. From the user perspec-

tive, there is a detailed description on how to install the

prerequisites and the software itself on different operating

systems and processor architectures in the manual (https://ufo-

core.readthedocs.io/en/latest/install/index.html). Moreover,

there are various Docker images available for download on

Docker Hub (https://hub.docker.com/r/tfarago/ufo-kit), which

allows users to skip the installation step on Linux. The

framework can read raw, tif, hdf5 and edf file types and write

raw, tif, hdf5 and jpg. Table 1 summarizes the components of

the software stack behind tofu.

Currently, there are over 90 image processing algorithms

implemented in ufo-filters; here we will shortly describe the

ones we implemented for obtaining high-quality 3D recon-

struction.

2D Phase retrieval algorithms for near-field Fresnel

diffraction images (also known as propagation-based phase

contrast images) have been implemented, including the

transport-of-intensity method (Paganin et al., 2002) and

various contrast transfer function approaches (Moosmann et

al., 2011). Moreover, the combination of multiple object–

detector distances is supported as well (Zabler et al., 2005).

For the case of a single object–detector distance, x-

and y-direction distances can be specified separately,

which is useful for processing images with non-

symmetrical pixel size or various propagation

distances, like in the case of Bragg magnifier imaging

(Vagovič et al., 2014).

3D reconstruction is realized by the filtered back

projection (FBP) algorithm for parallel beam and by

the Feldkamp approach (Feldkamp et al., 1984) for

cone beam data. Rotations of the detector, the axis

of rotation and the reconstructed volume are

supported for the treatment of a static setup mis-

alignment, the possibility to reconstruct lamino-

graphy data and the ability to rotate the

reconstructed volume without the need for post-

reconstruction 3D rotation. In addition, the recon-

struction parameters can be specified for every projection

separately to permit dynamic changes in the setup. This

enables complex reconstructions without the need of

data pre-processing, e.g. helical CT and motion-compensated

reconstruction in case of vibrations or systematic drift. Fig. 1

depicts the geometrical setup in more detail. Before the final

reconstruction, it is often necessary to find the correct values

of the reconstruction parameters, e.g. center of rotation,

laminographic angle, etc. In order to help find these, the

output of the algorithm is a 3D volume of horizontal slices

where the third dimension does not need to be the vertical

slice position. Instead, one can reconstruct the same hori-

zontal slice with different values of a reconstruction para-

meter. Some metric, e.g. the standard deviation, can then be

applied to such output to find the correct parameter value.

Based on the specified geometry, an optimized back projection

OpenCL kernel code with a minimal number of mathematical

operations is generated at run-time, which leads to optimal

reconstruction speed (e.g. coordinate transformations

required for the tilted rotation axis in the case of lamino-

graphy may be omitted in the case of tomography). On the top

of that, only projection regions necessary for the specified

reconstructed volume are read from the input data in order to

minimize I/O.

Ring artifact removal is based on two algorithms, one for

removing narrow and one for removing broad rings.

Narrow rings, often stemming from noise, are removed by

suppressing stripes which are close to being vertical in a

sinogram (a row in a sinogram represents a projection under

a certain angle), implemented by filtering the 2D Fourier

transform of the sinogram.

Broad rings, typical for scintillator defects, are filtered by

locating the corresponding spots of extreme intensity in the

projections by thresholding and region growing which yields a

mask representing invalid pixels. Horizontal linear interpola-

tion is then applied to replace erroneous intensity values.

The Non-local means noise removal algorithm has been

shown to significantly improve the signal-to-noise ratio of

filtered images while preserving fine details (Buades et al.,

2005). Such a filter is very desirable for the processing of

low signal-to-noise ratio data, stemming from e.g. high-speed

computer programs
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Table 1
Tofu software stack.

Component Description

tofu Python-based library of CLIs and GUIs for user-friendly
creation of image processing workflows (https://github.com/
ufo-kit/tofu, https://tofu.readthedocs.io)

ufo-filters Library of image processing algorithm implementations,
including tomographic reconstruction (https://github.com/
ufo-kit/ufo-filters, https://ufo-filters.readthedocs.io)

ufo-core GPU-enabled execution of image processing workflows on
multi-GPU systems (https://github.com/ufo-kit/ufo-core,
https://ufo-core.readthedocs.io)

Figure 1
Reconstruction geometry. The center of origin is in the center of the reconstructed
volume. Positions of the source and the detector are defined with respect to this
point. Point (Cxdet

, Czdet
) is the projection of the center of rotation on the detector

plane. The detector, the rotation axis and the reconstructed volume can be arbitrarily
oriented.



synchrotron experiments, high magnifications at lab sources,

or neutron sources. Our current implementation supports the

original algorithm and the faster version based on cumulative

sums (Darbon et al., 2008).

3. User interfaces

In this section, we will describe user interfaces (UIs) for

working with the ufo framework. Our primary focus will be the

two GUIs tofu flow and tofu ez, which enable user-friendly

creation of image processing workflows and batch processing

of tomographic data sets. We will also briefly describe the

CLIs; Table 2 contains the complete list of the user interfaces.

With any of the interfaces, the 3D reconstruction produces

quantitatively the following output:

(i) In the case of monochromatic absorption input data, the

voxel values are unitless and correspond to �x�, where �x is

the pixel size of the detector and � the linear attenuation

coefficient.

(ii) In the case of phase retrieval applied on projections

(and within the approximation limits of the respective

retrieval algorithm), the voxels correspond to either the

unitless phase shift �2��x�/� or, in the case of the transport-

of-intensity method and specification of the � part of the

refractive index, the �x in meters.

(iii) After ring removal, the results can no longer be

quantitatively interpreted.

3.1. Tofu flow

Tofu flow is a GUI (Fig. 2) for visual composition of image

processing workflows. Its main advantage is quick and flexible

flow creation with embedded visualization of results. This

combination makes the program interactive, which is very

desirable when it comes to optimization of image processing

parameters or education and training of people who are not

yet familiar with tomographic image processing. It is written

in Python 3 and PyQT5 (https://riverbankcomputing.com/

software/pyqt); the flow scene is based on qtpynodeeditor

(https://github.com/klauer/qtpynodeeditor).

Algorithms from the ufo framework in the flow scene

are represented as graphical nodes. Several nodes can be

combined into one composite node in order to remove clutter.

Algorithm parameters can be set directly inside nodes using

standard input widgets from the Qt (https://www.qt.io) library.

Moreover, parameters can be linked between nodes, i.e.

changing one node’s parameter automatically updates another

one’s, which minimizes the amount of required manual

adjustments. Flow direction is defined by node connections.

Starting points are nodes representing a data source and do

not have input connections (e.g. Read node). Typical proces-

computer programs
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Figure 2
Main window of tofu flow showing tomographic reconstruction. Dark and flat field images are averaged and used to flat-field-correct the radiographs.
The normalized images are padded in order to remove convolution outlier artifacts, Ram-Lak-filtered in the Fourier space, back projected and displayed.

Table 2
User interfaces and their typical use cases.

Program UI type Use case

tofu flow GUI Visual workflow programming
tofu ez GUI Batch-processing of many tomographic

data sets
tofu preprocess CLI Pre-processing workflows including phase

retrieval
tofu find-large-spots CLI Finding spots of extreme intensity
tofu sinos CLI Sinogram generation
tofu tomo CLI Parallel beam tomographic reconstruction

from sinograms
tofu reco CLI Cone/parallel tomographic/laminographic

reconstruction from projections
ufo-launch CLI Creation of arbitrary workflows on the

command line



sing nodes have inputs and an output; the flow ends in sink

nodes which do not have an output. Apart from write sink

node, which writes the results to a disk, there is also an

Image Viewer node for quick visualization of 2D images

or 3D volumes.

Execution of a flow in the scene, including scheduling and

utilization of all GPUs in the system, is by default left to

ufo-core. In the case of the memory-demanding 3D recon-

struction, tofu flow creates several batches and executes them

in sequence if more data than what fits into the GPU memory

needs to be reconstructed. In order to provide an interactive

way of working with flows, node parameters can be adjusted

by a slider. Once its value has changed, a flow execution

is triggered and the result in the image viewer is updated,

see Fig. 3.

3.2. Tofu ez

Writing custom scripts for batch processing of data allows

one to tailor the reconstruction workflow perfectly for each

particular case. However, not every research group can afford

to have a person with a computer science background or an

image processing specialist. To address this problem we have

developed a user-friendly interface tofu ez which can be used

to reconstruct data by scientists without substantial knowledge

of the Linux command line or Python scripting skills. Tofu ez

(Fig. 4) simplifies the usage of ufo-launch and tofu by exposing

all important parameters in a PyQT5-based interface and

automatically formatting a suitable list of commands

depending on the user input. Typical applications of tofu ez

include:

(i) Optimization of reconstruction parameters.

(ii) Single-click reconstruction of freshly acquired data

during the experiment.

(iii) Horizontal and vertical stitching of adjacent CT

volumes.

(iv) Batch processing of data after the experiment.

(v) Data reduction and preparation for further analysis and

3D visualization.

In order to start using tofu ez one prerequisite must be

fulfilled: tomographic projections and auxiliary images

required for intensity normalization (images acquired with

sample moved out of the beam and detector background noise

images, colloquially referred to as flats and darks) must

be saved in separate directories as separate tif files or in a

bigtiff container.

At the beginning of a reconstruction, tofu ez creates a list of

paths to all valid CT directories in the input directory. The

names of CT directories are compared with the directory tree

in the output directory (the relative path to a CT set in the

input directory is preserved when results are saved in the

output directory). Those CT sets whose names are not yet

in the output directory will be reconstructed. If requested,

tofu ez will automatically estimate the center of rotation

parameter, which is the only unknown variable in the input

of the filtered backprojection algorithm in parallel beam

geometry. This information is used during the second pass,

when the program creates an array of ufo-launch and tofu

commands according to defined parameters and then executes

them sequentially. The commands can also be printed on the

screen. Fig. 5 shows how tofu ez creates workflows in different

situations. Metadata can be loaded from a configuration

file and all parameters that could be used to re-run the

reconstruction are saved automatically along with the recon-

structed data.

Operations belonging to the following 12 categories can be

chained together to form a workflow which can be applied to

multiple data sets in the input directory automatically:

(i) Horizontal stitching of half acquisition mode data (see

explanation in the paragraph below the list).

(ii) Pre-processing with arbitrary ufo-launch workflow;

default option is the remove-outliers filter for the suppression

of ‘zinger’ artifacts.

(iii) Removal of large spots which stem from defects in the

scintillator crystal.

computer programs
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Figure 3
An example of interactive parameter adjustment in tofu flow. The user gradually changes the center of rotation value from 2000 to 2048 by dragging a
slider and the updated slice is immediately shown.



(iv) Flat-field correction including dynamic intensity

normalization (Van Nieuwenhove et al., 2015).

(v) Phase-retrieval.

(vi) Filtration of sinograms for the suppression of ring

artifacts; fast Fourier transform based filter as well as a

method which does not rely on the Fourier transform (Vo et

al., 2018) are available.

(vii) Automatic estimation of the position of the center of

rotation; two different algorithms are available.

(viii) Tomographic reconstruction with tofu reco.

(ix) Crop output slices and rotate the object within the

reconstructed slice.

(x) Clip the histogram and convert reconstructed values to

either 8 or 16 bit integers and save in the corresponding

file format.

(xi) Suppress noise in the reconstructed slices with the non-

local means de-noising filter.

(xii) Generate orthogonal slices with vertical stitching if

required.

An image viewer has been integrated into the tofu ez in

order to facilitate the visual inspection of the CT slices and to

clip the histogram of the reconstructed values. The advanced

tab provides access to less frequently used algorithms and

exposes performance optimization parameters. The fourth tab

contains a number of tools for the stitching of images in case

(1) the sample is larger than the beam and several local CT

data sets were acquired to examine the entire volume; (2) for

the preparation of the ‘half acquisition reconstruction’ (in

parallel beam geometry, if a sample is rotated in the 0–360�

range, two complete CT data sets are essentially acquired over

the first and the second halves of rotation; if the rotation axis is

shifted to the edge of the detector, the field of view can be

effectively doubled).

3.3. Command line interfaces

The generic CLI program ufo-launch comes with ufo-core

and not tofu, but we will shortly describe it for completeness.

computer programs
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Figure 4
Main window of the tofu ez interface.



A workflow can be created by connecting multiple algorithms

with exclamation mark, similar to chaining commands on the

Linux command line using the pipe symbol. For instance, the

following command reads images from a disk, bins and flips

them in the left-right fashion and writes the results to the disk:

CLI-based sub-commands in tofu (see Table 2) contain

predefined, parametrizable image processing flows. For

instance, the following command performs flat field correc-

tion, fixes possible extreme values, computes the absorptivity

and performs parallel beam tomographic reconstruction with

the rotation axis in pixel 951, returning 200 slices around the

vertical projection center with a spacing of 1 row:

The following command performs phase retrieval based on

the transport-of-intensity approach:

Experienced users can write scripts of any complexity or

integrate workflows into custom software by using ufo-launch

or one of the tofu CLI sub-commands. Moreover, they can use

tofu as a library and use the workflows in their Python

programs.

4. Application showcases

In the following sections we demonstrate the ability of tofu to

reconstruct data of various geometries, X-ray setups and one

from a neutron source. There will be four application show-

cases from various research fields with various imaging

demands.

computer programs

J. Synchrotron Rad. (2022). 29 Tomáš Faragó et al. � tofu 7 of 12

Figure 5
Block diagram of the tofu ez workflow generation. PR stands for phase retrieval; inpaint refers to an algorithm which removes large spots stemming from
scintillator defects.



4.1. Parallel beam CT

In this subsection, we demonstrate the capability of tofu to

provide a high-quality 3D reconstruction of a parallel beam

mCT data set acquired at a synchrotron facility, in this case the

Biomedical Imaging beamline of the Canadian Light Source.

In addition to the 3D reconstruction, the data processing

workflow included phase retrieval and various artifact reduc-

tion algorithms. The sample was a metamorphic schist mineral

held in collections of the University of Calgary; see Fig. 6 for

its projection and a slice with various pre-processing steps.

For the data acquisition, we used monochromatic beam with

energy of 45 keV, an effective pixel size of 1.6 mm � 1.6 mm

was obtained with a PCO Edge 5.5 camera coupled to a 50 mm

LuAG:Ce scintillator (Crytur) by means of an optical system

(Optique Peter) with 4� magnification. The distance between

the sample and the detector was set to 20 cm. Approximately

one-fifth of the camera dynamic range was used and 2000

projections were acquired. A fragment of the projection is

shown in Fig. 4(a). One can notice a very large spot in the

center and multiple bright pixels all over the image. The

former is a defect typical for single-crystal scintillators, the

latter occurs when a camera sensor gets hit by X-rays directly.

A CT slice from phase-retrieved projections without any

additional processing [Fig. 6(b)] reconstructed at the detector

row spoiled by the large spot exhibits a very intense ring

artifact. It dominates the contrast and makes it almost

impossible to interpret the image.

Fig. 6(c) shows the same slice with

various noise and artifacts suppression

algorithms applied. Insets (d)–(g) in

Fig. 6 show a fragment of the slice

in order to highlight the degree of

improvement as more algorithms were

applied before reconstruction (the

automatic contrast adjustment feature

of ImageJ was used to improve the

visual presentation). In the final slice

and its fragment shown in Figs. 6(c)

and 6(g), all artifacts are suppressed

so that an accurate segmentation of

four distinct minerals composing the

specimen becomes possible (the bright

white being ilmenite and the darkest,

almost black mineral is quartz as

confirmed by electron probe micro-

analyser).

4.2. Correlative neutron and X-ray CT

This subsection demonstrates the

capability of tofu to provide 3D recon-

structions of data from various probes,

sources and imaging geometries. The

experiment consisted of correlative

dual-mode parallel-beam neutron

and cone-beam X-ray tomography,

conducted at the NeXT instrument

(Tengattini et al., 2020) at the Institut Laue Langevin in

Grenoble (France). It is one of the few instruments world-

wide with an additional cone beam X-ray microfocus CT setup

installed to allow one to use complementary (attenuation)

contrast provided by the two probes. At NeXT, neutrons

come from a cold source inside the reactor enclosure and are

transported via a curved guide to the instrument where, at

the sample position, a maximum continuous flux of

�3 � 108 neutrons cm�2 s�1 is available.

The sample was a lithium primary battery of type ‘CR1/3N’

which uses a LiMnO2 chemistry with an MnO2 cathode

material. There is a genuine interest to investigate the

different processes and phenomena during discharge of

such batteries (and also during and after charging cycles of

rechargeable batteries where aging processes are limiting their

service lifetime) for different cell chemistries (Ziesche et al.,

2020a,b). Various slices and a rendering of the 3D volume

combined from both probes is shown in Fig. 7.

Neutron tomography and laminography are based on the

same principles as their X-ray counterparts. Here, neutrons

serve as a probe to provide information about the local

attenuation of a specimen in projection images acquired from

different viewing angles. Since the neutrons activate the

specimen and surrounding materials (like sample environ-

ments, sample manipulator parts or the detector), radioactive

decay occurs and produces secondary particles and X-ray

computer programs
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Figure 6
Reconstruction of parallel beam CT data with tofu ez. The sample is metamorphic schist (a piece of
rock composed of four minerals). The top row shows from left to right fragments of: a raw CT
projection (a) (dashed line indicating reconstructed row); of a slice reconstructed from phase-
retrieved projections without the application of any artifact-reduction algorithms (b); of the same
slice reconstructed with suppression of artifacts (c). Magnified fragments of images (b) and (c) are
shown in insets (d) and (g), respectively. Images in the bottom row demonstrate progressive
improvement when: only phase-retrieval was applied to data (d); phase-retrieval and broad ring
removal (e); phase-retrieval, broad and narrow ring removal ( f ); all previous algorithms were
applied and the outliers were removed from projections and flat-field images (g). Panels (a) and
(d)–(g) have been inserted after automatic contrast adjustment was applied in ImageJ once to the
entire image; no image correction of any kind was applied to panels (b, c). The scalebar for all
images in a row is the same as shown in the heading image of that row.



and gamma quanta. When gamma

radiation hits the detector (either the

scintillator of an indirect detector

system or its light-sensitive sensor chip),

white spots may appear on the 2D

projection images. After 3D recon-

struction, these spots are visible as

streak or ‘zinger’ artifacts stretching

across the slice’s planes, similar to the

case described before for hard X-ray

imaging. These artifacts can be effi-

ciently reduced in tofu by filtering out

the high-intensity spots in the projection

images.

The indirect neutron detector was

composed of a 10 mm-thick terbium-

doped gadolinium oxysulfide

(Gd2O2S:Tb) which was optically coupled (with slightly below

1:1 magnification) to a scientific CMOS camera (Hamamatsu

ORCA-Flash4.0V2). Natively this camera has an array of 2048

� 2048 pixels of 6.5 mm pixel pitch which we used in 2 � 2-

binning mode with an effective pixel size of 14.2 mm �

14.2 mm. We acquired 1600 neutron projections with 1 s

exposure time in a scanning time well below 30 min which

allows for time-resolved experiments during battery charging/

discharging cycles.

The sealed microfocus X-ray tube at the NeXT instrument

with a tungsten target and a beryllium window (Hamamatsu

L12161-07) was operated at 120 kVacceleration voltage with a

target power of 9.6 W. We acquired 1600 X-ray projections

with an amorphous-silicon-based flat-panel detector with CsI

scintillator (Varex PaxScan 2530HE) and 139 mm pixel pitch.

The distance between the source and the sample was 38 mm

and the distance between sample and detector 462 mm,

resulting in a 13.2� magnification and effective pixel size

10.5 mm � 10.5 mm.

In Fig. 7, one can clearly see the complementary contrast

obtained by the two probes. Neutrons are most sensitive to

hydrogen and lithium (bright blue in the images), X-rays are

mostly attenuated by heavier elements like copper, nickel and

manganese, as well as the steel casing (bright red). A magenta

cast occurs at locations where both X-ray and neutron

attenuation is rather high, e.g. the MnO2 cathode material.

4.3. Helical cone beam CT

This example demonstrates the ability of tofu to reconstruct

3D data from complex geometries. In this case, helical cone

beam CT was realized by simultaneous rotation of the sample

and vertical translation of the X-ray source and the detector at

the IPS X-ray imaging CL/CT-Laboratory. The sample was a

tree branch, shown in Fig. 8 together with a reconstructed slice

and a 3D rendering. The reconstruction was made possible by

the ability to specify the vertical source and detector positions

projection-wise.

An XWT-225 microfocus X-ray tube (X-RAY WorX) with a

tungsten target, operated at an acceleration voltage of 160 kV

with a target power of 75 W, was employed. The projection

images were recorded with an XRD1612 flat-panel detector

(PerkinElmer), featuring a physical pixel size of 200 mm �

200 mm with 2048 � 2048 pixels and a DRZ+ scintillator.

The distance between the source and the sample was

700 mm and the distance between sample and detector

1000 mm, resulting in a 2.4� magnification and effective pixel

size 82.35 mm � 82.35 mm. We acquired 7265 projections in

total (each exposed for 1.5 s), 2048 projections and 15 cm

vertical shift per 360�. Thus, the fully reconstructable field of

view was horizontally 168.6 mm and vertically 429.6 mm and

the volume size was 2048 � 2048 � 5217 pixels.

4.4. Cone beam laminography

This example demonstrates the ability of tofu to reconstruct

cone beam laminography data. The measurement took place

at the IPS X-ray imaging CL/CT-Laboratory. The sample was

computer programs
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Figure 7
Combined neutron and X-ray tomography of a primary cell with LiMnO2 chemistry shown as a
composite image. The blue channel depicts the linear neutron attenuation coefficient, the red
channel the X-ray counterpart. Slices through the reconstructed volume along different directions
are given in (a) and (b); a 3D rendering in (c). Cell diameter is 11.6 mm, voxel size 14.2 mm �
14.2 mm � 14.2 mm.

Figure 8
Helical cone beam tomography of a tree branch. Experimental setup (a);
a slice through the reconstructed volume (b); 3D volume rendering (c).
Total volume size was 2048 � 2048 � 5217 with voxel size 82.35 mm �
82.35 mm � 82.35 mm.



a conventional DDR3 memory module with flip-chip solder

bump bonds. A projection from the data set together with a

reconstructed slice which shows defects (voids) in the flip-chip

solder bumps is shown in Fig. 9.

An XWT-225 microfocus X-ray tube (X-RAY WorX) with a

tungsten target, operated at an acceleration voltage of 200 kV

with a target power of 20 W, was employed. The projection

images were recorded with an XRD1612 flat-panel detector

(PerkinElmer), featuring a physical pixel size of 200 mm �

200 mm with 2048 � 2048 pixels and a DRZ+ scintillator.

The distance between the source and the sample was

85.5 mm, and the distance between sample and detector

1629 mm, resulting in a 20� magnification and effective pixel

size 10 mm � 10 mm. The axis of rotation was inclined by

20.91� with respect to the tomography case. In total 2048

projections were taken over an angular range of 360� and

every projection was exposed for four seconds.

5. Performance

With tofu, the overall throughput of systems with two or more

GPUs can easily become limited by disk I/O performance

instead of 3D reconstruction. Fig. 10 provides the recon-

struction performance for different types of geometries and

systems. A performance comparison with respect to some

other reconstruction software is shown in Table 3. Throughout

this section, the term data set size defines both the input and

output sizes, i.e. for data set size N, the input are N projections

of size N 2 and the output is a volume of size N 3.

The aim of the first benchmark was to show how fast our

filtered back projection implementation is for different input

sizes and reconstruction geometries on various systems. We

used parallel beam tomography, parallel beam laminography,

cone beam tomography and cone beam laminography

geometries and data set sizes 1024, 2048 and 4096. Recon-

struction performance was measured on a notebook with an

Intel i9-10885H processor, 32 GB of RAM and an NVIDIA

RTX 2070 Super graphics card with 8 GB of RAM. The

second system was a workstation with Intel i7-7820X

processor, 32 GB of RAM and two NVIDIA RTX 4000

graphics cards, each with 8 GB RAM. The most powerful

system was a server with two Intel Xeon Silver 4114 proces-

sors, 256 GB RAM and four GeForce RTX 2080 Ti graphics

cards, each with 11 GB RAM. We measured the wall time of

tofu reco from invocation to return and used the so-called dry-

run mode, where no data is read or written to the disk. Only

the creation of empty OpenCL buffers, filtered back projec-

tion and downloading of the reconstructed volume from

graphics memory to main memory was performed. In this, as

well as in the second benchmark below, no flat field correction

or other pre- and post-processing steps were applied and the

input and ouput data were in single-precision floating-point

arithmetic. Fig. 10 summarizes the performance results.

The second benchmark is summarized in Table 3 and

compares the performance of tofu, ASTRA (van Aarle et al.,

2016) and PyHST2 (Mirone et al., 2014). We again measured

the wall time and this time also included the disk I/O in order

to provide a more realistic estimate of real-world recon-

struction times. The disk was a RAID 0 built from two

Samsung 860 EVO 500 GB SSDs with a final throughput

of about 1.3 GB s�1. We used parallel beam tomographic

geometry. All benchmarks were performed by using all four

GPUs of the server described above and in all packages we

used the filtered back projection algorithm. Opposed to slice-

by-slice reconstruction, ASTRA does not support filtering in

the volume-based reconstruction, so in that case we performed

only the back projection part. Similar benchmarks on a small

CPU-based cluster can be found in Marone et al. (2017).

Tomographic image processing can be massively paralle-

lized and is thus extremely well suited for GPU implementa-

computer programs
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Figure 9
Flip-chip solder bump defects investigation in a DDR3 memory module
by cone beam laminography. Projection image (a); reconstructed
absorption slice (b) with a zoomed region showing some of the
discovered defects.

Table 3
Reconstruction times of different software packages for different data
set sizes.

The results are in form mean (standard deviation) computed from ten runs.
Values in bold indicate the fastest package for a given data set size.

Data set size

Package 1024 2048 4096

UFO 12 (0.15) s 74 (0.89) s 947 (12.84) s
PyHST 18 (0.12) s 93 (0.89) s 770 (9.39) s
ASTRA 25 (1.39) s 189 (5.93) s 1777 (42.99) s

Figure 10
Filtered back projection compute times required by tofu on different
systems, data set sizes (1K = 1024, 2K = 2048, 4K = 4096) and geometries
(P = parallel, C = cone, T = tomography, L = laminography). One hour
mark is shown as a dashed horizontal line.



tion, which is true also for additional frequency filtering steps.

For example, flat field correction and filtered back projection

of a data set with size 2048 on the workstation mentioned

above took tofu 143 s including reading from file and writing

of results to disk. When we added phase retrieval based on the

transport-of-intensity approach to the workflow, the proces-

sing took 159 s, which increased the total reconstruction time

by only 11%.

6. Conclusion

We presented tofu, a set of versatile high-level user interfaces

for tomographic image processing including a command-line

interface for efficient scripting and two graphical user inter-

faces for user-friendliness. It includes many pre- and post-

processing algorithms, such as phase retrieval and ring-

removal and supports parallel beam, cone beam, tomographic

and laminographic geometries. Thus it can reconstruct data

acquired with different types of light sources, setups and

complicated geometries, as we have demonstrated by several

use cases. The modularity makes this an ideal tool for method

development platforms, where data processing workflows

need to be easily adjustable.

The image processing code can run on GPUs, therefore the

package is not only user-friendly but also fast and, as the

performance measurements show, users can obtain recon-

structions in short times even by using ordinary, off-the-shelf

hardware. The combination of a GUI and fast processing

permits one to work with data in an interactive way, which is

very useful for fine-tuning algorithm parameters and teaching

people how to perform tomographic reconstruction. Once

all parameters are optimized, multiple data sets acquired

under the same experimental conditions can be sent to

batch processing.

The presented software has been used at KARA, CLS and

ESRF synchrotrons and ILL neutron source for many years

and received a lot of positive feedback from users. We believe

that the variety of implemented algorithms, speed and cost-

efficiency of GPU computing combined with simple graphical

user interfaces will make the presented toolkit very attractive

to a broad community of synchrotron and neutron users

and researchers who need software for their custom-build

laboratory-based microtomography systems.
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