
Formal Foundations for
Anonymous Communication

Zur Erlangung des akademischen Grades einer

Doktorin der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation
von

Christiane Kuhn

Tag der mündlichen Prüfung: 10. März 2022

1. Referent: Prof. Dr. Thorsten Strufe
2. Referentin: Prof. Dr. Carmela Troncoso

Abstract

With every online action, we leave our digital footprints. These massive amounts of data are
used by companies and governments to derive private information and to manipulate us for their
benefit. As a countermeasure to this development, anonymous communication networks have been
proposed to enhance our privacy online. However, their common formal foundations are insufficient
and therefore comparisons between different approaches are very limited.
With a common ground for all researchers and designers of anonymous communication networks,
misunderstandings can be prevented and thus the development of networks can be enhanced. With
a way to compare solutions, the optimal approach for each use case can be identified and hence
development efforts no longer need to be spread across multiple projects rashly. With extensive
formal foundations, we gain all of the above. Even further, formal foundations enable a deeper
understanding of the possibilities, the impossibilities and the effects of the technologies used in
anonymous communication networks.

In this thesis, we first create general, fundamental formalizations for anonymous communication,
before we focus on onion routing and mix networks – the practically most common technique for
anonymous communication.
We ensure comparability between the offered privacy, by formally defining and comparing the pri-
vacy goals. Thereby, we create the first extensive hierarchy of unambiguous privacy notions for
anonymous communication. By analyzing the existing networks, we then identify basic building
blocks and investigate their protection as the effect in our hierarchy of notions.
These foundations allow us to uncover and resolve existing conflicts and flaws in the related work.
For privacy goal definitions, we show that based on the same informal definition two works state
formal versions with considerably different protection. Moreover, we make use of the notions to
compare existing impossibility results for anonymous communication: we provide the first com-
plete picture of known limitations and bounds in anonymous communication. With the help of
our in-depth approach, we are even able to tighten some of the bounds, as well as to relate them
to practical state-of-the-art protocols. Finally, due to our general investigation of proposed net-
works and their building blocks, we discover a new attack on the predominant class of anonymous
communication networks: onion routing and mix networks.
Motivated by the discovered attack, the second part of this thesis considers onion routing and
mix networks. Precisely, we examine their formal foundations and practically proposed solutions
to discover that our attack is partially due to a mistake in a common proof strategy for such
networks. To prevent attacks, we propose a new, secure proof strategy. Further, we are able to
apply our strategy for a proposed, but rarely used packet format and thus prove it secure. This
packet format does however not support replies, which is likely one of the reasons why state-of-
the-art solutions rely on a vulnerable packet format instead. We design two conceptual solutions
for repliable, provably secure onion routing packet formats towards closing this gap.

As additional contributions, we partially relate our general results for anonymous communication
to similar, but so far mostly distinct research areas, namely to privacy on the physical layer,
proximity tracing applications and privacy-preserving payment systems.

i

ii

Zusammenfassung

Mit jeder Online-Tätigkeit hinterlassen wir digitale Fußspuren. Unternehmen und Regierungen
nutzen die privaten Informationen, die von den riesigen Datenmengen der Online-Spuren abgeleitet
werden können, um ihre Nutzer und Büger zu manipulieren. Als Gegenmaßnahme wurden anonyme
Kommunikationsnetze vorgeschlagen. Diesen fehlen jedoch umfassende formale Grundlagen und
folglich ist der Vergleich zwischen verschiedenen Ansätzen nur sehr eingeschränkt möglich.
Mit einer gemeinsamen Grundlage zwischen allen Forschern und Entwicklern von anonymen Kom-
munikationsnetzen können Missverständnisse vermieden werden und die dringend benötigte Ent-
wicklung von den Netzen wird beschleunigt. Mit Vergleichbarkeit zwischen den Lösungen, können
die für den jeweiligen Anwendungsfall optimalen Netze besser identifiziert und damit die Entwick-
lungsanstrengungen gezielter auf Projekte verteilt werden. Weiterhin ermöglichen formale Grund-
lagen und Vergleichbarkeit ein tieferes Verständnis für die Grenzen und Effekte der eingesetzten
Techniken zu erlangen.

Diese Arbeit liefert zuerst neue Erkenntnisse zu generellen Formalisierungen für anonyme Kommu-
nikation, bevor sie sich dann auf die praktisch am meisten verbreitete Technik konzentriert: Onion
Routing und Mix Netzwerke.
Als erstes wird die Vergleichbarkeit zwischen Privatsphärezielen sichergestellt, indem sie formal
definiert und miteinander verglichen werden. Dabei enteht eine umfangreiche Hierarchie von ein-
deutigen Privatsphärezielen. Als zweites werden vorgeschlagene Netzwerke analysiert, um deren
Grundbausteine zu identifizieren und deren Schutz als Auswirkung in der Hierarchy zu unter-
suchen.
Diese Grunlagen erlauben Konflikte und Schwachstellen in existierenden Arbeiten zu entdecken
und aufzuklären. Genauer zeigt sich damit, dass basierend of derselben informalen Definition ver-
schieden stark schützende formale Versionen entstanden sind. Weiterhin werden in dieser Arbeit die
Notions genutzt um existierende Unmöglichkeitsresultate für anonyme Kommunikation zu verglei-
chen. Dabei wird nicht nur die erste vollständige Sicht auf alle bekannten Schranken für anonyme
Kommunikationsnetze gegeben, sondern mit einem tiefgründigen Ansatz werden die existierenden
Schranken auch gestärkt und zu praktischen, dem Stand der Kunst entsprechenden Netzen in
Bezug gesetzt. Letztlich konnten durch die generellen Betrachtungen von vorgeschlagenen Netz-
werken und ihren Grundbausteinen, insbesondere auch Angriffe auf die vorherrschende Klasse von
anonymen Kommunikationsnetzen gefunden werden: auf Onion Routing und Mix-Netzwerke.
Davon motiviert wurden als zweiter Teil dieser Arbeit die formalen Grundlagen und praktisch einge-
setzten Lösungen for Onion Routing und Mix-Netzwerke untersucht. Dabei wurde festgestellt, dass
die bereits erwähnten Angriffe teilweise auf eine fehlerhafte, aber weit verbreitete Beweisstrategie
für solche Netze zurückzuführen sind und es wurde eine sichere Beweisstrategie als deren Ersatz
vorgeschlagen. Weiterhin wurde die neue Strategie für ein vorgeschlagenes, aber bisher nicht
weiter verwendetes Paketformat eingesetzt und dieses als sicher bewiesen. Dieses Paketformat un-
terstützt allerdings keine Rückantworten, was höchstwahrscheinlich der Grund ist, aus dem sich
aktuelle Netze auf ein unsicheres Paketformat verlassen. Deshalb wurde im Rahmen dieser Arbeit
eine konzeptuelle, sichere Lösung für Onion Routing mit Rückantworten entworfen.

Als weitere verwandte Beiträge, zeigt die Arbeit Beziehungen von Teilen der generellen Ergebnisse
für anonyme Kommunikationsnetze zu ähnlichen, aber bisher hauptsächlich getrennt betrachte-
ten Forschungsbereichen, wie Privatsphäre auf der Bitübertragungsschicht, Kontaktnachverfolgung
und privatsphäre-schützenden, digitalen Bezahlsystemen.

iii

iv

Acknowledgements

As any important project in life, this thesis was only possible due to the support of a series of
people. I am extremely grateful to any single one of them for accompanying me on (a part of) my
PhD journey.

First of all, I want to thank my adviser Thorsten Strufe for pointing me to anonymous communica-
tion and at the same time allowing me the freedom to shape this topic to my liking. I am grateful
for his incredible patience and strong will to understand the theoretical and formal aspects that
fascinate me. Of course I also thank him for the countless meetings with valuable advice, feedback
and guidance and for making this thesis and all collaborations possible.

Secondly, I am extremely thankful to Carmela Troncoso not only for accepting to be the second
referee for this thesis, but also for her encouraging and cordial words at my first time at PETS
and, of course, for her inspiring work.

Next, I thank all of my collaborators for their contributions to the presented results and the
pleasant, insightful discussions we had over the time. In particular, I thank Martin Beck for the
long-continued cooperation and all the rewarding time that I got to enjoy with a mind that thinks
so much alike, yet has its very own perspective. I thank Aniket Kate for allowing me to stay
with him at Purdue University over a summer, for the insightful discussions to privacy-preserving
payment protocols and also for valuable non-technical advice. Further, I thank Dennis Hofheinz
and Andy Rupp for their great ideas on cryptographical primitives for repliable onion routing and
their continuing support. Further, I also thank Stefan Schiffner for his guidance and remarks to
the our privacy notions. Additionally, I want to thank Eduard Jorswieck and Pin-Hsun Lin for
their patience in explaining the physical layer privacy definitions, as well as in understanding the
peculiarities of the anonymous communication definitions. Further, I thank Lisza Zeidler for the
long time collaboration on anonymous communication primitives and Friederike Kitzing for her
contributions to the comparison of the performance bounds.

Furthermore, I thank my colleagues for their helpful comments to my texts and presentations.
Especially, I am grateful for Martin Byrenheid’s, Stefan Köpsell’s and Clemens Deußner’s inputs
that made my results more accessible.

Finally, I want to thank my family and friends for their understanding and loving support during
the better and especially also more challenging parts of my PhD process.

Thank you all! Sharing this experience with you really made a difference.

v

vi

Contents

1 Introduction 1

2 Preliminaries 7
2.1 Anonymous Communication Networks . 7

2.1.1 Setting . 7
2.1.2 Adversary . 7
2.1.3 Goals . 8
2.1.4 Performance . 8
2.1.5 Techniques . 8

2.2 Cryptographic building blocks . 9
2.2.1 Encryption . 9
2.2.2 Authentication . 10
2.2.3 Updatable Encryption . 10
2.2.4 SNARGs . 10

2.3 Privacy Goal Definitions . 11
2.3.1 Differential Privacy . 11
2.3.2 Indistinguishability Games . 11
2.3.3 Ideal Functionalities in the Universal Composability Framework 12

3 Privacy Notions for Anonymous Communication 13
3.1 Overview . 13
3.2 Our Game model . 15
3.3 Protected Properties . 17

3.3.1 Simple Properties . 17
3.3.2 Complex Properties . 20

3.4 Privacy Notions . 22
3.5 Hierarchy . 25
3.6 Relations to Prior Work . 27

3.6.1 Relation to Existing Analysis Frameworks 27
3.6.2 Use Case: Analyzing Loopix’s Privacy Goals 30

3.7 Climbing the Hierarchy: Towards ACN Primitives 32
3.7.1 Introducing Primitives . 32
3.7.2 Primitives Overview . 32
3.7.3 Encryption Primitives . 33
3.7.4 Dummy Traffic Primitives . 33
3.7.5 Indirection Primitives . 37
3.7.6 Effects in the Hierarchy . 38

3.8 Discussion . 39

4 Performance Limits of Anonymous Communication 41
4.1 Bounds Overview . 41
4.2 Comparison . 44

4.2.1 Counting-Bound and Optimality-Bound are equivalent 44
4.2.2 Protocol Assumptions . 44
4.2.3 Privacy Goals . 45
4.2.4 Advantage Definitions . 45
4.2.5 Additional Restrictions . 46

vii

4.2.6 Adversary Models . 46
4.2.7 Bounds . 47
4.2.8 Comparison across the Aspects . 51

4.3 Implications . 52
4.3.1 Discussion of Networks . 53
4.3.2 Final Remarks on Bound Implications for Protocol Proposals 55

4.4 A Practical Viewpoint: Explaining Limitations . 55
4.4.1 Strong Privacy Goal Formalizations . 56
4.4.2 Maximal Anonymity Sets . 56
4.4.3 Bandwidth Cost Models . 57
4.4.4 Assumptions . 57

5 Onion Routing: Breaking and Fixing the Unidirectional Case 59
5.1 Background . 59

5.1.1 Adversary Model . 59
5.1.2 Onion Routing (OR) . 60
5.1.3 Existing Schemes and Systems . 60
5.1.4 Formally treating OR . 61

5.2 First Pitfall: Incomplete Properties . 63
5.2.1 Attack on Sphinx . 63
5.2.2 Analyzing the Original Properties . 63
5.2.3 Security against Malicous Receivers . 66
5.2.4 Linking Protection . 68
5.2.5 Improved Properties imply Ideal Functionality 69

5.3 Second Pitfall: Insufficient Oracle Treatment . 71
5.3.1 Malleability Attack . 71
5.3.2 Mistake in the Proofs . 73

5.4 Proving the Adapted Sphinx secure . 74
5.5 Discussion . 74

5.5.1 Onion-Security Properties vs. Existing OR Attacks 74
5.5.2 Adapting Our Properties . 75
5.5.3 Limitations . 75

6 Provably Secure Onion Routing with Replies 77
6.1 Overview . 77
6.2 Notation . 78
6.3 Model and Ideal Functionality . 79

6.3.1 Assumptions . 79
6.3.2 Modeling Replies . 79
6.3.3 Ideal Functionality . 81

6.4 New Properties . 81
6.5 Our UE-based Scheme . 84

6.5.1 Building Blocks . 85
6.5.2 Scheme Description . 85

6.6 Security of Our Repliable OR Scheme . 88
6.7 Our SNARG-based Scheme . 90

6.7.1 Building Blocks and Setting . 91
6.7.2 Scheme Description . 92
6.7.3 Security . 94

7 Beyond Anonymous Communication 95
7.1 Proximity Tracing Notions . 95

7.1.1 Background . 95
7.1.2 Application Scenario and Assumptions . 97
7.1.3 Model . 98
7.1.4 Properties . 99
7.1.5 Notions . 103
7.1.6 Application . 104

7.2 Payment Networks . 105

viii

7.2.1 Background . 105
7.2.2 Model . 106
7.2.3 Notions . 106
7.2.4 Anonymity Sets for Realistic User Behavior 110
7.2.5 Simulation for path-based multihop protocols 114

8 Conclusion 117

A Details to Notions 129
A.1 Options for Notions . 129

A.1.1 Protocol-dependent: Sessions . 129
A.1.2 Adversary Model: Corruption . 129
A.1.3 Easier Analysis: Quantification . 130
A.1.4 Capturing Different Adversaries . 131

A.2 Challenger . 131
A.3 Notions in Pseudocode . 132
A.4 Additional Tables and Figure . 132
A.5 Delayed Proofs . 136

A.5.1 Advantage Definitions . 136
A.5.2 Notion Relations . 136
A.5.3 Multi-Challenge Generalization . 139
A.5.4 UC-Realizability . 139
A.5.5 Completeness of Hierarchy . 139

A.6 On the Choice of Notions . 146
A.7 How to Use . 150
A.8 Primitives’ Details . 151

A.8.1 Pseudocode . 151
A.8.2 Protection . 153

A.9 Dissecting Systems to Primitive Combinations . 158
A.9.1 Mixnet . 158
A.9.2 DC-Nets . 159
A.9.3 Pung . 161
A.9.4 Loopix . 162

B Improving Bounds 165
B.1 Tightening the claims . 166

B.1.1 Adversary Models . 166
B.1.2 Privacy Notions Specification . 166
B.1.3 Dropping-Bound – Privacy Notion . 167
B.1.4 Trilemma – Overview . 168
B.1.5 Trilemma – Compromising adversary . 169

B.2 Proofs . 170
B.2.1 Advantage Definitions . 170
B.2.2 Counting-Bound and Optimality-Bound Bound Equivalence 171
B.2.3 Improving the Trilemma . 172
B.2.4 Impossibility areas . 172
B.2.5 No latency in the Trilemma . 172

B.3 Extended Results . 173
B.3.1 Receiver Privacy Goals . 173
B.3.2 Note on related results . 173

C Details on Formal Onion Routing 175
C.1 Ideal Functionality . 175

C.1.1 No replies . 175
C.1.2 With Replies . 177
C.1.3 Analyzing the Ideal Functionality without Replies 177

C.2 Proof of new Properties . 182
C.2.1 No Replies . 182
C.2.2 With Replies . 187

ix

C.3 Additional Results without Replies . 191
C.3.1 Insecure Protocol 1 . 191
C.3.2 Insecure Protocol 2 . 193
C.3.3 Extension for Onion Security . 194
C.3.4 Sphinx . 195
C.3.5 Correctness Practical Considerations . 197

C.4 Additional Results with Replies . 197
C.4.1 Definition of Building Blocks . 197
C.4.2 Proof Sketches of Further Properties for our UE Scheme 202
C.4.3 Security of our SNARG-Based Scheme . 206
C.4.4 Performance . 211

D Details on Related Areas 215
D.1 Proximity Tracing Applications . 215

D.1.1 Examples . 215
D.1.2 Possible Extensions . 216
D.1.3 Notes on existing approaches . 220

D.2 Payments . 226
D.2.1 Hierarchy Proof Sketches . 226
D.2.2 The Effect of Loops . 228
D.2.3 Relation to Protocols . 228

x

List of Figures

3.1 Steps of the sample game . 14
3.2 Examples for the properties RSR and MSR . 21
3.3 Our hierarchy of privacy notions . 25
3.4 Additional implications for corruption and sessions 25
3.5 Primitive includes in game model . 32
3.6 Broadcast primitive example . 33
3.7 Primitives in our hierarchy . 34
3.8 Padding options for Dummy to Sink . 36

4.1 Hierarchy excerpt with goals of bounds highlighted 46
4.2 Hierarchy of adversary models of the bounds . 47
4.3 Comparison of bounds under Trilemma assumptions 53

5.1 Onion-Security game . 65
5.2 Cases of Onion-Security . 65
5.3 Cases of Tail-Indistinguishability . 67
5.4 Cases of Layer-Unlinkability . 68
5.5 Difference in security properties . 69

6.1 Forward Layer-Unlinkability . 81
6.2 Backwards Layer-Unlinkability . 83
6.3 Repliable Tail-Indistinguishability . 83
6.4 Protocol Overview . 84
6.5 Non-repliable receiver header illustrated . 86
6.6 Processing illustrated . 87
6.7 Repliable receiver header illustrated . 87

7.1 Hierarchy of proximity tracing privacy notions . 104
7.2 Hierarchy of payment privacy notions . 109
7.3 Relative cost against uniqueness . 112
7.4 Waiting time against uniqueness . 112
7.5 Anonymity set sizes with value buckets . 113
7.6 Maximal and minimal anonymity sets . 114
7.7 Path-based anonymity sets with fixed hoptime . 116
7.8 Path-based anonymity sets with increasing hoptimes 116

A.1 Our hierarchy with mappings to related works . 132
A.2 Property Implications . 145

B.1 Mapping of the bound’s anonymity notions to our hierarchy 167

C.1 Example inputs for (SR)L, (SR)O and (2S)O . 181
C.2 Illustration of the message extension used as message in Π 191
C.3 Extension exti for Onion Security . 195

D.1 Effect of loops on path-based anonymity sets . 228

xi

xii

1. Introduction

Whenever we communicate online, we leave digital footprints. From these traces often private
information can be derived. We reveal our interests as we like and follow in online social networks,
we show our recent breakup by a drastic change in our usage behavior of our favorite messag-
ing application and we seek medical advice and counseling on search engines. These examples are,
however, just the tip of the iceberg. Due to the collection of massive amounts of data and the usage
of modern machine learning algorithms, we as human beings become almost completely transpar-
ent [146] for big companies and governments, leaving us vulnerable for manipulation according to
their goals. Targeted advertisement of dangerous goods, like diet products for anorexic people,
for the gain of profits and targeted advertisement of political parties for the gain of power [30]
are logical consequences. Furthermore, the extensive surveillance threatens our society as a whole.
Nationwide censorship of critics can be used to prearrange the public opinion and even the pure
awareness of the surveillance possibilities might cause minorities, journalists and whistleblowers to
self-censor for their own protection [144].

To prevent the extensive surveillance power that is in the hand of a few big players, we need to
protect the data and metadata of our communications. An important tool for our protection are
anonymous communication networks (ACNs). However, to enhance our privacy, these networks
decrease the performance as compared to communication without protection. Any ACN conse-
quently offers some trade-off between the achieved protection and the necessary overhead. The
achieved protection is thereby a combination of the privacy goal, i.e. which information the ACN
keeps private, and the adversary model, i.e. against whom the privacy is guaranteed. A typical
setting is to hide who sent a message to whom against the global passive adversary that can eaves-
drop on all links. A variety of ACNs, from which each offers individual trade-offs in the above
dimensions, has been proposed [43, 44, 58, 140, 74, 42, 40, 47, 104, 137, 154, 103, 156, 49]. Typically
they are distinguished in two classes of protocols: onion routing- and mixing-based approaches [43,
44, 58, 74, 42, 140, 104, 103, 154] as opposed to secret sharing strategies [40, 47, 137, 156, 49].
Onion routing and mix networks employ intermediate hops between the communication partners
to unlink the sender from the message, as well as the receiver. Secret sharing strategies instead
make use of mathematical properties to ensure that any user needs to contribute a part to reveal
the message.

While the development of concrete solutions for specific use cases has value in itself, the existing
limits in the comparability of proposed approaches hamper the alignment of development efforts.
Moreover, without an accepted, formal common ground misunderstandings between the researchers
as well as developers cannot be prevented. We thus need to strengthen the existing foundations
via a detailed investigation of all dimensions and techniques to further the development of ACNs.
Practically, the gained fundamental understanding is not only important to exclude wrong di-
rections with impossibility results and create completely new solutions following more promising
approaches, but also to prove and improve the protection of existing networks. Indeed, investigat-
ing the achieved trade-off in detail allows to discover attacks and flaws in the designs.

For this thesis, we first show general results for anonymous communication, before we then inves-
tigate onion routing and mix networks as concrete practical examples. To improve the general,
theoretical foundations for ACNs, we focus on i) privacy goals and ii) performance limits.

Firstly, the published ACNs address a variety of privacy goals. However, especially the goal def-
inition is usually ad hoc or informal. This leads to a situation where authors disagree on the

1

interpretation of informal definitions. For example “Sender Unlinkablity” of Hevia and Miccian-
cio’s framework [82] and “Sender Anonymity” of AnoA [11] are both claimed to be equivalent
to “Sender Anonymity” of Pfitzmann and Hansen’s terminology [126], but significantly differ in
the protection they actually provide. To rigorously compare the ACNs, their goals need to be
unambiguously defined and the relations between the goals understood. As our first contribution,
we formalize the privacy goals for anonymous communication. We build our privacy definitions
on the foundations of existing analytical frameworks [11, 26, 82, 72] that rely on indistinguisha-
bility games. Indistinguishability games are known from message confidentiality [17]. There an
adversary, seeing only the encrypted message, should not be able to exclude any of the two chosen
plaintext message as a candidate. Similarly, we require that given her observations, the adversary
cannot conclude any private information about the communication, e.g. which of the two chosen
users the sender was. This approach allows us to vary the kind of information that is supposed to
be private for any specific notion. We define an extensive set of communication properties that are
(depending on the notion) either declared private, i.e. must be hidden from the adversary, or not.
With the help of these formal definitions, we compare all identified privacy notions, to learn which
is stronger than the other and present a hierarchy of them. Further we relate our notions to formal
existing work [11, 26, 82, 72] and thereby solve naming conflicts, like the different interpretations
of “Sender Anonymity” that were mentioned above. Moreover, we identify and investigate basic
building blocks that ACNs are often constructed of. Our goal is to learn about their inner workings
and the protection achieved by the building blocks in terms of our notions. So far, to the best of
our knowledge only a rough classification of approaches is common and only Hevia and Miccian-
chio [82] proposed three strategies that represent basic building block style techniques. While we
of course base our investigation on this seminal work, we provide a notably more fine-granular set
of building blocks against the global passive adversary.

Secondly, the published ACNs are bound by performance restrictions. Especially, some goals cannot
be achieved unless a certain performance overhead is invested. The knowledge of such fundamental
limits can greatly aid the ACN design. However, the existing valuable formal results [6, 54, 72, 82]
are incomparable and hard to understand in detail because of the complex dimensions of ACNs.
With the help of our privacy goals hierarchy and in-depth understanding of the impossibility results
for ACNs, we compare all existing performance bounds [6, 54, 72, 82] in detail. For our comparison,
we unify the differing models and privacy goals, as well as handle the large variety of explicit and
implicit assumptions. Furthermore, we strengthen some of the bounds’ claims and proofs during
our investigation. We contextualize our final findings by relating them to state-of-the-art ACN
proposals and we identify theoretical peculiarities that cause high overhead, but give grounds for
more realistic and relaxed bounds in future work.

During our search for building blocks, we broadly investigated state-of-the-art ACNs regarding
their protection in terms of our privacy notions. Thereby, we discovered the malleability attack on
HORNET [43], an onion routing based solutions. HORNET aims to unlink senders from receivers
with the help of a series of intermediate nodes. The payload in HORNET is however merely end-to-
end, not hop-by-hop integrity protected in the used packet format Sphinx [52]. Thus a packet with
modified payload still reaches the intended receiver, which is exploited in our malleability attack.
More precisely, the attack assumes a corrupt first intermediate node and receiver. The adversary
links the sender to the receiver by modifying the payload of the sender victim and recognizing the
uncommon message (a random bit string) at the adversarial receiver.

Motivated by the malleability attack, we focus on onion routing and mix networks for the second
part of this thesis. The most prominent representative of onion routing, Tor [58], gained users
over time and now has an impressive user base of around two million users1. As onion routing
and mix network solutions became increasingly popular, the need to formally prove their privacy
became apparent. Besides others, Camenisch and Lysyanskaya [31] proposed a fundamental se-
curity definition for onion routing, in the form of an ideal functionality. This functionality is a
formal abstraction that shows which information even a perfect onion routing scheme reveals to an
adversary. Additionally the authors design easier to prove game-based properties which, as they
claim, provide the same protection as the ideal functionality. The properties of Camenisch and
Lysyanskaya have been used by many approaches, especially by the fundamental packet format

1according to https://metrics.torproject.org/userstats-relay-country.html

2

Sphinx.

Investigating the security of the proposed onion routing and mix networks, we discovered that the
malleability attack works on nearly2 all networks [43, 52, 142, 128] that are proposed and proven
secure with the properties of Camenisch and Lysyanskaya. For HORNET it even allows the adver-
sary to recover parts of the message additionally to the sender-receiver relationship. The attack is
surprising, as the networks were proven secure. We hence investigated the proofs and indeed had
to discover that the proposed properties are not sufficient for the privacy promised in the ideal
functionality. To close this gap, we designed new properties that indeed imply the ideal function-
ality. Further, we show for one packet format with explicit hop-based payload protection [14] that
it fulfills our properties.

However, this packet format, as well as the model of Camenisch and Lysyanskaya does not support
replies from the (potentially adversarial) receiver back to the anonymous sender. Practical solu-
tions [43, 52, 142, 128] on the other hand typically require replies from the receiver to the original
sender. We thus extend the model and proof strategy with replies. To provide sufficient protection
for users that request replies, even if few messages are being replied to, it is desirable to make
forward and backward communications indistinguishable. This however comes with a challenge
when the malleability attack needs to be prevented: It requires payload protection not only for
requests as before, bot now also for replies, which can only be realized implicitly without trivially
revealing the linking between sender and receiver. Overcoming the technical challenge of implicit
payload protection for the reply, we propose two new packet formats that conceptually solve the
problem of repliable and provably secure onion routing.

Beyond our contributions to anonymous communication, we made use of the gained knowledge
on privacy goal definitions in related areas. We thus proposed a notion hierarchy tailored to
proximity tracing applications, as well as privacy-preserving payment systems. For both use cases,
we further related proposed solutions to our new hierarchies. Additionally, we found equivalences
of our notions to existing formal definitions that are used on the physical layer and reveal a first
connection point between these research areas.

The presented contributions have been published at several top venues, including IEEE S&P [95],
Asiacrypt [97], PETS [93], and WPES [99]. For this thesis, the corresponding publications are
adapted. Below we give a concise overview of the included contributions.

Contributions

Our contributions to the formalization of anonymous communication networks can be classified
into two parts: the fundamental general theoretical insights and the more practical results to onion
routing and mix network packet formats.

1. General Insights. i) Definition and comparison of privacy goals, ii) investigation of basic
protection techniques and iii) comparison of performance bounds

2. Onion routing and mix networks. i) Identification of attacks on and flaws in state-of-the-art
networks and packet formats, ii) identification of flaws in the underlying proof techniques,
iii) proposition of secure proof strategies and iv) proposition of secure packet formats

Beyond anonymous communication we investigated the relation to i) physical layer, ii) proximity
tracing applications and iii) payment systems.

General Insights

Privacy Goals (Chapter 3). We present privacy notions for anonymous communication created
out of basic building blocks: the properties of communications. These properties are (depending

2Only for TARANET [44] the attack is outside of the adversary model.

3

on the notion) either private and have to be protected, or not. We compare each pair of defined
notions to create an extensive hierarchy and further relate existing work to it to resolve conflicts.
Moreover, we identify and investigate a fine-grained set of basic techniques against the global
passive adversary.

Performance Bounds (Chapter 4). We investigate the performance bounds in detail, tighten some
of them and bring them to a common model for comparison. Thereby, we are able to state the
complete picture of known impossibility results for ACNs. By relating them with state-of-the-art
ACN proposals, we even identify limitations of the theoretical bounds and opportunities for future
work.

Onion Routing and Mix Networks

Onion Routing and Mix Networks (Chapter 5). During our investigation of state-of-the-art solu-
tions, we had to discover the malleability attack on onion routing and mix networks. We argue
that the malleability attack works on a series of onion routing and mix networks, even though they
have been proven secure. We hence investigate the underlying proof strategy to find the mistakes
and propose a corrected proof strategy. Moreover, we apply the new proof strategy to an existing
packet format.

Adding Replies (Chapter 6). The model behind the proof strategy, as well as the mentioned packet
format does not support replies. We hence extend the model and proof strategy to cover replies.
Further, we overcome a technical challenge that arises from the combination of reply support and
our malleability attack, and design two conceptual solutions for secure repliable onion routing
packet formats.

Related Contributions

Additionally to our fundamental results for ACNs, we relate these results partially to other appli-
cation areas, namely proximity tracing applications and payment systems.

Proximity Tracing (Section 7.1). Due to the contemporary challenge of the covid pandemic, we
decided to aid the design of privacy preserving proximity tracing applications with clear and
formally defined privacy notions for this setting. We further investigate the proposed approaches
regarding the offered privacy in terms of our definitions.

Privacy Preserving Payment Systems (Section 7.2). Payments are conceptually similar to com-
munications. In both cases a sender sends something (message or money) to a receiver. We
thus studied the differences between the research areas, defined privacy notions for payments and
investigated state-of-the-art solutions, as well as own conceptual adaptations for their achieved
privacy.

Additionally, with the help of our formal privacy notions for ACNs, we were able to show equiva-
lences between these definitions and physical layer privacy definitions (see [106] for details).

Collaborations

In order to achieve the presented results, I was fortunate to work with many talented researchers.
As I am thus presenting the outcome of our collaborations, I am using “we” not out of convention,
but to honor the support and efforts of my valued collaborators.

Precisely, my supervisor Thorsten Strufe supported me with his input in countless discussions
to all my research. Further, Martin Beck contributed to our privacy goal definitions, the onion
routing formalization and the proximity tracing privacy requirements in numerous, long discussions.
Especially, Martin Beck and I discovered the first instance of the malleability attack in a joint

4

discussion and we fine-tuned the new onion routing security properties and the corresponding
proof together. Stefan Schiffner and Eduard Jorswieck contributed to the property definitions
for our notions by helping to find the most elegant representation for them. Pin-Hsun Lin and
Eduard Jorswieck further contributed the majority of results for the comparison of our anonymous
communication notions to the physical layer definitions. Friederike Kitzing contributed to the
comparison of impossibility results. Lisza Zeidler contributed to the basic building blocks for
anonymous communication. Without Andy Rupp and Dennis Hofheinz I would not have found
the cryptographic primitives necessary to build the repliable onion routing and mixnet packet
format, neither written the current version of the security proof for the new schemes. Aniket Kate
contributed to the privacy goals for privacy-preserving payment systems and the relation of goals
to state-of-the-art payment protocols.

5

6

2. Preliminaries

In this chapter, we give general background on the setting of ACNs, selected underlying cryp-
tographic primitives, and a concise overview on the necessary privacy goal background. We will
further detail the background and state related work in the corresponding chapters together with
the new contributions.

2.1. Anonymous Communication Networks

While encryption is a well known measure to protect the content of messages, packet switched
networks leak other information that requires protection. For example the sender and receiver
of a communication are important metadata information that allows conclusions about social
relationships. ACNs are tools that exchange messages between users and hide such communication
data and metadata from the adversary.

2.1.1 Setting

We discuss Anonymous Communication (AC) in the setting of multiple unicast communications,
like several client-server applications or messaging between users on the Internet. Each commu-
nication is the process of delivering a single message from the sender to the intended receiver.
To achieve this, the message is possibly forwarded by intermediate nodes. ACNs consist of nodes
playing two roles; users (senders and receivers) and service providers (intermediate nodes). Par-
ticipants in some systems play both roles for different communications. We distinguish between
the integrated system model, where the receiver is part of the ACN and acts according to the ACN
protocol, and the service model, where messages are anonymized as a service and the receiver,
e.g. webserver, can be completely unaware of the ACN. Depending on the use case, the assumed
adversaries and the privacy goals differ (see below).

2.1.2 Adversary

ACNs vary widely in the adversarial capabilities they assume. Most well known is the global
passive adversary (GPA) that allows to eavesdrop on all network links. More strict adversary
models also consider corruption of users and intermediate nodes, as well as active attacks. While
active adversaries allow to modify, drop, insert and delay packets at the controlled parts of the
network, passively corrupted receivers, or intermediate nodes only leak their secrets, e.g. private
keys and observations, to the adversary. Additionally, adversary models might limit the adversary
to local reach, i.e. to eavesdrop or modify packets only at some part of the network, to certain
time periods or to ignore time measurements.

7

2.1.3 Goals

ACNs tackle a wide range of privacy goals. Most commonly approaches want to protect who is send-
ing which message (“Sender Anonymity”), who is receiving which message (“Receiver Anonymity”)
and who is communicating with whom (“Relationship Anonymity”). All users that the adversary
cannot distinguish from the actual sender of a certain communication build the sender anonymity
set for this communication (similar for the receiver). While these goals cover the most intuitive
protection, indeed sequences of communications contain more metadata information. Fine grained
privacy goals thus consider a variety of properties, like e.g. whether the sending frequency or the
connection between messages of the same sender is hidden.

2.1.4 Performance

The increase of privacy provided by ACNs comes with additional overhead as compared to networks
without privacy protection. While many metrics exist, for the theoretical performance limits
discussed in this thesis, we follow the convention set by the related work1 [54] and focus on two
kinds of overhead: bandwidth and latency.

Bandwidth overhead accounts for the number of additionally sent packets and latency overhead
accounts for the number of additionally taken hops.

Further, for packet formats, we discuss the overhead as the number of additionally transferred bits
and processing time at intermediate nodes.

2.1.5 Techniques

We distinguish indirection, secret sharing and dummy traffic techniques to enhance communication
privacy.

Indirection. Indirection-based techniques hide the connection of a sender to her message and
receiver by relaying the message over multiple hops. Applying techniques like layered encryption
or shuffling of messages, they ensure unlinkablity of incoming and outgoing messages at honest
intermediate nodes.

Prominent examples are onion routing [58, 74], which uses layered encryption and a tunnel setup
to ensure that the communication is not identifiable based on the message while being performant,
and mix networks [42], which in addition to layered encryption employ random delays at each
hop to hide timing correlations. Free-route networks allow the sender to choose the intermediate
hops without any restrictions, while cascade and layered designs restrict which combinations of
intermediate hops can be chosen.

Onion routing networks protect the sender-receiver and sender-message relationships against pas-
sive adversaries that corrupt all but one of the intermediate hops if timings are not considered.
Otherwise, observations before and after the honest intermediate node can be linked based on their
timings. Mix networks with their random delays allow the above protection even if the timings
are observed (e.g. by a GPA). Further, as active attacks at adversarial nodes are likely, additional
extensions, like detection of dropped packets with looping messages or detection of replayed packet
with duplicate filters, are often employed to provide protection against stronger adversaries (see
e.g. [6, 44, 128]).

Secret sharing. Secret sharing based techniques make use of mathematical properties to ensure
that a message can only be recovered if information that potentially belongs to many different users

1We note that these metrics for performance limits in ACNs differ from metrics used for other communication
network applications.

8

or communications is accessed. Prominent examples are DC-Nets [40] and Private Information
Retrieval (PIR) [47].

DC-Nets [40] implement secret sharing to broadcast one message per round while ensuring that
any participant is sending a part that is necessary to recover the message. Thereby they hide the
sender under all honest participants against an adversary that observes or even participates in the
protocol. However, sending more than one message per round leads to collisions of messages and
none of them are interpretable. A collision avoidance scheme is thus often assumed.

Private information retrieval (PIR) [47] allows to request and deliver an entry of a database without
disclosing to the database owner which entry was requested. Using e.g. superposed shares of data,
it allows a receiver to anonymously request messages that are stored at the database. Even the
adversary that owns the database cannot conclude which message the receiver retrieved or with
whom the receiver is communicating.

Dummy messages. Dummy messages do not transmit useful information. They instead are sent
to hide sending and receiving of “real messages”, which contain useful information for a receiver.
Dummy messages are sent randomly, or systematically according to user synchronization. Later in
the protocol they are dropped by some entity, usually an intermediate node or the receiver.

A prominent example is broadcasting with implicit addressing [127]. There the encrypted message
is sent to all receivers and each receiver checks if the message is intended for her based on the
implicit address (e.g. by trying to decrypt the message with her private key). This hides the
intended receiver from a global passive adversary because everyone receives the same encrypted
message.

2.2. Cryptographic building blocks

As typical for ACNs, our constructions will rely on cryptographic building blocks. We informally
introduce the building blocks here and refer to Appendix C.4.1 for formal definitions of them.

2.2.1 Encryption

For our constructions we use PRP-CCA (PseudoRandom Permutation - Chosen Ciphertext Attack)
secure symmetric and CCA2 (adaptive Chosen Ciphertext Attack) secure, as well as rerandomizable
CPA (Chosen-Plaintext Attack) secure asymmetric encryption. We further discuss key-private
asymmetric encryption as a building block.

An encryption scheme consists of a key generation, an encryption and a decryption algorithm.
Symmetric encryption schemes (also called symmetric key encryption (SKE)) use the same key
for encryption and decryption. Asymmetric schemes (also called public key encryption (PKE)) on
the other hand generate a key pair of a public key (used for encryption) and private key (used
for decryption). For correctness, we require that the decryption of an encrypted message with the
correct key always results in the used message.

For PRP-CCA secure symmetric encryption [16] , we restrict the class of symmetric encryption
schemes to the ones where the encryption function for any fixed key defines a permutation on
the message space. We call such an encryption scheme PRP-CCA secure if the adversary cannot
distinguish the permutation induced by the encryption function with a randomly generated key
from a randomly chosen permutation over the same message space.

For asymmetric CPA secure encryption, we require that even with access to the public key no
adversary can distinguish the encryptions of two self-chosen messages.

For asymmetric CCA2 secure encryption, we require the same as in CPA and additionally allow

9

the adversary to query the decryption of (other) ciphertexts under the same key before and after
her choice of messages.

A rerandomizable CPA secure asymmetric encryption scheme further includes a rerandomization
algorithm. For that, we require that even with access to the public key no adversary can distinguish
the rerandomization of a ciphertext from a fresh encryption of a random message.

A key-private asymmetric encryption scheme [15] additionally ensures that the adversary cannot
distinguish which of two public keys was used to encrypt a message.

2.2.2 Authentication

For our constructions we use a SUF-CMA [28] (Strong Existential Unforgeability under Chosen
Message Attack) secure message authentication code (MAC). A MAC scheme consists of a key
generation, a signature generation and a signature verification algorithm. For correctness, any
signature that is generated with a correctly generated key has to return true when it is verified,
i.e. has to be valid. For security, we require SUF-CMA: The adversary can create a valid message-
signature pair only with negligible probability, even though she gets to query signatures to messages
that she chooses and she can reuse the same message as she queried. If she reuses the message
of her query, she however needs to modify the signature of the query answer (as otherwise the
“creation” is trivial).

2.2.3 Updatable Encryption

While we apply Updatable Encryption (UE) in the context of AC, UE originally [27, 89] targets the
scenario of securely outsourcing data to a semi-trusted cloud server. To enable efficient key rotation,
i.e., updating the stored ciphertexts to a freshly chosen key, UE schemes allow the generation of
update tokens based on the old and new key. The generation of the token can be done independently
of the ciphertext to be updated. Given such a token the server can autonomously lift a ciphertext
encrypted with the old key to a ciphertext encrypted with the new key. Of course, the token itself
may not leak information about the keys to the cloud server. In the following, we recapitulate the
security notions of an UE scheme from [89].

UP-IND-RCCA Security. UP-IND-RCCA (Updatable Encryption Indistingishability under Re-
playable CCA) is conceptually similar to CCA2 above, except that the decryption queries for all
ciphertexts that include one of the adversarially chosen messages are ignored. This change is nec-
essary as the updating of ciphertexts in the corresponding scheme is non-deterministic and hence
the adversary can apply the token multiple times to recover different ciphertexts for the same mes-
sage. Additionally, UP-IND-RCCA allows the adversary to query re-encryptions and the current
or earlier secret keys and tokens. Trivial wins, by corrupting keys and tokens that allow to decrypt
the challenge ciphertext, are excluded.

Perfect Re-encryption. Intuitively, perfect re-encryption demands that fresh and re-encrypted
ciphertexts are indistinguishable.

Plaintext Integrity UP-INT-PTXT. Plaintext integrity demands that the adversary cannot produce
a ciphertext that decrypts to a message for which she does not trivially know an encryption, e.g.
because she corrupted the corresponding keys or tokens earlier.

2.2.4 SNARGs

A succinct non-interactive argument (SNARG) [24] is a kind of Zero-Knowledge (ZK) proof, which
proves a statement without revealing more information than is included in the statement (zero-
knowlegde). More precisely, a SNARG is used by the prover to convince a verifier with the help of
a witness from the fact that the statement is in the specified language. For this, a SNARG scheme

10

consists of a key generation, a prove, a verify and a simulation algorithm. With the output of
the key generation, the prove algorithm is used to generate an argument. This argument is later
verified by the second party with the verify algorithm. SNARGs are succinct, complete, sound and
zero-knowledge [77]. For our construction we specifically require simulation-soundness.

Succinctness intuitively requires the length of the arguments and the runtime of the verification
to be short.

(Perfect) Completeness requires that any argument for a statement of the language generated by
an honest execution of the protocol with a correct witness results in a successful verification, i.e.
is a valid SNARG. Note that this is “perfect” in the sense that an honest execution with correct
witness is always valid.

(Perfect) Zero-Knowledge requires that the outputs of the prove algorithm that has knowledge
of the witness are identically distributed to the outputs of the simulation algorithm that does
not know the witness. Hence, the SNARG does not leak any information about the witness
(“perfect”).

Simulation-Soundness requires that no adversary can with non-negligible probability generate a
valid SNARG for a statement that is not in the language, even if the adversary has access to
simulations of SNARGs for other statements of this language.

2.3. Privacy Goal Definitions

While concepts like k-anonymity [149], l-diversity [108], t-closeness [105] and various logic- and
process calculus-based approaches [150, 83, 79, 139, 147, 23] have been discussed for the formal-
ization of privacy goals, they come with the drawback of known attacks, are impractical to use in
security proofs or simply target a different domain and are difficult to map to AC. Thus, currently
the majority of ACNs, as well as this thesis, rely on differential privacy, indistinguishability games
and ideal functionalities.

Additionally, we started to relate logic-based approaches to our indistinguishability game based
approach and point the interested reader to our work at WPES 2021 [100].

2.3.1 Differential Privacy

For database privacy protection, the notion of differential privacy (DP) [60] is well accepted.
Intuitively, an algorithm is differentially private if its output for any two neighboring databases
is “very close”. Neighboring databases are most commonly defined to differ only in one attribute
of a single user. The “closeness” definition of the outputs depends on the version of differential
privacy. We will use (ε, δ)−DP , which is defined as:
Definition 1 ([60]). For any two data sets that differ on only one row, the respective output
random variables (query responses) τ and τ ‘ satisfy for all sets S of responses:

Pr[τ ∈ S] ≤ exp(ε)× Pr[τ ‘ ∈ S] + δ

Thus an adversary’s certainty of the estimated input is limited (as parameterized with ε) except
for very few cases (corresponding to the probability δ).

2.3.2 Indistinguishability Games

Indistinguishability-based notions are well-known from cryptographic notions [75] (as CPA above)
and follow a similar basic idea as DP: Any two cases that only differ in protected information have
to be indistinguishable. To define this, the notions make use of a game between an adversary and a

11

challenger: The adversary chooses and sends two options (e.g. two plaintexts in the CPA game) to
the challenger. The challenger randomly picks one of them and returns the adversarial observations
(e.g. the encryption of the chosen plaintext in the CPA game). Based on these observations the
adversary has to guess which of the options the challenger used. The adversary wins the game if
the guess was correct. The notion is achieved, if no probabilistic polynomial time (PPT) algorithm
exists that in the role of the adversary wins with a probability that is non-negligibly higher than
random guessing.

2.3.3 Ideal Functionalities in the Universal Composability Framework

An ideal functionality in the universal composability (UC) framework [32] is an abstraction of a
real protocol that expresses the security and privacy properties as required for the real protocol.
Proving that the real protocol realizes the ideal functionality implies proving that attacks on the
real protocol do not reveal anything to the adversary that she would not learn from attacks on the
ideal functionality.

While these abstractions are a neat simplification for the protocol analysis, they do not directly
state the precise, offered protection, but instead only implicitly define it via the ideal protocol. The
achieved protection thus still needs to be derived from an ideal functionality via analysis.

12

3. Privacy Notions for Anonymous Communication

In this chapter we introduce our privacy goal definitions as well as their relations, resolve naming
conflicts in related works and present an initial investigation of building blocks to achieve the
notions. Large parts of the results in this chapter have been published at PETS 2019 [93] (and in
the corresponding extended version [92]).

3.1. Overview
We start with a use case as example and discuss the corresponding implicit privacy goal, to then
introduce the idea of the related indistinguishability game. We show how such a game works and
what it means for a protocol to be secure according to this goal. Furthermore, by adopting the
game we sketch how privacy goals can be formalized as notions and provide an intuition for the
relations between different goals.

Example: Alice is a citizen of a repressive regime and engaged with a resistance group. Despite
the regime’s sanctions on distributing critical content, Alice wants to publish her latest critical
findings. A vanilla encryption scheme would reduce Alice’s potential audience and thus does not
solve her problem. Hence, she needs to hide the link between the message and herself as the sender.
We call this goal Sender-Message Unlinkability.1

First attempt. We start by presenting an easy game, that at first glance looks like the correct
formalization for the goal of the example, but turns out to model an even stronger goal.

For Alice’s safety, the regime should not suspect her of being the sender of a compromising message,
otherwise she risks persecution. Thus, we need to show for the applied protection measure, that
compared to any other sender, it is not more probable that Alice is the sender of this message. We
analyze the worst case: in a group of users, let Charlie be the user for whom the probability of
being the sender differs most from Alice’s probability. If even these two are too close to distinguish,
Alice is safe, since all other probabilities are closer. Hence, the regime cannot even exclude a single
user from its suspects.

We abstract this idea into a game2, where the adversary aims to distinguish two “worlds” or
scenarios. These may only differ in the properties the protocol is required to protect, but within
these restrictions the adversary can choose freely. This includes especially the worst case that is
easiest for her to distinguish (e.g. in one scenario Alice sends the message, in the other Charlie).
Fig. 3.1 shows the game in more detail.

What the adversary can observe in Step 4 depends on her capabilities and area of control. A
weak adversary may only receive a message from somewhere, or discover it on a bulletin board.
However, a stronger adversary could e.g. also observe the activity on the Internet uplinks of some
parties.

The adversary wins the game if she guesses the correct scenario. Her goal is to devise a strategy
1Usually this is called sender anonymity. However, the term “sender anonymity” is overloaded and sometimes

also used with a slightly different meaning. As the message should not be linkable to the sender for this goal, we
instead refer to it as “Sender-Message Unlinkability”.

2Similar to indistinguishability games in cryptology [75] and related works on anonymity[11, 26, 82, 72].

13

C B

scenario 0 scenario 1

AdversaryChallenger

validateselect
create

b

guess b'ACN
 output

A Bm m
e.g.

scenario b

123

4
5

Figure 3.1: Steps of the sample game: 1) adversary picks two scenarios; 2) challenger checks if
scenarios only differ in senders; 3) based on random bit b the challenger inputs a scenario into
the ACN; 4) adversary observes execution; 5) adversary outputs ‘guess’ as to which scenario was
executed

that allows her to win the game repeatedly with a probability higher than random guessing. With
this strategy she learned some information that is supposed to be protected, since everything else
was identical in both scenarios. In our example this information is the sender (e.g. that Alice
is more probable the sender of the message than Charlie). Hence, we say that, if the adversary
can find such a strategy, we do not consider the analyzed protocol secure regarding the respective
privacy goal.

Why the modeled goal is stronger than necessary for our example. As argued, a protocol
achieving this goal would help Alice in her use case. However, if an adversary learns who is sending
any message with real information (i.e. no random bits/dummy traffic), she can distinguish both
scenarios and wins the game. The ACN thus needs to hide the sending activity (the adversary does
not know if a certain possible sender was active or not) and we call the goal that we modeled so far
Sender Unobservability. For Alice’s use case, we only require Sender-Message Unlinkability and a
protocol that hides the information of who sent a message within a set of active senders is good
enough. As an example, consider the following two scenarios: (1) Alice and Bob send messages (2)
Charlie and Dave send messages. If the adversary can learn the active senders, she can distinguish
the scenarios and win the game for Sender Unobservability. However, if she only learns the set of
active senders, she may still not know who of the two active senders in the played scenario actually
sent the critical message.

Correcting the formalization. We can adjust the game of Fig. 3.1 to model Sender-Message
Unlinkability. We desire that the only information about the communications that differs between
the scenarios is who is sending which message. Thus, we allow the adversary to pick scenarios that
differ in the senders, but not in the activity of the senders, i.e. the number of messages each active
sender sends. This means, we change what the adversary is allowed to submit in Step 1 and what
the challenger checks in Step 2. So, if the adversary now wants to use Alice and Charlie, she has to
use both in both scenarios, e.g. (1) Alice sends the critical message, Charlie a benign message and
(2) Charlie sends the critical message, Alice the benign message. Hence, given an ACN where this
game cannot be won, the adversary is not able to distinguish whether Alice or another active user
sent the critical message. The adversary might learn, e.g. that someone sent a critical message and
the identities of all active senders (here that Alice and Charlie are active senders). However, since
none of this is sanctioned in the above example, Alice is safe, and we say such an ACN provides
Sender-Message Unlinkability.

Lessons learned. Depending on the formalized privacy goal (e.g. Sender Unobservability) the
scenarios are allowed to differ in certain properties of the communications (e.g. the active senders)
as we have illustrated in two exemple games. Following the standard in cryptology, we use the
term privacy notion, to describe such a formalized privacy goal that defines properties to be hidden
from the adversary.

Further, the games used to prove the privacy notions only differ in how scenarios can be chosen by
the adversary and hence what is checked by the challenger. This also holds for all other privacy
notions; they all define certain properties of the communication to be private and other properties

14

that can leak to the adversary. Therefore, their respective games are structurally identical and can
be abstracted to define one general game, whose instantiations represent notions. We explain and
define this general game in Section 3.2. We then define the properties (e.g. that the set of active
senders can change) in Section 3.3 and build notions (e.g. Sender Unobservability) upon them in
Section 3.4.

Additionally, we already presented the intuition that Sender Unobservability is stronger than
Sender-Message Unlinkability. This is not only true for this example, in fact we prove: every
protocol achieving Sender Unobservability also achieves Sender-Message Unlinkability. Intuitively,
if whether Alice is an active sender or not is hidden, whether she sent a certain message or not is
also hidden. We will prove relations between our privacy notions in Section 3.5 and show that the
presented relations (depicted in Figure 3.3) are complete. Further, we detail the relation to prior
work in 3.6 and conduct an investigation on basic techniques to reach our notions against the GPA
in Section 3.7. Finally, we discuss our lessons learned in Section 3.8..

As additional material, we argue our choice of notions in Appendix A.6 and detail extensions
in Appendix A.1. Finally, we give quick instructions for a proof based on our notions in Ap-
pendix A.7.

3.2. Our Game model

Our goal in formalizing the notions as a game is to analyze a given ACN protocol w.r.t. to a
notion, i.e. the game is a tool to investigate if an adversary can distinguish two self-chosen, notion-
compliant scenarios. Scenarios are sequences of communications. A communication is described
by its sender, receiver, message and auxiliary information (e.g. session identifiers) or the empty
communication, signaling that nobody wants to communicate at this point. Some protocols might
restrict the information flow to the adversary to only happen at specific points in the execution of
the protocol, e.g. because a component of the ACN processes a batch of communications before it
outputs statistics about them. Therefore, we introduce batches as a sequence of communications,
which is processed as a unit before the adversary observes anything3. When this is not needed,
batches can always be replaced with single communications.

As explained in Section 3.1, we do not need to define a completely new game for every privacy goal,
since notions only vary in the difference between the alternative scenarios chosen by the adversary.
Hence, for a given ACN and notion, our general game is simply instantiated with a model of the
ACN, which we call the protocol model, and the notion. The protocol model accepts a sequence of
communications as input. Similar to the real implementations the outputs of the protocol model
are the observations the real adversary can make. Note, the adversaries in the game and the real
world have the same capabilities, but differ in their aims: while the real world adversary aims to
find out something about the users of the system, the game adversary merely aims to distinguish
the two scenarios she has constructed herself.

In the simplest version of the game, the adversary constructs two scenarios, which are just two
batches of communications and sends them to the challenger. The challenger checks that the
batches are compliant with the notion. If so, the challenger tosses a fair coin to randomly decide
which of the two batches it executes with the protocol model. The protocol model’s output is
returned to the game adversary. Based on this information, the game adversary makes a guess
about the outcome of the coin toss.

We extend this simple version of the game, with three basic extensions. Firstly, we allow the game
adversary to send two batches to the challenger not only once, but multiple times. However, the
challenger performs a single coin flip and sticks to this scenario for this game, i.e. it always selects
the batches corresponding to the initial coin flip. This allows analyzing for adversaries, that are
able to base their next actions in the attack on the observations they made previously.

3We use the word batch to designate an accumulation of communications. Besides this similarity, it is not related
to batch mixes.

15

Note that although the adversary decides on all the communications that happen in the alternative
scenarios, she does not learn secret keys or randomness unless the user is corrupted. We thus,
secondly, allow for user (a sender or receiver) corruption, i.e. the adversary learns the user’s
momentary internal state, by sending corrupt queries to the challenger. This allows to add several
options for different corruption models to the privacy goals.

Thirdly, we allow the adversary to send protocol queries to unfetter our general game from the
concrete adversary model. These queries are only a theoretical formalization to reflect what in-
formation the adversary gets and what influence she can exercise. These protocol query messages
are usually sent to the protocol model without any changes by the challenger. The protocol model
covers the adversary to ensure that everything the real world adversary can do is possible in the
game with some query message. For example, protocol query messages can be used to add or
remove nodes from the ACN by sending the appropriate message.

As introduced in Section 3.1, we say that an adversary has an advantage in winning the game, if she
guesses the challenger-selected scenario correctly with a higher probability than random guessing.
A protocol achieves a certain privacy goal, if an adversary has at most a negligible advantage in
winning the game.

Formalization

In this subsection, we formalize the game model to conform to the above explanation.

We use Π to denote the analyzed ACN protocol model, Ch for the challenger andA for the adversary,
which is a PPT algorithm. Additionally, we use X as a placeholder for the specific notion, e.g.
Sender Unobservability, if we explain or define something for all the notions. A communication
r in Π is represented by a tuple (u, u′,m, aux) with a sender u, a receiver u′, a message m, and
auxiliary information aux (e.g. session identifiers). If no communication occurs, we represent
this with ♦. Communications are clustered into batches rb = (rb1 , . . . , rbl), with rbi being the
i-th communication of batch rb. Note that we use r (underlined) to identify batches and r (no
underline) for single communications. Batches in turn are clustered into scenarios; the first scenario
is (r01

, . . . , r0k). All symbols are summarized in Tables A.2 – A.4 in Appendix A.4.

Simple Game.

1. Ch randomly picks challenge bit b.

2. A sends a batch query, containing r0 and r1, to Ch.

3. Ch checks if the query is valid, i.e. both batches differ only in information that is supposed
to be protected according to the analyzed notion X.

4. If the query is valid, Ch inputs rb, i.e. the batch corresponding to b, to Π.

5. Π’s output Π(rb) is handed to A.

6. After processing the information, A outputs her guess g for b.

Extensions. As explained above, there are useful extensions that we make to the simple game:

Multiple Batches Steps 2-5 can be repeated.

User corruption Instead of Step 2, A can also decide to issue a corrupt query specifying a user
u and receive u’s internal state as output. This might change Π’s state, lead to different
behavior of Π in following queries or yield a higher advantage in guessing than before.

Other parts of the adversary model Instead of Step 2, A can also decide to issue a protocol

16

query, containing an input specific to Π and receive Π’s output to it (e.g. the internal state
of a router that is corrupted in this moment). This might change Π’s state.

Achieving notion X. Intuitively, a protocol Π achieves a notion X if any possible adversary
has at most negligible advantage in winning the game. To formalize the informal understanding of
Π achieving goal X, we need the following denotation. Ch(Π, X, c, b) is the challenger algorithm
instantiated with protocol model Π and notion X that is allowing for at most c challenge row, i.e.
communications differing in the scenarios. Pr[g = 〈A

∣∣ Ch(Π, X, c, b)〉] describes the probability
that A outputs g, when Ch instantiated as above chose the challenge bit as b. With this probabil-
ity, achieving a notion translates to Definition 2.

Definition 2 (Achieving a notion X). An ACN Protocol Π achieves X, iff for all PPT algorithms
A there exists a negligible δ such that∣∣ Pr[0 = 〈A | Ch(Π, X, c, 0)〉]− Pr[0 = 〈A | Ch(Π, X, c, 1)〉]

∣∣≤ δ.
We use a variable δ, which is referred to as negligible, as an abbreviation when we actually mean
a function δ(κ) that is negligible in a security parameter κ. We discuss the equivalence to similar
definitions and a relaxed differential privacy based advantage definition in Appendix A.5.1.

3.3. Protected Properties

We define properties to specify which information about the communication is allowed to be dis-
closed to the adversary, and which must be protected to achieve a privacy notion, as mentioned
in Section 3.1. We distinguish between simple and complex properties. Simple properties can
be defined with the basic game model already introduced, while complex properties require some
extensions to the basic model.

3.3.1 Simple Properties

We summarize the informal meaning of all simple properties in Table 3.1 and introduce them in
this section. We note that our selection and definition of simple properties is influenced by previous
works [11, 26, 82, 72] and we discuss the relations in detail later in Section 3.6.1.

Assume an ACN aims to hide the message but discloses message lengths to observers. For this case,
we specify the property (|M |) that the message length must not differ between the two scenarios,
as this information must not help the adversary to distinguish which scenario the challenger chose
to play.

Next, we might want an ACN to protect the identity of a sender, as well as any information about
who sent a message, but deliberately disclose which messages are received by which receiver, who
the receivers are, and potentially other auxiliary information. We hence specify a property (ES)
where only the senders differ between the two scenarios, to ensure that the adversary in our game
can only win by identifying senders. In case the protection of the receiver identities or messages is
required, the same can be defined for receivers (ER) or messages (EM).

Further, we might want the ACN to protect senders and also the messages; leaving the receiver and
auxiliary information to be disclosed to the adversary. This is achieved by specifying a property
where only senders and messages differ between the two scenarios and everything else remains
equal (ESM). Again, the same can be specified for receivers and messages (ERM) or senders and
receivers (ESR).

Lastly, ACNs might allow the adversary to learn whether a real message is sent or even how many
messages are sent. We specify a property (♦6) that requires real communications in both scenarios,

17

i.e. it never happens that nothing is sent in one scenario but something is sent in the other. We
ensure this by not allowing the empty communication (�).

Table 3.1: Our4simple properties; information about communications that may be required to
remain private

Symbol Description Translation to Game
|M | Message Length Messages in the two scenarios always have the same

length.
ES Everything but Senders Everything except the senders is identical in both

scenarios.
ER/EM Everything but Receivers/Mes-

sages
Analogous

ESM Everything but Senders and
Messages

Everything except the senders and messages is iden-
tical in both scenarios.

ERM/ESR Analogous Analogous
♦6 Something is sent In every communication something must be sent (♦

not allowed).
ℵ Nothing Nothing will be checked; always true.

U/U ′ Active Senders/Receivers Who sends/receives is equal for both scenarios.
Q/Q′ Sender/Receiver Frequencies Which sender/receiver sends/receives how often is

equal for both scenarios.
|U |/|U ′| Number of Senders/Receivers How many senders/receivers communicate is equal

for both scenarios.
P/P ′ Message Partitioning per

Sender/Receiver
Which messages are sent/received from the same
sender/receiver is equal for both scenarios.

H/H ′ Sender/Receiver Frequency His-
tograms

How many senders/receivers send/receive how often
is equal for both scenarios.

However, a very ambitious privacy goal might even require that the adversary learns no infor-
mation about the communication at all (ℵ). In this case, we allow any two scenarios and check
nothing.

Formalizing those Simple Properties. In the following definition all simple properties men-
tioned so far are formally defined. Therefore, we use > as symbol for the statement that is always
true.

Definition 3 (Properties |M |, ES , ESM , ♦6 , ℵ). Let the checked batches be r0, r1, which include
the communications r0j ∈ {(u0j , u

′
0j ,m0j , aux0j), �} and r1j ∈ {(u1j , u

′
1j ,m1j , aux1j), �} with j ∈

{1, . . . l}. We say the following properties are met, iff for all j ∈ {1, . . . l}:

|M | : |m0j | = |m1j |

ES : r1j = (u1j , u
′
0j ,m0j , aux0j)

ER : r1j = (u0j ,u′1j
,m0j , aux0j)

EM : r1j = (u0j , u
′
0j ,m1j , aux0j)

ESM : r1j = (u1j , u
′
0j ,m1j , aux0j)

ERM : r1j = (u0j ,u′1j
,m1j , aux0j)

ESR : r1j = (u1j ,u′1j
,m0j , aux0j)

♦6 : ♦ 6∈ r0 ∧ ♦ 6∈ r1

ℵ : >

4We note that protections similar to ES have been defined by [11, 26, 82] and while our definitions take another
approach U, |U |, Q,H define the corresponding properties as in [26] and [72].

18

More Simple Properties: Active Users, Frequencies. The properties of Definition 3 are
important to formalize privacy, but are by themselves not sufficient. Take the ACN Tor as an ex-
ample: While the set of active senders is trivially known to their ISPs and the guard nodes, we still
require that the senders are unlinkable with the messages they are sending (and their receivers).
Similarly, the sending (receiving) frequency of a party may be important and is not formalized yet.
To formalize these properties, we use sets that capture which user sent which messages in a certain
period, i.e. a batch of communications (and similarly sets to capture which user received which
messages). Note that we use primes (′) for the corresponding sets and properties of the receivers.

Definition 4 (Sender-Message Linking). We define the sender-message linkings for scenario b
(L′bi as the receiver-message linkings similarly) as:

Lbi :={(u, {m1, ...,mh})
∣∣ u sent messages m1, . . . ,mh in batch i}.

The sets from Definition 4 allow easy identification of who an active sender in this batch was and
how often each sent something:

Definition 5 (Active Sender Set, Frequency Set). Let the current batch be the k-th one. For
b ∈ {0, 1} Ub, Qb (U ′b, Q′b for L′b) are defined as:

Ub := {u
∣∣ (u,M) ∈ Lbk}

Qb := {(u, n)
∣∣ (u,M) ∈ Lbk ∧ |M | = n}

Recall that we currently define properties for ACNs that allow the adversary to learn which senders
are active at different times, or the number of messages they send during some periods, while hid-
ing some other properties (e.g. which messages they have sent). Hence, with the respective sets
for active users and user frequencies defined, we only need to request that they are equal in both
scenarios:

Definition 6 (Properties U , Q, |U |). We say that the properties U,Q, |U | (U ′, Q′, |U ′| analogous)
are met, iff:

U : U0 = U1 Q : Q0 = Q1 |U | : |U0| = |U1|

More Simple Properties: Message Partitions, Histograms. Other interesting properties
are which messages came from a given sender and how many senders sent how many messages. If
the adversary knows which messages are sent from the same sender, e.g. because of a pseudonym,
she might be able to combine information from them all to identify the sender. If she knows
how many senders sent how many messages, she knows the sender activity and hence can make
conclusions about the nature of the senders.

As before, we introduce auxiliary variables to formally define these two properties. We use the
multiset Mb,I to denote the collection of messages that has been sent by the same sender (e.g.
linked by a shared pseudonym) in a set of batches, and the multiset Mb,I,n to denote the union
of all these sets of cardinality n. The equality of the properties in the two scenarios must pertain
throughout all comparable batches in the scenarios. If this were not true, the inequality would
help the adversary to distinguish the scenarios without learning the protected information e.g.
identifying the sender.

Definition 7 (Multi-Batch-Message Linkings). Let the current batch be the k-th, K := {1, . . . , k},
P(K) the power set of K and U the set of all possible senders (U ′ receivers). For b ∈ {0, 1} and
I ∈ P(K): We define (M ′b,I ,M ′b,I,n for L′bi) the

• multi-batch-message-sender linking: Mb,I := ∪u∈U{∪i∈I{M |(u,M) ∈ Lbi}} and the

• cardinality restricted multi-batch-message-sender linking: Mb,I,n := {M ∈Mb,I

∣∣ |M | = n}.

19

As before, we define auxiliary variables capturing the information that we want to be equal in
both scenarios: We define tuples specifying which messages are sent from the same user for any
set of batches (Message Partition Pb) and how many users sent how many messages for any set
of batches (Histogram Hb). Therefore, we use a slightly unusual notation: For any set Z, we use
(Zi)i∈{1,...,k} to denote the sequence (Z1, Z2, . . . , Zk) and −→P (Z) to denote a sorted sequence of the
elements of the power set5 of Z.

Definition 8 (Message partitions, Histograms). Consider the k-th batch, K := {1, . . . , k}. For
b ∈ {0, 1} Pb, Hb (P ′b, H ′b analogous) are defined as:

Pb := (Mb,I)I∈−→P (K)

Hb := ({(n, i)
∣∣ i = |Mb,I,n|})I∈−→P (K)

Further, we say that properties P,H (P ′, H ′ analogous) are met, iff:

P : P0 = P1 H : H0 = H1

3.3.2 Complex Properties

So far, we have defined various properties to protect senders, messages, receivers, their activity,
frequency and the grouping of messages. However, this is not sufficient to formalize several relevant
privacy goals, and we must hence introduce complex properties. We note that our selection and
definition of complex properties is influenced by previous work [11] and we discuss the relations in
detail later in Section 3.6.1.

Learning Sender and Receiver. Consider that one aims to hide which sender is communicating
with which receiver. Early ACNs like classical Mix-Nets [42], and also Tor [58], already used this
goal. Therefore, we want the adversary to win the game only if she links the sender and receiver
of a message.

An intuitive solution may be to model this goal by allowing the adversary to pick different senders
and receivers (ESR) in both scenarios (see Fig. C.1 (a) for an example). This, however, does not
actually model the privacy goal: by identifying only the sender or only the receiver of the com-
munication, the game adversary could tell which scenario was chosen by the challenger. We hence
must extend the simple properties and introduce scenario instances to model dependencies.

Scenario instances. We now require the adversary to give alternative instances for both scenarios
(Fig. C.1 (b)). The challenger chooses the scenario according to the challenge bit, which is picked
randomly for every game, and the instance according to the instance bit, which is picked randomly
for every challenge.

Formally, we replace steps 2–5 of the game with the following steps:

2. A sends a batch query, containing r0
0, r1

0, r0
1and r1

1 to Ch.

3. Ch checks if the query is valid according to the analyzed notion X.

4. If the query is valid and Ch has not already picked an instance bit a for this challenge, Ch
picks a ∈ {0, 1} randomly and independent of b. Then it inputs the batch corresponding to
b and a to Π.

5. Π’s output Π(rab) is forwarded to A.

5For brevity we use ∈ to iterate through a sequence.

20

This allows us to model the goal that the adversary is not allowed to learn the sender and receiver:
We allow the adversary to pick two sender-receiver pairs, which she uses as instances for the
first scenario. The mixed sender-receiver pairs must then be provided as instances for the second
scenario (see Fig. C.1 (b)). We thus force the game adversary to provide alternative assignments
for each scenario. This way she cannot abuse the model to win the game by identifying only the
sender or the receiver. We call this property Random Sender Receiver RSR.

This complex property is still not sufficient to model the situation in, for example, Tor:

The adversary can distinguish the scenarios without learning who sent to whom, just by learning
which senders and which receivers are active. Hence, we further restrict the adversary picking
instances where both senders and both receivers are active by defining the property Mix Sender
Receiver MSR. Here, the adversary picks two instances for b = 0 where her chosen sender-receiver
pairs communicate, and two for b = 1 where the mixed sender-receiver pairs communicate. The
two instances simply swap the order in which the pairs communicate (Fig. C.1 (c)). This way,
we force the adversary to provide alternative assignments for each scenario where both suspected
senders and both suspected receivers are active. This combination prevents the adversary from
winning the game without learning the information that the real system is actually supposed to
protect, i.e. the sender-receiver pair.

A B C D
a)

A B A D
C D C B

A B A D
C D C B

scenario 0 scenario 1 b)
A B A D

C D C B

instance
0

instance
 1

scenario 0 scenario 1 c)
instance

0
instance

 1

scenario 0 scenario 1

Figure 3.2: Examples showing the general structure of communications that differ in both scenarios:
a) Naive, but incorrect b) Random Sender Receiver RSR c) Mixed Sender Receiver MSR

Defining Complex Properties. To simplify the formal definition of complex properties, we
introduce challenge rows. A challenge row is a pair of communications with the same index that
differ in the two scenarios (e.g. r0j , r1j with index j). For complex properties, the challenger only
checks the differences of the challenge rows in the two scenarios.

Definition 9 (Properties RSR, MSR). Let the given batches be rab for instances a ∈ {0, 1} and
scenarios b ∈ {0, 1}, CR the set of challenge row indexes, (ua0 , u′

a
0) for both instances a ∈ {0, 1} be

the sender-receiver-pairs of the first challenge row of the first scenario (b = 0) in this challenge.
Random Sender Receiver RSR, Mixed Sender Receiver MSR (RSM , RRM ,MSM ,MRM similarly)
are met, iff:

RSR : ra0 cr = (ua
0,u′

a
0 ,m

1
0cr , aux

1
0cr) ∧ ra1 cr = (ua

0,u′
1−a
0 ,m1

0cr , aux
1
0cr)

∀cr ∈ CR, a ∈ {0, 1}

MSR : ra0 cr = (ua
0,u′

a
0 ,m

1
0cr , aux

1
0cr) ∧ ra1 cr = (ua

0,u′
1−a
0 ,m1

0cr , aux
1
0cr) ∧

ra0 cr+1 = (u1−a
0 ,u′ 1−a

0 ,m1
0cr , aux

1
0cr) ∧ ra1 cr+1 = (u1−a

0 ,u′ a
0 ,m

1
0cr , aux

1
0cr)

for every second cr ∈ CR, a ∈ {0, 1}

Linking message senders. A final common privacy goal that still cannot be covered is whether
a pair of messages was sent by the same sender. This includes whether one sender was active
twice or two different senders were active (Twice Sender Unobservability). Assume a real world
adversary that can determine that the sender of two messages is the same entity. If subsequently
she discovers the identity of the sender of one of the messages through a side channel, she can also
link the second message to the same individual.

Stages. To model this goal, we need two scenarios (1) both messages are sent by the same sender,
and (2) each message is sent by a different sender. Further, the adversary picks the messages

21

for which she wants to decide whether they are sent from the same individual, and which other
messages are sent between those two messages. Therefore, we add the concept of stages and en-
sure that only one sender sends in the challenge rows of Stage 1, and in Stage 2 either the same
sender continues sending (b = 0) or another sender sends those messages (b = 1). This behavior is
specified as the property Twice Sender TS .

Definition 10 (Property TS). Let the given batches be rab for instances a ∈ {0, 1} and scenarios
b ∈ {0, 1}, x the current stage, CR the set of challenge row indexes, (ua0 , u′

a
0) for both instances

a ∈ {0, 1} be the sender-receiver-pairs of the first challenge row of the first scenario (b = 0) in
this challenge in Stage 1 and (ũa0 , ũ′a0) the same pairs in Stage 2. Twice Sender TS is met, iff (TR
similarly):

TS : x = Stage1 ∧ ra0 cr = (ua
0, u
′ 0
0 ,m

1
0cr , aux

1
0cr) ∧ ra1 cr = (ua

0, u
′ 0
0 ,m

1
0cr , aux

1
0cr)

∨ x = Stage2 ∧ ra0 cr = (ua
0, ũ
′ 0
0 ,m

1
0cr , aux

1
0cr) ∧ ra1 cr = (u1−a

0 , ũ′ 00 ,m
1
0cr , aux

1
0cr)

∀cr ∈ CR, a ∈ {0, 1}

Hence, we need to facilitate distinct stages for notions with the complex properties TS or TR.
Precisely, in Step 2 of the game, the adversary is additionally allowed to switch the stages.

This set of properties allows us to specify all privacy goals that have been suggested in literature6

as privacy notions and additionally all that we consider important. It is of course difficult to claim
completeness, as future ACNs may define diverging privacy goals and novel observable properties
may be discovered.

3.4. Privacy Notions

Given the properties above, we can now set out to express intuitive privacy goals as formal privacy
notions. We provide the definitions, explanation to our naming scheme as well as our clustering
of notions and an overview of additional options that cover session, corruption, quantification and
adversarial restrictions in this subsection. Additionally, we present one illustrative use case for
each notion in Appendix A.6.

Notion Definition. We start by specifying Sender Unobservability as an example leading to a
general definition of our privacy notions.

Recall the first game we defined in Section 3.1, which corresponds to Sender Unobservability (SO
= S(ender) ¬ O(bservability)). There, in both scenarios something has to be sent, i.e. we need
to specify that sending nothing is not allowed: ♦6 . Further, both scenarios can only differ in the
senders, i.e. we also need the property that everything but the senders is equal: ES . Hence, we
define Sender Unobservability as SO :=♦6 ∧ES .7

We define all other notions in the same way:
Definition 11 (Notions). Privacy notions are defined as a boolean expression of the properties
according to Table 3.2.

Modeling the notions as a game, the respective challenger verifies all properties (and the later
introduced options) of the adversary’s queries. A complete description of the challenger can be
found in Appendix A.2. Further, an example of how the definitions can be represented by using a
challenge specific state, which the challenger maintains, is shown in Appendix A.3.

Naming Scheme. We want to explain our naming scheme, which we summarize in Table 3.3.
Our notions consider three dimensions: senders, messages and receivers. Each notion restricts the

6We note that protections similar to our properties RSR and TS have been defined by [11].
7Technically ES already includes ♦6 . However, to make the differences to other notions more clear, we decide to

mention both in the definition.

22

Table 3.2: Definition of the notions with X ′ ∈ {RO, RO−|U ′|, RO−H ′, RO−P ′, RFL,RFL−H ′,
RFL− P ′, RML, RML− P ′}. A description of the simple properties was given in Table 3.1.

Notion Properties
(SR)L ♦6 ∧ESR ∧MSR

(SR)O ♦6 ∧ESR ∧RSR
MO ♦6 ∧EM
MO − |M | ♦6 ∧EM ∧ |M |
MO[ML] ♦6 ∧Q ∧Q′
O ♦6
CO ℵ

SO ♦6 ∧ES
SO − |U | ♦6 ∧ES ∧ |U |
SO −H ♦6 ∧ES ∧H
SO − P ♦6 ∧ES ∧ P
SFL ♦6 ∧ES ∧ U
SFL−H ♦6 ∧ES ∧ U ∧H
SFL− P ♦6 ∧ES ∧ U ∧ P
SML ♦6 ∧ES ∧Q
SML− P ♦6 ∧ES ∧Q ∧ P
(2S)O ♦6 ∧ES ∧ TS
RO etc. analogous
SO[MO] ♦6 ∧ESM
SO[MO − |M |] ♦6 ∧ESM ∧ |M |
(SM)O ♦6 ∧ESM ∧RSM
(SM)L ♦6 ∧ESM ∧MSM

RO[MO − |M |] etc. analogous
SO{X ′} Properties of X ′, remove ER
RO{X} analogous

amount of leakage on each of those dimensions. However, only dimensions that are to be protected
are part of the notion name. We use O, short for unobservability, whenever the set of existing
items of this dimension cannot be leaked to the adversary. E.g. SO cannot be achieved if the set
of senders U is leaked. Notions carrying L, short for unlinkability, can leak U (for sender related
notions), but not some other property related to the item. E.g. we use SFL if the frequency
Q cannot be leaked and SML, if Q can be leaked, but not the sender-message relation. With a
“−Prop” we signal that the property Prop can additionally leak to the adversary. We distinguish
those properties from U and Q used before as they give another leakage dimension (as illustrated
later in the hierarchy). Further, we use parentheses as in (SR)O to symbolize that if not only one
set, but both sets of senders and receivers (U and U ′) are learned the notion is broken. Analogously,
in (SR)L both sets can be learned but the linking between sender and receiver cannot. For the
last missing complex property, we use (2S)L to symbolize that two senders have to be linked to
be the same identity to break this notion.

For readability we add some abbreviations: We use O = SOROMO to symbolize unobservability
on all three types and we summarize the remaining types in MO(SML,RML) to MO[ML].
CO symbolizes the notion in which nothing is allowed to leak. Further, we use curly brackets
to symbolize that the message cannot be leaked SO{X} = SOMOX and we put the (in our
understanding) non dominating part of the notion in brackets SOMO = SO[MO].

Notion Groups. We chose to group our notions semantically. Our resulting clusters are shown
as gray boxes in Figure 3.3. Horizontally, we categorize notions that focus on receiver or sender
protection (Receiver Privacy Notions or Sender Privacy Notions, respectively) or treat both with
the same level of importance (Impartial Notions). Inside those categories, we use clusters concern-
ing the general leakage type: Both-side Unobservability means that neither senders, nor receivers
or messages should be leaked. Both-side Message Unlinkability means that it should be possible
to link neither senders nor receivers to messages. In Sender Observability, the sender of every
communication can be known, but not the message she sends or to whom she sends (Receiver and
Message Observability analogous). In Sender-Message Linkability, who sends which message can

23

Table 3.3: Naming Scheme
Usage Explanation

D ∈ {S,R,M} Dimension ∈ {Sender, Receiver, Message}
Dimension D not mentioned Dimension can leak

Dimension D mentioned Protection for this dimension exists
DO not even the participating items regarding D leak,(e.g. SO: not

even U leaks)
DFL participating items regarding D can leak, but not which exists

how often (e.g. SFL: U leaks, but not Q)
DML participating items regarding D and how often they exist can leak

(e.g. SML: U,Q leaks)
X − Prop, like X but additionally Prop can leak

Prop ∈ {|U |, H, P, |U ′|, H ′, P ′, |M |}

(D1D2)O uses RD1D2 ; participating items regarding D1, D2 do not leak,
(e.g. (SR)O: RSR)

(D1D2)L uses MD1D2 ; participating items regarding D1, D2 can leak, (e.g.
(SR)L: MSR)

(2D)L uses TD; it can leak whether two participating item regarding D
are the same, (e.g. (2S)O: TS)

O short for SOROMO
MO[ML] short for MO(SML,RML)
SO{X} short for SOMOX

D1X1[D2X2] D1 is dominating dimension, usually D1 has more freedom, i.e.
X2 is a weaker restriction than X1

CO nothing can leak (not even the existence of any communication)

Table 3.4: Our8 options for corruption and for corrupted communication
Symbol Description
X Default option: Adaptive corruption is allowed.
Xc− Static corruption: users can only get corrupted before the first batch query is sent.
Xc0 No corruption of users is allowed.

X Default option: Corrupted users not restricted.
Xcsr Corrupted users are not allowed to be chosen as senders or receivers.
Xcs Corrupted users are not allowed to be senders.
Xcr Corrupted users are not allowed to be receivers.
Xce Corrupted users send/receive identical messages in both scenarios.

be known to the adversary (Receiver-Message and Sender-Receiver Linkability analogous).

Additional Options. Additionally to the properties, we define options. Options can be added
to any notion and allow for a more precise mapping of real world protocols, aspects of the adversary
model, or easier analysis by quantification. We note that our selection and definition of options is
influenced by previous works [11, 82, 72] and we discuss the relations in detail later in Section 3.6.1.
We detail and define all options in Appendix A.1 and give an overview here.

Sessions. Some ACN protocols, like e.g. Tor, use sessions. Sessions encapsulate sequences of
communications from the same sender to the same receiver by using the same session identifier for
them. In reality, the adversary might be able to observe the session identifiers but (in most cases)
not to link them to a specific user. We thus introduce an additionally restricted notion Xs for any
notion X, which similar to definitions in [11] ensures that the adversary does not already win by
merely recognizing a session based on its identifier.

Corruption. Some adversary capabilities like user corruption imply additional checks our challenger
has to do. As all properties are independent from corruption, we add corruption as an option, that
can be more or less restricted as shown in Table 3.4.

8Similar restrictions as Xcsr and Xcs have been used by [72],Xc− by [11, 72], Xc0 by [82].

24

Quantification. For an easier analysis, we allow the quantification of notions in the options similar
to [11]. This way a reduced number of challenge rows (challenge complexity) or of challenges
(challenge cardinality) can be required. Appendix A.1.4 includes information on how results with
low challenge cardinality imply results for higher challenge cardinalities.

Adversary Classes. We adapt the concept of adversary classes from Anoa [11]. The adversary
model assumed in the protocol model can be further restricted by adding adversary classes, that
filter the information from the adversary to the challenger and vice versa. Potentially many such
adversary classes can be defined. Some of them allow for privacy guarantees based on a single
challenge (see Appendix A.1.4 for details).

UC-Realizability. AnoA shows that, if a protocol Π UC-realizes an ideal functionality F , which
achieves (c, ε, δ) − X, Π also achieves (c, ε, δ + δ′)-X for a negligible δ′. As the proof is based on
the (ε, δ)- differential privacy definition of achieving a notion and independent from our extensions
to the AnoA framework, this result still holds (see Appendix A.5.4).

3.5. Hierarchy

Receiver Privacy Notions Sender Privacy Notions

Both-side
Unobservability

Both-side Unlinkability

Both-side
Unlinkability

Both-side Unlinkability

Sender-
Receiver

Linkability

Message
Observability

Sender-Message Linkability

Sender Observability

Receiver-Message Linkability

Receiver Observability

Impartial Notions

Figure 3.3: Our new hierarchy of privacy notions divided into sender, receiver and impartial notions
and clustered by leakage type

Xce

X ⇐⇒ XCRc

Xcsr

Xcs Xcr Xc−

Xc0

Xs

Figure 3.4: Additional implications for corruption and sessions

Next, we want to compare all notions and establish their hierarchy. To do this, for any pair of
notions we analyze which one is stronger than, i.e. implies, the other. This means, any ACN
achieving the stronger notion also achieves the weaker (implied) one. Our result is shown in Fig-
ure 3.3, where all arrow types represent implications, and is proven as Theorem 1 below. Further,
obvious implications between every notion SO{X}, RO{X} and X exist, since SO{X} only adds

25

more possibilities to distinguish the scenarios. However, to avoid clutter we do not show them in
Figure 3.3. Further, the same hierarchy exists between notions with the same session, corruption
and quantification options. Additionally, we add a small hierarchy for the options that holds by
definition in Figure 3.4.

Theorem 1. The implications shown in Figure 3.3 hold.

Proof. (See Appendix A.5.2 for details.) Generally, we9 prove every implication X1 ⇒ X2 by an
indirect proof of the following outline: Given an attack on X2, we can construct an attack on X1
with the same success. Assume a protocol has X1, but not X2. Because it does not achieve X2,
there exists a successful attack on X2. However, this implies that there exists a successful attack
on X1 (we even know how to construct it). This contradicts that the protocol has X1. Due to this
construction in the proof the implications are transitive.

We use different arrow styles in Figure 3.3 to partition the implications into those with analogous
proofs.

For the dashed, green implications (c, ε, δ)−X1 ⇒ (c, ε, δ)−X2 the attack on X2 is also
valid for X1, because the restriction on the other dimensions (e.g. ES) assures the same frequencies
for the fixed dimensions (e.g. Q′).

For the dotted, yellow implications (c, ε, δ)−X1 ⇒ (c, ε, δ)−X2 the attack on X2 is also
valid for X1, because the restriction on the other dimensions (e.g. ES) assures the same partitions
for the fixed dimensions (e.g. P ′).

All dark blue implications (c, ε, δ) − X1 ⇒ (c, ε, δ) − X2 follow by definition of the
properties.

For the dotted, red implications (c, ε, δ) −X1 ⇒ (c, ε, δ) −X2 the attack on X2 is also
valid for X1, because the restriction on the other dimension (e.g. ERM) assures the same frequency
for the fixed dimension (e.g. Q).

For the cyan implications (c, ε, δ) − X1 ⇒ (c, ε, 2δ) − X2 we construct two attacks of
which at least one has to be successful (with an adapted δ).

Additionally, the corrupt queries are not changed by the proposed constructions. Hence, the
implications hold true between those notions as long as they have the same corruption options.
Analogously sessions are not modified by the constructions and the same implications hold true
between notions with equal session options.

Additional implications based on corruption and sessions are shown in Figure 3.4. Most of them
hold by definition. Only the equivalence with and without challenge row restriction per challenge
is not so easy to see and proven in Theorem 12 of Appendix A.5.5.

So far we have proven that implications between notions exist. Further, we assure that the hi-
erarchy is complete, i.e. that there exist no more implications between the notions of the hierarchy:

Theorem 2. For all notions X1 and X2 of our hierarchy, where X1 =⇒ X2 is not proven or
implied by transitivity, there exists an ACN protocol achieving X1, but not X2.

Proof. Overview. We construct the protocol in the following way: Given a protocol Π that
achieves X ′1 (X1 itself or a notion that implies X1), let protocol Π′ run Π and additionally output
some information I. We argue that learning I does not lead to any advantage distinguishing the
scenarios for X1. Hence, Π′ achieves X1. We give an attack against X2 where learning I allows
to distinguish the scenarios. Hence, Π′ does not achieve X2. Further, we use the knowledge that

9In AnoA and Bohli’s and Hevia’s framework some of these implications are proved for their notions with the
same approach.

26

=⇒ is transitive10 and give the systematic overview over all combinations and the corresponding
proofs in Appendix A.5.5.

3.6. Relations to Prior Work

We compare our definitions with existing analysis frameworks and the goals of a proposed ACN.

3.6.1 Relation to Existing Analysis Frameworks

In this section, we introduce existing frameworks and point out to which of our notions their notions
correspond. We argue that our framework includes all their assumptions and notions relevant for
ACNs and thus provides a combined basis for an analysis of ACNs. For each framework, we first
quickly give an idea why the properties and options match the notions of it and focus on how the
concepts (like batches) relate later on. The resulting mapping is shown in Table 3.5, as well as
partially illustrated in Figure A.1 of Appendix A.4 and reasoned below.

AnoA Framework. AnoA [11] builds its privacy notions on (ε, δ) differential privacy and com-
pares them to their interpretation of the terminology paper of Pfitzmann and Hansen [126].

We derive properties that allow us to map AnoA’s anonymity functions to our notions in the
following way. AnoA’s αSA allows only one sender to change, the same is achieved with the
combination of ES and one challenge row. In AnoA’s αRA also the messages can differ, but have
to have the same length, which we account for with using ERM and |M |. AnoA’s αREL will either
end in one of the given sender-receiver combinations been chosen (b = 0) or one of the mixed cases
(b = 1). This is exact the same result as RSR generates. For AnoA’s αUL either the same sender
is used in both stages or each of the senders is used in one of the stages. This behavior is achieved
by our property TS . Although AnoA checks that the message length of the communication of both
scenarios is equal, only the first message is used in any possible return result of αUL. Hence, not
checking the length and requiring the messages to be the same as we do in TS is neither weaker
nor stronger.

Our model differs from AnoA’s model in the batch queries, the adaptive corruption, the arbitrary
sessions and the use of notions instead of anonymity functions. Instead of batch queries AnoA
distinguishes between input, i.e. communications that are equal for both scenarios, and challenge
queries, i.e. challenge rows. Input queries are always valid in AnoA. They are also valid in our
model, because all the privacy aspects used for our notions equivalent to AnoA’s hold true for
identical batches without ♦ and ♦ is not allowed in the equivalent notions. In AnoA’s single-
message anonymity functions only a limited number of challenge queries, i.e. challenge rows,
is allowed per challenge. We ensure this restriction with the restriction of using at most #cr
challenge rows CR#cr. In AnoA, the adversary gets information after every communication. This
is equivalent to multiple batches of size one in our case. We assume that for the analyzed protocol
a protocol model can be created, which reveals the same or less information when it is invoked on
a sequence of communications at once instead of being invoked for every single communication.
Our notions, which match the AnoA notions, allow for batches of size one. So, our batch concept
neither strengthens nor weakens the adversary.

AnoA’s corruption is static, does not protect corrupted users11 and AnoA includes restrictions
on sessions. Hence, AnoA’s notions translate to ours with the static corruption Xc− , the cor-
rupted communication have to be equal in both scenarios Xce and the session option of our model
Xs.

10If X1 =⇒ X2 and X1 6=⇒ X3, it follows that X2 6=⇒ X3.
11Although AnoA does not explicitly state this, we understand the analysis and notions of AnoA this way, as

scenarios differing in the messages corrupted users send/receive could be trivially distinguished.

27

AnoA’s challenger does not only check properties, but modifies the batches with the anonymity
functions. However, the modification results in one of at most four batches. We require those four
batches (as combination of scenario and instances) as input from the adversary, because it is more
intuitive that all possible scenarios stem from the adversary. This neither increases nor reduces
the information the adversary learns, since she knows the challenger algorithm.

Table 3.5: Equivalences (〈X〉 equivalence of X used, CRi limits the number of challenge rows to
at most i; k is the number of batches)

Framework Notion Equivalent to
AnoA αSA SOcec−sCR1

αRA RO[MO − |M |]cec−sCR1

αREL (SR)Ocec−sCR2

αUL (2S)Ocec−sCR2

αsSA SOcec−s
αsRA RO[MO − |M |]cec−s

αsREL
12 (SR)Ocec−s

αsUL
13 (2S)Ocec−s

Bohli’s S/SA = R/SA O
R/SUP SO{RO − |U ′|}
R/WUP SO{RO −H ′}
R/PS SO{RO − P ′}
R/SUU SO{RFL}
R/WUU SO{RFL−H ′}
R/AN SO{RFL− P ′}
R/WU SO{RML}
R/WA SO{RML− P ′}
S/SA◦ SO
S/SUP ◦ SO − |U |
S/WUP ◦ SO −H
S/PS◦ SO − P
S/SUU◦ SFL
S/WUU◦ SFL−H
S/AN◦ SFL− P
S/WU◦ SML
S/WA◦ SML− P

S/X,R/X◦ analogous
X+ 〈X〉ce
X∗ 〈X◦〉ce

Hevia’s UO COc0 , k = 1
SRA Oc0 , k = 1
SA∗ SO{RML}c0 , k = 1
SA SOc0 , k = 1
UL MO[ML]c0 , k = 1
SUL SMLc0 , k = 1

RA∗, RUL,RA analogous

Gelernter’s RH,τSA RH,τSA c0 ⇐⇒ SO − P c0 , k = 1
RH,τSUL RH,τ

SL c0
⇐⇒ SML− P c0 , k = 1

RX analogous Hevia: 〈X〉
RHX analogous Hevia: 〈X〉csr
R̂HX analogous Hevia 〈X〉cs

Bohli’s Framework. Bohli and Pashalidis [26] built a hierarchy of application-independent
privacy notions based on what they define as “interesting properties”, that the adversary is or is
not allowed to learn. Additionally, they compare their notions to Hevia’s, which we introduce next,
and find equivalences.

It is easy to see, that our definitions of U,Q,H (P is not easy and hence, explained more detailed
below) match the ones of Bohli’s properties (who sent, how often any sender sent and how many

12Under the assumption that in all cases m0 is communicated like in αREL of [11] and in αSREL of one older
AnoA version [10].

13Under the assumption that the receiver in Stage 2 can be another than in Stage 1 like in αUL of [11].

28

senders sent how often) although we do not use a function that links every output message with
the sender(/receiver), but the sender-messages-sets(/receiver-messages-sets). Bohli and Pashalidis
additionally define the restriction of picking their communications equal except for the user (de-
pending on the current notion sender or receiver) ◦. This is the same as allowing only the senders
respectively receivers to differ (ES resp. ER).

Conceptually, our model differs from Bohli’s model in the concept of challenges, the advantage
definition, the order of outputs, and the allowed behavior of corrupted users.

Bohli’s notions can be understood as one challenge (n = 1) with arbitrarily many challenge rows
(any c). Further, it does not use a multiplicative term in its advantage (ε = 0). Then δ equals
the advantage, which has to be 0 to unconditionally provide a privacy notion or negligible to
computationally provide this notion.

Bohli’s framework assumes that the protocol outputs information as an information vector, where
each entry belongs exactly to one communication. The adversary’s goal in Bohli’s framework is
to link the index number of the output vector with the sender or receiver of the corresponding
communication.

All except one of their properties can be determined given the batches of both scenarios. However,
the linking relation property that partitions the index numbers of the output vector by user (sender
or receiver depending on the notion), can only be calculated once the output order is known. Since
our notions shall be independent from the analyzed protocol, the challenger cannot know the
protocol and the way the output order is determined. Running the protocol on both scenarios
might falsely result in differing output orders for non-deterministic protocols.

Thus, we adapt the linking relation for ACNs to be computable based on the batches. The
interesting output elements the adversary tries to link in ACNs are messages. Hence, here the
linking relation partitions the set of all messages into the sets of messages sent/received by the
same user, which can be calculated based on the batches. This adaption is more restrictive for an
adversary, since the partition of output numbers can be equal for both scenarios even though the
sent messages are not. However, if the adversary is able to link the output number to the message,
she can calculate our new linking relations based on Bohli’s.

Further, Bohli’s framework allows for notions, where the behavior of corrupted users differs in the
two scenarios. This means privacy of corrupted users is provided, i.e. the adversary wins if she can
observe the behavior of corrupted users. Those notions are the ones without the option Xce .

To match our batch query, Bohli’s input queries, which include communications of both scenarios,
have to be combined with a nextBatch query, which signals to hand all previous inputs to the
protocol.

Hevia’s Framework. Hevia and Micciancio [82] define scenarios based on message matrices.
Those message matrices specify who sends which message to whom, but not in which order the
communications take place. Notions restrict different communication properties like the number
or set of sent/received messages per fixed user, or the number of total messages. Further, they
construct a hierarchy of their notions and give optimal ACN protocol transformations that, when
applied, lead from weaker to stronger notions.

Mapping of the properties follows mainly from Bohli’s and the equivalences between Bohli and
Hevia (including the one we correct in the following paragraph). Besides this, only Hevia’s Unob-
servability (UO), where the matrices can be picked arbitrarily, is new. However, this corresponds
to our ℵ property, that always returns TRUE and allows any arbitrary scenarios.

Our model differs from Hevia’s, since ours considers the order of communications and allows for
adaptive attacks, as well as corruption.

Our game allows to consider the order of communications. Analyzing protocol models that ignore
the order will lead to identical results. However, protocol models that consider the order do not
achieve a notion – although they would in Hevia’s framework, if an attack based on the order

29

exists.14

Most of Hevia’s notions are already shown to match Bohli’s with only one batch (k = 1) and no
corruption (Xc0) [26]. However, we have to correct two mappings: in [26] Hevia’s Strong Sender
Anonymity (SA∗), which requires the number of messages a receiver receives to be the same in both
scenarios was mistakenly matched to Bohli’s Sender Weak Unlinkability (S/WU+), in which every
sender sends the same number of messages in both scenarios. The needed restriction is realized
in Bohli’s R/WU+ instead. The proof is analogous to Lemma 4.3 in [26]. The same reasoning
leads to Bohli’s Sender Weak Unlinkability (S/WU+) as the mapping for Hevia’s Strong Receiver
Anonymity (RA∗).

Gelernter’s Framework. Gelernter and Herzberg [72] extend Hevia’s framework to include
corrupted participants. Additionally, they show that under this strong adversary an ACN protocol
achieving the strongest notions exists. However, they prove that any ACN protocol with this
strength has to be inefficient, i.e. the message overhead is at least linear in the number of honest
senders. Further, they introduce relaxed privacy notions that can be efficiently achieved.

The notions of Gelernter’s framework build on Hevia’s and add corruption, which is covered in our
corruption options. Only the relaxed notions RH,τSA and RH,τSUL are not solely a corruption restric-
tion. We define new notions as RH,τSA =♦6 ∧G and RH,τ

SL
= ♦6 ∧Q ∧ G that are equivalent to some of

the already introduced notions to make the mapping to the Gelernter’s notions obvious. They use
a new property G, in which scenarios are only allowed to differ in the sender names.

Definition 12 (Property G). Let U be the set of all senders, sbi = {(u, {m1, . . . ,mh})
∣∣ u send

message m1, . . . ,mh in batch i} the sender-messages sets for scenario b ∈ {0, 1}. We say that G
is met, iff a permutation perm on U exists such that for all (u,M) ∈ s0k : (perm(u),M) ∈ s1k .

Note that Gelernter’s relaxed notions (indistinguishability between permuted scenarios) is de-
scribed by our property G, the need for the existence of such a permutation.

Theorem 3. It holds that

(c, ε, δ)−RH,τSA ⇐⇒ (c, ε, δ)− SO − P,
(c, ε, δ)−RH,τ

SL
⇐⇒ (c, ε, δ)− SML− P .

Proof. [Proof sketch] Similar to Theorem 1. (See Appendix A.5.2 for details.)

3.6.2 Use Case: Analyzing Loopix’s Privacy Goals

To check if we include currently-used privacy goals, we decide on a current ACN that has defined
its goals based on an existing analytical framework and which has already been analyzed: the
Loopix anonymity system [128]. In this section, we show that the privacy goals of Loopix map
to notions that we have defined (although the naming differs). Loopix aims for Sender-Receiver
Third-Party Unlinkability, Sender online Unobservability and Receiver Unobservability.

Sender-Receiver Third-Party Unlinkability. Sender-Receiver Third-Party Unlinkability means
that an adversary cannot distinguish scenarios where two receivers are switched:

“The senders and receivers should be unlinkable by any unauthorized party. Thus,
we consider an adversary that wants to infer whether two users are communicating.
We define sender-receiver third party unlinkability as the inability of the adversary to
distinguish whether {S1 → R1, S2 → R2} or {S1 → R2, S2 → R1} for any concurrently
online honest senders S1, S2 and honest receivers R1, R2 of the adversary’s choice.”
[128]

14 Creating an adapted version left a degree of freedom. Our choice of adaptation corresponds with the interpre-
tation of Hevia’s framework that was used, but not made explicit in Bohli’s framework.

30

Table 3.6: Definition of the Loopix notions
Notion Name Aspects
LSO Loopix’s Sender Unobservavility E♦

LRO Loopix’s Receiver Unobservability E♦

SO
′ Restricted Sender Unobservability 6→ ∧ES

RO
′ Restricted Receiver Unobservability 6→ ′ ∧ ER

The definition in Loopix allows the two scenarios to be distinguished by learning the first receiver.
We interpret the notion such that it is only broken if the adversary learns a sender-receiver-
pair, which we assume is what is meant in [128]. This means that the sender and receiver of a
communication must be learned and is exactly the goal that motivated our introduction of complex
properties: (SR)L.

Unobservability. In Sender online Unobservability the adversary cannot distinguish whether an
adversary-chosen sender communicates ({S →}) or not ({S 6→}):

“Whether or not senders are communicating should be hidden from an unauthorized
third party. We define sender online unobservability as the inability of an adversary to
decide whether a specific sender S is communicating with any receiver {S →} or not
{S 6→}, for any concurrently online honest sender S of the adversary’s choice.” [128]

Receiver Unobservability is defined analogously.

Those definitions are open to interpretation. On the one hand, {S 6→} can mean that there is no
corresponding communication in the other scenario. This corresponds to our ♦ and the definition
of LSO and LRO according to Table 3.6. When a sender is not sending in one of the two scenarios,
this means that there will be a receiver receiving in the other, but not in this scenario. Hence,
LSO can be broken by learning about receivers and the two notions are equal. These notions are
equivalent to CO:
Theorem 4. It holds that

(c, ε, δ)− CO ⇒ (c, ε, δ)− LSOCR1 .

(c, ε, δ)− CO ⇐ (2c, ε, δ)− LSOCR1 .

Proof. [Proof sketch] Similar to Theorem 1. (See Appendix A.5.2 for details.)

On the other hand, {S 6→} can mean that sender u does not send anything in this challenge. In this
case, the receivers can experience the same behavior in both scenarios and the notions differ. We
formulate these notions as SO′ and RO′ according to Table 3.6. Therefore, we need a new property
that some sender/receiver is not participating in any communication in the second scenario:

Definition 13 (Property 6→). Let u be the sender of the first scenario in the first challenge row
of this challenge. We say that 6→ is fulfilled iff for all j : u1j 6= u. (Property 6→ ′ is defined
analogously for receivers.)

Theorem 5. It holds that

(c, ε, δ)− SO ⇒ (c, ε, δ)− SO′ and

(c, 0, 2δ)− SO ⇐ (c, 0, δ)− SO′.

Proof. [Proof sketch] Similar to Theorem 1. (See Appendix A.5.2 for details.)

Remark. We do not claim that the Loopix system achieves or does not achieve any of these
notions, since we based our analysis on the definitions of their goals, which were not sufficient to
unambiguously derive the corresponding notions.

31

3.7. Climbing the Hierarchy: Towards ACN Primitives

Investigating state-of-the-art ACNs, we are interested in a first mapping of how they protect which
property of the communication. Following the idea of Hevia and Micciancio [82] that discussed
three fundamental concepts to invert all but one implication in their hierarchy of nine distinct
privacy notions, we provide preliminary results on anonymization primitives for our much more
extensive notion hierarchy.

3.7.1 Introducing Primitives

ACNs usually combine multiple techniques to provide privacy protection. However, as noticed in
many surveys [45, 61, 133, 143], the approaches often share similar basic techniques, like (layered)
encryption, indirection, shuffling/mixing, secret sharing and even dummy messages in a myriad
of variations. Informally, we consider any such technique, i.e. any basic building block of which
complete ACNs are composed of, as a primitive.

Example: Broadcast. One primitive is a classical broadcast, where the sender sends her chosen
message to all receivers. Thereby all information about the receivers, including the intended receiver
of a message, the receiving frequencies of each user and also the sender-receiver relationship, is
hidden.

Adversary

r1 r0

Challenger

validateselect
create

b

guess b'ACN
 output

prim()r1b

Figure 3.5: A primitive prim is a function applied by the challenger to the batches of the selected
scenario.

For our game model (see Figure 3.5), we can understand any primitive as a function prim. The
challenger applies it to the selected input batch after validating both input batches. From the
perspective of an ACN, the primitive thus is a wrapper. The combination of the old ACN and the
wrapper define the new ACN. Knowing the protection of the old ACN, we are interested in the
protection of the new ACN. For two notions Xstrong, Xweak with Xstrong =⇒ Xweak: If any (old)
protocol ACN achieves Xweak then we search for a primitive prim such that prim(ACN) achieves
Xstrong, or short:

Xweak
prim==⇒ Xstrong.

To have a way to express that no protection is required, we add the Null notion as the weakest
possible notion to our hierarchy. It only accepts identical scenarios from the adversary and thus
every protocol achieves it.

Example (cont.): As a function the broadcast primitive Broadcast adds for each communi-
cation and user another communication with the same sender and message as the original one in
a fixed receiver order (see Figure 3.6, blue part). Thereby any differences of the receivers in the
batches are removed and Null Broadcast======⇒ RO.

3.7.2 Primitives Overview

Analyzing proposed networks with the goal to learn how to navigate through the hierarchy of
protection goals, we identified anonymization concepts – our primitives – against the GPA (see
Figure 3.7). We group primitives into three main categories:

32

Batches for
(differ only in receiver)

Batches for
(are identical)

BroadcastS "hello" A S "hello" B
S' "nice" A S' "nice" C

S "hello" BS "hello" B
S "hello" A S "hello" A

S "hello" C S "hello" C

S' "nice" A S' "nice" A

S' "nice" CS' "nice" C
S' "nice" BS' "nice" B

scenario 0 scenario 1
scenario 0 scenario 1

Figure 3.6: Example of the broadcast primitive for the senders S, S′ and the receivers A,B,C.
On input of the black communications, broadcast sends each communication to all receivers by
adding the blue communications. If we assume that the attack on RO chooses the left batches and
the protocol applies the broadcast primitive, then the adversarial observations correspond to the
batches on the right, which of course are indistinguishable as they are identical.

1. Encryption to hide message content and its connection to users,

2. Dummy Traffic to hide the sending/receiving frequencies, activities and even user relation-
ships, and

3. Indirection and shuffling to hide the connection between senders and receivers as well as the
messages and timings.

A high-level overview of the primitives follows. We further argue their provided protection in
Appendix A.8 and decompose four networks into primitives as examples in Appendix A.9. An in-
depth formal model and analysis of the primitives including the detailed assumptions for practical
realization, performance costs and composability investigations is, however, future work.

3.7.3 Encryption Primitives

We can either hide the message on the whole way trough the ACN via End-To-End Encryption or
only on parts of their path in the ACN – until or from an intermediate node:

End-To-End Encryption (E2EC) To hide the content of the message in general, senders encrypt
messages with the public key of the intended receiver.

Key private End-To-End Encryption (E2EC(kp)) To hide the same as E2EC and keep the pro-
tection for the receiver, E2EC is implemented with a key private asymmetric encryption scheme.

Encrypting on parts of the path (EncToMix / EncFromMix) To hide the linking between
message content and sender (or receiver) it is sufficient to protect the message content on a part
of the path. EncToMix uses an encrypted message from the sender until an intermediate party,
EncFromMix from the intermediate party until the receiver.

3.7.4 Dummy Traffic Primitives

To confuse the adversary, protocols often add artificial traffic to the real communications. This
dummy traffic does not transport any real messages from the sender to the recipient but is merely
a means to hide different aspects of the actual desired (real) communications.

Overview. We intuitively know many ways to add dummy traffic. To hide the message length,
we pad the message, i.e. add bits to reach a globally fixed length. To hide the frequency and activity

33

Both-side
Unobservability

Both-side Unlinkability

Both-side
Unlinkability

Both-side Unlinkability

Sender-
Receiver

Linkability

Message
Observability

Sender-Message Linkability

Sender Observability

Receiver-Message Linkability

Receiver Observability

null

Equality by Dummy TrafficPrinciples of implications Indist. by Encryption Equality or Indist. by Indirection or Reordering

D2SPClasses

D2SPTraffic D2SPUser

DfS
P Sys

tem

DfSPClasses

DfSPTraffic

DfSPTraffic

DfSPClasses

DfSP
User

D2SPClasses

D2SPTrafficDfSPTraffic D2SPTraffic

D2SPClassesDfSPClasses

D2SPTraffic

D2SPClasses
DfSPClasses

DfSPTraffic

D2SP
System

D2S
SystemDfS Sys

tem

D2SUser DfS
User

S2S

Pad Pad

Pad E2ECE2EC(kp)

E2EC

+Pad

E2EC

+Pad

E2EC(kp)

+Pad

E2EC(kp)

+Pad

E2EC(kp)

+Pad

E2EC(kp)

+Pad

E2EC(kp)

+Pad

E2EC(kp)

+Pad

E2EC(kp)

+Pad

E2EC(kp)

+Pad

E2EC

+Pad

E2EC(kp)

+Pad

Delay+EncToMix+Pad+SameAddr+AnyMix EncFromMix+Pad+AnyMix+SameAddr

E2EC(kp)

O
utboxM

ix

 EncFrom
M

ix + Pad

In
bo

xM
ix

Enc
To

M
ix

+
Pad

[E
ncF

rom
M

ix]

[E
nc

To
M

ix
]

[Delay + SameAddr]

[Delay + EncToMix + Pad + (leakS)]

Delay + EncToMix + Pad + SameAddr + AnyMix (leakS)

[SameAddr]
[EncFromMix+Pad+(leakR)]

EncToMix+ Pad + AnyMix(leakR)+SameAddr

k-r
dmR

k-rdmS

k-rdmRk-rdmS

DelayDelay
Delay (leakR)Delay (leakS)

AllRecAllRec AllSend AllSend

AllSend AllSend AllRec AllRec

AllSendAllRec

AllSend AllRec

Delay + SameAddr
+ AnyMix

D2SUser DfSUser

DfA

D2A

 D2A

DfA

Broadcast

re
ve

rs
eB

ro
ad

ca
st

Staged Broadcast

Sta
ge

d
re

v.B
ro

ad
ca

st

S
et

up

B
ro

ad
ca

st
 S

etup

rev.B
roadcast

 SameAddr
+ AnyMix

Figure 3.7: The figure shows the hierarchy of privacy notions from Section 3.5 but with inverted
arrows15, and the primitives used to invert the original implications from stronger notions at the
top to weaker notions at the bottom (see Table 3.7 for an overview). The color indicates the high-
level strategy that the primitive applies to hide the (meta) data. The primitives in brackets are
not general for the implication, but only work given that the weaker notion protocol is achieved
using the stated primitives.

patterns in the real behavior, we need to send more messages than before and thereby “pad” the
number of communications to hide the attribute of interest, similarly to padding the messages to
hide their real length. For such dummy traffic there is a variety of options (see Table 3.8): We can
freely decide which dimension(s) of the communication (sending or receiving) are protected with
additional “dummy” communications, and whether these use the real sender/message/receiver or
a dummy instead. We might just decide on a subset of the real users (e.g. the ones being active
in real communications this round) that generates/receives dummy traffic. Further, we might
have different strategies to decide on how much padding we want to add. To hide whether or not
someone is active, ensuring that the action is done once is enough. To protect frequencies, however,
more padding is required.

Hiding the Message Length

Padding (pad) To hide the message length (|m|), all messages are padded to a fixed global
length.

15We ignored (SR)O, (SM)O, (RM)O for this first investigation as they are likely reachable with either the
primitive for SO,RO,MO or a combination thereof.

34

Table 3.7: Overview over Primitives (symmetric versions in brackets replace sending with receiving
and vice versa)

Primitive Effect
Encryption Primitives

E2EC (E2EC(kp)) the sender encrypts the message for the receiver
EncToMix/
EncFromMix

the sender encrypts the message for the mix / the mix encrypts the message
for the receiver

Primitives using dummy traffic
pad all messages have the same length
S2S total number of communications is fixed
AllSend (AllRec) everybody sends at least once
k− rdmS (k− rdmR) as many senders as there are real messages this round sent at least once
D2SSystem (DfSSystem) everybody sends as many real + dummy messages as the system can deliver

real messages
D2SUser (DfSUser) everybody sends a fixed amount of real+dummy messages (< system maximum)
D2STraffic (DfSTraffic) everybody sends as many real+dummy messages according as the user with the

highest traffic amount this round
D2SClasses (DfSClasses) everybody sends a fixed amount of real+dummy messages according to her

traffic amount
D2SP (DfSP) only users that want to send something this round comply with the dummy

traffic requirements
D2A (DfA) everybody receives a (real or dummy) message whenever a real message is sent
Broadcast
(reverseBroadcast)

everybody receives the real message

Staged (Setup) the protective primitive is not (resp. only) applied during setup
Indirection Primitives

Delay the senders wait for a random delay before sending the message
InboxMix
(OutboxMix)

messages are sent to a receiver-specific mix and delayed for a random amount
of time each

SameAddr replace the addresses of the real sender/receiver with a proxy; all messages are
sent to the same proxy (independent of sender or receiver of the communication)

leakS(leakR) which message belongs to which sender is leaked

Hiding the total number of communications

Source To Sink (S2S) To hide the number of real communications, dummy communications
between two dedicated parties, the Source and the Sink, are added to pad the total number of
communications to the fixed system maximum of real communications.

Hiding the User Behavior

We hide the sending activity and frequency of a user by padding the number of their sending
actions. The variants differ in whether they choose a dummy communication partner (Sink as
partner for real senders), a dummy message, or both, or if they use the original message and real
users. Similarly, receiving activity and frequency is hidden by padding the number of receiving
actions.

Table 3.8: Dummy Traffic Primitive Components
Dimension Options

Message real / dummy
Sender real / dummy

Receiver real / dummy
Apply for all / participating users / random subset

Pad to ≥ 1, system maximum, per user maximum, per round max, dependent on user be-
havior

35

>= 1 for all

= total system max

= per sender system max

per sender frequency

senders (sorted by increasing frequency)

= per sender actual max

= depends on sender behavior

A BC DE

 += 1 for k

real messages

AllSend

Traffic

k-rdmS

Classes

User

System

Figure 3.8: Padding options for Dummy to Sink illustrated

Dummy messages to dummy communication partner

Dummy to Sink (D2S) To hide aspects of the sending activity and frequency per user, D2S
pads the number of communications per sender by adding dummy communications to a special
receiver, the Sink. The actual effects of this padding depend on the chosen strategy of how many
dummy communications to add per user. Ensuring, e.g., that everyone sends once, hides each
sender’s activity, but still leaks information about the sending frequency. We give an overview of
the different strategies in Figure 3.8.

1. AllSend: To hide which senders are active (U), AllSend ensures that any sender sends at
least once per round by adding dummy communications to the Sink. Note that the number of
added dummy communications still leaks how many senders (|U |) were active before adding
dummies.

2. k− rdmS: Naturally, there cannot be more active senders than real communications. Thus,
to hide the number of active senders (|U |), k− rdmS ensures that as many senders send
at least once per round as there are real communications by randomly selecting inactive
users for dummy communications. To ensure that the number of dummy communications is
independent of the number of selected users, all senders (both active and randomly selected)
send a dummy message to the Sink.

3. D2SSystem - To hide the sending frequency (Q) unconditionally, D2SSystem pads the sending
events per sender to the fixed system maximum of real messages per round. This includes
introducing new communication rounds if the system maximum would be violated otherwise.

4. D2SUser - To hide the sending frequency (Q) given that the messages and real receiving events
are not observable, D2SUser pads to a fixed maximum of messages per sender and round. This
includes introducing new rounds if the system maximum would be violated otherwise.

5. D2STraffic - To hide the sending frequency (Q) given that the sending histogram (H) can be
known, D2STraffic pads to the maximum of all real sending frequencies in this round.

6. D2SClasses - To hide the sending histogram (H) given that the number of active senders (|U |)
can be known, D2SClasses pads the sender of the most real messages to the greatest possible
maximum of real messages a single sender sent in this batch, the sender of the second most
real messages to this maximum minus one and so on. The maximum is determined based on
the number of real messages and active senders per batch.

Dummy from Source (DfS) Similar to D2S, DfS hides aspects of receiving behavior, by padding
the input of each receiver with dummy messages from a special sender, the Source. Note, however,
that the corresponding trust assumptions are not fully symmetrical. Naive padding for receivers
requires knowledge of the real traffic at the Source. Actual implementations of DfS, like Private
Information Retrieval, can reduce the knowledge at the Source.

36

Dummy to Sink Participating/ Dummy from Source Participating (D2SP/DfSP) To
hide the sending frequencies (Q) only of active senders, we apply the versions of D2S (except
for AllSend, k− rdmS) only to the participating senders in each round. (Similarly for DfS and
receivers.)

Dummy messages to real users

Dummy from All/ Dummy to All (DfA/D2A) To hide the sending frequencies (Q), the active
senders (U) and the sender-receiver linking, whenever a sender sends a real message, DfA adds a
dummy message from all other senders to the intended receiver of the real message. (Similarly,
with D2A a sender sends the real message only to the intended receiver, but dummy messages to
all other receivers.)

Note that DfA has a similar effect as D2S with the major differences that i) DfA is applied per real
message and thus does not hide the number of real communications, but also does not need any
additional party like the Sink and ii) by using users instead of the Sink, it hides sender-receiver
relationships if the messages are indistinguishable.

Real messages to real users

(Reverse) Broadcast (Broadcast/reverseBroadcast) To hide any association between re-
ceivers and their receiving behavior, Broadcast lets each sender send each real message in a
fixed order to all receivers. This order is independent of the intended receiver. (Similarly,
reverseBroadcast hides the same information on the sender side, by letting every sender send
all real messages of that round. Note, however, that the corresponding trust assumptions are not
fully symmetrical. Naively for reverseBroadcast the (trusted) senders need a protected way to
learn the message to be sent. Implementations like secret sharing in DC-nets without collisions
however realize this primitive under realistically acceptable trust assumptions.)

Setup Protection

Staged Primitives Consider an ACN protocol, that protects established communications but
provides no protection during the setup. We model this by “staging” the technique, i.e. the
primitive is not applied in the first round of communication, but starts to be used in the second
round.

Setup Primitives As counterpart to the staged primitives, we introduce the primitives with
setup protection. These provide the hiding as the original primitive, but only for the setup
phase.

3.7.5 Indirection Primitives

ACNs commonly employ additional steps in between the sender and receiver to unlink them. An
intermediate node (proxy or mix) replaces sender and receiver addresses, as well as obfuscates the
linking between incoming and outgoing traffic with the help of timing differences.

Typically unlinking only a single aspect (like time or addresses) is not enough, but only the protec-
tion of multiple such aspects assures the desired metadata protection. While each aspect on its own
might seem artificial and in practice they are usually found only in combination, we first introduce
primitives for any aspect and later discuss which combination hides which metadata.

37

Delay (Delay) To hide the original timing of the intention to send (and thereby the sending
order), each sender picks a random time within the round for each of her messages.

(Inbox/Outbox) Mixing (InboxMix/OutboxMix) To hide the timing relation between sender
and message (or receiver and message), we introduce a mixing postbox for each receiver (or sender).
In InboxMix, all messages for a receiver are sent to the postbox of this receiver, an intermediate
node specifically designated for that receiver, that shuffles them before sending them to the receiver.
(OutboxMix similarly)

Sometimes we do not care whether we have an InboxMix or an OutboxMix. In these cases we use
AnyMix to represent that it can be any of the two.

Address rewriting (SameAddr) To hide the original sender or receiver, the address of the re-
ceiver is replaced with and the message sent to the same proxy for the first part of all communi-
cations (until the proxy) and the address of the sender with the proxy for the last part (from the
proxy). The proxy derives and addresses the final receiver.

Leak (leakS/ leakR) For some functionalities or performance, a protocol might use sender or
receiver long-term pseudonyms. The above primitives can be weakened to a “leaky” version that
allows the adversary to learn the pseudonyms and the pseudonym-communication linking (P/P ′),
but not the identity of the sender.

3.7.6 Effects in the Hierarchy

By putting the primitives into the hierarchy, we can observe patterns. Firstly, to achieve the very
weak notions that merely unlink sender from receivers or messages, we need a broad combination
of different techniques (encryption, indirection, padding) to ensure that we unlink all aspects of
the communication. This is also the main area where indirection primitives find their application.
Precisely, by using a proxy as receiver (SameAddr) and mixing (InboxMix/OutboxMix) we can get
rid of the sender-receiver relation while still leaking the message content completely, and thereby
also the sender-message and the receiver-message linking (i.e. only sender-receiver pairs that want
to communicate the same message build the anonymity set, Null→ (SR)L).

With the help of message padding (pad), encryption on the first part of the path (EncToMix) and
the mixing per receiver (OutboxMix), we can hide the sender-message relation, but still leak the
sender-receiver and receiver-message linking, Null → (SM)L (similarly for the receiver-message
linking).

If we apply a common proxy to the encryption and mixing by using SameAddr, we use one mix
for all communications and thus hide the sender-receiver linking additionally, but still not the
receiver-message linking. Delay is further required whenever the order of senders already allows to
distinguish the scenarios (like in most of our sender notions). This allows us to realize (SM)L→
SML.

To ensure that frequencies and activities are hidden, we need dummy traffic. However, with certain
kinds of dummy traffic (e.g. broadcast) we even hide the sender-receiver linking.

Above we discussed encryption (EncToMix) to unlink communication partners. Further, end-to-end
encryption (E2EC(kp)) is of course used to protect the message (MO), and to reduce the leaked
information about which messages are sent/received by the same user.

38

3.8. Discussion

In this section, we present the lessons learned while creating our framework.

Learning about privacy goals. The need for formal definitions is emphasized by the mapping of
Loopix’s privacy goals to notions as example that less formal alternatives leave room for inter-
pretation. Further, a result like our hierarchy would be much harder to achieve without formal
definitions.

These definitions allow us to point out the relation of privacy and confidentiality (Message Unob-
servability leaking Message Length MO − |M |). The way we ordered the notions in the hierarchy
allows easy identification of the notions implying MO− |M | (the middle of the upper part). Note
that any privacy notion implying MO − |M | can be broken by distinguishing the message’s con-
tent. Further, nearly all those notions also imply MO and hence, all such notions can be broken
by learning the message length.

Our formal definitions also enabled the comparison of existing frameworks. Excluding differences
in the adversarial model, quantifications and restrictions that do not apply to all ACNs, we ob-
serve that equivalent definitions are often defined independently by the authors of the analytical
frameworks. For this reason, we included the notions of the other frameworks in our hierarchy in
Figure A.1 of Appendix A.4. O, SO − P , SML − P , RO{SML} and SML are defined (under
different names) in multiple works; SO is even defined in all works.

Although previous work includes equivalent definitions, we realized that some notions are still
missing. For example, we added weak notions like (SM)L, (RM)L and (SR)L because they
match our understanding of anonymity. Our understanding was confirmed by the analysis of
Loopix’ goals. Further, we defined all analogous notions for all communication parties involved
(senders and receivers) as real-world application define which party is more vulnerable. For the
concrete applications we refer the reader to Appendix A.6.

Consequently, we present a broad selection of privacy notions. We are aware that understanding
them all in detail is a challenging task, so we want to provide intuitions and preferences, based on
what we know and conjecture. We expect the lower part of the hierarchy to be more important for
ACNs that do not trust the communication partner as [72] already includes an inefficiency result for
SO and thus for all notions implying SO. As a first guess, we think SO and SFL, if higher overhead
is manageable, SML, (SM)L (and receiver counterparts) and (SR)L are the most popular notions
for ACNs without trust in the communication partner (similar for the corresponding receiver
notions). With trust in the communication partner, we expect especially the strongest goals O
and CO to be useful. Further, besides our discussion of primitives in Section 3.7, we want to add
some results concerning two well-known systems to ease intuition. [11]’s analysis of Tor results in
a small, but non-negligible probability to break SO and thus Tor does not achieve SO with our
strict definition. Classical DC-Nets, on the other hand, do achieve at least SO−P [72]. To further
more analysis results in the future, we provide quick instructions for a proof based on our notions
in Appendix A.7.

Correcting Inconsistencies. While the above similarities most likely stem from the influence of
prior informal work on privacy goals, attempts to provide concrete mappings have led to contra-
dictions. The AnoA framework maps its notions to their interpretation of Pfitzmann and Hansen’s
terminology. Pfitzmann and Hansen match their terminology to the notions of Hevia’s framework.
This means that, notions of AnoA and Hevia’s framework are indirectly mapped. However, those
notions are not equivalent. While AnoA’s Sender Anonymity and Hevia’s Sender Unlinkability
are both mapped to Pfitzmann and Hansen’s Sender Anonymity, they differ: In Hevia’s Sender
Unlinkability the number of times every sender sends can leak to the adversary, but in AnoA’s
Sender Anonymity it cannot.

We believe that AnoA’s Sender Anonymity should be called “Sender Unobservability”, which is
also our name for the corresponding notion. This follows the naming proposal of Pfitzmann and
Hansen and their mapping to Hevia. It is also more suitable because AnoA’s Sender Anonymity
can be broken by learning whether a certain sender is active, i.e. sends a real message, in the

39

system (u ∈ Ub). In order to achieve this notion, all senders have to be unobservable. To verify
this, we looked at how the notions of AnoA have been used. For example in [41] the protocol model
contains an environment that lets all senders send randomly. Hence, Ub is hidden by the use of
this environment. We are convinced that the information that is allowed to be disclosed should
instead be part of the notion and not modified by an environment. Only then are the notions able
to represent what information is protected by the protocol.

Another lesson learned by comparing privacy notions is the power of names, because they introduce
intuitions. The fact that Hevia’s Strong Sender Anonymity is equivalent to Bohli’s Receiver Weak
Unlinkability seems counter-intuitive, since a sender notion is translated to a receiver notion.
This might also be the reason for the incorrect mapping in [26]. However, Bohli’s Receiver Weak
Unlinkability is named this way because receivers are the “interesting” users, whose communication
is restricted. It does not restrict senders in any way and hence should be, in most cases, easier to
break according to some information about the sender. This is why we and Hevia have classified
it as a sender notion. An analogous argument explains why Bohli’s Receiver Weak Anonymity
R/WA implies the restricted case of Bohli’s Sender Strong Anonymity S/SA◦.

Use and Limits. Because there is no restriction in the use of protocol queries, the only restriction
to what can be analyzed is what is modeled in the protocol model. So, if the protocol model
includes e.g. insider corruption and active behavior of the insider, like delaying or modifying of
messages, those functionality can be used via protocol queries. The same applies to timing; if the
protocol model specifies that it expects protocol queries telling it, that x seconds passed and the
adversary gets meaningful answers after these protocol messages and only an empty answer after
batch queries (because they are only processed after some time passed), attacks on timings can
be analyzed. However, the challenge is to include this in the protocol model. This model also
defines the exact meaning of a batch query, whether messages of one batch are sent at the same
time or in a sequence without interruption and specifies whether a synchronous or asynchronous
communication model is used.

Defining the protocol model with the strongest adversary imaginable and restricting it later on
with adversary classes is a way to limit the work, when analyzing against different adversary
models. We decided not to increase the complexity of the framework further by adding interfaces
for dimensions of adversary models to the protocol model, i.e. adding more dedicated query types
instead of the versatile protocol query. So far, our decisions for query types are driven by the
related work and has been sufficient for our purposes. Future work will show whether refinements
are necessary. Although we presented all notions that we deemed important, there might still be
use cases that are not covered. With our properties as building blocks, we conjecture that it is
easy to add the needed properties and use them in combination with ours. Further, for adding
new notions to the hierarchy, our proofs can be used as templates.

40

4. Performance Limits of Anonymous Communication

Privacy always comes at a cost. In ACNs these costs are additional bandwidth and latency over-
head. In this chapter we introduce, improve and compare known bounds on these costs for ACNs,
as well as relate them to state-of-the-art protocols.

For this chapter, recall the basics from Section 2.1.1 and 2.1.5 and our privacy notions from
Chapter 3. Results of this chapter have been published at WPES 2020 [99].

4.1. Bounds Overview

To increase the privacy of otherwise unprotected communication, ACN techniques necessarily cre-
ate overhead. The dominating strategy to prove that a minimum amount of overhead is needed to
achieve a privacy goal is based on attacks: According to assumptions and protocol requirements
the attack is argued to succeed, unless the protocol introduces protective measures that have a
minimum cost. We consider the protocol assumptions, privacy goal, adversary model, the attack
idea and the derived performance bound as fundamental details of each bound.

Analyzing the proofs in the reports, we realized that their minimum amount of overhead is already
necessary to achieve much weaker privacy goals for weaker adversaries than claimed in the works,
and hence we tightened the bounds (and in one case correct the necessary overhead). Appendix B.1
describes this analysis in detail. Here we mention the improvements only briefly and then use
the improved results throughout the rest of this chapter. Further, we focus on bounds for sender
protection and refer the interested reader to Appendix B.3 for receiver focused bounds and pointers
to other overhead considerations.

In this section, we give the extracts of the bounds in order of increasing privacy strength that they
actually relate to. Their details are discussed as part of the comparison in the next section.

Dropping-Bound [6]

We call this bound “Dropping-Bound” because the bound describes the necessary overhead
to prevent an attack that drops packets at the sender and recognizes the missing packets at
the receiver.

Protocol Assumptions. The bound considers onion routing and mix networks. It relies on
the implicit assumption that messages are successfully delivered with high probability.

Privacy Goal: (SR)L. The paper [6] additionally proposes a protocol and thus only analyses
for the strongest possible goal CO. The bound, however, already applies for one of the
weakest notions, (SR)L. It defines that for any two (honest) senders the adversary must not
learn which of them communicated with which of two receivers. Except this, she can learn
anything, including e.g. how often each sender sends. Note that she can especially learn the
fact that both candidate senders communicated with one of the two receivers, but not who
communicated with whom.

41

Adversary Model. The paper states the assumption of active adversaries. Note, that the
only necessary activity is to drop packets, though: The adversary can drop packets on the
links of at least one sender and can observe at at least one receiver. Further, the adversary
knows that this receiver expects a messagea.

Attack. The adversary chooses a candidate sender, drops as many messages sent by this
sender as she can, and observes whether an expected message still arrives at the receiver, or
not. She guesses her victim to be the real sender if no message arrives, and the alternative
sender if it does.

Bound. Preventing this attack requires some overhead, which we can measure in added
bandwidth and latency. Sending increasing numbers of redundant messages over alternative
first hops requires higher bandwidth, but it improves the likelihood of delivery, as it reduces
the chance that all paths start with adversarial links. Choosing longer paths increases latency
but also the chance of an alternative message to be relayed through the victim sender and sub-
sequently dropped by the adversary. This terminally reduces the accuracy of the adversary’s
guessb. The precise bound, which we discuss later, follows from calculating the adversary’s
advantage given an assumed cost.

aThis is due to the formal definition of the privacy goal. Practically, we can however understand this as
external information the adversary gained, e.g. because the application requires a stream of messages.

bNote that this assumes an integrated system model, in which users also act as intermediate nodes.

Trilemma [54]

The “Trilemma” bound claims that only two out of three desirable properties can be achieved
in conjunction: low bandwidth overhead, low delays, and stronga anonymity. The Trilemma
consists of bounds for different user behaviors, as well as adversary models. It describes the
necessary overhead introduced by an attack that links packets based on timings and corruption
of the intermediate nodes.

Protocol Assumptions. The analysis assumes only a single receiver, and two suspect
senders. All messages are delivered in at most lmax rounds after sending.
Further, it considers the protocol to use a fixed amount of real and dummy messages per
round. Two different user behaviors are specified: In the synchronized model one sender is
assumed to send its real message and all other users synchronize to decide who sends dummy
messages in this round. In the unsynchronized model, any sender sends their real message in
the current round with the fixed probability p′ and dummy messages with the fixed probabil-
ity β.
Although no restriction in the type of protocol is made explicit, we expect the bound to hold
only for onion routing and mix networks, as at least one intermediate node is assumed.

Privacy Goal: (SM)L. While the report discusses SO, the Trilemma already applies for
one of the weakest notions (SM)L. It defines that for any two (honest) senders the adversary
cannot know which of them sent which message. Except this, the adversary can learn anything,
including e.g. how often each sender sends. Note that she can especially learn the fact that
both candidate senders sent a message, but not who sent which message.

Adversary Model. The Trilemma distinguishes two models:
The “non-compromising”b adversary: The attacker controls the receiver and the links adja-
cent to the two suspected senders.
The compromising adversary: The adversary additionally fully controls some intermediary
nodes.

Attack. The paper discusses two ways of identifying the real sender upon reception of a
message at the corrupted receiver.
The non-compromising adversary: First, the attacker monitors the sending behavior of both

42

suspected challenge users. If one user has not sent any message (real/dummy) within the lmax
rounds before the considered message is received, the other must be the sender.
The compromising adversary: In addition to the attack above, the adversary follows a second
strategy: With some probability she is able to observe all hops of either the challenge message,
or the message sent by the alternative sender. She then can identify the sender-message pair
and tell the sender of the challenge message.

Bound. Increasing either latency or bandwidth helps preventing these attacks: Sending
dummy messages at higher probabilities translates to a larger set of candidate users that
might have sent the message, and thus a better chance that the alternative suspect is in it.
Increasing the number of hops, and hence the latency, reduces the chance of all intermediate
nodes being corrupt, and also increases the interval during which the message may have been
sent, which again translates to a larger set of candidate senders. The precise bound follows
from calculating the probabilities of the above mentioned events in which the adversary can
unambiguously identify the sender, subject to the assumed bandwidth and latency overhead.

aWe show in App. B.1.4 that it also holds for a weaker definition of provable anonymity.
bThis name is used to distinguish it from the compromising adversary, even though the non-compromising

adversary compromises the receiver.

Counting-Bound [72]

The “Counting-Bound” relies on an attack that counts delivered packets and excludes candi-
dates that did not sent enough packets.

Protocol Assumptions. None.

Privacy Goal: SŌ. No information about any sender can leak. This includes for example
that even if someone sent all messages, the adversary does not know whether or not she sent
any message at all.

Adversary Model. The honest, but curious adversary corrupts all receivers and the links
of at least one honest sender.

Attack. The Counting-Bound’s privacy goal implies that all participating senders could
have sent all real messages. The attacker now attempts to exclude at least one of them, by
counting the number of messages they are sending. Knowing the number of real messages that
are received (as the adversary controls the receivers), the adversary can exclude any sender
who sent less messages.

Bound. The protocol cannot deliver more real messages to corrupt receivers than any sender
sends in real and dummy messages.

Optimality-Bound [82]

We call this bound “Optimality-Bound” because it is included in Hevia and Miccianchio’s
proof that their way of adding dummy messages is optimal from a performance point of view.
The idea for this bound is similar to the Counting-Bound.

Protocol Assumptions. All sent, real messages are delivered.

Privacy Goal: SŌ. Alike the Counting-Bound.

Adversary Model. The adversary observes the links of at least one honest sender and knows
how many real messages will be sent in totala.

43

Attack. The adversary again tries to infer that some user did not send all real messages.
Therefore, she counts the number of messages each sender sends and concludes that this sender
cannot have sent all, if the number is less than the total amount of messages.

Bound. Each sender has to send as many (real and dummy) messages as real messages will
be sent.

aThis is due to the formal definition of the privacy goal. For practical reasons, we might however also think
of this as external information the adversary gained through another channel.

4.2. Comparison

We first compare the Counting-Bound and Optimality-Bound, to find that they only differ in small
nuances. After that we compare the remaining bounds, aspect by aspect.

4.2.1 Counting-Bound and Optimality-Bound are equivalent

Both bounds arise from the same argument: Considering a number of real messages that have been
sent, anybody who sent less messages in total cannot have sent them all.

Protecting the privacy hence requires generating enough dummy messages to ensure that every
sender sends as many times as real messages are delivered by the protocol. Indeed they use the
same definition for the privacy goal, i.e. protected communication properties, their advantage
definitions are equivalent (see Appendix B.2.1) and the bounds state the same overhead (see
Appendix B.2.2).

While the privacy goal and resulting bound are identical, the authors of the two bounds looked
at this from slightly different angles: The Counting-Bound does not have any assumptions on the
protocol, but instead requires that the receiver is corrupted, such that the adversary can count
the delivered messages. The Optimality-Bound however does not corrupt the receiver, but instead
silently assumes that all messages are delivered and exploits the fact that the adversary knows
how many real messages are sent in total. Therefore, the adversary trivially learns the number of
delivered messages. Both derive the same bound, but their conclusions differ correspondingly: The
Counting-Bound limits the number of delivered messages, while the Optimality-Bound requires
the senders to send enough dummy messages.

We continue to use the Counting-Bound as representative for both.

4.2.2 Protocol Assumptions

The papers state, but also silently make assumptions regarding sending behavior, delivery guaran-
tees, and supported protocols.

Sending Behavior. The Counting-Bound and Dropping-Bound1 make no assumption about
the distribution of sending events per round. The Trilemma however considers a specific sending
behavior with fixed amounts of dummy and real messages per round, and their synchronized and
unsynchronized sending model.

Delivery Guarantees. The Counting-Bound does not consider a maximum delivery delay. As
only 1

n of the sent messages (dummy and real) reach their destination, some messages might not
be delivered.

1This is not to be confused with the assumptions for the protocol proposed in the same paper [6], where the
messages are sent at the same point in time.

44

The Dropping-Bound silently assumes successful message delivery. Missing messages otherwise
could not be interpreted as successful attacks by the adversary, but they could be an artifact of
the protocol.

The Trilemma assumes a maximum delay that the network adds. Note that in the synchronized
setting this guarantees that all messages can successfully be sent and received, as users get assigned
one of n rounds to send their message into the network. The unsynchronized setting in contrast
does not provide this kind of certainty, since a user can only send her message based on the result of
a coin flip. Therefore, in every round there is some probability that a certain user has not been able
to send their message yet (even though this probability is negligible after enough rounds).

Protocol types. The Counting-Bound applies to all types of ACN protocols, as it only considers
the number of sent and received messages. The Dropping-Bound, in contrast, only applies to onion
routing and mix networks.

The Trilemma states that no protocol with a minimal latency of lmax = 1 can achieve their
privacy goal, as the resulting advantages of their attack are non-negligible2. However, there exist
protocols with this minimal latency achieving even stronger privacy notions against the considered
adversary model, like the secure multi-party computation protocol as discussed in [72] or the well-
known DC-Net, which is proven to achieve a stronger notion than targeted by the Trilemma in
[72]. The authors recognize this limitation in later work [55], and we suspect their bound to apply
only to ACNs following the onion routing or mix network paradigms.

4.2.3 Privacy Goals

Although all bounds claim to hold for the privacy goal “anonymity”, the protection at which their
overhead becomes necessary differs.

Batch Assumption. In our privacy game from Chapter 3, a batch is so far understood as a sequence
of communications, but the semantics of a batch are not defined further before. For this comparison,
we understand a batch as communications that start in an unpredictable order, at least for the
adversary. The easiest way is to think of them being initiated simultaneously or in a random order.
Formally, this requires using a random permutation over all communications of the batch.

The Counting-Bound targets SO, the strongest goal of these analyses3. It is a very strong no-
tion that protects not only the linking of sender-message and sender-receiver pairs, but even
the frequency of sending, which for instance after a critical event could jeopardize the sender’s
safety.

Both other bounds target weaker notions with no direct relation to each other. The Trilemma con-
siders (SM)L, which only prevents linking sender-message pairs, while the notion of the Dropping-
Bound only prevents linking sender-receiver pairs ((SR)L). Both allow the adversary to succeed
in linking other properties, and allow to learn, for example, the number of real messages each user
has sent.

To visualize the extent of the difference, note that we actually define multiple other privacy goals
in between the ones targeted by the different bounds in Chapter 3 (see Figure 4.1).

4.2.4 Advantage Definitions

The advantage definitions of the papers are equivalent. We show equivalence mostly with simple
transformations. Only the Dropping-Bound represents a slight exception, but also its chosen

2δ ≥ 1
2 for the unsynchronized and δ ≥ 1 for the synchronized setting (see Appendix B.2.5)

3It is called “sender anonymity” in [82] and is shown to map to SO in Section 3.6.1.

45

Trilemma Dropping-Bound

Counting-Bound

Figure 4.1: Excerpt of the hierarchy from Figure 3.3 of Section 3.5 with the privacy goals of the
bounds highlighted. Arrows point from stronger to strictly weaker goals.

total variation distance can be shown equivalent using known results [50] (see Appendix B.2.1 for
details).

4.2.5 Additional Restrictions

Corrupted users. The Dropping-Bound introduces the additional restriction that corrupted
users send and receive the same messages in both scenarios, as the scenarios would otherwise be
trivially distinguishable. Formally, this matches the corruption restriction and leads to (SR)Lce .
For our comparison we can however simply add this restriction to all notions. For the other bounds
it does not change anything as it is already always fulfilled: all senders are assumed to be honest
and the receivers have to receive the same messages per notion definition.

Allowed number of challenge rows. The Trilemma4 and Dropping-Bound need only two
differing communications (the ones whose senders are switched) in the compared scenarios. Thus,
the notions of the Trilemma and Dropping-Bound are also in this regard weaker than the one of
the Counting-Bound where multiple (precisely µmax) differing communications are needed for the
attack.

Further, the protocol model of the Trilemma allows only one user to send a real message per round
and this permutation over the users is assumed to be chosen randomly. This fits our understanding
of batches: The order, in which the chosen communications are input to the protocol model, is
random.

4.2.6 Adversary Models

The bounds rely on different adversary models, which we depict in Figure 4.2 (the comparison to
the models as stated in the papers is provided in Appendix B.1.1).

It is sufficient for all the attacks to compromise or influence outgoing links or the attached relays at
the sender, as well as the receiver, as this enables to correlate events at the terminals of the commu-
nication. The adversaries in the Counting-Bound and Trilemma in the non-compromising case are
virtually identical: one that corrupts all links of the victim sender(s) and the receiver. Their only
difference lies in the number of victims, as the Trilemma considers two, and the Counting-Bound
only a single victim to be monitored. The Trilemma in the compromising case additionally allows
to passively compromise some intermediary protocol parties, i.e. to learn their keys and eavesdrop
at them.

Only the Dropping-Bound allows the adversary to drop messages, and hence considers an active
4Even though the Trilemma [54]’s privacy notion formally allows just one communication to differ, its attack is,

in combination with the assumption that every user sends exactly one message, not possible with only one differing
communication.

46

Trilemma

Dropping-Bound

Counting-Bound

Compromising

Non- Compromising
Dropping

Eavesdropping

Service-model
restricted

Figure 4.2: Hierarchy of adversary models. Hierarchically lower adversary model are weaker. The
dotted arrow represents the additional relation caused by ignoring the number of observed victims.

model. Eavesdropping capabilities on the sender links are not strictly required, and it is at least
conceivable that a remote adversary could cause the required message loss, for example by causing
congestion on targeted links. Albeit this model is stronger than those of the other bounds in terms
of behavior (active), it can as well be considered weaker in terms of the needed eavesdropping
capabilities.

Note regarding the system models. Recall that in the service model, the receiver is not an
active part of the network but an external entity (like in Tor). Corrupting a receiver in this case
can be achieved in different ways. Beyond controlling the receiver herself, for unencrypted traffic it
suffices to control only her network links (trivial for the ISP), or the last node on her anonymization
path. Note, that for the Counting-Bound the traffic to the receiver can even be encrypted as only
the fact that those are real messages is important.

We include the adversary model that only eavesdrops on these links as service model restricted to
our comparison. It is weaker than those of the Counting-Bound and Trilemma.

4.2.7 Bounds

We explain the minimun cost as inferred by the proofs of the bounds in the following and compare
them with each other. Therefore, we unify the notation of the different bounds as follows.

An ACN has n users. The set U includes all senders, UH the h honest senders. If the privacy
goal challenges the adversary to decide between two suspect senders, we call these “challenge
senders u0 and u1” and u1 the “alternative user to u0”. Further, we refer to the message of
this communication as “critical” or “challenge message”. λ is the security parameter and δ the
advantage of the adversary in identifying the real sender.

The Trilemma requires a message to be delivered after at most lmax rounds/hops. We additionally
write lexp for the average of the number of hops.

Further, the Trilemma assumes dummy and real messages to be distributed uniformly over several
rounds. We use β to denote the probability that a node sends a dummy message in a given round,
p′ for the probability of sending a real message. p = p′ + β is the total probability that a node
sends in a round.

cp is the number of intermediate nodes the adversary compromised passively (ca for the number
of actively compromised nodes).

Tables B.1 and B.2 of Appendix B show the connection to the original notation and summarize
our notation.

47

Counting-Bound

Recall the idea from Section 4.1: To prevent that the adversary can exclude any sender as suspect
for all sent messages, any sender has to sent at least that often. The total number of sending events
for all senders Com(r) has thus to at least cover that any sender sends Out(r) messages:

Com(r) ≥ Out(r) · |UH | = Out(r) · h

The bound shows a required overhead of at least h− 1 dummy messages per message that reaches
the destination. In other words, h−1

h of messages are overhead because there are at least h times
more sending events than received messages. The distribution of overhead during each round is
flexible, as long as the sum of the overhead compensates for all delivered messages up to any
specific round.

Note that the bound in [72] is given in the number of honest senders instead of all senders. As
the Counting-Bound’s adversary model does not include corrupted senders, both numbers are
equivalent (h = n).

Trilemma

The Trilemma states the trade-offs for two adversaries (non-compromising and compromising), and
two sending behaviors (synchronized and unsynchronized) and infers areas, i.e. bandwidth-latency
combinations, where their privacy goal cannot be achieved.

Non-compromising adversary with synchronized users. Recall the attack: The adversary
knows the two users out of which one has sent the challenge message. She also knows the interval,
during which the message must have been sent. If she does not observe the alternative user sending
a message in this interval, she knows the sender with certainty. Otherwise, she randomly accuses
one of her two suspects.

Her advantage over guessing randomly equals the probability that the alternative user has not
sent a message within the critical interval. In the synchronized setting, the probability that the
alternative user sent a message in the critical time interval of lmax rounds, is bounded by the sum
of the probabilities that she sent a real message5(= lmax−2

n−1) and the probability that she sent a
dummy message6 (≤ βn(lmax−1)

n−1). So the bound is simply the probability of the complementary
event:

δ ≥1−min
(

1, (lmax − 2) + βn(lmax − 1)
n− 1

)
≥1−min

(
1, (lmax − 1)(1 + βn)

n− 1

)

Comparison to Counting-Bound. This is intertwined with the considered privacy goals and
protocol assumptions. The Counting-Bound aims at achieving SO. To hide the sending frequency
for the adversary model7, everybody else has to send a dummy message, whenever a single user
is sending a real message. The Trilemma aims at (SM)L, which allows the number of dummy
messages to be reduced, as the sending frequencies do not need to be hidden. Sending a real
message as alternative sender in the critical time interval is enough to hide the sender-message
linking, as desired. This joint sending is reflected in the first part of the sum (lmax−1

n−1) in the
Trilemma for synchronized users, which therefore cannot be found in the Counting-Bound.

5 number of rounds (except sending of critical message)
number of users (except real sender)

6 number of dummy messages in the rounds
number of users7The Trilemma non-compromising and Counting-Bound’s adversary model are the same except for the number

of victims.

48

When we would require the latency to be minimal for their protocol model (lmax = 2), we force
the Trilemma to only consider dummy messages of the current round as suitable cover: As per the
protocol assumption in synchronized sending only one real message per round is sent and as the
critical interval is just this round, only these dummy messages contribute to the hiding, just as for
hiding frequencies in the Counting-Bound. We also see this reflected in the more precise formula
by setting lmax = 2:

δ ≥ 1−min
(

1, βn

n− 1

)
This advantage is 0 if β = n−1

n = h−1
h ; exactly the overhead required in the Counting-Bound.

Non-compromising adversary with unsynchronized users. We know that an alternative
user does not send in a specific round with probability 1−p. Additionally, the choice of sending in
the lmax − 1 rounds is independent. We hence can bound the probability that a second observed
user does not send by

δ ≥ (1− p)lmax−1

(cf. Appendix B.1.4 for a discussion of the original bound in this case).

Comparison to Counting-Bound. The Counting-Bound does not require the overhead to be
evenly distributed over the rounds. We however temporarily assume so to allow for a comparison.
Thereby the Counting-Bound requires the probability of a user sending any (real or dummy)
message to be p = p′ + β = 1. This resembles the improved Trilemma bound to minimal latency
and the additional effects of a higher latency can be seen in the Trilemma, but not mapped to the
Counting-Bound; as in the case with synchronized users.

Non-compromising adversary’s area of impossibility. Based on the above bounds on the
advantage, we can infer that for some combinations of latency lmax and bandwidth overhead β the
considered attack has non-negligible advantage, i.e. the privacy goal is broken. Such parameter
combinations constitute the area of impossibility.

If we e.g. assume that the message should be delivered after only one intermediate relay processed
it, the adversary wins unless the alternative user sends in the same round (to this relay). Thus
unless every user sends in every round (β approaches 1), the goal cannot be achieved for this short
latency (lmax = 2). For the other extreme case of no dummy messages (β = 0), the adversary wins
unless the alternative user sends her real message while the challenge message is routed. Thus
unless the latency is very high (e.g. lmax = n + 1) and all users send their own message in the
meantime with overwhelming probability, the privacy goal cannot be achieved.

The Trilemma makes the assumption that n ≈ poly(λ) and derives the following equations for
the synchronized setting. All parameter combinations that fulfill them cannot achieve the privacy
goal.

2(lmax − 1)β ≤ 1− 1
poly(λ) , βn ≥ 1

For the unsynchronized setting the equations are equal, except that β is replaced with p.

Comparison to Counting-Bound. The Counting-Bound and the area of impossibility from
the Trilemma can be transformed to the following statements (cf. Appendix B.2.4):

Counting-Bound: β ≥ Out(r)
r

(
1− 1

poly(λ)

)
, p = 1

Trilemma: β ≥ 1
2(lmax − 1)

(
1− 1

poly(λ)

)
, βn ≥ 1

49

Out(r)
r is the average number of messages delivered to the destination in each round. We hence

assume this number not to be much lower than 1 for most protocols, to retain utility.8 Also, Section
4.2.2 yields that the Trilemma requires lmax > 1. In consequence, it holds that 1

2(lmax−1) <
1
2 . This

shows that the lower bound on the bandwidth overhead of the Counting-Bound is higher, reflecting
its stricter requirements.

Compromising adversary. Extending the adversary to compromise up to cp ≤ n− 2 interme-
diate nodes facilitates the attack of tracing messages along their anonymization paths, if all nodes
on these paths are under adversarial control. This increases the advantage of the adversary, and
the Trilemma is interested in this additional probability for an attack to succeed. We explain how
the probability is bounded in the Appendix B.1.5 and only discuss the area of impossibility for the
compromising adversary here.

If an adversary passively compromises cp < lmax−1 protocol parties, then the area of impossibility
is

2(lmax − 1− cp)β ≤ 1− 1
poly(λ) .

If the number of compromised parties is cp ≥ lmax − 1, then anonymity cannot be reached for

2(lmax − 1)β ≤ 1− 1
poly(λ) and lmax ∈ O(1).

Comparison to Counting-Bound. We have already compared the case without compromised
protocol parties. With added compromised parties the result cannot directly be matched to the
Counting-Bound (as it uses no compromised protocol parties). We can however again transform
the impossibility area for the case of cp < lmax − 1 to

β ≥ 1
2(lmax − 1− cp)

(
1− 1

poly(λ)

)
Note, that this requires more bandwidth overhead than without compromised intermediate nodes,
as expected. It is however still a weaker bandwidth requirement than in the Counting-Bound, as

1
2(lmax−1−cp) <

1
2 and the Counting-Bound’s factor

(
Out(r)
r

)
is assumed to be close to 1. For the

case of more corrupted parties, interestingly a constant latency is no longer possible as this ensures
a non-negligible advantage that cannot be balanced with bandwidth.

Dropping-Bound

Recall the idea for the Dropping-Bound: The adversary has two suspects, from which one is sending
to the receiver, in which the adversary is interested in. In her attack, she correlates her dropping
of packets sent from the victim with the missing arrival of an expected packet at the receiver.
This attack is successful unless one of two cases happens: 1) the communication of the alternative
suspect is routed over the victim and thus the adversary wrongly accuses the victim even if the
alternative suspect sends to the receiver or 2) the adversary cannot drop all copies of the message
sent by the victim and thus wrongly acquits the victim.

This bound measures onion cost of a user as the expected number of packets (own and relayed
messages) a user sends. The bound is based on two key observations: 1) if the victim forwards
less packets than users exist (uses sublinear onion cost in the number of users), there is some user
whose packet she does not forward, and 2) if the victim sends only few copies (logarithmic in the
security parameter9) and the amount of corrupted nodes is high enough,10 the adversary can drop

8In the Trilemma [54] the number of delivered messages per round n
n+(lmax−1) approaches 1 for high numbers

of users, for the protocol used in the Counting-Bound the number is 1.
9They implicitly assume that this is also sublinear in the number of users.

10They do not mention any requirement on the number of corrupted nodes except that the amount is constant,
but if there are less corrupted nodes than copies of the message, she cannot succeed by dropping messages coming
directly from the victim.

50

all copies with non-negligible probability. Combining the two observations, the attack leads to
a non-negligible advantage. Thus, for their privacy goal, the onion cost per user has to increase
faster than log λ, i.e. be in ω(log λ), and therefore the onion cost for the whole network has to be
in ω(n log λ).

Comparison. The authors of the Dropping-Bound assign the Trilemma an onion cost of ω(n),
while their own result entails ω(n · log λ) due to the “stronger”11 active adversary [6].

We cannot confirm this. The number of onions that are directly sent, i.e. the onion cost, is the
number of onions created by all users multiplied by the rounds they stay in the network. To be
able to compare the onion costs, we use lexp ≤ lmax as the average latency of the protocol. The
number of onions is the number of real messages plus the number of dummy messages. Both
are multiplied with the number of rounds messages spend in the network (lexp). Recall for the
Trilemma: β + p′ = p messages per user and round are sent. There are n users as well as rounds –
as every user is assumed to send one message, and only one user sends a real message per round.
This results in n2 · p messages in total that stay for lexp hops in the network. So the onion cost
per user in the Trilemma is n2·p·lexp

n = n · p · lexp, or n2 · p · lexp for the complete network, which is
considerably higher than a bound of ω(n) or ω(n log λ).

Considering the impossibility area, the Trilemma states that (SM)L is impossible for onion cost
of n2(poly(λ)−1)

2poly(λ) ≈ n2.

The onion cost for the Counting-Bound for the whole network can be transformed to
(
n2(n−1

n + 1
n)
)
·

lexp = n2 · lexp.

Note that also the precise onion cost for Counting-Bound is higher than for the Trilemma (since
p ≤ 1, n2 · lexp ≥ n2 · p · lexp). Both onion costs are higher than the one for the Dropping-Bound,
contrary to the claim in [6].

Note on the Dropping-Bound in latency and bandwidth overhead. On the other hand,
we can translate the onion cost of the Dropping-Bound into a bound on latency and bandwidth
overhead under the assumption that every message stays in the network for the allowed latency.
The resulting impossibility area confirms the above order in costs:

p · n · lmax > log λ ⇐⇒ p >
log λ

polyλ · lmax

Intermediate Summary on the Overhead Comparison

All papers discuss the influence of bandwidth overhead on anonymity. The latency overhead
is explicitly considered in the Trilemma and implicitly in the Dropping-Bound. To permit a
comparison between the bounds, we transformed all bounds to account for the differing models
and assumptions. In result, the overhead required by the Counting-Bound and Optimality-Bound
is the highest, by the Trilemma the second highest and the Dropping-Bound, albeit based on an
active adversary, introduces the lowest overhead.

4.2.8 Comparison across the Aspects

Interestingly, even though all bounds claim that strong anonymity comes with high overhead, their
privacy goal, attacker model, protocol assumptions and also postulated cost differ considerably (cf.
Table 4.1).

11It is not stronger in all dimensions as discussed in Section 4.2.6.

51

Table 4.1: Final Bounds Summary
Paper Notion Adversary Protocol Assumptions Attack Bound (comparable

case, formal)

[72] SO eavesdrop
+ receiver

no restriction count messages sent from vic-
tim; if more received they are
not all from the victim

β ≥ Out(r)
r

(
1− 1

poly(λ)

)
,

p = 1

[82] SO eavesdrop guaranteed delivery for up
to µmax messages

count messages sent from vic-
tim; if more received they are
not all from the victim

β ≥ Out(r)
r

(
1− 1

poly(λ)

)
,

p = 1

[54] (SM)L eavesdrop
+ receiver
+ relay

required message delivery
after lmax rounds; onion
routing, mix nets, not ap-
plicable for DC-Nets

exclude senders that did not
send in the time where the
critical message was sent, if
all relays corrupt: trace mes-
sage

β ≥ 1
2(lmax−1)

(
1− 1

poly(λ)

)
,

βn ≥ 1

[6] (SR)L active +
receiver

delivery guaranteed (un-
less aborted), only onion
routing, mixing

drop all messages send from
the victim observe missing of
expected message at receiver

p > logλ
polyλ·lmax

For the Optimality-Bound and the Counting-Bound we realized that cost and privacy goal are
equal, and that the attacker models differ only slightly. The differences are easily explained by
deviating protocol assumptions. Resulting, the Optimality-Bound and Counting-Bound have the
highest cost and discuss the strongest privacy goal, albeit in face of a comparably weak adversary
model, and without (Counting-Bound) or with minor (Optimality-Bound) restrictions on the pro-
tocol types. Thus, protecting SO, which explicitly hides which sender sends how often, against
an adversary that both observes the first link of the sender (e.g. her ISP) and the corresponding
receiver (or has external knowledge about the number of received real messages) is indeed only
possible with high bandwidth overhead.

The papers introducing the other two bounds state stronger, yet analyze weaker privacy goals, and
postulate lower cost. The Trilemma aims at unlinking the sender from her message ((SM)L), while
the Dropping-Bound aims at unlinking pairs of senders and their receivers ((SR)L). Note that for
SO every sender sends a dummy message per real message to assure that real sending frequencies
are hidden. For (SM)L (or (SR)L) the bandwidth can be lower because it allows to learn that
someone is a more active sender. (SM)L (or (SR)L) only ensures that no one can link a certain
message (or receiver) to the sender. On the other hand, compared to the Optimality-Bound
and Counting-Bound, the adversary model in the Trilemma is slightly stronger. Interestingly,
reducing the privacy notion, but using a slightly stronger adversary model for the Trilemma (and
an incompatible adversary model for the Dropping-Bound), allows the bounds on the overhead
to drop considerably. So, in this case the change in the adversary model cannot outbalance the
change in the privacy goal.

The cost for unlinking sender and message in the Trilemma is higher than unlinking sender and
receiver in the Dropping-Bound although the latter assumes an active adversary. The reasons
are that the Trilemma is tailored to the special case that we needed to use to make the bounds
comparable and that timing observations are exploited in the Trilemma. Further, the adversary
in the Trilemma is not strictly weaker than the one for the Dropping-Bound. They indeed are
incompatible, as the latter is stronger with respect to its behavior being active, whereas the former
has a larger area of control, as it can compromise more and different parts of the network.

4.3. Implications

We extend the idea from [54] to contextualize our results with existing ACNs. The comparison to
actual ACN protocols of course has to be taken with grains of salt: Exceeding the theoretical bounds
in overhead indicates that an ACN may, but not that it actually does achieve the corresponding
privacy notion. We discuss system classes, loosely ordering them by the extent to which they can
meet the different bounds.

52

Table 4.2: Comparison of assumed sending behavior
Protocols Dummy traffic per round & user Communications per round Counting-Bound

Herd 1 (some) n (or more) X
DC-Net, Dissent 1 1 X

Dicemix n n X
Vuvuzela 1 n X

Riffle, Riposte 0 (1) n X

(Bandwidth
Overhead)

(Latency)

Dropping
Bound

Counting
Bound

Trilemma

X

X

X

X X

XX

Herd
DC-Net
Dicemix
Dissent

Riffle
Vuvuzela Riposte

Tor
HORNET

Threshold Mix Threshold Mixsec

Loopix

Figure 4.3: Comparison of bounds under the special set of assumptions of the Trilemma [54] (see
Table 4.2 for the Counting-Bound in the general case). To depict all bounds in one figure, we need
to assume the most strict assumptions: the assumptions of the Trilemma. As [54] we assume that
β ≈ p to summarize both user settings. The Counting-Bound requires the highest overhead but is
independent of the latency. The Trilemma shows a trade-off between latency and bandwidth, it is
higher than the Dropping-Bound.

4.3.1 Discussion of Networks

Figure 4.3 illustrates the trade-off vs. the cost of different existing ACNs. We facilitate this
comparison by restricting ourselves to a specific scenario: A single real message is assumed to
be sent during each round. The abscissa denotes the latency of messages, and the ordinate the
bandwidth overhead, as part of the probability that a node sends a message during a round.

We further discuss the more general cases, which are especially interesting to assess the systems
according to the Counting-Bound – and we give an overview on the assumptions of the different
protocols necessary to assess this in Table 4.2.

Tor [58], HORNET [43]. This first class of low overhead onion routing systems sends messages
over a path of relays and does not employ additional dummy traffic. The number of hops is fixed,
and thus they expose constant latency.

These systems fall short of any bound. All explained attacks indeed are successful (or expected
to be): It is simple to link sent onions because of their timing (Trilemma), to count the number
of messages a sender sent as sending can be observed (Counting-Bound). Knowing that a certain
receiver expects another packet (e.g., because the use case postulates a message stream), dropping
it right at the sender can be recognized at the receiver (Dropping-Bound). This in itself is not new,
and corresponding attacks have been suggested [119] or are at least conceivable for Tor, which is
build for a weaker adversary model.

53

Threshold-Mix [140]. This class of mixes collects t messages before relaying them further. It
does not employ dummy traffic. Thus, each sending event transmits a real message, and SO cannot
be achieved according to the Counting-Bound. Interestingly, the approach can however fulfill the
two other bounds: If each user sends one message and each mix waits for all of them, and if
further all mixes are used (as assumed if a high latency is allowed), the attacks fail. Dropping
a message yields no message to be delivered, and hence the privacy is kept (although availability
is jeopardized). As long as we assume that one of the mixes is honest, linking the incoming
and outgoing packets fails at this point and also timing does not provide any help as the first
mix already waits for all messages. We do however agree with [54] that the Trilemma cannot be
met for convenient thresholds and numbers of mixes (lower than in the order of the number of
users).

Herd [104], DC-Net [40], Dicemix [137], Dissent [156]. This class of systems employs
dummy traffic but has low latency. Herd uses multiple relays just like Tor and HORNET, but
adds dummy traffic. DC-Net, Dicemix and Dissent in contrast follow the idea of secret sharing.
They generate the original message as a combination of both; a real message from one and dummy
messages from all other users.

Only the Counting-Bound is applicable to these secret sharing based systems, as both the Dropping-
Bound and the Trilemma are based on the mixing model.

The systems indeed meet the overhead requirement of the Counting-Bound. Without a collision
avoiding scheme DC-Nets still cannot achieve the notion SO (cf. [72]). Dicemix and Dissent specify
scheduling for transmission slots by combining one message of each user in every round. Mounting
the attack from the Counting-Bound, the receiver hence does learn that all messages of a single
round are from different senders, and only messages distributed over multiple rounds can be from
the same sender. She succeeds and the notion SO cannot be achieved in consequence.

The situation for Herd is a bit more complex, than the representation in Figure 4.3 suggests. The
graph assumes only a single communication per round, and for this special case Herd meets all
bounds as it employs enough overhead. However, Herd aims at a VoIP scenario, which indicates
that the more general case of users participating with several communications in the same round
seems more applicable. The Counting-Bound is no longer met in this case: The users in Herd
generate a predefined amount of traffic, which is supposed to at least resemble the traffic caused
by a small number of VoIP connections (e.g. one). This does not outweigh the total number of
real messages sent during a round, and the Counting-Bound is violated. Herd in consequence leaks
some information about the sender behavior and SO cannot be achieved.

Loopix [128]. Loopix is another mix network that adds more mixes and dummy traffic. It allows
to adjust both the number of used mixes and the dummy traffic via parameters. Sender traffic
is generated according to an exponential distribution. Like [54] we assume

√
λ mixes per path

and dummy traffic with probability 1
λ , although we stress that other parameter choices are not

excluded by the paper.

Loopix in this setting satisfies nearly all bounds. Only from the Counting-Bound, we can conclude
that it cannot achieve SO. We expect that also practically the two scenarios of either one user
sending many messages, or the same number of messages being sent by multiple users can be
distinguished: The messages in the first case arrive much slower at the receiver. However, aiming
at SO may be too strong for many use cases and a weaker privacy notion targeted. Loopix does
employ protection measures against the other attacks. Confirming their effectiveness is however
beyond the scope of this work.

Riposte [49]. Riposte uses a reversed PIR to implement an anonymous broadcast. Each client
sends a message to the PIR servers in the epoch during which she participates. Riposte does
not apply the concept of dummy messages12. The set of senders is published at the end of each

12Only for receiving an empty message is used, as messages in the postboxes of the clients are swapped.

54

round.

Riposte does not lend itself to analysis with the model of the Trilemma, as the latter assumes only a
single sender to send a real message per round, but Riposte requires several parallel communications
to achieve any anonymity. In Figure 4.3 we still follow [54] and choose the probability for every
sender to send in each epoch to be one. The categorization with the assumptions of the Trilemma
is however misleading for the general case in Riposte as not only one, but multiple messages
are sent per epoch. Similar to Herd, the bandwidth overhead is again too small to withstand
the requirements of the Counting-Bound. We can confirm this theoretically with an attack: By
observing the number of write requests to the servers (i.e. send events), an adversary can directly
count the number of sent messages, as no dummy traffic is applied. Riposte clusters sending events,
so they are not spread over several rounds, and they are only hidden among each other. Further,
although the latency is sufficient to fulfill the Dropping-Bound, the dropping attack still works:
Dropping all parts of the write request of one user will not lead Riposte to stop, but instead to
publish all except this user’s message.

Riffle [103], Vuvuzela [154]. Vuvuzela and Riffle are mix networks that require all messages
to go trough all mixes. Alike [54], we assume a logarithmic number of mixes. Further, Vuvuzela
ensures a constant traffic rate by employing dummy traffic. Riffle assumes all clients to always
have a message to send (“each client onion encrypts a message”). So, in both protocols each client
sends in every round. Riffle additionally employs PIR to deliver the messages after they went
through a verifiable shuffling mix net.

They intuitively seem to satisfy all bounds and could possibly achieve all notions. Similar to
Herd however, multiple users can (Vuvuzela) or have to (Riffle) send every round and we can infer
that all messages of one round have been sent by different senders. Thus the Counting-Bound is
only fulfilled for the special case that only one user sends per round. This case might happen,
but is not enforced in Vuvuzela, and contradicts the assumption of Riffle that each client sends a
message.

4.3.2 Final Remarks on Bound Implications for Protocol Proposals

The bounds show limitations of existing ACNs, as they cannot achieve certain privacy notions. We
managed to underline this situations with attacks on the systems. We also conclude that nearly
no system achieves SO nor reaches the Counting-Bound under the given assumptions. It turns out
that the assumption of the number of real messages sent per round is important, not only to assess
specific bounds and check for their applicability in the first place, but also to put the bandwidth
overhead into perspective.

We note that there are cases where we suspect that the protocols do not achieve certain privacy
goals even though they reach the corresponding bounds.

4.4. A Practical Viewpoint: Explaining Limitations

Arriving at this bleak outlook, we want to put the bounds into perspective.

55

4.4.1 Strong Privacy Goal Formalizations

The Notion SO of the Counting-Bound

SO is a strong notion13, which even hides the number of active senders. While there are use
cases for this notion (see Section A.6), for many proposed protocols it might be too strong. Some
protocols (cf. Section 4.3) aim however to protect against a similar, but weaker notion: They
ensure that any user sends a fixed, small number of communications (real or dummy) every round.
Thereby, they allow the adversary to learn that no user has sent more than this number of real
messages, which implicitly leaks a lower bound on how many senders have been active during a
given round.

Relaxed Notion SOµ. The notion ensures that each sender at most wants to send some small
number µ of messages per round. Thus it hides whether the frequency is 0,1,2, ... or µ, but if
a sender desires to send more than µ messages per round this can be observable, as some of the
expected messages only arrive in a later round. With smaller µ, frequencies are less protected and
more about the intended sending frequency can be deduced from the number of rounds until the
delivery of the message.

Formally, with the definition of Qb from Chapter 3 we can define the requirement of the relaxed
notion SOµ as follows: The batches are valid iff for all j: r1j = (u1j , u

′
0j ,m0j , aux0j) and for

b ∈ {0, 1} for all (u, n) ∈ Qb: n ≤ µ.

Game-Based Notions for Bounds

Everything that could leak in the protocol by definition of the game-based notion is assumed to
be leaked during the analysis. This is useful for worst case analyses. For bounds, however, the
adversary knows, per game definition, everything that happens as long as it is not explicitly defined
to be protected. She does not even have to be able to observe any of this in reality.

Consider the Optimality-Bound: The adversary knows how many real messages are received, with-
out controlling the receiver, just by the definition of the notion. Further, the attack in the Dropping-
Bound requires her to realize that a packet is missing. In the game-based notion, this is trivial:
the adversary chooses how many messages each receiver expects, by the definition of the notion. In
reality, this limits the applicability to use cases with predictable receiving behavior (like streaming
or triggering the reaction with rumor spreading).

Future work on bounds should therefore argue the practicability of the underlying attack and
assumptions. For more realistic analyses communications unknown to the adversary and beyond
her control could be included14.

4.4.2 Maximal Anonymity Sets

All bounds require the anonymity set to include all users and that even the considered attack cannot
exclude a single user from it. For many real use cases, however, significantly smaller anonymity
sets after an attack may be sufficient. For example, building the anonymity set only from the
users concurrently online (or sending) might be acceptable for the use case as long as at any point
enough users are online (or sending). Determining such suitable smaller anonymity sets will be a
challenge for future work.

13Note, that also much stronger notions, which require for instance membership concealment, hiding the fact if a
user participates in the system at all, are discussed in literature.

14This extension is easily achieved by adding adversary classes (see Section A.1.4)

56

4.4.3 Bandwidth Cost Models

Different concepts are summarized under the term “bandwidth overhead”. For the Trilemma band-
width overhead naturally occurs from dummy messages, while for the Dropping-Bound redundant
copies of the real messages are needed. Further, also for dummy messages end-to-end dummy
traffic, starting and ending at users, and link dummy traffic, which is just applied to obscure the
traffic on one hop, exist.

Interestingly, the overhead in the Counting-Bound and Trilemma measures only sender-generated
dummy messages. In practice, however, end-to-end dummy traffic puts more load on the network
than link dummy traffic at the sender’s first link. In the Trilemma, for example, longer lasting
dummy traffic is only necessary if corrupted relays are introduced into the model. Contrary to the
cost definition of the Counting-Bound and Trilemma, the Dropping-Bound’s can reflect a difference
between end-to-end dummy traffic and dummy traffic on the first link. We thus prefer this cost
metric for future work.

4.4.4 Assumptions

Relaxed assumptions are desirable for future work on bounds to improve their applicability. In
terms of sending behavior, having more than a single user send a real message per round, contrary
to the Trilemma’s assumption, suits reality better and naturally benefits the privacy. Further,
latency requirements, like in the Trilemma, may further be more relaxed in many practical use
cases.

57

58

5. Onion Routing and Mix Message Formats: Breaking and
Fixing the Unidirectional Case

During our investigation of state-of-the-art protocols to identify basic building blocks, we discovered
an attack on a series of onion routing and mix networks, which we will discuss in detail as part
of this chapter. Motivated by this attack, we use the next two chapters to investigate Onion
Routing (OR) and mix network protocols. Our aim in these chapters are secure packet formats.
Consequently, attacks based on timings and traffic patterns are out of the scope, as the packet
format itself cannot hide such information. However, real world protocols of course should prevent
linking based on timings with additional measures, as well as employ a secure packet format.

To be compliant with the terms of the investigated related work [31], we understand OR in this
context as a free-route mixnet [42] without requiring that messages are delayed. This conforms
with the understanding of typical onion routing networks [58, 74] except that circuits are excluded.
Note that even though our proofs and packet formats are using the terms of OR, they are of course
also suitable for mix networks.

This first chapter on OR will focus on the unidirectional case, while the next explains and solves
the challenges introduced by allowing replies from the receiver back to the anonymous sender.
Results of this chapter have been published at IEEE S&P 2020 [95] (and in the corresponding
extended version [94]).

5.1. Background

This section introduces Onion Routing (OR), mix networks and their formal state of the art as well
as related protocols in more detail. For explaining OR, we consider the scenario of whistleblower
Alice who wants to leak sensitive information to media agent Bob and uses open anonymization
systems to hide from a regime that deploys mass surveillance.

5.1.1 Adversary Model

Assuming a nation state adversary we have to expect a global attacker with full control over
the Internet infrastructure. This entails the possibility to observe all links and to actively drop,
delay, modify, and insert packets on any link. Given the open nature of anonymization systems,
the adversary can easily provide a large subset of nodes, which seemingly run the anonymization
system, but are really under her full control. She hence knows all secret keys of those nodes, and
she can modify, drop, and insert packets at each of them. Even the receivers are untrusted and
considered potentially under control of the adversary, and as the system is open, the adversary
may also act as one or a set of senders, seemingly using the anonymization system parallel to Alice.
We assume full collusion between all adversarial parties, but follow the common assumption that
the attacker is limited to PPT algorithms and does not control all nodes. These assumptions are
common for onion routing.

59

5.1.2 Onion Routing (OR)

Considering the scenario, sending her message to Bob, the journalist, Alice requires that both Bob
and the regime shall not learn that she was the individual sending the message. Given the existence
of a trusted proxy, she can encrypt her message with the public key of the proxy and send it there,
to be decrypted and forwarded to Bob on her behalf. Her identity then is hidden in the set of all
users that communicate over this proxy at the same time; her anonymity set.

Given the open nature of the system, Alice cannot trust any single proxy completely. She hence
chooses a chain of proxies, hoping that one of the proxies is honest and does not collaborate with
the adversary. To hide the mapping between the packets that arrive at and depart from a proxy,
she consecutively encrypts the packet for each of the proxies on the chain, and includes a header
signaling where to forward the packet next. Each proxy locally decrypts and forwards the packet.
The last proxy decrypts it to the original message and forwards it to Bob.

As the packet is encrypted in several layers that consecutively are removed, the scheme is commonly
called onion encryption. The proxies hence often are called onion routers, or relays. Onion Routing
can be used in both network modes (see Section 2.1.1): the integrated system model, where the
receiver as the last router of the path gets an onion, and the service model, where last router, the
exit node, forwards only the final message to the receiver.

To enable the layered encryption, we assume the existence of public keys PK for all relays.
Assumption 1. The sender knows the (authentic) public keys PK i of all relays Pi it uses (e.g.,
by means of a public key infrastructure (PKI)).

Decrypting at the relays yields the intermediate header and a shorter onion for the next relay.
Corresponding length reductions of the onions would leak information that the adversary could
use to link observed packets arriving and departing at an honest relay. Onions hence are usually
padded to a fixed length that is globally known, which restricts the maximum length of the payload
as well as the number of relays on the path that can be addressed. We therefore assume the
maximum path length N in terms of hops between an honest sender and a receiver.
Assumption 2. The OR protocol has a maximum path length of N .

Protection in OR follows from hiding the link between incoming and outgoing onions at a relay.
Should the adversary by chance control all proxies that are chosen for an onion, she can trivially
reversely link outgoing to incoming onions for all relays, and hence identify Alice as the original
sender of a message delivered to Bob. As the path is chosen by Alice who actively aims to remain
anonymous towards Bob and the regime, she will pick a path solely containing corrupted relays
only rarely, by mistake. We therefore, deem it suitable to add the following assumption for our
analysis:
Assumption 3. There is at least one honest relay on the chosen path, if the sender is honest.

Further, as the adversary can actively insert packets, she can replay the same onion at the honest
relay and observe the same behavior twice. OR protocols hence usually implement a replay pro-
tection, by detecting and dropping replayed onions. For an easier analysis, we limit our scope to
replay protection mechanisms that drop onions that have already been processed:
Assumption 4. The replay protection, if one is used, drops bit-identical onions.

5.1.3 Existing Schemes and Systems

Danezis and Goldberg [52] define Sphinx, a packet format for secure OR. Sphinx’s goals are to
provide bitwise unlinkability between onion layers before and after an honest node, resistance
against all active tagging attacks to learn the destination or content of a message, and space
efficiency. Hiding the number of hops an onion already traveled, and the indistinguishability of
both forward onions as well as response onions on a reply channel were considered to further
strengthen privacy. Their network model assumes anonymization services, and their adversary
model mainly matches the above description. Traffic analysis, flooding or denial of service are

60

Table 5.1: Notation Summary
Notation Meaning
‖ concatenation of strings
λ the security parameter
P an onion path
m a message
Pi for the i-th router name on the path, P0 is the sender and Pn+1 the receiver
PKi public key of Pi
SKi private key of Pi
Oi = (ηi, δi) is the i-th forward onion layer to be processed by Pi
ηi the header of Oi
δi the payload of Oi

FormOnion the function to build a new onion as a sender.
ProcOnion the function to process an onion at a relay.

however excluded. Tagging attacks, i.e. an adversary modifying onions before reinjecting them,
on the other hand are explicitly allowed.

Sphinx’s onion layers consist of a header that contains all path information except the receiver,
and a payload that contains the protected message and protected receiver address. Padding and
multiple cryptographic primitives are used for construction and processing of onions, but the
integrity of the payload at each layer is not protected by Sphinx as this would conflict with their
support for replies. Tampering with the payload is only recognized at the exit node. As security
proof, Danezis and Goldberg prove the properties of [31] for Sphinx.

Two protocols [53, 142] preceded Sphinx and a series of networks [43, 44, 128] builds upon it. We
will introduce these works later, as needed.

5.1.4 Formally treating OR

Early on, Mauw et al. [111] modeled and analyzed OR. However, this work does not contain
any proposal to prove future systems secure. Backes et al.’s ideal functionality [9] models Tor
and hence includes sessions and reply channels. However, it is very specific to Tor and thus
rather complex and can hardly be reused for general onion routing and mix networks. The Black-
Box Model of Feigenbaum et al. [66] uses a very high-level approach, but does not support
replies. Further approaches [36, 37, 87] propose some security properties, but do not give any ideal
functionality or similar concept that would allow to understand their concrete implications for the
users’ privacy.

As the most prominent formalization without replies, Camenisch and Lysyanskaya [31] defined an
ideal functionality in the UC-Framework (see Section 2.3.3) and showed properties an onion routing
protocol needs to fulfill to prove its security. Proving these properties has become the preferred
strategy to prove mix and onion routing networks secure. Although the strategy is designed for the
integrated system model, it applies to the service model as well (except for renaming recipient to
exit node). In the service model the ideal functionality however only considers the anonymization
network and additional private information might leak when the packet is sent from the exit node
to the receiver.

The strategy has been used to prove the correction [142] of Minx [53], as well as for the security proof
of Sphinx [52]. The most eminent, recently proposed practical onion routing and mix networks
[43, 44, 128] build on Sphinx as packet format to subsequently tackle traffic analysis and timing
attacks, while proving the security of their adaptions to Sphinx still based on the properties of
Camenisch and Lysyanskaya.

Formal OR Scheme. We use the notation from Table 5.1 for the description of the formal OR
scheme. To model OR, [31] defines an Onion Routing Scheme as in the following definition:

61

Definition 14 ([31]). An OR Scheme is a tuple of PPT algorithms (G,FormOnion,ProcOnion):

Key generation: (PK,SK)← G(1λ, p, P) with public key PK, secret key SK, security parameter
λ, public parameter p and router name P

Sending: (O1, . . . , On+1) ← FormOnion(m, (P1, . . . , Pn+1), (PK1, . . . , PKn+1)) with Oi being the
onion layer to process by router Pi, m the message, and PKi the public key belonging to
router Pi

Forwarding: (O′, P ′)← ProcOnion(SK,O, P) with O′ the processed onion that is forwarded to P ′
and P the router processing O with secret key SK. O′ and P ′ attains ⊥ in case of error or
if P is the recipient.

Ideal Functionality F . [31] proposes an ideal functionality for OR that expresses what a private
and secure OR scheme is allowed to reveal to an adversary.

To understand the ideal functionality, recall the basic idea of OR: an adversary can only track the
communication from the sender until the first honest relay. After this she can no longer link the
onion to the sender (or the route before the honest relay). Further, any onion layer does hide the
included message and remaining path, as they are encrypted.

The ideal functionality therefore uses temporary random IDs in place of onion packets. All network
information necessary to create onions (sender, receiver, path, message, hopcount, a randomly
chosen session ID) are stored within the ideal functionality, inaccessible to the adversary. Sending
the onion along a path of relays is represented by informing all relays about the temporary IDs of
the corresponding onions they receive. The temporary ID is replaced with a new randomly drawn
ID at every honest node.

The adversary in this model learns the temporary IDs on links and at the corrupted relays, and if
the receiver is corrupted also the corresponding plaintext message. She specifically does not learn
which departing ID at an honest relay corresponds to which received ID. The adversary however
is allowed to decide when an ID is delivered to the next relay (and thus whether it is delivered at
all), as she is assumed to control all links.

Nitpicking, we add a small detail to the ideal functionality as suggested by Camenisch and Lysyan-
skaya: The functionality represents the case of an honest sender well. However, for a corrupted
sender the adversary trivially learns the complete path and message as the sender chooses it. As no
secure protocol can remove information an adversary already knows, we add that the functionality
outputs all information about the onion (sender, receiver, path, etc.) together with the temporary
ID, if its sender is corrupted. The description of [31] with highlighted small changes, as well as a
pseudo code representation of the ideal functionality is in Appendix C.1.1.

As there is confusion about the protection provided by the ideal functionality (see Appendix C.1.3),
we analyze it in Appendix C.1.3 to find that it is restricted to the cryptographic properties of onion
routing and does not protect against timing and traffic-analysis attacks, like dropping or delaying
onions. Hence, for our analysis we exclude attacks that result in dropping or delaying onions.
However, we include modification attacks that do not lead to dropping or delaying onions, like
classical tagging attacks. A protocol realizing the ideal functionality might either drop modified
onions or keep them in the network, but prevent the attacker from learning critical information from
them (i.e. the modified onion’s path and message have no correlation to the original one’s).

Given this adversary model, we are able to prove the privacy goals expected for OR. Especially,
Sender-Message Unlinkability (SML) is achieved even if the receiver is corrupted. From our
hierarchy (Figure 3.3 of Section 3.5), we know that this notion includes some protection for the
sender-receiver relationship ((SR)L) as well. Even if in practice stronger adversary models are
assumed, proving the realization of the ideal functionality is a useful way to reduce the problem of
proving privacy to the attacks excluded by this adversary model.

62

Properties. [31] defines three security properties for OR schemes and proves that those imply
realizing their ideal OR functionality. Later works [43, 44, 52] split one of the properties in two.
The resulting four properties are Onion-Correctness, Onion-Integrity, Onion-Security and Wrap-
Resistance:

Onion-Correctness requires that all messages use the intended path and reach the intended receiver
in absence of an adversary. Onion-Integrity limits the number of honest relays that any onion (even
one created by the adversary) can traverse. Onion-Security states that an adversary observing an
onion departing from an honest sender and being routed to an honest relay, cannot distinguish
whether this onion contains adversarially chosen inputs or a random message for the honest relay.
The adversary is even allowed to observe the processing of other onions at the honest relay via
an oracle. Wrap-Resistance informally means that an adversary cannot create an onion that after
processing at a relay equals an onion she previously observed as an output at another relay, even
if she has full control over the inputs.

5.2. First Pitfall: Incomplete Properties

We first explain a known attack on Sphinx that should not be possible if Sphinx realizes the
ideal functionality. Then we analyze the properties to see why the insecurity was not detected in
the proof: the properties are incomplete and some of them do not increase privacy. We further
generalize the attack on Sphinx and introduce an insecure protocol to make the shortcoming obvious
and to help us in the construction of a new improved property. After that, we present a second
independent insecurity, a corresponding broken protocol and again construct a new property to
protect against it. Finally, we ensure that no more properties are missing by proving that they
indeed imply the ideal functionality.

5.2.1 Attack on Sphinx

In Sphinx as presented in [52] the exit node receives β as part of the header. β contains the
receiver address, an identifier, and a 0-bit string to pad β for the exit node to a fixed length. It is
again padded with a filler string of random bits that compensates for the parts that were used to
encrypt the earlier relay addresses. Further, the three components are XORed with the output of
a pseudo-random number generator (PRNG).

The exit node hence can learn the length of the chosen path1 with the following attack: The
adversarial exit node observes (after XORing) where the first 1 bit after the identifier is. It knows
that the filler string starts there or earlier and can determine by the length of the filler string a
lower bound on the length of the path used.

Being able to know the length of the path is critical. If e.g. the routing topology is restricted or
large parts of the path are only adversarial relays, this information limits the number of users under
which the sender can hide and thus reduces her protection. According to the ideal functionality
such an attack should not be possible if Sphinx, as proven with the properties of Camenisch and
Lysyanskaya, realizes the ideal functionality.

5.2.2 Analyzing the Original Properties

In this section we have a closer look at the properties to see why the attack on Sphinx is not
detected and we make four observations. The original definition of Onion-Correctness technically
was not entirely correct, which we fix briefly. Integrity and Wrap-Resistance do not add privacy

1To the best of our knowledge this flaw is only mentioned and corrected in the Sphinx imple-
mentation so far: https://github.com/UCL-InfoSec/sphinx/blob/c05b7034eaffd8f98454e0619b0b1548a9fa0f42/
SphinxClient.py#L67

63

to the proposed combination of properties, at all. Onion-Security is required, but fails to protect
against some weaknesses.

Onion-Correctness

Informally, Onion-Correctness requires that all messages use the intended path and reach the in-
tended receiver in absence of an adversary:

Definition 15 (Onion-Correctness [31]). Let (G,FormOnion,ProcOnion) be an OR scheme with
maximal path length N . Then for all polynomial numbers of routers Pi, for all settings of the public
parameters p, for all (PK(P), SK(P)) generated by G(1λ, p, P), for all n < N , for all messages
m ∈M, and for all onions O1 formed as

(O1, . . . , On+1)←FormOnion(m, (P1, . . . , Pn+1), (PK(P1), . . . , PK(Pn+1)))

the following is true:

1. correct path: P(O1, P1) = (P1, . . . , Pn+1),

2. correct layering: L(O1, P1) = (O1, . . . , On+1),

3. correct decryption: (m,⊥) = ProcOnion(SK(Pn+1), On+1, Pn+1),

where P(O,P) returns the path included in O and L(O,P) the onion layers.

This however cannot be achieved by Sphinx or almost any other system suggested or implemented
so far. They commonly use duplicate checks, which, practically implemented, may fail in a small
number of cases (for example due to hash collisions) in reality. We hence allow the requirements
1) - 3) of the definition to fail with negligible probability, so that real systems can achieve Onion-
Correctness.

Wrap-Resistance and Onion-Integrity

We analyzed Wrap-Resistance and Onion-Integrity and proved that they do not contribute anything
to the privacy of a protocol that achieves Onion-Security and -Correctness. The full argument
that can be found in [94] is rather extensive and hence omitted from this thesis. In short, we
provide a template to add Wrap-Resistance and Onion-Integrity to any OR protocol that meets
Onion-Security and Correctness, and prove that the template does not reduce what adversaries
can learn.

Onion-Security

Onion-Security states that an adversary on the path between an honest sender and the next honest
node (relay or receiver) cannot distinguish an onion that was created with her inputs (except for
the keys of the honest node) from another one that contains a different message and is destined
for this next honest node.

Game Structure We illustrate the Onion-Security game in Fig. 5.1 and explain the steps infor-
mally first:

Basic Game (Step 1, 3 - 6, 8) Apart from an honest sender, Onion-Security assumes the
existence of only a single honest relay (Pj). First in Step 1, the challenger chooses the name and
public key of the honest node and sends it to the adversary. In the challenge starting in Step 3,

64

Challenger Adversary

8

5

2 Oracle

1

3Check4

6

7 Oracle

Challenge

,
Create or

Figure 5.1: Onion-Security game illustrated: Circled numbers represent the steps, and the boxes
the parties of the game.

the adversary is allowed to pick any combination of message and path as input choice of the honest
sender, to model the worst case. In Step 4-6 the challenger checks that the choice is valid and
if so, creates two onions O1, Ō1, which we detail below, and sends one of them to the adversary
depending on the challenge bit b. Finally in Step 8, the adversary makes a guess b′ on which onion
she received.

Adaptive and Modification Attacks (Step 2 and 7) So far the game only focused on one
onion. However, a real adversary can act adaptively and observe and send modified onions to the
honest node that she wants to bypass before and after the actual attack. Therefore, Onion-Security
includes two oracle steps. To decide on her input and guess, the adversary is allowed to insert
onions (other than the challenge onion) to the honest relay and observe the processed output as
an oracle (Steps 2 and 7).

How the two onions O1, Ō1 differ is illustrated in Fig. 5.2. O1 is the first layer of the onion formed
with the adversary chosen inputs, where the honest relay is at position j. In contrast, Ō1 is the
first layer of the onion formed with the same path as O1 except that the path ends at Pj as the
receiver and a random message. The adversary can calculate the onion layers up to the honest
relay based on the first layer. Onion-Security is achieved if the adversary is unable to distinguish
whether the observed onion contains her chosen inputs or random content destined for the honest
relay.

...

...

b=0

b=1

...

Figure 5.2: Cases of Onion-Security illustrated: Red boxes represented corrupted relays, black
boxes honest. The upper row of arrows represents the path of the onion O with inputs chosen by
the adversary (message m received by Pn+1); the lower an onion Ō containing a randomly chosen
message m′ that takes the path to the honest relay Pj , only. For b = 0 the onion layers in the
orange ellipse are observed by the adversary, i.e. the layers processed at P1..Pj−1 of onion O. For
b = 1 the layers in the blue ellipse are observed, i.e. the corresponding layers of Ō. Notice that
the adversary does not observe any output of Pj in this game.

Definition Formally, the Onion-Security game is defined as follows:
Definition 16 (Onion-Security [31]). Consider an adversary interacting with an OR challenger
as follows.

1. The adversary receives as input a challenge public key PK, chosen by the challenger who
generates (PK,SK)← G(1λ, p, Pj), and the router name Pj.

2. The adversary submits any number of onions Oi of her choice to the challenger (oracle
queries), and obtains the output of ProcOnion(SK,Oi, Pj).

3. The adversary submits n, a message m, a set of router names (P1, . . . , Pn+1), an index j,

65

and n key pairs 1 ≤ i ≤ n+ 1, i 6= j, (PKi, SKi).

4. The challenger checks that the router names are valid, that the public keys correspond to the
secret keys and if so, sets PKj = PK and sets bit b at random.

5. If the adversary input was valid, the challenger picks m′ ←RM randomly and calculates:
(O1, . . . , Oj , . . . , On+1)← FormOnion(m, (P1, . . . , Pn+1), (PK1, . . . , PKn+1))
(Ō1, . . . , Ōj)← FormOnion(m′, (P1, . . . , Pj), (PK1, . . . , PKj))

6. • If b = 0, the challenger returns O1 to the adversary.

• Otherwise, the challenger returns Ō1 to the adversary.

7. The adversary may again query the oracle and submit any number of onions Oi 6= Oj,
Oi 6= Ōj of her choice to the challenger, to obtain the output of ProcOnion(SK,Oi, Pj).

8. The adversary then produces a guess b′.

Onion-Security is achieved if any PPT adversary A, cannot guess b′ = b with a probability non-
negligibly better than 1

2 .

Onion-Security hence aims at guaranteeing that an adversary observing an onion before it is
processed by an honest relay cannot discover information about the message it contains, or the
path it subsequently takes. As the adversary controls all links, she could link message and receiver
to the sender, otherwise. Further, Step 7 provides protection against active modification attacks,
as it allows processing of any modified onion.

The property however does not consider a malicious receiver or exit node, which hence might be
able to discover information about the path or sender. Notice that this is exactly what happens
in the attack on Sphinx; a malicious exit node learns information (the length) of the path.

5.2.3 Security against Malicous Receivers

In this subsection, we show the first shortcoming, missing protection against a malicious receiver,
by giving a simplified broken protocol that allows the receiver to learn the complete path and
yet achieves all suggested properties. Based on this discovery we introduce an improved prop-
erty.

Insecurity: Signaling the Path. We first generalize the attack on Sphinx from Section 5.2.1,
which only leaked the path length. As generalization we give a protocol idea that complies to
the properties, but includes the complete path (including the sender) in the message. Thus, an
adversarial receiver learns the complete path that the onion took.

This weakness differs from the common assumption that one cannot protect senders that reveal
their identity in their self-chosen message: independent of the message the sender chooses, the
protocol always adds the complete sender-chosen path to it. Thus, an adversarial receiver always
learns the sender and all relays independent of the sender’s choice. Clearly, such an OR scheme
should not be considered secure and private and hence should not achieve the OR properties. As
the given properties, however, never return the information that an adversarial receiver learns to
the game adversary, they cannot protect against this and similar weaknesses. (See Appendix C.3.1
for such an insecure protocol.)

Improved Property: Tail-Indistinguishability TI against a corrupted receiver. We
construct the new property Tail-Indistinguishability TI to deal with malicious receivers. Therefore,
the adversary has to get access to the onion layers after the last honest relay has processed them
because a malicious receiver learns those. Our property challenges the adversary behind the last

66

honest relay to distinguish between the onion generated with her original inputs, and a second
onion that carries the identical message and follows the identical path behind the honest relay but
otherwise was constructed with randomly chosen input, i.e. the path before the honest node is
chosen randomly.

Note that this new property indeed prevents the insecurity given in Section 5.2.3 and the attack
on Sphinx: If the receiver is able to reconstruct any information of the path before the honest
node, the adversary can compare this information with her input choice. In case the information
does not match her choice, she knows that it must have been the second onion and thus is able to
distinguish the onions.

...

...

b=0

b=1

...

Figure 5.3: Cases of TI illustrated: Red boxes are adversarial routers; black boxes honest and
curvy arrows symbolize a random path possibly through many other adversarial routers. In case
b = 0 the adversary chosen onion is observed at the end of the path (orange ellipse). For b = 1
onion layers that take the same path between Pj and Pn+1 and include the same message (the blue
ellipse), but differ otherwise, are observed instead. Earlier layers (before Pj) are in both cases not
given to the adversary.

Intuitively, the steps are the same as in Onion-Security described in Section 5.2.2, except that we
change the answer to the challenge. This time we protect the last part of the path and output
those layers. Since the receiver is corrupted, the message is learned by the adversary anyways and
hence we use the same message for the alternative layers (b = 1). We illustrate the new outputs
to the adversary in Fig. 5.3 and formally define the new property in our Definition 17.

Thus, our first new property TI is defined as:
Definition 17 (Tail-Indistinguishability TI). Consider an adversary interacting with an OR chal-
lenger as follows.

1. The adversary receives as input the challenge public key PK, chosen by the challenger by
letting (PK,SK)← G(1λ, p, Pj), and the router name Pj.

2. The adversary may submit any number of onions Oi of her choice to the challenger. The
challenger sends the output of ProcOnion(SK,Oi, Pj) to the adversary.

3. The adversary submits a message m, a path P = (P1, . . . , Pj , . . . , Pn+1) with the honest node
at position j, 1 ≤ j ≤ n+1 of her choice and key pairs for all nodes (PKi, SKi) (1 ≤ i ≤ n+1
for the nodes on the path and n+ 1 < i for the other relays).

4. The challenger checks that the router names are valid, that the public keys correspond to the
secret keys and that the same key pair is chosen if the router names are equal, and if so, sets
PKj = PK and sets bit b at random.

5. The challenger creates the onion with the adversary’s input choice:

(O1, . . . , On+1)← FormOnion(m,P, (PK)P)

and a random onion with a randomly chosen path P̄ = (P̄1, . . . , P̄k = Pj , . . . , P̄n̄+1 = Pn+1),
that includes the subpath from the honest relay to the corrupted receiver starting at position
k ending at n̄+ 1:

(Ō1, . . . , Ōn̄+1)← FormOnion(m, P̄, (PK)P̄)

6. • If b = 0, the challenger gives (Oj+1, Pj+1) to the adversary

67

• Otherwise, the challenger gives (Ōk+1, P̄k+1) to the adversary

7. The adversary may submit any number of onions Oi of her choice to the challenger. The
challenger sends the output of ProcOnion(SK,Oi, Pj) to the adversary.

8. The adversary produces guess b′ .

TI is achieved if any PPT adversary A, cannot guess b′ = b with a probability non-negligibly better
than 1

2 .

5.2.4 Linking Protection

The flaw of the previous section is not the only one that the proposed properties missed. Here, we
introduce a second insecure protocol idea, which allows to bypass honest nodes by linking onions,
and construct a new property against this weakness.

Insecurity: Including Unique Identifiers. We demonstrate a second weakness by introducing
a fixed identifier for each onion that is included in any layer of this onion. Thereby the onion
layers of the same onion, as well as the corresponding communication partners (and if the receiver
is corrupt the message), can be easily linked. This and similar weaknesses are not detected by the
given properties as they only output information before or after the honest relay, but never both.
(See Appendix C.3.2 for such an insecure protocol.)

Improved Property: Layer-Unlinkability LU against bypassing honest nodes. To ex-
plicitly model that output onions shall not be linkable to the corresponding inputs of the relays,
the adversary has to get onion layers both before and after they are processed at the honest relay.
Our property challenges the adversary observing an onion going from the sender to an honest relay,
to distinguish between the onion generated with her original inputs O, and a second onion Ō. The
path of the alternative onion Ō includes the original path from the sender to the honest node, but
all other parameters are chosen randomly. Thus, there might be a path before the sender node
and both the path after the honest node and the message can differ. Additionally, the adversary
always observes the onion generated by processing O at the honest relay. We illustrate the new
challenge outputs in Fig. 5.4.

Note that this new property indeed prevents the insecurity given in Section 5.2.4: If the adversary
can decide that the provided onions belong together, she knows that the original onion has been
sent and thus she is able to distinguish the onions.

We again adapt the original Onion-Security explained in Section 5.2.2 with the difference that the
adversary now gets the layers of O after the honest relay and either O’s layers between the honest
sender and relay or Ō’s layers in Step 6. This is our new property LU , which is formally defined
in Def. 18.

b=0

b=1

b=0

b=1

......

...

Figure 5.4: Cases of LU illustrated: Red boxes are corrupted routers, black honest routers and
curved arrows represent randomly chosen paths. In case b = 0 the adversary chosen onion, sent
from P0, is observed on the complete path P starting from when it arrives at the first relay P1. For
b = 1 the onion layers in the first orange ellipse are replaced with those of a randomly drawn onion,
that take the same path between P0 and Pj (the blue ellipse), but differ otherwise and might have
traveled from another honest sender to P0 earlier.

68

Definition 18 (Layer-Unlinkability LU). 1. – 4) as in Def. 17

5. The challenger creates the onion with the adversary’s input choice:

(O1, . . . , On+1)← FormOnion(m,P, (PK)P)

and a random onion with a randomly chosen path P̄ = (P̄1, . . . , P̄k = P1, . . . , P̄k+j =
Pj , P̄k+j+1, . . . , P̄n̄+1), that includes the subpath from the honest sender to honest node of
P starting at position k ending at k+ j (with 1 ≤ j+k ≤ n̄+1 ≤ N), and a random message
m′ ∈M:

(Ō1, . . . , Ōn̄+1)← FormOnion(m′, P̄, (PK)P̄)

6. • If b = 0, the challenger gives (O1,ProcOnion(Oj)) to the adversary.

• Otherwise, the challenger gives (Ōk,ProcOnion(Oj)) to the adversary.

7. The adversary may submit any number of onions Oi, Oi 6= Oj, Oi 6= Ōk+j of her choice to
the challenger. The challenger sends the output of ProcOnion(SK,Oi, Pj) to the adversary.

8. The adversary produces guess b′ .

LU is achieved if any PPT adversary A, cannot guess b′ = b with a probability non-negligibly better
than 1

2 .

5.2.5 Improved Properties imply Ideal Functionality

In this section we first informally argue and then formally prove that our two new properties,
together with Onion-Correctness, are sufficient for the ideal functionality. For easier discussion,
we summarize the different outputs of the security properties in Fig. 5.5.

follows adversarial input
follows random feasible
 input

Onion-Security
by Camenisch

and Lysyanskaya

Our improved security properties

Figure 5.5: Difference in security properties illustrated: While in original Onion-Security no pro-
cessed onion after Pj is output, LU outputs the processing and TI challenges to distinguish it from
randomness.

Informally. In case of sender corruption, the ideal functionality outputs all information given
as input to FormOnion, and hence we do not need to provide any protection in this case.

Considering honest senders, the ideal functionality outputs only the path sections introduced by
cutting at honest nodes together with random onion IDs or if the receiver is compromised, addi-
tionally the message. These IDs are independently drawn for each such section and thus cannot
be linked.

The idea to show the same privacy for communications with honest senders is simple: for every path
section instead of the original onion layers we give the adversary layers of a random replacement
onion without her noticing it. The replacement onion only corresponds with the original onion
in characteristics that she also learns about the onion in the ideal functionality. Namely those
characteristics are the path sections and if the receiver is corrupted, the message. The replacements

69

can obviously not be linked or leak any other information as all their (other) parameters have been
chosen randomly.

Our properties are sufficient to show that the adversary cannot notice the replacement: LU allows
to replace any onion layers on a path section between two honest nodes with onion layers that
are (except for the fact that they use the same path section) chosen completely at random. The
adversary is not able to notice the replacement as she cannot distinguish the onion layers in the
LU game. This allows us to replace all layers in communications between honest senders and
receivers, and all except the last section in communications between honest senders and corrupted
receivers.

For replacement on the last part of a path with a corrupted receiver we need our other property
TI. TI allows to replace any onion layers on a path section between an honest node and a
corrupted receiver with onion layers that are (except for the fact that they use the same path
section and carry the same message) chosen completely random. The adversary is not able to
notice the replacement as she cannot distinguish the onion layers in the TI game. This completes
our informal argument.

Formally. Similar to Camenisch and Lysyanskaya we assume a secure protocol to distribute
public keys. The key distribution itself is however outside the scope of this work.

We now show that our new security properties are indeed sufficient to realize the ideal functionality.
Therefore, we define a secure OR scheme to fulfill all our properties:
Definition 19. A secure OR scheme is a triple of polynomial-time algorithms (G, FormOnion,
ProcOnion) as described in Section 5.1.4 that achieves Onion-Correctness (Definition 15), Tail-
Indistinguishability (Definition 17), as well as Layer-Unlinkability (Definition 18).

Following Camenisch and Lysyanskaya, we build a protocol from any secure OR scheme by using
another ideal functionality for the distribution of the public keys. Let therefore FRKR be the ideal
functionality that allows to register the public keys.
Definition 20. OR protocol Π is a secure OR protocol (in the FRKR-hybrid model), iff it is based
on a secure OR scheme (G,FormOnion,ProcOnion) and works as follows:

Setup: Each node Pi generates a key pair (SKi, PKi)← G(1λ) and publishes PKi by using FRKR.

Sending a Message: If PS wants to send m ∈ M to Pr over path P1, . . . , Pn with n < N , he
calculates (O1, . . . , On+1)← FormOnion(m, (P1, . . . , Pn, Pr), (PK1, . . . , PKn, PKr)) and sends O1
to P1.

Processing an Onion: Pi received Oi and runs (Oj , Pj) ← ProcOnion(SKi, Oi, Pi). If Pj =⊥, Pi
outputs “Received m = Oj” in case Oj 6=⊥ and reports a fail if Oj =⊥. Otherwise Pj is a valid
relay name and Pi generates a random temp and stores (temp, (Oj , Pj)) in its outgoing buffer and
notifies the environment about temp.

Sending an Onion: When the environment instructs Pi to forward temp, Pi looks up temp in its
buffer. If Pi does not find such an entry, it aborts. Otherwise, it found (temp, (Oj , Pj)) and sends
Oj to Pj.

To show that any secure OR protocol Π realizes the ideal functionality, we prove that any attack on
the secure OR protocol can be simulated in the ideal functionality. As the simulator only gets the
outputs of the ideal functionality and thus no real onions, it simulates them with the closest match
it can create: replacement onions that take the same path (and, if sent to corrupted receivers,
include the same message). Due to our new security properties, we know that such a replacement
cannot be distinguished. The full proof is included in Appendix C.2.2.

Theorem 6. A secure onion routing protocol following Definition 46 UC-realizes F in the (FRKR)-
hybrid model.

70

5.3. Second Pitfall: Insufficient Oracle Treatment

During our investigation of state-of-the-art network proposals, we discovered another attack on
the onion routing network HORNET [43], that cannot be explained with the shortcomings of the
properties of Camenisch and Lysyanskaya. The reason for this attack is not in the properties used
for the proof, but in how the properties are proven. It turns out that on many occasions the
properties have not been proven correctly; more precisely the oracles have been wrongly adapted
or ignored.

We start this section describing our malleability attack on HORNET (Section 5.3.1), then we
explain how the oracles have been modified and how the correct use of oracles detects the attack
(Section 5.3.2).

5.3.1 Malleability Attack

HORNET [43] was proposed as a network level anonymity system for the anonymized transmission
of arbitrary higher layer packets. The latter can be expected to match specific formats or contain
interpretable content, e.g. natural language. Hence the receiver can very likely distinguish real
messages from random bit strings of the same length.

The authors claim that HORNET protects the anonymity of a sender against a slightly restricted
adversary compared to our attacker: The attacker does actively control a fraction of the relays
(including the receiver), but corruption of links is not explicitly mentioned. Further, traffic analysis
attacks are excluded as in the case of Sphinx. They assume an integrated anonymization network
including the receiver.

HORNET distinguishes between a setup phase and a transmission phase. It adapts Sphinx for the
setup phase to create an anonymous header that allows for the routing of data in the subsequent
transmission phase. Multiple cryptographic primitives are used in the construction and processing
of packets in both phases. More precisely, HORNET uses a pseudo-random permutation (PRP) in
CBC mode2 to form layered encryption of its payload, but does not implement integrity checks at
the processing relays for it.

An attacker that controls the first relay3 and the receiver can link sender and receiver (thus break
(SR)L) and this adversary can also link large parts of the message to its sender (break (SM)L)
with the following malleability attack:

1. The adversary flips bits in the last k blocks of the data payload of the HORNET packet sent
from the sender.

2. The packet is sent through the chain of relays as intended because the header was not modified
and the payload’s integrity is not protected. The payload is decrypted using the block cipher
in CBC mode.

3. The receiver checks the last k blocks. They either contain random bits (i.e. the sender was
communicating with this receiver and the preceding decrypted blocks contain parts of the
original message) or it conforms to a real message (i.e. the sender was not communicating
with this receiver).

Varying k the success of distinguishing real messages from some ending with random bit strings
can be adjusted at the cost of learning less about the real message.

2Note, that the paper is not entirely clear about this point, as it states that HORNET uses a “stream-cipher”,
which would make our attack stronger, “in CBC mode”, suggesting that instead they actually use a PRP.

3Technically, controlling the link from the sender to the first relay is enough. However, whether the adversary
controls links is not explicitly stated in [43].

71

Varying the Attack for Related Systems

The attack can be used on related works and the setup phase of HORNET as well. See Table 5.2
for a summary. The privacy of all these protocols and protocol phases is proven following the same
proof technique from Camenisch and Lysyanskaya [31].

Sphinx. Sphinx specifies that headers and payload are encrypted independently of each other.
The payload is encrypted using a bidirectional error propagating block cipher and protected with
an integrity check for the receiver, but not for processing relays. Further, Sphinx model considers
the receiver to not be part of the anonymization protocol. The receiver’s address is included in
the payload.

Because of the block cipher choice, our attack destroys the payload completely, and the sender
cannot be linked to the original message content and, if used in the intended model, the sender
can only be linked to the exit node.

However, if Sphinx is used with the receiver as the last relay (no address needs to be coded in the
payload), it remains possible for a corrupt receiver to determine, who attempted to communicate
with her by using our attack. The receiver does not even need to be able to distinguish a real
message from random bits, but just has to notice that Sphinx’s integrity check at the receiver
failed.

Loopix. Loopix [128] builds on Sphinx and contributes a new dummy traffic and sending strategy.
The Sphinx header, as used in Loopix, includes the path until the receiver4. In the payload
only receiver.host, receiver.port, receiver.name get addressed again. This means the receiver of
the modified packet will receive a message with random-like content. Random payload is used
for dummy messages in Loopix. Note, however, that the receiver gets only two types of dummy
messages: i) dummy from the provider that is tagged with ‘Dummy’5 and ii) loop dummy messages
that the receiver initiated. Hence, the receiver can recognize whether the received random message
is unusual and the malleability attack works. The attack further lies within Loopix adversary
model and allows to link the sender and receiver, but destroys the message.

HORNET’s Setup Phase. HORNET’s setup phase uses Sphinx in the setting that the last
relay is the receiver, and hence the linking of sender and receiver is possible.

TARANET. TARANET [44] extends HORNET to protect against partially stronger adver-
saries. TARANET bases its setup on Sphinx as well. Additionally, it proposes packet-splitting as
a traffic-shaping technique to withstand traffic-analysis. Therefore, however, shared trust between
sender and receiver is presumed. TARANET’s adversary model hence excludes our attack. For
the sake of completeness, we argue the effect of our attack when the trust assumption is violated:
TARANET uses HORNET’s Sphinx-based setup phase and thus is prone to the attack in this
phase. Its data transmission phase however protects the integrity of the complete onion at each
hop. Thus, in this phase the attack fails.

Improved Minx. Predecessors to Sphinx were Minx [53] and its fixed version [142]. Like Sphinx,
neither of the two protects the integrity of the payload at the relays. Minx nodes hence process all
onions they receive. Thus, our attack to link sender and receiver works under the assumption that

4 see https://github.com/UCL-InfoSec/loopix/blob/440db95fdd2bcb28d76aca1b86f072715ef7005a/loopix/
loopix_client.py#L149,
https://github.com/UCL-InfoSec/loopix/blob/440db95fdd2bcb28d76aca1b86f072715ef7005a/loopix/core.py#
L47,
https://github.com/UCL-InfoSec/sphinx/blob/master/sphinxmix/SphinxClient.py)

5https://github.com/UCL-InfoSec/loopix/blob/440db95fdd2bcb28d76aca1b86f072715ef7005a/loopix/
loopix_provider.py#L81

72

https://github.com/UCL-InfoSec/loopix/blob/440db95fdd2bcb28d76aca1b86f072715ef7005a/loopix/loopix_client.py#L149
https://github.com/UCL-InfoSec/loopix/blob/440db95fdd2bcb28d76aca1b86f072715ef7005a/loopix/loopix_client.py#L149
https://github.com/UCL-InfoSec/loopix/blob/440db95fdd2bcb28d76aca1b86f072715ef7005a/loopix/core.py#L47
https://github.com/UCL-InfoSec/loopix/blob/440db95fdd2bcb28d76aca1b86f072715ef7005a/loopix/core.py#L47
https://github.com/UCL-InfoSec/sphinx/blob/master/sphinxmix/SphinxClient.py)
https://github.com/UCL-InfoSec/loopix/blob/440db95fdd2bcb28d76aca1b86f072715ef7005a/loopix/loopix_provider.py#L81
https://github.com/UCL-InfoSec/loopix/blob/440db95fdd2bcb28d76aca1b86f072715ef7005a/loopix/loopix_provider.py#L81

Table 5.2: Observable linkings on different systems; (X) if attack works only under violation of
the adversary model

System Sender-Message Sender-Receiver Sender-Exit node
Improved Minx X X
Sphinx (receiver 6= exit node) X
Sphinx (receiver = exit node)6 X X
Loopix X X
HORNET (Setup) X X
TARANET (Setup) (X) (X)
HORNET (Data) X X X
TARANET (Data)

the receiver can distinguish valid messages from random bits. Similar to Sphinx, both Minx and
the improved version employ bidirectional error propagating block ciphers, so recovering (parts of)
the message after modification is impossible. In contrast to Sphinx, the improved Minx’s network
model already allows for our attack.

Ramifications

The described attack lies well within the adversary model of HORNET: it allows a fraction of
nodes to be actively controlled by the adversary and aims at sender anonymity, even if the receiver
is compromised, and relationship anonymity, even if one of the end hosts is compromised. It also
lies within the adversary model of the improved Minx as it is an active tagging attack on the first
link that allows to discover the destination. Further, as discussed earlier, it lies in the adversary
model of Loopix as well. For Sphinx and Taranet the deviation from their network resp. adversary
model seems to explain the existence of this attack.

Loopix relies on the security of Sphinx and does not prove any additional onion routing properties.
The existence of this attack in HORNET and the improved Minx however contradicts their security
proofs. The reason for this are not the flaws in the properties of [31], but a common mistake in
proving the properties.

5.3.2 Mistake in the Proofs

The shared pitfall are the oracles. In HORNET’s analysis this attack was excluded as the oracles
were not taken into account. The proof of TARANET ignores the oracles as well, yet its trans-
mission phase incidentally protects against our attack. Sphinx, the improved Minx and even an
extension in [31] restrict the oracle in our Step 7 to only allow non-duplicate onions, i.e. those
with a changed header. This weakens the properties too much, as the limited oracle incidentally
loses protection from modification attacks, where the onion is modified before it ever reached the
honest node.

Note, that our property LU (and even the insecure original Onion-Security) indeed cannot be
fulfilled if the before mentioned attack (Section 5.3.1) works: The adversary alters only the payload
of the challenge onion and queries the oracle with the modified onion. As processing at the honest
node is not aborted for modified onions, the adversary learns the next relay after the honest node.
She can thus decide whether the next relay corresponds to her choice (b = 0) or not (b = 1).

We want to stress that this is not the only attack that prevents HORNET from achieving LU .
Another exploits the usage of sessions (more in Section 5.5.3).

6We stress that this model was never intended by Sphinx, but other works used Sphinx that way.

73

5.4. Proving the Adapted Sphinx secure

Sphinx specifies to use a header and a payload. The original Sphinx [52] suggests per-hop integrity
protection only for the header as an integrity check for the payload conflicts with their support
for replies. Thus, as mentioned in Section 5.3.1 Sphinx allows to link sender and exit node. As
this linking is not possible in the ideal functionality, Sphinx, even with the flaw from Section 5.2.1
fixed, cannot realize the ideal functionality.

Beato et al. however proposed an adaptation to Sphinx, to simplify the protocol and improve
security and performance at the cost of losing support for replies [14]. Thereby, they introduce
integrity checks of the payload at each hop. As this prevents the linking attack, we decided to
analyze this version of Sphinx, adapted with the small fix to the attack from Section 5.2.1 known
from the Sphinx implementation, for compliance with our properties for secure OR protocols.
Note, that in compliance to Beato et al. this variation covers only the forward phase and no
replies.

The proof for Onion-Correctness follows the ideas in [52]. To analyze LU and TI, we successively
define games with marginally weaker adversary models. Arguing how each step follows from rea-
sonable assumptions, we terminally reduce it to the security of an authenticated encryption scheme
and the DDH assumption. We provide the detailed proof in Appendix C.3.4, and it leads to the
following theorem:

Theorem 7. Beato’s Sphinx variation, adapted with the fix to the attack from Section 5.2.1, is a
secure OR scheme.

As this implies that it realizes the ideal functionality, we can conclude that it achieves confidentiality
(MO) for honest senders with honest receivers, and our Sender-Message Unlinkability (SML) that
includes protection of the sender-receiver relationship ((SR)L) for honest senders with corrupted
receivers. This holds for a restricted adversary model, which does not allow timing attacks or
attacks that lead to the dropping of onions. This limitation conforms to the adversary model of
the original Sphinx, which is used in the adapted version as well.

5.5. Discussion

In this section, we relate our properties to known attacks and give further comments about the
limitations of using them.

5.5.1 Onion-Security Properties vs. Existing OR Attacks

Our new properties prevent well-known attacks on OR if they comply to the adversary model
of the ideal functionality. Passive linking attacks e.g. based on length of the onion layer, or
the length of the included message are prevented (attacks on LU would otherwise be possible).
Additionally, our properties imply non-deterministic encryption in FormOnion, as the adversary
could use FormOnion on its chosen parameters and compare the results, otherwise.

In tagging attacks the attacker modifies an onion and recognizes it later based on the modification.
To be useful, the tagging has to preserve some information of the original communication, e.g. a
part of the path or the message. This translates to an attack on LU that uses an oracle to learn
the output of a tagged challenge onion after processing at an honest relay, and deciding if it relates
to the chosen input (b = 0), or not.

Duplicate attacks assume an adversary that is able to create an onion that equals an intercepted
onion in parts of the input, e.g. the message, that can later be observed, but is not bit-identical.
Such onions appear different at the relays and hence may not be detected by duplicate protection.
They still jeopardize anonymity, as the adversary may notice their repeated delivery to the receiver.

74

Our properties protect from duplicate attacks, as an adversary that was able to create a duplicate
onion breaks LU by learning the message or path contained in the challenge onion by using the
oracle.

Replay attacks (duplicate attacks with bit-identical onion) are possible in the ideal functionality
and consequently not necessarily prevented.

The n-1 Attack, where all but one onion is known to the adversary, and hence the remaining one
can be traced, is possible in the ideal functionality and thus not mitigated by the properties.

5.5.2 Adapting Our Properties

There are cases, in which our properties need adaptation:

Correctness: Due to practical reasons, space-efficient data structures like Bloom filters are fre-
quently used for duplicate detection. Bloom filters exhibit false-positive detections (that is non-
duplicate packets are detected as duplicates with a certain probability), but no false-negatives
(duplicates are always detected). However, the false-positive probability of a Bloom filter depends
on its configuration and is usually not negligible. This can be covered by extending our Onion-
Correctness to δ-Onion-Correctness, thus accepting a correctness failure at a probability of at
most δ (see Appendix C.3.5 for details).

Security properties and Cascades: So far we assumed that the replacement onion is any onion that
shares the observed part of the path. This naturally applies for free routing protocols, in which
the sender randomly picks any path, and which is considered by the ideal functionality. When
analyzing OR with fixed cascades, some adaptations are necessary. Adaptation and changes in the
analysis for the adapted ideal functionality, however, are straightforward: senders can only choose
a cascade instead of a path. This results in a different path choice in the adversary class and thus
in a slightly different anonymity set. In the game, the path of the replacement onion finally has to
match the cascade of the challenge onion (this can be assured in Step 5 of both LU and TI).

5.5.3 Limitations

As limitations of this chapter, we recall the adversary model, the anonymity set, and discuss the
limits inherited from the ideal functionality.

Adversary Model and Anonymity Set. We fully assumed the adversary model of Camenisch
and Lysyanskaya. This adversary model does not allow for traffic analysis as timing information is
removed and no delaying or dropping is allowed by the adversary. Although this adversary model
does not seem very realistic, the analysis is useful to split the proof. Upon showing the protocol’s
privacy for the restricted adversary model of the ideal functionality by proving the properties, only
the privacy for the remaining attacks has to be shown.

We restrict the paths in the adversary class to include at least one honest relay to achieve the
notions. This means that the anonymity set consists only of the users whose onions share an
honest relay and are processed together.

Reply Channels and Sessions. All systems that proved privacy with the properties consider
a reply channel to respond to the anonymous sender. None, however, analyzes the backward phase
separately. They only show indistinguishability to the forward onions (if at all), implying that the
same security properties are used for the reply channel. However, our analysis showed that the
privacy goals except confidentiality (MO) are only guaranteed for an honest sender. In a reply
phase this sender is the original receiver, which cannot ultimately be considered honest. Thus,

75

proving the properties does not guarantee the anonymity of the initial sender for a corrupted
receiver in the reply phase.

HORNET and TARANET additionally introduce sessions. Their data transmission phase reuses
the same path and header to efficiently send multiple onions. The ideal functionality does not
cover sessions. As for a corrupted relay it is always possible to link onions of the same session, the
properties, as well as the ideal functionality need to be adapted for this case in future work.

76

6. Provably Secure Onion Routing with Replies

In this chapter, we tackle the challenge of repliable onions for bidirectional communication, as
compared to the unidirectional case in the last chapter. We provide the adaption to the security
definitions, as well as introduce two secure packet formats that achieve our security definitions.
As in Chapter 5, we limit the scope to secure packet formats and thus do not discuss timing and
traffic analysis attacks. Results of this chapter have been published at Asiacrypt 2021 [97] (and in
the corresponding extended version [98]).

6.1. Overview

Most natural use cases for Internet communication are bidirectional, i.e., require a receiver to
respond to the sender. However, in an OR-transmitted message the receiver has no obvious way
to send a reply back to an anonymous sender. Note that adding a sender address in plain to the
payload message would of course defeat the purpose of OR (as discussed in Chapter 5). Even
encrypting the sender address, say, with the public key of the receiver (so that the receiver can use
another OR communication to reply), is not appropriate as we may not always trust the receiver
to protect the sender’s privacy (e.g., like a newspaper agency being forced to reveal whistleblow-
ers).

Perhaps surprisingly, this problem of “OR with replies” has not been formally addressed in the
OR literature with sufficient generality (with one recent insufficient exception that we will refer to
below). Hence, our goal in this work is to provide definitions and instantiations for OR protocols
“with an anonymous back envelope”. That is, we attempt to formalize and construct OR protocols
which allow the receiver to reply to the sender without revealing the identity of the sender to
anyone.

Recall that in Chapter 5 we recognized and corrected flaws in the definitions and application
of earlier work [31] that allowed for sincere practical consequences in the form of a malleability
attack (see Section 5.3.1). While the corrected properties are sufficient for their setting, Chapter 5
only partially fixes the situation as the models do not include support for reply messages (to the
anonymous sender). Sphinx and the improved version of Minx make adaptions to the properties
of Camenisch and Lysyanskaya to account for replies to some extent, but thereby they build on
the flawed properties and do not treat replies correctly, thus limiting the achieved privacy. Even
worse, nearly all of the eminent recent network proposals claim to support anonymity for replies,
while relying on the flawed properties. In a recent work [5], Ando and Lysyanskaya define an
ideal functionality for repliable onion routing. They also propose corresponding properties and a
protocol that satisfies their ideal functionality. In this, they however accept vulnerability against
the malleability attack in their definition of security, as well as in their protocol. Therefore, the
question of a secure, repliable OR scheme is still unanswered.

A technical challenge with practical relevance. The goal we are aiming at is not only useful,
but also technically difficult to achieve. First of all, practically prominent protocols and packet
formats [43, 52, 142] require that any reply is indistinguishable from any forward request, except at
the sender and receiver. In particular, all parts of the onions in both directions should look alike,
and must be treated according to the same processing rules. This is necessary to provide senders

77

that expect replies with a sufficiently large anonymity set even if there is only a small amount of
reply packets, because they are hidden under all forward traffic.

To prevent the malleability attack, tampering by a potentially corrupt relay must become de-
tectable. Theoretically, conventional payload authentication for all forward layers, e.g., with MACs
precalculated by the sender, is sufficient. However, both Ando and Lysyanskaya [5] and practical
proposals [43] require indistinguishability of forward and reply onions. Extending authentication
also to the reply payload is challenging: The original sender cannot precalculate those authentica-
tion tags as the reply payload is unknown and we cannot necessarily assume that the receiver is
honest. Letting the reply sender (= original receiver) precalculate the authentication tags enables
an attack similar to the malleability attack: the malicious reply sender (= receiver) together with
the last relay can recognize the reply onion (without modifying its payload on the way) simply
based on the known authentication tags; thus letting the attacker learn the same metadata as in
the malleability attack. Hence, payload protection in the reply setting is the real challenge towards
a practical solution.

Overview of the next Sections. We present a framework for repliable OR, along with two
different instantiations (with different properties). Our framework protects against malleability
attacks on the payload, while even guaranteeing that replies are indistinguishable from original
requests. In our approach, hence, both requests and replies are authenticated implicitly (i.e.,
without MACs) at each step along the way.

From a definitional point of view, we express these requirements by an ideal functionality (in the
UC framework) which does not reveal the onion’s path, message or direction to the adversary
(unless all involved routers are corrupt; further a corrupt receiver of course learns the message and
direction). This translates to strong game-based properties, which are proven to imply the security
in the sense of that ideal functionality.

We also present two protocols that realize this ideal functionality. Both of our OR protocols are in
fact similar to existing protocols, and are partially inspired by the popular Sphinx approach [52]
and the Shallot scheme of Ando and Lysyanskaya [5]. The main conceptual difference to previous
work is that the authentication of the (encrypted) payload happens implicitly in our case.

Our first protocol uses updatable encryption (UE), a variant of symmetric encryption that pro-
vides both rerandomizable ciphertexts (and in fact RCCA security [33] and plaintext integrity) and
rerandomizable keys, as a central primitive. Intuitively, using UE for encrypting the payload mes-
sage (in both communication directions) enables a form of “implicit authentication” of ciphertexts,
and hence thwarts malleability attacks without explicit MACs on the payload.

Our second protocol is based on succinct non-interactive arguments (SNARGs [113, 24]), a variant
of zero-knowledge arguments with compact proofs. Intuitively, SNARGs enable every relay and
the receiver to prove that they have processed (or replied to) their input onion according to the
protocol. This way, no explicit authentication of the payload data is necessary, since the SNARGs
guarantee that no “content-changing” modification of the payload took place.

Neither of our protocols indeed are competitive in efficiency with existing OR protocols (see Ap-
pendix C.4.4 for details on the performance of the protocols). Further, our protocols require a
trusted setup. This is due to the introduction of new concepts and techniques for qualitatively
stronger security properties. Our work however represents an important conceptual first step
towards an efficient and secure solution.

6.2. Notation

We use and extend the notation of Table 5.1 from Section 5.1.4. Additionally, we use ReplyOnion
as the function to reply to a received onion as receiver. Further, we use the superscript x← to
denote the corresponding entity on the backwards path. For example, while P1 is the first router

78

on the forwards path, P1
← is the first router on the backwards path. Typically the forward sender

P0 is also the backward receiver P←n←+1 and the forward receiver Pn+1 is the backwards sender
P←0 .

6.3. Model and Ideal Functionality

We first define our assumptions and model for repliable OR and then describe our desired security
as the ideal functionality. Our model extends the OR scheme definition of [31] as used in Chapter 5
by adding an algorithm to create replies. Our ideal functionality extends the one of [31] as used
in Chapter 5 and has similarities to [5], but is strictly stronger as it requires protection against
malleability attacks on the payload.

6.3.1 Assumptions

We make the following assumptions that result from commonly used techniques to ensure unlink-
ability of onion layers on criteria other than the concrete representation of the onion. We re-state
Assumption 1 and 2 of Section 5.1.2 as we need them again. Further, we introduce adapted
duplicate protection assumptions to support the reply case (as compared to replay protection
before).
Assumption 1. The sender knows the (authentic) public keys PK i of all relays Pi it uses (e.g.,
by means of a PKI).
Assumption 2. The protocol’s maximum path length is N .

To ensure that packets cannot be linked based on the included routing path, the sender includes
the routing information encrypted for each forwarder, such that any forwarder only learns the next
hop of the routing path. We assume that the routing information is included in a header, while
the message is included in the payload of the onion.
Assumption 5. Each onion O consists of a header η and a payload δ.

To ensure that packets cannot be linked based on duplicate attacks, i.e. the onion of the victim is
duplicated at the first corrupted relay and observed twice at the corresponding receiver, duplicates
have to be detected and dropped. We support duplicate detection with deterministically evolving
headers, which allows to also protect from duplicated replies. Thus, even though the (forward)
receiver is allowed to decide on her answer arbitrarily, we can still detect if she tries to send multiple
different answers to the same request. As some related work wrongly adapted proof strategies for
OR schemes where the duplicate detection is solely based on the header of the onion, we deliberately
build this model for OR-schemes allowing for such protocols.
Assumption 6. Duplicates, i.e. onions Oi, O′i with the same header ηi = η′i, lead to a fail for every
but the first such onion that is given to ProcOnion(SK i, Oi, Pi) except with negligible probability.

To ensure the best chances that an honest relay is on the path, the honest sender will pick a path
without any repetition in the relays (acyclic). Note that our adversary model trusts the sender
and hence this assumption is merely a restriction of how the protocol works.
Assumption 7. Each honestly chosen path P is acyclic.

While true for, to our knowledge, all protocols, we use the following processing order as an as-
sumption in our proofs:
Assumption 8. Each onion is processed by the receiver, before it is replied to.

6.3.2 Modeling Replies

We extend the definition of an onion routing scheme [31] as used in Chapter 5 with an algorithm
to send replies, similar to [5].

79

Definition 21 (Repliable OR Scheme). A Repliable OR Scheme is a tuple of PPT algorithms
(G,FormOnion,ProcOnion,ReplyOnion) defined as:

Key generation: G(1λ, p, Pi) outputs a key pair (PK i,SK i) as in Definition 14.

Forming: FormOnion(i,R,m,P→,P←, (PK)P→ , (PK)P←) returns an i-th1 onion layer Oi (i = 1
for sending) on input of i ≤ n + n← + 2 (for i > n+ 1, m is the reply message and Oi the
backward onion layer), randomness R, message m, a forward path P→ = (P1, . . . , Pn+1),
a backward path P← = (P←1 , . . . , P←n←+1), public keys (PK)P→ = (PK1, . . . ,PKn+1) of the
relays on the forward path, and public keys (PK)P← = (PK ′1, . . . , PK ′n←+1) of the relays
on the backward path. The backward path can be empty if the onion is not intended to be
repliable.

Forwarding: ProcOnion(SK,O, P) outputs the next layer and router (O′, P ′) as in Definition 14.

Replying to an onion. ReplyOnion(m←, O, P, SK) returns a reply onion O← along with the next
router P← on input of a received (forward) onion O, a reply message m←, the receiver
identity P and its secret key SK. O← and P← attains ⊥ in case of an error.

Correctness. We want the onions to take the paths and deliver the messages that were chosen
as the input to FormOnion resp. ReplyOnion.

Definition 22 (Correctness). Let (G,FormOnion,ProcOnion,ReplyOnion) be a repliable OR scheme
with maximal path length N . Then for all n, n← < N , λ ∈ N, all choices of the public pa-
rameter p, all choices of the randomness R, all choices of forward and backward paths P→ =
(P1, . . . , Pn+1) and P← = (P←1 , . . . , P←n←+1), all (PK (←)

i ,SK (←)
i) generated by G(1λ, p, P (←)

i), all
messages m,m←, all possible choices of internal randomness used by ProcOnion and ReplyOnion,
the following needs to hold (except with negligible probability):

Correctness of forward path: Qi = Pi, for 1 ≤ i ≤ n and Q1 := P1,
O1 ← FormOnion(1,R,m, (P→), (P←), (PK1, . . . ,PKn+1), (PK←1 , . . . ,PK←n←+1)) and
(Oi+1, Qi+1)← ProcOnion(SK i, Oi, Qi).

Correctness of request reception: (m,⊥) = ProcOnion(SKn+1, On+1, Pn+1).

Correctness of backward path: Q←i = P←i , for 1 ≤ i ≤ n and
(O←1 , Q←1)← ReplyOnion(m←, On+1, Pn+1,SKn+1),
(O←i+1, Q

←
i+1)← ProcOnion(SK←i , O←i , Q←i).

Correctness of reply reception: (m←,⊥) = ProcOnion(SK←n←+1, O
←
n←+1, P

←
n←+1).

Recognizing onions. To define our security properties, we need a way to recognize if an onion
O provided by the adversary resulted from processing a given onion O∗. To this end, we define the
algorithm RecognizeOnion(i, O,R,m,P→, P←, (PK)P→ , (PK)P←), which uses the given inputs
(that have been used to create the onion O∗ in the first place) to form the i-th layer of the onion
O∗i using FormOnion and then compares the header of O∗i to the header of the onion O in question.
If the headers are identical, it returns True, otherwise False.

Note that the “correctness” of FormOnion and RecognizeOnion for i > 1 is defined implicitly as
part of our security properties in Section 6.4.

1During normal operation only i = 1 is used. The possibility to form onion layers for i > 1 (without using
ProcOnion) is needed for our security definitions and proofs.

80

6.3.3 Ideal Functionality

Similar to Chapter 5, as long as the sender is honest we want that the adversary can only learn
the parts of the onion’s path (and associated reply’s path), where she corrupted all relays. This
includes especially the following three facts:

1. The adversary cannot link onion layers before and after any honest relay.

2. The adversary cannot learn the included message, unless she controls the receiver.

3. The adversary cannot distinguish whether onions are on the forward or backward path, unless
she controls the receiver and the onion is either the last layer before (forward) reception, or
the first layer of her reply.

Note that this especially includes that she cannot link layers based on malleability attacks on the
payload. See Appendix C.1.1 for technical details.

6.4. New Properties

We now define our security properties and show that if they are fulfilled, our ideal functionality is
realized. The idea is similar to the one in Chapter 5: To ensure that the adversary only learns the
subpaths from each honest relay until the next honest relay, we replace any real sequence of onion
layers that is observed on such a subpath, with a random sequence that only is equal in the informa-
tion learned by the adversary, i.e., the allowed leakage of the ideal functionality. For replacement,
we distinguish three types of subpaths and introduce one property for each type, challenging the
adversary to distinguish the real and a random layer sequence for this specific subpath type. The
types are: a subpath that is part of the forward path (Forward Layer-Unlinkability), one that
is part of the backward path (Backward Layer-Unlinkability) and one that includes parts of the
forward and backward path as the receiver is corrupted (Repliable Tail-Indistinguishability).

Forward Path: We first require that the layers on the forward path can be replaced by random
ones. Therefore, we extend Layer-Unlinkability from Section 5.2.4 with oracles for the creation of
replies and illustrate the property in Figure 6.1.

Thereby, we challenge the adversary to distinguish between (a) an onion created according to her
choices from (b) a random onion that takes the same path from the sender to the first honest relay.
We use oracles to allow for processing of and replying to (other) onions at the honest relays. Due
to duplicate checks, these oracles only return a processed onion if no onion with this header was
processed before (Assumption 6) and only return a reply onion if the onion was processed before
(Assumption 8). Further, the oracle after the challenge has to treat the challenge onion with care:
if it is processed or replied to (depending if the honest relay is an intermediate relay or the receiver),
an onion that fits to the original choice is constructed with FormOnion and returned.

b=0

b=1

b=0

b=1

......

...

...

Backward PathForward Path

C

...

Figure 6.1: Forward Layer-Unlinkability illustrated: Red boxes are corrupted relays, black honest
relays, orange ellipses are the b = 0 and the blue the b = 1 case. m̄ is a random message. The
main idea is that the adversary cannot distinguish between real and random onions before Pj .

81

Definition 23 (Forward Layer-Unlinkability LU→). Forwards Layer-Unlinkability is defined as:

1. The adversary receives the router names PH , PS and challenge public keys PKS ,PKH , chosen
by the challenger by letting (PKH ,SKH)← G(1λ, p, PH) and (PKS ,SKS)← G(1λ, p, PS).

2. Oracle access: The adversary may submit any number of Proc and Reply requests for PH or
PS to the challenger. For any Proc(PH , O), the challenger checks whether η is on the ηH-
list. If not, it sends the output of ProcOnion(SKH , O, PH), stores η on the ηH-list and O on
the OH-list. For any Reply(PH , O,m) the challenger checks if O is on the OH- list and if so,
the challenger sends ReplyOnion(m,O,PH , SKH) to the adversary. (Similar for requests on
PS with the ηS-list).

3. The adversary submits a message m, a position j with 1 ≤ j ≤ n + 1, a path P→ =
(P1, . . . , Pj , . . . , Pn+1) with Pj = PH ,a path P← = (P←1 , . . . , P←n←+1 = PS) and public keys
for all nodes PK i (1 ≤ i ≤ n+1 for the nodes on the path and n+1 < i for the other relays).

4. The challenger checks that the chosen paths are acyclic, the router names are valid and that
the same key is chosen if the router names are equal, and if so, sets PK j = PKH and
PK←n←+1 = PKS and picks b ∈ {0, 1} at random.

5. The challenger creates the onion with the adversary’s input choice and honestly chosen
randomness R: O1 ← FormOnion(1,R,m,P→,P←, (PK)P→ , (PK)P←) and a replacement
onion with the first part of the forward path P̄→ = (P1, . . . , Pj), a random message m̄ ∈M,
another honestly chosen randomness R̄, and an empty backward path P̄← = (): Ō1 ←
FormOnion(1, R̄, m̄, P̄→, P̄←, (PK)P̄→ , (PK)P̄←)

6. If b = 0, the challenger gives O1 to the adversary.
Otherwise, the challenger gives Ō1 to the adversary.

7. Oracle access:

If b = 0, the challenger processes all oracle requests as in step 2).

Otherwise, the challenger processes all requests as in step 2) except for:

– If j < n+ 1: Proc(PH , O) with RecognizeOnion(j,O, R̄,m,P→,P←, (PK)P→ ,
(PK)P←) = True, η is not on the ηH-list and ProcOnion(SKH , O, PH) 6=⊥:
The challenger outputs (Pj+1, Oc) with Oc ← FormOnion(j + 1,R, m,P→,P←,
(PK)P→ , (PK)P←) and adds η to the ηH-list and O to the OH-list.

– If j = n+ 1:

∗ Proc(PH , O) with RecognizeOnion(j,O, R̄,m,P→,P←, (PK)P→ , (PK)P←) =
True, η is not on the ηH-list and ProcOnion(SKH , O, PH) 6=⊥:
The challenger outputs (m,⊥) and adds η to the ηH-list and O to the OH-list.

∗ Reply(PH , O,m←) with RecognizeOnion(j,O, R̄,m,P→,P←, (PK)P→ ,
(PK)P←) = True, O is on the OH- list and has not been replied before and
ReplyOnion(m←, O, PH , SKH) 6=⊥:
The challenger outputs (P←1 , Oc) with Oc ← FormOnion(j+1,R,m←,P→,P←,
(PK)P→ , (PK)P←)

8. The adversary produces guess b′.

LU→ is achieved if any PPT adversary A, cannot guess b′ = b with a probability non-negligibly
better than 1

2 .

Note that by using the real processing for the oracle in Step 7 for b = 0 and the recognition and a
newly formed onion layer for j + 1 in b = 1, it follows that both RecognizeOnion and FormOnion
have to adhere to their intuition, i.e. with overwhelming probability only the challenge onion is
recognized and the newly formed layer has to be indistinguishable to the real processing.

82

b=0

b=1

b=0

b=1

...
...

...

...

Forward Path

Backward PathForward Path

Figure 6.2: Backward Layer-Unlinkability illustrated: Red boxes are corrupted relays, black honest
relays, orange ellipses are the b = 0 and the blue the b = 1 case. The main idea is that the adversary
cannot distinguish between real and random onions after P←j← .

Backward Path: Additionally, we build a reverse version of Layer-Unlinkability for the back-
ward path and illustrate the property Backward Layer-Unlinkability LU← in Figure 6.2. This
definition is similar to LU→, but the challenge is to distinguish a reply from randomness. We thus
return the challenge onion in a special case of the second oracle (Step 7 in LU→) and the forward
onion is always constructed to the adversary’s choice (instead of Step 6 in LU→). The challenge
onion either contains the layers of the reply constructed to the adversary’s choices (including the
chosen reply message) or random forward layers with a random message. As these two cases
are trivially distinguishable by processing the challenge onion at the honest original sender (i.e.
backwards receiver), we ensure that the oracle denies to do this final processing of the challenge
onion. This corresponds to the real world, in which our trusted sender does not share any received
message with the adversary. For a formal definition of this property see Appendix C.2.2.

Notice that we pick the random replacements to be forward onion layers. Thus the property LU←
implies indistinguishability between forward and backward onions for intermediates (otherwise the
adversary could distinguish the real (backward) onion from the fake (forward) onion).

...

...

b=0

b=1

Backward PathForward Path

...

...

Forward Path Backward Path

... ...

Figure 6.3: Repliable Tail-Indistinguishability illustrated: Red boxes are corrupted relays, black
honest relays, orange ellipses are the b = 0 and the blue the b = 1 case. While the adversary can
learn the behavior between between Pj and P←j← she cannot connect it to anything before Pj and
after P←j← .

Between forward and backward path: Finally, we want to replace the layers between the
last honest relay on the forward and the first honest relay on the backward path with random ones.
Note that the replaced part of the path contains an adversarial receiver. For the replacement in
this case, we extend Tail-Indistinguishability from Section 5.2.3 with oracles for the creation of
replies and illustrate the property Repliable Tail-Indistinguishability TI↔ in Figure 6.3. As we
can already replace all other layers before and after this part of the path with random ones due to
the Layer-Unlinkability properties, the TI↔ property does not output anything for these layers.
We thus, start outputting the challenge layers only after the honest relay Pj on the forward path
and refuse processing of the challenge onion at the honest relay on the backwards path P←j← in our
oracle (similar to LU←). The challenge onion hence either contains the layers after Pj of an onion
that is built according to the adversary’s choices or random layers that take the same part of the
path and carry the same message, but for an onion that actually starts at Pj and ends (with the
backwards path) at P←j← . For a formal definition of this property see Appendix C.2.2.

83

S M1 M2 M3 R

δ enc with:

δ← enc with:

all keys

∆1

∆←3

∆2

∆←2

∆3

∆←1 k∆
3 , k∆

1
←

k∆
1 k∆

2 k∆
3 k∆

4

k∆
4
← k∆

3
← k∆

2
← k∆

1
←

Figure 6.4: Overview of the basic idea for the payload δ. Each relay gets an updatable encryption
token ∆ to change the key k∆ under which the payload is encrypted.

Properties imply ideal functionality As argued in the beginning of this section, we built
the properties to step by step replace the real onion layers between honest relays with random
ones that only coincide with the real ones in information that the ideal functionality allows to
leak. By applying one property for each subpath between honest relays at a time, similar to
earlier proofs [31] and Section 5.2.5, we show that these properties imply the ideal functionality
in Appendix C.2.2. From here on, we call any OR scheme that fulfills our properties a secure,
repliable OR scheme.

6.5. Our UE-based Scheme

We start by outlining the basic ideas of our protocol based on updatable encryption (UE) (see
Fig. 6.4). The sender encrypts its request using an UE scheme and provides each relay, using a
header construction similar to Sphinx, with an update token to unlinkably transform this request.
Similarly, the receiver is equipped with the corresponding decryption key and a fresh encryption
key for the backward path. The security properties of UE ensure that valid payloads from an
honest sender cannot be modified or replaced by adversarially generated payloads as needed to
protect against the malleability attack, as well as to protect the unlinkability of ciphertexts and
current position in the path.

More precisely, each onion O = (η, δ) consists of two components:

• a header η which contains encrypted key material with which routers can process and (con-
ventionally) authenticate the header itself, and

• the UE-encrypted payload δ; each router will use a UE update token to rerandomize and
re-encrypt δ under a different (hidden) key.

The structure of η is similar to the Sphinx and Shallot protocols. Namely, each layer contains a
public-key encryption (under the public key of the respective relay) of ephemeral keys that encrypt
the next layer (including the address of the next relay), and authentication information with which
to verify this layer. Additionally, in our case each layer also contains an encrypted token which
can be used to update the payload ciphertext δ and we include the backward path in the header
as well. All of this header information can be precomputed by the sender for both communication
directions (i.e., for the path from sender to receiver, and for the return path).

After processing the header, each relay pads the so-extracted header for the next relay suitably
with randomness, so that it is not clear how far along the onion has been processed. At some
point, the decrypted header will contain a receiver symbol and a UE decryption key to indicate
that processing of the onion in the forward direction has finished.

The header will then also contain a UE encryption key and enough information for the receiver to
prepare a “backwards onion”, i.e., an onion with the same format for the return path. We stress
that all header parts of this “backwards onion”, including UE tokens and authentication parts,
are precomputed by the initial sender. The receiver merely UE-encrypts the payload and adds
padding similarly to relays during processing.

Processing on the return path works similarly, only that eventually, the initial sender is contacted
with the (still UE-encrypted) reply payload. The sender can then decrypt the payload using a

84

precomputed UE key.

We stress that there is no explicit check that the payload δ is still intact at any point. However,
the demanded UE security guarantees that re-encryption of invalid UE ciphertexts will return a
failure.

6.5.1 Building Blocks

Our construction makes use of the generic building blocks listed below (see Section 2.2 for an
introduction of the security requirements).

• an asymmetric CCA2 secure encryption scheme (to encrypt ephemeral keys) with encryption
and decryption algorithms denoted by PK.EncPKi and PK.DecSKi when used with public key
PK i and secret key SK i,

• a PRP-CCA secure symmetric encryption scheme (to encrypt routing information) of length
L1 with encryption and decryption algorithms denoted by PRP.Enckη and PRP.Deckη when
used with the symmetric key kη,

• an SUF-CMA secure message authentication code (to protect the header) with tag generation
and verification algorithm denoted by MACkγ and Verkγ when used with the symmetric key
kγ ,

• an UP-IND-RCCA and UP-INT-PTXT secure updatable encryption scheme with perfect re-
encryption (to protect the payload) with encryption, decryption and re-encryption algorithms
denoted by UE.Enck∆ , UE.Deck∆ and UE.ReEnc∆ when used with keys k∆ and tokens ∆. We
assume that keys and tokens are of the same length or padded to the same length. Further,
all messages are padded to the same length.

6.5.2 Scheme Description

Setup. To setup the system, UE.GenSP(pp) needs to be run on the public parameters pp (which,
e.g., may contain a description of the group setting) by an honest party (or by using multi-
party computation). The resulting system parameters sp need to be made public and used by all
participating parties. Usually they are distributed along with the software package.

Header Construction. Each onion layer Oi, which is sent from Pi−1 to Pi, is a tuple of header
ηi and payload δi: Oi = (ηi, δi). Constructing the header is similar to the Sphinx approach [52]
and the Shallot scheme [5]. Contrary to the existing works, we however treat the payload with
sufficiently secure updatable encryption.

Each header ηi is a tuple of encrypted temporary keys and tokens in Ei, encrypted routing in-
formation and keys for the current router Pi and later routers P>i in Bj

i and a MAC over the
header in γi: ηi = (Ei,B1

i ,B2
i , . . . ,B2N−1

i , γi). We describe a non-repliable header first and later
on extend it to be repliable. The first layer’s header η1 contains:

η1 = (E1, B1
1 , B2

1 , . . . , B2N−1
1 , γ1)

η1 = (PK.EncPK1(kη1 , k
γ
1 ,∆1),PRP.Enckη1 (P2,E2, γ2),PRP.Enckη1 (B1

2), . . . ,PRP.Enckη1 (B2N−2
2),MACkγ1 (E1,B1

1 , . . . ,B2N−1
1))

The second layer’s header η2 has padding added by the first relay in B2N−1
2 :

η2 = (E2, B1
2 , B2

2 , . . . , B2N−1
2 , γ2)

η2 = (PK.EncPK2(kη2 , k
γ
2 ,∆2),PRP.Enckη2 (P3,E3, γ3),PRP.Enckη2 (B1

3), . . . ,PRP.Deckη1 (0 . . .0),MACkγ2 (E2,B1
2 , . . . ,B2N−1

2))

The already existing relay padding is further decrypted for later layers:

85

PK.EncPKn+1(kηn+1, k
γ
n+1, k∆

n+1) PRP.Enckηn+1
(⊥,⊥,⊥) random . . . random . . .

B1
n+1 B2

n+1 B2N−n−1
n+1

Sender padding

. . . PRP.Deckηn(PRP.Deckη
n−1

(. . .PRP.Deckη1 (0..0))) . . . PRP.Deckηn(0..0) MACkγn+1
(En+1..B2N−1

n+1)

B2N−n
n+1 B2N−1

n+1
γn+1

En+1

Sender padding

Relay padding

Figure 6.5: Non-repliable receiver header illustrated

η3 = (. . . , B2N−3
3 , B2N−2

3 , B2N−1
3 , . . .)

η3 = (. . . ,PRP.Enckη3 (B2N−4
4),PRP.Deckη2 (PRP.Deckη1 (0 . . .0)),PRP.Deckη2 (0 . . . 0), . . .)

The message is destined for the current processing relay Pn+1 if (⊥,⊥,⊥) is encrypted in B1
n+1.

All later B>1
n+1 contain random bit strings chosen by the sender resp. the padding added by the

earlier relays (see Figure 6.5). The blocks with sender chosen padding are used for the reply path
in repliable onions later.

To construct η1 for a path P = (P1, . . . , Pn+1), n+ 1 ≤ N − 1, the sender builds the onion from
the center, i.e. calculates the layer for the receiver first:

1. Pick keys kη1 , . . . , k
η
n+1 for the block cipher, k∆

1 ,∆1, . . . ,∆n, k∆
n+1 for the UE and kγ1 , . . . , k

γ
n+1

for the MAC randomly.

2. Construct ηn+1:

En+1 = PK.EncPKn+1(kηn+1, k
γ
n+1, k∆

n+1)
B1
n+1 = PRP.Enckηn+1

(⊥,⊥,⊥)

B2N−i
n+1 = PRP.Deckηn(PRP.Deckη

n−1
(. . .PRP.Deckη

n+1−i
(0 . . . 0)))

for 1 ≤ i ≤ n (blocks appended by relays)
B2N−i
n+1 ←R {0, 1}L1 for n+ 1 ≤ i ≤ 2N − 2

(blocks as path length padding calculated by sender)
γn+1 = MACkγn+1

(En+1,B1
n+1,B2

n+1, . . . ,B2N−1
n+1)

3. Construct ηi, i < n+ 1 recursively (from i = n to i = 1):

Ei = PK.EncPKi
(kηi , k

γ
i ,∆i)

B1
i = PRP.Enckη

i
(Pi+1,Ei+1, γi+1)

Bj
i = PRP.Enckη

i
(Bj−1

i+1) for 2 ≤ i ≤ 2N − 1
γi = MACkγ

i
(Ei,B1

i ,B2
i , . . . ,B2N−1

i)

Payload Construction. Let m be a message of the fixed message length to be sent. We add a
0 bit to the message to signal that it is not repliable m′ = 0‖m:

δi = UE.ReEnc∆i−1(. . . (UE.ReEnc∆1(UE.Enck∆
1

(m′)) . . .).

Onion Processing. The same processing is used for any forward or backward, repliable or not-
repliable onion. If Pi receives an onion Oi = (ηi = (Ei,B1

i ,B2
i , . . . ,B2N−1

i , γi), δi)), it takes the
following steps (see Fig. 6.6):

1. Decrypt the first part of the header (kηi , k
γ
i ,∆i) = PK.DecPKi(Ei) [resp. k∆

n+1 instead of ∆i,
if Pi is the receiver]

86

PK.EncPKi(kηi , k
γ
i ,∆i) PRP.Enckη

i
(Pi+1,Ei+1, γi+1) PRP.Enckη

i
(B1

i+1) . . . PRP.Enckη
i
(B2N−2

i+1) MACkγ
i
(Ei..B2N−1

i)

Ei: used by Pi
Received by Pi

B1
i B2

i B2N−1
i γi: used by Pi

includes future path random padding

. . . PRP.Deckη
i
(0..0)

Ei+1

Sent by Pi

B1
i+1 B2N−2

i+1 B2N−1
i+1 : Added by Pi γi+1

Figure 6.6: Processing illustrated

PK.EncPKn+1(kηn+1, k
γ
n+1, k∆

n+1) PRP.Enckηn+1
(⊥,⊥,⊥) PRP.Enckηn+1

(P←1 , k∆←
1 , pad) PRP.Enckηn+1

(B1←
1) . . . PRP.Enckηn+1

(B(n←)←
1) . . .

. . . random . . . random PRP.Deckηn(PRP.Deckη
n−1

(. . .PRP.Deckη1 (0..0))) . . . PRP.Deckηn(0..0) MACkγn+1
(En+1..B2N−1

n+1)

B1
n+1 B2

n+1 B3
n+1 Bn←+2

n+1

Bn←+3
n+1 B2N−n−1

n+1 B2N−n
n+1 B2N−1

n+1
γn+1

En+1

Backwards path

Sender padding Relay padding

Figure 6.7: Repliable receiver header illustrated

2. Check the MAC γi of the received onion (and abort if it fails)

3. Decrypt the second part of the header (Pi+1,Ei+1, γi+1) = PRP.Deckη
i
(B1

i) [if Pi+1 = Ei+1 =
γi+1 =⊥ (Pi is the receiver), skip processing of the header and process the payload (and
check for replies as explained below)]

4. Decrypt the rest of the header Bj−1
i+1 = PRP.Deckη

i
(Bj

i) for j ≥ 2

5. Pad the new header B2N−1
i+1 = PRP.Deckη

i
(0 . . . 0)

6. Construct the new payload δi+1 = UE.ReEnc∆i
(δi) [resp. retrieve the message in case of

being the receiver (δi+1 = UE.Deck∆
n+1

= 0‖m if no reply)] and abort if this fails

7. Send the new onion Oi+1 = ((Ei+1,B1
i+1, . . . ,B2N−1

i+1 , γi+1), δi+1) to the next relay Pi+1

Constructing a Repliable Onion. Letm be the message for the receiver, P← = (P←1 , . . . , P←n←+1),
n← + 1 ≤ N − 1 the backward path. To send a repliable onion, the sender performs the following
steps:

1. Construct a (non-repliable) header η←1 with path P←. Let the chosen keys be kη←1 , . . . , kη←n←+1
and k∆←

1 ,∆←1 , . . . ,∆←n← , k∆←
n←+1

2. Construct the (repliable) header η1 by starting to construct ηn+1 for the receiver as before
in the non-repliable case, but with the following differences (see Fig. 6.7) where pad is the
padding to the fixed blocklength:

• Set B2
n+1 = PRP.Enckηn+1

(P←1 , k∆←
1 , pad)

• Set Bi
n+1 = PRP.Enckηn+1

(B(i−2)←
1) for 3 ≤ i ≤ n← + 2

• Store the key k∆←
n←+1

3. Evolve the header ηn+1 as before to create η1

4. Construct the message for the repliable onion as m′ = 1‖m

5. Construct the payload δ1 for m′ as before

87

6. The repliable onion is (η1, δ1)

Sending a reply. After recognizing to be the receiver (due to (⊥,⊥,⊥) in B1) of an repliable
message (due to the starting bit), the receiver retrieves P←1 and k∆←

1 from B2
n+1. Let m← be the

reply message padded to the fixed message length. To send the reply the receiver performs the
following steps:

1. Calculate δ←1 = UE.Enck∆←
1

(m←)

2. Evolve the header (as before but shifting the header by two blocks):

• B(j−2)←
1 = PRP.Deckηn+1

(Bj
n+1) for j ≥ 3

• B(2N−1)←
1 = PRP.Deckηn+1

(0 . . . 0) (i.e. receiver padding)

• B(2N−2)←
1 = PRP.Deckηn+1

(1 . . . 1) (i.e. receiver padding)

3. Send the onion O←1 = (η←1 , δ←1) to P←1

Decrypting a reply. After recognizing to be the receiver (due to (⊥,⊥,⊥) in B1), the relay
checks whether the included key k∆

n+1 for her matches a stored k∆←
n←+1s (it indeed is a reply) or not

(it is just a new message). She uses the key and decrypts the message: m = UE.Deck∆
n+1

(δ).

6.6. Security of Our Repliable OR Scheme

In this section, we prove that our scheme is secure (see Appendix C.4.1 for a formal definition of
the used security requirements):
Theorem 8. Assume a CCA2 secure PKE, a PRP-CCA secure SKE, a UP-IND-RCCA, and
UP-INT-PTXT secure UE scheme with perfect re-encryption (of arbitrary ciphertexts), and a
SUF-CMA secure MAC are given. Then our construction described in Section 6.5 satisfies LU→
security.

Intuitively, the CCA2 secure PKE ensures that the temporary keys for each relay are only learned
by the intended relay, and the PRP-CCA secure SKE that the header is rerandomized and can
be padded in the processing at a relay (so incoming and outgoing onions cannot be linked based
on the header). Further, the SUF-CMA secure MAC protects the header against modifications.
The UE scheme takes care of the payload: the UP-IND-RCCA ensures that the message is hidden
and that the payload is rerandomized during the processing at a relay (so incoming and outgoing
onions cannot be linked based on the payload), UP-INT-PTXT security that the payload cannot
be maliciously modified (as in the malleability attack), while Perfect Re-Encryption guarantees
that the adversary does not learn how far on the path the onion has already traveled.

Formally, we first describe FormOnion for later layers and show a detailed proof sketch for LU→.
As the proofs for LU← and TI↔ are similar to the one of LU→, we only quickly sketch them here.
All detailed proofs are provided in Appendix C.4.2. Further, correctness follows from inspection
of our scheme.

FormOnion for i > 1. FormOnion for i > 1 uses the k∆
i belonging to the corresponding epoch

to create the payload δ = UE.Enck∆
i

(m) and creates the other onion parts deterministically as
described in the protocol for the current layer (with the randomness, all used keys are known and
the deterministic parts of all layers can be built). For reply layers (i > n + 1) it combines the
deterministically computed header and payload with the encrypted new message (as all randomness
is known, all temporary keys are).

88

Forwards Layer-Unlinkability. Our proof for LU→ follows a standard hybrid argument. We
distinguish the cases that the honest node is a forward relay (j < n+ 1) and that it is the receiver
(j = n+ 1).

Case 1 – Honest Relay (j < n+ 1). We first replace the temporary keys of the honest party
included in the header, to be able to change the blocks of the header and the payload corresponding
to the b = 1 case. For the oracles we further need to ensure, that RecognizeOnion does not mistreat
any processing of e.g. modified onions. Therefore, we leverage the UE properties for the payload
protection and the MAC for the header. Table C.2 in Appendix C.4.2 provides an overview of the
proof sketch. The full proof that can be found in [98] is rather extensive and hence omitted from
this thesis.

Proof. [Proof sketch] We assume a fixed, but arbitrary PPT algorithm ALU→ as adversary against
the LU→ game and use a sequence of hybrid games H for our proof. We show that the probability
of ALU→ outputting b′ = 1 in the first and last hybrid are negligibly close to each other.

Hybrid 1) LU→(b=0). The LU→ game with b chosen as 0.

Hybrid 2) replaces the keys and token included in Ej with 0 . . . 0 before encrypting them and adapts
the oracle of Step 7 such that RecognizeOnion checks for the adapted header, but still uses the
original keys as decryption of Ej .

We reduce this to the CCA2 security of our PK encryption: We either embed 0 . . . 0 or the keys
and token as the CCA2 challenge message and process other onions (for the Step 7 oracle) by
using the CCA2 decryption oracle.

Hybrid 3) rejects all onions that reuse Ej , but differ in another part of the header, in the oracle of
Step 7.

Due to the SUF-CMA of our MAC a successful processing of a modified header can only occur
with negligible probability.

Hybrid 4) replaces the blocks (with information and keys for the future path of the onion) with
random blocks and adapts the oracle of Step 7 such that RecognizeOnion checks for the adapted
header, but still uses the original blocks as processing result.

We reduce this to the PRP-CCA security of the PRP, by embedding the PRP-CCA challenge
into these blocks, while continuing to treat these same blocks during processing as if they had the
original content. (Other blocks in onions using Ej are rejected in the oracle of Step 7.)

Hybrid 5) replies with a fail to all Step 7 oracle requests, that use the challenge onion’s header,
but modified the message included in its payload.

We reduce this to the UP-INT-PTXT of our UE: First, we carefully construct the secrets of the
challenge onion until it is at the honest relay with the help of the UP-INT-PTXT-oracles. Then we
wait for an onion with the challenge header to be given to the oracle in Step 7. We use the payload
of this onion as the ciphertext to break UP-INT-PTXT. Note that we do not have to answer this
oracle request in our reduction, but only oracle requests for onions with a different header, which
we can easily process with the knowledge of the secret keys (only the keys for the challenge onion
are partially unknown in the reduction).

Hybrid 6) replaces the processing result of the challenge onion (recognized based on the header,
with an unchanged message in payload) with a newly formed onion (FormOnion) that includes the
same rest of the path and message.

FormOnion constructs the header deterministically as before, the only difference is the re-encryption
(Hybrid 5) and the fresh encryption (Hybrid 6) of the same message in the payload. Due to the
perfect Re-Encryption of our UE scheme those are indistinguishable.

89

Hybrid 7) replaces the message included in the payload with a random message and adapts the
oracle in Step 7 to expect this random message as payload, but still replies with the newly formed
onion including the original message as before.

We reduce this to the UP-IND-RCCA security of our UE: We carefully construct the secrets of
the challenge onion until the honest relay with the help of the UP-IND-RCCA-oracles and either
embed the original or a random message as the UP-IND-RCCA challenge message. To answer
the Step 7 oracle, we use the knowledge of the secret keys if the requested onion does not have
the challenge onion’s header. If it has, we use the decryption oracle of UP-IND-RCCA to detect
whether the payload was maliciously modified (the UP-IND-RCCA oracle returns another message
m′) or not (the UP-IND-RCCA oracle does not process the payload). In the first case, we return
a fail (as introduced in Hybrid 5), in the second we return a newly formed onion (as introduced in
Hybrid 6).

Hybrid 8) - Hybrid 12) revert the Hybrids 5)-2) (similar argumentation), which results finally in
he LU→ game with b chosen as 1.

Case 2 – Honest Receiver (j = n+ 1): We sketch the proof in Table C.3 of Appendix C.4.2
and provide more details in [98]. The steps are the same as for the first case of LU→, but in Hybrid
6) we need to treat Reply and Proc requests separately. As the FormOnion behavior simulating
the receiver is exactly the same as in the real protocol, we do not need to rely on Perfect Re-
Encryption, but just on correctness of the decryption in this step. Note further that the earlier
restrictions on the oracle work both for Reply and Proc requests.

Other Properties. We sketch the proofs in Table C.4 – C.6 of Appendix C.4.2 and provide
more details in [98].

Theorem 9. Assume a CCA2 secure PKE, a PRP-CCA secure SKE and a UP-IND-RCCA secure
UE scheme with perfect Re-Encryption (of arbitrary ciphertexts), and a SUF-CMA secure MAC
are given. Then our construction described in Section 6.5 satisfies LU← security.

Backwards Layer-Unlinkability. The steps are similar to the ones for LU→ Case 1: We replace
the temporary keys of honest routers, before we exclude bad events (header manipulations) at the
oracles and finally set the header and payload parts to correspond to the b = 1 case. However, this
time we need to replace parts for both at the forward and backward path, as the forward layers
also include information about the backward layers (but not the other way round). Notice that we
can skip the steps related to the modification of the payload (and thus UP-INT-PTXT). Because
the forward message is known to the adversary anyways and the backward message (as the final
processing) is never given to the adversary, she cannot exploit payload modification at the oracles
to break LU←.

Theorem 10. Assume a CCA2 secure PKE, a PRP-CCA secure SKE, and a SUF-CMA secure
MAC are given. Then our construction described in Section 6.5 satisfies TI↔ security.

Tail-Indistinguishability. This is similar to LU←, except that we can skip more steps. For the same
reasons as before, we do not need the payload protection in TI↔. Further, the adversary does not
obtain any leakage related to kηj and thus the blocks in the forward header can be replaced right
away.

6.7. Our SNARG-based Scheme

We now present an alternative instantiation of a secure, repliable OR scheme based on SNARGs,
instead of updatable encryption. Our SNARG-based protocol works conceptually similarly, but
with two differences:

90

• First, the payload is enclosed by multiple symmetric encryption layers (one for each relay).
This is very similar to previous approaches [52, 5], but also opens the door to malleability
attacks.

• Second, in order to prevent such malleability attacks, each layer contains a concise SNARG
proof on top of header and payload, which proves that this onion is the result of (a) a fresh
onion as constructed by a sender, (b) a fresh backwards onion as constructed by a receiver,
or (c) a legitimate processing of another onion (with a valid SNARG proof). In essence, this
SNARG proof avoids malleability attacks by inductively proving that this onion has gone
only through valid onion generation or processing steps.

We note that the SNARG proof may need to show that this onion is the result of an honest
processing of another onion with a valid SNARG proof. Hence, we need to be careful in designing
the corresponding SNARG language in a recursive way while avoiding circularities. This recursive
and self-referential nature of our language is also the reason why we use SNARGs (as opposed to
“regular” zero-knowledge techniques with larger proofs).

Our crucial tool to enable this recursive “reverse-processing” is the soundness of the used SNARG.
Each onion thus will carry enough encrypted information to “recreate” previous onions, and the
corresponding SNARG will certify the validity of that (encrypted) information. Since the size of
onions should not grow during processing, we will not be able to fully reconstruct the previous
onion. However, reconstructing parts of it suffices for our strategy. Further, like before, we rely on
using MACs for a more “fine-grained” (and, most importantly, deterministic) authentication and
progression of onion headers.

Viewed from a higher level, these consistency proofs provide a whole authentication chain for both
requests and replies even with an intermediate receiver that replies with an arbitrary (and a-priori
unknown) payload. This authentication chain protects against malleability attacks and payload
changes along the way.

6.7.1 Building Blocks and Setting

Our construction makes use of the generic building blocks listed below (see Section 2.2 for an
introduction of the security requirements) and emphasize the differences compared to the UE-
based scheme.

• an asymmetric CCA2-secure encryption scheme with encryption and decryption algorithms
denoted by PK.EncPKi

and PK.DecSKi
when used with public key PK i and secret key SK i.

• an SUF-CMA secure message authentication code with tag generation algorithm denoted by
MACkγ when used with the symmetric key kγ .

• two PRP-CCA secure symmetric encryption schemes of short length L1 (for the header)
and long length L2 (for the payload) with encryption and decryption algorithms denoted by
PRP.Enckη and PRP.Deckη resp. PRP2.Enckδ and PRP2.Deckδ when used with the symmetric
key kη resp. kδ.

• a rerandomizable CPA-secure asymmetric encryption scheme, with en-, decryption and reran-
domization algorithms denoted by PKM.EncPKM , PKM.DecSKM and PKM.ReRandPKM when
used with public key PKM and secret key SKM. We require that rerandomization is in-
vertible, in the sense that knowing the random coins of PKM.ReRand allows to retrieve the
original ciphertext.

• a simulation-sound SNARG with proof generation, verification, and simulation algorithms
denoted by ProveZK, VfyZK, and SimZK.

We assume that all keys of honest participants are chosen independently at random. Regarding the
setting, we assume additionally that a master public key PKM (for the rerandomizable CPA-secure

91

encryption) and a common reference string CRS (for the SNARG) are known to all participants,
while the corresponding SNARG trapdoor and secret key SKM are not known to anyone.2

We will use PKM to let participants encrypt secrets “to the sky”, and the corresponding secret
key SKM will only be used as an extraction trapdoor in our proof. Hence, it is crucial that in
an implementation of our scheme, both PKM and CRS are chosen such that noone knows their
trapdoors. (However, at least in the case of CRS , subversion-zero-knowledge SNARKs [68] are a
promising tool to allow for adversarially chosen CRS .)

6.7.2 Scheme Description

In our protocol, each onion O = (η, σ, δ) consists of three main components:

• a header η which contains encrypted key material with which routers can process and (con-
ventionally) authenticate the onion header,

• the (SNARG-related) authentication part σ,

• the multiply encrypted payload δ; each router will decrypt one layer during processing.

While η and δ are similar to the Sphinx and Shallot protocols, σ contains several SNARG proofs
π1, . . . , πN and an encrypted ring buffer (that consists of ciphertexts C1, . . . ,CN). Here, N denotes
the maximal path length in the scheme. Intuitively, the Ci contain information that is required
to reverse-process O, and the πi prove that the information encrypted in C1 is accurate. More
specifically:

• C1 contains a public-key encryption of the π′1, . . . , π′N from the previous onion O′, as well as
the last router’s long-term secret key SK ′. The public key used is a public parameter of the
OR scheme, such that the secret key is not known by anyone. Of course, this last property
is crucial to the security of the scheme. We will use this secret key as a trapdoor that allows
to reverse-process onions during the proof.

• C2, . . . ,CN are the values C ′1, . . . ,C ′N−1 from O′. Note that this implies that C ′N is lost
during processing and cannot be reconstructed.

• πi is a SNARG proof that proves that η, δ, and C1, . . . ,CN−i are the result of an honest
processing of some previous onion. The reason for N proofs πi (and not just a single one) is
that during repeated reverse-processing of a given onion, more and more Ci will unavoidably
be lost. To check the integrity of such incomplete onions, we will use πi in the i-th reverse-
processing step.

Header Construction. Each onion layer Oi is a tuple of header ηi, SNARG-Information σi
and payload δi: Oi = (ηi, σi, δi). We construct the header ηi as in the UE-based solution (see
Section 6.5.2), except that instead of the ∆i resp. k∆

i we now include kδi of the second PRP-CCA
secure symmetric encryption scheme for the relays.

SNARG Construction. The SNARG-Information σi consists of a ring buffer Ci = (C 1
i , . . . ,CN

i)
and the SNARGs πi = (π1

i , . . . π
N
i): σi = (Ci, πi).

Ring buffer. The ring buffer Ci is calculated similarly to Bi, but reversed. The ring buffer
for forward onions includes all information needed to undo the processing of the onion or recon-
struct all input to FormOnion, encrypted under the master public key. On the reply path, we

2Those public parameters can be either chosen by a trusted party, agreed upon with an initial multi-party
computation, or, if SNARG and the rerandomizable encryption scheme have dense keys, be derived from a public
source of trusted randomness (like, e.g., sunspots).

92

overwrite old (forward) information in Cis, as this is sufficient to achieve the forward-backward
indistinguishability.

C 1
1 = PKM.EncPKM(I) with I = (form, (R,m,P→,P←, (PK)P→ , (PK)P←))

C j
1 ←R {0, 1}L3 \ {sim} with sim being a special symbol

and L3 the fixed length of ring buffer elements
C 1
i = PKM.EncPKM(I) with I = (proc, (SK i−1, π

1
i−1, . . . , π

N
i−1,Ei−1, Pi−1))

C j
i = PKM.ReRandPKM(C j−1

i−1)

Note that the onion Oi is created by Pi−1 and thus the information included in Ci is known at the
time of creation. Further, information encrypted in Ci does not include the payload message or
the MAC, as both can be reconstructed given the current onion layer. Finally, all C j

i are padded
to the fixed length L3.

SNARGs. The SNARG πji is calculated by Pi−1 for the language Lj , which consists of all partial
onions X = (ηi, (C 1

i , . . . ,C
N−j
i), δi) for which the following holds: namely, there should exist R,M

such that C 1
i = Enc(PKM,M ;R), and such that M fulfills the following:

1. If M is of the form M = (form, I), then I is some parameter list I = (1,R,m,P→,P←,
(PK)P→ , (PK)P←) (including random coins R) for which FormOnion(I) outputs an onion
O∗ = (η∗, σ∗, δ∗) with η∗ = ηi and δ∗ = δi. In other words, in this case, M explains X as an
immediate FormOnion output for a particular message m.

2. If M is of the form M = (proc, (SKi−1, π
1
i−1, . . . , π

N
i−1,Ei−1, Pi−1,R)), then

(a) all πN−ki−1 (for k > j) are valid, in the sense that πN−ki−1 shows that (ηi, (C 1
i , . . . ,CN−k

i),
δi) ∈ Lk. (Note that this is a well-defined statement if we define Lj for larger j first.)

(b) ProcOnionjpartial(SKi−1,(ηi−1,(C1
i−1, . . . , C

N−j−1
i−1),δi−1), Pi−1;R)=(ηi,(C1

i , . . . , C
N−j
i),

δi), where ProcOnionjpartial is the upcoming ProcOnion algorithm restricted to header,
payload, and (partial) ring buffer processing (i.e., without any SNARG proof checks or
creations), and ηi−1, δi−1, and the Cji−1 are the previous header, payload, and (partial)
ring buffer that are reverse-processed from X, SKi−1, and random coins R.3

3. M of any other form are not allowed.

The intuition behind Lj is simple: partial onions in Lj feature a ciphertext C 1
i that allows to

“reverse-process” the given onion to some extent. In particular, either the onion in question is
the immediate output of either a FormOnion or a ProcOnion query. In case of a ProcOnion
output, the whole onion cannot be reconstructed or checked (since some information in the Ci ring
buffer is necessarily lost during processing). However, given an onion Oi and the secret key SKM,
the validity of πNi guarantees that a large portion of Oi−1 can be reconstructed. In fact, only
CN
i−1 cannot possibly be retrieved. However, going further, the reconstructed πN−1

i−1 now makes a
statement about that “incomplete onion” Oi−1, and the reverse-processing can be continued.

Payload Construction. For message m, we again signal that it is not repliable by prepending
a 0-bit: m′ = 0‖m and construct the payload as multiple encryption:

δ1 = PRP2.Enckδ1 (PRP2.Enckδ2 (. . .PRP2.Enckδn+1
(m′) . . .))

Onion Processing. The processing of the header is done as in the UE-based scheme (see
Section 6.5.2). However, the processing also checks the SNARG and treats the payload with

3We will describe ProcOnion only below, but it will be clear that the header, payload, and partial ring buffer
part of the processing can be reversed with the secret key SKi−1 of the processing party. We additionally run
ProcOnionpartial to re-check MAC values.

93

PRP2.Dec:

If Pi receives an onion Oi = (ηi = (Ei,B1
i ,B2

i , . . . ,B2N−1
i , γi), (Ci, πi), δi)), it does the following

steps differently:

1. Check the SNARG-Sequence πi of the received onion (and abort if it fails)

2. Decrypt the header to retrieve (kηi , k
γ
i , kδi) and new header blocks for i+ 1, check the MAC,

pad the header as before (see Section 6.5.2)

3. Construct the new payload δi+1 = PRP2.Deckδ
i
(δi) [resp. retrieve the message in case of

being the receiver (δi+1 = 0‖m if no reply)]

4. Rerandomize and shift ring buffer: C j+1
i+1 = PKM.ReRandPKM(C j

i)

5. Replace first ring buffer entry: C 1
i+1 = PKM.EncPKM(I)

6. Build the new SNARG-Sequence πi+1

7. Send the new onion Oi+1 = ((Ei+1,B1
i+1, . . . ,B2N−1

i+1 , γi+1), (Ci+1, πi+1), δi+1) to the next
relay Pi+1

Constructing a Repliable Onion. The construction of a repliable onion works as for the UE-
based scheme before, except that we include kδ←1 in the header and store all chosen kδ←i for later
use.

Sending a reply. Processing the repliable onion, the receiver stores P←1 , η←1 and kδR. To reply
with m (padded to the fixed message length), the receiver does the following steps:

1. Calculate δ1 = PRP2.Enckδ
R

(m)

2. Construct the SNARG-Sequence π1

3. Pick the ring buffer elements randomly C j
1 ←R {0, 1}L3 \ {sim} for all j

4. Send the onion O1 = (η←1 , (C1, π1), δ1) to P←1

Decrypting a reply. After recognizing to have received a reply (by checking the stored kδn←+1),
the reply is “decrypted”:

m = PRP2.Deckδ1 (PRP2.Enckδ2 (. . . (PRP2.Enckδ
n←

(PRP2.Enckδ
n←+1

(δ)) . . .)))

6.7.3 Security

The proofs of our onion routing properties are similar to the ones for the UE-based scheme, except
that they rely on the SNARGs to protect the payload. We detail them in Appendix C.4.3.
Theorem 11. Our SNARG-based OR Scheme is a secure, repliable OR scheme.

94

7. Beyond Anonymous Communication

Besides the privacy requirements on the higher layers of anonymous communication (e.g., network
or application layer), on the lower technological transmission layers, namely the physical layer,
other notions of information-theoretic secure design are considered [25]. With the help of our
notions from Chapter 3, we were able to provide the first equivalence results between privacy
notions in anonymous communication and security definitions on the physical layer (see [106] for
details).

Further, we investigated fundamental privacy goals and existing solutions for two other applica-
tions. We detail the corresponding first results on proximity tracing and payments below.

7.1. Proximity Tracing Notions

Motivated by the importance of automatic contact tracing due to the current SARS-CoV-2 pan-
demic, we decided to aid the design of privacy-preserving solutions with our knowledge about
privacy notion definitions. We thus define important notions for proximity tracing applications in
this section and study the proposed solutions regarding our new definitions in Appendix D.1.3.
Results of this section have been published at the Elsevier Journal on Online Social Networks and
Media 2021 [96]. We note that the results, especially regarding the proposed solutions originally
stem from April 2020 and hence might not apply for newer versions of the solutions.

7.1.1 Background

Functionality. In traditional contact tracing patients with a positive test are inquired about the
people they have met throughout the characteristic contagion period of the respective disease, and
subsequently each of the identified individuals is informed to self-quarantine for the incubation time.
This approach is highly privacy invasive, yet very specific: the tested individual is requested to
release all contact information to the health authorities (or an organizing institution to which such
services are delegated), surrenders the set of encountered individuals that still come to mind, and
that the person feels comfortable to disclose. The institution thus gets to know these individuals
and quite accurate social interactions.

Extreme situations, like the current SARS-CoV-2 pandemic, require alternative approaches. We
observe that as incubation periods are long, it is difficult for tested individuals to remember all
encounters. Further as large numbers of people are tested positive, manual interviewing and calling
of encountered individuals does not scale sufficiently.

Several suggestions have been made to use location information from cell phones for this purpose.
They fundamentally comprise of three functions: i) sensing potential infection events, either by
tracking all users’ locations, or encounters between groups of users, ii) deriving “at-risk” (poten-
tially infected) users upon the event of one user being tested positive, and iii) informing the at-risk
users to take further measures (e.g., self-isolate, get tested). Note, that at least one bit of infor-
mation is transferred to the alerted user, that is, the information that he or she has met at least
one individual who has tested positive for the virus. This can fundamentally only be avoided by
non-deterministic protocols that allow for false negatives and false positive alarms. The epidemi-

95

ologists, however, require deterministic protocols to ensure efficient use of test kits and avoiding
to miss potential infections.

They commonly assume different underlying roles and participating stakeholders. The most basic
assumption is that individuals are participating as the owners of their mobile phones (we will call
their representation within the app “users”); individuals may be untested, tested positive, or, after
an encounter with a positive individual, “at-risk”. Testing at least in Europe is assumed to be
performed by medical professionals. The results of positive tests are collected at public health
authorities, who also take care of informing at-risk individuals.

Privacy Threats. A contact tracing system processes the (co-)location of all of its users (in
some form) and the information who has been tested positive for the respective virus. Both are
considered especially sensitive by all relevant data protection laws, as they relate to health and
potentially religious and political opinions. Processing these types of information with perfect
knowledge about all users clearly is privacy invasive.

Different approaches hence try to prevent certain threats: These comprise leaking infection of an
individual and potential infection of an individual, for instance of all those who are alerted for being
at risk. Also leaking infection or potential infection of a pseudonymous user is a threat, as inverting
a pseudonym and re-identifying the individual may be possible, sometimes even easy, especially for
long-lived pseudonyms, through different means. Additional threats are leaking the location of an
individual, even the location of a pseudonymous user (as this may allow to learn the whereabouts
of another individual, to track a user, and, as previous work based on pseudonymous location
information has shown, to simple re-identification [56]), or encounters of two users (as personal
relationships are intimate information, and even highly distorted social graph information has
been shown to be easily re-identified [121]). Even leaking aggregate information could represent
a threat, as stigmatization may happen if, for example, frequencies of infections, or fractions of
infected populations become known for users with certain behavior, or in certain regions, cities, or
probably even specific shops, companies, or institutions.

Adversary and Trust Assumptions. With regard to the adversaries, the common view is
that the systems should protect an individual’s information from the health authorities (or their
delegated service providers), other users, or third parties who abuse the system for attacks on
the privacy of its users, for instance by placing devices (Bluetooth antennas, video cameras, cor-
rupted smart phones) in certain locations. Further attacks on the system itself, like, for instance
pollution (illegitimate infection information, claiming a positive test outcome), or replay/DoS (re-
broadcasting previously received tokens so as to increase the probability of this user to be alerted
for being at risk) are imaginable. We acknowledge the importance of attacks on the system, but
limit our scope on attacks on the privacy of users within this thesis.

The approaches have entirely different trust assumptions: For centralized systems, the service is
assumed to be trusted and so it is perfectly fine for the service to learn all encounters of individuals
with those who are infected, but the information of who has been infected is hidden from all users.
Even those who are alerted that they are considered to be at risk do not learn which or how many
infected individuals they have met, unless the alerted only met a single person. Decentralized
approaches take the opposite stance and hide location traces and colocations from the service, but
in the extreme case allow the alerted users to learn who of their contacts has been tested positive
if the users store the information which token has been broadcast during encounters with which
other individual. Further storing the location for each broadcast token even allows alerted users
to recover the location of each individual that tests positive (at the time of encounters). Hybrid
forms between the two extremes and distributed trust between different entities of the protocols
are further variations.

Missing Formal Privacy Definitions. No formal privacy definitions and security analyses of
the suggested approaches have been provided at the time of this writing, to the best of our knowledge.
Cho, Ippolito, and Yu [46] have performed an informal analysis of the TraceTogether App that is in

96

use in Singapore, and suggest some improvements to prevent specific attacks. Vaudenay [155] has
reported some specific vulnerabilities of a version of the DP3T protocol. Neither of the two, nor
any of the protocol descriptions that we could retrieve has made an attempt to define the potential
risk formally with actual security goals, to make the systems accessible to formal analysis.

In brief, we identify a dire necessity to formalize the setting, trust assumptions, and accurate pri-
vacy notions in order to allow for a systematic understanding and discussion of the different pro-
posals that are circulated, and their flavor of privacy which they may, or may not achieve.

7.1.2 Application Scenario and Assumptions

Humans get infected and potentially transmit diseases. We consider the humans to be individ-
uals, with names (e.g. ’Alice’ and ’Bob’). In possession of a cell phone they can become users
with corresponding pseudonyms, some of which can be (easily) linked back to the individual (the
pseudonym hence inverted or mapped) - like for instance contact information (the mobile number,
or the app identifier). For some pseudonyms this may not be simple (short term random IDs), or
probably even impossible for others. We assume that users are able to learn their own pseudonyms
(based on technical expertise and physical control over their own devices).

Functionality. At-risk individuals, i.e. those who have been in the proximity of another individ-
ual that has tested positive in the disease specific time span, have to be alerted of their situation.
We assume the notification has to happen at the earliest possible time.

We make the assumption that infected individuals safely self-quarantine and that their positive
test is not projected forward throughout quarantine. Otherwise, enabled alerts at infected users
could potentially be used for hypothesis testing (passing by somebody’s home address and checking
if this results in an alert). Further, after the quarantine they are treated just as new users are
treated with a new user ID. This assumption allows for less complex definitions. Note that while
practical solutions do not change the user ID explicitly after infection, they ensure this kind of
limited leakage by only disclosing changing pseudonyms instead of a user ID.

Roles. We consider three entities to be involved: the individuals who install and use the app
(and who may or may not become sick or at-risk), the service, who can be the responsible health
authorities, a delegated service provider or a combination of providers, and potential additional
third parties, who are running one or several external devices. Entities in any of these roles might
try to break the privacy of selected, any, or all users of the application and have different adversarial
capabilities, like being strictly passively observing or actively deviating from the protocol.

The effectiveness of a proximity tracing system depends directly on its adoption, and we hence
assume open groups without access limitations, so it is easy for anybody to participate. Even
though it is out of scope for this work, we want to note that this does not necessarily entail zero-
cost identities and hence unbounded Sybil attacks, as linking, for instance, installation identifiers
to mobile devices, SIM cards, or phone numbers is possible, and sufficiently secure at least against
opportunistic attacks.

Data. The service needs to consider colocation, which translates to two individuals being at the
same location at the same moment. We hence have to model locations and time.

We do not model location in terms of the coordinates, or traces of location where users have been.
Several analyses (e.g. [56]) have shown that anonymizing location data, especially when sequences
of positions are known, is very difficult (and most likely impossible, if any utility is expected to
remain). Privacy-preserving processing or publishing of such data hence comes at least at a great
overhead. Instead, we model only colocation as the fact that two users have been within a defined
proximity of each other, no matter where this encounter has taken place. Colocation data is strictly
less rich in information as it only reveals that two people met, but nothing about the corresponding

97

location (unless the adversary has external information). This decision conforms with most of the
discussed protocols (all contestants for implementation as European solutions).

Regarding the time, we need to distinguish between two different intervals: Batch time as a
basic abstraction of time for our formal game model and retention time as a disease specific time
window.

• Batch time: Each batch groups seemingly simultaneous events. They are so short (e.g.
seconds) that an adversary cannot recognize the sequence of events in them.

• Retention time (e.g. 2 weeks): The amount of time the proximity information is needed.

Data Processing and Information Loss. We deem personal information of users, and po-
tentially aggregates thereof, sensitive and aim to analyze to which extent it is kept private (or,
otherwise: lost).

The service processes data, and both functionality and service provision require transfer of cer-
tain information. Like any relevant privacy-preserving protocol, our service must leak at least a
minimum of information, as otherwise it would have no utility: Potentially infected “at-risk” users
learn at least the single bit of information that they are at risk, and hence have encountered one
or some individuals that later have tested positive. In addition the server, and all current protocol
proposals include some centralized servers to facilitate communication, will learn at least the fact
that it is used, so that users exist. We do not deem service information (the existence, effort, cost,
etc. of the service provision) worth protecting.

We also limit our analysis to the information that leaks due to using the service, so that an
adversary learns from using the application, or controlling the service or parts of it, or combinations
thereof. For now, we only study the conceptual solutions proposed, but do not consider any other
channels, e.g. leaks due to underlying techniques like Bluetooth. We however stress that our
privacy definitions can directly be used in such an extended analysis, it is just out of scope for our
protocol investigation in this work.

We do not analyze the secrecy of external (probably private) information, as it can easily be
collected by other means (side channels like setting up cameras in public places, walking around
town and taking notes of observations, digital dossier aggregation). It is important to note that
we make no assumptions nor statements about such external information, and, as argued by
Dwork [59], that even the smallest loss of information in combination with external knowledge can
constitute an absolute privacy loss. Thus, absolute privacy guarantees can of course not be derived
from our study (and most probably not from any other).

Adversary. The adversary might participate in any role. It can be a curious user, the service
provider (if the protocol design includes one), or external third parties. Our formalization of
privacy goals can also be used to analyze colluding adversaries, that corrupt multiple users, or a
user and third parties to learn private information. Due to the assumption of open groups, an
adversarial service provider can also easily create artificial users in collusion and thereby merge
the observations at the service provider and the controlled users.

7.1.3 Model

We model events, which the adversary can choose to define the scenarios, and a notion of time
that fits for this purpose. We borrow the general idea of game based notions combined with ideas
of differential privacy from anonymous communication networks as in Section 3.2.

Events. We use U as the fixed set of individuals who use the proximity tracing app, and further
need to model two events:

98

Colocation of individuals (Meeting) m(A,B) meaning that individual A was in proximity of in-
dividual B. We assume this event to be symmetric. Hence, m(B,A) describes the same
event.

Infection of an individual i(A) meaning that A was tested positive. As we assume that such users
get a new user-ID for the time after the infection (and at the time they self-isolate), the same
infection event is not allowed to occur multiple times.

Events that follow from these, like creating pseudonyms as user identifiers, and notifying other
users to be tested or self-quarantine (e.g. B above), will follow from the app protocol and are not
needed for defining the scenarios. (They will be, of course, important for investigating protocols
regarding the notions, later on).

Time. We need a sense of time. Therefore we assume events to be clustered into batches r =
(r1, . . . , rl) with ri ∈ {m(·, ·), i(·), �}, where � is the empty event, i.e. no event taking place, which
can be used to model passing of time when no event happens. All events of a batch are assumed to
happen simultaneously (or at least with so little time difference that the adversary cannot observe
their order). Every new batch contains all events of this very short time span. The next batch then
contains the events of the following time interval of the same length. Multiple identical colocation
events (e.g. m(A,B) and m(B,A)) are not allowed in the same batch as one cannot meet someone
multiple times at the same point in time. Further, the information is stored (and compared) for a
chosen retention time; conforming to t batches.

Non-modeled attributes. If needed for the protocol analysis, we assume that attributes we
did not explicitly model are equal in both scenarios and are chosen reasonably, i.e. such that the
chosen events might happen in the real world. For example the location at which a corrupted user
meets someone in the batch is fixed and the location of her meeting in the next batch should be
reasonably close. Similarly, if time is used by the protocol, it is equal in both scenarios for the
same batch index.

Game. We use the general game, extensions and advantage definition as introduced in Sec-
tion 3.2. Recall especially that the adversary can corrupt users with the help of corruption queries
in the game.

Notions. Our notions define what the adversary is not allowed to learn. The scenarios, which
the adversary has to distinguish in the game, hence have to be identical except for exactly the piece
of information that the corresponding notion requires to be protected. The challenger checks for
this in its check for validity, in Step 3 of the game. As before, we describe the allowed differences
in the input batches as a combination of properties. These properties usually require that certain
data or metadata of the real world has to be equal in both scenarios (i.e. it is not protected by
the notion and can be learned by the adversary).

Further notation. Let Ci be the set of corrupted users in the i-th batch, as defined by the user
corruption queries above. We use C as a shorthand for all Ci’s. Note that by definition of the
corruption query Ci ⊆ Ci+1. We use [x, y] short for {x, x+ 1, . . . , y} and r[x, y] as an abbreviation
for all events happening in the batches rx, rx+1, . . . , ry. We also use the underscore “ ” to declare
that this part of a tuple can be of arbitrary value.

7.1.4 Properties

In this section we describe the properties, i.e. partial information about what happens in the
real world or is represented in the protocol. This information may, or may not be desirable to

99

Table 7.1: Informal Summary of the Properties
Notation Name Meaning

Ei Equal except infected Protects all information about infected, nothing else
Em Equal except meetings Protects all information about meetings, nothing else

|Ui| Number of infected The number of infected users is not protected
|M | Number of meetings The number of meeting events happening is not protected

Mi Meetings of infected Infected peoples’ meetings are not protected
Mc Meetings of corrupted Corrupted peoples’ meetings are not protected (thus identity

of meeting partner might be leaked).

UL Unavoidable loss Information assumed to be always learned by the adversary

hide from an adversary. Hiding a certain property is a characteristic of a specific protocol. The
property otherwise (most probably) can be observed by the adversary as an artifact of the protocol
execution. There certainly are numerous possible properties that theoretically could be considered.
We restrict ourselves to those properties that we find to be most insightful, and which relate well
to the current protocol proposals (Appendix D.1.2 further elaborates the situation).

Informal

Informally speaking, we want a property that helps us to express that no information leaks, other
than what is unavoidable (necessary for the functionality). Therefore, we define the unavoidable
loss (UL) that per se has to be identical in both scenarios, as it cannot be protected under the
given requirements for the solution.

Further, we want to be able to analyze the protection regarding the information loss about the
colocations/meetings and the infected patients. Therefore, we define a property (Em) that allows
us to easily require that no information about the colocations, but possibly any information about
the infected users (except for their colocations with other users) is leaked. We require for it that
in both scenarios exactly the same infection events happen, but leave complete freedom of choice
to the adversary regarding the meeting events.

Conversely, we define another property (Ei) that protects only the information of infected users
and fixes the colocation events.

Achieving strong notions of course is favorable, as any information leakage may be reason for
concern, especially when considering auxiliary information from external sources. Some design de-
cisions (local broadcasting of tokens, disclosing the number of encounters to the server, or through
the server to the public, etc), however, may be useful from a pragmatic perspective, yet systemat-
ically prevent protocols from achieving such strong notions against different adversaries. We thus
introduce weaker notions and restrict these properties slightly by requiring further restrictions: for
the infected protection we require that the number of infected users is equal in both scenarios (as
this usually is published anyways); for the colocation protection that the colocation events of in-
fected users might leak (as some protocols leak more information about the infected users) or that
the colocation events of corrupted users might leak (as corrupted users learn the pseudonyms of
their meeting partners and can link them to other information in some protocols). We summarize
the intuition of our properties in Table 7.1.

Formal Definition

We now define the properties. For each a protocol designer can decide whether this information
should be protected or not.

100

Decision space. For all following properties we assume that the adversary already sent k − 1
batches per scenario and for these the challenger already checked that each pair was compliant
to the notion analyzed. Now the next pair of batches was sent by the adversary and we define
under which conditions they are valid. The current batches are thus the k-th batches of the game:
rk0 = (r01, . . . , r0l), rk1 = (r11, . . . , r1l).

Definition 24 (Properties). The current batches fulfill the following properties if:
Equal except infected Ei: Any event, that is not an infection event is equal in both batches.

For b ∈ {0, 1}: rbj = m(,) =⇒ r1j = r0j, for all j ∈ {1, . . . , l}

Equal except meetings Em: Any event, that is not a meeting event is equal in both batches.

For b ∈ {0, 1}: rbj = i() =⇒ r1j = r0j, for all j ∈ {1, . . . , l}

Number of infected is equal |Ui|: The number of infected users is equal in both scenarios.

|U0| = |U1|, with Ub = {u | i(u) ∈ rkb}

Number of meetings is equal M : The total number of meeting events is equal in both scenarios.

|M0| = |M1|, with Mb = {r | r = m(,) ∈ rkb}

Meetings of infected are equal Mi: With this restriction, no one can be infected if their
meetings in the last t batches differ in the two scenarios. Therefore, we define the set of users
whose meetings in the two scenarios differ at some point in the last t batches (i.e. at least one
user is involved in the meeting of one scenario that is not in the other) as the set Um. This is the
set of all users u that were involved in a meeting (that was event j′ of batch j) which differs in at
least one user in the two scenarios.

Um :={u | ∃j ∈ [k − t+ 1, k],∃j′ :
m(u1, u2) = rj0j′ ∧m(u3, u4) = rj1j′ ∧ (u1 6= u3 ∨ u2 6= u4) ∧ (u ∈ {u1, u2, u3, u4})}

We define Mi to be true iff for the set of infected user Ub (Ub defined as in Number of infected
|Ui|):

Um ∩ Ub = ∅.

Meetings of corrupted are equal Mc: With this restriction, no one can be corrupted if their
meetings in the last t batches differ in the two scenarios. Um defined as above. We define Mc to
be true for the current set of corrupted users Ck iff

Um ∩ Ck = ∅.

Unavoidable information loss. We define properties that cannot be hidden from the adversary
as they belong to the intended functionality or we consider it inherent in the technical solution
that is assumed. This is a delicate choice, as it implicitly – and inaccurately – accepts that some
information cannot be hidden (we will comment on these decisions, below).

At-risk users always learn at least one bit due to the function of the service (that they met some
(one or more) infected users). Consider, for example, a user that met only one other user and then
is warned. This trivially discloses that the individual she met is infected. More generally, also
if more users are met: Unless one limits the functionality (e.g. by allowing false-positives, false-
negatives or delaying the warning) an adversary can always trivially distinguish the two scenarios,
if her choice leads to notification (or lack thereof) for different corrupted users in the two cases.
To prevent our game adversary to break our notions based on this trivial attack type, we add the
property M I→C and require all notified, corrupted users to be equal in both scenarios.

101

Definition 25. At risk corrupted users are equal M I→C: We want that the same corrupted
users get a notification for being at risk in both scenarios. Therefore, we define the set of users
that both get notified and are corrupt, to be equal. The users that get notified are those that have,
in the last t batches, been in contact with any infected user ui (whose infection is detected).

Nb :={u ∈ U | ∃ui ∈ U : i(ui) ∈ rkb ∧ (m(u, ui) ∈ rb[k−t+1,k] ∨m(ui, u) ∈ rb[k−t+1,k])}

Thus requiring the subset of the corrupted notified users to be equal is:

NC
0 = NC

1 , where NC
b := Nb ∩ Ck.

If a corrupted user meets another corrupted user, she also knows her identity (MC→C). So we
restrict how corrupted users meet each other:

Definition 26. Corrupted meeting the same corrupted MC→C: The same corrupted users
have been meeting with each other in the last t batches.

NC′

0 = NC′

1 , where

NC′

b := {(c1, c2) | c1, c2 ∈ Cj : (m(c1, c2) ∈ rb[k−t+1,k] ∨m(c2, c1) ∈ rb[k−t+1,k])}

Further, if a corrupted user is tested positive, the adversary learns this information (UC→i). So we
restrict the infection of corrupted users:

Definition 27. Infection events of corrupted users UC→i : Every corrupted user is infected
at the same time in both scenarios.

Ui
C
0 = Ui

C
1 , where

Ui
C
b := {u ∈ C

∣∣ i(u) ∈ rbk}

Additionally, if we assume broadcasting of temporal identifiers1 any user learns how many encoun-
ters they had. We thus define QC→m such that the adversary cannot trivially break the notions
based on this knowledge:

Definition 28. Frequency in meeting for corrupted users QC→m : Every corrupted user had
the same number of colocation events in the last t batches in both scenarios. Therefore, we define
the set of encounters for a user u as:

Mu :={j ∈ [1, l], i ∈ [k − t+ 1, k] | ∃u′ : m(u, u′) ∨m(u′, u) = rbj
i}

That the amount of encounters per user has to be the equal for the corrupted users in the last t
batches is thus:

QC0 = QC1 , where QCb := {(u, n)
∣∣ u ∈ Ck, n = |Mu|}

If we assume broadcasting of temporal identifiers also the fact whether multiple corrupted users
met the same user at the same time, is always leaked:

Definition 29. Meeting with corrupted Mc−c: If multiple corrupted users met the same user
in one scenario, they also all meet one user in the other scenario (although this user might be a
different one with the same health status). Let U0 be the infected users of the first and U1 of the
second scenario (as in the definition of the number of infected). For all corrupted users c, c′ ∈ Ck
meeting an infected user u ∈ U0, event j, j′ ∈ [1, l] it holds that:

r0j ∈ {m(c, u),m(u, c)} ∧ r0j′ ∈ {m(c′, u),m(u, c′)}
=⇒ ∃u′ ∈ U1 : r1j ∈ {m(c, u′),m(u′, c)} ∧ r1j′ ∈ {m(c′, u′),m(u′, c′)}

1Note that other assumptions about the technical solution lead to adapted unavoidable leakage.

102

Table 7.2: Proximity Tracing Notion Definition
Name Properties

Proximity Tracing Indistinguishability (P−IND) ULC

Infection Indistinguishability (I−IND) Ei ∧ ULC
Infected Indistinguishability (I \ |I|−IND) Ei ∧ |Ui| ∧ ULC

Meeting Indistinguishability (M−IND) Em ∧ ULC
Remote Colocation Indistinguishability (R−IND) Em ∧ |M | ∧MC ∧ ULC

Remote Healthy Colocation Indistinguishability (R\I−IND) Em ∧ |M | ∧MC ∧Mi ∧ ULC

Similar for all corrupted users meeting a healthy user.

The combination of all properties in 7.1.4 (the notified corrupted users, the meetings between
corrupted users, the detection of infections from corrupted user, the frequency in meetings for cor-
rupted users, and meeting with corrupted) is trivially available to the adversary. We hence define
the combination to be unavoidable loss:

Definition 30. Unavoidable loss ULC

ULC := M I→C ∧MC→C ∧ UiC→ ∧QC→m ∧Mc−c

7.1.5 Notions

Any combination of the above or potentially other, additional properties (like e.g. from Ap-
pendix D.1.2), either fixed or defined by the adversary, constitutes a notion in principle. We
refrain from enumerating all and instead focus on the combinations that relate to claims or seem-
ingly achieved protection in the most prominent proposals that have been circulated, as they seem
most relevant. We define them in Table 7.2 and illustrate all introduced notions with a short
example for valid scenario choices in Appendix D.1.1.

Proximity Tracing Indistinguishability (P−IND). The adversary only learns what she trivially
already knows or has to learn, but nothing else. This is the strongest notion, given that the
assumptions on the functionality and technological limits hold.

Infection Indistinguishability (I−IND). This is the strongest notion only protecting infections.
The batches only differ in who is infected and we exclude the trivial attacks as above. Notice that
this also protects e.g. how many users are infected, how often someone was colocated with an
infected individual and how many infected individuals someone has encountered. Thus all users,
that had contact to all notified corrupted users define the anonymity set. In case of many corrupted
users working together and immediate notification after detection of an infection, this set might
still be small in reality.

Infected Indistinguishability (I \ |I|−IND). This notion is a little bit weaker than I−IND as it
additionally allows the number of infected app users to be learned by the adversary. As infection
numbers are usually published (albeit cumulated and after some delay), we do not consider this
privacy loss as very critical.

Meeting Indistinguishability (M−IND). This is the strongest notion that only protects meetings.
The batches can only differ in who met, but not who is infected. This notion does not define
protection of who is infected, but who someone met, and in consequence where someone has
been.

Healthy meeting Indistinguishability (M \I−IND). We now relax the above. This notion only
protects the meetings of healthy people, the identity or location of infected individuals may be
disclosed. As soon as someone is infected, her whole meeting history is allowed to leak. This
means only users whose meetings are identical before can be infected (as stated earlier we assume
that infected users self-isolate and have no later meetings).

103

Remote Colocation Indistinguishability (R−IND). Except for meetings with corrupted users and
the number of edges in the colocation graph, no information about it leaks. Note that this no-
tion can be easily adapted to protect the number of edges in the colocation graph by removing
|M |.

Remote Healthy Colocation Indistinguishability (R\I−IND). Except for meetings with corrupted
users and the number of edges in the colocation graph, no information about the colocation graph
between non infected users leaks.

Hierarchy

P−IND

M−IND I−IND

M \I−IND R−IND I \ |I|−IND

R\I−IND

Figure 7.1: Hierarchy of defined proximity tracing privacy notions

By definition of the notions, and the corresponding limitations in the valid adversarial choices, the
hierarchy as presented in Figure 7.1 follows.

This hierarchy especially means that if P−IND is achieved, any other defined notion is achieved
as well; and if R\I−IND and I \ |I|−IND are both not achieved, none of the defined notions is
achieved. Further, the notions protecting all meeting information M−IND and M \I−IND also
imply the notions protecting the respective social graph (R−IND and R\I−IND) and are hence
stronger and better connected to each other than to the notions concerned with differing infection
events (I−IND and I \ |I|−IND). However, there might be useful weaker notions that are both
implied by notions concerned with meeting information and by notions concerned with infection
information, e.g. how many meetings an infected user had earlier.

7.1.6 Application

In Appendix D.1.3, we relate proposed solutions to our notions. Our high-level approach already
shows trade-offs between trust in different entities of the application and the connected privacy
leakage. With complete trust in the server (e.g. the central location data collecting tracing server)
it is relatively easy to ensure our strongest privacy goal against adversarial clients, even if several
of them collude. Limiting the information the server learns about colocations (the NTK/ROBERT
approach [125] / [131]), multiple clients might infer some information about other users’ meetings2,
while the server still learns enough to break nearly all our notions. The only information protected,
and hence notions achieved, relate to the encounters between healthy, benign users. By moving the
calculation of a warning to the clients (Canetti [34] approach, DP3T [152]) we think it is possible to
achieve most of our notions against a corrupted server, at the cost of even a single client breaking
some of our strong notions. Hybrid protocols between centralized and decentralized approaches,
like DESIRE [35] and ConTraCorona [22], offer a trade-off between those two worlds.

We stress, however, that our study of proposed solutions is just a first high-level investigation of
the used general techniques at the time of writing (April 2020) and does not include any formal
proofs. Moreover, we only considered simple adversary models (either the server or the clients,
but no combinations) to gain first insights into the trade-offs. Practically, of course besides more
in-depth analysis of the achieved protection, further criteria, like the performance, cost and de-
velopment time of the system, need to be considered to decide on the best proposal in an urgent
situation.

2The information inferred by multiple clients in the NTK/ROBERT approach is in our current analysis considered
unavoidable leakage.

104

7.2. Payment Networks

Experience with Bitcoin, once cherished as the privacy-preserving alternative to other digital pay-
ment methods, has demonstrated that it effectively only provides very weak pseudonymity for
transactions [145, 112, 135, 116, 38, 91, 132]. Privacy-Preserving Payment (P3) systems have thus
become the focus of interest, as the fundamental requirement for anonymous payments has not lost
its relevance. Most P3 systems however define their privacy goals ad-hoc, tailored to a research
idea, or even entirely informal, despite the growing interest in the field.

Without precise and comparable definitions, the research community is missing out on a common
ground to understand and tackle the complex problem of provable privacy for payments. Similar
to the case in ACNs, we thus need an analysis framework to compare the privacy that is offered
by different P3 systems. While some academic efforts have already surveyed the P3 solutions
space for blockchains and cryptocurrencies [73, 48, 20, 3, 157], we identify a clear lack of rigorous,
formal comparisons of the privacy that the systems can guarantee. To the best of our knowledge,
Amarasinghe, Boyen, and McKague [3] are the first to consider the P3 problem with some rigor.
However, they primarily focused on adversary models. Which detailed information is actually
protected, which arguably is of at least the same significance, remained outside of their scope. To
propel P3 systems and facilitate provable privacy, there is indeed a dire need for comparable pay-
ment notions that define the fine-grained variations for the protection-worthy information during
transactions.

We thus adapt our results for ACNs from Chapter 3 to P3 systems to provide a foundation for
this use case as well. Note however that ACNs while they can be employed to improve the privacy
of P3 systems indirectly, differ from P3 systems at the conceptual level. Firstly, ACNs can solve
confidentiality with the help of well-known encryption, while the payment system inherently has
to consider confidentiality on payment values. Secondly, unlike ACNs, payment systems may not
require sending messages and payment ledger correctness can be ensured using commitments to
the payment values and ZK proofs. Indeed, barring a few solutions such as [137, 122], most privacy
solutions are not immediately effective in both ACNs and P3 domains.

In this section, we contribute to the investigation of the differences as we define and compare
privacy goals for P3 systems following our idea of indistinguishability games with properties as
basic building blocks. We further shed light on the practically resulting anonymity set sizes that
correspond to a selection of our notions. For the last goal, we conduct a simulation study. We
first generate various sets of payment data using a model that is based on measured assumptions,
and later employ a real world data set. The results allow us to review the effect of typical design
decisions, like leaking the value of payments or deciding on delays, on the effective anonymity set
size and its potential reduction. Further, we identify potential adaptations: we observe effects
of changing system parameters, like increasing latency or payment frequency. We also provide
evidence for improvements by simple strategies: scaled value buckets, for instance, prove useful
to considerably increase the anonymity sets, at the cost of paying at most 10% more than the
intended value. Additionally, we relate existing solutions to our new payment privacy notions and
simulation results in Appendix D.2.3.

7.2.1 Background

Payment Systems. Privacy is a crucial factor for the acceptance of electronic payment sys-
tems [86]. Thus, a variety of P3 systems with different settings, privacy goals and adversary
models has been proposed. A notable subclass of P3 systems are credit and Payment Channel
Networks (PCNs) that do not only allow direct payments, but route the money over multiple in-
termediaries, similar to onion routing. We introduce the P3 systemsfurther in the following sections
as needed. For an extensive informal overview, however, we refer the readers to [48].

High-Level Approach for P3 systems. Not only the protocol proposals, but also the majority
of prior surveys that aim to compare private payment schemes come up with informal, ad-hoc

105

security and privacy goals [2, 73, 48]. This complicates comparison, and differences between goals
(“Strong privacy” and “Strong anonymity” [48]), assessments of fulfillment of the goals (“slightly
high” vs “medium high” [2]) or even the meaning of goals (like “full unlinkability”) remain unclear.
While these reports give a great first overview, we deem it necessary to have fine-grained, unified
formal definitions to compare the approaches and solve the existing confusion around terms like
“privacy”, “anonymity” and “pseudonymity” [80], as some of the informal works also conclude
[2, 73].

To the best of our knowledge, the only formal approach to privacy in P3 systems is presented by
Amarashinge, Boyen and McKague [4]. Their indistinguishability games are tightly tailored for
cryptocurrencies, which allows them to model the adversary in a detailed fashion. For the privacy
goal, they focus on exactly one entity (sender, receiver, value or meta-data) at the time and define
an all-or-nothing protection for each. In a later work [3], the authors apply this formalization to
analyze Bitcoin, Zcash, Monero and MimbleWimble in comparison to an idealized trusted third
party solution.

Their highly specialized model is however not applicable to other P3 systems, like PCNs, and
does not extend to other layers or combination of layers, as demonstrated to be highly relevant
by recent attacks [134, 85]. Because the privacy goals, like hiding who payed whom, are however
similar for all P3 systems and layers, we suggest to abstract from specific adversaries3 and instead
to be specific on the information that is hidden by the protocol, as well as on the restrictions of
the anonymity set. Thereby, we represent the fine-grained, real world trade-offs in the protection
much better than with the all-or-nothing approach of the state of the art.

7.2.2 Model

As in Chapter 3, we model payment privacy notions as games. The payment scenarios σ0, σ1 that
the game attacker submits and then tries to distinguish now consist of payment tuples (s, r, v, aux)
with a sender s, receiver r, value v and potentially auxiliary information aux, like e.g. a multi-
hop route in a PCN. We use ♦ to express that no payment actually happens. Except for these
changes, we use the game as introduced in Section 3.2. Depending on the use-case, the senders and
receivers are, e.g., user identifiers or user pseudonyms, like wallets, and the length of a scenario
can be restricted to correspond to one run of the protocol.

7.2.3 Notions

As before, we define our notions by the properties that are required to be hidden - and, in other
words, which may differ in the scenarios that the adversary submits in the game.

Properties

Our properties showcase information desired to be protected or allowed to be leaked by the P3
system. For the selection of our properties we considered i) state-of-the-art P3 systems [63, 81, 110,
109, 114, 115, 137, 138] (see Appendix D.2.3) and ii) the systematic information leakage described
in their ACN equivalent (see Section 3.3).

As for ACNs before (see Section 3.3), we define

• a property(♦6) that ensures that the total number of events is equal,

• properties (ES , ER, EV , ERV) that allow only certain dimensions, like e.g. the senders, to
differ between the scenarios,

3Note that the fine-grained adversary model is a different aspect of the protection than the privacy goal and that
especially the model of [4] can be combined with our privacy goals for a detailed analysis of cryptocurrencies.

106

Table 7.3: Overview over our Payment Specific Properties
Property Meaning

ΣS totals per sender are allowed to be learned
FV all values are fixed to the same value
FΣS all sending totals are fixed to the same value
|P |2 total number of payments analyzed are 2

≡G graph (PCNs, credit networks) is allowed to be learned
Atom considered payments happen simultaneously

• properties (U, Q, P, H) that fix the set of active senders, the sending frequencies, histograms
and allow for user pseudonyms (similarly for receivers),

• properties (MSR, MSV , MRV) that allow only the linking between two dimensions to differ
in the scenarios, and

• a property (TS) that only hides whether two payments have the same sender (similarly for
receivers).

Specific for P3 systems. Values are sometimes paid as aggregates of transactions [81]. Some
P3 systems thus might hide the values for single transactions, but allow the aggregated sum of
the received or sent payment amounts per user to be learned, e.g. when this money is credited to
or deposited from the user’s account. We thus introduce the property ΣS that allows the sender
totals, i.e. the sum of payed values, to be learned (similarly for the receiver).

Definition 31 (Totals). Let the function VR calculate the total received amount for every receiver
(VS the sent amounts for every sender).

VR(σb, r′) :=
∑

(s,r,v,a)∈σb∧r=r′
v, VS(σb, s′) :=

∑
(s,r,v,a)∈σb∧s=s′

v

Definition 32 (”Equal Totals” ΣX). For the scenarios σb:

ΣR : VR(σ0, r) = VR(σ1, r) ΣS : VS(σ0, s) = VS(σ1, s)

Some P3 systems do not only allow the values of each payment to be learned (as expressed by
ESR), but even provide privacy only under payments with the same value[39, 81]. We model this
with the property FV that demands that the values of all payments, even within a scenario, are
using the same fixed value, e.g. 1 coin. Further, for the totals per sender/receiver we introduce
the same kind of restriction (FΣS , FΣR , FΣSΣR), i.e. not only the total per user has to be the same
in both scenarios, but indeed all users have to have the same (sending/receiving or sending and
receiving) total.
Definition 33 (”Fixed X for all payments” FX). Let v be a value. For each payment pb,k, resp.
for the scenarios σb:

FV : pb,k = (sb,k, rb,k, v, auxb,k)
FΣS : ∀s ∈ U : VS(σ0,s) = VS(σ1,s) = v

FΣR : ∀r ∈ U ′ : VR(σ0,r) = VR(σ1,r) = v

FΣSΣR : ∀s ∈ U , r ∈ U ′ : VS(σ0,s) = VS(σ1,s) = VR(σ0,r) = VR(σ1,r) = v

As a simplification for the proof, some notions explicitly target a pair of two (most often simulta-
neous) payments [109], which we express with the property |P |2. As the attacker gets to choose
which two payments are used for the game, proving this simplified setting is sufficient to show that
the uncertainty extends to any pair of such payments.

Definition 34 (”Exactly x payments” |P |x). Each scenario contains exactly x payments: |σb| = x

107

Table 7.4: Payment Specific Notion Definition (SO, SO − |U |,SO −H, SO − P , SFL,
SFL−H,SFL− P , (2S)O are defined as for ACNs before.)

Name Properties
Sender Unobservability Fixed Value (SO − FV) ES ∧ FV

Sender Unobservability Leaking Graph (SO− ≡G) ES∧ ≡G
Sender Unlinkability (SL) ES ∧Q

Sender Unlinkability Fixed Value (SL− FV) ES ∧Q ∧ FV
Sender Unlinkability Fixed Total (SL− FΣS) ES ∧Q ∧ FV ∧ FΣS

Sender Unlinkability Leaking Partition (SL− P) ES ∧Q ∧ P
(Sender-Value) Unlinkability ((SV)L) Atom ∧MSV

receiver notions similarly to sender

Payment Unobservability (PO) -
Value Unobservability (V O) EV

Value Unobservability leaking Graph (V O− ≡G) EV ∧Atom∧ ≡G
Unobservability (O) ESRV

Unobservability Fixed Value (O − FV) ESR ∧ FV
Unlinkability Fixed Value (L− FV) ESR ∧ FV ∧Q ∧Q′

Unlinkability Fixed Total (L− FΣSR) ESR ∧ FV ∧Q ∧Q′ ∧ FΣSΣR
2-(Sender-Receiver) Unlinkability (2(SR)L) Atom ∧ |P |2 ∧MSR

Specific to protocol choices. Finally, we introduce a set of properties for specific P3 system
types that will all make use of the auxiliary information to express type specific choices for the
payment privacy.

For PCNs and credit networks, like [110, 114], we define a variant of MSR. In PCNs the aux-
iliary information describes the payment’s path. We thus require that the paths of the mixed
transactions have at least one honest node in common and that the alternative transactions of the
second scenario switch the payment paths accordingly. Versions of this property limit the possible
alternative paths to paths that are plausible for the chosen routing strategy, e.g. paths without
loops.

Also, for PCNs or credit networks the resulting graph or parts of it might be disclosed [110, 114].
To ensure that the notion is not broken only due to different changes in the graph, we require with
the property ≡G that the final graph is equal4 after both scenarios.

Definition 35 (Equivalence of Payment Scenarios). We define equivalence (≡) of two payment
scenarios as resulting in the same graph.
Definition 36 (“Balanced” ≡G). For the scenarios σb : σ0 ≡ σ1

Further, sometimes privacy only stems from users doing an action at the same time [109]. In gen-
eral the protocol model has to decide how the sequence of transactions in the scenario is translated
into issuing times. However to discuss the specific case of concurrent payments, we define the
atomicity property Atom that requires that all transactions of the scenario are happening simul-
taneously and thus the adversary can e.g. not win based on the order or timings of the transactions.

Definition 37 (Atomicity Atom). Π processes all payments in σb atomically. No observations can
be made in between payments.

Payment Notion Hierarchy

We define notions as combinations of properties according to Table 7.4. Our selection is tailored
to include the goals of state-of-the-art P3 systems [63, 81, 88, 110, 109, 114, 115, 137, 138] (as
discussed in Appendix D.2.3) and goals that were shown to be important in the related area of
anonymous communication, while at the same time conforming to intuitive, basic goals.

4Versions of this property can require only partial knowledge about the graph to be equal.

108

PO

SO

SO − |U | SO −H SO − P

SFL SFL−H SFL− P

SL SL− P

SL− FV

SL− FΣS

(SV)L

(2S)OSO− ≡G

RO

RO − |U |RO −H′RO − P ′

RFLRFL−H′RFL− P ′

RLRL− P ′

RL− FV

RL− FΣR

(RV)L

(2R)O RO− ≡G

O

VO

V O− ≡G

O − FV

L− FV

L− FΣSR

2(SR)L

Sender notions
Impartial notions

Receiver notions

Value notions

Figure 7.2: Hierarchy of privacy notions. The notion at the start of an arrow is strictly stronger
than the notion at the end of that arrow. This ”stronger”-relation is transitive. The green,
highlighted notions are later used for our anonymity set size simulation.

As in Chapter 3 for anonymous communication notions, some payment notions are strictly stronger
than others. We provide the proof sketches for such relations in in Appendix D.2.1 and depict the
final implications between our payment notions as a hierarchy in Figure 7.2.

Notion Overview. We group the notions into sender notions that focus on protecting senders,
receiver notions that focus on protecting receivers, and impartial notions that protect senders and
receivers equally well.

Within the impartial notions, we define a subgroup that specifically focuses on protecting the paid
values. The strongest of these notions, Value Unobservability, hides the values completely, i.e. the
adversary can no longer observe that a certain value was payed (by anyone). The weaker value
notion, Value Unobservability leaking Graph, is specific to payment channel/credit networks and
requires that the resulting (credit) graph can be learned by the adversary. As part of the impartial
notions the overall strongest notion Payment Unobservability prohibits any information to be
leaked, whereas for Unobservability the adversary can learn how many transactions happen in total
(and about auxiliary information, like fees, if any exist), but nothing else. The next weaker notion
(Unobservability Fixed Value) specifies protection of all information about the sender and receiver,
but allows to learn that all transactions have the same fixed value. The two weaker Unlinkability
notions allow the sending and receiving frequencies as well as the fixed values (Unlinkability Fixed
Value) or the fixed values and totals of all incoming and outgoing payments per user (Unlinkability
Fixed Total) to be learned. The weakest impartial notion (2-(Sender-Receiver) Unlinkability) only
specifies that for two transactions the adversary cannot tell which of the involved senders payed
which involved receiver.

The group of sender notions concentrates on the senders (or observations about them). For the
strongest of these notions (Sender Unobservability) anything about values and receivers can be
learned, but nothing about the senders. For weaker notions, the sender protection can however
be restricted by the activities, frequencies, histograms, graph knowledge and fixed values for all as
introduced before (area spanning SO − |U | to SL− P and SO− ≡G). Sender Unlinkability Fixed
Value additionally limits values and Sender Unlinkability Fixed Total totals to be equal. (2S)O
further expresses whether the adversary can determine if two payments belong to the same sender,
without necessarily learning who this sender is, and (Sender-Value) Unlinkability hides only the
relationship between sender and paid values.

The hierarchy of receiver notions resemble the sender notions correspondingly.

109

7.2.4 Anonymity Sets for Realistic User Behavior

In this section we perform an initial investigation of the anonymity set sizes that are actually to
be expected in practice. As they rely on specific payment choices, we model realistic user behavior
and simulate actual payments accordingly for our analysis.

We study the anonymity sets corresponding to the sender notions Sender Unobservability, Sender
Frequency Unlinkability and Sender Unlinkability Fixed Value empirically, to then investigate
their sizes under realistic, generated payment traffic. For this selection, we chose notions that
i) are used by P3 systems as their goal (see Appendix D.2.3 for details) and ii) are covering a
large part of the sender notions in terms of their strength. It indeed is hard to decide on realistic
parameters, especially if sender-receiver pairs, or a specific payment network topology are needed
- as for instance in path-based anonymity sets. We hence first study anonymity sets that we can
determine without such information, and later study an example including path-based anonymity
sets on real data. Considering that some of the anonymity sets are expected to be prohibitively
small in several cases, we extend our study to explore preliminary strategies that may help increase
the anonymity set sizes at limited cost.

Setup and Preparation

Anonymity Sets. First, we transform the chosen goals to real world anonymity sets. Sender
Unobservability requires that two scenarios that differ only, but arbitrarily, in the senders, are
indistinguishable. Thus, any user that participates in the protocol cannot be distinguished from
the real sender and the anonymity set includes all users.

Sender Frequency Unlinkability requires additionally that the compared scenarios have the same
set of active senders. Thus, any user that sent something during the observed payments cannot be
distinguished from the real sender and the anonymity set includes all active senders.

Sender Unlinkability Fixed Value requires further that any payment of the scenario has the same
value and that the senders are merely permuted between the scenarios (i.e. partitioning the
payments per sender has to result in the same partitions in both scenarios). Interestingly this
does not allow the same freedom in placing senders in the alternative (second) scenario as the
two notions discussed earlier: We cannot only replace the sender of a single payment, but have to
do the same replacement potentially for multiple payments that are linked to the same sender.5
There are still indistinguishable scenarios that replace the sender of the multiple payments with
any other active sender. The sender anonymity set hence differs just due to the fixed value; it thus
includes all active senders that send the same value.

Given the diversity of possible payment values we expect the anonymity set sizes for the corre-
sponding notions to be very small. We are hence interested, to which extent the senders may be
able to increase their privacy by adapting their behavior and investigate potential strategies in
our evaluation. Precisely, we use the intuitive approaches i) to increase the transaction value to
the next higher value that is known to be used by others, ii) to delay transactions to increase the
chance for some additional payments with identical value to be created and iii) to generally restrict
all transaction values to specific, allowed value classes.

Setting. To identify the impact of deciding on a different notion, we calculate anonymity set
sizes for each notion with a round based python simulation. All payments that are initiated within
an epoch time slot are considered to be mixed with each other for the active or value anonymity
set. This models e.g. a tumbler with fixed times to output payments again. We expressly have
not implement the tumbler (or any other P3 system), but merely draw payment events according
to the user model and count the number of distinct users with the considered criteria in each

5Notice that this difference is not reflected in the sender anonymity set of a single payment, but instead represents
another leakage, namely: which payments belong to the same sender, independent of who the sender is.

110

epoch, assuming that they will choose the same tumbler (or corresponding anonymization compo-
nent).

Data. We report on the results based on a group size of 100 000 users for our experiments,
performing 30 repetition for each parameter set. Repeating the experiments with 10 000 and
1 000 000 users confirmed our findings.

We modeled our assumptions based on [117], which measured JoinMarket, a trading platform for
privacy enhanced payments with Bitcoin. The values consequently are drawn following a lognormal
distribution with mean of 84 USD and standard deviation of 2.4. Thus, the quantiles are 16 USD
(25%), 84 USD (50%) and 420 USD (75%). We rounded all values to full USD to improve the
chances for the value to match an existing anonymity set, and the resulting transactions cover
values from one to several million USD as in the published data.

Information about senders is sparse as the networks try to protect the senders’ anonymity. We
thus use the best guess we can make for sending behavior: inter-sending times that are distributed
according to a Poisson distribution. To account for the uncertainty, we vary the parameter λ
(10, 50, 100) and to give them a real world meaning, we match λ = 50 to real world time according
to the total payments made per day in different networks as shown in Table 7.5. So λ = 50
represents the current payment situation, λ = 10 the situation that the payment networks are used
much more frequently and λ = 100 the situation that the networks are used less frequent. We
ensure that the simulations reach a stable state before we measure the anonymity sets.

Table 7.5: Real world time per simulation time unit (assuming different usage frequencies)
Usage frequency Time per simulation time unit Payments per day

Generated Data Ripple Data
Ethereum [67] 2.5 min 3.8 sec 1.2 mio
Bitcoin [120] 9.5 min 15 sec 0.3 mio

Germany (incl. cash) 1.7 sec 45 millisec 99.6 mio
Canada (incl. cash) 7.5 sec 200 millisec 22.7 mio

Results.

We first compare the anonymity sets that result directly from our data, before we then adapt the
paying strategies to increase the value-based anonymity sets. Our intuitive adaptions cover the
individual increase of the paid value and waiting time, as well as a cooperative strategy to build
common value classes.

Anonymity Set Without Modified Behavior. Table 7.6 shows an overview of the distri-
butions of anonymity set sizes. Increasing either epoch length or payment frequency results in
growing anonymity sets, as we would expect.

Table 7.6: Lower quartile, median and upper quartile for anonymity set sizes under varying fre-
quencies and epochs (active sizes rounded)

Frequency
Epoch 12.5 min 25 min 125 min

high: active 45.2k 45.3k 45.4k 83.6k 83.7k 83.8k 100k 100k 100k
active+value 1 1 3 1 1 4 1 1 4
normal: active 10k 10k 10.1k 20.2k 20.3k 20.3k 93.5k 93.6k 93.6k
active+value 1 1 3 1 1 3 1 1 4
low: active 6.2k 6.2k 6.3k 12.6k 12.6k 12.7k 54.9k 55k 55k
active+value 1 1 2 1 1 3 1 1 3

Comparing the effective size of anonymity sets with matching values to the overall number of users
(100 000) yields sobering results. The same holds for the number of simultaneously active users

111

epoch epoch epoch

Figure 7.3: Relative cost to not be unique under epoch times of 12.5, 25 and 125 minutes and
varying frequencies, i.e. additional cost

desired value

Figure 7.4: Waiting time until another payment with the same value occurs investigated for 5
million generated payments. 1200 represents that no such payment occurred in the generated
payment setting. For the high frequency waiting times up to 250 minutes and under low frequency
up to 1100 minutes occur.

given expected payment frequencies and epoch times at or below 25 minutes. Both decrease when
epoch times or payment frequencies are reduced, as expected.

The anonymity set sizes for the value-based sets clearly are unacceptably small, with about 3 000
entirely deanonymized payments on average. The number of active senders remains on the order
of tens of thousands of users, which may be considered acceptable as potential anonymity set
size.

Paying more against deanonymization. If a user would know all payment values of an epoch
and decide to increase their payment to reach the next higher value payed during the same epoch,
she could create a value based anonymity set of at least 2. The distribution of relative cost over
all additional costs > 0 is shown in Figure 7.3. The additional cost to ensure that at least two
users share the same value in most cases ranges around a few to a few dozen percent of the original
value. Since very high payment values do occur with small probability, there exist a few very costly
outliers.

Waiting longer against deanonymization. With perfect knowledge of all payments, another
strategy is to delay a transaction in order to find an anonymity set of at least size 2. We report
the necessary waiting time per user in Figure 7.4. The time to wait depends highly on the usage
frequency. But even with the highest usage frequency it remains over 2 hours for a substantial

112

anonymity set anonymity set anonymity set

se
t

si
ze

 s

e
t

si
ze

 s

e
t

si
ze

Figure 7.5: Anonymity set sizes with value buckets. The results demonstrate a great improvement
for all epoch times and frequencies when using the scaled buckets that at the same time also cause
lower relative cost than fixed bucket sizes.

part of the payments.

Introducing Value Buckets. Consider all users to participate in a cooperative strategy: Re-
ducing the number of possible payment values to choose from increases the chance of collisions,
and hence the expected anonymity set size.

A simple approach is to use fixed value buckets, for instance to round the values up to full 10-,
100-, or even 1 000-dollar amounts. In the last case of course a user wanting to buy something for
1 dollar would need to pay 1 000. Another option is to reduce the relative additional incurred cost,
i.e. the amount of money a user has to pay divided by the intended value. We hence investigate
two types of scaling buckets: 1) a cheap variant that limits the relative additional cost to 10%
of the original value and 2) a more expensive variant that limits the relative additional cost to
100% of the original value, but still achieves a much better relative cost than the above strategy
of rounding to full USD 1 000 amounts.

Our cheap scaling buckets assume the new value (vcheap) to be calculated from the original value
(vori) as follows:

vcheap =
⌈ vori

10blog10(vori)c−1

⌉
· 10blog10(vori)c−1

This means that all values up to USD 100 are rounded to full 1-dollar values, from 100 and 1 000
to full 10-dollar values, from 1 000 to 10 000 to full 100-dollar values and so on. The expensive
strategy reduces the number of buckets further, by scaling them to a magnitude higher values
(vexp), e.g. to full 10-dollar values between 1 and 100, etc., as follows:

vexp =
⌈ vori

10blog10(vori)c

⌉
· 10blog10(vori)c

The anonymity sets per epoch are shown in Figure 7.5. While some deanonymized payments re-
main (on average 27.4 (cheap), 1.96 (expensive)), the scaling buckets perform well with anonymity
set sizes of mostly at least 10 users - a huge improvement from the original values (nearly 3 000
deanonymized payments) and especially much better than fixed bucket sizes (still 63.7 deanonymized
payments for 1 000-dollar buckets). Thus, with scaling buckets there is hope for the value-based

113

1
A
B

C

None honest (real paths):

D: C

E: A

F: B

2

All honest:

1
A
B

C
D: A,B,C

E: A,B,C

F: A,B

2

One honest (1):

1
A
B

C
D: C

E: A,B

F: A,B

2

One honest (2):

1
A
B

C
D: A,C

E: A,C

F: B

2

One honest (worst case):

1
A
B

C
D: C

E: A,B
 or
 A,CF: B

2

Figure 7.6: Maximal (all nodes honest) and minimal anonymity sets (worst case node per path is
honest) illustrated.

anonymity sets, even though they of course are still rather small and should be used with cau-
tion.

7.2.5 Simulation for path-based multihop protocols

We then turn to path-based multihop protocols, and investigate the expected anonymity set size
given our privacy notion 2-(Sender-Receiver) Unlinkability. General information about sender-
receiver relationships and payment paths is too sparse to synthesize this data. We hence used real
world Ripple data for this study and validate our findings for the other anonymity sets with real
world data at the same time.

Setup and Preparation

Anonymity Sets. We use the anonymity sets from Section 7.2.4 and additionally introduce path-
based anonymity sets for 2-(Sender-Receiver) Unlinkability. 2-(Sender-Receiver) Unlinkability
requires that only two payments differ between the scenarios by exchanging the sender and receiver
pairs. For PCNs we even require that the payments meet at an honest node on the path. Thus, any
sender with whom a transaction can be exchanged this way is indistinguishable to the real sender
for an adversary. For our simulation, we are choosing a routing algorithm that does not include any
loops and hence by default use the modified version that does only consider alternatives without
a loop in the routing path. (We show the effect of including loops in Appendix D.2.2.)

Further, the anonymity sets for 2-(Sender-Receiver) Unlinkability depend on the adversary model
as the notion considers only paths with a common honest node. We will be looking at the two
(non-trivial) extreme cases below (as illustrated in Figure 7.6): (i) all nodes are honest and (ii)
exactly one node per payment path is honest. Thus the first gives us the maximal anonymity set
reachable for this setting. For the second case, we decide on the worst intermediate node, i.e. the
one with the least other payments, to be honest. Thus this is the minimal anonymity set (except
for the unprotected case when there is no honest node on the path, and the anonymity set trivially
only includes the real sender).

Setting. In addition to the epoch time of Section 7.2.4, we introduce another type of time slot:
the hop time as the delay per single hop. All payments that are initiated within a hop time slot and
are at the same intermediate node are considered to be mixed for the value and path anonymity
set. As there might be multiple intermediate hops on a path and we like the worst case time to
complete a payment to be similar to the one in the other setting, we decide on shorter hop times
than epoch times, but also vary them until both times are equal.

Data. We use Ripple payment data from January 2013 until August 2016, provided by [136].
Ripple [7] is a credit network [69, 51]. In a credit network participants allow other participants

114

a credit based on the trust between the entities. This results in a graph where vertices represent
participants and edge weights the allowed credit. Similar to Bitcoin, a publicly available global
ledger records the transactions and is updated upon consensus.

The dataset contains over 800 000 payments with sender, receiver, value and time stamp. Those
payments already have self-transactions filtered out. Further the data contains the payment channel
graph and updates for the graph over the same time interval, with graph updates missing for some
time spans. As there are on average only 25 payments per hour, we decide to increase time by a
factor of 1 000, i.e. each second is interpreted as a millisecond, to work with payment data that is
more realistic for current user behavior. Note that the number of payments per time varies greatly
from 6.19 to around 70 payments/minute later. We thus use the payments of the last 10 months
(October 2015 - August 2016) to avoid effects due to the novelty of the network in earlier years,
resulting in 52 payments/minute on average (see Table 7.5 for a comparison to current payment
behavior).

To generate a path for each payment, we calculate the shortest path between sender and receiver
that has enough capacity to allow for the current payment and update the capacities accordingly,
before looking at the next payment. This strategy results in nearly 238 000 successful payments
of which nearly 182 000 use at least one intermediate hop and the average number of intermediate
hops is 1.23 with a maximum of 10 intermediate hops.

Results

We quickly discuss the outcome of the non-path based cases for the Ripple data set, before we
investigate the influence of path-based restrictions.

Anonymity Sets Without Path Considerations. Evaluating the strategies from above on
the Ripple data without paths, we observe that the anonymity sets for active senders and scaled
value buckets for an epoch of 25 minutes are much smaller than for the generated data above (cmp.
the first three box plots of Figure 7.7).

Path-based Effects. With regards to the path-based approaches we want to ensure a total
processing time that roughly equals 25 minutes or less for each payment, as above. Given the
maximum path length of 10 hops in our experiment, we decided to set the hop time to 2 minutes
such that also payments with the maximum path length are completed on time. Despite this strict
choice, the path-based anonymity sets (ignoring the payment values) are surprisingly high, even
though there are only 1.23 intermediate nodes per payment path on average (cmp. box plots 4
and 5 in Figure 7.7). We gather that many payments are using few, popular intermediate nodes,
traversed by many simultaneous transactions. Indeed, depending on the hop time, as little as 12-18
nodes are needed to be honest in total, to have at least one honest node on every path in the given
data set.

Testing for the worst case and choosing the least suitable node on each path to be honest, this
number increased to 150 different honest nodes. Note that if there would always be exactly one
intermediate node on the path the min and max path-based anonymity sets would be equal. That
there is often only one intermediate hop is likely the reason for the good performance even of the
min path-based anonymity sets.

Note that, theoretically, the maximum path-based anonymity could yield higher anonymity sets
than counting simultaneous active senders: The epochs (used for the active senders) use a fixed
time window (e.g. 25 minutes), but the time window in which payments contribute to the maximum
path based anonymity sets might exceed the time a single payment needs (e.g. 25 minutes). The
reason is that a payment at the very end of its processing (say e.g. at its minute 20) may still
mix with a payment that has just begun processing. In this way both; payments starting up
to 25 minutes before the payment in question and those starting 25 minutes after it, potentially
contribute to the payment’s anonymity set. This effect is even amplified by the transitivity of the

115

anonymity set

se
t

si
ze

Figure 7.7: Hoptime of 2 minutes. The path-based sets are performing surprisingly well due to the
existence of few, very popular nodes at which the transactions get mixed. Leaking values however
limits the anonymity sets drastically.

hoptime: anonymity set

se
t

si
ze

Figure 7.8: Path anonymity set sizes for the scaled buckets with increasing hop times. As ex-
pected with higher hoptime, i.e. latency, the anonymity set sizes grow, however for the minimum
anonymity set sizes the numbers are still very small.

maximum path based anonymity set. However as the average path length is short in our data, we
do not observe such effects in Figure 7.7.

Let us consider both the path and value, as required for the weakest notion under investigation,
next. This naturally reduces the anonymity set size drastically, as seen above. Indeed, taking
the worst case node choice for each path, we observe that not even the expensive scaling bucket
strategy can effectively save the situation (cmp. Figure 7.7, ’scale exp + path min’). Only a very
small minority of transactions is effectively anonymized in this worst case scenario.

Finally, in Figure 7.8 we further investigate the effect of varying the hop times. The anonymity
sets grow as expected if higher latency is accepted. However even with tremendous latency (up to
16.67 hours for a 10 hop path) the average size of the minimum path based anonymity sets remains
as low as 3.

Summary. We observed that the expected anonymity set sizes given realistic assumptions are
unacceptably low for many of the systems. We hence investigated suitable strategies to improve the
situation. Our results show that delaying transactions may yield low benefit. Increasing payment
values to rounded classes on the other hand does not impose prohibitive additional cost with scaled
buckets, and helps to get closer to acceptable anonymity set sizes.

116

8. Conclusion

With the help of existing indistinguishability games and differential privacy, we defined an exten-
sive set of over 50 privacy goals for anonymous communication and compared them to create our
hierarchy of privacy notions. Indeed, that many goals are necessary as the protection that is re-
quired in different situations is extremely diverse (see Appendix A.6 for examples). Our definitions
counter the ambiguity and incomparability of many practically used privacy goals and allow for a
precise analysis of ACNs.

With this formal foundation, we were able to produce the following results:

1. We resolved naming conflicts around the informal protection goal of “sender anonymity” (Sec-
tion 3.8), which was mapped to our Sender Unobservability SO and also to our (considerably
weaker) Sender-Message Unlinkability SML in different related works.

2. We stated more precise privacy goals for and compared the assumed protection of different
existing performance bounds (Appendix B.1, especially Figure B.1). Precisely, the stated
performance overhead of the Trilemma is indeed not only necessary for the strong Sender
Unobservability SO goal, but already for Sender-Message Pair Unlinkability (SM)L, one of
the weakest notions in our hierarchy. Similarly, the overhead stated in the Dropping-Bound
is not only necessary for Communication Unobservability CO, the strongest notion of our
hierarchy, but already for Sender-Receiver Pair Unlinkability (SR)L, one of the weakest
notions.

3. We investigated ACNs regarding our notions to identify basic techniques and thereby learned
about their inner workings (Section 3.7 and Appendix A.9). During our investigations, we
found several vulnerabilities and attacks on existing networks:

• Deriving the path length in Sphinx1 (Section 5.2.1); Because of the identifiable instead
of random header padding, the exit relay can derive the length of the routing path from
the length of the padding.

• The malleability attack on Sphinx’2, the fixed Minx’, HORNET’s and Loopix’ Sender-
Receiver Pair Unlinkability (SR)L (Section 5.3.1); Because of the missing hop-by-hop
integrity protection of the payload, the adversary can modify the payload of the packet
when it is sent from her victim and recognize the delivery of the unusual message at the
adversarial receiver.

• The malleability attack on HORNET’s Sender-Message Pair Unlinkability (SM)L (Sec-
tion 5.3.1); Because the chosen encryption scheme does not bi-directionally distribute
errors, the above attacker can modify only a part of the payload – enough to recognize
the message as unusual – and learns the other part of the sender’s original message.

• Frequency attacks (SFL,RFL − P ′) on Loopix (Appendix A.9.4); Because communi-
cation frequencies are not padded to a maximum, the adversary can infer imbalances
between the frequencies in some extreme cases.

1To the best of our knowledge this flaw was only mentioned and corrected in the Sphinx imple-
mentation before: https://github.com/UCL-InfoSec/sphinx/blob/c05b7034eaffd8f98454e0619b0b1548a9fa0f42/
SphinxClient.py#L67

2(SR)L breaks in an unintended setting and in the intended setting senders and exits nodes can be linked.

117

• Attacks derived from the performance bounds (Section 4.3.1) allow further conclusions
about non-achieved notions for Tor, HORNET, Threshold-Mixes, Herd, Dicemix, Dis-
sent, Loopix, Riposte, Riffle and Vuvuzela. We stress however that (nearly all of) these
networks did not aim to achieve the attacked notions for the considered adversary mod-
els.

Motivated by the malleability attack, we found and corrected flaws in the underlying proof strategy
of Camenisch and Lysyanskaya in Chapter 5, as well as extended it for replies in Chapter 6.
Thereby we provide reusable, game based security properties for future work. With the help of
this foundation, we were further able to produce the following results:

1. We proved the adapted version of Sphinx from Beato et al. to be secure by showing our
game-based properties (Section 5.4). This version does however not support replies.

2. We provide two secure packet formats for repliable onion routing (Section 6.5 and 6.7).
Thereby, we solve the challenge of implicit payload protection, which arises from the combi-
nation of reply support and the malleability attack, with the help of SNARGs and updatable
encryption.

Beyond anonymous communication in Chapter 7, we supported proximity tracing applications, as
well as payment networks with a formal hierarchy of privacy goals and an initial investigation of
proposed solutions. For payments our study of real world data further gives first insights into the
expected anonymity set sizes, as well as proposes strategies to increase the value-based anonymity
sets.

In summary, we provide useful theoretical foundations for and beyond anonymous communication
and derive first practical contributions from them. The extended application of our formal ground-
work, both by analyzing the privacy of more protocols and by using our onion routing properties
for security proofs, is the most obvious direction of future research. Besides the mentioned tangible
outcomes, this thesis further represents an important step towards the complete understanding of
anonymous communication, which is an interesting, yet ambitious long-term objective for future
work.

More precisely, recall that the situation of anonymous communication is extremely complex. Ev-
ery solution offers a trade-off between multiple, non-linear dimensions: the privacy protection,
adversary, performance requirements, other security goals and environmental assumptions.

While we provide an extensive, in-depth investigation of privacy goals in Chapter 3, we still continue
to find extension possibilities even in this dimension (see [100]). Moreover, the other dimensions
are to the best of our knowledge not even understood on a comparable level. The adversary
model combines multiple dimensions in itself. An adversary might corrupt different parts of the
network, actively or passively for a short or longer time period and have further restrictions. A
large number of different adversarial models has thus potentially to be considered for each privacy
goal. Performance requirements in different use cases for communication are similarly diverse. For
example video calling requires a much lower latency than emailing and mobile phones offer only
especially limited resources. Additionally, other security goals, like availability or (a limited form
of) accountability, might be advisable for some situations. Environmental assumptions, like the
(non-)existence of a public key infrastructure or (secure) auxiliary protocols further influence the
applicable solutions.

Thus, even the problem space of anonymous communication is hard to describe completely with
the existing knowledge and formalization. Further, we are of course even more interested in the
part of the problem space for which it is actually possible to find solutions. Our investigation of
existing performance bounds in Chapter 4 provides an overview of the limited knowledge that we
currently have regarding the (im-)possibilities in this problem space. As the space is however that
large and complex, future work has much more to discover.

Naturally we are not only interested in discovering the parts for which solutions (possibly) exist,
but in the actual solution, i.e. the used techniques and the constructed networks for any concrete
point in the problem space. With our first consideration of basic building blocks against the global

118

passive adversary in Section 3.7, we provide initial insights for a small subspace of the complex
problem space.

The quest to understand this fascinating multifaceted problem and its solutions, is of course useful
to build better networks for a specific use case with the improved knowledge. Furthermore it
opens the door for more far-reaching changes in the anonymous communication research. If we
indeed sufficiently understand the problem space, corresponding solution techniques and how they
compose, we can exploit this knowledge to build assistance for the privacy (and security) proofs,
or even automate them. Thereby a new level of certainty and efficiency in designing secure and
private solutions can be reached.

Even further, the understanding of techniques and their composition might not only allow us to
find one static solution for each use case, but to build adaptive solutions. By switching some of
the employed protection techniques according to the users’ needs in their current environment, we
can optimally protect them while they communicate in our fast-paced world.

Taking a holistic view, not only on anonymous communication, but on all privacy enhancing
technologies and understanding their relations to each other is another major direction for future
research. If we can understand the relations between different areas of privacy research in detail,
we are able to transfer results between them. With our work on similar privacy definitions for
proximity tracing and payment systems in Chapter 7, as well as with our comparison of ACN
notions to existing physical layer security notions [106], we make the first steps in this direction.
Extending these connections, opens the door for a new understanding of the protection in each of
these areas and for privacy in general.

119

120

Bibliography

[1] Advanced Encryption Standard (AES). National Institute of Standards and Technology
(NIST), FIPS PUB 197, U.S. Department of Commerce, 2001.

[2] N. Amarasinghe, X. Boyen, and M. McKague. A survey of anonymity of cryptocurrencies.
In Australasian Computer Science Week Multiconference, 2019.

[3] N. Amarasinghe, X. Boyen, and M. McKague. The complex shape of anonymity in cryp-
tocurrencies: Case studies from a systematic approach. FC, 2021.

[4] N. Amarasinghe, X. Boyen, and M. McKague. The cryptographic complex-
ity of anonymous coins: A systematic exploration. Technical report, ePrint,
https://eprint.iacr.org/2021/036.pdf, 2021.

[5] M. Ando and A. Lysyanskaya. Cryptographic shallots: A formal treatment of repliable onion
encryption. eprint, https://eprint.iacr.org/2020/215.pdf, 2020.

[6] M. Ando, A. Lysyanskaya, and E. Upfal. On the complexity of anonymous communication
through public networks. arXiv preprint, arXiv:1902.06306, 2019.

[7] F. Armknecht et al. Ripple: Overview and outlook. Trust and Trustworthy Computing, 2015.

[8] E. D. Ayele. Analysis and deployment of the BitTorrent protocol for Community Ad-hoc
Networks. Technical report, TU Delft, 2011.

[9] M. Backes, I. Goldberg, A. Kate, and E. Mohammadi. Provably Secure and Practical Onion
Routing. In Computer Security Foundations, 2012.

[10] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi. Anoa: A framework for
analyzing anonymous communication protocols. Computer Security Foundations, 2013.

[11] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi. AnoA: A framework
for analyzing anonymous communication protocols. Journal of Privacy and Confidentiality,
2017.

[12] M. Backes, P. Manoharan, and E. Mohammadi. Tuc: Time-sensitive and modular analysis
of anonymous communication. In Computer Security Foundations, 2014.

[13] E. Balkovich, D. Prosnitz, A. Boustead, and S. C. Isley. Electronic Surveillance of Mobile
Devices. Rand Corporation, 2015.

[14] F. Beato, K. Halunen, and B. Mennink. Improving the sphinx mix network. Cryptology and
Network Security, 2016.

[15] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval. Key-privacy in public-key encryption.
Asiacrypt, 2001.

[16] M. Bellare, A. Boldyreva, L. Knudsen, and C. Namprempre. Online ciphers and the hash-cbc
construction. Crypto, 2001.

121

[17] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of security
for public-key encryption schemes. Crypto, 1998.

[18] A. Berke, M. Bakker, P. Vepakomma, R. Raskar, K. Larson, and A. S. Pentland. Assessing
Disease Exposure Risk with Location Data: A Proposal for Cryptographic Preservation of
Privacy. Technical Report arXiv:2003.14412 [cs], 2020.

[19] R. Berman, A. Fiat, M. Gomulkiewicz, M. Klonowski, M. Kutylowski, T. Levinboim, and
A. Ta-Shma. Provable unlinkability against traffic analysis with low message overhead.
Journal of Cryptology, 2015.

[20] B. Bernabe et al. Privacy-preserving solutions for blockchain: Review and challenges. IEEE
Access, 2019.

[21] O. Berthold, H. Federrath, and S. Köpsell. Web mixes: A system for anonymous and unob-
servable internet access. In Designing privacy enhancing technologies, 2001.

[22] W. Beskorovajnov, F. Dörre, G. Hartung, A. Koch, J. Müller-Quade, and T. Strufe. Contra
corona: Contact tracing against the coronavirus by bridging the centralized-decentralized
divide for stronger privacy. ePrint, https://eprint.iacr.org/2020/505.pdf, 2020.

[23] M. Bhargava and C. Palamidessi. Probabilistic anonymity. In Concurrency Theory, 2005.

[24] N. Bitansky et al. From extractable collision resistance to succinct non-interactive arguments
of knowledge, and back again. ITCS, 2012.

[25] M. R. Bloch and J. Barros. Physical Layer Security From Information Theory to Security
Engineering. Cambridge University Press, 2011.

[26] J.-M. Bohli and A. Pashalidis. Relations among privacy notions. TISSEC, 2011.

[27] D. Boneh, K. Lewi, H. Montgomery, and A. Raghunathan. Key homomorphic prfs and their
applications. Crypto, 2013.

[28] D. Boneh, E. Shen, and B. Waters. Strongly unforgeable signatures based on computational
diffie-hellman. PKC, 2006.

[29] B. Bünz, S. Agrawal, M. Zamani, and D. Boneh. Zether: Towards privacy in a smart contract
world. In FC, 2020.

[30] C. Cadwalladr and E. Graham-Harrison. Revealed: 50 million facebook profiles harvested
for cambridge analytica in major data breach. The guardian, 2018.

[31] J. Camenisch and A. Lysyanskaya. A formal treatment of onion routing. Crypto, 2005.

[32] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols.
FOCS, 2001.

[33] R. Canetti, H. Krawczyk, and J. B. Nielsen. Relaxing chosen-ciphertext security. CRYPTO,
2003.

[34] R. Canetti, A. Trachtenberg, and M. Varia. Anonymous collocation discovery:harnessing
privacy to tame the coronavirus. Technical Report arXiv:2003.13670, 2020.

[35] C. Castelluccia, N. Bielova, A. Boutet, M. Cunche, C. Lauradoux, D. L. Métayer,
and V. Roca. Desire: A third way for a european exposure notification system.
Technical report, 2020. https://github.com/3rd-ways-for-EU-exposure-notification/project-
DESIRE/blob/master/DESIRE-specification-EN-v1 0.pdf [Online; last accessed April-2020].

[36] D. Catalano, M. Di Raimondo, D. Fiore, R. Gennaro, and O. Puglisi. Fully non-interactive
onion routing with forward secrecy. International journal of information security, 2013.

122

[37] D. Catalano, D. Fiore, and R. Gennaro. A certificateless approach to onion routing. Journal
of Information Security, 2017.

[38] Chainalysis: The blockchain analysis company. https://www.chainalysis.com, 2014.

[39] D. Chaum. Blind signatures for untraceable payments. Advances in cryptology, 1983.

[40] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of cryptology, 1988.

[41] D. Chaum, F. Javani, A. Kate, A. Krasnova, J. de Ruiter, A. T. Sherman, and D. Das. cMix:
Anonymization by high-performance scalable mixing. USENIX Security, 2016.

[42] D. L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
munications of the ACM, 1981.

[43] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig. HORNET: High-speed onion
routing at the network layer. ACM CCS, 2015.

[44] C. Chen, D. E. Asoni, A. Perrig, D. Barrera, G. Danezis, and C. Troncoso. TARANET:
Traffic-Analysis Resistant Anonymity at the NETwork layer. IEEE EuroS&P, 2018.

[45] H. Chen, Y. Xiao, X. Hong, F. Hu, and J. Xie. A survey of anonymity in wireless communi-
cation systems. Security and Communication Networks, 2009.

[46] H. Cho, D. Ippolito, and Y. W. Yu. Contact Tracing Mobile Apps for COVID-19: Privacy
Considerations and Related Trade-offs. Technical Report arXiv:2003.11511, 2020.

[47] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval. In IEEE
FOCS, 1995.

[48] M. Conti et al. A survey on security and privacy issues of bitcoin. IEEE Communications
Surveys & Tutorials, 2018.

[49] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte: An anonymous messaging system
handling millions of users. IEEE S&P, 2015.

[50] P. Cuff and L. Yu. Differential privacy as a mutual information constraint. ACM SIGSAC,
2016.

[51] P. Dandekar et al. Strategic formation of credit networks. WWW, 2012.

[52] G. Danezis and I. Goldberg. Sphinx: A compact and provably secure mix format. IEEE
S&P, 2009.

[53] G. Danezis and B. Laurie. Minx: A simple and efficient anonymous packet format. WPES,
2004.

[54] D. Das et al. Anonymity trilemma: Strong anonymity, low bandwidth overhead, low latency-
choose two. IEEE S&P, 2018.

[55] D. Das et al. Not all is lost for anonymity - but quite a lot is. coordination among users can
help anonymity. HotPETs, 2019.

[56] Y.-A. de Montjoye et al. Unique in the Crowd: The privacy bounds of human mobility. Sci.
Rep, 2013.

[57] J. P. Degabriele and M. Stam. Untagging Tor: a formal treatment of onion encryption.
Eurocrypt, 2018.

[58] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion router.
Technical report, Naval Research Lab Washington DC, 2004.

123

https://www.chainalysis.com

[59] C. Dwork. Differential privacy. Colloquium on Automata, Languages and Programming
(ICALP), 2006.

[60] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, ourselves:
Privacy via distributed noise generation. Eurocrypt, 2006.

[61] M. Edman and B. Yener. On anonymity in an electronic society: A survey of anonymous
communication systems. ACM CSUR, 2009.

[62] N. S. Evans, R. Dingledine, and C. Grothoff. A practical congestion attack on tor using long
paths. USENIX Security, 2009.

[63] P. Fauzi et al. Quisquis: A new design for anonymous cryptocurrencies. AsiaCrypt, 2019.

[64] J. Feigenbaum, A. Johnson, and P. Syverson. A model of onion routing with provable
anonymity. Financial Cryptography and Data Security, 2007.

[65] J. Feigenbaum, A. Johnson, and P. Syverson. Anonymity analysis of onion routing in the
universally composable framework. Workshop on Provable Privacy, 2012.

[66] J. Feigenbaum, A. Johnson, and P. Syverson. Probabilistic analysis of onion routing in a
black-box model. ACM TISSEC, 2012.

[67] E. Foundation. Ethereum Project. https://www.ethereum.org/, 2021. [Online; last accessed
May-2021].

[68] G. Fuchsbauer. Subversion-zero-knowledge SNARKs. PKC, 2018.

[69] R. Fugger. Money as ious in social trust networks & a proposal for a decentralized currency
network protocol. http://ripple.sourceforge.net, 2004. [Online; last accessed May-2021].

[70] A. Fujioka, Y. Okamoto, and T. Saito. Security of sequential multiple encryption. Latincrypt,
2010.

[71] T. E. Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Information Theory, 1985.

[72] N. Gelernter and A. Herzberg. On the limits of provable anonymity. WPES, 2013.

[73] D. Genkin, D. Papadopoulos, and C. Papamanthou. Privacy in decentralized cryptocurren-
cies. Commun. ACM, 2018.

[74] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Hiding routing information. workshop
on information hiding, 1996.

[75] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of computer and system
sciences, 1984.

[76] M. Green and I. Miers. Bolt: Anonymous payment channels for decentralized currencies.
ACM CCS, 2017.

[77] J. Groth. On the size of pairing-based non-interactive arguments. Eurocrypt, 2016.

[78] J. Groth and M. Maller. Snarky signatures: Minimal signatures of knowledge from
simulation-extractable SNARKs. Crypto, 2017.

[79] J. Y. Halpern and K. R. O’Neill. Anonymity and Information Hiding in Multiagent Systems.
Journal of Computer Security, 2005.

[80] H. Halpin and M. Piekarska. Introduction to security and privacy on the blockchain. Eu-
roS&P Workshops, 2017.

124

[81] E. Heilman et al. Tumblebit: An untrusted bitcoin-compatible anonymous payment hub.
NDSS, 2017.

[82] A. Hevia and D. Micciancio. An indistinguishability-based characterization of anonymous
channels. PETS, 2008.

[83] D. J. D. Hughes and V. Shmatikov. Information hiding, anonymity and privacy: A modular
approach. J. Comput. Secur., 2004.

[84] G. Kappos, H. Yousaf, M. Maller, and S. Meiklejohn. An empirical analysis of anonymity in
zcash. In USENIX Security, 2018.

[85] G. Kappos, H. Yousaf, A. Piotrowska, S. Kanjalkar, S. Delgado-Segura, A. Miller, and
S. Meiklejohn. An empirical analysis of privacy in the lightning network. FC, 2021.

[86] G. Karame and S. Capkun. Blockchain security and privacy. IEEE S&P, 2018.

[87] A. Kate, G. M. Zaverucha, and I. Goldberg. Pairing-based onion routing with improved
forward secrecy. ACM TISSEC, 2010.

[88] T. Kerber et al. Ouroboros crypsinous: Privacy-preserving proof-of-stake. IEEE S& P, 2019.

[89] M. Klooß, A. Lehmann, and A. Rupp. (R)CCA secure updatable encryption with integrity
protection. Eurocrypt, 2019.

[90] A. E. Kosba et al. How to use snarks in universally composable protocols. ePrint,
http://eprint.iacr.org/2015/1093, 2015.

[91] P. Koshy, D. Koshy, and P. McDaniel. An analysis of anonymity in bitcoin using p2p network
traffic. FC, 2014.

[92] C. Kuhn, M. Beck, S. Schiffner, E. Jorswieck, and T. Strufe. On privacy notions in anonymous
communication. In arXiv, https://arxiv.org/abs/1812.05638, 2018.

[93] C. Kuhn, M. Beck, S. Schiffner, E. Jorswieck, and T. Strufe. On privacy notion in anonymous
communication. PETS, 2019.

[94] C. Kuhn, M. Beck, and T. Strufe. Breaking and (Partially) Fixing Provably Secure Onion
Routing. arXiv, https://arxiv.org/abs/1910.13772, 2019.

[95] C. Kuhn, M. Beck, and T. Strufe. Breaking and (Partially) Fixing Provably Secure Onion
Routing. IEEE S&P, 2020.

[96] C. Kuhn, M. Beck, and T. Strufe. Covid notions: Towards formal definitions–and documented
understanding–of privacy goals and claimed protection in proximity-tracing services. Elsevier
Journal: Online Social Networks and Media, 2021.

[97] C. Kuhn, D. Hofheinz, A. Rupp, and T. Strufe. Onion routing with replies. Asiacrypt, 2021.

[98] C. Kuhn, D. Hofheinz, A. Rupp, and T. Strufe. Onion routing with replies. eprint,
https://eprint.iacr.org/2021/1178, 2021.

[99] C. Kuhn, F. Kitzing, and T. Strufe. Sok on performance bounds in anonymous communica-
tion. WPES, 2020.

[100] C. Kuhn, M. Noppel, C. Wressnegger, and T. Strufe. Plausible deniability for anonymous
communication. WPES, 2021.

[101] A. Kumar et al. A traceability analysis of monero’s blockchain. ESORICS, 2017.

[102] K. Kurosawa and Y. Desmedt. A new paradigm of hybrid encryption scheme. crypto, 2004.

125

[103] A. Kwon, D. Lazar, S. Devadas, and B. Ford. Riffle. PETS, 2016.

[104] S. Le Blond, D. Choffnes, W. Caldwell, P. Druschel, and N. Merritt. Herd: A scalable, traffic
analysis resistant anonymity network for voip systems. ACM SIGCOMM, 2015.

[105] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and
l-diversity. Data Engineering, 2007.

[106] P.-H. Lin, C. Kuhn, T. Strufe, and E. A. Jorswieck. Physical layer privacy in broadcast
channels. IEEE Workshop on Information Forensics and Security (WIFS), 2019.

[107] H. Lipmaa. Simulation-extractable SNARKs revisited. eprint,
https://eprint.iacr.org/2019/612, 2019.

[108] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam. l-diversity: Privacy
beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data (TKDD), 2007.

[109] G. Malavolta et al. Concurrency and privacy with payment-channel networks. ACM CCS,
2017.

[110] G. Malavolta et al. Silentwhispers: Enforcing security and privacy in decentralized credit
networks. NDSS, 2017.

[111] S. Mauw, J. H. Verschuren, and E. P. de Vink. A formalization of anonymity and onion
routing. ESORICS, 2004.

[112] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker, and
S. Savage. A fistful of bitcoins: Characterizing payments among men with no names. IMC,
2013.

[113] S. Micali. CS proofs (extended abstracts). FOCS, 1994.

[114] P. Moreno-Sanchez et al. Privacy preserving payments in credit networks. NDSS, 2015.

[115] P. Moreno-Sanchez, T. Ruffing, and A. Kate. Pathshuffle: Credit mixing and anonymous
payments for ripple. PETS, 2017.

[116] P. Moreno-Sanchez, M. B. Zafar, and A. Kate. Listening to whispers of ripple: Linking
wallets and deanonymizing transactions in the ripple network. In PoPETS, 2016.

[117] M. Möser and R. Böhme. The price of anonymity: empirical evidence from a market for
bitcoin anonymization. Journal of Cybersecurity, 2017.

[118] M. Möser et al. An empirical analysis of traceability in the monero blockchain. Technical
Report 1704.04299, arXiv, 2017.

[119] S. J. Murdoch and G. Danezis. Low-cost traffic analysis of tor. IEEE S&P, 2005.

[120] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report, Manubot,
2019.

[121] A. Narayanan, E. Shi, and B. I. P. Rubinstein. Link prediction by de-anonymization: How
We Won the Kaggle Social Network Challenge. Joint Conference on Neural Networks, 2011.

[122] Nym—building the next generation of privacy infrastructure. https://nymtech.net/, 2020.
[Online; last accessed May-2021].

[123] S. Oya, C. Troncoso, and F. Pérez-González. Do dummies pay off? limits of dummy traffic
protection in anonymous communications. PETS, 2014.

[124] K. Peng. A general and efficient countermeasure to relation attacks in mix-based e-voting.
Int. J. Inf. Secur., 2011.

126

https://nymtech.net/

[125] PePP-PT e.V. i.Gr. Pepp-pt ntk high-level overview. Technical report, 2020.
https://github.com/pepp-pt/pepp-pt-documentation/blob/master/PEPP-PT-high-level-
overview.pdf [Online; last accessed April-2020].

[126] A. Pfitzmann and M. Hansen. A terminology for talking about privacy by data minimiza-
tion: Anonymity, unlinkability, undetectability, unobservability, pseudonymity, and identity
management. 2010.

[127] A. Pfitzmann and M. Waidner. Networks without user observability. Computers & Security,
1987.

[128] A. M. Piotrowska, J. Hayes, T. Elahi, S. Meiser, and G. Danezis. The loopix anonymity
system. USENIX Security, 2017.

[129] D. J. Pohly and P. McDaniel. Modeling Privacy and Tradeoffs in Multichannel Secret Sharing
Protocols. IEEE/IFIP DSN, 2016.

[130] P. H. Potgieter. An introduction to new media for South African students. 2009.

[131] PRIVATICS team Inria and Fraunhofer AISEC. Robust and privacy-preserving prox-
imity tracing protocol. Technical report, 2020. https://github.com/ROBERT-proximity-
tracing/documents [Online; last accessed April-2020].

[132] F. Reid and M. Harrigan. An analysis of anonymity in the bitcoin system. Security and
Privacy in Social Networks, 2013.

[133] J. Ren and J. Wu. Survey on anonymous communications in computer networks. Computer
Communications, 2010.

[134] M. Romiti et al. Cross-layer deanonymization methods in the lightning protocol. FC, 2021.

[135] D. Ron and A. Shamir. Quantitative Analysis of the Full Bitcoin Transaction Graph. FC,
2013.

[136] S. Roos and P. Moreno-Sanchez. Ripple Data Set of Speedy Murmurs.
https://crysp.uwaterloo.ca/software/speedymurmurs/download.php/, 2021. [Online;
last accessed May-2021].

[137] T. Ruffing, P. Moreno-Sanchez, and A. Kate. P2p mixing and unlinkable bitcoin transactions.
NDSS, 2017.

[138] E. B. Sasson et al. Zerocash: Decentralized anonymous payments from bitcoin. IEEE S&P,
2014.

[139] S. A. Schneider and A. Sidiropoulos. CSP and anonymity. ESORICS, 1996.

[140] A. Serjantov, R. Dingledine, and P. Syverson. From a trickle to a flood: Active attacks on
several mix types. Information Hiding, 2002.

[141] Secure hash algorithm-3 (sha-3). National Institute of Standards and Technology (NIST),
FIPS PUB 202, U.S. Department of Commerce, 2015.

[142] E. Shimshock, M. Staats, and N. Hopper. Breaking and provably fixing minx. PETS, 2008.

[143] F. Shirazi, M. Simeonovski, M. R. Asghar, M. Backes, and C. Diaz. A survey on routing in
anonymous communication protocols. ACM CSUR, 2018.

[144] D. S. Sidhu. The chilling effect of government surveillance programs on the use of the internet
by muslim-americans. U. Md. LJ Race, Religion, Gender & Class, 2007.

[145] M. Spagnuolo, F. Maggi, and S. Zanero. ”bitiodine: Extracting intelligence from the bitcoin
network”. FC, 2014.

127

[146] C. Stachl, Q. Au, R. Schoedel, S. D. Gosling, G. M. Harari, D. Buschek, S. T. Völkel,
T. Schuwerk, M. Oldemeier, T. Ullmann, et al. Predicting personality from patterns of
behavior collected with smartphones. Proceedings of the National Academy of Sciences,
2020.

[147] S. Steinbrecher and S. Köpsell. Modelling unlinkability. Privacy Enhancing Technologies
Workshop (PET), 2003.

[148] H. Sun. The capacity of anonymous communications. IEEE Transactions on Information
Theory, 2018.

[149] L. Sweeney. k-anonymity: A model for protecting privacy. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 2002.

[150] P. F. Syverson and S. G. Stubblebine. Group principals and the formalization of anonymity.
Formal Methods, 1999.

[151] F. Tramèr, D. Boneh, and K. Paterson. Remote side-channel attacks on anonymous trans-
actions. In USENIX Security, 2020.

[152] C. Troncoso et al. Decentralized privacy-preserving proximity tracing.
https://github.com/DP-3T/documents/blob/master/DP3T White Paper.pdf, Version:
April 10, 2020. [Online; last accessed April-2020].

[153] F. Tschorsch. Onions in the Queue: An Integral Networking Perspective on Anonymous
Communication Systems. PhD thesis, Humboldt-Universität zu Berlin, 2016.

[154] J. Van Den Hooff et al. Vuvuzela: Scalable private messaging resistant to traffic analysis.
ACM SOSP, 2015.

[155] S. Vaudenay. Analysis of DP3T. Technical Report 2020/399, eprint,
https://eprint.iacr.org/2020/399, 2020.

[156] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson. Dissent in numbers: Making
strong anonymity scale. USENIX Security, 2012.

[157] R. Zhang, R. Xue, and L. Liu. Security and privacy on blockchain. ACM Comput. Surv.,
2019.

128

A. Details to Notions

A.1. Options for Notions

A.1.1 Protocol-dependent: Sessions

To model sessions, we set the auxiliary information of a communication to the session ID (sess):
aux = sess. However, as the adversary can choose this auxiliary information, we need to ensure
that the scenarios cannot be distinguished just because the session identifier is observed. Hence,
we definine sess to be a number in most communications. Only for the session notions, we require
special session IDs that correspond to the current challenge Ψ and stage x in all challenge rows:
(x,ChΨ). In this way, they have to be the same in both scenarios and a concrete sess is only used
in one stage of one challenge.

The session identifier that is handed to the ACN protocol model is a random number that is
generated by the challenger when a new sess is seen. Hence, neither leaking (it is a random
number) nor linking session identifiers (it will be picked new and statistically independent for
every challenge and stage) will give the attacker an advantage.

We formalize this in the following definition, where we also use ‘ ’ to declare that this part of a
tuple can be any value.1

Definition 38 (Sessions). Let x be the stage and ua0 , u
a
1 , u
′a
0 , u

′a
1 be the senders and receivers of

the first challenge row of this challenge Ψ and stage in instance a ∈ {0, 1}. Property sess is met,
iff for all a ∈ {0, 1}:

sess : ∀(ra0 , ra1) ∈ CR(ra0 , ra1) : (ra0 , ra1) = (ua0 , u′a0 , , (x,ChΨ)), (ua1 , u′a1 , , (x,ChΨ))

As not all protocols use sessions, we allow to add sessions as an option to the notion X abbreviated
by Xs.

A.1.2 Adversary Model: Corruption

The different corruption options have implications on the challenger, when a corrupt query or a
batch query arrives.

Check on corrupt queries. This check depends on whether the user corruption is adaptive,
static, or not allowed at all. The default case for notion X is adaptive corruption, i.e. the adversary
can corrupt honest users at any time. With static corruption Xc− , the adversary has to corrupt a
set of users before she sends her first batch. The third option, Xc0 , is that no user corruption is
allowed. We denote the set of corrupted users as Û .

Definition 39 (Corruption: Check on Corrupt Query). Let Û be the set of already corrupted
users, u the user in the corrupt query and the bit subsequent be true iff at least one batch query

1E.g. ∃(u,m,) ∈ r will be true iff ∃u′ : ∃(u,m, u′) ∈ r.

129

happened. The following properties are met, iff:

corrstatic : subsequent =⇒ u ∈ Û corrno :⊥ corradaptive : >

Check on batch queries. In reality for most ACNs the privacy goal can be broken for corrupted
users, e.g. a corrupted sender has no unobservability. Therefore, we need to assure that the adver-
sary cannot distinguish the scenario because the behavior of corrupted users differs. This is done
by assuring equal behavior corrce or banning such users from communicating corrcsr , corrcs , corrcr .

Definition 40 (Corruption: Check on Batch Query). The following properties are met, iff for all
a ∈ {0, 1}:

corrcsr : ∀(u, u′,m, aux) ∈ ra0 ∪ ra1 : u 6∈ Û ∧ u′ 6∈ Û
corrcs : ∀(u, u′,m, aux) ∈ ra0 ∪ ra1 : u 6∈ Û
corrcr : ∀(u, u′,m, aux) ∈ ra0 ∪ ra1 : u′ 6∈ Û
corrce : ∀û ∈ Û : ra0i = (û, ,m,) =⇒ ra1i = (û, ,m,) ∧ ra0i = (, û,m,) =⇒ ra1i = (, û,m,)

Of course user corruption is not the only important part of an adversary model. Other adversarial
capabilities can be adjusted with other parts of our framework (like the corruption of other parts
of the ACN with protocol queries).

A.1.3 Easier Analysis: Quantification

Challenge Complexity. Example: Consider Alice using a protocol, that achieves SO for one
challenge row (SOCR1), but not for two (SOCR2). This means in the case that Alice only communi-
cates once, the adversary is not able to distinguish Alice from any other potential sender Charlie.
However, if Alice communicates twice the regime might distinguish her existence from the existence
of some other user, e.g. by using an intersection attack.

To quantify how different the scenarios can be, we add the concept of challenge complexity. Chal-
lenge complexity is measured in Challenge rows, the pairs of communications that differ in the
two scenarios as defined earlier. c is the maximal allowed number of challenge rows in the game.
Additionally, we add the maximal allowed numbers of challenge rows per challenge #cr as option
to a notion X with XCR#cr .
Definition 41 (Challenge Complexity). Let #CR be the number of challenge rows in this challenge
so far. We say that the following property is met, iff:

CR#cr :#CR ≤ #cr

Challenges Cardinality. So far, our definitions focused on one challenge. We now bound the
number of challenges to n, as the adversary potentially gains more information the more challenges
are played. While challenge complexity defines a bound on the total number of differing rows within
a single challenge, cardinality bounds the total number of challenges. Communications belonging
to a challenge are identified by the challenge number Ψ, which has to be between 1 and n to be
valid. The challenge number is a part of the auxiliary information of the communication and is
only used by the challenger, not by the protocol model.

This dimension of quantification can be useful for analysis, since for certain assumptions the privacy
of the n-challenge-case can be bounded in the privacy of the single-challenge-case as we will discuss
in the next section.

130

Table A.1: Definition of notions including the options; for all notions X
Notion including option Definition
Xs Properties of X ∧ sess
Xce , Xcsr etc. ∧corrce , ∧corrcsr etc.
XCR#cr Properties of X ∧ CR#cr

A.1.4 Capturing Different Adversaries

Adversary Classes. Adversary classes are PPT algorithms that can modify and filter all in-
and outputs from/to the adversary. Adversary classes C can be included into our framework in
exactly the same way: to wrap the adversary A. Instead of sending the queries to Ch, A sends the
queries to C, which can modify and filter them before sending them to Ch. Similarly, the answers
from Ch are sent to C and possibly modified and filtered before sent further to A. Adversary
classes that fulfill reliability, alpha-renaming and simulatability (see [11] for definitions) are called
single-challenge reducible. For such adversary classes it holds that every protocol Π that is (c, ε, δ)-
X for C(A), is also (n · c, n · ε, n · εnεδ)-X for C(A). Even though our framework extends AnoA’s
in multiple ways, the proof for multi-challenge generalization of AnoA is independent from those
extensions and still applies to our framework (see Appendix A.5.3).

Note that since the adversary class C is only a PPT algorithm, C(A) still is a PPT algorithm
and hence, a possible adversary against X when analyzed without an adversary class. So, while
adversary classes can help to restrict the capabilities of the adversary, results shown in the case
without an adversary class carry over.

A.2. Challenger
This section describes the queries to the challenger Ch(Π, X, c, n, b). Pseudocode of our challenger
is shown in Appendix A.3.

Batch Query. The batches r0, r1 that the adversary chooses for the two scenarios are represented
in batch queries. When the challenger receives a batch query, it first checks if their challenge
number Ψ is valid, i.e. Ψ ∈ {1, . . . , n}. Further, the challenger validates the communications that
would be input to Π for b = 0 and b = 1 as explained below. If the game is not aborted so far,
the challenger retrieves or creates the current state s of the challenge Ψ, which stores information
to calculate the properties. Afterwards it checks if the allowed total number of challenge rows c is
met. If all criteria are met so far, it checks that the properties of the privacy notion X are met
by using the current state of the challenge s, the set of corrupted users Û , the instances for both
scenarios r0

a, ra1, a ∈ {0, 1}. Finally, it runs the instance belonging to the challenge bit b of this
game and the for this challenge randomly chosen instance bit a, if the properties are matched.
Otherwise, it returns ⊥ and aborts the experiment. Running the scenario in the ACN protocol
returns information that is forwarded to the adversary (or adversary class). This information is
what an adversary is assumed to be able to observe.

Corrupt Query. Corrupt queries represent adaptive, momentary corruption of users (senders or
receivers). If the corrupt query is valid, the challenger forwards it to the ACN protocol. The ACN
protocol returns the current state of the user to the challenger, who forwards it to the adversary.
Active attacks based on corruption are realized with protocol queries if the protocol model allows
for them.

Protocol Query. Protocol queries allow the adversary e.g. to compromise parts of the network
(not the users), set parameters of the ACN protocol or use other functionalities modeled in the
protocol model, like e.g. active attacks. The meaning and validity of those queries is specific to
the analyzed ACN protocol.

Switch Stage Query. If this query occurs and it is allowed, i.e. the notion contains a relevant
property, the stage is changed from 1 to 2.

Validate Communications. If the analyzed ACN protocol specifies restrictions of senders and

131

receiver-message pairs, their validity is checked by this function.

Run Protocol. Run protocol first creates a new random session identifier if there is not already
one for the adversary chosen session with the extension ID. This is done to ensure that the
ACN protocol is not broken only because the session identifier is leaked. Afterwards it passes the
communications to the ACN protocol formalization.

Remark to simple properties and instances. In case the notion only uses simple properties, the
challenger will pick a = 0 and check the properties for r1j = r0

1j
and r0j = r0

0j
. In case the

notion uses a combination of simple and complex properties, the challenger will check the simple
properties for any pair r1j = ra1 j and r0j = ra

′

0 j
resulting by any a, a′ ∈ {0, 1}.

A.3. Notions in Pseudocode

Algorithms 1 and 2 describe the challenger and thereby also the notions and properties in detail.

CalcNewState always calculates the states for all user roles (senders and receivers). This is for
improved readability. It would be sufficient to calculate the parts of the state needed for the current
notion.

For the simple properties checkFor uses s0
bk

from ssender resp. s′0bk from srec to calculate Ub, Qb, Pb
and Hb and compares them like in Definition 8. For the complex properties the senders and
receivers of the first challenge row are stored in the users-part and the current stage in the stage-
part of s. With this complex properties are computed as stated in Definition 10. Further, for the
sessions-aspect the session-part of the state is set to ⊥ if another sender-receiver-pair is used. With
this and the users− and stage-information the Definition 38 can be checked. For the corruption it
gets all the required information direct as input and can check it like defined in Definition 40. For
the challenge complexity the number of challenge rows of this challenge is counted in the cr-part
of the state and hence, Definition 41 can be calculated.

A.4. Additional Tables and Figure

Figure A.1: Our hierarchy with the mapping to other works (Bohli’s, AnoA, Hevia’s, Gelernter’s
framework, Loopix’s ACN and new notions)

132

Algorithm 1: Challenger Ch(Π, X, c, n, b)
Û = ∅
stage = 1
Upon query (Batch, r0

0, r
1
0, r

0
1, r

1
1,Ψ)

if Ψ /∈ {1, . . . , n} then
output ⊥

if Ψ ∈ T then
Retrieve s := sΨ

else
s := initializeState
if X uses only simple properties then

a← 0
else

a←R {0, 1}
add Ψ to T

if ¬V alidate(r) then
output ⊥

Compute ct = ct + |CR(r0
0, r

1
0, r

0
1, r

1
1)|

if ct > c then
output ⊥

s′ = calculateNewState(stage, s, r0
0, r

1
0, r

0
1, r

1
1))

if checkFor(X,Ψ, s′, Û , r0 = (r0
0, r

1
0), r1 = (r0

1, r
1
1)) then

(r, sΨ)← (rab , s
′)

else
output ⊥

Store sΨ
RunProtocol (r)

Upon query (Protocol, x)
if x allowed then

Send x to Π
Upon query (Corrupt, u)

if X= X ′c0 (X ′ ∈ Privacy notions) then
output ⊥

if X= X ′c− (X ′ ∈ Privacy notions) and a batch query occurred before and u /∈ Û then
output ⊥

Û= Û ∪ {u}
Send internal state of u to A

Upon query (SwitchStage)
if ¬X includes TS or TR then

output ⊥
stage = 2

Validate (r0
0 = (S0

0i , R
0
0i ,m

0
0i , aux

0
0i)i∈{1,...,l}, r

1
0, r

0
1, r

1
1)

for r = (S,R,m, aux) ∈ {ra
′

b′ | a
′, b′ ∈ {0, 1}} do

if ¬V alidate(S,R,m) then
output FALSE

output TRUE
Run Protocol (r = (Si, Ri,mi, auxi)i∈{1,...,l})

for ri ∈ r do
if auxi = (sessioni, IDi) then

if 6 ∃y : (session, y, IDi) ∈ Si then
y′ ← {0, 1}k
Store (session, y′, ID) in Si

else
y′ := y from (session, y, IDi) ∈ Si

Run Π on ri with session ID y′

Forward responses sent by Π to A
else

Run Π on ri
Forward responses sent by Π to A

133

Algorithm 2: State Management
initializeState

s = (1, 1, (s̃, s̃, s̃, s̃, r̃, r̃, r̃, r̃), 0, ∅, ∅)
return s

calcNewState (newStage, s = (stage, session, users, cr, ssender = (L0
0i , L

1
0i , L

0
1i , L

1
1i)i∈{1,...,k−1},

srec = (L′00i , L
′1
0i , L

′0
1i , L

′1
1i)i∈{1,...,k−1}), r0

0 = (S0
0i , R

0
0i ,m

0
0i , aux

0
0i)i∈{1,..,l},

r1
0 = (S1

0i , R
1
0i ,m

1
0i , aux

1
0i)i∈{1,..,l}, r

0
1 = (S0

1i , R
0
1i ,m

0
1i , aux

0
1i)i∈{1,..,l}),

r1
1 = (S1

1i , R
1
1i ,m

1
1i , aux

1
1i)i∈{1,..,l})

for a ∈ {0, 1} do
for b ∈ {0, 1} do

Labk = {(u,M)
∣∣ M = ∪j:Sa

bj
=um

a
bi
}

L′abk = {(u,M)
∣∣ M = ∪j:Ra

bj
=um

a
bi
}

cr = cr + |CR(r0
0, r

1
0, r

0
1, r

1
1)|

if users=(s̃, s̃, s̃, s̃, r̃, r̃, r̃, r̃) ∧ cr > 0 then
((S0

0 , R
0
0, ,), (S1

0 , R
1
0, ,), (S0

1 , R
0
, ,), (S1

1 , R
1
1, ,), . . .) = CR(r0

0, r
1
0, r

0
1, r

1
1)

users= (S0
0 , S

1
0 , S

0
1 , S

1
1 , R

0
0, R

1
0, R

0
1, R

1
1)

if users= (S0
0 , S

1
0 , S

0
1 , S

1
1 , R

0
0, R

1
0, R

0
1, R

1
1) ∧∃(r0

0, r
1
0, r

0
1, r

1
1) ∈ CR(r0

0, r
1
0, r

0
1, r

1
1) :

(r0
0, r

1
0, r

0
1, r

1
1) 6= ((S0

0 , R
0
0, , ,), (S1

0 , R
1
0, , ,), (S0

1 , R
0
1, , ,), (S1

1 , R
1
1, , ,)) then

session=⊥
stage = newStage
output s

Table A.2: Properties
Symbol Description
U/U ′ Who sends/receives is equal for both scenarios.
Q/Q′ Which sender/receiver sends/receives how often is equal for both scenarios.
H/H ′ How many senders/receivers send/receive how often is equal for both scenarios.
P/P ′ Which messages are sent/received from the same sender/receiver is equal for both

scenarios.
|U |/|U ′| How many senders/receivers communicate is equal for both scenarios.
|M | Messages in the two scenarios always have the same length.
ES Everything but the senders is identical in both scenarios.

ER, EM analogous
ESM Everything but the senders and messages is identical in both scenarios.

ERM , ESR analogous
ℵ nothing will be checked; always true
E♦ If something is sent in both scenarios, the communication is the same.
♦6 In every communication something must be sent.
RSR Adversary picks two sender-receiver-pairs. One of the senders and one of the receivers

is chosen randomly. For b=0 one of the adversary chosen sender-receiver pairs is
drawn. For b=1 the sender is paired with the receiver of the other pair.

RSM , RRM analogous
TS Adversary picks two senders. The other sender might send the second time (stage 2).

For b=0 the same sender sends in both stages, for b=1 each sender sends in one of
the stages.

TR analogous
MSR Adversary picks two sender-receiver-pairs. Sender-receiver-pairs might be mixed. For

b=0 both adversary chosen sender-receiver-pairs communicate. For b=1 both mixed
sender-receiver-pairs communicate.

MSM ,MRM analogous

134

Table A.3: Symbols used in the Game
Symbol Description
A Adversary
Ch Challenger
Π ACN protocol model

b ∈ {0, 1} Challenge bit
g ∈ {0, 1} Adversary’s guess

r0 = (r01 , r02 , . . . , r0l) Batch of communications
rbi ∈ {♦, (u, u′,m, aux)} Communication

♦ Nothing is communicated
(u, u′,m, aux) m is sent from u to u′ with auxiliary information aux
(r01

, . . . , r0k) (First) Scenario
⊥ Abort game

CR(r0, r1) Challenge rows of batches r0, r1
Ψ Challenge Number
n Number of challenges allowed
c Number of challenge rows allowed in game
Û Set of corrupted users
U Set of possible senders
U ′ Set of possible receivers

Table A.4: Notions and Restriction Options
Symbol Description

SO{RO − |U ′|} Sender/Message Unobservability with Receiver Unobservability leaking User Number
SO{RO −H ′} Sender/Message Unobservability with Receiver Unobservability leaking Histogram
SO{RO − P ′} Sender/Message Unobservability with Receiver Unobservability leaking Pseudonym
SO{RFL} Sender/Message Unobservability with Receiver-Frequency Unlinkability

SO{RFL−H ′} Sender/Message Unobservability with Receiver-Frequency Unlinkability leaking Histogram
SO{RFL− P ′} Sender/Message Unobservability with Receiver-Frequency Unlinkability leaking Pseudonym
SO{RML} Sender/Message Unobservability with Receiver-Message Unlinkability

SO{RML− P ′} Sender/Message Unobservability with Receiver-Message Unlinkability leaking Pseudonym
SO Sender Unobservability

SO − |U | Sender Unobservability leaking User Number
SO −H Sender Unobservability leaking Histogram
SO − P Sender Unobservability leaking Pseudonym
SFL Sender-Frequency Unlinkability

SFL−H Sender-Frequency Unlinkability leaking Histogram
SFL− P Sender-Frequency Unlinkability leaking Pseudonym
SML Sender-Message Unlinkability

SML− P Sender-Message Unlinkability leaking Pseudonym
SO[MO − |M |] Sender Unobservability with Message Unobservability leaking Message Length

(2S)O Twice Sender Unobservability
(SM)O Sender-Message Pair Unobservability
(SM)L Sender-Message Pair Unlinkability
SO
′ Restricted Sender Unobservability

Receiver notions analogous
CO Communication Unobservability
O Unobservability

(SR)O Sender-Receiver Unobservability
MO[ML] Message Unobservability with Message Unlinkability
MO − |M | Message Unobservability leaking Message Length

(SR)L Sender-Receiver Pair Unlinkability
X notion, standard assumptions
X adaptive corruption
Xc0 No corruption of users is allowed.
Xc− Only static corruption of users is allowed.
Xcsr Corrupted users are not allowed to be chosen as senders or receivers.
Xcs Corrupted users are not allowed to be senders.
Xcr Corrupted users are not allowed to be receivers.
Xce Corrupted nodes send/receive identical messages in both scenarios.
X Communication of corrupted users not restricted.
Xs Sender and receiver of challenge rows stay the same for this challenge and stage.
X Sessions are not restricted.

XCR#cr #cr communications in the two scenarios are allowed to differ per challenge.

135

A.5. Delayed Proofs

A.5.1 Advantage Definitions

Equivalence to Other Definitions. Notice, that Definition 2 is equivalent to

(1) Pr[0 = 〈A
∣∣ Ch(Π, X, c, 0)〉] ≤ Pr[0 = 〈A

∣∣ Ch(Π, X, c, 1)〉] + δ and
(2) Pr[1 = 〈A

∣∣ Ch(Π, X, c, 1)〉] ≤ Pr[1 = 〈A
∣∣ Ch(Π, X, c, 0)〉] + δ.

(1): |Pr[0 | 0] − Pr[0 | 1]| ≤ δ for all A ⇐⇒ (Pr[0 | 0] − Pr[0 | 1] ≤ δ for all A) ∧ (Pr[0 |
1] − Pr[0 | 0] ≤ δ for all A). To every attack A with Pr[0 | 1] − Pr[0 | 0] > δ, we can construct
A′ with Pr[0 | 0] − Pr[0 | 1] > δ. Since the definition requires the inequality to hold for all
attacks, this is enough to prove that (1) implies the original, the other way is trivial. This is
how we construct it: Given attack A, we construct A′ by changing the batches of the first with
the second scenario. Hence, Pr[0 = 〈A

∣∣ Ch(Π, X, c, 0)〉] = Pr[0 = 〈A′
∣∣ Ch(Π, X, c, 1)〉] and

Pr[0 = 〈A
∣∣ Ch(Π, X, c, 1)〉] = Pr[0 = 〈A′

∣∣ Ch(Π, X, c, 0)〉].

(2): To every attack A breaking (1), we can construct one with the same winning probability in
(2). Given attacker A, we construct A′ as the one that changes the batches of the first with the
second scenario and inverts the output of A. Hence, Pr[0 = 〈A

∣∣ Ch(Π, X, c, 0)〉] = Pr[1 = 〈A′
∣∣

Ch(Π, X, c, 1)〉] and Pr[1 = 〈A
∣∣ Ch(Π, X, c, 0)〉] = Pr[0 = 〈A′

∣∣ Ch(Π, X, c, 1)〉]. Since we can
reverse this operations by applying them again, we can also translate in the other direction.

Differential Privacy based Definition. For some use cases, e.g. if the court of your jurisdic-
tion requires that the sender of a critical content can be identified with a minimal probability of a
certain threshold e.g. 70%, a non-negligible δ might be sufficient. Hence, we allow to specify the
parameter of δ and extend it with the allowed number of challenge rows c to finally include the
well-known concept of differential privacy (see Section 2.3.1) into the following definition similar
to previous work [11]:
Definition 42 (Achieving (c, ε, δ)−X). An ACN protocol Π is (c, ε, δ)−X with c > 0, ε ≥ 0 and
0 ≤ δ ≤ 1, iff for all PPT algorithms A:

Pr[0 = 〈A
∣∣ Ch(Π, X, c, 0)〉] ≤ eεPr[0 = 〈A

∣∣ Ch(Π, X, c, 1)〉] + δ.

Notice that ε describes how close the probabilities of guessing right and wrong have to be. This
can be interpreted as the quality of privacy for this notion. While δ describes the probability with
which the ε-quality can be violated. Hence, every ACN protocol will achieve (0, 1) − X for any
notion X, but this result does not guarantee anything, since with probability δ = 1 the ε-quality
is not met.

The first variant (Definition 2) can be expressed in terms of the second (Definition 42) as Π
achieves X, iff Π is (c, 0, δ)−X for a negligible δ and any c ≥ 0.

A.5.2 Notion Relations

Loopix

Loopix LSO. CO =⇒ LSO: by definition.

LSO =⇒ CO: We construct a successful attack on LSO by creating two new challenge rows
(r0,♦) and (♦, r1) for every challenge row (r0, r1) in the successful attack on CO.

136

Loopix SO
′. SO ⇒ SO

′: by definition.
SO ⇐ SO

′: Given an attack A on (c, 0, 2δ) − SO, where both chosen scenarios use all users
(otherwise it would be a valid attack on SO

′). Let (r21 , . . . , r2l) be the same batch as the second
batch of A except that whenever one of the two senders of the first challenge row from the original
scenarios is used, it is replaced with an arbitrary other sender (that was not used in the first
challenge row of the original scenarios). Let P (0|2) be the probability that A outputs 0, when the
new batches are run; P (0|0) when the first scenario of A is run and P (0|1) when the second is run.
In the worst case for the attacker P (0|2) = P (0|0)+P (0|1)

2 (otherwise we would replace the scenario
b where |P (0|2)− P (0|b)| is minimal with the new one and get better parameters in the following
calculation). SinceA is an attack on (c, 0, 2δ)−SO, P (0|0) > P (0|1)+2δ. Transposing and inserting
the worst case for P (0|2) leads to: P (0|0) > 2P (0|2) − P (0|0) + 2δ ⇐⇒ P (0|0) > P (0|2) + δ.
Hence, using A with the adapted scenario is an attack on (c, 0, δ)− SO′2.

Gelernter’s relaxed notions

RH,τSA ⇒ SO − P : Every attack on SO − P is valid against RH,τSA : Since P is fulfilled, for every
sender u0 in the first scenario, there exists a sender ũ0 in the second scenario sending the same
messages. Hence, the permutation between senders of the first and second scenario exists.

RH,τSA ⇐ SO− P : Every attack on RH,τSA is valid against SO− P : Since there exists a permutation
between the senders of the first and second scenario sending the same messages, the partitions of
messages sent by the same sender are equal in both scenarios, i.e. P is fulfilled.

RH,τ
SL

⇐⇒ SML − P : Q is required in both notions by definition. Arguing that P resp. G is
fulfilled given the other attack is analogous to RH,τSA ⇐⇒ SO − P .

Hierarchy

The dashed, green implications hold, because of the following and analogous proofs:
Claim 1. (MO[ML] =⇒ SML) If protocol Π achieves (c, ε, δ)−MO[ML], it achieves (c, ε, δ)−
SML.

Proof. Given a valid attack A on SML. We show that A is a valid attack on MO[ML]: Because
of SML, Q is fulfilled. Because of ES , the receivers of the communications input to the protocol
are the same in both scenarios. Hence, every receiver receives the same number of messages, i.e.
Q′ is fulfilled. So, every attack against (c, ε, δ)− SML is valid against (c, ε, δ)−MO[ML].

Now, assume a protocol Π that achieves (c, ε, δ) −MO[ML], but not (c, ε, δ) − SML. Because it
does not achieve (c, ε, δ)− SML, there has to exist an successful attack A on (c, ε, δ)− SML, i.e.

Pr[0 = 〈A
∣∣ Ch(Π, SML, c, 0)〉] > eε · Pr[0 = 〈A

∣∣ Ch(Π, SML, c, 1)〉] + δ.

We know A is also valid against (c, ε, δ)−MO[ML]. Thus, it exists an attack, with

Pr[0 = 〈A
∣∣ Ch(Π,MO[ML], c, 0)〉] > eε · Pr[0 = 〈A

∣∣ Ch(Π,MO[ML], c, 1)〉] + δ,

which contradicts the assumption that Π achieves (c, ε, δ)−MO[ML].

The dotted, yellow implications hold, because of the following and analogous proofs:
Claim 2. (SO{RML−P ′} =⇒ SO) If protocol Π achieves (c, ε, δ)−SO{RML−P ′}, it achieves
(c, ε, δ)− SO.

2An analogous argumentation works for (c, ε− ln(0.5), δ)− SO ⇐ (c, ε, δ)− SO′.

137

Proof. Given a valid attack A on SO. We show that A is a valid attack on SO{RML − P ′}:
Because of ES of SO the receiver-message pairs of the communications input to the protocol are
the same in both scenarios. Hence, every receiver receives the same messages, i.e. Q′ and P ′ are
fulfilled. So, every attack against (c, ε, δ)− SO is valid against (c, ε, δ)− SO{RML− P ′}.

Now, the proof by contradiction is done analogous to the proof of Claim 1.

All dark blue implications (c, ε, δ)−X1 ⇒ (c, ε, δ)−X2 follow from the definition of the
notions: Every valid attack against X2 is valid against X1. This holds because U ⇒ |U |, H ⇒ |U |,
Q ⇒ U , P ⇒ H , Q ⇒ H, ♦6 ⇒ ℵ and obviously for any properties A and B: A ∧ B ⇒ A resp.
A ∧B ⇒ B.

The dotted, red implications (c, ε, δ)−X1 ⇒ (c, ε, δ)−X2 hold, because of the following
and analogous proofs:
Claim 3. (RO{SML} =⇒ RO[MO]) If protocol Π achieves (c, ε, δ) − RO{SML}, it achieves
(c, ε, δ)−RO[MO].

Proof. Given attack A1 on (c, ε, δ)RO[MO]. We show that A1 is valid against (c, ε, δ)−RO{SML}:
Sending nothing is not allowed in RO[MO] and hence, will not happen (♦6) and because of ERM ,
every sender sends equally often in both scenarios, i.e. Q is fulfilled.

Now, the proof by contradiction is done analogous to the proof of Claim 1.

The cyan implications (c, ε, δ)−X1 ⇒ (c, ε, 2δ)−X2 hold, because of the following and
analogous proofs 3:
Claim 4. (RO =⇒ (SR)O) If protocol Π achieves (c, ε, δ)−RO, it achieves (c, ε, 2δ)− (SR)O.

Proof. We first argue the case of one challenge and later on extend it to multiple challenges. Given
attack A2 on (1, ε, 2δ)− (SR)O. We construct two attacks A′1 and A′′1 against RO and show that
one of those has at least the desired success.

We construct attacks A′1 and A′′1 . We therefore pick a′ = 0 and a′′ = 1. Those shall replace a,
which would be picked randomly by the challenger in (SR)O to determine the batch instance. In
A′1 we use the communications of A2 corresponding to a′ = 0 (for b = 0 and b = 1) as challenge row,
whenever a batch in A2 includes a challenge row. In A′′1 we analogously use the communications
corresponding to a′′ = 1.

We show that both A′1 and A′′1 are valid against (1, ε, δ)−RO: Sending nothing is also not allowed
in (SR)O and hence, will not happen (♦6) and because of the fixed a = a′ or a = a′′, the senders
of challenge rows are the same in both scenarios. Since also messages are equal in (SR)O, the
sender-message pairs are fixed (ER). Hence, A′1 and A′′1 are valid against RO.

Since A2 is an successful attack on (1, ε, 2δ) − (SR)O and A′1 and A′′1 against RO only fix the
otherwise randomly picked a:

0.5Pr[0 = 〈A′1
∣∣ Ch(Π, RO, c, 0)〉] + 0.5Pr[0 = 〈A′′1

∣∣ Ch(Π, RO, c, 0)〉]
>eε · (0.5Pr[0 = 〈A′1

∣∣ Ch(Π, RO, c, 1)〉] + 0.5Pr[0 = 〈A′′1
∣∣ Ch(Π, RO, c, 1)〉]) + 2δ.

So,

0.5Pr[0 = 〈A′1
∣∣ Ch(Π, RO, c, 0)〉] > eε · (0.5Pr[0 = 〈A′1

∣∣ Ch(Π, RO, c, 1)〉] + δ or
0.5Pr[0 = 〈A′′1

∣∣ Ch(Π, RO, c, 0)〉] > eε · (0.5Pr[0 = 〈A′′1
∣∣ Ch(Π, RO, c, 1)〉] + δ

3For SO ⇒ (SR)O (resp. SO ⇒ (SM)O) pick challenge rows differently; for b = 0 : a = a′ and for b = 1 : a =
1− a′ to ensure that receivers (resp. messages) are equal.
For (2c, ε, δ) − SML ⇒ (c, ε, δ) − (SM)L, (resp. RML⇒ (RM)L, SML− P ⇒ (SR)L) replace the challenge row
with the corresponding two rows.

138

must hold true (otherwise we get a contradiction with the above inequality). Hence, A′1 or A′′1 has
to successfully break (1, ε, δ)−RO.

In case of multiple challenges: the instance bit is picked randomly for every challenge. Hence, we
need to construct one attack for every possible combination of instance bit picks, i.e. 2c attacks in
total4 from which each is a PPT algorithm and at least one is at least as successful as the attack
on (c, ε, 2δ) − (SR)O. Now, the proof by contradiction is done analogous to the proof of Claim
1.

Remark. c can be any value in the proofs (esp. c = 1 or c > 1) the proposed constructions apply
changes for each challenge row.

A.5.3 Multi-Challenge Generalization

Proof. [Proof sketch] The proof is analogous to the one in Appendix A.1 of [11]5: we only argue
that our added concepts (adaptive corruption, arbitrary sessions and grouping of challenge and
input queries to batches) do not change the indistinguishability of the introduced games.

Adaptive Corruption. In Games G0 till G2, G3 till G6 and G9 to G10 communications that reach the
protocol model are identical. Hence, also adaptive corruption queries between the batch queries will
return the same results (if adaptive corruption is used probabilistically: the probability distribution
for the results is equal in all these games). G2 to G3 and G7 to G8 by induction hypothesis. G6
to G7 and G8 to G9 adaptive corruption is independent from the used challenge numbers (called
challenge tags in [11]).

The argumentation for sessions and batches in analogous. Notice that by using the batch concept,
in some games a part of a batch might be simulated, while another part is not.

A.5.4 UC-Realizability

Proof. [Proof sketch] AnoA’s proof assumes that Π does not achieve (ε, δ + δ′)-X. Hence, there
must be an attack A distinguishing the scenarios. With this, they build a PPT distinguisher D
that uses A to distinguish Π from F . Since, even with our extensions A still is a PPT algorithm,
that can be used to build distinguisher D and the inequalities that have to be true are the same
(since the definition of achieving (ε, δ)-X is the same as being (ε, δ)-differentially private). The
combination of Π not being (ε, δ + δ′)-X and F being (ε, δ)−X results in the same contradiction
as in AnoA’s proof.

A.5.5 Completeness of Hierarchy

Proof. We give the systematic overview over all combinations from sender or impartial notions to
all other notions and which proof applies for which relation in Table A.5. Since receiver notions
are completely analogous to sender notions, we spare this part of the table.

In Table A.5 “⇒” indicates that the notion of the column implies the one of the row. “=” is used
when the notions are equal. Pn indicates that the counterexample is described in a proof with
number n. PA and PB are proofs covering multiple counterexamples and P ∗A is a special one of
those counterexamples. P ′n means the proof analogous to Pn, but for the receiver notion. (Pn)
means that there cannot be an implication, because otherwise it would be a contradiction with
proof Pn since our implications are transitive.

4Note that this does not contradict the PPT requirement of our definition as only finding the right attack is
theoretically exponential in the number of challenges allowed. However, the attack itself is still PPT (and might be
even easier to find for a concrete protocol).

5Note, although they include the challenge number n in the definition of achieving a notion, this is not used in
the theorem.

139

Table A.5: Completeness; proofs for all relations between the notions (Part 1/3)
CO O MO[ML] MO MO − |M | (SR)O (SR)L SO{RO − |U ′|} SO{RO −H ′} SO{RO − P ′} SO{RFL} SO{RFL−H ′} SO{RFL− P ′} SO{RML} SO{RML− P ′} SO[MO] SO[MO − |M |]

CO = ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒
O P1 = ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

MO[ML] (P1) (P2) = ⇒ ⇒ P2 ⇒ (P2) (P2) (P2) (P2) (P2) (P2) (P2) (P2) (P2) (P2)
MO (P1) (P3) (P3) = ⇒ (P2) P3 (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3)

MO − |M | (P1) (P3) (P3) (P17) = (P2) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3)
(SR)O (P1) (P5) (P5) (P6) (P6) = P16 (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P16)
(SR)L (P1) (P5) (P5) (P6) (P6) (P7) = (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P ′8) (P ′8)

SO{RO − |U ′|} (P1) (P4) ⇒ ⇒ ⇒ ⇒ ⇒ = ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒
SO{RO −H ′} (P1) (P4) ⇒ ⇒ ⇒ ⇒ ⇒ (PA) = ⇒ (PA) ⇒ ⇒ ⇒ ⇒ ⇒ ⇒
SO{RO − P ′} (P1) (P6) (P6) (P6) P6 ⇒ ⇒ (PA) (PA) = (PA) (PA) ⇒ (PA) ⇒ (P6) (P6)
SO{RFL} (P1) (P4) ⇒ ⇒ ⇒ ⇒ ⇒ (PA) (PA) (PA) = ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

SO{RFL−H ′} (P1) (P4) ⇒ ⇒ ⇒ ⇒ ⇒ (PA) (PA) (PA) (PA) = ⇒ ⇒ ⇒ ⇒ ⇒
SO{RFL− P ′} (P1) (P6) (P6) (P6) (P6) ⇒ ⇒ (PA) (PA) (PA) (PA) (PA) = (PA) ⇒ (P6) (P6)
SO{RML} (P1) (P4) ⇒ ⇒ ⇒ ⇒ ⇒ (PA) (PA) (PA) (PA) (PA) (PA) = ⇒ ⇒ ⇒

SO{RML− P ′} (P1) (P6) (P6) (P6) (P6) ⇒ ⇒ (PA) (PA) (PA) (PA) (PA) (PA) (PA) = (P6) (P6)
SO[MO] (P1) (P5) P5 ⇒ ⇒ ⇒ ⇒ (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) = ⇒

SO[MO − |M |] (P1) (P5) (P5) ⇒ ⇒ ⇒ ⇒ (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P17) =
SO (P1) (P5) (P5) (P6) (P6) ⇒ ⇒ (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P6) (P6)

SO − |U | (P1) (P5) (P5) (P6) (P6) P7 ⇒ (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (PB) (PB)
SO −H (P1) (P5) (P5) (P6) (P6) (P7) ⇒ (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (PB) (PB)
SO − P (P1) (P5) (P5) (P6) (P6) (P7) ⇒ (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (PB) (PB)
SFL (P1) (P5) (P5) (P6) (P6) (P7) ⇒ (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (PB) (PB)

SFL−H (P1) (P5) (P5) (P6) (P6) (P7) ⇒ (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (PB) (PB)
SFL− P (P1) (P5) (P5) (P6) (P6) (P7) ⇒ (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (PB) (PB)
SML (P1) (P5) (P5) (P6) (P6) (P7) ⇒ (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (PB) (PB)

SML− P (P1) (P5) (P5) (P6) (P6) (P7) ⇒ (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (PB) (PB)
(2S)O (P1) (P5) (P5) (P6) (P6) P10 P11 (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P11)

(SM)O (P1) (P5) (P5) (P6) (P6) P12 P13 (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P13)
(SM)L (P1) (P5) (P5) (P6) (P6) P14 P15 (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P15)

140

Table A.5: Completeness; proofs for all relations between the notions (Part 2/3)
SO SO − |U | SO −H SO − P SFL SFL−H SFL− P SML SML− P (2S)O (SM)O (SM)L RO{SO − |U |} RO{SO −H} RO{SO − P} RO{SFL} RO{SFL−H}

CO ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒
O ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

MO[ML] (P2) (P ′∗A) (P ′∗A) (P ′∗A) (P ′∗A) (P ′∗A) (P ′∗A) ⇒ ⇒ (P ′4) ⇒ ⇒ (P2) (P2) (P2) (P2) (P2)
MO (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P ′4) ⇒ ⇒ (P3) (P3) (P3) (P3) (P3)

MO − |M | (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P ′4) P ′17 P ′18 (P3) (P3) (P3) (P3) (P3)
(SR)O (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P ′4) (P ′17) P ′18) (P16) (P16) (P16) (P16) (P16)
(SR)L (P ′8) (P ′8) (P ′8) (P ′8) (P ′8) (P ′8) (P ′8) (P ′8) (P ′8) (P ′4) (P19) (P20) (P8) (P8) (P8) (P8) (P8)

SO{RO − |U ′|} ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ (PA) (PA) (PA) (PA) (PA)
SO{RO −H ′} ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ (PA) (PA) (PA) (PA) (PA)
SO{RO − P ′} ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ (PA) (PA) (PA) (PA) (PA)
SO{RFL} ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ (PA) (PA) (PA) (PA) (PA)

SO{RFL−H ′} ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ (PA) (PA) (PA) (PA) (PA)
SO{RFL− P ′} ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ (PA) (PA) (PA) (PA) (PA)
SO{RML} ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ (PA) (PA) (PA) (PA) (PA)

SO{RML− P ′} ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ (PA) (PA) (PA) (PA) (PA)
SO[MO] ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ (P8) (P8) (P8) (P8) (P8)

SO[MO − |M |] ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ (P8) (P8) (P8) (P8) (P8)
SO = ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ (P8) (P8) (P8) (P8) (P8)

SO − |U | PB = ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ (P ′4) P19 ⇒ (P8) (P8) (P8) (P8) (P8)
SO −H (PB) PB = ⇒ ⇒ ⇒ ⇒ ⇒ (P ′4) (P19) ⇒ (P8) (P8) (P8) (P8) (P8)
SO − P (PB) PB PB = PB PB ⇒ PB ⇒ (P ′4) (P19) P20 (P8) (P8) (P8) (P8) (P8)
SFL (PB) PB PB PB = ⇒ ⇒ ⇒ ⇒ (P ′4) (P19) ⇒ (P8) (P8) (P8) (P8) (P8)

SFL−H (PB) PB PB PB PB = ⇒ ⇒ ⇒ (P ′4) (P19) ⇒ (P8) (P8) (P8) (P8) (P8)
SFL− P (PB) PB PB PB PB PB = PB ⇒ (P ′4) (P19) (P20) (P8) (P8) (P8) (P8) (P8)
SML (PB) PB PB PB PB PB PB = ⇒ (P ′4) (P19) ⇒ (P8) (P8) (P8) (P8) (P8)

SML− P (PB) PB PB PB PB PB PB PB = (P ′4) (P19) (P20) (P8) (P8) (P8) (P8) (P8)
(2S)O (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P11) = P21 P22 (P11) (P11) (P11) (P11) (P11)

(SM)O (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P ′4) = P23 (P13) (P13) (P13) (P13) (P13)
(SM)L (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P ′4) (P19) = (P15) (P15) (P15) (P15) (P15)

141

Table A.5: Completeness; proofs for all relations between the notions (Part 3/3)
RO{SFL− P} RO{SML} RO{SML− P} RO[MO] RO[MO − |M |] RO RO − |U ′| RO −H ′ RO − P ′ RFL RFL−H ′ RFL− P ′ RML RML− P ′ (2R)O (RM)O (RM)L

CO ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒
O ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

MO[ML] (P2) (P2) (P2) (P2) (P2) (P2) (P ∗A) (P ∗A) (P ∗A) (P ∗A) (P ∗A) (P ∗A) ⇒ ⇒ (P4) ⇒ ⇒
MO (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P4) ⇒ ⇒

MO − |M | (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P3) (P4) (P17) (P18)
(SR)O (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P16) (P4) (P17) (P18)
(SR)L (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P4) (P17) (P18)

SO{RO − |U ′|} (PA) (PA) (PA) (PA) (PA) PA ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒ P4 ⇒ ⇒
SO{RO −H ′} (PA) (PA) (PA) (PA) (PA) PA PA ⇒ ⇒ PA ⇒ ⇒ ⇒ ⇒ (P4) ⇒ ⇒
SO{RO − P ′} (PA) (PA) (PA) (PA) (PA) PA PA PA ⇒ PA PA ⇒ PA ⇒ (P4) P24 P9
SO{RFL} (PA) (PA) (PA) (PA) (PA) PA PA PA PA ⇒ ⇒ ⇒ ⇒ ⇒ (P4) ⇒ ⇒

SO{RFL−H ′} (PA) (PA) (PA) (PA) (PA) PA PA PA PA PA ⇒ ⇒ ⇒ ⇒ (P4) ⇒ ⇒
SO{RFL− P ′} (PA) (PA) (PA) (PA) (PA) PA PA PA PA PA PA ⇒ PA ⇒ (P4) (P24) (P9)
SO{RML} (PA) (PA) (PA) (PA) (PA) PA PA PA PA PA PA P ∗A ⇒ ⇒ (P4) ⇒ ⇒

SO{RML− P ′} (PA) (PA) (PA) (PA) (PA) PA PA PA PA PA PA PA PA ⇒ (P4) (P24) (P9)
SO[MO] (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) P8 (P4) ⇒ ⇒

SO[MO − |M |] (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P4) P17 P18
SO (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P4) (P17) (P18)

SO − |U | (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P4) (P17) (P18)
SO −H (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P4) (P17) (P18)
SO − P (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P4) (P17) (P18)
SFL (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P4) (P17) (P18)

SFL−H (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P4) (P17) (P18)
SFL− P (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P4) (P17) (P18)
SML (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P4) (P17) (P18)

SML− P (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P8) (P4) (P17) (P18)
(2S)O (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P11) (P4) (P17) (P18)

(SM)O (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P13) (P4) (P17) (P18)
(SM)L (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P15) (P4) (P17) (P18)

142

Numbered Proofs. The proofs identified in Table A.5 follow.

Lemma 1. P4. (c, ε, δ)− SO{RO− |U ′|} 6=⇒ (c∗, ε∗, δ∗)− (2R)O for any ε∗ ≥ 0, δ∗ < 1, c∗ ≥ 2
and any ε ≥ 0, δ < 1, c ≥ 1.

Proof. Given a protocol Π, that achieves (c, ε, δ)−SO{RO−|U ′|}. Let protocol Π′ be the protocol,
that behaves like Π and additionally publishes the current number of receivers |U ′| after every batch.
Since in SO{RO − |U ′|} the number of receivers always needs to be identical in both scenarios,
outputting it will not lead to new information for the adversary. So, Π′ achieves (c, ε, δ)−SO{RO−
|U ′|}.

Fix ε∗ ≥ 0, δ∗ < 1, c∗ ≥ 2 arbitrarily. Let u′0, u′1 be valid receivers and m0 a valid message.
(c∗, ε∗, δ∗) − (2R)O of Π′ can be broken by the following attack: An adversary A inputs a
batch query with two valid challenge rows with differing receivers6: ((u′0,m0),SwitchStageQuery,
(u′0,m0)) as instance 0 of the first scenario, ((u′1,m0), SwitchStageQuery, (u′1,m0)) as instance
1 of the first scenario and ((u′0,m0),SwitchStageQuery, (u′1,m0)) as instance 0 and ((u′1,m0),
SwitchStageQuery, (u′0,m0)) as instance 1 of the second scenario. If Π′ outputs the number of
receivers as being 1, both messages have been received by the same user and A outputs 0. Other-
wise the number of receivers is 2 and the messages have been received by different users. It outputs
1 in this case and wins the game with certainty. Hence, Pr[0 = 〈A

∣∣ Ch(Π′, (2R)O, c∗, 0)〉] = 1 and
Pr[0 = 〈A

∣∣ Ch(Π′, (2R)O, c∗, 1)〉] = 0 and thus Pr[0 = 〈A
∣∣ Ch(Π′, (2R)O, c∗, 0)〉] > eε

∗ · Pr[0 =
〈A
∣∣ Ch(Π′, (2R)O, c∗, 1)〉] + δ∗ (since 1 > eε

∗ · 0 + δ∗).7

Tables A.6 summarizes the ideas of proofs that work analogously to Lemma 1. I = (S,m) means the
sender(S)-message(m) pairs are published, i.e. it is leaked who sent which message. 1.(S,m) means
that the first sender-message pair is revealed. |m| without brackets means the set of all message
lengths is published; |U | the number of senders. The other abbreviations are used analogously. The
attack is shortened to the format 〈(communications of instance 0 scenario 0),(communications of
instance 1 of scenario 0)〉,〈(communications of instance 0 scenario 1),(communications of instance
1 of scenario 1)〉 (if both instances of the scenario are equal, we shorten to:〈(communications
of instance 0 scenario 0)〉,〈(communications of instance 0 scenario 1)〉) and all not mentioned
elements are equal in both scenarios. m0,m1,m2,m3 are messages with |m0| < |m1|, |m2| = |m3|
and m0 6= m1 6= m2 6= m3; u0, u1, u2 senders and u′0, u

′
1, u
′
2 receivers.

Lemma 2. P10. (c, ε, δ)− (2S)O 6=⇒ (c∗, ε∗, δ∗)− (SR)L for any ε∗ ≥ 0, δ∗ < 1, c∗ ≥ 2 and for
any ε ≥ 0, δ < 1, c ≥ 2.

Proof. Given a protocol Π with (c, ε, δ)− CO. Let Π′ behave like Π and additionally publish the
first sender-receiver-pair. Since Π does not leak any information, Π′ does not leak any information
except the first sender-receiver-pair. Hence, Π′ has (c, ε, δ)− (2S)O, because who sends the second
time is concealed (otherwise (c, ε, δ) − CO of Π could be broken based on this, which would be a
contradiction to our assumption.).

Fix ε∗ ≥ 0, δ∗ < 1, c∗ ≥ 2 and let u0, u1 be valid senders and u′0, u′1 valid receivers. Then the follow-
ing attack on (c∗, ε∗, δ∗)−(SR)L is possible: The adversary A creates a batch query containing only
challenge rows: ((u0, u

′
0), (u1, u

′
1)) as instance 0 of the first scenario, ((u1, u

′
1), (u0, u

′
0)) as instance

1 of the first scenario and ((u0, u
′
1), (u1, u

′
0)) as instance 0 of the second scenario, ((u1, u

′
0), (u0, u

′
1))

as instance 1 of the second scenario. If the published first sender-receiver pair is u1, u
′
1 or u0, u

′
0 , A

outputs 0. Otherwise it outputs 1. Obviously, the adversary wins the game with certainty with this
strategy. Hence, Pr[0 = 〈A

∣∣ Ch(Π′, (SR)L, c∗, 0)〉] = 1 and Pr[0 = 〈A
∣∣ Ch(Π′, (SR)L, c∗, 1)〉] = 0

and thus Pr[0 = 〈A
∣∣ Ch(Π′, (SR)L, c∗, 0)〉] > eε

∗ · Pr[0 = 〈A
∣∣ Ch(Π′, (SR)L, c∗, 1)〉] + δ∗ (since

1 > eε
∗ · 0 + δ∗).

6For a simplified representation we only present the parts of the communication that differ in both scenarios and
spare the senders of the communications.

7Notice, that any protocol would achieve (c∗, ε∗, δ∗)− (2R)O for c∗ = 1 since no complete challenge is possible
there.

143

Table A.6: Counter example construction idea with X ′1 = X1

Pn X1 X2 I attack
P4 SO{RO − |U ′|} (2R)O |U ′| 〈((u′0,m0), switchStage, (u′0,m0)),

((u′1,m0), switchStage, (u′1,m0))〉,
〈((u′0,m0), switchStage, (u′1,m0)),
((u′1,m0), switchStage, (u′0,m0))〉

P6 SO{RO − P ′} MO − |M | m ((m2)), ((m3))
P24 SO{RO − P ′} (RM)O |U ′|,m 〈((u′0,m0), (u′0,m2)),

((u′0,m0), (u′1,m3))〉,
〈((u′0,m0), (u′0,m3)),
((u′0,m0), (u′1,m2))〉

P9 SO{RO − P ′} (RM)L P ′ 〈((u′0,m2), (u′0,m0), (u′1,m1)),
((u′0,m2), (u′1,m1), (u′0,m0))〉,
〈((u′0,m2), (u′0,m1), (u′1,m0)),
((u′0,m2), (u′1,m0), (u′0,m1))〉

P5 SO[MO] MO[ML] 1.R ((u′0), (u′1)), ((u′1), (u′0))
P8 SO[MO] RML− P ′ 1.R ((u′0), (u′1)), ((u′1), (u′0))
P17 SO[MO − |M |] (RM)O |U ′|, |m| 〈((u′0,m2), (u′0,m0)),

((u′0,m2), (u′1,m1))〉
〈((u′0,m2), (u′0,m1)),
((u′0,m2), (u′1,m0))〉

P18 SO[MO − |M |] (RM)L (R, |m|) 〈((u′0,m0), (u′1,m1)),
((u′1,m1), (u′0,m0))〉
〈((u′0,m1), (u′1,m0)),
((u′1,m0), (u′0,m1))〉

P7 SO − |U | (SR)O |U ′|, |U | 〈((u0, u
′
0), (u0, u

′
0)),

((u0, u
′
0), (u1, u

′
1))〉

〈((u0, u
′
0), (u0, u

′
1))

((u0, u
′
0), (u1, u

′
0))〉

P19 SO − |U | (SM)O |U |, |m| 〈((u0,m2), (u0,m0)),
((u0,m2), (u1,m1))〉
〈((u0,m2), (u0,m1)),
((u0,m2), (u1,m0))〉

P20 SO − P (SM)L P 〈((u0,m2), (u0,m0), (u1,m1)),
((u0,m2), (u1,m1), (u0,m0))〉,
〈((u0,m2), (u0,m1), (u1,m0)),
((u0,m2), (u1,m0), (u0,m1))〉

P ′n Receiver notions analogous analogous
P1 O CO ℵ ((u0)), (♦)
P2 MO[ML] (SR)O Q,Q′ 〈((u0, u

′
0)), ((u1, u

′
1))〉 〈((u0, u

′
1)),

((u1, u
′
0))〉

P3 MO (SR)L (S,R) 〈((u0, u
′
0), (u1, u

′
1)),

((u1, u
′
1), (u0, u

′
0))〉

〈((u0, u
′
1), (u1, u

′
0)),

((u1, u
′
0), (u0, u

′
1))〉

P ′n MO[ML]/
MO − |M |

Receiver notions analogous

The proofs in Table A.7 are done analogously to Lemma 2. This time, analogously proved relations
are added in angle brackets.

Lemma 3. PB. For X1, X2 ∈ {SO, SO − |U |, SO − H, SO − P , SFL, SFL − H, SFL − P ,
SML, SML − P}: If not X1 =⇒ X2 in our hierarchy, (c, ε, δ) − X1 6=⇒ (c∗, ε∗, δ∗) − X2 for
any ε∗ ≥ 0, δ∗ < 1, c∗ ≥ 1 and for any ε ≥ 0, δ < 1, c ≥ 1.

Proof. If not X1 =⇒ X2 in our hierarchy, then in X1 the adversary is more restricted, i.e. it
exists a property Prop ∈ {U, |U |, Q,H, P}, which has to be equal in both scenarios for X1, but
neither has to be equal nor is implied to be equal for X2 (See Figure A.2 to see which property
can be used for which choice of X1 and X2).

We now assume a protocol Π, that achieves (c, ε, δ)−X1. Let Π′ be the protocol that additionally

144

Table A.7: Counter example construction idea with X ′1 = CO

P X1 X2 I attack
P10-P15 (2S)O 〈(SM)O,

(SM)L〉
(SR)O 〈(SR)L〉 1. (S,R) 〈((u0, u

′
0)), ((u1, u

′
1))〉,

〈((u0, u
′
1)), ((u1, u

′
0))〉

P21, P22 (2S)O (SM)O
〈(SM)L〉

1.(S, |m|) 〈((u0,m0)), ((u1,m1))〉,
〈((u0,m1)), ((u1,m0))〉

Pn′ Receiver notions analogous

Figure A.2: The properties at the implication arrows are restricted for the weaker notion (and all
notions those notion implies), but not for the stronger notion.

publishes Prop. Π′ still achieves (c, ε, δ)−X1, since in all attacks on X1 not more information than
in Π are given to the adversary (The adversary knows Prop already since it is equal for both scenar-
ios). However, since Prop does not have to be equal in X2, the adversary can pick the scenarios such
that it can distinguish them in Π′ based on Prop with certainty. Hence for an arbitrary ε∗ ≥ 0, δ∗ <
1, n∗ = c∗ ≥ 1, Pr[0 = 〈A

∣∣ Ch(Π′, X2, c
∗, 0)〉] = 1 and Pr[0 = 〈A

∣∣ Ch(Π′, X2, c
∗, 1)〉] = 0 and thus

Pr[0 = 〈A
∣∣ Ch(Π′, X2, c

∗, 0)〉] > eε
∗ ·Pr[0 = 〈A

∣∣ Ch(Π′, X2, c
∗, 1)〉]+δ∗ (since 1 > eε

∗ ·0+δ∗).

Lemma 4. PA. For X2 ∈ {RO,RO − |U ′|, RO − H ′, RO − P ′, RFL, RFL − H ′, RFL − P ′,
RML, RML − P ′}, with X1 6=⇒ X2: (c, ε, δ) − SO{X1} 6=⇒ (c∗, ε∗, δ∗) − X2 for any ε∗ ≥
0, δ∗ < 1, c∗ ≥ 1 and for any ε ≥ 0, δ < 1, c ≥ 1.

Proof. If X1 6=⇒ X2, then it exists a property Prop ∈ {U ′, |U ′|, Q′, H ′, P ′}, which has to be equal
in both scenarios for X1, but neither has to equal nor is implied to be equal in X2 (see Proof to
Lemma 3 for details).

We now assume a protocol Π, that achieves (c, ε, δ) − SO{X1}. Let Π′ be the protocol that
additionally outputs Prop. Since the properties of X1 are also checked in attacks for (c, ε, δ) −
SO{X1} every valid attack on (c, ε, δ)− SO{X1} will result in the same version of Prop for both
scenarios. Hence, Π′ does not output new information to the adversary (compared to Π) and still
achieves (c, ε, δ)− SO{X1}.

However, since Prop does not have to be equal in X2, the adversary can pick the scenario such that
it can distinguish them with certainty in Π′ based on Prop. Hence for an arbitrary ε∗ ≥ 0, δ∗ <
1, n∗ = c∗ ≥ 1, Pr[0 = 〈A

∣∣ Ch(Π′, X2, c
∗, 0)〉] = 1 and Pr[0 = 〈A

∣∣ Ch(Π′, X2, c
∗, 1)〉] = 0 and thus

Pr[0 = 〈A
∣∣ Ch(Π′, X2, c

∗, 0)〉] > eε
∗ ·Pr[0 = 〈A

∣∣ Ch(Π′, X2, c
∗, 1)〉]+δ∗ (since 1 > eε

∗ ·0+δ∗).

Lemma 5. (Proofs P23, P ′23, P16) (SM)O 6⇒ (SM)L [(RM)O 6⇒ (RM)L, (SR)O 6⇒ (SR)L
similarly]

Proof. Protocol Construction: Given a protocol Π that achieves (SM)O and does not allow to
recognize duplicated sender-message pairs, we construct protocol Π′. Let Π′ run Π and additionally
output a bit for every batch that contains only two communications. For some fixed senders u0 6= u1
and messages m0 6= m1 the protocol will additionally output a bit according to Table A.8. For any
other batch with two communications it will pick the output bit randomly.

145

Table A.8: Additional output of Π′

(u0,m0) (u1,m0) (u0,m0) (u1,m0)
(u1,m1) (u0,m1) (u0,m0) (u1,m0)
(u1,m1) (u0,m1) (u1,m1) (u0,m1)
(u0,m0) (u1,m0) (u1,m1) (u0,m1)
output 0 output 1 output 1 output 0

Protocol Π′ outputs the challenge bit b for (SM)L and hence does not achieve (SM)L. However,
it achieves (SM)O. The strategy of entering the same challenge row twice does not work because
the advantage gained in the cases of (SM)L (i.e. a1 6= a2) is annihilated in the cases of duplicated
communications (i.e. a1 = a2). Using one equal communication in both scenarios and a challenge
row leads to another compensating distribution: The probability for a correct output is 0.25, for a
wrong output 0.25 and for a random output 0.5. Another attack strategy is not possible since the
additional output is only given for batches of size 2.

Theorem 12. For all X:

1. (c, ε, δ)−X ⇒ (c, ε, δ)−XCRc′ .

2. (c, ε, δ)−X ⇐ (c, ε, δ)−XCRc′ , if the number of challenges is not restricted.

Proof. 1. Trivial: Given an attack valid on X restricted regarding the challenge rows per challenge.
This attack is also valid against X without challenge row restriction.

2. We need to construct a new attack. Attack construction: Given an attack A2, we construct
attack A1. Let n̄ be the number of previous challenges used in A1 so far. For every batch query
bq with n′′ challenge rows replace the challenge tag of the 1st , . . . , c′st challenge row with n̄ + 1;
continue with the next c′ challenge rows and the increased challenge tag until no challenge rows
are left. Use all other queries as A2 does, give the answers to A2 and output whatever A2 outputs.

Given attack A2 on X. We construct an attack A1 with the same success against XCR1 by using
the above attack construction. We show that A1 is valid against XCR1 : The attack construction
assures, that at most c′ challenge rows are used in every challenge (CRc′). All other aspects of
X are fullfilled in A2, too. Since A1 perfectly simulates the given attack A2, it has the same
success.

Remark. If a protocol does not achieve X2 for c, then it does not achieve X2 for any c′ > c
(because every attack with only c CR is also valid if more than c CRs are allowed.) Further, notice
that for some notions a minimum of two CRs is required (e.g. (2S)O).

Additionally, for corruption options: Since the proposed attacks do not use any corruption, they
are valid for any corruption option. Analogously, since the proposed attacks do not use different
sessions in both scenarios, they are valid for any session option.

A.6. On the Choice of Notions

The space of possible combinations of properties, and hence of conceivable privacy notions, is
naturally large. Due to this, we verify our selection of privacy goals by finding exemple use cases.
Additionally, we verify that our privacy notions include those of previous publications that suggest
frameworks based on indistinguishability games, and provide a complete mapping in Section 3.6.1.
We further demonstrate the choice and the applicability of our definition by analyzing the privacy
goals of Loopix [128], an ACN that was recently published in Section 3.6.2.

146

Example Use Cases for the Notions

We illustrate our notions by continuing the example of an activist group trying to communicate in
a repressive regime, although our notions are generally applicable.

Impartial Privacy Notions

These notions treat senders and receivers equally.

Message Observability. The content of messages can be learned in notions of this group, as
messages are not considered confidential. Because the real world adversary can learn the content,
we must prevent her from winning the game trivially by choosing different content. Hence, such
notions use the property that the scenarios are identical except for the senders and receivers (ESR)
to ensure that the messages are equal in both scenarios.

Example: An activist of the group is already well-known and communication with that person
leads to persecution of Alice.

Alice needs a protocol that hides whether a certain sender and receiver communicate with each
other; cf. Section 3.3.2 motivation of the complex property MSR. The resulting notion is Sender-
Receiver Pair Unlinkability ((SR)L).

Example (cont.): Only few people participate in the protocol. Then, just using the protocol
to receive (send) something, when the well known activist is acting as sender (receiver) threatens
persecution.

Alice needs a protocol that hides whether a certain sender and receiver actively participate at the
same time or not; cf. Section 3.3.2 motivation of the complex property RSR. The resulting notion
is Sender-Receiver Unobservability ((SR)O).

Sender-Receiver Linkability (Message Confidentiality). Senders and receivers can be learned
in notions of this group, because they are not considered private. Hence, such notions include
the property that the scenarios are identical, except for the messages (EM) to ensure that the
sender-receiver pairs are equal in both scenarios.

Example: Alice wants to announce her next demonstration. (1) Alice does not want the regime
to learn the content of her message and block this event. (2) Further, she is afraid that the length
of her messages could put her under suspicion, e.g. because activists tend to send messages of a
characteristic length.

In (1) Alice needs a protocol that hides the content of the messages. However, the adversary
is allowed to learn all other attributes, in particular the length of the message. Modeling this
situation, the scenarios may differ solely in the message content; all other attributes must be
identical in both scenarios, as they may not help the adversary distinguish between them. Beyond
the above-described EM , we must thus also request that the length of the messages |M | is identical
in both scenarios. The resulting notion is Message Unobservability leaking Message Length (MO−
|M |)8.

In the second case (2), the protocol is required to hide the length of the message. The length of
the messages thus may differ in the two scenarios, as the protocol will need to hide this attribute.
Hence, we remove the restriction that the message length |M | has to be equal in both scenarios
from the above notion and end up with Message Unobservability MO.

Both-Side Message Unlinkability. Notions of this group are broken if the sender-message or
receiver-message relation is revealed.

Example: The activists know that their sending and receiving frequencies are similar to regime
8We stick to our naming scheme here, although we would commonly call this confidentiality.

147

supporters’ and that using an ACN is in general not forbidden, but nothing else. Even if the
content and length of the message (MO) and the sender-receiver relationship ((SR)L) is hidden,
the regime might be able to distinguish uncritical from critical communications, e.g. whether two
activists communicate “Today” or innocent users an innocent message. In this case, the regime
might learn that currently many critical communications take place and improves its measures
against the activists.

In this case, the activists want a protocol that hides the communications, i.e. relations of sender,
message and receiver. However, as using the protocol is not forbidden and their sending frequencies
are ordinary, the adversary can learn which users are active senders or receivers and how often they
sent and receive. Modeling this, the users need to have the same sending and receiving frequencies
in both scenarios Q,Q′, since it can be learned. However, everything else needs to be protected and
hence, can be chosen by the adversary. This corresponds to the notion Message Unobservability
with Message Unlinkability (MO[ML]).

Both-Side Unobservability. Even the activity of a certain sender or receiver is hidden in notions
of this group.

Example (cont.): It is a risk for the activists, if the regime can distinguish between two leading
activists exchanging the message “today” and two loyal regime supporters exchanging the message
“tomorrow”.

In this case, Alice wants to disclose nothing about senders, receivers, messages or their combination.
However, the adversary can learn the total number of communications happening in the ACN.
Modeling this, we need to assure that for every communication in the first scenario, there exists
one in the second. We achieve this by prohibiting the use of the empty communication with
property ♦6 . This results in the notion Unobservability (O).

Example: The regime knows that a demonstration is close, if the total number of communications
transmitted over this protocol increases. It then prepares to block the upcoming event.

To circumvent this, Alice needs a protocol that additionally hides the total number of communica-
tions. Modeling this, we need to allow the adversary to pick any two scenarios. Particularly, use of
the empty communication ♦ is allowed. This is represented in the property that nothing needs to
be equal in the two scenarios, ℵ , and results in the notion Communication Unobservability (CO).
Note that this is the only notion where the existence of a communication is hidden. All other
notions include ♦6 and hence do not allow for the use of the empty communication.

Sender (and Receiver) Privacy Notions

These notions allow a greater freedom in picking the senders (or receivers: similar notions are
defined for receivers.).

Receiver-Message Linkability. The receiver-message relation can be disclosed in notions of this
group. Hence, such notions include the property that the scenarios are identical except for the
senders (ES) to ensure the receiver-message relations are equal in both scenarios.

In Sender-Message Unlinkability (SML) the total number of communications and how often each
user sends can be additionally learned. However, who sends which message is hidden. In Sender-
Frequency Unlinkability (SFL) the set of users and the total number of communications can
be additionally disclosed. However, how often a certain user sends is hidden, since it can vary
between the two scenarios. In Sender Unobservability (SO), the total number of communications
can additionally be disclosed. However, especially the set of active senders Ub is hidden.

If a notion further includes the following abbreviations, the following information can be disclosed
as well:

• with User Number Leak (−|U |): the number of senders that send something in the scenario

148

• with Histogram Leak (−H): the histogram of how many senders send how often

• with Pseudonym Leak (−P): which messages are sent from the same user

Example: Alice is only persecuted when the regime can link a message with compromising content
to her – she needs a protocol that at least provides SML − P . However, since such a protocol
does not hide the message content, the combination of all the messages she sent might lead to her
identification. Opting for a protocol that additionally hides the message combination (P), i.e.
provides SML, can protect her from this threat.
Further, assuming most users send compromising content, and Alice’s message volume is high,
the regime might easily suspect her to be the origin of some compromising messages even if she is
careful that the combination of her messages does not reidentify her – she needs a protocol that
does not disclose her sending frequencies (Q) although the combination of her messages (P) might
be learned, i.e. achieving SFL − P . However, Alice might fear disclosing the combination of her
messages - then she needs a protocol achieving at least SFL−H, which hides the frequencies (Q)
and the message combination (P), but discloses the sending histogram, i.e. how many people sent
how many messages (H). However, if multiple activist groups use the ACN actively at different
time periods, disclosing the sending histogram H might identify how many activist groups exist and
to which events they respond by more active communication – to prevent this she needs a protocol
that hides the frequencies Q and the histogram H, i.e. provides SFL.
Further, not only sending a certain content, but also being an active sender (i.e. being in U) is
prosecuted she might want to pick a protocol with at least SO − P . Again if she is afraid that
leaking P or H together with the expected external knowledge of the regime would lead to her
identification, she picks the corresponding stronger notion. If the regime knows that senders in the
ACN are activists and learns that the number of active senders is high, it blocks the ACN. In this
case at least SO should be picked to hide the number of senders (|U |).

Example: For the next protest, Alice sends two messages: (1) a location, and (2) a time. If the
regime learns that both messages are from the same sender, they will block the place at this time
even if they do not know who sent the messages. Alice then needs a protocol that hides whether two
communications have the same sender or not. We already explained how to model this with complex
property TS in Section 3.3.2. The resulting notion is Twice Sender Unobservability ((2S)O).

Receiver Observability. In notions of this group the receiver of each communication can be learned.
Hence, such notions include the property that the scenarios are equal except for the senders and
messages (ESM) to ensure that they are equal in both scenarios.

Example: Consider not only sending real messages is persecuted, but also the message content or
any combination of senders and message contents is exploited by the regime. If the regime e.g. can
distinguish activist Alice sending “today” from regime supporter Charlie sending “see u”, it might
have learned an information the activists would rather keep from the regime. Further, either (1)
the activists know that many messages of a certain length are sent or (2) they are not sure that
many messages of a certain length are sent.

In case (1), Alice needs a ACN, that hides the sender activity, the message content and their
combination. However, the adversary can especially learn the message length. Modeling this,
beyond the above described ESM , the message lengths have to be equal |M |. This results in the
notion Sender Unobservability with Message Unobservability leaking Message Length (SO[MO −
|M |]). Note that in SO[MO − |M |] the properties of MO − |M | are included and further the
senders are allowed to differ in the two scenarios. The second case (2) requires a protocol that
additionally hides the message length. Hence, in modeling it we remove the property that the
message lengths are equal |M | from the above notion. This results in Sender Unobservability with
Message Unobservability (SO[MO]).

Example: Alice’s demonstration is only at risk if the regime can link a message with a certain
content to her as a sender with a non negligible probability. Then at least Sender-Message Pair
Unlinkability ((SM)L), which is defined analogous to (SR)L is needed.

Example (cont.): However, (SM)L only allows Alice to claim that not she, but Charlie sent a
critical message ma and the regime cannot know or guess better. Now assume that Dave is also

149

communicating, then the regime might be able to distinguish Alice sending ma, Charlie mc and
Dave md from Alice sending md, Charlie ma and Dave mc. In this case, it might not even matter
that Alice can claim that Charlie possibly sent her message. The fact that when comparing all three
communications that possibly happened, Alice is more likely to have sent the critical message ma

means a risk for her.

To circumvent this problem Alice needs a protocol that not only hides the difference between single
pairs of users, but any number of users. Modeling this, instead of the complex property MSM , we
need to restrict that the active senders’ sending frequencies are equal, i.e. SML.

Example: In another situation our activists already are prosecuted for being a sender while a
message with critical content is sent.

In this case at least Sender-Message Pair Unobservability ((SM)O), which is defined analogous to
(SR)O is needed.

Analogous notions are defined for receivers.

Sender Privacy Notions: Both-Side Message Unlinkability. As explained with the example before
in the case that Alice does not want any information about senders, receivers and messages or
their combination to leak, she would use O. However, the privacy in this example can be tuned
down, if she assumes that the regime does not have certain external knowledge or that the users
are accordingly careful. As explained for the Sender Notions with Receiver-Message Linkability
before, in this case we might decide to allow U ′, |U ′|, Q′, H ′, P ′ to leak.

If a notion X ∈ {RO,RO−|U ′|, RO−H ′, RO−P ′, RFL,RFL−H ′, RFL−P ′, RML,RML−P ′}
is extended to Sender Unobservability by X (SO{X}), the leaking of the sender-message relation
is removed. This is done by removing ER. Since the attacker now has a greater degree of freedom
in choosing the senders and is (if at all) only restricted in how she chooses the receivers and
messages, this is a special strong kind of Sender Unobservability. Analogous notions are defined
for receivers.9

A.7. How to Use

The framework described above offers the opportunity to thoroughly analyze ACNs. To perform
such an analysis, we advice a top-down approach as follows.

1. In case the ACN under analysis can be instantiated to protect against different adversaries,
fix those parameters.

2. Extract capabilities of the adversary and general protocol properties from the ACN descrip-
tion: Specify the allowed user corruption. Is it none, static, adaptive? See Table 3.4. Are
sessions (channels) constructed that link messages from the same sender? See Section A.1.1.
Extract all other capabilities to include them in the protocol model.

3. Simplify the ACN protocol in a protocol model: Generate a simplified protocol (ideal func-
tionality) without cryptography by assuming secure communication. Show indistinguisha-
bility between this ideal functionality and the real-world protocol using a simulation based
proof. Previous work [9] can guide the modeling step. See Section 3.6.1 (UC-realizability)
for how the result of the simplified protocol can be transferred to the real-world protocol.

4. Extract properties based upon the input to the adversary from the ideal functionality: Start
with simple properties, see Table 3.1. What does the adversary learn from the protocol
execution? Continue with complex properties. See Section 3.3.2.

5. After mapping all properties from the protocol and adversary model, a privacy notions must
be selected. Either the description of the ACN already specifies (in-)formally which privacy

9Note that SO{RO} = RO{SO} = O.

150

goal should be achieved, or the ACN under analysis should be shown to achieve a certain
notion. See Table 3.2 for an overview of our defined notions.

6. As it is easier to show that a certain notion is not fulfilled compared to show that it is
fulfilled, we propose to start with the strongest notions extracted this way. A notion is not
fulfilled if the functionality (and thus the protocol) leaks a property to the adversary that he
is not allowed to learn for the given notion. If it is not obvious that a notion is not fulfilled,
check if the notion can be proven for the protocol model. The related work of Gelernter and
Herzberg [72] and Backes et al. [11] serve as examples for such proofs.

If the proof cannot be constructed or δ = 1, a weaker notion can be selected for analysis. In case
that the proof goes through and yields ε = 0 and a negligible δ, the protocol was shown to achieve
the selected notion as per Definition 2. If ε > 0 or a non negligible δ < 1, the protocol achieves
the selected notion as per Definition 42.

If the protocol supports different adversaries, the steps described above can be repeated. This typi-
cally leads to adjusting the ideal functionality or adding different adversary classes (see Section 3.4)
and thus fulfilling different properties of our framework. Analysis results under a variation of ACN
parameters may achieve different notions in our hierarchy (Figure 3.3 and Figure 3.4). Based on
our established relations between notions, analysis results can be compared for various parameters
or parameter ranges, as well as against results of other ACNs.

A.8. Primitives’ Details

A.8.1 Pseudocode

For our pseudocode representation, we extend the scenario model to not only capture communica-
tions from senders to receivers, but also from an to intermediate nodes (proxies) P, Pu1 , Pu2 ,
Primitives know the difference between intermediate nodes and users and can act upon it. We de-
tail a representative selection of our primitives in Algorithm 3 - 11. In general, we use mi

null := {0}i
to represent the specific message consisting of exactly i zero bits (|mi

null| = i), mnull := mx
null for

some default length x, e.g. the one that is being padded to, and auxnull := 0 as the information
that just consist of a zero bit, µ for the maximum number of communications, S as the set of all
senders and U as the set of active senders in the input batch (U = {u | (u, , ,) ∈ r}).

Algorithm 3: EncToMix
Upon query r

for comm = (u, u′,m, aux) ∈ r do
if u′ == P ∨ u′ == Px for any x then

i = |m|
comm′ = (u, u′,mi

null, aux)
replace(comm, comm′)

output r

Algorithm 4: S2S
Upon query r

comm = (Source, Sink,mnull, auxnull)
while length(r) < µ do

append(r, comm)
output r

151

Algorithm 5: AllSend
Upon query r

Ŝ = S \ U
for uj ∈ Ŝ do

comm = (uj , Sink,mnull, auxnull)
append(r, comm)

output r

Algorithm 6: k− rdmS
Upon query r

Ŝ = S \ U
k = length(r)− |U |
j = 1
while j < k ∧ Ŝ 6= ∅ do

uj r←−Ŝ
Ŝ = Ŝ \ {uj}
U= U ∪ uj
j + +

for uj ∈ U do
comm = (uj , Sink,mnull, auxnull)
append(r, comm)

output r

Algorithm 7: D2SSystem

Upon query r
Paddings = {(u : µ)|u ∈ S}
for (ui, , ,) ∈ r do

Paddings[ui]− = 1
rdummy = []
for (ui : padi) ∈ Paddings do

for j ∈ [1, .., padi] do
comm = (ui, Sink,mnull, auxnull)
insertRandom(rdummy, comm)

r+ = rdummy
output r

Algorithm 8: D2A
Upon query r

rResult = []
for comm = (ui, u′i,m,) ∈ r do

for u′ ∈ R do
if u′ == u′i then

append(rResult, comm)
else

j = |m|
comm′ = (ui, u′,mj

null, auxnull)
append(rResult, comm

′)

output rResult

152

Algorithm 9: Delay
Upon query r

rResult = []
for commi ∈ r do

insertRandom(rResult, commi)
output rResult

Algorithm 10: OutboxMix
Upon query r

rForward = []
for commi = (ui, u′i,mi, auxi) ∈ r do

if ui ∈ Proxy then
insertRandom(rForward, commi)
remove(commi, r)

else
if u′i ∈ Proxy then

skip
else

comm′i = (ui, Pui ,mi, auxi)
replace(commi, comm

′
i)

comm′′i = (Pui , u′i,mi, auxi)
insertRandom(rForward, comm

′′
i)

r = r + rForward
output r

Algorithm 11: SameAddr
Upon query r

if Px ∈ r for any x then
replace Px with P for all x

else
for comm = (ui, u′i,mi, auxi) ∈ r do

comm′ = (ui, P,mi, auxi)
comm′′ = (P, u′i,mi, auxi)
replace(comm, comm′)
append(r, comm′′)

output r

A.8.2 Protection

Idea

Xweak
prim==⇒ Xstrong: Assume a successful attack AXstrong on Xstrong for prim(ACN). Show that

there also is a successful attack AXweak on Xweak for ACN (i.e. the condition of the implication
is invalid).

Dummy Primitives

pad. MO − |m| pad==⇒MO: Given an attack AMO on pad(ACN). Attack AMO−|m| on ACN uses
the same batches as AMO except that it applies pad before submitting them. Thus the messages
in the submitted batches all have the same length and AMO−|m| is valid for MO− |m|. Otherwise
AMO−|m| uses the same algorithm as AMO. Notice that the scenarios handed to the protocol
model and hence the probability distribution of adversarial observations is the same for AMO−|m|

153

on ACN and AMO on pad(ACN).

[SO[MO − |m|] pad==⇒ SO[MO], RO[MO − |m|] pad==⇒ RO[MO] similar]

S2S. O
S2S==⇒ CO: Similar as pad: S2S ensures that no empty communications take place. Hence

after applying it the inputs chosen by ACO are valid for O.

AllSend. SFL
AllSend====⇒ SO − |U |: Similar as pad: AllSend ensures that any user sends at

least once. Hence after applying it the inputs chosen by ASO−|U | are valid for SFL, because
U = U .

[SFL−H AllSend====⇒ SO −H, SFL− P AllSend====⇒ SO − P , RO{SFL} AllSend====⇒ RO{SO − |U |},
RO{SFL−H} AllSend====⇒ RO{SO −H}, RO{SFL− P} AllSend====⇒ RO{SO − P} and for the receiver
primitive AllRec similarly.]

D2SSystem. SML
D2SSystem====⇒ SO. Similar as pad: D2SSystem ensures that any user sends the system

(delivery) maximum of messages by padding with messages to the sink. After applying it the
inputs chosen by ASO are valid for SML, as the first system maximum real messages are delivered
and all users send (dummy and real) with the same frequency. Notice that this especially keeps
the messages and receivers of each communication equal to the corresponding communication in
the other scenario 10.

[MO[ML] D2SSystem====⇒ SO{RML}, DfSSystem similarly.]

D2SUser. RO{SML} D2SPUser====⇒ CO. Similar as D2SSystem: D2SUser pads each users sending events
to the fixed user maximum and thereby ensures the same sending frequencies and the same total
number of (dummy and real) messages. Thus after applying it the inputs chosen by ACO are valid
for RO{SML}, as RO{SML} does not require anything else.

D2SPClasses. SFL−H D2SPClasses======⇒ SFL. Similar as pad: D2SPClasses ensures that users either send
no message or adhere to their class11 and hence after applying it the inputs chosen by ASFL are
valid for SFL−H.

[SO −H D2SPClasses======⇒ SO − |U |, RO{SFL−H} D2SPClasses======⇒ RO{SFL}, RO{SO −H} D2SPClasses======⇒
RO{SO − |U |}, DfSPClasses similarly]

D2SPTraffic. SML
D2SPTraffic======⇒ SFL−H. Similar as pad: D2SPTraffic ensures that users either send

no message or adhere to the maximum of messages per sender in the batch12 and hence after
applying it the users in U will sent the traffic maximum (that is the same in both batches due to

10Note that D2SUser does not as there the delivered real messages and the frequency per receiver can differ between
the scenarios after applying the primitive. Assume as first scenario the one where Alice wants to send all messages
and the other where all users only want to send the user maximum of messages. After applying D2SUser the first
scenario will deliver the first user maximum messages from Alice to the intended receivers, but not the other
messages. The second scenario will deliver all messages to the intended receivers.

11As the biggest class allows to send the system maximum of messages and only the first system maximum
messages are considered for the ranking to classes, exactly these messages will be real messages in the adapted input
and hence ES holds for the adapted input too. Notice that D2SPClasses does not modify the set of active senders U
(calculated over the whole batch not just the first system maximum of (real) communications.)

12In the extreme case this requires to pad to the system maximum for all, but always the first system maximum
communications are delivered and hence ES holds for the adapted input too. Notice that D2SPTraffic does not
modify the set of active senders U .

154

H) and all others no (real or dummy) messages, fulfilling Q. Thus the inputs chosen by ASFL−H
are after adaption by D2SPTraffic valid for SML.

[SML− P D2SPTraffic======⇒ SFL− P (as P ensures the same maximum by implying H), RO{SML}
D2SPTraffic======⇒ RO{SFL−H}, RO{SML− P} D2SPTraffic======⇒ RO{SFL− P}, DfSPTraffic similarly]

D2SPSystem. SML
D2SPSystem=====⇒ SFL. Similar as pad: D2SPSystem ensures that users either send no

message or adhere to the system maximum13 and hence after applying it the inputs chosen by
ASFL are valid for SML, as they fulfill Q.

D2SPUser. RO{SML} D2SPUser====⇒ RO{SFL}. Similar as D2SPSystem: D2SPUser pads each active users’
sending events to the fixed user maximum and thereby ensures the same sending frequencies under
active users and no sending events for inactive users, fulfilling Q, and thereby ensures the same
sending frequencies and the same total number of (dummy and real) messages. Thus after applying
D2SPUser the inputs chosen by ARO{SFL} are valid for RO{SML}, as RO{SML} does not require
anything else.14

D2A. MO
D2A==⇒ RO[MO]. Similar as pad: D2A ensures that all receivers receive the same number

of times (in the same order) and hence after applying it the inputs chosen by ARO[MO] are valid
for MO.

[MO − |m| D2A==⇒ RO[MO − |m|] and DfA similarly]

k− rdmS. SO − |U | k− rdmS=====⇒ SO. Similar as pad: k− rdmS ensures that as many users send
as real messages are sent, thus |U | is fulfilled after applying the primitive and as only dummy
messages to the sink are added ES still holds. Hence, after applying it the inputs chosen by ASO
are valid for SO − |U |.

[RO{SO − |U |} k− rdmS=====⇒ O, k− rdmR similarly]

E2EC. SO
E2EC===⇒ SO[MO − |m|]. Similar as pad: E2EC replaces all messages with a receiver-

specific null message and thus ensures that the same messages are used in both cases (because the
same receivers are used). Hence, after applying it the inputs chosen by ASO[MO−|m|] are valid for
SO.

Notice that without key-privacy of the encryption scheme, the replacement messages are receiver
dependent.

E2EC(kp). Null E2EC(kp)=====⇒MO − |m|. Similar as E2EC, but now all messages are replaced with the
same null message (of the same length as the message before, but receiver independent). This hides
message content completely. Hence, after applying it the inputs chosen by AMO−|m| are valid for
Null, i.e. identical.

[SML− P E2EC(kp)+pad========⇒ SML, SFL − P
E2EC(kp)+pad========⇒ SFL−H, SO − P E2EC(kp)+pad========⇒ SO −H,

RML− P ′ E2EC(kp)+pad========⇒ RML, RFL− P ′ E2EC(kp)+pad========⇒ RFL−H ′, RO− P ′ E2EC(kp)+pad========⇒ RO−H ′,
13As before exactly the first system maximum communications will be delivered in the adapted input and hence

ES holds for the adapted input too. Notice that D2SPSystem does not modify the set of active senders U (calculated
over the whole batch not just the first system maximum of (real) communications.)

14Notice that this primitive however does not guarantee to keep ES which D2SPSystem provides.

155

RO
E2EC(kp)=====⇒ RO[MO − |m|], SO{RML− P} E2EC(kp)+pad========⇒ SO{RML}, SO{RFL− P} E2EC(kp)+pad========⇒

SO{RFL−H}, SO{RO − P} E2EC(kp)+pad========⇒ SO{RO −H}, RO{SML− P} E2EC(kp)+pad========⇒ RO{SML},
RO{SFL− P} E2EC(kp)+pad========⇒ RO{SFL−H}, RO{SO − P} E2EC(kp)+pad========⇒ RO{SO −H} similarly]

Note that pad ensures that messages are the same length before they are replaced with the null
message. Note further, that key-privacy is required both for receiver notions (as otherwise the
corresponding receiver can leak based on the observed null message) and for sender notions as
otherwise P will not be equal after applying (consider e.g. A sending to R1 and R2 in the first and
to R1 and R3 in the second (and B sending to the remaining one)).

Delay. SO[MO] Delay===⇒ SO{RML}. Given an attack ASO{RML} on Delay(ACN). Attack
ASO[MO] on ACN uses the same batches as ASO{RML} except that it

1. picks a random permutation of the (first system maximum) communications in the first
scenario,

2. sorts the communications of the second scenario to have the same receiver as in the first
(note that due to Q′ this has to work) and decides randomly whenever there still is a degree
of freedom and

3. submits them to the challenger.

Thus the constructed batches are valid for SO[MO] and use any permutation with the same prob-
ability as Delay would. Otherwise ASO[MO] uses the same algorithm as ASO{RML}. Notice that
the scenarios handed to the protocol model and hence the probability distribution of adversarial
observations is the same for ASO[MO] on ACN and ASO{RML} on Delay(ACN).

[RO[MO] Delay===⇒ RO{SML}, Delay(leak) similar]

Delay+ SameAddr+ AnyMix. MO
Delay+ SameAddr+ AnyMix===============⇒MO[ML]. Similar as Delay. Addition-

ally, SameAddr+ AnyMix ensure that only the same sender-receiver pairs are used because Q and
Q′ are given and after applying first AnyMix and then SameAddr for every communication every
sender sends once to the proxy and the proxy once to the receiver. Finally Delay removes any order
dependency as above and the attack AMO can pick a random permutation for the first scenario
and the corresponding sender-receiver combinations for the second (as the same pairs are used
after applying SameAddr+ AnyMix).

Delay+ EncToMix+ pad+ SameAddr+ AnyMix. Null Delay+ EncToMix+ pad+ SameAddr+ AnyMix==========================⇒ SML.

Similar to Delay+ SameAddr+ AnyMix. Additionally using EncToMix+ pad ensures that the null
message of the same length is used for all communications and hence the attack ANull can pick
a random permutation for the first scenario, but sort the communications of the second to be
identical, as sender-receiver pairs are equal due to SameAddr+ AnyMix and all use the same message
due to EncToMix+ pad.

[Null EncToMix+ pad+ SameAddr+ AnyMix======================⇒ RML similar, but we do not need Delay as the (real, not proxy)
senders appear in the same order already and the proxy communications to the real receivers are
in a random order due to AnyMix already.]

SameAddr+ AnyMix. Null SameAddr+ AnyMix===========⇒ (SR)L. Given attack A(SR)L on (SR)L of SameAddr+
AnyMix(ACN). In the attack for (SR)L each sender sends in the same order in both scenarios
(for any instance) and the challenge row users even send the same message. We construct an
attack ANull in the following way: ANull throws a fair random coin to decide on the instance.

156

Then it applies SameAddr+ AnyMix, which ensures the same communications to the proxy start in
the same order from the real senders. The communications from the proxy to the real receivers
are appended in random order. As for Delay before, ANull decides on a random order for these
communications in the first and use the same order in the second scenario (which uses each order
with the same probability as the AnyMix primitive does). It hands these changed batches to the
challenger and does anything else as ANull. Notice that the new input scenarios are identical and
thus valid for Null and the attack produces the same inputs to ACN as A(SR)L and hence has the
same success.

InboxMix+ EncToMix+ pad. Null InboxMix+ EncToMix+pad===============⇒ (SM)L. Similar to SameAddr+ AnyMix.
pad+ EncToMix ensures now that all messages for communications from the sender to any proxy
are identical and InboxMix makes the sender-receiver pairs identical as the challenge rows already
use the same receiver. Notice that due to the random order of communications outgoing of the
proxy, the communications to the receiver can be ordered to be identical, even though the messages
for these communications are not.

[Null OutboxMix+ EncFromMix+ pad=================⇒ (RM)L similar, but the random order in the communications from
the sender to the proxy that allows us to sort real sender communications to be identical is given by
the instances in (RM)L, not the primitive. So the attack will not use both scenarios for i = 0 and
i = 1 as before, but pick i = 0, b = 0 and i = 1, b = 1 with 50% and i = 0, b = 1 and i = 1, b = 0
with 50% (leading to the same probabilities that any of them is picked for the challenge). Leaky
versions similar.]

Constructions

Broadcast. Null Broadcast======⇒ RO. Similar to D2A: Broadcast ensures that all receivers receive the
same message (in the same order) and hence after applying it the inputs chosen by ARO are valid
for Null.

[Null reverseBroadcast==========⇒ SO similar]

Staged Broadcast. Null Staged Broadcast===========⇒ (2R)O. Similar as Broadcast. Given an attack A(2R)O
on (2R)O of Staged Broadcast(ACN). The attack on (2R)O already uses the same communica-
tions in the first stage (for any instance) and only differs in the receiver of the challenge communi-
cation in the second stage (for each instance). By applying Staged Broadcast, any communication
of the second stage is sent to all receivers in the same order and hence the communications of the
second stage are equal. The attack on Null only has to randomly pick one instance and apply
Broadcast to the second stage to be valid for Null and have the same success as A(2R)O.

Combinations

Nearly all of the dotted implications only add the missing primitives to reach the higher notion,
e.g. (SM)L Delay+ SameAddr==========⇒ SML adds the primitives from Null Delay+ EncToMix+ pad+ SameAddr+ AnyMix==========================⇒
SML that are missing in Null InboxMix+ EncToMix+pad===============⇒ (SM)L.

Only for (SM)L EncFromMix======⇒MO (and the receiver equivalent) we need to further notice that replac-
ing the messages with the null message before and after the proxy (EncToMix+EncFromMix) results
in the same message replacement as replacing all messages with null messages (E2EC(kp)).

157

A.9. Dissecting Systems to Primitive Combinations

We relate four ACNs to our primitives: a basic Mixnet, DC-Net, Pung and Loopix. We decide on
those because they employ different basic strategies (DC-Nets, Mixnets, PIR) and except for the
Mixnet as first example, all employ some dummy traffic, ensuring interesting primitive combina-
tions. For each of the ACNs, we summarize their design, explain the mapping of it to primitives
and discuss the corresponding privacy notions.

We stress that our intention is an initial investigation of the decomposition into primitives and not
to provide a security proof for the protocols.

A.9.1 Mixnet

We start with the mapping of a basic mixnet (adapted from [42] and part of [21, 128, 44]) as a
first example.

Description. A basic mixnets protects the sender’s privacy against the GPA. Senders use mul-
tiple layers of encryption and sent the (encrypted) fixed-size message over a sequence of mixes. At
every mix one layer of encryption is removed. Packets are further delayed until enough are collected
and the processed packets output in a random order. The packet only includes the receiver’s ad-
dress in the innermost layer of encryption. To hide the order of sending events per user, we assume
that the senders wait for a random time before sending the message into the network.

Primitives. The fixed message length corresponds to pad. The mix uses SameAddr, as packets
from all senders can use the same mix and the final address is only learned by the last mix. As
the order of outgoing packets does not depend on the incoming packets it also unlinks in the
timing dimension, corresponding to InboxMix (and OutboxMix15) and thus AnyMix. The layered
encryption corresponds to EncToMix only, as the mixnet does not encrypt the message for the
receiver. Finally, as senders wait for a random time before they input their message into the
network, it further implements Delay.

Notions. On the sender side, basic mixnets as described above result in SML that implies
both (SR)L and (SM)L. Senders are thus unlinked from their messages and receivers. Senders
and messages are unlinked on all channels (content, length, timings) by using EncToMix, pad and
InboxMix. Thus (SM)L is reached. The additional SameAddr ensures that the contacted mix is
not receiver specific (as the primitive uses the same mix for all communications) and Delay ensures
that the timing of sending observations at the senders does not correspond to their real intended
time to send a message. Both the hidden sending timing (Delay) and the unlinking from senders
and receivers (SameAddr) in combination with the other techniques lead us to SML.

Null InboxMix+EncToMix+pad−−−−−−−−−−−−−−−→ (SM)L

(SM)L SameAddr+Delay−−−−−−−−−−→ SML

On the receiver and message side, basic mixnets achieve Null. Notice that indeed the message
plaintext is sent over the final link to the receiver. So, the global adversary learns who received
which message.

15Note that as there is no receiver or sender specific mix, it effectively implements both primitives.

158

A.9.2 DC-Nets

Description. DC-Nets [40] aim for the protection of both the actual senders and receivers against
a GPA that additionally can corrupt all, but two participants. Therefore, in DC-Nets any user
establishes symmetric keys with any other user and uses it for secret sharing: In each round each
user either picks a real or a zero message and XORs it with all owned symmetric keys. The result
is distributed to all participants. XORing the results of all users cancels out the symmetric keys
(as each of them is used in two messages) and reveals the real message, or a collision if two or more
real messages have been sent. To avoid or prevent collisions usually the mapping of sender per
round is predetermined. The described protocol sends the real message to all users. If a message is
intended for a specific receiver, implicit addressing can be used: the (key-private) encryption with
the public key of the receiver replaces the “real message” above.

Translation to Primitives. Fixed Message length and implicit addressing. Messages are as-
sumed to have a fixed length, which has the same effect as pad. Messages further are either
learned in clear by all users (and even eavesdroppers on the links) or, if implicit addressing is used,
the messages are end to end encrypted with a key-private scheme; implementing our primitive
E2EC(kp).

Broadcasting to receivers. As the XORing results and thus the message are delivered to all users
in an order independent of the intended receiver, the primitive Broadcast is employed.

Sending order based on collision avoidance scheme. The order of senders given by the collision
avoidance scheme is randomly chosen and thus implements our Delay primitive.

Mapping Secret Sharing. Secret sharing is more difficult to map to primitives. Arguably every
sender’s local result contributes to the final message of each round and is as large as the real
message. Thus, it intuitively implements reverseBroadcast.

However, this only holds if collisions are completely prevented. If 2 or more real messages are
(attempted to be) sent in a round, reverseBroadcast requires 2 or more sent messages per sender
and thus the sender’s local results (= 1 sent message) are no longer enough. Concretely, the
occurrence of a collision leaks whether two messages are sent by the same or different senders.
In the case of possible collisions, we rather understand secret sharing as a complex primitive
combination: By XORing the real/zero message, we have EncToMix; by the homomorph properties
of XOR and the fixed rounds, we have InboxMix, by the collection of all local results at one place
(at every user), we have SameAddr, by the leakage due to collisions, we have leakS and finally by
the zero message, we have a form of D2S.

The variant of D2S depends on whether we assume an ensured system maximum. If the maximum
of 1 message being attempted to be sent per round is ensured by the DC-Net, i.e. collisions are
completely prevented, it corresponds to D2SSystem. Without any prerequisite, we can only conclude
AllSend as it ensures that every user sends at least once, but there might be more attempted
sendings.

Notions. While applying the identified primitives, we use leakyDecMix short for the combination
of Delay + EncToMix+pad+SameAddr+AnyMix+leakS.

On the sender side without complete collision prevention, we reach SO − P , i.e. the sender behavior
is hidden completely, except for the grouping of messages per sender. Thus the adversary can tell
for (some) pairs of messages whether they belong to the same sender or not, but not who this
sender is/the senders are.

By using leakyDecMix, we unlink senders from messages and receivers in all dimensions (time,
address, content), but still leak which messages are sent by the same user, but not by whom
(corresponding to SML− P). By adding AllSend, i.e. ensuring that every sender sends at least
once, it hides which senders are active (corresponding to SO − P).

159

null
leakyDecMix−−−−−−−→ SML− P AllSend−−−−−→ SO − P

On the sender side with complete collision prevention, we found two ways to SO, i.e. the sender
behavior is hidden completely. By using reverseBroadcast all information about the senders
is removed as they are made equal in both batches (corresponding to SO). As the complete
collision prevention removes the leak, the other way starts with DecMix that unlinks senders from
messages and receivers without additional restrictions (corresponding to SML). To represent secret
sharing, DecMix is combined with D2SSystem that perfectly hides the sending frequency and activity
(corresponding to SO) by ensuring that every sender has enough sending events to potentially
have sent all real messages that the system can deliver.

null
reverseBroadcast−−−−−−−−−−−→ SO

null
DecMix−−−−→ SML

D2SSystem−−−−−→ SO

On the receiver side, by using Broadcast we reach RO, i.e. the receiver behavior is completely
hidden. Note however that without implicit addressing the receiver notion does not have much
meaning as the adversary of course knows that the message is delivered and meant for all re-
ceivers.

null
Broadcast−−−−−−→ RO

With implicit addressing, we even reach a notion protecting the combination of sender, message
and receiver: RO{SO − P}, i.e. the receiver behavior, as well as the sent message and the sender
behavior, except for the grouping of messages per sender are hidden.

With Broadcast we remove all information about the receivers (corresponding to RO). With
the encryption E2EC(kp) and padding pad, we hide the content (corresponding to RO[MO − |m|])
and also the length of the message (corresponding to RO[MO]). By additionally randomizing the
sending order, but still leaking which communications belong to the same sender (Delay+leakS),
we reach RO{SML− P}. Finally, by ensuring that all users sent at least once (AllSend) we reach
RO{SO − P}.

null
Broadcast−−−−−−→ RO

Enc(kp)−−−−→ RO[MO − |m|] pad−−→ RO[MO]

RO[MO] Delay+leakS−−−−−−−−→ RO{SML− P} AllSend−−−−−→ RO{SO − P}

Discussion. We now compare our derived notions with existing analysis results on DC-Nets.

Mapping the receiver side to Broadcast is intuitive and the reached notion is RO.

On the sender side, Hevia and Micciancio [82] concluded that DC-Nets achieve their SA (Strong
Anonymity), which translates to our SO (Sender Unobservability). Later Gelernter and Herzberg
[72] show that based on collisions SA is not achieved, but only their new relaxed version RH,τSA ,
which translates to our SO − P (Sender Unobservability leaking pseudonym).

Under the assumption of complete collision prevention, both using reverseBroadcast and the
combination of D2SSystem with DecMix result in SO, which corresponds to the result of Hevia and
Micciancio, as well as the fact that Gelernter and Herzberg’s weaker notion is due to occurring col-
lisions. Including collisions, our primitives conform to the result of Gelernter and Herzberg.

160

A.9.3 Pung

Description. Pung works in the client server model and wants to protect the behavior of the
users against a corrupted server. Users exchange messages in Pung via dropping and retrieving
them from post boxes at the Pung server. Communication partners learn each other’s public keys
and use them to derive a secret common key for authenticated end-to-end encryption, as well as
the randomized labels to identify the post boxes they are going to use to send/retrieve messages
to/from their partner in each round. Senders send their encrypted message and the label to the
Pung server. Receivers use a Computationally Private Information Retrieval (CPIR) scheme to
query the server once each round: Receivers calculate the label and craft an encrypted query vector
that contains homomorphically encrypted 0 entries except for the position that corresponds to the
label. The Pung server uses this vector to calculate an encrypted overlay of the query vector
and the messages it stores. Thereby all but the requested message cancel out, without leaking
information on the requested post box. Finally, Pung ensures that users send and receive exactly
once per round. In case users are idle an encrypted dummy message to a random label is sent, as
well as a the message from a random label retrieved.

Translation to Primitives. Protecting the messages. Pung uses symmetric, authenticated end-
to-end message encryption and padding for all messages. This maps trivially to the primitives
E2EC(kp) and pad.

Dummy Traffic. Users send and receive exactly once per round. This corresponds to D2SUser and
DfSUser with a maximum of one message each.

Mapping CPIR. We assume that sending and receiving times are defined by Pung independent of
users’ intention to really send or receive. This translates to Delay for hiding the order of senders, as
well as OutboxMix for hiding the timing relation between sending and receiving. The CPIR scheme
ensures that the adversary cannot learn which post box was accessed, i.e. all communications
are mixed (SameAddr) and that outgoing messages (from the Pung server) are a new encryption
compared to the ingoing ones (EncFromMix).

Notions. While applying the identified primitives, we use DecMix short for the combination of
Delay + EncToMix+pad+SameAddr+AnyMix.

Using multiple steps, Pung reaches Communication Unobservability (CO), the strongest notion
that completely hides messages, sender and receiver behavior, as well as even the fact whether
real communications are happening under the given adversary model (especially including trust in
communication partners).

With the help of encryption and padding, all information about the messages are hidden (cor-
responding to MO) as in the example before. DecMix on top of an already encrypted message
ensures the complete unlinking of senders from messages and receivers, as well as receivers from
messages and senders. Notice that in this case the message is encrypted once for the receiver and
once for the mix, as known from onion routing. Further by ensuring that every user has the same
number of receiving events on top of the already existing protection, we additionally hide receiv-
ing activities and frequencies. With this, in addition to the protection for messages and senders,
finally all receiver information is hidden (corresponding to RO{SML}). With D2SUser not only the
sending activities and frequencies, but also the total number of real communications in the system
is hidden (corresponding to CO).

null
E2EC(kp)−−−−−→MO − |m| pad−−→MO

DecMix−−−−→MO[ML] DfSUser−−−−→ RO{SML} DSUser−−−→ CO

Discussion. Communication Unobservability (CO) is even stronger than the notion that the
authors stated for their system: Relationship Unobservability as informally defined by Pfitzmann
and Hansen [126]. With CO no meaningful non-trivial information about users can be derived and

161

CO additionally requires to hide the number of real communications, which Pung does against the
GPA with fixed communication times.

A.9.4 Loopix

Description. Loopix [128] employs mixes and additionally ingress and egress providers to protect
sender and receiver privacy against a range of adversary models. They consider the GPA with
extensions to i) perform network attacks, ii) corrupt mixes (eavesdrop or manipulate traffic), iii)
corrupt providers (eavesdrop) and iv) corrupt users.

Every message is first sent to the sender’s ingress provider and then through a layered mixnet to
the receiver’s egress provider. The egress provider collects messages for its users in postboxes (also
in case they are offline). The routing path and the delay at each hop are chosen by the senders
randomly for every message. The routing information (including the receiver’s ID) is hidden at
every hop with the Sphinx mix package format except for the locally required information, and
the message is end-to-end encrypted.

Sending times are chosen randomly according to a fixed distribution. If the sender has no real
message at the next sending time, she generates and sends a dummy message to a random egress
provider, who later drops this message. Following a similar distribution, senders and mixes send
loop dummy messages, i.e. messages addressed to themselves, to detect traffic manipulation via
the absence of returning loop messages.

Receivers query their egress provider for received messages with a fixed frequency. Providers always
respond with a fixed amount of messages by adding dummy messages if too few messages were
received.

Translation to Primitives. Messages. All messages are key-private end-to-end encrypted and
due to the Sphinx message format [52] padded to the same length, corresponding to the primitive
E2EC(kp) and pad.

Mixnet. The layered mixnet with the Sphinx packet format ensures a different encryption of
the message before and after every intermediate node, this directly corresponds to the primi-
tive EncToMix and combined with the usage of end-to-end encryption also has the same effect as
EncFromMix. Further, the shared layered mixnet for all communications corresponds to the prim-
itive SameAddr and the randomly chosen per-hop delays correspond to the primitives InboxMix
and OutboxMix.16

Sending Times and Dummy Traffic. The randomly chosen sending times correspond to Delay.

Senders pad their output to a fixed distribution using dummy messages, as well as receivers’
inputs are padded to a fixed number with dummy messages. Thus the send events do not depend
on the number of real sent messages. Intuitively, this is close to D2SUser. However, the dummy
messages do not ensure that every sender sends a fixed number of times, but just pad according
to a distribution with messages that end at random providers. Thus the actual protection is a
bit weaker than what D2SUser provides for special cases (and needs to be investigated in future
work). One such special case is if Alice’s random choice according to the distribution resulted in
a low number of sent messages in this time interval. If we learn that more messages arrived in the
corresponding interval that all belong to the same sender, we learn that Alice was not the sender.
The likelihood of this depends on the chosen maximum and parameters of the distribution.

The receiver side intuitively seems to implement DfSUser, but on closer inspection Loopix does not
implement any DfS primitive. As sender generated dummies are sent to random providers, we can
estimate how many dummy messages arrive at a provider and know that the remaining messages
are likely real messages. So, the number of messages is not padded to a maximum as DfSUser

16Note that if SameAddr is used, the mixing effect of InboxMix, OutboxMix or InboxMix and OutboxMix is the same
as all communications are mixed with each other in any option.

162

requires, but instead is increased on average by an expected amount. The provider generated
dummies cannot compensate for this as the critical adversarial observation happens before the
provider.

Notions. We use DecMix short for Delay + EncToMix+pad+SameAddr+InboxMix and EncMix
short for EncFromMix + Pad + SameAddr+OutboxMix:

On the sender side we see the unlinking of the sender from the message and receiver (in all
dimensions) with the help of DecMix as in the examples before:

null
DecMix−−−−→ SML

On the receiver side we see the unlinking of the receiver from the sender and message (in all
dimensions) similarly with EncMix :

null
EncMix−−−−→ RML

Further, the messages are completely protected (unless the receiver is corrupt) with the help of
encryption and padding as in the examples before:

null
E2EC(kp)−−−−−→MO − |m| pad−−→MO

Discussion. As discussed earlier in Section 3.6.2, Loopix defines the goals of Sender-Receiver
Third-party Unlinkability and Sender Online-/ Receiver Unobservability. Sender-Receiver Third-
party Unlinkability is targeted against any of Loopix’ adversary models, especially also insiders.
Sender Online-/ Receiver Unobservability against any, except for insiders. Recall that Loopix’ goal
definitions are not completely formal and thus open to interpretation. In Section 3.6.2, we however
argued that our understanding of Sender-Receiver Third-party Unlinkability is mapped to (SR)L
and Sender Online-/Receiver Unobservability either both to CO or to SO and RO.

Loopix’ Unobservability is not backed by our primitives and indeed below we show that two types
of frequency information can be derived from adversarial observations: 1) A corrupted provider
(or receiver) can learn whether there is a large inbalance between the sending frequencies or not,
as in the first case less messages are delivered to her than in the other. 2) A GPA can distinguish
receiving frequencies of users at different providers as the dummy is just adding an expected value
on each provider, not padding the number to a maximum.

Attack 1: Sender Frequency Attack on SFL against corrupted receiver/provider

We pick two senders A and B and a high number of messages k. In scenario 0 one message is
sent by A, all other by B, in scenario 1 half of the messages are sent by B, the other half by A.
The adversary polls messages from the provider in every time step and observes the number of
delivered (real) messages.

The adversary chooses much more messages in the scenarios than can be sent until time point
t where she evaluates her observations. In Loopix real messages (or dummy messages if no real
messages are available) are sent following an exponential distribution with parameter 1

λ . Thus, at
point t in scenario 0 the adversary expects to observe λt+ 1 (one message from A and λt from B)
and in scenario 1, 2λt received messages. She guesses on the scenario where the real number of
received messages is closer to the expectation. As the adversary can pick any number of messages
and wait arbitrary long, the observations approach the expected values (law of large numbers) and
thus with increasing t this strategy is approaching the optimal advantage.

Remark. Note that the same attack idea works if we limit the number of messages that are intended
to be sent per time interval (the relaxed version of SO discussed in Section 4.4.1) unless the limit
and chosen λ parameter ensure an overwhelming probability of all messages that are intended to

163

be sent until this time are also being sent (enough sending events are chosen by the exponential
distribution).

Remark 2. Notice that the same strategy works with a corrupted provider instead of receiver as the
provider adds dummy messages per receiver and the number of expected loop messages is known.
Thus the provider can estimate the number of real messages per receiver.

Attack 2: Receiver Frequency Attack on RFL− P ′ against GPA

We pick two receivers A and B and a high number of messages k. In scenario 0 one message is
received by A, all other by B, in scenario 1 the single message is received by B, all other by A.
The adversary counts how many messages enter A’s and B’s provider. If more messages enter
A’s provider than B’s, the adversary guesses on scenario 1. If more messages enter B’s than A’s
provider, the adversary guesses scenario 0.

As dummy traffic is addressed to a random provider the expected amount of dummy messages
entering a provider is the same for all. As the adversary can make use of a large number of messages
it follows that the number of dummy messages is close to the expected value and thus differences
in the number of messages per provider are caused by real communications. Hence, the adversary’s
strategy is approaching the optimal advantage with increasing numbers of messages k.

164

B. Improving Bounds

Table B.1: Comparison of notations, N.A.: not applicable (concept does not exist/does not apply),
-: no defined symbol

Our Trilemma Counting-Bound Optimality-Bound Dropping-Bound
U , ui S, ui [n], pi or Si Pi -
UH N.A. H N.A. -
n N n n N
h - h N.A. -
ca N.A. N.A. N.A. κN
cp c N.A. N.A N.A.
lmax l + 1 N.A N.A. N.A.
r N.A. R N.A. N.A
Out(r) ≈ p′ · r ·N Outπσ,R - -
p p = p′ + β ≈ Lπi (σ,R)

R

∑
j∈[n] |mi,j | N.A.

β β
Comπσ,R−Out

π
σ,R

N∗R li = µN −
∑

j∈[n] |mi,j | N.A.
≈ ovh(T)/n = µN

σ0, σ1 N.A. σ0, σ1 M̄ (0), M̄ (1) σ0, σ1

δ δ AdvComp−N
π,n,A,Cap(k) AdvN−annonπ,A (k) AdvΠ,A(

∑
, kickoff, freeze)

λ η (δ ≤ neg(η)) k (Adv ≤ negl(k)) k λ
b b b b b

Table B.2: Overview used parameters
Parameter Meaning

U set of senders
ui ith sender
UH set of honest senders
n number of nodes/participants
h number of honest senders, |UH |
ca number of actively compromised nodes
cp number of passively compromised (intermediate) nodes
lmax latency, maximal delay of a message, the maximal number of rounds between the

sending of a message and its reception
lexp expected delay of a message, average number of rounds between the sending of a

message and its reception
r number of rounds a certain metric or analysis refers to

Out(r) delivered messages until round r
p′ probability of one node to send a real message in a given round
p p = p′ + β, probability to send any type of message
β bandwidth-overhead, probability of one node to send a dummy message in a given

round
σ0, σ1 scenarios
δ adversary advantage
λ security parameter
b challenge bit

165

B.1. Tightening the claims

First, we make the effects of assumptions explicit by incorporating them into the analyzed dimen-
sions. Thereby, we do not technically change any result, but allow to understand the real strength
of the results better. Secondly, by in-depth analysis of the proofs, we found that the proofs work
for even weaker assumptions than those that had been made, and in one case, we improved the
calculations for the overhead.

B.1.1 Adversary Models

All papers assume global eavesdropping capabilities. However, as the actual attacks consider only
one or two victim senders, we can reduce the global adversary to be local. She is limited to the
links1 of the victim(s).

Optimality-Bound, Counting-Bound and Trilemma

For these attacks the adversary only has to be able to notice when or how often the victim sends. In
the integrated system model she has thus to be able to distinguish sending events from forwarding
events. As a technicality the adversary in the proofs can decide that the victims do not receive
any message. As thus all inbound packets must be followed by forwarding events, the adversary
learns the number of real sending events by subtracting the outgoing packets from the inbound
ones.

Dropping-Bound

For the bound the only active adversarial capacity needed is dropping, although their attacker
model states multiple active capabilities (delay, create, modify and drop messages).

B.1.2 Privacy Notions Specification

Single Setting. For reasons of compatibility with the analyzed papers, we extend our notions
from Chapter 3 by introducing an X1 for each notion X. It expresses that every sender sends
exactly once in each batch for a sender notion (SŌ, (SM)L̄), each receiver receives exactly once
for a receiver notion (RŌ), and each sender and receiver send/receive exactly once in each batch
for an impartial notion (CŌ, (SR)L̄).

Formally, the extension X1 is defined to any notion X as for any

sender notion: for all b ∈ {0, 1}, (u, q) ∈ Qb : q = 1, i.e. all users send exactly once in the
batch.

receiver notion: for all b ∈ {0, 1}, (u, q) ∈ Q′b : q = 1, i.e. all users receive exactly once in the
batch.

impartial notion: for all b ∈ {0, 1}, (u, q) ∈ Qb ∪Q′b : q = 1, i.e. all users send and receive exactly
once in the batch.

Note that this only expresses weaker privacy goals and in terms of bounds this means, the bound
is also valid for the goal without this extension, but slightly less precise.

1This can be achieved trivially by their ISP, and probably easily by an attacking insider, who controls the nodes
that are connected by the adjacent links.

166

B.1.3 Dropping-Bound – Privacy Notion

The Dropping-Bound defines its own privacy goal without relation to other work. In its anonymity
definition the game adversary is2 not restricted in how she chooses the scenarios. Therefore,
the described notion matches Communication Unobservability CO, the strongest notion in the
hierarchy.

Additionally to the anonymity definition the goal is however restricted by the ”simple I/O setting”,
i.e. each participant sends and receives exactly one message. This restriction is equivalent to fixing
the number of sending and receiving events to 1, which is the exact definition of MŌ[ML̄]1, an
already weaker impartial notion of the hierarchy.

The attack used in the proof breaks an even weaker notion. As it ignores message contents, we
can use the same message in all communications. Further, we can define the second scenario equal
to the first, with only the one sender u0 that sends to the observed receiver switched with the
alternative sender u1 that sends to another receiver. Thereby, only the linking between those
senders and receivers differs and the definition of (SR)L̄1 is met.

Interestingly, this is one of the weakest notions in the hierarchy. The bound is thus much stronger
than the anonymity definition suggested (the strongest notion in the hierarchy), as their calculated
cost is not only necessary to achieve a very strong privacy definition, but also if only the linking
between sender and receiver is aimed to be protected (see Figure B.1).

Sender Privacy Notions

Both-side
Unobservability

Both-side
Unlinkability

Both-side Unlinkability

Sender-
Receiver

Linkability

Message
Observability

Receiver-Message Linkability

Receiver Observability

Impartial Notions

goal definition

Dropping-Bound

Trilemma

Trilemma

Trilemma

Dropping-Bound

Dropping-Bound

goal with respect to additionally stated assumptions
goal actually broken by suggested attack

Figure B.1: The mapping of the anonymity notions to our hierarchy of privacy notions from
Section 3.5 (Figure 3.3): The notions used for the bound differ from the anonymity definition given
due to additional assumptions. Further, the notions needed in the proofs are even weaker than the
notions that follow from the additional assumptions. For a simplified summarizing presentation,
we neglect the additionally restriction (X1) that the Trilemma and the Dropping-Bound introduce
for the notions MO[ML], SML, (SM)L and (SR)L.

2except for the behavior of corrupted users that does not hinder our comparison, as we discuss separately in
Section 4.2.5.

167

B.1.4 Trilemma – Overview

We discuss the used privacy notion and tighten the bound in terms of the needed overhead.

Privacy Notion

The Trilemma uses sender anonymity from AnoA, which maps directly to SO. This means that
the two scenarios can arbitrarily differ in the senders, but in nothing else.

For the synchronous user distribution it is however additionally assumed that everyone can only
send exactly one real message. Similarly to the Dropping-Bound before, this means that the
frequency with which a sender sends needs not to be hidden, as it is identical in both scenarios.
This is equal to the definition of SML1.

The analyzed notion in the proof of the synchronized model, as opposed to the claimed goal or the
goal that follows from the stated assumptions, changes however only the sender of the challenge
message (with some other sender3). This matches the definition of (SM)L̄1 as only the connection
between two senders and messages is changed and every sender sends one message.

In the unsynchronized model, it is assumed that each user wants to send messages. This time the
number of messages is not fixed by the notion, but neither can it be chosen by the adversary. Every
time the coin flip decides that the user has to send a message, she is assumed to have one ready
to send. As again the only difference allowed is the change of senders for the challenge message,
this translates to (SM)L̄.

Similarly to the Dropping-Bound, we see that even though a pretty strong notion was stated
in the beginning, the suggested attack breaks one of the weakest notions defined; the notion
that only protects the linking between sender and message, but keeps anything else identical (see
Figure B.1).

Bound

The idea of the proof in the unsynchronized case is simple: An adversary knows that the sender
of the critical message has sent in the lmax − 1 rounds before she received this message. Thus, if
one of the two victim senders did not sent in these rounds, we know the other must have been the
sender, as the only uncertainty the adversary has left is which of those two candidate users was
the sender. Therefore, the adversary wins, i.e. learns the sender, if the alternative sender did not
send.

The authors perform intricate calculations, introducing random variables, the Chernoff bound and
Markov’s inequality, to prove their bound:

δ ≥ 1−
[

1
2 +min

(
1
2 , 1− (1− p)lmax−1

)]
Which is equivalent to

δ ≥ 1
2 −min

(
1
2 , 1− (1− p)lmax−1

)
and can be even easier understood as:

δ ≥ max
(

0, (1− p)lmax−1 − 1
2

)

3This is not made explicit, but has to be done to respect the assumption of every sender sending exactly one
message.

168

However, considering that we only need to bound the probability that the other user does not send,
we claim that an easier and more accurate bound is:

δ ≥ (1− p)lmax−1

We know that with probability 1 − p the alternative user does not send in one round. As the
sending in the rounds are independent (as stated in [54]), (1− p)lmax−1 is the probability that the
user does not send in any of the rounds.

With this difference, we adapt the argumentation of [54] (which we explain intuitively together
with the other bounds in Section 4.2.7) for the extended case with compromised protocol parties
as well and result in (cf. Appendix B.2.3):

δ ≥


1−

[
1−

(
c

lmax−1
)
/
(

K
lmax−1

)] [
1− (1− p)lmax−1]

if cp ≥ lmax − 1(
1−

[
1− 1/

(
K
cp

)]
[1− (1− p)cp]

) (
(1− p)lmax−1−cp

)
if cp < lmax − 1

B.1.5 Trilemma – Compromising adversary

Extending the adversary to compromise up to cp ≤ n−2 intermediate nodes facilitates the attack of
tracing messages along their anonymization paths, if all nodes on these paths are under adversarial
control. This increases the advantage of the adversary, and the Trilemma is interested in this
additional probability for an attack to succeed. We use K to denote the number of protocol
parties throughout this section and discuss the synchronized user setting in the following.

Recall that the bound for synchronized users without corruption is:

δ ≥ 1−min
(

1, (lmax − 1)(1 + βn)
n− 1

)

According to [54] we define the last part (the probability that a certain user has sent a message in
the lmax − 1 rounds) to be

fβ(lmax − 1) := min

(
1, (lmax − 1)(1 + βn)

n− 1

)
.

For corrupted intermediaries, [54] distinguishes two cases. The adversary either has a chance to
compromise all relays on the anonymization path of the challenge message as she has corrupted
enough relays, or not. The authors simplify the first case and bound the probability that the chal-
lenge or alternative messages can be traced with the probability that all relays on the anonymization
path are compromised:

(
cp

lmax−1
)
/
(

K
lmax−1

)
. The adversary can only lose if some relay on the path

is honest
(

1− (cp
lmax−1)

(K
lmax−1)

)
and an alternative message is sent (fβ(lmax − 1)). She thus loses with a

probability of at most
(

1− (cp
lmax−1)

(K
lmax−1)

)
fβ(lmax − 1). As she wins in the complement to this event,

her advantage in this case is at least:

1−
(

1−
(

cp
lmax−1

)(
K

lmax−1
)) fβ(lmax − 1).

In the second case, not all intermediate nodes can be corrupted. Note that for the adversary to
win it suffices to track all alternative messages until the challenge message is received (as she can
exclude them). The adversary hence loses if an alternative message is sent and an honest relay is on

169

the path that this message shares with the challenge message. There is an honest relay on this path
if the message traversed more relays (>cp) than the adversary can compromise (fβ(lmax−1− cp)).
However, there might also be an honest relay on this path if the path is shorter (consisting of ≤cp
relays). This event is at most as likely as having an honest relay in exactly cp relays: 1 − 1/

(
K
cp

)
.

As a shorter path occurs with probability fβ(cp), the adversary loses at most with the probability
fβ(lmax − 1 − cp) + fβ(cp)(1 − 1/

(
K
cp

)
). The adversary wins in the complementary event, so her

advantage is at least

1−
[
1− 1/

(
K

cp

)]
fβ(cp)− fβ(lmax − 1− cp).

The two considerations result in the final bound:

δ ≥

1−
[
1−

(
cp

lmax−1
)
/
(

K
lmax−1

)]
fβ(lmax − 1) cp ≥ lmax − 1

1−
[
1− 1/

(
K
cp

)]
fβ(cp)− fβ(lmax − 1− cp) cp < lmax − 1

For the unsynchronized setting the same ideas are applied on the basis of the non-compromising
bound for the unsynchronized setting (cf. Appendix B.2.3).

As for the non-compromising case, the above bounds induce an area of impossibility for the com-
promising adversary. If an adversary passively compromises cp < lmax − 1 protocol parties, then
the area of impossibility is

2(lmax − 1− cp)β ≤ 1− 1
poly(λ) .

If the number of compromised nodes is cp ≥ lmax − 1, then anonymity cannot be reached for

2(lmax − 1)β ≤ 1− 1
poly(λ) and lmax ∈ O(1).

B.2. Proofs

B.2.1 Advantage Definitions

All advantage definitions, i.e. how high the probability of the adversary guessing correctly has to
be to break the privacy notion, are equivalent. We use Pr[g = A|C(b)] short for the probability
that the attacker A guesses g when the challenger C picked random bit b.

Counting-Bound. This definition requires the probability that any adversary algorithm A correctly
guesses that bit b = 1 (Pr[1 = A|C(1)]), is only negligibly bigger than the same algorithm guessing
b = 1 incorrectly (Pr[1 = A|C(0)]). So, the adversary has only a negligible advantage δ in winning
the game.

Pr[1 = A|C(1)]− Pr[1 = A|C(0)] ≤ δ

Optimality-Bound. The definition of the adversary’s attack advantage δ in the Optimality-Bound
can be shown to be equivalent, under the assumption that the adversary always guesses something,
with simple transformations:

δCounting−Bound = Pr(1|1)− Pr(1|0)
= Pr(1|1)− (1− Pr(0|0))
= 2 · (0.5 · Pr(0|0) + 0.5 · Pr(1|1))− 1
= 2 · Pr(b|b)− 1 = δOptimality−Bound

170

Trilemma. The Trilemma uses a definition similar to the Counting-Bound’s as follows:

Pr[0 = A|C(0)] ≤ Pr[0 = A|C(1)] + δ

Note that in comparison to the Counting-Bound’s here only the bits are changed. Technically, the
advantage definition has to be fulfilled for any PPT adversary. Hence, if there is an adversary
violating the definition of the Counting-Bound, we can simply swap its chosen scenarios and invert
the output bit and we have an adversary violating the definition of the Trilemma and similarly for
the other way round.

Dropping-Bound. This anonymity defines two scenarios to be indistinguishable iff the statisti-
cal distance between the observation of the adversary is negligible in the security parameter. As
measure for the statistical distance the total variation distance (∆TV (·, ·)) is used.

∆TV (VA|C(0), VA|C(1)) ≤ δ

From [50] (Equation 8) we know that this total variance based definition and the differential
privacy based (0, δ)-closeness definition of [50] are interchangeable. Further, the (0, δ)-closeness
definition is defined as the outputs of the mechanism, i.e. the input to the game adversary, being
indistinguishable, just as the probabilities in the definition of the Counting-Bound and Trilemma:
VA|C(0) ≤ VA|C(1) + δ.

Thus, the only remaining difference between the definitions is that the Dropping-Bound is using
the probability distributions in the views of the game adversary, while the Counting-Boundis using
all possible game adversary algorithms. However, if the difference of the probability distributions
in the views is negligible, so is the chance of any adversary to distinguish them. Also, if there is an
adversary that can distinguish the scenarios, then the probability distributions in the views have
to be non-negligibly different.

B.2.2 Counting-Bound and Optimality-Bound Bound Equivalence

The Optimality-Bound proves optimality of a protocol adaption, precisely the adding of dummy
traffic: The overhead ovh of each such protocol adaption τ has to ensure that each of the n
possible senders is sending the maximum number of messages µmax. This leads to n · µmax send
events:

ovh(τ) ≥ n · µmax

The Counting-Bound wants to prevent the adversary from excluding any sender from the set of
suspects that could have sent all messages. Thus the number of real messages received can be at
most the total number of messages (real and dummy) any one sender has sent.

More formally, let Out(r) denote4 the number of messages received by a destination until round
r, Li(r) the number of messages sent by sender ui and UH the set of honest users. The bound
is

Out(r) ≤ min{Li(r)|ui ∈ UH}.

It follows that the total number of sending events for all senders Com(r) has to be sufficiently
high:

Com(r) ≥ Out(r) · |UH | = Out(r) · h

Comparison. As µmax messages are delivered, Out(r) = µmax. The total number of messages sent
are Com(r) = ovh(τ). Since there are no corrupted users, h = n. From this we conclude equality
of the bounds :

ovh(τ) ≥ n · µmax ⇐⇒ Com(r) ≥ n ·Out(r) = h ·Out(r)

4Compared to [72], we omit additional parameters. I.e. Out(r) is short for Outπσ,r.

171

B.2.3 Improving the Trilemma

Case 1: cp ≥ lmax − 1 This means all intermediate nodes chosen in the lmax − 1 rounds could
be corrupted. As for the synchronous behavior, the attackers definitively wins if all intermediate
nodes are corrupted (

(
c

lmax−1
)
/
(

K
lmax−1

)
). He also wins if the alternative user does not sent ((1 −

p)lmax−1). So, her advantage can be bound by the complementary event to not all intermediate
nodes being corrupted (1−

(
c

lmax−1
)
/
(

K
lmax−1

)
) and the probability that the other user sends (1−

(1− p)lmax−1):

1−
[

1−
(

c

lmax − 1

)
/

(
K

lmax − 1

)][
1− (1− p)lmax−1]

Case 2: cp < lmax − 1 This means not all intermediate nodes are corrupted. As for the syn-
chronous behavior, the attacker wins except if an alternative and the challenge message share a long
path (so long that an honest node has to be on it) (1−(1−p)lmax−1−cp) or there are only alternative
messages that share short paths (and none that shares a long path)5 ((1−p)lmax−1−cp(1−(1−p)cp))
but an honest node is on it (≤ 1− 1/

(
K
cp

)
):

δ ≥ 1−
(
1− (1− p)lmax−1−cp

)
− (1− p)lmax−1−cp [1− (1− p)cp]

[
1− 1/

(
K

cp

)]
= (1− p)lmax−1−cp − (1− p)lmax−1−cp [1− (1− p)cp]

[
1− 1/

(
K

cp

)]
=
(
(1− p)lmax−1−cp

)(
1− [1− (1− p)cp]

[
1− 1/

(
K

cp

)])

B.2.4 Impossibility areas

Relations between variables The number of send messages Com(r) are the dummy messages
(β messages per user and round) and real messages that are delivered (Out(r)).

Com(r) = βnr +Out(r)

Transformation Using our discovered relation between the variables and the Trilemma’s as-
sumption that n ≈ poly(λ) we can transform the Counting-Bound:

Com(r) ≥ Out(r) · n
βnr +Out(r) ≥ Out(r) · poly(λ)

β ≥ Out(r) · (poly(λ)− 1)
poly(λ) · r

β ≥ Out(r)
r

·
(

1− 1
poly(λ)

)

and the Trilemma (impossibility area): 2(lmax−1)β ≥ 1− 1
poly(λ) ⇐⇒ β ≥ 1

2(lmax−1)

(
1− 1

poly(λ)

)

B.2.5 No latency in the Trilemma

Using lmax = 1 yields:
5Note that this is a tighter estimation as the one of synchronized user setting, where the probability of a short

shared path(fβ(cp)) is used (and the existence of further alternative messages is neglected).

172

synchronized: δ ≥ 1−min
(

1, 0+βn0
n−1

)
= 1

unsynchronized (original): δ ≥ 1−
[1

2 +min
(1

2 , 1− (1− p)0)] = 1
2

unsynchronized (improved): δ ≥ (1− p)0 = 1

B.3. Extended Results

B.3.1 Receiver Privacy Goals

Both the Optimality-Bound as well as the Trilemma also consider receiver privacy goals.

The analysis for the Optimality-Bound is consistent to its bound for SO: if any user receives less
than the total number of real messages, she is excluded from the anonymity set. Both sender and
receiver bounds hence are equal, and RO can only be achieved with high bandwidth overhead; for
instance, by implementing a broadcast.

The Trilemma also adapts its original attack to identify receivers: The adversary observes the
sending of the challenge message and concludes that the message can only be received by someone
who receives a message within the next lmax rounds. If enough relays are corrupted, the message
can be traced. Interestingly, the resulting bound postulates a lower cost than for the senders.
Attacking the sender, the candidate messages are only those sent within the lmax rounds before
the challenge message is received. Attacking the receiver, the candidate set expands to those
messages sent during the lmax−1 rounds before, and the lmax−1 rounds after sending the challenge
message. All could have caused a message reception during the critical period, depending on how
the protocol determines the latency for each message. We hypothesize that future work might
improve this bound to match the sender case, because not even an optimal protocol can be able
to ensure that all messages always end up being received in the critical period6.

B.3.2 Note on related results

It is interesting to note, that researchers on the physical layer defined privacy goals that are similar,
and identified the same bound as the Optimality- and the Counting-Bound [148]. Assuming the
lack of a shared secret, they additionally analyze how much shared randomness is needed between
the users.

Oya et al. analyze how a given (total) amount of dummy traffic should be spent on different
dummy traffic kinds in pool mix networks to optimally improve their privacy [123]. While this
is an interesting problem, it differs in two ways from the analyses we systematized in this work:
First, it does not propose a bound on the number of dummy messages required to achieve a certain
privacy goal, but shows how to best use a dummy traffic budget. Second, their privacy measure
is the mean squared error between the real probability for a communication of a sender-receiver
pair and the adversary’s estimate. This is conceptually different from our game-based approaches,
in which the adversary has to distinguish two hypothetical worst-case scenarios. While a larger
mean squared error represents better privacy, it is not obvious which mean squared error is to
be considered sufficient (as compared to the game-based notions that are either achieved or not
achieved).

6As receiving all these messages in one lmax interval implies that less receive events occurred during the lmax
interval before.

173

174

C. Details on Formal Onion Routing

C.1. Ideal Functionality

C.1.1 No replies

The following description stems from [31]. Adapted parts are highlighted. Additionally, we provide
a pseudo code description as the black parts1 of Algorithm 12 and 13.

“Let us define the ideal onion routing process. Let us assume that the adversary is static, i.e., each
player is either honest or corrupted from the beginning, and the trusted party implementing the
ideal process knows which parties are honest and which ones are corrupted.

Ideal Onion Routing Functionality: Data Structure.

• The set Bad of parties controlled by the adversary.

• An onion O is stored in the form of (sid, Ps, Pr,m, n, P, i) where: sid is the identifier, Ps is
the sender, Pr is the recipient, m is the message sent through the onion routers, n < N is
the length of the onion path, P = (Po1 , ..., Pon) is the path over which the message is sent
(by convention,Po0 = Ps , and Pon+1 = Pr), i indicates how much of the path the message
has already traversed (initially, i = 0). An onion has reached its destination when i = n+ 1.

• A list L of onions that are being processed by the adversarial routers. Each entry of the
list consists of (temp,O, j), where temp is the temporary id that the adversary needs to
know to process the onion, while O = (sid, Ps, Pr,m, n, P, i) is the onion itself, and j is the
entry in P where the onion should be sent next (the adversary does not get to see O and j).
Remark: Note that entries are never removed from L. This models the replay attack: the
ideal adversary is allowed to resend an onion.

• For each honest party Pi , a buffer Bi of onions that are currently being held by Pi . Each
entry consists of (temp′, O), where temp is the temporary id that an honest party needs
to know to process the onion and O = (sid, Ps, Pr,m, n, P, i) is the onion itself (the honest
party does not get to see O). Entries from this buffer are removed if an honest party tells
the functionality that she wants to send an onion to the next party.

Ideal Onion Routing Functionality: Instructions. The ideal process is activated by a mes-
sage from router P , from the adversary S, or from itself. There are four types of messages, as
follows:

(Process New Onion, Pr,m, n,P). Upon receiving such a message from Ps, where m ∈ {0, 1} ∪
{⊥}, do:

1. If |P| ≥ N , reject.

1The teal parts are for the repliable case.

175

2. Otherwise, create a new session id sid randomly, and let O = (sid, Ps, Pr,m, n,P, 0).

3. If Ps is corrupted, send “start belongs to onion from Ps with sid, Pr,m, n,P” to the adversary
S. Send itself message (Process Next Step,O).

(Process Next Step,O). This is the core of the ideal protocol. SupposeO = (sid, Ps, Pr,m, n, P, i).
The ideal functionality looks at the next part of the path. The router Poi just processed2 the onion
and now it is being passed to Poi+1 . Corresponding to which routers are honest, and which ones
are adversarial, there are two possibilities for the next part of the path:

I) Honest next. Suppose that the next node, Poi+1 , is honest. Here, the ideal functionality makes
up a random temporary id temp for this onion and sends to S (recall that S controls the network
so it decides which messages get delivered): “Onion temp from Poi to Poi+1 .”If Ps is corrupted it
further adds “temp belongs to onion from Ps with sid, Pr,m, n,P” to the message for S. It adds
the entry (temp,O, i+ 1) to list L. (See (Deliver Message, temp) for what happens next.)

II) Adversary next. Suppose that Poi+1 is adversarial. Then there are two cases:

• There is an honest router remaining on the path to the recipient. Let Poj be the next honest
router. (I.e., j > i is the smallest integer such that Poj is honest.) In this case, the ideal
functionality creates a random temporary id temp for this onion, and sends the message
“Onion temp from Poi , routed through (Poi+1 , ..., Poj−1) to Poj” to the ideal adversary S,
and stores (temp,O, j) on the list L. If Ps is corrupted it further adds “temp belongs to
onion from Ps with sid, Pr,m, n,P” to the message for S.

• Poi is the last honest router on the path; in particular, this means that Pr is adversarial as
well. In that case, the ideal functionality sends the message “Onion from Poi with message
m for Pr routed through (Poi+1 , ..., Pon)” to the adversary S. If Ps is corrupted it further
adds “(end) belongs to onion from Ps with sid, Pr,m, n,P” to the message for S. (Note that
if Poi+1 = Pr, the list (Poi+1 , ..., Pon) will be empty.)

(Deliver Message, temp). This is a message that S sends to the ideal process to notify it that it
agrees that the onion with temporary id temp should be delivered to its current destination. To
process this message, the functionality checks if the temporary identifier temp corresponds to any
onion O on the list L. If it does, it retrieves the corresponding record (temp,O, j) and updates the
onion: if O = (sid, Ps, Pr,m, n,P, i), it replaces i with j to indicate that we have reached the j’th
router on the path of this onion. If j < n+1, generates a temporary identifier temp′, sends ”Onion
temp′ received” to party Poj , and stores the resulting pair (temp′, O = (sid, Ps, Pr,m, n,P, j) in
the buffer Boj of party Poj . Otherwise, j = n + 1, so the onion has reached its destination: if
m 6=⊥ it sends ”Message m received” to router Pr; otherwise it does not deliver anything3 .

(Forward Onion, temp′). This is a message from an honest ideal router Pi notifying the ideal
process that it is ready to send the onion with id temp′ to the next hop. In response, the ideal
functionality

• Checks if the temporary identifier temp′ corresponds to any entry in Bi. If it does, it retrieves
the corresponding record (temp′, O).

• Sends itself the message (Process Next Step,O).

• Removes (temp′, O) from Bi.

This concludes the description of the ideal functionality. We must now explain how the ideal honest
routers work. When an honest router receives a message of the form ”Onion temp′ received” from
the ideal functionality, it notifies environment Z about it and awaits instructions for when to
forward the onion temp′ to its next destination. When instructed by Z, it sends the message
”Forward Onion temp′” to the ideal functionality.” [31]

2In case i = 0, processed means having originated the onion and submitted it to the ideal process.
3 This is needed to account for the fact that the adversary inserts onions into the network that at some point do

not decrypt correctly.

176

C.1.2 With Replies

We show the ideal functionality in Algorithm 12 and 13. As before, the honest nodes inform the en-
vironment about the temp whenever they receive an onion. Further, they now additionally include
the information whether the onion is repliable. We highlight the changes compared to the ideal
functionality of the simple one-way sending in teal. We especially add two data structures:

• Back: to store the mapping from temps (labels of the onions) to the corresponding path
and forward onion id. This mapping is used to find the right path when a reply onion is
constructed.

• IDfwd: to store the mapping from backward ids to forward ids. This mapping is used to
allow corrupted senders (i.e. backward receivers) to learn all information of the backward
onion; including to which forward onion she belongs.

We assume that a corrupted sender (i.e. backward receiver) can learn and link all onion layers.
Further, an onion can be replied to multiple times. We stress that this is a useful security definition
as single use reply blocks can be created with the help of duplicate protection (on the header),
which also prevents other traffic analysis attacks that are considered an orthogonal problem.

C.1.3 Analyzing the Ideal Functionality without Replies

There indeed is confusion about which privacy the ideal functionality F of [31] actually guarantees.
The work itself states only that “it’s not hard to see that Z [the environment, a construct of the
UC Framework that gets all observations of the adversary] learns nothing else than pieces of paths
of onions formed by honest senders (i.e., does not learn a sub-path’s position or relations among
different sub-paths). Moreover, if the sender and the receiver are both honest, the adversary does
not learn the message.”

[8, 12, 129, 130, 153] state that this translates to the degree of anonymity Tor provides, although
[57, 65] argue that it is not applicable for Tor. [13] states that it “hide(s) the source and destination
over a network,” [124] even understood it as “a concrete ZK proof of senders’ knowledge of their
messages” and [19] as “provable reduction from unlinkability to traffic analysis.” [70] states that
the privacy is “that an adversary cannot correctly guess relations between incoming messages and
outgoing messages at onion routers, and [...] that each onion router cannot know the whole route
path of any onion.” While [65] and [64] realize that the anonymity is not analyzed and suspect it to
be close to the one of [111], which claims to have sender and receiver anonymity against a global
passive adversary [64].

Analysis under Restricted Adversary Model

Instantiation of our Framework

As the path P is an important input to an onion, we model it specified in the auxiliary informa-
tion of a communication. The communications, including the auxiliary information, are picked
arbitrarily by the adversary in the framework. Assumption 3 however requires at least one honest
relay to exist on the path for our analysis. For this reason, we define the adversary class C to
modify the path: C replaces the paths as chosen by the adversary with alternative paths, whenever
an honest sender is constructing the onion. The replacements are chosen at random from the set
of paths with valid length that include at least one common honest relay.

We further restrict the adversary to be incapable of timing-based traffic analysis. Hence, in the
traffic analysis restricted adversary class C the adversary must not use any timing information
about the onion, i.e. the adversary class shuffles all the outputs from the ideal functionality for
communications that are processed together before handing them to the adversary. Since the
adversary is incapable of traffic analysis, the adversary class prohibits to delay packets. To further

177

Algorithm 12: Ideal Functionality F (Part 1)
Data structure:
Bad: Set of corrupted nodes
L: List of onions processed by adversarial nodes
Bi: List of onions held by node Pi
Back: Mapping from temps to path and forward id
IDfwd: Mapping from backward id to forward id
// Notation:
// S: Adversary (resp. Simulator)
// Z: Environment
// P = (Po1 , . . . , Pon): Onion path, (P→ forwards, P← backwards)
// O = (id, Ps, Pr,m,P,P ′, i, d): Onion = (identifier, sender, receiver, message, path in

current direction, path in other direction, traveled distance, direction)
// N: Maximal onion path length
On message Process New Onion(Pr,m,P→,P←) from Ps

// Ps creates and sends a new onion (either instructed by Z if honest or S if
corrupted)

if |P| > N ; // selected path too long
then

Reject;
else

id←R session ID ; // pick random session ID
O ← (id, Ps, Pr,m,P→,P←, 0, f) ; // create new onion
Output Corrupt Sender(Ps, id, Pr,m,P→,P←, start, f);
Process Next Step(O);

On message Process New Backward Onion(m, temp) from P
// P creates and sends a backward onion (either instructed by Z if honest or S if

corrupted)
if Back(temp) =⊥ ; // no forward onion was sent
then

Reject;
else

Back(temp) = (Ps,P→,P←, Pr, id′); // lookup the corresponding path
id←R session ID; // pick random session ID
Store id′ under IDfwd(id); // add ID linking to mapping
O ← (id, Pr, Ps,m,P←,P→, 0, b); // create new onion
Output Corrupt Sender(Pr, id, Ps,m,P→,P←, start, b);
Process Next Step(O);

Procedure Output Corrupt Sender(Ps, id, Pr,m,P→,P←, temp, d)
// Give all information about onion to adversary if sender is corrupt
if Ps ∈ Bad then

Send “temp belongs to onion from Ps with id, Pr,m,P→,P←, b” to S;
if d = b then

add “as answer to IDfwd(id)” to the output for S

178

Algorithm 13: Ideal Functionality F (Part 2)
Procedure Process Next Step(O = (id, Ps, Pr,m,P,P ′i, d))

// Router Poi just processed O that is now passed to router Poi+1

if Poj ∈ Bad for all j > i; // all remaining nodes including receiver are corrupt
then

Send “Onion temp in direction d from Poi with message m for Pr routed through
(Poi+1 , . . . , Pon)” to S;

if d = f then
Store (Ps,P,P ′, Pr, id) under Back(temp);
Add “temp’s first part of the backward path is P ′H ” with P ′H being P ′ until (and
including) the first honest node to the message for S;

Output Corrupt Sender(Ps, id, Pr,m,P,P ′, temp, f);
else

Output Corrupt Sender(Pr, id, Ps,m,P ′,P, temp, b);

else
// there exists an honest successor Poj
Poj ← Pok with smallest k such that Pok 6∈ Bad;
temp←R temporary ID;
Send “Onion temp from Poi routed through (Poi+1 , . . . , Poj−1) to Poj” to S;
Add (temp,O, j) to L; // see Deliver Message(temp) to continue this routing
if d = f then

Output Corrupt Sender(Ps, id, Pr,m,P,P ′, temp, f);
else

Output Corrupt Sender(Pr, id, Ps,m,P ′,P, temp, b);
if Ps ∈ Bad and i = 0 then

Send “temp belongs to id” to S;

On message Deliver Message(temp) from S
// Adversary S (controlling all links) delivers onion belonging to temp to next

node
if (temp, ,) ∈ L then

Retrieve (temp,O = (sid, Ps, Pr,m,P,P ′, i), j) from L;
O ← (sid, Ps, Pr,m,P,P ′, j); // j-th router reached
if j < |P|+ 1 then

temp′ ←R temporary ID;
Send “temp′ received” to Poj ;
Store (temp′, O) in Boj ; // see Forward Onion(temp′) to continue

else
if m 6=⊥ then

Send “Message m under temp in direction d received to Pr”;
if P ′ 6= () and d = f then

add “that is repliable” to the message for Pr;
Store (Ps,P,P ′, Pr, id) under Back(temp);

On message Forward Onion(temp′) from Pi
// Pi is done processing onion with temp′ (either decided by Z if honest or S if

corrupted)
if (temp′,) ∈ Bi then

Retrieve (temp′, O) from Bi;
Remove (temp′, O) from Bi;
Process Next Step(O);

179

prohibit replay attacks, which we consider as a special kind of traffic analysis attack, the adversary
class drops any duplicated deliver requests from the adversary.

Analysis

Recall that the ideal functionality only outputs the message to the adversary for a corrupted receiver
or sender. So, the message is protected if sender and receiver are honest or corrupted users get the
same messages in both scenarios (limitation in Xce) and confidentiality MO is achieved.

Due to the adversary class C, the adversary observes all outputs corresponding to the inputs of an
honest relay in random order. Combined with random ID replacement, this prevents the adversary
from linking departing onions to their received counterparts. However, it can still be observed that
a user is actively sending if she has not previously received an onion (or: that a user is receiving,
if upon receiving an onion she subsequently does not send one). This leads to Theorem 13, which
we show below.
Theorem 13. F achieves MOce , SMLcs and RMLc0 , and those implied by them, but no other
notions of our hierarchy (Figure 3.3 of Section 3.5) for C.

Lemma 6. F achieves MOce for C.

Proof. We go through the messages of the ideal functionality F and check whether they help to
distinguish two scenarios differing only in the messages of honest users.

Process New Onion: Does only output information to the adversary for corrupted senders, which
will be equal (m,P etc.) or randomly generated (sid) in both scenarios because of Xce .

Process Next Step: Information output for corrupted senders is equal or random because of Xce .
Hence, we can focus on honest senders. As corrupted receivers receive the same messages and
everything else is equal in both scenarios, the adversary gets identical output for corrupted re-
ceivers. For honest receivers the adversary only gets messages “Onion temp from Poi routed
through (Poi+1 , . . . , Poj−1 to Poj)” or “Onion temp from Poi to Poi+1”. Since everything except
the messages is equal in both scenarios, the path is equal in both scenarios and does not help the
adversary distinguish. Further temp is generated randomly by F and hence does not help the
adversary distinguish.

Deliver Message: Because of the adversary class C the attacker cannot exploit sending such mes-
sages.

Forward Onion: Is a message between honest routers and the ideal functionality. Hence, the
adversary cannot influence it or get information from it.

Lemma 7. F achieves SMLcs for C.

Proof. Xcs excludes corrupted senders and hence, we can ignore outputs that happen for corrupted
senders. C forbids the misuse of “Deliver Message” and hence all onions went through the network
by honest processing of the routers and no onions can be replayed or delayed.

Then the ideal functionality only outputs every part on the path between honest routers once, and
if the receiver is corrupted the message once, for all communications that the adversary picked for
the chosen scenario. C also guarantees that all paths share a common honest router. Let Ptohonest
be the set of paths that lead to the honest router and Pfromhonest the set with paths that start
from the honest router. Since C chooses at least one honest router, such that the maximum path
length is met, i.e. any of the possible path combinations Ptohonest × Pfromhonest are shorter than
N . Because of C, the outputs will additionally be in mixed order and not linkable because of the
order in which she observes them. No path combination can be excluded by the adversary, as all are
valid paths, and hence she has no information that helps her deciding on the total path. Further,
she only learns which receiver receives which message. Since, this is the only information she has

180

and she cannot exclude any path, she cannot do better than to randomly guess the sender-receiver
and hence sender-message pairs.

Lemma 8. F achieves RMLc0 for C.

Proof. Xc0 excludes that the adversary learns different receiver-message combinations as outputs
of F as the message is never output in this case. The only other option to distinguish the scenarios
is to exploit that the adversary knows which message is sent by which sender. However, as argued
in the proof of Lemma 7, it is not possible to link the parts of the path for C.

Lemma 9. F does not achieve any notion of our hierarchy (Figure 3.3 of Section 3.5) not implied
by MOce , SMLcs or RMLc0 for C.

Proof. We need to show, that F does not achieve any of the lowest notions in the hierarchy
that are not already implied by MOce , SMLcs or RMLc0 for C: (SR)Oc0 , (2S)Oc0 , (2R)Oc0 ,
SFL− P c0 , RFL− P ′c0 . This implies that also no stronger notions can be achieved, even without
user corruption. Further, we show, that with differing behavior at corrupted receivers allowed
it does not achieve (SM)Ocs , (RM)Lcs , (RM)Ocs , MO − |m|cs , RML− P ′cs , (SR)Lce . This
implies that no MOcs can be achieved. Obviously, as for corrupted senders all information about
the communication is sent to the adversary, no notion can be achieved against differing behavior
at corrupted senders allowed.

A B A B
A B C B

C B A B
C B C B

b)

A B A D

C D C B

instance
0

instance
 1

scenario 0 scenario 1 c)
instance

0
instance

 1

scenario 0 scenario 1
A B A D
C D C B

A B A D
C D C B

a)
instance

0
instance

 1

scenario 0 scenario 1

switch stage

switch stage

Figure C.1: Similar to Figure C.1 from Section 3.3.2, depicting example inputs for notions: a)
(SR)L, b)(SR)O, c)(2S)O

(SR)Oc0 . The attack works as follows: We use the communication of users A,B, C,D according
to the definition of (SR)O (see Figure C.1 b).

Now, the ideal functionality F will output “Onion temp from S to X1” with S being A or C. We
will use Deliver Message for temp and continue getting messages “Onion temp from X1 to X2”
and using Deliver Message for temp until we get a message “Onion temp from X1 to R” with R
being B or D. We guess the scenario that includes the linking between S and R.

(2S)Oc0 ((2R)Oc0 similarly). We use senders A and C for the two instances of the two scenarios
according to Figure C.1 c). In this case, we do not need to use Deliver Message even once; we
just wait for the first messages the ideal functionality sends in Process Next Step “Onion temp
from S1 to X” and “Onion temp from S2 to X”, if those two senders are the same, we guess g = 0,
otherwise g = 1.

(SM)Ocs . Analogous to (SR)Oc0 , except that we exploit to pick a corrupted receiver and hence
get the delivered message as output from the ideal functionality.

(RM)Lcs ,(RM)Ocs , MO − |m|cs , RML− P ′cs . We are allowed to pick corrupted receivers,
hence we do and get the receiver-message linking output from the ideal functionality in the “Onion
from x with message m for r routed through ...”- message after we used Deliver Message whenever
possible.

181

(SR)Lce . We choose a corrupted sender that sends to different receivers. Thus, we learn to which
receiver the corrupted sender sends its message and hence learn the linking of the message and the
receiver and win the game with certainty.

SFL− P c0(RFL− P ′c0 similarly). We pick scenarios that differ in how often A sends, e.g.
b = 0: A sends once, C k-times; b = 1 : A sends k-times, C once. The ideal functionality will
output the parts of the path of all communications. If A occurs more often in those parts of the
path, we guess g = 1, if C occurs more often g = 0, otherwise we guess randomly.

Thus, we win if A (resp. C) is picked at most k− 2 times as a random relay in b = 0 (resp. b = 1).
This happens if it is not chosen as the common honest relay (1

#honestrelays) and not chosen more
often randomly as relay ((N−1

#P−1)k + (N−1
#P−1)k−1 · (1

#P−1)). Thus, we win with probablity of at
least 1− (1

#honestrelays + (N−1
#P−1)k + (N−1

#P−1)k−1 · (1
#P−1)), which is a non negligible advantage if

#P > N for an appropriately chosen k.

Note that the receiver anonymity (RML) is only achieved if neither the sender nor the receiver
is compromised. Thus, as soon as the sender is corrupted, receiver anonymity is no longer
achieved.

C.2. Proof of new Properties

C.2.1 No Replies

Our proof is in parts identical to the proof from [31]. We highlight the identical parts in blue. For
UC-realization, we show that every attack on the real world protocol Π can be simulated by an
ideal world attack without the environment being able to distinguish those. We first describe the
simulator S. Then we show indistinguishability of the environment’s view in the real and ideal
world.

Constructing S

S interacts with the ideal functionality F as the ideal world adversary, and simulates the real-world
honest parties for the real world adversary A. All outputs A does are forwarded to the environment
by S.

First, S sets-up the protocol: it generates public and private key pairs for all the real-world honest
parties. S then sends the respective public keys to A and receives the real world corrupted parties’
public keys from A.

There are two challenges for the simulator: First, it has to convincingly mimic the communications
of honest senders for A. As the environment initiates those communications in the ideal world,
S has to use the limited information the ideal world gives about those communications to build
onions in the simulated real world. Therefore, S needs to store the translation of the temp ID
that was used in the ideal world with the onion S replaced it with. S stores those mappings on
the r-list. Each entry (onionr, nextRelay, temp) represents the onion onionr that S expects to
receive as honest party nextRelay from A (either from the link between honest parties or from
an adversarial relay) and its corresponding temp ID. This temp ID is used to allow the onion
to continue its path in F if the corresponding onion is sent to nextRelay. Secondly, S has to
convincingly mimic the communications of adversarial senders in F , such that Z does not notice
a difference. In the case of an adversarial sender starting to communicate, S (as the honest relay)
receives an onion from A. S stores the processing of this onion together with the hop receiving
the processing and all information on the O-list. As in F all information to communications with

182

adversarial senders is output on every step of the path, S can easily map the correct onion to the
communication once it occurs in the ideal functionality.

The simulator S maintains two internal data structures:

• The r-list consisting of tuples of the form (rtemp, nextRelay, temp). Each entry in this list
corresponds to a stage in processing an onion that belongs to a communication of an honest
sender. By “stage”, we mean that the next action to this onion is adversarial (i.e. it is sent
over a link or processed by an adversarial router).

• The O-list containing onions sent by corrupted senders together with the information about
the communication (onion, nextRelay, information).

We now describe what the simulator does when it receives a message from the ideal functionality
and then describe what it does when it receives a message from the adversary.

S’s behavior on a message from F . In case the received output belongs to an adversarial
sender’s communication4:

Case I: “start belongs to onion from PS with sid, Pr,m, n,P”. This is just the result of S’s
reaction to an onion from A that was not the protocol-conform processing of an honest sender’s
communication (Case VIII). S does nothing.

Case II: any output together with “temp belongs to onion from PS with sid, Pr,m, n,P” for
temp 6∈ {start, end}. This means an honest relay is done processing an onion received from A that
was not the protocol-conform processing of an honest sender’s communication (processing that
follows Case VII). S finds (onion, nextRelay, information) with this inputs as information in
the O-list (notice that there has to be such an entry) and sends the onion onion to nextRelay if
it is an adversarial one, or it sends onion, as if it is transmitted, to the A’s party representing the
link between the currently processing honest relay and the honest nextRelay.

Case III: any output together with “(end) belongs to onion from PS with sid, Pr,m, n,P”. This
is just the result of S’s reaction to an onion from A. S does nothing.

In case the received output belongs to an honest sender’s communication:

Case IV: “Onion temp from Poi routed through () to Poi+1”. In this case S needs to make
it look as though an onion was passed from the honest party Poi to the honest party Poi+1 :
S picks pseudo-randomly (with temp as seed) a path Prdm, of valid length that includes the
sequence of Poi to Poi+1 starting at node j, and a message mrdm. S calculates (O1, . . . , On) ←
FormOnion(mrdm,Prdm, (PK)Prdm) and sends the onion Oj+1 to A’s party representing the link
between the honest relays as if it was sent from Poi to Poi+1 . S stores (Oj+1,Poi+1 ,temp) on the
r-list. Processing is continued once Oj+1 is sent by A.

Case V: “Onion temp from Poi routed through (Poi+1 , . . . , Poj−1) to Poj”. In this case both Poi and
Poj are honest, while the intermediate (Poi+1 , . . . , Poj−1) are adversarial. S picks pseudo-randomly
(with temp as seed) a path Prdm of valid length that includes the sequence of Poi to Poj starting
at the k-th node and a message mrdm and calculates (O1, . . . , On) ← FormOnion(mrdm,Prdm,
(PK)Prdm) and sends the onion Ok+1 to Poi+1 , as if it came from Poi . S stores (Ok+j−i, Poj , temp)
on the r-list.

Case VI: “Onion from Poi with message m for Pr routed through (Poi+1 , . . . , Pon)”. In this case,
Poi is honest while everyone else is adversarial, including the recipient Pr. This means that some
honest party sent a message to the dishonest party Pr. S picks randomly a path Prdm of valid
length that includes the sequence of Poi to Pr at the end (staring at the k-th node) and calculates
(O1, . . . , On)← FormOnion(mt,Prdm, (PK)Prdm) and sends the onion Ok+1 to Poi+1 , as if it came
from Poi .

4S knows whether they belong to an adversarial sender from the output it gets

183

S’s behavior on a message from A Let us now describe what the simulator S does upon
receipt of a message from the adversary. Suppose the simulator S, as real world honest party Pi,
received an onion O from the adversary A as adversarial player Pa. Notice that this onion can be
the protocol-conform processing of an onion from a communication of an honest sender, the non-
protocol-conform processing of such an onion or the begin of a communication of an adversarial
sender.

Case VII: (O,Pi, temp) is on the r-list for some temp. Thus, O is the protocol-conform processing
of an onion from a communication of an honest sender. S calculates ProcOnion(SK(Pi), O, Pi). If
it returns a fail (O is a replay that is detected and dropped by Π), S does nothing. Otherwise, S
sends the message (Deliver Message, temp) to F .

Case VIII. (O,Pi, temp) is not on the r-list for any temp. S calculates ProcOnion(SK(Pi), O, Pi) =
(O′, P ′). We distinguish the case where a next hop exists and not.

(a) P ′ =⊥: Poj is the recipient and O′ is a message or a fail symbol. This means that in the
real-world protocol, this onion gets to real-life Pi, and Pi receives the message or outputs the fail
report. S thus sends the message (ProcessNewOnion, Pi, O′, n, ()) to F on Pa’s behalf and
as A already delivered this message to the honest party sends (Deliver Message, temp) for the
belonging temp (Notice that S knows which temp belongs to this communication as it is started
at an adversarial party Pa).

(b) P ′ 6=⊥: S picks a messagem ∈M. S sends on Pa’s behalf the message, Process New Onion(P ′,
m, n, ()) from Pi and Deliver Message(temp) for the belonging temp (Notice that S knows the
temp as in case (a)) to F . S adds the entry (O′, P ′, (Pa, sid, P ′,m, n, ())) to the O-list.

This concludes the description of the simulator.

Indistinguishability

Let us now argue that the simulator actually works, i.e., that the distribution of the player’s
outputs in the real world and in the ideal world are the same. We proceed by a more or less
standard hybrid argument. Consider the following set of hybrid machines:

Hybrid H0. This machine sets up the keys for the honest parties (so it has their secret keys).
Then it interacts with the environment and A on behalf of the honest parties. It invokes the real
protocol for the honest parties in interacting with A.

Hybrid H1
1. In this hybrid, for one communication the onion layers from its honest sender to

the next honest node (relay or receiver) are replaced with random onion layers embedding the
same path. More precisely, this machine acts like H0 except that the consecutive onion layers
O1, O2, . . . , Oj from an honest sender P0 to the next honest node Pj are replaced with Ō1, . . . , Ōj
where Ōi = O′k+i with (O′1, . . . , O′n) ← FormOnion(mrdm,Prdm, (PK)Prdm) where mrdm is a
random message, P a random path that includes the sequence from P0 to Pj starting at the k-th
node. H1

1 keeps a Ō-list and stores (Ōj , Pj ,ProcOnion(SKPj , Oj , Pj)) on it. If an onion Õ is sent to
Pj , the machine tests if processing results in a fail (replay detected and dropped). If it does not, H1

1
compares Õ to all Ōj on its Ō-list where the second entry is Pj . If it finds a match, the belonging
ProcOnion(SKPj , Oj , Pj) is used as processing result of Pj . Otherwise, ProcOnion(SKPj , Õ, Pj)
is used.

H0 ≈I H1
1. The environment gets notified when an honest party receives an onion layer and

inputs when this party is done. As we just exchange onion layers by others, the behavior to the
environment is indistinguishable for both machines. We argue indistinguishability in the outputs
to A as well:

A observes the onion layers after P0 and if it sends an onion to Pj the result of the processing after
the honest node. Depending on the behavior of A three cases occur: A drops the onion belonging
to this communication before Pj , A behaves protocol-conform and sends the expected onion to Pj

184

or A modifies the expected onion before sending it to Pj . Notice that dropping the onion leaves
the adversary with less output. Hence, if the case of more outputs cannot be distinguished, neither
the case with less outputs can. Thus, we can focus on the other cases.

We assume there exists a distinguisher D between H0 and H1
1 and construct a successful attack on

LU :

The attack receives key and name of the honest relay and uses the input of the replaced com-
munication as choice for the challenge, where it replaces the name of the first honest relay with
the one that it got from the challenger5. For the other relays the attack decides on the keys as
A (for corrupted) and the protocol (for honest) does. It receives (Õ,ProcOnion(Oj)) from the
challenger. The attack uses D. For D it simulates all communications except the one chosen for
the challenge, with the oracles and knowledge of the protocol and keys. (This includes that for
bit-identical onions for which the oracle cannot be used, depending on whether the protocol has
replay protection ProcOnion(Oj) is reused or the onion is dropped.) For simulating the challenge
communication the attack hands Õ to A as soon as D instructs to do so. To simulate further for
D it uses Õ to calculate the later layers and does any actions A does on the onion.

A either sends the honest processing of Õ to the challenge router or A modifies it to f(Õ). In the
first case, the attack simulates corresponding to ProcOnion(Oj). In the second case, f(Õ) is given
to the oracle and the simulation is done for the returned ProcOnion(f(Õ)).

Thus, either the challenger chose b = 0 and the attack behaves like H0 under D; or the challenger
chose b = 1 and the attack behaves like H1

1 under D. The attack outputs the same bit as D does
for its simulation to win with the same advantage as D can distinguish the hybrids.

Hybrid H∗1. In this hybrid, for one communication, for which they had not been replaced, onion
layers from an honest sender to the next honest node are replaced with a random onion sharing
this path.

H1
1 ≈I H∗1. Analogous above. Apply argumentation of indistinguishability (H0 ≈I H1

1) for every
replaced subpath.6

Hybrid H1
2. In this hybrid, for one communication (and all its replays) for which in the adver-

sarial processing no modification occurred7 onion layers between two consecutive honest relays
(the second might be the receiver) are replaced with random onion layers embedding the same
path. More precisely, this machine acts like H∗1 except that the processing of Oj (and, if no
replay protection, the processing result of all replays of Oj); i.e. the consecutive onion layers
Oj+1, . . . , Oj′ from a communication of an honest sender, starting at the next honest node Pj to
the next following honest node Pj′ , are replaced with Ōj+1, . . . , Ōj′ . Thereby, Ōj+1 = O′j+k+1
with (O′1, . . . , O′n) ← FormOnion(mrdm,Prdm, (PK)Prdm) where mrdm is a random message, P
a random path that includes the sequence from Pj to Pj′ starting at the k-th node. H1

2 stores
(Ōj′ , Pj′ ,ProcOnion(SKPj′ , Oj′ , Pj′)) on the Ō-list. Like in H∗1 if an onion Õ is sent to Pj′ , pro-
cessing is first checked for a fail. If it does not fail , H1

2 compares Õ to all Ōj′ on its Ō-list where
the second entry is Pj′ . If it finds a match, the belonging ProcOnion(SKPj′ , Oj′ , Pj′) is used as
processing result of Pj′ . Otherwise, ProcOnion(SKPj′ , Õ, Pj′) is used.

H∗1 ≈I H1
2. H1

2 replaces for one communication (and all its replays), the first subpath between two
consecutive honest nodes after an honest sender. The output to A includes the earlier (by H∗1)
replaced onion layers Ōearlier before the first honest relay (these layers are identical in H∗1 and H1

2)
that take the original subpath but are otherwise chosen randomly; the original onion layers after
the first honest relay for all communications not considered by H1

2 (outputted by H∗1) or in case of
the communication considered by H1

2, the newly drawn random replacement (generated by H1
2);

and the processing after Pj′ .
5As both honest nodes are randomly drawn this does not change the success
6Technically, we need the onion layers as used in H1

1 (with replaced onion layers between a honest sender and first
honest node) in this case. Hence, slightly different than before the attack needs to simulate the other communications
not only by the oracle use and processing, but also by replacing some onion layers (between the honest sender and
first honest node) with randomly drawn ones as H1

1 does.
7We treat modifying adversaries later in a generic way.

185

The onions Ōearlier are chosen independently at random by H∗1 such that they embed the original
path between an honest sender and the first honest relay, but contain a random message and random
valid path before the honest sending relay and after the next following honest relay. As they are
replaced by the original onion layers after Pj (there was no modification for this communication)
and include a random path and message, onions Ōearlier cannot be linked to onions output by
Pj . Hence, the random onions before the first honest node do not help in distinguishing the
machines.

Thus, all that is left to distinguish the machines, is the original/replaced onion layer after the first
honest node and the processing afterwards. This is the same output as in H0 ≈I H1

1. Hence, if
there exists a distinguisher between H∗1 and H1

2 there exists an attack on LU .

Hybrid H∗2. In this hybrid, for all communications, one communication (and all its replays) at
a time is selected. Within that communication, the next (from sender to receiver) non-replaced
subpath between two consecutive honest nodes is chosen. If A previously (i.e. in onion layers up to
the honest node starting the selected subpath) modified an onion layer in this communication, the
communication is skipped. Otherwise, the onion layers between those honest nodes are replaced
with a random onion sharing the path.

H1
2 ≈I H∗2. Analogous above.

Hybrid H1
3. In this hybrid, for one communication (and all its replays) for which in the adversarial

processing no modification occurred so far, onion layers from its last honest relay to the corrupted
receiver are replaced with random onions sharing this path and message. More precisely, this
machine acts like H∗2 except that the processing of Oj (and, if no replay protection, the processing
result of all replays of Oj); i.e. the consecutive onion layers Oj+1, . . . , On from a communication
of an honest sender, starting at the last honest node Pj to the corrupted receiver Pn are replaced
with Ōj+1, . . . , Ōn. Thereby Ōi = O′k+i with (O′1, . . . , O′n′) ← FormOnion(m,Prdm, (PK)Prdm)
where m is the message of this communication8, Prdm a random path that includes the sequence
from Pj to Pn starting at the k-th node.

H∗2 ≈I H1
3. Similar to H∗1 ≈I H1

2 the onion layers before Pj are independent and hence do not help
distinguishing. The remaining outputs suffice to construct an attack on TI similar to the one on
LU in H∗1 and H1

2.

Hybrid H∗3. In this hybrid, for one communication (and all its replays) for which in the adversarial
processing no modification occurred so far and for which the onion layers from its last honest relay
to corrupted receiver have not been replaced before, the onion layers between those nodes are
replaced with random onion layers sharing the path and message.

H1
3 ≈I H∗3. Analogous above.

Hybrid H4 This machine acts the way that S acts in combination with F . Note that H∗3 only
behaves differently from S in (a) routing onions through the honest parties and (b) where it gets
its information needed for choosing the replacement onion layers: (a) H∗3 actually routes them
through the real honest parties that do all the computation. H4, instead runs the way that F and
S operate: there are no real honest parties, and the ideal honest parties do not do any crypto work.
(b) H∗3 gets inputs directly from the environment and gives output to it. In H4 the environment
instead gives inputs to F and S gets the needed information (i.e. parts of path and the included
message, if the receiver is corrupted) from outputs of F as the ideal world adversary. F gives the
outputs to the environment as needed. Further, H∗3 chooses the replacement onion layers randomly,
but identical for replays, while S chooses them pseudo-randomly depending on an in F randomly
chosen temp, which is identical for replays.

H∗3 ≈I H4. For the interaction with the environment from the protocol/ideal functionality, it is
easy to see that the simulator directly gets the information it needs from the outputs of the ideal
functionality to the adversary: whenever an honest node is done processing, it needs the path
from it to the next honest node or path from it to the corrupted receiver and in this case also the

8H1
3 knows this message as it communicates with the environment.

186

message. This information is given to S by F .

Further, in the real protocol, the environment is notified by honest nodes when they receive an
onion together with some random ID that the environment sends back to signal that the honest
node is done processing the onion. The same is done in the ideal functionality. Notice that the
simulator ensures that every communication is simulated in F such that those notifications arrive
at the environment without any difference.

For the interaction with the real world adversary, we distinguish the outputs in communications
from honest and corrupted senders. 0) Corrupted senders: In the case of a corrupted sender both
H∗3 and H4 (i.e. S+F) do not replace any onion layers except that with negligible probability a
collision on the Ō-list resp. O-list occurs.

1) Honest senders: 1.1) No modification of the onion by the adversary happens: All parts of the
path are replaced with randomly drawn onion layers Ōi. The way those layers are chosen is identical
for H∗3 and H4 (i.e. S+ F). 1.2) Some modification of the onion or a drop or insert happens: As
soon as another onion as the expected honest processing is found, both H∗3 and H4 continue to use
the bit-identical onion for the further processing except that with negligible probability a collision
on the Ō-list resp. O-list occurs. In case of a dropped onion it is simply not processed further in
any of the two machines.

Note that the view of the environment in the real protocol is the same as its view in interacting with
H0. Similarly, its view in the ideal protocol with the simulator is the same as its view in interacting
with H4. As we have shown indistinguishability in every step, we have indistinguishability in their
views.

C.2.2 With Replies

Other OR Property Definitions

Definition 43 (Backward Layer-Unlinkability LU←). Backward Layer-Unlinkability is defined as:

1. The adversary receives the router names PH , PS and challenge public keys PKS ,PKH , chosen
by the challenger by letting (PKH , SKH)← G(1λ, p, PH) and (PKS , SKS)← G(1λ, p, PS).

2. Oracle access: The adversary may submit any number of Proc and Reply requests for PH or
PS to the challenger. For any Proc(PH , O), the challenger checks whether η is on the ηH-
list. If not, it sends the output of ProcOnion(SKH , O, PH), stores η on the ηH-list and O on
the OH-list. For any Reply(PH , O,m) the challenger checks if O is on the OH- list and if so,
the challenger sends ReplyOnion(m,O,PH , SKH) to the adversary. (Similar for requests on
PS with the ηS-list).

3. The adversary submits

• message m,

• a position j← with 0 ≤ j← ≤ n← + 1,

• a path P→ = (P1, . . . , Pj , . . . , Pn+1), where Pn+1 = PH , if j← = 0,

• a path P← = (P←1 , . . . , P←j← , . . . , P
←
n←+1 = PS) with the honest node PH at backward

position j←, if 1 ≤ j← ≤ n← + 1, and the second honest node PS at position n← + 1

• and public keys for all nodes PK i (1 ≤ i ≤ n+1 for the nodes on the path and n+1 < i
for the other relays).

4. The challenger checks that the chosen paths are acyclic, the router names are valid and that
the same key is chosen if the router names are equal, and if so, sets PK←j← = PKH (resp.

187

PKn+1 if j← = 0), PK←n←+1 = PKS and sets bit b at random.

5. The challenger creates the onion with the adversary’s input choice and honestly chosen ran-
domness R:

O1 ←FormOnion(1,R,m,P→,P←, (PK)P→ , (PK)P←)

and sends O1 to the adversary.

6. The adversary gets oracle access as in step 2) except if:

Exception 1) The request is ...

– for j← > 0: Proc(PH , O) with RecognizeOnion((n + 1) + j←, O,R,m,P→,P←,
(PK)P→ , (PK)P←) = True, η is not on the ηH-list and ProcOnion(SKH , O, PH) 6=⊥:
stores η on the ηH and O on the OH-list and . . .

– for j← = 0: Reply(PH , O,m←) with RecognizeOnion((n + 1), O,R,m,P→,P←,
(PK)P→ , (PK)P←) = True, O is on the OH- list and no onion with this η has been
replied to before and ReplyOnion(m←, O, PH , SKH) 6=⊥:

.. then: The challenger picks the rest of the return path P̄→ = (P←j←+1, . . . , P
←
n←+1),

an empty backward path P̄← = (), and a random message m̄, another honestly chosen
randomness R̄, and generates:

Ō1 ← FormOnion(1, R̄, m̄, P̄→, P̄←, (PK)P̄→ , (PK)P̄←)

– If b = 0, the challenger calculates (Oj←+1, P
←
j←+1) = ProcOnion(SKH , O, P

←
j←)

(for j← > 0) resp. (Oj←+1, P
←
j←+1) = ReplyOnion(m←, O, P←j← , SKH) (for

j← = 0) and gives Oj←+1 for P←j←+1 to the adversary.

– Otherwise, the challenger gives Ō1 for P←j←+1 to the adversary.

Exception 2) Proc(PS , O) with O being the challenge onion as processed for the final
receiver on the backward path, i.e.:

– for b = 0 : RecognizeOnion((n+ 1) + (n← + 1), O,R) = True

– for b = 1 : RecognizeOnion((n← + 1)− j←, O, R̄, m̄, P̄→, P̄←, (PK)P̄→ ,
(PK)P̄←) = True

.. then the challenger outputs nothing.

7. The adversary produces guess b′ .

LU← is achieved if any PPT adversary A, cannot guess b′ = b with a probability non-negligibly
better than 1

2 .

Definition 44 (Repliable Tail-Indistinguishability TI↔). Repliable Tail-Indistinguishability is de-
fined as:

1. The adversary receives the router names PH , P←H , PS and challenge public keys PKS ,PKH ,PK←H ,
chosen by the challenger by letting (PKH , SKH)← G(1λ, p, PH), (PK←H ,SK←H)← G(1λ, p, P←H),
(PKS ,SKS)← G(1λ, p, PS).

2. Oracle access: The adversary may submit any number of Proc and Reply requests for PH , P←H
or PS to the challenger. For any Proc(PH , O), the challenger checks whether η is on the ηH-
list. If not, it sends the output of ProcOnion(SKH , O, PH), stores η on the ηH-list and O on
the OH-list. For any Reply(PH , O,m) the challenger checks if O is on the OH- list and if so,
the challenger sends ReplyOnion(m,O,PH , SKH) to the adversary. (Similar for requests on
P←H , PS).

188

3. The adversary submits a message m, a path P→ = (P1, . . . , Pj , . . . , Pn+1) with the honest
node PH or P←H at position j, 1 ≤ j < n+ 1, a path P← = (P←1 , . . . , P←n←+1) with the honest
node P←H at position 1 ≤ j← ≤ n← + 1 and public keys for all nodes PK i (1 ≤ i ≤ n+ 1 for
the nodes on the path and n+ 1 < i for the other relays).

4. The challenger checks that the given paths are acyclic, the router names are valid and that
the same key is chosen if the router names are equal, and if so, sets PK j = PKH (or PK j =
PK←H , if the adversary chose P←H at this position as well) , PK←j← = PK←H ,PK←n←+1 = PKS

and sets bit b at random.

5. The challenger creates the onion with the adversary’s input choice and honestly chosen ran-
domness R:

Oj+1 ←FormOnion(j + 1,R,m,P→,P←, (PK)P→ , (PK)P←)

and a replacement onion with the path from the honest relay PH to the corrupted receiver
P̄→ = (Pj+1, . . . , Pn+1) and the backward path from the corrupted receiver starting at position
0 ending at j←: P̄← = (P←1 , . . . , P←j←); and another honestly chosen randomness R̄:

Ō1 ←FormOnion(1, R̄,m, P̄→, P̄←, (PK)P̄→ , (PK)P̄←)

6. If b = 0: The challenger sends Oj+1 to the adversary.
Otherwise: The challenger sends Ō1 to the adversary.

7. Oracle access: the challenger processes all requests as in step 2) except if...

... Proc(P←H , O) with O being the challenge onion as processed for the honest relay on
the backward path, i.e.:

– for b = 0 : RecognizeOnion((n+ 1) + j←, O,R) = True or

– for b = 1 : RecognizeOnion((n− j) + j←, O,R, m,P→,P←, (PK)P→ ,
(PK)P←) = True

.. then the challenger outputs nothing.

8. The adversary produces guess b′.

TI↔ is achieved if any PPT adversary A, cannot guess b′ = b with a probability non-negligibly
better than 1

2 .

Proof of UC-realization

The argumentation extends the one from Appendix C.2.1 for the replies.

Informally: For corrupted sender (= backward receiver), all information about the communica-
tion are leaked in the ideal functionality. Thus, no protection is needed.

For honest senders (= backward receivers), we want to ensure that only the subpaths between
honest relays and (if the receiver is corrupted) the messages can be learned by the adversary.
Therefore, we start by replacing the onion layers on the first part of the path, i.e. from the
honest sender to the first honest relay on the forward path, with random ones that take the same
path. Due to LU→, we know that the adversary cannot notice the difference. We continue, one
onion and subpath at the time, until all subpaths between honest relays on the forward path are
replaced.

Next, we replace the last part of the backward path, i.e. from the last honest relay on the backward
path to the honest sender (= backward path receiver). Due to LU←, we know that the adversary

189

cannot notice the difference. We continue, one onion and subpath at the time, until all subpaths
between honest relays on the backward path are replaced.

If the receiver is honest, the steps above already replaced everything, as then the receiver is an
honest relay. If the receiver is corrupted, we still need to replace the subpath between the last
honest relay on the forward and the first honest relay on the backward path. We can do this
without the adversary noticing any change due to TI↔. Thus, we replaced the onion layers on all
subpaths.

Formally: We assume that the public keys are already distributed and define any secure, repliable
OR scheme to fulfill our properties:
Definition 45. A secure repliable OR scheme is a quadruple of polynomial-time algorithms (G,
FormOnion, ProcOnion,ReplyOnion) (Section 6.3.2) that achieves Onion-Correctness (Def. 22),
Repliable Tail-Indistinguishability (Def. 44), Forward Layer-Unlinkability (Def. 23) and Backward
Layer-Unlinkability (Def. 43).

Similarly to [31] and Chapter 5, we say that a OR protocol is build from the OR scheme with an
additional ideal functionality for the assumed key distribution FRKR.
Definition 46. OR protocol Π is a secure repliable OR protocol (in the FRKR-hybrid model), iff
it is based on a secure OR scheme (G,FormOnion,ProcOnion,ReplyOnion) and works as follows:

Setup: Each node Pi generates a key pair (SK i,PK i)← G(1λ) and publishes PK i by using FRKR.

Sending a Message: If PS wants to send m ∈M to PR over path P1, . . . , Pn with n < N and wants
to allow a reply over the path P←1 , . . . , P←n← with n← < N and P←n← = PS, he chooses a randomness
R and sends the following O1 to P1.

O1 ←FormOnion(1,R,m, (P1, . . . , Pn, PR), (P←1 , . . . , P←n←),
(PK1, . . . ,PKn,PKR), (PK←1 , . . . ,PK←n←))

Replying an Onion: If PR wants to reply to an onion O with message m←, he sends O←1 to P←1
which are calculated as

(O←1 , P←1)← ReplyOnion(m←, O, PR,SKR).

Processing an Onion: If Pi received Oi, he calculates:

(Oj , Pj)← ProcOnion(SK i, Oi, Pi)

If Pj =⊥, Pi outputs “Received (m,Reply) = Oj” in case Oj 6=⊥ and reports a fail if Oj =⊥.
Otherwise Pj is a valid relay name and Pi generates a random temp and stores (temp, (Oj , Pj))
in its outgoing buffer and notifies the environment about temp.

Sending an Onion: When the environment instructs Pi to forward temp, Pi looks up temp in its
buffer. If Pi does not find such an entry, it aborts. Otherwise, it found (temp, (Oj , Pj)) and sends
Oj to Pj.

We now show that our properties are sufficient for the ideal functionality:
Theorem 14. A secure repliable onion routing protocol following Definition 46 UC-realizes F in
the (FRKR)-hybrid model.

Therefore, we describe a simulator that translates any attack on the secure, repliable OR protocol
to an attack in the ideal functionality.

Simulator Overview

The simulator uses the knowledge of honest keys to process adversarial onions (FormOnion called
by an adversarial sender or modified at the adversarial relay) just as the protocol does. For honest

190

onions (FormOnion called by an honest sender) our simulator uses the information it gets from the
ideal functionality to build the random replacement onions for each subpath. This information are
the part of the path (and if the receiver is adversarial, the message and repliability). The correct
relaying of honest onions is recognized by the simulator with RecognizeOnion. With the help of
our security properties, we can show that the adversary cannot notice the change. We give an
overview over standard hybrid argument in Table C.1. The full proof that can be found in [98] is
rather extensive and hence omitted from this thesis.

C.3. Additional Results without Replies

C.3.1 Insecure Protocol 1

The main idea of this counterexample is to use a secure OR scheme and adapt it such that the
path is part of the sent message.

We illustrate this idea in Fig. C.2.

Figure C.2: Illustration of the message extension used as message in Π

More formally, our extended protocol Πbroken1 using FormOnionbroken1 and ProcOnionbroken1 is
created from the “secure” onion routing protocol Π from [31]. Π transfers a message m from a
sender P0 to a receiver Pn+1 over n intermediate routers {Pi} for 1 ≤ i ≤ n using FormOnionΠ
and ProcOnionΠ.

Sender [FormOnionbroken1]. The sender P0 wants to send message m ∈ {0, 1}lm−lP over path
P, where lm is the length of messages in Π and lP is the maximal length of the encoding of
any valid path including the sender. FormOnionbroken1 creates a new message m′ = m‖e(P0‖P),
where e encodes the path and is padded to length lP . FormOnionbroken1 runs the original algo-
rithm FormOnionΠ with the inputs chosen by the sender except that the message is replaced with
m′.

Intermediate Router [ProcOnionbroken1]. Any intermediate runs ProcOnionΠ on Oi to create
Oi+1 and sends it to the next router.

Receiver [ProcOnionbroken1]. The receiver getting On+1 executes ProcOnionΠ on it to retrieve
m′. It learns the path from the last lP bits and outputs the first lm − lP bits as the received
message.

Analysis regarding properties. The properties follow from the corresponding properties of
the original protocol. As we only add and remove e(P0‖P) to and from the message, the same
path is taken and the complete onion layers Oi are calculated as before. Hence, Correctness and
Onion-Integrity hold, and re-wrapping them is as difficult as before. Only Onion-Security remains.
As Π has Onion-Security, the adversary cannot learn enough about the message included in the
first onion layers to distinguish it from a random message. Thus, she especially cannot distinguish
the last lP bits from random ones in Π. As in Onion-Security the adversary learns nothing else,
the adversary in Πbroken1 cannot distinguish our adapted message bits from random ones. Thus,
adapting does not introduce any advantage in breaking Onion-Security.

191

Table C.1: Overview Proof: Properties imply Ideal Functionality
Hybrid Description Reduction
H0 Machine using the real world protocol to interact with the real world

adversary A and the environment

H1 = H<2
1 As H0 but for one forward communication of an honest sender: The

onion layers between this sender and the next honest node (relay or
receiver) are replaced by the layers of a newly formed onion taking this
part of this path but carrying a random message for the next honest
node.

LU→

H<x1 As H<x−1
1 but for one forward communication of an honest sender,

where the onion layers between the first two honest nodes are not yet
replaced: Replace as in H1

(LU→)

H2 = H<2
2 As H∗1 (=first part for all honest forwards communications replaced)

but for one forward communication of an honest sender where no modi-
fication happened: The onion layers between the next two honest nodes
(relay or receiver) is replaced as in H1

LU→

H<x2 As H<x−1
2 but for one forward communication of an honest sender

where no modification happened and these layers are not yet replaced:
Replace as in H2

(LU→)

H←1 = H<2←
1 As H∗2 (=all are replaced) but for one backward communication of an

honest sender: The onion layers between the last honest node (relay
or forward receiver) are replaced by the layers of a newly formed onion
taking this part of this path but carrying a random message for the
honest backward receiver (=forward sender).

LU←

H<x←1 As H<x−1←
1 but for one backward communication of an honest sender,

where the onion layers between the last honest node and (backward)
receiver are not yet replaced: Replace as in H←1

(LU←)

H←2 = H<2←
2 As H∗←1 (=all are replaced) but for one backward communication of

an honest sender where no modification happened: The onion layers
between the (next) last two honest nodes (relay or forward receiver)
are replaced as in H←1

LU←

H<x←2 As H<x−1←
2 but for one forward communication of an honest sender

where no modification happened and these layers are not yet replaced:
Replace as in H←2

(LU←)

H3 = H<2
3 As H∗←2 (=all are replaced) but for one forward communication of an

honest sender where no modification happened but no other honest
relay exists(i.e. receiver is corrupt): The onion layers between the last
honest node on the forward path and the receiver are replaced with
the ones generated by a newly formed onion for this part of the path,
carrying the same message

TI↔

H<x3 As H<x−1
3 but for one forward communication of an honest sender

where no modification happened and these layers are not yet replaced:
Replace as in H3

(TI↔)

192

C.3.2 Insecure Protocol 2

The main idea for this scheme is to take the secure onion routing scheme of [31] and append the
same identifier ID and another extension to all onion layers of an onion. Our new onion layer is
Oi‖ID‖exti, where Oi denotes the onion layer of the original protocol and ‖ denotes concatenation.
The ID makes the onion easily traceable, as it stays the same while processing the onion at a
relay. To assure that the properties are still achieved, the additional extension exti has special
characteristics, like to prohibit modification. In this subsection, we first explain how exti is built
and processed. Then we describe and analyze the scheme based on exti’s characteristics.

Extension. As mentioned, to achieve the properties although we attach an ID, we need an
extension to protect the ID from modification. More precisely, the extension needs to fulfill the
following characteristics: It cannot leak information about the inputs to FormOnion as otherwise
Onion-Security breaks. Further, we need to prohibit modification of the appended ID and exten-
sion as otherwise the oracle in Onion-Security can be used with a modified ID or extension to learn
the next hop and break Onion-Security. Third, we require the extension to be of fixed length to
easily determine where it starts. Thus, we need an extension exti with the following characteristics
to be created by the sender that knows all Oi’s (created by a protocol with Onion-Security) and
picks the ID randomly:

1. exti does not leak more information about the onion that it is attached to than the onion
already leaks.

2. Except with negligible probability any change of ID‖exti is detected in ProcOnion of Pi and
the processing aborted.

3. exti has a known fixed length.

Scheme Description. We describe an extension with the above criteria in Appendix C.3.3. With
it, we can create the extended protocol Πbroken2 using FormOnionbroken2 and ProcOnionbroken2
from Π:

Let Π be the onion routing protocol from [31] that transfers a message m from a sender P0 to a
receiver Pn+1 over n intermediate routers {Pi} for 1 ≤ i ≤ n using FormOnionΠ and ProcOnionΠ.
Let Oi be the i-th onion layer of an onion of Π. In our new scheme the i-th onion layer is
Oi‖ID‖exti.

Sender [FormOnionbroken2]. The sender runs the original algorithm FormOnionΠ. Additionally,
as part of the new FormOnionbroken2 a random number ID of fixed length is picked. The sender
creates an extension exti for all layers i and appends the ID and extension to the onion layers to
generate the output of FormOnionbroken2. The resulting onion layer O′1 = O1‖ID‖ext1 is sent to
P1.

Intermediate Router [ProcOnionbroken2]. Any intermediate router receiving O′i = Oi‖ID‖exti
uses the fixed length of ID and exti (characteristic 3) to split the parts of the onion layer. This way
it retrieves the original onion layer Oi. Then it runs ProcOnionΠ on Oi to create Oi+1. Afterwards
it processes exti (aborts if the extension was modified before) to generate exti+1. Finally, it sends
the layer O′i+1 = Oi+1‖ID‖exti+1 to Pi+1.

Receiver [Identical to first part of ProcOnionbroken2]. Getting O′n+1 = On+1‖ID‖extn+1, the
receiver splits the parts of the onion layer. Thereby it retrieves the original layer On+1 and executes
ProcOnionΠ on it.

193

Analysis regarding properties. The properties follow from the corresponding properties of the
original protocol. As we only add and remove ID‖ext, the same path is taken and the onion layers
Oi are calculated as before. Hence, Correctness and Integrity hold. The first part of the onion is
not changed in our modification of the protocol and hence, re-wrapping this part is as difficult as
before. Only Onion-Security remains. As Π has Onion-Security, it can only be broken in Πbroken2
by learning information from ID‖ext (with or without modification). The ID is chosen randomly
and independent from FormOnion’s input and security parameters. Hence, it does not depend on
any information the adversary has to distinguish in the Onion-Security game, i.e. the path and
message. By characteristic 1 the extension exti is not leaking more information than Oi was leaking
before, which is not enough to win the Onion-Security game as Π has Onion-Security. Only learning
by modifying remains. As any modification of ID‖ext is detected (characteristic 2), the adversary
cannot create an onion layer with modified ID‖ext that would be processed by the oracle. Hence,
adding the extension does not introduce any advantage in breaking Onion-Security.

Practical Insecurity. ID is never changed and hence the onion layers can be linked based on
it. If the adversary observes the link from the sender and corrupts the receiver, the message and
sender can be linked. If the adversary observes the link from the sender and the link to the receiver,
the sender and receiver can be linked. Instead of observing the link, it is also sufficient to observe
as the relay connected to this link9. In this case, the relay learns the ID as part of the onion and
hence additional hop-to-hop encryption is not sufficient from a practical standpoint either.

C.3.3 Extension for Onion Security

The basic idea of our extension is to add one MAC for every router to protect ID‖exti from
modification. Further, similar to the scheme of [31] we use deterministic padding to ensure exti
has a fixed length.

To build this extension, we require a number of primitives:

• Encasym : KPub ×Masym → Casym: a non-malleable CCA secure asymmetric encryption
function for which public keys are shared in advance

• Decasym : KPriv × Casym →Masym: decryption function to Encasym

• MAC : Ksym×MMAC 7→ T : secure symmetric MAC scheme; modelled as a pseudo-random
function (PRF)10

• V er : Ksym × T ×MMAC 7→ {0, 1}: verification algorithm to MAC

• PRNG : Ksym × N→ Casym: secure PRNG

• embed : Ksym × T →Masym: bijective map

• extract :Masym → Ksym × T : inverse operation extract = embed−1

Recall, that we do assume that a PKI is in place and that the maximum path length is N .

Forming Extensions: We treat exti as a concatenated vector of N blocks (see Fig. C.3), each being
an element of the asymmetric ciphertextspace c ∈ Casym. We split this vector in the blocks that
contain MACs tagi and the padding blocks that contain only random numbers rdmi to guarantee
a constant length N · |c|, i.e. for all i: |(tagi‖rdmi)| = N · |c|.

First the random numbers are chosen. The last block is a pseudo-random number chosen by the
previous relay (or the sender if no previous relay exists and the path is shorter than N). The other
blocks of rdmi are the result of the same choice at earlier nodes. We use pseudo-random numbers

9We assume the sender is not spoofing its address.
10This holds for constructions like HMAC using a PRF as compression function (like SHA256).

194

... ...

... ...

Figure C.3: exti (resp. exti+1). The current MAC block Bi used by Pi is depicted in light blue.
Dark blue blocks are MAC blocks for upcoming routers, orange blocks depict the deterministic
padding. {X}k is used to denote asymmetric encryption under key k. PKi is the public key of Pi.
Bji is short for all concatenated blocks that follow in the extension, i.e. j ∈ {1, . . . , N − 1}.

to be able to calculate them in advance at the sender. Then the MAC blocks tagi are calculated.
Each such block Bi of tagi is encrypted with the corresponding router’s public key and has an
ephemeral symmetric key ki and a MAC ti embedded. The MAC ti authenticates the other N − 1
received blocks of exti, as well as the chosen ID and next onion layer Oi+1.

Processing Extensions: The extension is checked for the length and processing is aborted if the
extension length does not match N · |c| . Otherwise, the first block of the extension is removed,
decrypted with the secret key, the included ephemeral key ki is extracted and the included MAC
is verified. If the validation fails, the onion is discarded. Otherwise, a new block ri is added by
generating a pseudo-random number based on ki.

Analysis for Characteristics As the extension only consists of encrypted MACs and pseudo-
random numbers it does not leak more information about the onion than the adversary had before
(characteristic 1). If ID‖exti is changed, it might be modified or completely replaced. If it is
modified either the MAC itself or the input to the MAC is modified. Thus, except with negligible
probability the verification of the MAC fails and the onion is discarded. To replace it completely the
adversary would need to know the next onion layer after the honest node Oi+1, which she cannot as
the original scheme has Onion-Security. Thus, a changed ID‖exti is discarded (characteristic 2).
The attached padding blocks assure a fixed length of N · |c| (characteristic 3).

C.3.4 Sphinx

Adapted Sphinx

The original Sphinx protocol was adapted in [14] to use modern cryptographic primitives, which
can be proven secure. Further, the number of different cryptographic algorithms is reduced to
improve performance of the construction. Additionally, the encryption function used for the Sphinx
payload is replaced by an authenticated encryption (AE) scheme, such that the payload is also
authenticated at each node by the tag γi as part of the header. Let πAE (π−1

AE) be the encryption
(decryption) function of an AE scheme, as proposed by [14].

The algorithm to generate a Sphinx packet is partly adapted. Calculation of αi, si, bi, βi is equiv-
alent to the original Sphinx description, except that we consider the 0-bit string for padding βν−1
replaced by random bits to prevent the known attack from Section 5.2.1. The cryptographic prim-
itives µ, hµ, π, hπ are not used anymore in the adaptation. Instead an AE scheme is employed: Let
δν be the payload of the Sphinx packet. For 0 ≤ i < ν − 1: (δi, γi) ← πAE(si, δi+1, βi), where
δi is an encryption of δi+1 and γ is a tag authenticating δi+1, βi. πAE , ρ, hb, hρ are modelled as
a random oracle. The length of the Sphinx payload is fixed and checked at all mix nodes. If the
length is incorrect, the packet is discarded.

195

Proof of adapted Sphinx

The proof for Onion-Correctness is analogous to the one in [52]. The proof of our new security
properties follows:

Symmetric key si is a secret: The mix nodes have an asymmetric private key xni , that is used in a
Diffie-Hellman key exchange. It follows that the shared symmetric key between an honest sender
and an honest mix node is not known to the adversary. If an adversary could extract the symmetric
key with non-negligible probability, she could break the decisional diffie-hellman problem. See [52]
Section 4.4, indistinguishability proof of hybrid G1. Note that tag γ is generated using an AE
scheme keyed with si directly. The argumentation from [52] still holds.

LU : Recall that LU allows the adversary to decide the inputs to FormOnion and either returns
the resulting onion O1 of this FormOnion call or a randomly chosen onion Ōk, that only matches
the subpath between the honest nodes, together with the processing of O1 after the honest node
(ProcOnion(Oj)). Furthermore, it allows oracle use before and after this decision.

No dependencies between FormOnion: We define the game LU1 to be the same as LU except
that the adversary has no oracle access before his input decision (skips Step 2). As the creation
of onions in Sphinx is adequately randomized, independent from earlier creations and using a
sufficiently large security parameter, oracle access before the challenge only negligibly improves
the adversary’s success in guessing correctly.

No modification: We define the game LU2 to be the same as LU1 except that the adversary has no
oracle access after his input decision (skips Step 7). Using the oracle for a new onion Õ independent
of the challenge onion O does not help guessing b as the output ProcOnion(Õ) is then independent
from b as well. Thus, we only need to look at modifications of the challenge onion processed until
the honest node O+j := ProcOnionj(O). As any onion layer, O+j consists of four parts (α, β, γ, δ),
from which the tag γ authenticates β, δ using a shared key s extracted from α. Modifications
generating a valid tag are thus only successful with negligible probability. Therefore, there cannot
be a successful attack on LU1 that relies on the second oracle and thus any successful attack on
LU1 is also possible for LU2 in Sphinx.

No linking: We define the game LU3 to be LU2 but the second part of the output (ProcOnion(Oj) =
(Oj+1, Pj+1)) is no longer given to the game adversary. Assume knowing this output helps the
adversary to break LU . As the next hop Pj+1 is already known to her from her choice of path, the
only part of the output that can help her is Oj+1. Thus the adversary must be able to link Oj+1
to the first output onion layer (O1 resp. Ōk) which differs depending on b.

Hence, she must be able to link the onion layers before and after the honest node. The processing
at a honest node changes all four parts of a Sphinx packet in a way such that the adversary
cannot predict the result. Let B = (β‖02κ) ⊕ ρ(hρ(s)): α′ ← αhbα,s;β′ ← B[2κ..(2r+3)κ−1]; γ′ ←
B[κ..2κ−1]; δ′ ← π−1

AE(s, δ, γ). Assume if the adversary can decide on (α, β, γ, δ) she can distinguish
any of the new values (α′, β′, γ′, δ′) from randomness without knowing s. However, this implies
that she is able to solve the DDH problem induced by the computation for α′, or break the secure
ρ, πAE , or hash primitives, which contradicts the assumption. Thus, no successful attack on LU2

based on the second part of the output (ProcOnion(Oj)) can exist for Sphinx.

Onion layer indistinguishable from random ones: We define LU4 to be LU3 except that for the
output onion layer the values of α, β, γ and δ are chosen randomly from their corresponding spaces,
such that they result in the same subpath as given by the adversary. We show that LU4 is indistin-
guishable from LU3. Assume an adversary that can distinguish the games. As processing of onion
layers results in expected behavior, she must be able to distinguish some of the parts of the onion
layer from randomness. Assume she can distinguish any part of the packet, that means she can
– without knowing s – either solve the DDH problem or break the security of ρ or the AE scheme.
Therefore, she cannot distinguish any part of the packet from a randomly drawn value, and also
not process it to get the message.

In LU4 all the values are drawn exactly the same way independent of b. There cannot be an

196

adversary with any advantage for this game. Because LU4 ≈ LU3 =⇒ LU2 =⇒ LU1 =⇒ LU ,
we have proven that any adversary has at most negligible advantage in guessing b for LU .

TI : Recall that TI either outputs the processing of the onion build from the adversary’s choice
(ProcOnion(Oj) = (Oj+1, Pj+1)) or the processing from a random onion that matches the end
of the path and message of the adversary’s choice (ProcOnion(Ōk) = (Ōk+1, Pj+1)). Note that
the next hop is always the same in those outputs and thus only the onion layers need to be
indistinguishable. The proof of this is similar to LU ’s “Onion layer indistinguishable from random
ones” except that O is chosen randomly from the onion layers that also include the adversary chosen
message. Further, thanks to the fix to the attack determining the path length, also the values
αν−1, βν−1, γν−1, δν−1 the last node gets are indistinguishable from such random ones.

C.3.5 Correctness Practical Considerations

The false-positive probability of a Bloom filter depends on its configuration; that is its size m,
the number of hash functions k and the number of already stored inputs n. The false-positive
probability pk,n,m is:

pk,n,m = 1
mk(n+1)

m∑
i=1

iki!
(
m

i

){
kn

i

}

As a protocol is used, the duplicate store is growing, which means that for a Bloom filter the
number of stored elements n grows. It follows that the false-positive rate increases and thus the
probability for a correctness failure.

We thus extend Onion-Correctness to δ-Onion-Correctness such that the probability for a correct-
ness failure is at most δ. Practically, this can be achived by computing the number of maximum
elements that can be stored for a given Bloom filter configuration m, k such that pk,n,m ≤ δ. Once
the maximum number is achieved, the system would need to switch keys to restart duplicate de-
tection using an empty Bloom filter.

Definition 47. (δ-OnionCorrectness) [as in Definition 15]... the following is true:

1. correct path: Pr[P(O1, P1) = (P1, . . . , Pn+1)] ≥ 1−δ,

2. correct layering: Pr[L(O1, P1) = (O1, . . . , On+1)] ≥ 1−δ,

3. correct decryption: Pr[(m,⊥) = ProcOnion(SK(Pn+1), On+1, Pn+1)] ≥ 1−δ.

C.4. Additional Results with Replies

C.4.1 Definition of Building Blocks

For our construction we make use of SUF-CMA secure MACs, PRP-CPA secure symmetric en-
cryption, rerandomizable CPA secure public-key encryption, CCA2 secure public-key encryption,
RCCA secure UE scheme with plaintext integrity, and simulation-sound SNARGs which are all
defined below.

Definition 48. A message authentication code (MAC) scheme consists of three PPT algorithms
(Gen,MAC,Ver) with the following syntax:

Key generation. Gen(1λ) outputs a key k.

MAC generation. MAC(k,M) computes a tag γ for a message M ∈ {0, 1}∗ under key k.

MAC Verification. Ver(k,M, γ) outputs a bit on input of a key k, a message m, and a tag γ.

197

We require correctness in the sense that for all λ ∈ N, all k ← Gen(1λ), all M ∈ {0, 1}∗, it holds
that Ver(k,M,MAC(k,M)) = 1.

Finally, we say that the MAC scheme is SUF-CMA secure if for all PPT adversaries A it holds
that the success probability defined by

Pr

 Ver(k,M∗, γ∗) = 1
∧

(M∗, γ∗) 6∈ {(M1, γ1), . . . , (Mq, γq)}∧

∣∣∣∣∣∣ k ← Gen(1λ)
(M∗, γ∗)← AMAC(k,·)(1λ)


is negligible in λ, where MAC(k, ·) is an oracle that, on input M , returns MAC(k,M), M1, . . . ,Mq

denotes the messages queried by A to its oracle, and γ1, . . . , γq the respective replies.

Furthermore, we will make use of PRP-CCA secure symmetric encryption for constructing onion
headers which is defined as follows:

Definition 49. A symmetric encryption scheme consists of three polynomial-time algorithms
(Gen,Enc,Dec) with the following syntax:

Key generation. Gen(1λ) is a probabilistic algorithm which outputs a key k.

Encryption. Enc(k,M) is a deterministic algorithm which takes a key k and a plaintext message
M ∈ X ⊂ {0, 1}∗ and outputs a ciphertext C.

Decryption. Dec(k, C) is a deterministic algorithm takes a key k and a ciphertext C and outputs
a plaintext message m.

We require correctness in the sense that for all λ ∈ N, all k ← Gen(1λ), all M ∈ X, it holds that
Dec(k,Enc(k,M)) = M .

We restrict to encryption schemes defining a permutation, i.e., for all λ ∈ N and k ← Gen(1λ) the
function Enc(k, ·) is a permutation on X. We call such an encryption scheme PRP-CCA secure if
for every PPT A, the advantage

Pr


b′ = b

∣∣∣∣∣∣∣∣∣∣∣∣∣

k ← Gen(1λ)
P ← Perm(X)
b← {0, 1}

(F, F−1) :=
{

(Enc(k, ·),Dec(k, ·)), b = 0
(P, P−1), b = 1

b′ ← AF (·),F−1(·)(1λ)


− 1

2

is negligible in λ, where P is a uniformly chosen permutation on X and P−1 is its inverse. Note
that if an encryption scheme is PRP-CCA secure then the above property also holds if we swap
Enc and Dec (i.e., Dec is also a strong pseudo-random permutation on X).

To provide payload integrity and unlinkability we make use of Updatable Encryption in our first
scheme and therefore recapitulate the definitions from [89] below.

Definition 50 (Updatable Encryption [89]). An updatable encryption scheme UE is a tuple
(GenSP,GenKey,GenTok,Enc,Dec,ReEnc) of PPT algorithms defined as:

UE.GenSP(pp) is given the public parameters and returns some system parameters sp. We treat sp
as implicit input to all other algorithms.

UE.GenKey(sp) is the key generation algorithm which on input of the system parameters outputs a
key k ∈ Ksp.

UE.GenTok(ke, ke+1) is given two keys ke and ke+1 and outputs some update token ∆e.

UE.Enc(ke,M) is given a key ke and a message M ∈ Msp and outputs some ciphertext Ce ∈ Csp
(or ⊥ in case M = ⊥).

198

UE.Dec(ke, Ce) is given a key ke and a ciphertext Ce and outputs some message m ∈Msp or ⊥.

UE.ReEnc(∆e, Ce) is given an update token ∆e and a ciphertext Ce and returns an updated cipher-
text Ce+1 or ⊥.

Given UE, we call SKE = (GenSP,GenKey,Enc,Dec) the underlying (standard) encryption
scheme. UE is called correct if SKE is correct and it holds that ∀sp ← GenSP(pp),∀kold, knew ←
GenKey(sp),∀∆← GenTok(kold, knew),∀C ∈ C : Dec(knew,ReEnc(∆, C)) = Dec(kold, C).

Definition 51 (UP-IND-RCCA [89]). UE is called UP-IND-RCCA secure if for any PPT adver-
sary A the following advantage is negligible in κ:
Advup-ind-rcca

UE,A (pp) :=
∣∣∣Pr[Expup-ind-rcca

UE,A (pp, 0) = 1]− Pr[Expup-ind-rcca
UE,A (pp, 1) = 1]

∣∣∣ .
Experiment Expup-ind-rcca

UE,A (pp, b)
(sp, k1,∆0,Q,K,T,C∗)← Init(pp)
(M0,M1, state)←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
proceed only if |M0| = |M1| and M0,M1 ∈Msp
C∗ ←R UE.Enc(ke,Mb), M∗ ← (M0,M1), C∗ ← {e}, e∗ ← e
b′ ←R AEnc,Dec,Next,ReEnc,Corrupt(C∗, state)
return b′ if K ∩ Ĉ∗ = ∅, i.e. A did not trivially win. (Else abort.)

In the above definition, the global state (sp, ke,∆e−1,Q,K,T,C∗) is initialized by Init(pp) as fol-
lows:

Init(pp): Returns (sp, k1,∆0,Q,K,T,C∗) where e← 1, sp ←R UE.GenSP(pp), k1 ←R UE.GenKey(sp),
∆0 ← ⊥, Q← ∅,K← ∅, T← ∅ and C∗ ← ∅.

The list Q contains “legitimate” ciphertexts that the adversary has obtained through Enc or ReEnc
calls. The challenger also keeps track of epochs in which A corrupted a secret key (K), token (T),
or obtained a re-encryption of the challenge-ciphertext (C∗).

Moreover, the oracles given to the adversary are defined as follows:

Next(): Runs ke+1 ←R UE.GenKey(sp), ∆e ←R UE.GenTok(ke, ke+1), adds (ke+1,∆e) to the global
state and updates the current epoch to e← e + 1.

Enc(M): Returns C ←R UE.Enc(ke,M) and sets Q← Q ∪ {(e,M,C)}.

Dec(C): If isChallenge(ke, C) = false, it returns m← UE.Dec(ke, C), else invalid.

ReEnc(C, i): Returns Ce iteratively computed as C` ←R UE.ReEnc(∆`−1, C`−1) for ` = i+ 1, . . . , e
and Ci ← C. It also updates the global state depending on whether the queried ciphertext
is the challenge ciphertext or not:

• If (i,M,C) ∈ Q (for some m), then set Q← Q ∪ {(e,M,Ce)}.

• Else, if isChallenge(ki, C) = true, then set C∗ ← C∗ ∪ {e}.

Corrupt({key, token}, i): Allows corruption of keys and tokens, respectively:

• Upon input (key, i), the oracle sets K← K ∪ {i} and returns ki.

• Upon input (token, i), the oracle sets T← T ∪ {i} and returns ∆i−1.

The isChallenge predicate (used by Dec and ReEnc) is defined as:

isChallenge(ki, C) : If UE.Dec(ki, C) ∈ M∗, return true. Else, return false.

To exclude trivial wins, we need to define the set of challenge-equal epochs containing all epochs
in which the adversary obtains a version of the challenge ciphertext, either through oracle queries

199

or by up/downgrading11 the challenge ciphertext herself using a corrupted token.

Ĉ∗ ← {e ∈ {1, . . . , eend} | challenge-equal(e) = true}
and true← challenge-equal(e) iff: (e ∈ C∗) ∨

(challenge-equal(e− 1) ∧ e ∈ T) ∨ (challenge-equal(e+ 1) ∧ e+ 1 ∈ T)

Definition 52 (Perfect Re-encryption [89]). Let UE be an updatable encryption scheme where
UE.ReEnc is probabilistic. We say that re-encryption (of UE) is perfect, if for all sp ←R UE.GenSP(pp),
all keys kold, knew ←R UE.GenKey(sp), token ∆ ←R UE.GenTok(kold, knew), and all ciphertexts C,
we have

UE.Enc(knew,UE.Dec(kold, C)) dist≡ UE.ReEnc(∆, C).
In particular, note that ReEnc(∆, C) = ⊥ ⇔ Dec(kold, C) = ⊥.

Definition 53 (UP-INT-PTXT [89]). UE is called UP-INT-PTXT secure if for any PPT adversary
A the following advantage is negligible in κ:
Advup-int-ptxt

UE,A (pp) := Pr[Expup-int-ptxt
UE,A (pp) = 1].

Experiment Expup-int-ptxt
UE,A (pp)

(sp, k1,∆0,Q,K,T)← Init(pp)
c∗ ←R AEnc,Dec,Next,ReEnc,Corrupt(sp)
return 1 if UE.Dec(keend , c

∗) = m∗ 6= ⊥ and (eend,m
∗) /∈ Q∗,

and @e ∈ K where i ∈ T for i = e to eend; i.e. if A does not trivially win.

The oracles provided to the adversary are defined as follows:

Next(), Corrupt({key, token}, i): as in RCCA game

Enc(M): Returns C ←R UE.Enc(ke,M) and sets Q← Q ∪ {(e,M)}.

Dec(C): Returns m← UE.Dec(ke, C) and sets Q← Q ∪ {(e,M)}.

ReEnc(C, i): Returns Ce, the re-encryption of C from epoch i to the current epoch e. It also sets
Q← Q ∪ {(e,M)} where M ← UE.Dec(ke, Ce).

To exclude trivial wins, we define the set Q∗ which contains all plaintexts (and epochs) for which
the adversary has received a ciphertext by means of Enc and ReEnc queries or by upgrading a
ciphertext herself using a corrupted token.

for each (e,m) ∈ Q:
set Q∗ ← Q∗ ∪ (e,m), and i← e+ 1
while i ∈ T: set Q∗ ← Q∗ ∪ (i,m) and i← i+ 1

The adversary trivially wins if her output decrypts to a message m such that (eend,m) is contained
in this set or if she has corrupted a secret key and all following tokens, as this allows to create
valid ciphertexts for any plaintext.

Moreover, to enable payload integrity along with SNARGs, we will make use of CCA2 secure and
re-rerandomizable CPA secure public-key encryption.

Definition 54. An asymmetric (or public-key) encryption scheme consists of three PPT algorithms
(Gen,Enc,Dec) with the following syntax:

Key generation. Gen(1λ) outputs a public key PK and a secret key SK. We assume that PK
defines an efficiently decidable and samplable message space M⊆ {0, 1}∗.

Encryption. Enc(PK ,M) encrypts a message M under a public key PK to a ciphertext C.

Decryption. Dec(SK , C) decrypts a ciphertext C under a secret key SK to a message M ∈
M∪ {rej}, where rej is a special symbol that indicates that C was rejected.

11We assume that a token ∆e also enables downgrades of ciphertexts from epoch e+ 1 to epoch e.

200

We require correctness in the sense that for all λ, all (PK ,SK) ← Gen(1λ), all M ∈ M, and all
C ← Enc(PK ,M), we always have Dec(SK , C) = M .

Furthermore, a ciphertext is called valid (for PK) iff it lies in the range of Enc(PK , ·). We say
that the scheme has efficiently recognizable ciphertexts iff the set of valid ciphertexts (for a given
PK) can be efficiently recognized.

Finally, we say that the scheme is CPA secure iff no PPT adversary A can distinguish the following
two experiments with non-negligible advantage:

• A gets a fresh public key PK, selects two equal-length messages M0,M1 ∈ M, and receives
C∗ ← Enc(PK ,M0).

• A gets a fresh public key PK, selects two equal-length messages M0,M1 ∈ M, and receives
C∗ ← Enc(PK ,M1).

We say that the scheme is CCA2 secure if the above experiments are indistinguishable even when A
gets access to a decryption oracle Dec(SK , ·) (with the provision that Dec(SK , ·) does not decrypt
C∗ after C∗ is defined).

Definition 55. A rerandomizable asymmetric encryption scheme is an CPA secure PKE scheme
(GenRR,EncRR,DecRR) with efficiently recognizable ciphertext in the sense of Def. 54 for which a
PPT algorithm Rerand exists that inputs a public key PK and a ciphertext C, and outputs another
ciphertext C ′. We require that no PPT adversary A can distinguish the following two experiments
with non-negligible advantage:

• A gets a fresh public key PK, selects C, and receives C ′ ← Rerand(PK , C).

• A gets a fresh public key PK, selects C, and receives C ′ ← EncRR(PK , R), where R is a
fresh random message from the scheme’s message space.

Here, we only quantify adversaries A that always output valid ciphertexts (in the sense of Def. 54).

We stress that rerandomizability requires that even adversarially generated (but valid) ciphertexts
can be rerandomized. An example of a rerandomizable asymmetric encryption scheme is the
ElGamal scheme [71]. (The corresponding Rerand homomorphically adds a fresh encryption of the
neutral group element to C.)

In the following, we present a variant of the SNARK definition from [77]. We will assume a lan-
guage L ⊆ {0, 1}∗ (that may depend on the security parameter and additional random choices),
and an efficiently computable witness relation R for L. Hence, R takes as input x ∈ {0, 1}∗ and a
potential witness w ∈ {0, 1}p(|x|) (for a fixed polynomial p), and gives a binary output. We require
that x ∈ L⇔ (∃w ∈ {0, 1}p(|x|) : R(x,w) = 1). We also assume a canonical description of R, e.g.,
as a Boolean circuit.

Definition 56 (SNARG). A succinct non-interactive argument (SNARG) for a relation R consists
of four PPT algorithms:

• Key generation: SetupZK(1λ, R) outputs a common reference string CRS and a simulation
trapdoor τ .

• Proofs: ProveZK(R,CRS , x, w), for R(x,w) = 1, outputs a proof π.

• Verification: VfyZK(R,CRS , x, π) outputs a binary verdict.

• Simulation: SimZK(R, τ, x) outputs a simulated proof π.

We require the following properties:

• Succinctness: the bitlength |π| of π is polynomial in the security parameter λ, and the runtime
of VfyZK is polynomial in λ+ |x|.

201

• (Perfect) completeness: for all λ and x,w with R(x,w) = 1, it is VfyZK(R,CRS , x,ProveZK(R,
CRS , x, w)) = 1 always.

• (Perfect) zero-knowledge: for all λ and x,w with R(x,w) = 1, the outputs of
ProveZK(R,CRS , x, w) and SimZK(R, τ, x) are identically distributed.

• Simulation-soundness: for every PPT A, the following probability is negligible in λ:

Pr

 VfyZK(R,CRS , x, π) = 1
@w : R(x,w) = 1

∣∣∣∣∣∣
(CRS , τ)← SetupZK(1λ, R)

(x, π)← ASimZK(R,τ,·)(1λ, R,CRS)
SimZK never queried with x


where the probability is over the random coins of SetupZK, the random coins of A and VfyZK,
and possibly over the choice of the relation R itself.

We note that the simulation-soundness game above is not necessarily efficient (because of the
condition @w : R(x,w) = 1), but still implied by a property called “simulation-extractability” [90,
78]. Efficient simulation-extractable SNARGs (i.e., SNARKS) can be constructed from knowledge
assumptions [78, 107].

C.4.2 Proof Sketches of Further Properties for our UE Scheme

Table C.2: Overview Proof for LU→, j < n+ 1
Hybrid Description Reduction

1) The LU→ game with challenge bit chosen as 0

2) We replace the temporary keys kηj , k
γ
j ,∆j at the honest relay by

0..0 before they are encrypted in Ej (and adapt recognizeOnion
to the new header), but still use the real keys for the processing.

CCA2

3) We let the oracles in Step 7 output a fail, if the challenge Ej is
recognized, but other parts of the header differ.

SUF-CMA

4) We replace the blocks B1
j , ...,B2N−j

j by R1, R2, . . . , R2N−j with
Ri being randomly chosen (and adapt recognizeOnion to the
new header), but use the real blocks for the processing.

PRP-CCA

5) We let the oracles in Step 7 output a fail, if the challenge header
ηj is recognized, but the payload does not include the correct
plaintext.

UP-INT-PTXT

6) We let the Proc oracle in Step 7 output the replicated layer
j+1:(FormOnion(j+1,R,m,P→,P←, (PK)P→ , (PK)P←)), if
the challenge ηj is recognized, the payload matches, and real
processing of the given onion would not fail.

Perfect Re-Encryption

7) We replace the content δj by a random string of the same length. UP-IND-RCCA

8) We revert the changes made in Game 5). UP-INT-PTXT

9) We replace the block B1
j by (⊥,⊥,⊥) (and adapt recognizeOnion

to the new header).
PRP-CCA

10) We revert the changes made in Game 3). SUF-CMA

11) We revert the changes made in Game 2). CCA2

12) We use FormOnion with the parameter of the b = 1 case to
generate the first challenge onion layer. This is the LU→ game
with challenge bit chosen as 1.

Same behavior except for new
draw of randomness

202

Table C.3: Overview Proof for LU→, j = n+ 1
Hybrid Description Reduction

1) The LU→ game with challenge bit chosen as 0

2) We replace the temporary keys kηj , k
γ
j , k

∆
j=n+1 at the honest re-

lay by 0..0 before they are encrypted in Ej (and adapt recog-
nizeOnion to the new header), but still use the real keys for the
processing.

CCA2

3) We let the oracles in Step 7 output a fail, if the challenge Ej is
recognized, but other parts of the header differ.

SUF-CMA

4) We replace the blocks B1
j , ..., B

2N−j
j by R1, R2, . . . , R2N−j with

Ri being randomly chosen (and adapt recognizeOnion to the
new header), but use the real blocks for the processing.

PRP-CCA

5) We let oracles in Step 7 output a fail, if the challenge header
ηj is recognized, but the payload does not include the correct
plaintext.

UP-INT-PTXT

6) We let the oracles in Step 7 output the replicated layer j +
1:(FormOnion(j+ 1,R,m←,P→,P←, (PK)P→ , (PK)P←)) for
the Reply(PH , O,m←) request and we output (⊥,m) for the
Proc(PH , O), if the challenge ηj is recognized, the payload
matches, and real processing of the given onion would not fail.

Reply: Same behav-
ior as before, Proc:
UE-Correctness

7) We replace the content δj by a random string of the same length. UP-IND-RCCA

8) We revert the changes made in Game 5). UP-INT-PTXT

9) We replace the block B1
j by PRP.Enc(⊥,⊥,⊥) (and adapt rec-

ognizeOnion to the new header).
PRP-CCA

10) We revert the changes made in Game 6). SUF-CMA

11) We revert the changes made in Game 5). CCA2

12) We use FormOnion with the parameter of the b = 1 case to
generate the first challenge onion layer. The LU→ game with
challenge bit chosen as 1

Same behavior ex-
cept for new draw of
randomness

203

Table C.4: Overview Proof for LU←, j← = 0
Hybrid Description Reduction

1) The LU← game with challenge bit chosen as 0

2) We replace the temporary keys kηn+1, k
γ
n+1, k∆

n+1 on the forward
path at the honest receiver with 0 . . . 0 in their encryption for
En+1 (and adapt recognizeOnion to the new header), but still
use the real keys for the processing.

CCA2

3) We let the oracles in Step 6 output a fail, if the challenge En+1
is recognized, but other parts of the header differ.

SUF-CMA

4) We replace the blocks B1
n+1, . . . B

2N−1
n+1 by random values when

forming the challenge onion (and adapt recognizeOnion to the
new header), but use the real block for the processing. (In partic-
ular, in this way we get rid of k∆←

1 and all kη←>j← , kγ←>j← ,∆←>j←)

PRP-CCA

5) We let the keys k∆←
1 , kη←>j← , kγ←>j← ,∆←>j← and random padding

used in Step 6 be freshly chosen and use these for exception 2
of the game.

Games are equivalent

6) We replace the content δ←1 by a random string of the same length
during ReplyOnion.

UP-IND-RCCA

7) We revert the changes made in Game 4). PRP-CCA

8) We revert the changes made in Game 3). SUF-CMA

9) We revert the changes made in Game 2). CCA2

10) The LU← game with challenge bit chosen as 1 Same Behavior

Table C.5: Overview Proof for LU←, j← > 0
Hybrid Description Reduction

1) The LU← game with challenge bit chosen as 0

2) We replace the temporary keys kη←j← , kγ←j← ,∆←j← at the honest
relay with 0 . . . 0 in their encryption for E←j← (and adapt recog-
nizeOnion to the new header) as part of the payload of O1, but
still use the real keys for the processing.

CCA2

3) We let the oracles in Step 6 output a fail, if the challenge E←j←
is recognized, but other parts of the header differ.

SUF-CMA

4) We replace all B1←
j← , ...,B2N−1←

j← while constructing the
header with randomness, but use the real header for j← + 1
as answer to the corresponding Proc request. Note that replac-
ing all B←j←s results in not including any keys for > j← in the
earlier header.

PRP-CCA

5) We let the keys k∆←
j←+1, kη←>j← , kγ←>j← ,∆←>j← , that are used in

Step 6 to generate the layer for j←+ 1 when given the challenge
header, be freshly chosen and also pick new randomness for the
padding of the blocks without path information and use these
for exception 2 of the game.

Perfect ReEncryption

6) We replace the content δ←j with a random string of the same
length during ProcOnion at PH .

UP-IND-RCCA

7) We revert the changes made in Game 4). PRP-CCA

8) We revert the changes made in Game 3). SUF-CMA

9) We revert the changes made in Game 2). CCA2

10) The LU← game with challenge bit chosen as 1 Same Behavior

204

Table C.6: Overview Proof for TI
Hybrid Description Reduction

1) The TI↔ game with challenge bit chosen as 0

2) We replace the blocks B2N−(j+1)
j+1 , ..., B2N−1

j+1 in Step 5 by random
strings R2N−(j+1), . . . , R2N−1 (and adapt recognizeOnion to the
new header).

PRP-CCA

3) We replace the temporary keys kη←j← , kγ←j← ,∆←j← at the honest
relay with 0 . . . 0 in their encryption for E←j← (and adapt recog-
nizeOnion to the new header) as part of the payload of Oj+1,
but still use the real keys for the processing.

CCA2

4) We let the oracles in Step 7 output a fail, if the challenge E←j←
is recognized, but other parts of the header differ.

SUF-CMA

5) We replace the block B1←
j← with a path-end-block and

B2←
j← , . . . ,B(n←−j←+1)←

j← with random blocks in the payload
part of the challenge onion representing the backward header.

PRP-CCA

6) We revert the changes of Game 4). SUF-CMA

7) We revert the changes of Game 3). CCA2

8) The TI↔ game with challenge bit chosen as 1 Same behavior as be-
fore

205

C.4.3 Security of our SNARG-Based Scheme

In this section, we prove that our SNARG-based scheme also realizes the ideal functionality by
showing our properties. We start by describing FormOnion for other layers than the first one and
continue to show the proofs. As they are similar to the ones in the UE-based solution, we sketch
them here.

FormOnion - later layers. FormOnion for i > 1 uses the SNARG-trapdoor to create a valid
SNARG, encrypts random strings for the ring buffer entries C j , and creates the other onion parts
deterministically as described in the protocol for the current layer. In contrast to the UE-based
scheme also the payload is deterministic in the SNARG-based scheme.

Forwards Layer-Unlinkability

Case 1 – Honest Relay (j < n+ 1). We first replace all SNARG-related parts to unlink them
from the SNARG information of other layers and also from the secret information included in
them. Then we replace the temporary keys of the honest party included in the header, to be able
to change the blocks of the header and the payload corresponding to the b = 1 case. For the oracles
we further need to ensure, that RecognizeOnion does not mistreat any processing of e.g. modified
onions. Therefore, we leverage the SNARG properties for the payload protection and the MAC
for the header. We provide an overview of the proof in Table C.7.

Case 2 – Honest Receiver (j = n + 1): We sketch the proof in Table C.8. The steps are
the same as for the first case of LU→, but in Hybrid 10) we need to treat Reply and Proc re-
quests separately. Note that the earlier restrictions on the oracles work both for Reply and Proc
requests.

Other properties

We sketch the proofs for the other properties in Table C.9 – C.11.

Backwards Layer-Unlinkability. We distinguish the cases that the honest node is the receiver
(j← = 0) and that it is a backward relay (j← > 0).

Case 1 – Honest receiver (j← = 0). The steps are similar to the ones for LU→ Case 1: We replace
the SNARG information and temporary keys of honest routers, before we exclude bad events at
the oracle and finally set the header and payload parts to correspond to the b = 1 case. Note that
for LU← we can skip the steps related to the modification of the payload (and SNARG properties).
As the forward message is known to the adversary anyways and the backward message (as the final
processing) is never given to the adversary, she cannot exploit payload modification at the oracle
to break LU← in this case.

Case 2 – Honest Relay (j← > 0). The steps are similar to Case 1 for LU←.

Repliable Tail-Indistinguishability The steps are similar to Case 2 for LU←, except that we
can skip more steps. For the same reasons as before, we do not need the payload protection in
TI↔. Further, due to the use of FormOnion (for layers > 1) the ring buffer entries C>j+1 do not
encrypt any sensitive information, but only random bits and thus do not need to be replaced in the
beginning. Finally, the adversary does not obtain any leakage related to kηj and thus the blocks in
the forward header (Step 3)) can be replaced right away.

206

Table C.7: Overview Proof for LU→, j < n+ 1
Hybrid Description Reduction

1) The LU→ game with challenge bit chosen as 0

2) We simulate the SNARGs for the challenge onion. SNARG simulatabil-
ity

3) We replace the first ring buffer entry C1
1 with a fresh

encryption of sim for the special bitstring sim.
CPA/rerand. of PKM

4) We replace the ring buffer elements C i
j+1 for all i

with fresh encryptions of random strings (not sim) [as
FormOnion does for layers i > 1].

CPA/rerand. of PKM

5) We replace the temporary keys kηj , k
γ
j , k

δ
j at the honest

relay by 0..0 before they are encrypted in Ej (and adapt
recognizeOnion to the new header), but still use the real
keys for the processing.

CCA2

6) We let the oracles in step 7 output a fail, if the challenge
Ej is recognized, but other parts of the header differ.

SUF-CMA

7) & 8) We replace the blocks B1
j , ...,B2N−j

j by (sim, sim),
R2, . . . , RN−j with Ri being randomly chosen (and adapt
recognizeOnion to the new header), but use the real
blocks for the processing.

PRP-CCA

9) We let oracles in step 7 output a fail, if the challenge
header ηj is recognized, but the payload differs.

SNARG simulation
soundness

10) We let the oracles in step 7 output the replicated layer j+
1:(FormOnion(j+1,R,m,P→,P←, (PK)P→ , (PK)P←)),
if the challenge ηj is recognized, the payload matches,
and real processing of the given onion would not fail.

Same behavior due to
definition of recogni-
tion and forming of
later layers

11) We replace the content δj by a random string of the same
length.

PRP-CCA

12) We revert the changes made in Game 9). SNARG simulation
soundness

13) & 14) We replace the blocks B1
j , ...,B2N−j

j by (⊥,⊥,⊥),
R2, . . . , R2N−j with Ri being randomly chosen (and
adapt recognizeOnion to the new header).

PRP-CCA

15) We revert the changes made in Game 6). SUF-CMA

16) We revert the changes made in Game 5). CCA2

17) We revert the changes made in Game 3): The ring buffer
entry C1

1 now includes the sender info as in the b = 1
case.

CPA/rerand. of PKM

18) We use FormOnion with the parameter of the b = 1 case
to generate the first challenge onion layer.

Same behavior ex-
cept for new draw of
randomness

19) The LU→ game with challenge bit chosen as 1 SNARG simulatabil-
ity

207

Table C.8: Overview Proof for LU→, j=n+1
Hybrid Description Reduction

1) The LU→ game with challenge bit chosen as 0

2) We simulate the SNARGs for the challenge onion. SNARG simulatabil-
ity

3) We replace the first ring buffer entry C1
1 with a fresh encryp-

tion of sim for the special bitstring sim.
CPA/rerand. of PKM

4) We replace the ring buffer elements C i
j+1 for all i with fresh

encryptions of random strings (not sim) [as FormOnion does
for layers i > 1].

CPA/rerand. of PKM

5) We replace the temporary keys kηj , k
γ
j , k

δ
j at the honest relay

by 0..0 before they are encrypted in Ej (and adapt recog-
nizeOnion to the new header), but still use the real keys for
the processing.

CCA2

6) We let the oracle in step 7 output a fail, if the challenge Ej
is recognized, but other parts of the header differ.

SUF-CMA

7) & 8) We replace the blocks B1
j , ..., B

2N−j
j by (sim, sim),

R2, . . . , R2N−j with Ri being randomly chosen (and adapt
recognizeOnion to the new header), but use the real blocks
for the processing.

PRP-CCA

9) We let oracle in step 7 output a fail, if the challenge header
ηj is recognized, but the payload differs.

SNARG simulation
soundness

10) We let the oracle in step 7 output the replicated layer j +
1:(FormOnion(j+1,R,m←,P→,P←, (PK)P→ , (PK)P←))
for Reply(PH , O,m←) and we output (⊥,m) for Proc(PH , O),
if the challenge ηj is recognized, the payload matches, and
real processing of the given onion would not fail.

Same behavior due to
definition of recogni-
tion and forming of
later layers

11) We replace the content δj by a random string of the same
length.

PRP-CCA

12) We revert the changes made in Game 10). SNARG simulation
soundness

13) & 14) We replace the blocks B1
j , ..., B

2N−j
j by (⊥,⊥,⊥),

R2, . . . , R2N−j with Ri being randomly chosen (and
adapt recognizeOnion to the new header).

PRP-CCA

15) We revert the changes made in Game 6). SUF-CMA

16) We revert the changes made in Game 5). CCA2

17) We revert the changes made in Game 3): The ring buffer
entry C1

1 now includes the sender info as in the b = 1 case.
CPA/rerand. of PKM

18) We use FormOnion with the parameter of the b = 1 case to
generate the first challenge onion layer.

Same behavior ex-
cept for new draw of
randomness

19) The LU→ game with challenge bit chosen as 1 SNARG simulatabil-
ity

208

Table C.9: Overview Proof for LU←, j← = 0
Hybrid Description Reduction

1) The LU← game with challenge bit chosen as 0

2) We simulate the SNARGs for the challenge onion. SNARG simulatabil-
ity

3) We replace the first ring buffer entry C1
1 with a fresh encryp-

tion of sim for the special bitstring sim.
CPA/rerand. of PKM

4) We replace the first ring buffer entry C1←
j←+1 with a fresh

encryption of sim for the special bitstring sim.
CPA/rerand. of PKM

5) We replace the temporary keys kηn+1, k
γ
n+1, k

δ
n+1 on the for-

ward path at the honest receiver with 0 . . . 0 in their encryp-
tion for En+1 (and adapt recognizeOnion to the new header),
but still use the real keys for the processing.

CCA2

6) We let the oracle in step 6 output a fail, if the challenge En+1
is recognized, but other parts of the header differ.

SUF-CMA

7) We replace the block B1
n+1, . . . , B

2N−1
n+1 by a random blocks

when forming the challenge onion (and adapt recognizeO-
nion to the new header), but use the real block for the
processing. (In particular, in this way we get rid of all
kη←>j← , kγ←>j← , kδ

←
>j←)

PRP-CCA

8) We let the keys kη←>j← , kγ←>j← , kδ
←
>j← used in step 6 be

freshly chosen by P←j← .
Games are equivalent

9) We replace the content δ←1 by a random string of the same
length during ReplyOnion.

PRP-CCA

10) We revert the changes made in Game 7). PRP-CCA

11) We revert the changes made in Game 6). SUF-CMA

12) We revert the changes made in Game 5). CCA2

13) We revert the changes made in Game 4): C1←
j←+1 contains

now the information of P←j← as sender.
CPA/rerand. of PKM

14) We revert the changes made in Game 3). CPA/rerand. of PKM

15) The LU← game with challenge bit chosen as 1 SNARG simulatabil-
ity

209

Table C.10: Overview Proof for LU←, j← > 0
Hybrid Description Reduction

1) The LU← game with challenge bit chosen as 0
2) We simulate the SNARGs for the challenge onion. SNARG simulatability
3) We replace the first ring buffer entry C 1

1 with a fresh en-
cryption of sim for the special bitstring sim.

CPA/rerand. of PKM

4) We replace the first ring buffer entry C 1←
j←+1 with a fresh

encryption of sim for the special bitstring sim.
CPA/rerand. of PKM

5) We replace the temporary keys kη←j← , kγ←j← , kδ
←
j← at the

honest relay with 0 . . . 0 in their encryption for E←j← (and
adapt recognizeOnion to the new header) as part of the
payload of O1, but still use the real keys for the processing.

CCA2

6) We let the oracle in step 6 output a fail, if the challenge
E←j← is recognized, but other parts of the header differ.

SUF-CMA

7) We replace all B1←
j← , ...,B2N−1←

j← while constructing the
header with randomness, but use the real header for j←+1
as answer to the corresponding Proc oracle request. Note
that replacing all B←j←s results in not including any keys for
> j← in the earlier header.

PRP-CCA

8) We let the keys kη←>j← , kγ←>j← , kδ
←
>j← used in step 6 be

freshly chosen by P←j← .
Games are equivalent

9) We replace the content δ←j← with a random string of the
same length during FormOnion.

PRP-CCA

10) We revert the changes made in Game 7). PRP-CCA
11) We revert the changes made in Game 6). SUF-CMA
12) We revert the changes made in Game 5). CCA2
13) We revert the changes made in Game 4): C 1←

j←+1 contains
now the information of P←j← as sender.

CPA/rerand. of PKM

14) We revert the changes made in Game 3). CPA/rerand. of PKM
15) The LU← game with challenge bit chosen as 1 SNARG simulatability

Table C.11: Overview Proof for TI
Hybrid Description Reduction

1) The TI↔ game with challenge bit chosen as 0

2) We simulate the SNARGs for the challenge onion. SNARG simulatabil-
ity

3) We replace the blocks B2N−(j+1)
j+1 , ..., B2N−1

j+1 in step 5 by ran-
dom strings Rn−j+2, . . . , RN−1 (and adapt recognizeOnion to
the new header).

PRP-CCA

4) We replace the temporary keys kη←j← , kγ←j← , kδ
←
j← at the honest

relay with 0 . . . 0 in their encryption for E←j← (and adapt recog-
nizeOnion to the new header) as part of the payload of Oj+1,
but still use the real keys for the processing.

CCA2

5) We let the oracle in step 7 output a fail, if the challenge E←j← is
recognized, but other parts of the header differ.

SUF-CMA

6) We replace the block B1←
j← with a path-end-block and

B2←
j← , . . . ,B(n←+1−j←)←

j← with random blocks in the payload
part of the challenge onion representing the backward header.

PRP-CCA

7) We replace the first ring buffer entry C1
j+1 with the information

of Pj as sender.
CPA/rerand. of PKM

8) We revert the changes of Game 5). SUF-CMA

9) We revert the changes of Game 4). CCA2

10) The TI↔ game with challenge bit chosen as 1 SNARG simulatabil-
ity

210

C.4.4 Performance

UE-Based Scheme - Performance

Considering the requirements of our UE-based scheme, we are currently only aware of a single
suitable UE scheme which is a construction by Klooss, Lehmann, and Rupp [89] based on (the mal-
leability of) Groth-Sahai proofs. Unfortunately, instantiating our protocol with their UE scheme
leads to payload parts of the onion which are comparatively large: Their underlying algebraic
structure is a pairing-based group setting e : G1 ×G2 → GT . To encrypt a single G1-element, the
payload part contains 58 G1-and 44 G2-elements. For realistic group (bit)sizes of, say, |G1| = 256
and |G2| = 512, we obtain a payload size of about 4.5 kilobytes for 256 bits of communicated
message. The header part of the onion is about half as large for small pathlengths, and using
conventional state-of-the-art building blocks, a full onion (including header and payload) comes
out at about 4.5 +N kilobytes, where N is the maximal length of a path, i.e., the number of hops
between sender and receiver (see below for details). Processing an onion at a relay is dominated
by the cost to perform the re-encryption of the payload which requires about 110 G1- and 90
G2-exponentiations [89].

Details: All sizes in the following calculation are in bits.

• Kurosawa-Desmedt [102] as the CCA2-secure PKE: |PK | = 512, |C| = |M |+ 640.

– Remark: We count only user-specific parts in pk, the rest can be pushed into global
public parameters. pk contains 2 group elements, and C contains 2 group elements and
an authenticated encryption of M .

• SHA-3 [141] as hash: |P | = |γ| = 256 (for HMAC-based MACs with |kγi | = 128)

– Remark: We count an identity as the size of a hash value (like previous approaches).

• AES-128 [1] as symmetric encryption scheme: |kηi | = 128

• The NYUAE scheme from [89] for the payload: |k∆
i | = 2560, |∆i| = 1536, |δi = 37376|

– Remark: We consider a pairing-based group setting e : G1 ×G2 → GT with p = |G1| =
256 and |G2| = 512. A key consists of 4 Fp, 2 G1, and 2 G2 elements, whereas a token
consists of 4 Fp, and 2 G1 elements. As header ciphertexts should not leak whether they
contain a key or token, we need to pad to the maximum of both. The payload consists
of about 58 G1, and 44 G2 elements.

Hence:

• |Ei| = 2 · 128 + 20 · 128 + 640 = 3456,

• |γi| = 256,

• |Bji | = 256 + 3456 + 256 = 3968:

• |ηi| = (2N − 1) · 3968 + 3456 + 256 = (2N − 1) · 3968 + 3712.

• In total: |Oi| = |ηi|+ |δi| = (2N − 1) · 3968 + 3712 + 37376 bits.

A realistic value for N (maximal path length) can be N = 3 or N = 4, which leads to an onion
size overhead (over |m|) of about 7.5 kbytes, resp. 8.5 kbytes.

211

SNARG-Based Scheme - Performance

Our SNARG-based onions are in fact smaller (for small pathlengths N) than the ones from our
UE-based protocol. Using the SNARKs of Groth and Maller [78] (and state-of-the-art conventional
building blocks), we obtain onions with an additive overhead (over the message size) of 128N2 +
448N + 192(2N − 1) + 160 bytes (see below for details). The perhaps surprising quadratic term
in the maximal pathlength N stems from the fact that we require additional encryptions of all
previous onion headers to enable a recursive extraction of previous onion states.

However, due to our somewhat complex SNARG language, we expect that the actual processing
time of our SNARG-based approach (which involves constructing SNARG proofs at each processing
step) will be considerably higher than the one from our UE-based protocol.

Details: All sizes in the following calculation are in bits.

• As in the UE-based protocol: Kurosawa-Desmedt [102] as the CCA2-secure PKE, SHA-3 [141]
as hash and AES-128 [1] as symmetric encryption scheme.

• SNARKs of Groth and Maller [78]: |π| = 1024

– Remark: This building block operates in a pairing setting with a pairing e : G1×G2 →
GT , where we can assume. In this setting, G1-, resp. G2-elements can be set to have
256, resp. 512 bits.

• (Multi-generator-)ElGamal as the rerandomizable PKE: |C| = |M |+ 256

– Remark: We represent a plaintext string of ` · 256 bits as a vector of ` group elements
m1, . . . ,m` (of a suitably-sized group G) and can then set C = (gr, hr1m1, . . . , h

r
kmk)

for random r and public key elements h1, . . . , hk. Hence |pk| = ` · 256. In our setting,
` = 4N + 9 since we encrypt (N + 2) · 1024 + 256 bits (see below). Rerandomization
adds (componentwise) an encryption of (1G)`.

Hence:

• |Ei| = 3 · 128 + 640 = 1024,

• |γi| = 256,

• |Bji | = 256 + 1024 + 256 = 1536:

• |ηi| = (2N − 1) · 1536 + 1024 + 256 = (2N − 1) · 1536 + 1280.

• Cji : These are ElGamal ciphertexts for messages of size 1024 + N · 1024 + 1024 + 256 =
(N + 2) · 1024 + 256 each. This size calculation uses that

– all Cji have the same size, and that

– C1
i has a shorter actual (i.e., in its unpadded form) plaintext than Cji (j > 1), since the

m encrypted in C1
i can be made implicit and reconstructed from R and the encrypted

payload in O1.

– We do not count the “proc” string at the beginning of each Cji (j > 1), since this string
can be encoded as a single bit.

• σi contains N Cji ’s and N SNARGs: |σi| = N · (1024 + N + 2) · 1024 + 256 + 256) =
N2 · 1024 +N · 3584.

• |δi| = |m| (encrypted in-place)

• In total: |Oi| = |ηi|+ |σi|+ |δi| = |m|+N2 · 1024 +N · 3584 + (2N − 1) · 1536 + 1280 bits.

212

A realistic value for N (maximal path length) can be N = 3 or N = 4, which leads to an onion
size overhead (over |m|) of about 3kbytes, resp. 5kbytes.+

Performance in comparison to Ando and Lysyanskaya.

While Ando and Lysyanskaya do not provide concrete efficiency calculations, conceptually their and
our (time and space) overhead are similar except for the parts related to updatable encryption,
resp. SNARGs. For realistic security parameters, these parts dominate the header overhead.
This is the price one has to pay for preventing the malleability attack while making reply onions
indistinguishable from request onions as desired by practical protocols like HORNET [43].

After all, this is the first approach providing immunity in this strong sense, and while we do
not claim optimality of our constructions, we are convinced they are the basis for a real-world
improvement in communication privacy.

213

214

D. Details on Related Areas

D.1. Proximity Tracing Applications

D.1.1 Examples

For our examples horizontal lines symbolize the end of a batch, t > 2 and user A is corrupt.

Proximity Tracing Indistinguishability (P−IND)

Scenario 0 Scenario 1
m(A,B) m(A,C)
m(C,E) �
m(A,C) m(A,D)
m(A,C) m(A,E)

i(B) i (E)
i(D) �

Infection Indistinguishability (I−IND)

Scenario 0 Scenario 1
m(A,B) m(A,B)
m(A,B) m(A,B)
m(A,C) m(A,C)

i(B) i (C)
i(C) �

Infected Indistinguishability (I \ |I|−IND)

Scenario 0 Scenario 1
m(A,B) m(A,B)
m(A,B) m(A,B)
m(A,C) m(A,C)

i(B) i (C)

215

Meeting Indistinguishability (M−IND)

Scenario 0 Scenario 1
m(A,B) m(A,C)
m(A,D) m(A,D)
m(C,D) �

i(B) i (B)
i(C) i (C)

Healthy meeting Indistinguishability (M \I−IND)

Scenario 0 Scenario 1
m(A,B) m(A,B)
m(A,C) m(A,D)
m(C,D) �

i(B) i (B)

Remote Colocation Indistinguishability (R−IND)

Scenario 0 Scenario 1
m(A,C) m(A,C)
m(B,C) m(C,D)

i(B) i (B)

Remote Healthy Colocation Indistinguishability (R\I−IND)

Scenario 0 Scenario 1
m(A,C) m(A,C)
m(B,C) m(B,C)
m(E,C) m(C,D)

i(B) i (B)

D.1.2 Possible Extensions

Investigating Unavoidable Leakage. A relaxation of the functionality or assumptions of the
used techniques would lead to other unavoidable leakage. Especially that the frequency of meetings
for corrupted users and the meetings with corrupted are equal is inherent in the underlying assump-
tion that broadcasting techniques for some temporary identifiers are used, which most important
proposals do, but it is not inherent in the desired functionality. Further, the risks embedded in
the unavoidable leakage can be investigated by removing it from the definition and analyzing the
resulting adversarial advantage in any assumed setting. The advantage thus allows to conclude the
probability with which a case breaking the goal occurs in the analyzed setting.

Different Levels of Meeting Intensity and Notifications. Our meeting event can be ex-
tended by a parameter that specifies the level of intensity, like e.g. the duration of a meeting or the
physical distance between the two people. For the notions one would then again need to specify
which meeting intensity each of the properties considers.

More Timing Information for the Infection. If health workers define the point of being
contagious differently than t time units before the detection, this information can be modeled as

216

part of the infection event and the notions that consider the calculation of warnings can be adapted
to make statements about the corresponding times.

Adding Locations. Challenging the adversary to distinguish scenarios based on the location
at which users are is certainly interesting to analyze for approaches that collect some form of
location data. For the approaches that do not collect such location data to start with, such
notions are trivially achieved. Modeling locations such that only reasonable inputs can be given
by the adversary makes this a challenging task for future work, e.g. the locations of the same
honest user in consecutive batches should be close, people that are sufficiently close should have a
meeting event and different dimensions of location (GPS coordinate and height) possibly have to
be considered.

Epochs of Reused Pseudonyms. Many protocols are based on epochs, in which one pseudonym
is used. The pseudonym is only changed for the next epoch. If all users synchronize their epoch
changes (epochs are based on a global timer), this is easy to model. We can simply understand
an epoch as the encapsulation of the batches that correspond to its time and extend properties
as needed to consider events of this larger time span. If however all users change epochs based
on their local time, the adaptation of the properties is no longer straightforward and should be
subject of future work.

Friends, Family and People with same Routine. If one wants to model that no protection
from friends and family is needed (as one might assume they share the information of being infected
anyways), one can restrict the scenarios to only differ in infected users that do not meet more often
than one expects people with the same routine to meet. Similarly the additional requirement that
only people with the same routine differ in their infected status in the two scenarios, can be added
as restriction (if one assumes that only regular met people are at a privacy risk as completely
random encounters can most likely not be identified anyways [152]).

Assumed Behavior after Detection of Infection. We assumed that users with a detected
infection strictly self-isolate and that a positive test is not projected forward throughout quar-
antine and thus is not triggering further alerts. Without this assumptions further attacks are
imaginable, like testing the infection status by provoking meetings with the victim, and changes
on the properties would be necessary, e.g. Mi would also need to ensure that the meeting events
of an infected user after the infect was detected are equal in both scenarios for the corresponding
time span.

Sybil-Attacks. An easy attack is that an adversarial user ensures to meet only one user (by
blocking later exchange of colocation data, i.e. temporal pseudonyms). If this adversarial user
receives a warning, the adversary knows that the one met user is infected. If the adversary can
easily create many identities, she can do this attack for many victims. As a countermeasure
against this attack, sybil-protection measures might be introduced into a protocol. The effect
of such measures can be translated into our model by limiting the number of clients that the
adversary is allowed to corrupt. However, to also observe an effect on the notions, they have to
be adapted such that an adversary cannot pick arbitrarily many differences between the scenarios.
Such a quantitative restriction of the notions can be done similar to the number of challenges in
Appendix A.1.3.

Relaxation of Advantage Definition. As done before for anonymous communication net-
works, in some cases the strict advantage definition is too strong and allowing to distinguish with a
non-negligible, but still very small additive probability is acceptable. Therefore, the advantage def-
inition can be adapted similar to the (ε, δ)-differential privacy definition. However, the properties
can be kept the same and the same hierarchy follows.

217

Tracing of Users. A typical goal is that the colocation events of a user at different times cannot
be linked to each other, as otherwise the complete movement of the user could be traced by an
adversary. To capture this protection in a notion, we need a property that ensures that in the first
scenario the same user was met twice and in the second two different users were met. Example (A
corrupted):

Scenario 0 Scenario 1
m(A,B) m(A,B)
m(A,B) m(A,C)

However as we do not want the adversary to win the scenarios by identifying the user only in the
first meeting, we need to ensure that this alternative is used in 50% of the games:

Scenario 0 Scenario 1
m(A,C) m(A,C)
m(A,C) m(A,B)

Formally, such a property requires small extensions to the game, but can be constructed similar
to TS in Section 3.3. Note that depending on how close these two batches are, this idea is able
to capture the leakage due to reused pseudonyms (if the batches are so close that still the same
pseudonym is used, e.g. directly after each other as in the example above) or to cover the leakage
due to linkable pseudonyms (if we force the adversary to compare batches that are in different
pseudonym epochs).

More Notions and Properties. We limited this consideration to a first small set of useful
notions. However, we expect further interesting properties to be revealed during future work on
protocol analysis. One such example might be the notion that permits to learn the number of
infected users that one has encountered, which likely expresses a difference between centralized
and decentralized approaches. Some additional properties are already listed informally in the
following paragraphs:

Infections. One protectable property only concerns infection events:

Set of infected users Ui: Who is infected (all or a subset of the infected users) is known or not
known to the adversary.

Meetings. Properties that only concern user meetings and no infections: With regard to single
users:

Complete meeting info per user CIu: This information contains a list of all meeting events this
user was in. This includes who a user met, how often and in which order.

Meeting sets M : This only includes which other user each user met, but not how often or in
which order.

Frequency in users Qu: This specifies for any user, how many users she met.

Frequency per user Q: This specifies for any user, how often she met any other user.

Frequency in meetings Qm: This contains for any user, the number of meeting events she had.

With regard to multiple users:

Complete meeting information CI: This lists all meeting events that happened. Compared to
CIu this also allows to infer the order of meetings from different users.

Partitioning P : This specifies the subset of users, in which each user met at least one other user

218

of the set (connected components in the meeting graphs) in a given time span.

Histogram H: This specifies how many users met how many users (e.g. 10 users met 1 user each,
5 users 2 etc.).

Combined. Properties that arise from meeting infected users: With regard to single users:

Complete meeting info restricted to infected CI→Iu : This lists all meetings with infected users the
considered user had. It includes which infected user she met, how often and in which order.

Meeting set restricted to infected users M→I : This specifies which infected users a user met.

Frequency in infected users Q→Iu : This specifies how many infected users a user met.

Frequency per infected user Q→I : This specifies how often a user met a certain infected user, for
each infected user.

Frequency in meetings with infected users Q→Im : This specifies how many meeting events with
infected users each user had.

With regard to multiple users:

Complete information restricted to infectes users CI→I : This lists all meeting events with infected
users involved.

Histogram restricted to infected users. H→Im : This specifies how many users met how many
infected users.

In short, we restrict the properties above to only take the infected users into account X→I in the
combined properties.

We can also turn this around to describe which infected user met which other users and restrict
the statistics on the infected users XI→. With regard to single users:

Complete meeting info for infected CII→u lists all events in which an infected user is involved (as
CI→Iu).

Meeting sets for infected M I→ specifies which users any infected user met (not the same as M→I ,
but includes same information).

Frequency in user per infected QI→u specifies how many users an infected user met (different
information than Q→Iu).

Frequency per user for infected QI→ specifies how often an infected user met another user (different
information than Q→I).

Frequency in meetings for infected QI→m specifies how many meeting events with users each infected
user had (different information than Q→Im).

Similarly, we can restrict this for contact of infected users under each other: XI→I .

Note on other user sets. Similarly, we can restrict these properties on any other subset of
users. Especially, the corrupted users are useful in the unavoidable leakage: X→C , XC→ and
XC→C .

219

Table D.1: An initial approximation for proposed protocols (formal proofs, and in many cases even
exact protocol specifications do not exist at the time of writing)

Proposal Adversary P−IND I−IND I \ |I|−IND M−IND M \I−IND R−IND R\I−IND
central tracing server client(s) X X X X X X X

server X X X X X X X
NTK/ROBERT client(s) X X X X X X X

server X X X X X X X
DESIRE client(s) X X X X X X X

server X X X X X X X
ConTraCorona client(s) X X X X X X X

server X X X X X X X
Canetti client(s) X X X X X X X

server X X X X X X X
MIT (PSI) client(s) X X X X X X X

server X X X X X X X
DP3T client(s) X X X X X X X

server X X X X X X X

Table D.2: Information about location and pseudonyms in the protocols

Proposal Adversary Location? Pseudonyms trivially linkable? (for infected)
central tracing server client(s) no never

server exact forever
NTK/ROBERT client(s) no nth part of day (15min)

server no from contagiousness until quarantine
DESIRE client(s) no never

server no never
ConTraCorona client(s) no never

server no never
Canetti client(s) no never

server no from contagiousness until quarantine
MIT (PSI) client(s) region no pseudonym

server region no pseudonym
DP3T (Low-cost) client(s) no from contagiousness until quarantine, nth part of day (no infection)

server no from contagiousness until quarantine
DP3T (Unlinkable) client(s) no nth part of day

server no from contagiousness until quarantine
DP3T (Hybrid) client(s) no mth part of day (m < n), 2 or 4 hours recommended

server no from contagiousness until quarantine

D.1.3 Notes on existing approaches

Investigating a protocol regarding a notion is only meaningful under the assumption of a certain
adversary and regarding different adversaries the results for the same notion and protocol can
differ. For this first short review we are concerned with the adversary model that corrupts only
clients and the one that corrupts only the server.

For our educated guess, we utilize existing implications between the notions, i.e. if we expect
that a strong notion is achieved this includes that all weaker, implied notions are achieved as well.
Further, we use a similar logic for adversaries; if a weak adversary (e.g. one corrupting only one
client) is expected to break the notion, a strictly stronger adversary (e.g. one corrupting multiple
clients) is, too.

We are limiting our short review of the state of the art at the time of writing (April 2020) in three
ways:

Reusing of Pseudonyms ignored. As long as the broadcast pseudonym is not changed, mul-
tiple meetings can trivially be linked (see Appendix D.1.2 for a corresponding notion). This means
that for this time span the user’s meetings are traceable, if the adversary is able to observe the
area, or at least manages to incur several encounters. As the information how long a pseudonym
is reused is important, we include this parameter in Table D.2. Other than that, we ignore this
attack vector for the moment, i.e. we assumed that any batch uses new unlinkable pseudonyms,

220

to get a feeling for the protection introduced by the other design decisions1.

Location Information ignored. Early protocols considered leveraging location information to
calculate the at-risk users. As this of course is an important private information, we include it in
our table as well. Other than that, we however ignore this information at the moment. In terms of
our security games we thus assume that the locations do not differ between the scenarios, i.e. the
same location is being used for the corresponding meeting of the second scenario as the one used
in the first scenario. Also the location of one user in one batch does not change and locations of
the same user in two consecutive batches are assumed to be reasonably close.

Educated Guess. We limit our investigation to provide an educated guess of reasons, why some
approaches systematically may, or may not achieve specific notions. A summary of this guess can
be found in Table D.1 (the results for one and multiple clients are expected to be identical). As we
believe that providing the formalization of privacy goals as notions is more pressing at this point
in time, to help the various developers understand and express their goals and approaches better,
we leave an in-depth analysis of the protocols and the corresponding proofs for future work.

Centralized location tracing server2

Clients. This approach may protect perfectly from corrupted clients as they do not have to share
information with other clients, but only with the server.

Server. The server learns the locations of all users at all times. Thus, it learns even more
information than the colocation events that we modeled here.

Notions. P−IND should hold for multiple adversarial clients as they never exchange any infor-
mation with non adversarial clients and only learn unavoidable information (that they are at risk,
if this is the case) from the server. R\I−IND and I \ |I|−IND are broken for an adversarial server,
as it learns all meeting events and the infection status for all users. This implies that all other
notions are broken as well.

Further of course the exact location information is leaked and identities are known to the server.

NTK/ROBERT [125] / [131]

Client. As clients only learn the temporary identifiers (and we ignore trivial linking due to
pseudonym reusal during extended periods of time, for the moment) and clients only get notified
about whether they are at risk, we expect that one client cannot learn anything about the meetings
or who is infected.

Server.3 The server learns all short-term pseudonyms seen during all encounters of users who
test positive, and the long-term pseudonym of the latter. The short-term pseudonyms can be
inverted and hence directly mapped to the corresponding users. Linking long-term pseudonyms

1Note, that all approaches that were discussed for implementation in Europe assumed short-lived pseudonyms
derived from 24h long-term pseudonyms, to reduce communication cost and complexity for deriving at-risk individ-
uals.

2The naive solution assumed in the background (Section 7.2.1).
3The server is assumed to be trusted in this approach: The NTK/ROBERT description argues that at-risk

individuals can be alerted directly by the service, who consequently needs to know who they are. The server thus
learns everything about all individuals who test positive and all their encounters, our analysis hence does not match
the adversary model of the developers for this part.

221

(app IDs, cell phone numbers) to the identity of individuals is likely also possible for a strategic
adversary, especially with knowledge about the ego-network of the respective victim.

Notions. Corrupted clients only learn the tokens of each batch and the bit about whether they
are at-risk (as we consider the fact that multiple users learn that they are meeting the same user
due to the broadcast unavoidable leakage, for the moment). As the tokens cannot be linked (again:
we ignore the reusage of the pseudonyms for 15 minutes in this analysis) and the bit is considered
unavoidable information, P−IND is expected to be achieved (and thus also any other defined
notion), even against multiple clients in such a restricted analysis.

A corrupted server is expected to break R−IND and I \ |I|−IND. As the server notifies the at-risk
users and thus learns about their meeting with infected individuals, it learns about the meetings
between these users (and most likely even their identities). As the notified honest users can differ
in both scenarios for I \ |I|−IND, this notion is also expected to break. Only the notions that
allow the adversary to learn about the meetings of infected R\I−IND and M\I−IND are expected
to hold, as the server only learns the short-term pseudonyms of users which the infected users met
and nothing about the meetings between non-infected users is shared with the server.

DESIRE [35]

Clients. Clients calculate a specific pseudonym for each meeting partner based on the Diffie-
Hellman key exchange protocol. Those pseudonyms are even directional (if Alice and Bob meet,
Alice will store a different identifier for the case that Bob gets infected than for the case that she
gets infected). Clients can ask the server for subsets of the observed pseudonyms to check whether
they are at risk.

Server. The Server learns the pseudonyms of meeting events infected users had. To prevent the
server from learning the clients connected to a request a TLS Proxy is proposed.

Notions. Corrupted clients can learn when and how many infected users they met by asking for
risk notification of subsets of actually met users. Thereby M−IND, I \ |I|−IND and all stronger
notions are broken. Note that the general idea is close to the attack of a user just meeting a
small set of other users, achieved e.g. by disabling the communication after meeting the victim.
The crucial difference is that in the sketched attack on DESIRE the adversary is able to restrict
the set of possibly infected users to be smaller than all users she had meeting events with (as she
can simply test subsets of meeting events), which could be prevented. While the second case, the
adversary’s meeting behavior could as well be an honest user’s meeting behavior from someone
that just happened to meet no one after meeting the victim. Other than that, we expect corrupted
clients to be unable to learn about meetings between benign (R−IND) and not infected (M\I−IND)
users. Thus R−IND,M \I−IND are expected to be achieved.

A corrupted server learns how many meeting events infected users had and thereby something
about the (meetings of) infected, possibly benign users other than how many infected users exist
(breaks I \ |I|−IND,M−IND, R−IND). However, the server does not learn information about not
infected users (M \I−IND, R\I−IND).

ConTraCorona [22]

Clients. Clients use pseudonymous (pids), seed (sids) and warning IDs (wids). Clients send their
pids to other clients with the help of secret sharing. One share is sent per minute with a threshold
of 15 shares needed to recover the pid. In case of an infection event all observed pids are given
to the matching server, which in cooperation with the other servers enables the warning server to
retrieve and publish the wids of users at risk.

222

Server. The tasks of the server are distributed over three different servers: the submission server,
the matching server and the warning server. The submission server collects (sid,pid)-pairs from
clients and sends them rerandomized and shuffled to the matching server. The matching server
also receives the pids that infected users observed. In this event the matching server finds the
corresponding sid and sends it to the warning server, that can finally retrieve and publish the wid
of the users at risk. For publication the warning server removes duplicates.

Notions. Corrupted clients can learn at which day they met infected users by comparing their
wids of the respective day. Thereby, they learn something about meetings and the infected and
thus M−IND, I \ |I|−IND and all stronger notions are broken. We would like to stress that the
information these clients gain is of the granularity of days, not the exact point in time or smaller
time windows like 15 minutes as in other approaches. Yet, it is enough information to break our
strong privacy notions. We expect the remaining notions to hold as clients do not learn about
when they meet a certain other non-infected user (again) or information about meetings of benign
users from the pids and wids they observe.

For a corrupted server, we assume that the for the adversary beneficial server type is corrupted,
but only one of the types is. For this, notice that the warning server can count the number of
duplicates it has to remove for each wid. Thereby it learns a histogram of how many users had
how many meetings with infected on that day; enough information to break our strong notions
R−IND and I \ |I|−IND. However, none of the servers can learn about meeting events between
non-infected users and thereby M \I−IND and R\I−IND are expected to hold.

Canetti [34]

Clients. Non-infected users only share one-time pseudonyms with other users. We thus expect
the meetings of them to be nearly completely private. Infected users send all own temporal
identifiers to the server. All users receive the list of pseudonyms of infected users, as it is stored
on the server.

Server. The server receives all the identifiers that the infected users sent out.

Notions. M−IND and I \ |I|−IND are expected to break for a single adversarial user, as the
user learns in which batch the match with an infected user occurs and thus the user has a good
guess which the infected user was (given she knows when she met him: I \ |I|−IND) or when she
met him (given she knows when the other user gets infected: M−IND). We expect M \I−IND
and R−IND to hold against that adversary, as the adversary does not learn about meetings of
non-infected users, or meetings she is not involved in. As only the own keys of the infected users
are published, it does not contain meeting information.

I−IND is expected to break for an adversarial server, as it can observe how many batches of tokens
she gets and thus learns the number of infected users. However, given the tokens are sent to the
server in a protected way (via a secure anonymous communication network), the server cannot infer
the identity from the tokens or any meeting information (as above). We thus expect a corrupted
server (not colluding with any clients) to achieve the other notions.

Note that the publishing of all tokens of the infected users leaves them traceable by multiple
corrupted users, if only one user has been infected in this period (if there have been several, they
create an anonymity set). This should be analyzed in future work (see Appendix D.1.2).

223

MIT [18]

Clients. Clients are assumed to have met if they are in the same region. Clients do not directly
exchange information, every communication happens over the central regional server. Infected
clients use generalization to obfuscate their location and time, before regularly publishing this
information to a database. Non-infected clients run a Private Set Intersection (PSI) or PSI-
Cardinality (PSI-CA) protocol together with the database server to find out whether they have
been at the same obfuscated location at the same time span as one of the infected clients. We
assume that this PSI does not return duplicated set entries (no multi sets). The client learns either
the obfuscated location and time for any match in the database (PSI) or the number of matches
(PSI-CA).

Server. The server receives regular input from infected users, so it learns the number of infected
users. As obfuscated location-time tuples are generated in a deterministic way, infected users that
meet in the same generalized location at the same time will generate the same information to be
sent to the server. The server thus learns a histogram over the number of infected people over time
that meet at the same location. Depending on the chosen PSI or PSI-CA scheme, the server also
can (on its own, or together with a colluding client4) perform a bruteforce attack on the time span
and obfuscated location reported by any infected user.

Notions. Note that the hashed obfuscated location-time value stored at the server and received
by the clients can be efficiently resolved to the obfuscated location and time by a dictionary first
preimage attack (in polynomial time in the security parameter).

M−IND and I \ |I|−IND are expected to break for corrupted clients as they can learn in which
batch they had contact to a corrupted user (as above for Canetti). The other (not yet implied
to be broken) notions are expected to hold for this adversary as corrupted users learn no meeting
information about users they did not meet or that are not infected, as they can only check for their
regional information against regions infected have been in.

R−IND and I−IND are expected to break for an adversarial server, as he learns the (obfuscated)
location and time of infected users and can reconstruct a partly social graph and number of infected
users. Further, I \ |I|−IND is expected to break as the server can learn about two infected users
that they have met (been at the same region at the same time) and thus can construct a scenario,
where these met and another where the two infected (different users than in the first scenario) did
not meet, even though in both the same number of users is infected and the same users (identities)
met. We expect M \I−IND to hold, as the server does not get information about the meetings of
non-infected users (if the PSI is secure).

Note that the description of possibly achieved notions does not leverage the location stored in the
obfuscated location-time tuple. This is due to our assumption that location of adversarial users is
identical in the same batch for the moment and should be analyzed in future work.

DP3T [152]

Note that the different versions of DP3T (low-cost, unlinkable and hybrid) vary the linkability of
pseudonyms. For this first analysis, we only informally state the expected effect of the pseudonyms
in Table D.2, but otherwise argue the notions independent of pseudonym linkability.

Further, while the different versions provide different protection measures, in terms of our first
selection of strong notions, they all achieve the same subset, which is why we discuss only the low-
cost protocol in the paragraphs below and quickly mention why the differences do not influence
our notion selection here. Relaxed and fine-grained notions that indeed reflect the differences are
however an interesting direction for future work.

4He can simply take part in the open world app as a user.

224

The unlinkable and hybrid version allow users to redact pseudonyms from certain time spans. If
we assume that not all meetings (with corrupted clients) are redacted, this does not influence the
analysis of our strict notions, as information about the non-redacted meetings can still be used in
the attack. Further, in all versions the client gets to check for the warning based on the received
tokens, she thus of course learns the alert producing token and thereby the round in which the
contact happened, which is the major idea to break our notions as detailed below.

Clients. Clients continuously broadcast a cryptographic token via bluetooth. This token is
derived from a temporary key. The key is supposed to have a validity of roughly one day. The
next key is derived from the current temporal key. Each temporal key generates n tokens, which
are used one after another over the lifetime of the temporal key. Clients receiving such tokens are
storing them together with a timestamp and signal strength. In case of an infection, the app of
the infected user sends the temporal key together with a validity timespan to the server. Once a
day, each client receives the server list of keys and their validity. It generates all belonging tokens
and possibly finds matches with recorded tokens.

Server. The server receives a tuple consisting of a temporal key and its validity in case of an
infection. Clients request the list of tuples once a day.

Notions. As above (for Canetti and MIT), M−IND and also I \ |I|−IND are expected to be
broken for a corrupted client, as she learns in which round she met an infected user (she calculates
the matches on her own). However, we expect the other (not implied to be broken) notions to hold,
as again nothing about the non-infected meetings, or meetings that do not involve a corrupted user,
can be learned.

Similar to the case with Canetti, an adversarial server learns the number of infected users (from
the number of keys it gets sent) and thereby breaks I−IND. However, other than that the server
only learns the keys of infected, but no further meeting information and thus we expect the other
(not implied to be broken) notions to hold.

Note that, as acknowledged by the authors, the publishing of keys of the infected users in the
low-cost version allows to derive all sent tokens of this user and leaves her traceable by multiple
corrupted users similar to the Canetti approach.

Remarks

We consider some observed pseudonyms to be unavoidable leakage, which is only due to the fact
that we assume the tokens to be transmitted via a broadcast medium (which all promising con-
testants for a privacy-preserving solution in Europe currently are suggesting, using 128-bit BLE
tokens). It fundamentally is possible to share them via unicast in an encrypted fashion. Bystanders
then cannot observe them, and each pseudonym relates to only the tuple of two users that partic-
ipate in the concrete encounter. This characteristic was illustrated e.g. with DESIRE.

Further, we have repeatedly sketched attacks against our strong notions by exploiting that a user
learned the fact that and when she met an infected user. With the current functionality and the
goal to calculate the warning at the client this seems challenging to avoid. An easier circumvention
of this problem is to allow for added delays and collect information to infer warnings for this time.
The concrete analysis of this however needs an adapted notion that forces the adversary to include
multiple infection events in this time span.

225

D.2. Payments

D.2.1 Hierarchy Proof Sketches

Sender Notions (Receiver similarly). Except (Sender-Value) Unlinkability, Sender Unlink-
ability Fixed Value, Sender Unlinkability Fixed Total, Sender Unobservability Fixed Value and
Sender Unobservability leaking Graph the notions are defined as the sender notions in anonymous
communication networks and the proofs follow similar to their equivalent relation in anonymous
communication. The Atom property is the only difference for (Sender-Value) Unlinkability, but
only weakens the notion more than without and hence the proofs still apply.

Sender Unlinkability leaking Pseudonym ...

• ... implies Sender Unlinkability Fixed Value: If Q and FV , P has to contain only multisets
of the fixed value and the number of times the fixed value is in each multiset is the same due
to Q.

Sender Unlinkability Fixed Value ...

• ... implies Sender Unlinkability Fixed Total: trivial.

Sender Unlinkability Fixed Total ...

• ... implies 2-(Sender-Receiver) Unlinkability: Due to Atom we can reorder the two payments
such that only receivers differ in each row. The values for both payments are the same and
each sender sends once. Every choice for 2-(Sender-Receiver) Unlinkability is thus also valid
for Sender Unlinkability Fixed Total.

Sender Unobservability ...

• ... implies not Value Unobservability leaking Graph: A protocol that publishes all payed
values (e.g. stores them on the blockchain) but hides everything else perfectly, has Sender
Unobservability, but no Value Unobservability leaking Graph.

Sender Unobservability leaking User Number ...

• .. implies not Sender Unobservability leaking Graph: Assume a protocol that leaks the
number of active users, but hides everything else perfectly. It has Sender Unobservability
leaking User Number, but not Sender Unobservability leaking Graph.

Sender Unobservability leaking Graph...

• ... implies not 2-(Sender-Receiver) Unlinkability, Twice Sender Unobservability or (Sender-
Value) Unlinkability: A protocol that leaks the link weights of the credit/payment network,
but hides everything else perfectly, has Sender Unobservability leaking Graph, but not 2-
(Sender-Receiver) Unlinkability, Twice Sender Unobservability and (Sender-Value) Unlinka-
bility.

Twice Sender Unobservability...

• ... implies not Sender Unobservability leaking Graph: A protocol that leaks the sender of
the first transaction, but hides everything else perfectly, has Twice Sender Unobservability,
but not Sender Unobservability leaking Graph.

The receiver notions follow similarly.

Impartial Notions. We discuss implications starting at an impartial notions here.
Unobservability...

226

Table D.3: Example attack choice
Sender Value Receiver Sender Value Receiver

A 1 R A 2 R
B 2 R B 1 R

Table D.4: Example: Smaller than max balancing payments after middle line
Sender Value Receiver Sender Value Receiver

A 2 R A 1 R
B 1 R B 2 R

A 0.5 R A 1.5 R
B 1.5 R B 0.5 R

• ... implies Value Unobservability, Receiver Unobservability, Sender Unobservability: trivial

Value Unobservability ...:

• ... implies Value Unobservability leaking Graph: trivial.

• implies (Sender-Value) Unlinkability, (Receiver-Value) Unlinkability: similarly to the
anonymous communication case, except that (Sender-Value) Unlinkability has even more
restrictions (i.e. is even weaker) than the equivalent in the anonymous communication case.

• Remaining counterexamples follow from Unobservability not implying the other notions.

Value Unobservability leaking Graph ...:

• ... implies not (Sender-Value) Unlinkability and (Receiver-Value) Unlinkability: Assume
a protocol that only leaks the graph. This achieves Value Unobservability leaking Graph
as there ≡G is required. However, the graph leaks who sent which value as long as no
balancing payments occur, thus breaking (Sender-Value) Unlinkability, e.g. with the choice
from Table D.3.

Unobservability Fixed Value...:

• ...implies Unlinkability Fixed Value: trivial.

• ...implies not (Sender-Value) Unlinkability: Assume a protocol that only leaks the value of
the first payment of the lexicographically first sender. As this will always be v for any game
in Unobservability Fixed Value (due to FV), this protocol achieves Unobservability Fixed
Value. However, the leaked linking allows to break (Sender-Value) Unlinkability, e.g. with
the choice from Table D.3.

• ...implies not Sender Unlinkability leaking Pseudonym: Same example protocol and attack
example as for (Sender-Value) Unlinkability.

• ...implies not Twice Sender Unobservability: Assume a protocol that only leaks whether
two consecutive transactions are from the same sender if their values differ. As the values
will always be the same in Unobservability Fixed Value (due to FV), Unobservability Fixed
Value is achieved. However, learning if someone sent twice allows to break Twice Sender
Unobservability.

• ... implies not Value Unobservability leaking Graph: Assume a protocol that only leaks the
maximal value of any payment of the lexicographically first sender. As this will always be v for
the Unobservability Fixed Value game (due to FV), this protocol achieves Unobservability
Fixed Value. However, the leaked linking allows to break Value Unobservability leaking
Graph, as the balancing can be made with smaller payments (see Table D.4).

Unlinkability Fixed Value...:

227

hoptime: maximum path anonymity set

se
t

si
ze

Figure D.1: Effects of allowing loops illustrated with the maximum path anonymity set sizes of
varying hoptime for the scaled buckets. The differences in the anonymity set sizes caused by
allowing loops are smaller for very short or long hop times. However the increase when including
loops is never high enough to justify introducing loops to the routing as improvement mechanism.

• ...implies Unlinkability Fixed Total, Sender Unlinkability Fixed Value, Receiver Unlinkability
Fixed Value: trivial.

Unlinkability Fixed Total...:

• ... implies Sender Unlinkability Fixed Total, Receiver Unlinkability Fixed Totals: trivial

D.2.2 The Effect of Loops

So far we assumed a careful adversary that knows the routing strategy and ignores paths with
loops for the maximum anonymity sets. However, to see how much influence loops have on the
sets, we calculated the maximum anonymity sets that also allow for loops on the path and show
the difference in Figure D.1. For short hop times the difference is not high as generally not many
payments are mixed and hence not many loops are constructed transitively. For very large hop
times, the loops also do not change the anonymity set much as there are not many different time
slots in which effects of the transitivity could occur. However, for intermediately long hop times a
difference can be seen. As this however not only includes paths with one, but also multiple loops
and as allowing for loops in the paths supports congestion attacks [62], we do not deem including
loops to the paths as a useful countermeasure, but suggest increased hop times instead.

D.2.3 Relation to Protocols

We want to illustrate our notions by setting them in relation with prominent P3 systems. For this
we select P3 systems that have the most precise goal definitions or have been very impactful. Our
first broad comparison is limited in scope: we match our notions to the goals that the proposals
state5 for their chosen adversary model, as we subsequently want to investigate their relationship
with regards to anonymity set sizes for a selection of the protocols. We therefore do not consider
the proofs, potentially differing adversary models, or assumptions.

This has, first of all, the effect that a protocol might appear weaker than another even though
they are not directly comparable: The weakness might stem from the chosen setting, adversary
or desired functionality. If, for example, the transmitted value is needed to calculate the fees,
the protocol has to leak the values to some participants. A protocol thus might achieve a weaker
notion only, just because of the desired functionality.

5We do not take any additional attack vectors (such as information leaked on the network layer and user behavior
heuristics [84]) into account, but just work with the claims of the systems.

228

Secondly, to allow for a broad comparison, we only focus on the goals that the P3 systems state
(formally or informally). We thus ignore sophisticated attacks like traceability analyses for Mon-
ero [101, 118] or side channel attacks [151].

Table D.5 shows the relation between the privacy goals of P3 systems and our notions. We discuss
the mapping below.

Table D.5: Relation between Notions and Protocol Claims

Protocol Notion Remark
Chaum’s eCash Unobservability Fixed Value all

CoinShuffle++ Sender Unobservability only for participating peers

Fulgor + Rayo Value Unobservability all,
2-(Sender-Receiver) Unlinkability common intermediate node

& plausible paths

Monero Sender Unobservability only for subset chosen by sender
Receiver Unobservability all

Value Unobservability all

PathShuffle Sender Unobservability only for participating peers

PrivPay Value Unobservability leaking Graph all,
Receiver Unobservability leaking Graph all

Quisquis Unobservability only for subset chosen by sender

SilentWhispers Value Unobservability leaking Graph all,
Sender Unobservability leaking Graph all,

Receiver Unobservability leaking Graph all

TumbleBit (payment hub) Unlinkability Fixed Value all,
TumbleBit (classic tumbler) Unlinkability Fixed Total all

Zerocash Unobservability all

(Anonymous) Zether Unobservability only for subset chosen by sender

Mapping Formal Goal Definitions

CoinShuffle++. CoinShuffle++ [137] applies a DC-net approach from anonymous communica-
tion to the payment setting to achieve sender anonymity.

CoinShuffle++ requires Sender Anonymity for successful runs. For sender anonymity each real
honest sender should be indistinguishable from all other honest peers. Thus scenarios can differ
arbitrarily in the senders (ES) and should still be indistinguishable, corresponding to our Sender
Unobservability.

Fulgor + Rayo. Fulgor and Rayo [109] are two privacy-enhancing approaches for PCNs.6 In
PCNs participants lock funds on the blockchain via smart contracts to then be able to do multiple
payments before closing the channel and updating the blockchain accordingly. Both, Fulgor and
Rayo, aim at hiding both, the value of payments from nodes that are not on the path, as well as
the relationship between sender and receiver even against nodes that are on the payment’s path.
Fulgor and Rayo differ however in their treatment of concurrent payments and in the adversary
model against which all their privacy goals are achieved, which are both out of scope for this
work.

Fulgor and Rayo describe the two privacy goals (Off-path) Value Privacy and (On-path) Relation-
ship Anonymity. (Off-path) Value Privacy states that no outsider (not involved in the current

6While there are additional interesting approaches, such as Bolt [76], we choose Fulgor and Rayo for our analysis
due to their compatibility to Bitcoin and easy extensibility to the Lightning network.

229

payment path) learns information about the value. As our notions remove the adversary from the
privacy goal7, we model this as allowing the value to differ arbitrarily between the two scenarios
(EV) resulting in Value Unobservability.

(On-path) Relationship Anonymity states that for any two simultaneous payments with a common
honest intermediate node on their path, the other nodes cannot determine the sender-receiver
combination for any of these payments. We dissect this definition in the basic properties Atom
(payments are simultaneous), |P |2 (exactly 2 payments are involved) and MSR (the sender-receiver
linking is the only thing that differs and the corresponding paths are included in the auxiliary
information). This results in 2-(Sender-Receiver) Unlinkability.

PrivPay. PrivPay [114] uses oblivious capacity calculations supported by trusted hardware at
its core to protect the credit links, as well as value and receivers of payments.

PrivPay aims at value privacy and receiver privacy for payments with honest senders. Value privacy
is defined as a game, that only allows the values to differ, but at the same time adds balancing
transactions that ensure the same resulting credits on the credit network links for both scenarios.
This excludes trivial wins for the adversary. This notion corresponds to our Value Unobservability
leaking Graph, where EV ensures that only values can differ, ≡G ensures the equivalent credit
networks and Atom that no intermediate credit network states are output to the game adversary.
Note that PrivPay’s balancing transactions that ensure equivalent graphs are implicit in our ≡G
requirement.

Receiver privacy for payments with honest senders, translates to our Receiver Unobservability
leaking Graph that allows only receivers to differ in the scenarios (ER) and ensures an equivalent
credit network through balancing transactions (≡G). We however decouple this goal from the
adversary model dimension – requiring that the sender is honest is not included in our notion, as
we consider this to be part of the adversary model.

SilentWhispers. SilentWhispers [110] aims at keeping not only the value as well as the sender
and receiver of a transaction hidden, but also the credits on the links. The authors suggest
to employ a secret-sharing multiparty-computation combined with signatures to reach payment
integrity and these privacy goals.

SilentWhispers requires value privacy, link privacy, sender privacy and receiver privacy. Value
privacy and receiver privacy are defined as in PrivPay and hence map to the same notions. Further,
sender privacy is defined similar to receiver privacy and thus results in our corresponding sender
notion Sender Unobservability leaking Graph. Link privacy requires that the adversary cannot
learn the available credit between two honest users. As this is not directly related to any payment,
we consider this kind of leakage out of scope for this paper.

TumbleBit (payment hub). In TumbleBit [81] it is the task of a Tumbler, an untrusted inter-
mediary, to mix the payments of all senders using the Tumbler at the same time under each other,
such that it is hidden which receiver was payed by which sender. Cryptographic puzzles ensure
the correctness and privacy of the TumbleBit approach.

As a payment hub, TumbleBit aims at Unlinkability which is defined based on the view of the
(adversarial) tumbler on the interaction graph. The interaction graph is a representation for the
mapping of payments to senders and receivers. The view of the tumbler is limited to the puzzle-
solver protocols with each sender. Thus, the tumbler learns the senders and how many payments
they make, and obeserves the cashout phase, i.e. the tumbler learns how much each receiver gets
payed. Unlinkability requires that all interaction graphs that induce the same view for the tumbler
are equally likely.

7This means in the analysis the protocol model cannot return outputs that correspond to on-path nodes, but our
notion is suitable.

230

Translated to our model the interaction graphs are the single scenarios and as all of them have to
be equally likely, we know that each such pair, and especially the worst case pair for the protocol,
has to be indistinguishable. This is thus equivalent to our indistinguishability game, restricted by
properties that correspond to the tumbler’s view. Before translating the tumbler’s view, we note
that TumbleBit’s setting assumes that all payments are of the same denomination, hence we use
FV in the corresponding notions. The tumbler’s view includes the number of payments per sender
(QS). This in combination with the fixed values ensures also equal totals for the senders (ΣS). On
the receiver side the tumbler learns the total (ΣR) which together with the fixed values also ensures
equal receiving frequencies (QR). This corresponds to our notion Unlinkability Fixed Value (as
we do not need auxiliary information to model TumbleBit, requiring ESR additionally makes no
difference).

TumbleBit (classic Tumbler). As a classic Tumbler, TumbleBit aims at k-Anonymity which
is described as revealing which senders and receivers participated in an epoch, but not being able
to link senders to receivers for all k successful payments. Thus, in this setting the values are fixed
to 1 and each participant either sends or receives 1 coin. This ensures that the totals are not only
equal, but fixed to 1 as well (FΣSΣR). The resulting goal corresponds to our Unlinkability Fixed
Total. While the authors argue that this second property is stronger because senders and receivers
can no longer be grouped based on the totals they send/receive, these larger anonymity sets stem
from the usage assumption (everyone sends/receives exactly one coin), not from hiding additional
metadata. Indeed from the metadata point of view the first notion is stronger.

Quisquis. Quisquis [63] suggests using updatable keys and ZK arguments to add deniability of
participation to the anonymity requirements.

Quisquis defines Anonymity both for senders and receivers in an anonymity game. While their
detailed game mixes parts of the adversary model, like corrupting secret keys for transactions, to
the goal of indistinguishability of challenge transactions, the distinguishing feature of Quisquis’s
game definition is the inclusion of the anonymity set as part of the transaction. Other than that
only the same number of transactions in both scenarios follows from their query definition (which
is equivalent to ESRV without using auxiliary information), which terminally corresponds to our
notion Unobservability.

Zerocash. Zerocash proves to achieve Ledger Indistinguishability, defined as:

”First, a challenger samples a random bit b and initializes two DAP scheme oracles
ODAP0 and ODAP1 , maintaining ledgers L0 and L1. Throughout, the challenger allows
A to issue queries to ODAP0 and ODAP1 , thus controlling the behavior of honest parties
on L0 and L1. The challenger provides the adversary with the view of both ledgers,
but in randomized order: LLeft := Lb and LRight := L1−b. The adversary’s goal is
to distinguish whether the view he sees corresponds to (LLeft, LRight) = (L0, L1), i.e.
b = 0, or to (LLeft, LRight) = (L1, L0), i.e. b = 1. At each round of the experiment,
the adversary issues queries in pairs Q,Q′ of matching query type. If the query type
is CreateAddress, then the same address is generated at both oracles. If it is to Mint,
Pour or Receive, then Q is forwarded to L0 and Q′ to L1; for Insert queries, query
Q is forwarded to LLeft and Q′ is forwarded to LRight. The adversary’s queries are
restricted in the sense that they must maintain the public consistency of the two ledgers.
For example, the public values for Pour queries must be the same, as well as minted
amounts for Mint queries.”

Zerocash’s Ledger Indistinguishability includes an informal part that restricts the scenario to ”main-
tain the public consistency of the two ledgers” without defining what needs to be equal for the
public consistency. Further, this game always outputs the observations to both scenarios.

While theoretically giving the observations to both scenarios is stronger than the classical definition
that returns just one, we are not aware of any practical relevance of this decision. Hence, we decide

231

to map this to a notion of our hierarchy, even though the models differ in this way.

As we are interested in the transactions, we focus on the restrictions for Pour and Receive queries
due to the public consistency requirement. If we assume that all parameters important for the
public consistency, like the public values for the pour queries, are specified in the auxiliary infor-
mation and do not restrict the other sender, receiver or value choices, we can map Zerocash’s goal
to Unobservability.

(Anonymous) Zether. Zether [29] uses ZK proofs to improve, besides other possible applica-
tions, Ethereum’s privacy by adding Zether smart contracts.

Zether defines all privacy requirements in a Privacy-Game. While the game allows further queries,
like to lock and unlock accounts, for the transfer transaction the only requirements are that the
senders have sufficient funds, that the same anonymity set is used in both scenarios and if the
receiver is corrupt, the same receiver and amount are used. We assume the first two always as well
and the third one corresponds to the user corruption that can be similarly added to our notions as
in the anonymous communication case (see Appendix A.1.2). We again exclude empty payments
via ESRV , which leads to Unobservability.

Mapping informal Claims of Protocols

Note that the protocols discussed in this section do not have easily comparable goal definitions.
Rather, their goals are informal. We hence stress that this is our interpretation of the informal
definitions and that an extensive, in-depth analysis regarding all notions is required for each of the
P3 systems, to confirm or reject our intuition in future work.

Monero. Monero claims to be confidential and untraceable by hiding the senders with ring sig-
natures, the receivers with stealth addresses and values with ring confidential transactions. It
however does not define any of these three protection goals in detail. For senders, we need to
reduce the anonymity set to the users corresponding to the ring signature, but do not have to
restrict the notion otherwise. For receivers and values, the protection’s claim includes all other
existing receivers (and values) into the anonymity set and causes no further restrictions. We thus
map them to Receiver Unobservability and Value Unobservability.

Chaum’s eCash. Chaum’s eCash [39] describes a payment system that improves privacy based
on blind signatures.

eCash’s goal is the ”inability of third parties to determine payee, time or amount of payments
made by an individual”. This allows to leak the total number of payments and as eCash assumes
fixed values, also the value of each single transaction, but hides everything else. This informal goal
and the setting of eCash hence match most closely to our Unobservability Fixed Value.

PathShuffle. PathShuffle [115] proposes a path-based mixing protocol by realizing atomic trans-
actions between multiple users. Thereby they realize unlinkability between output wallet and
user.

PathShuffle defines its privacy goal ”Unlinkability” informally as the fact that ”it should not be
possible for the attacker to determine which output wallet belongs to which honest user”. More
precisely we expect that they mean for all honest users participating in this protocol run. Other
than that it expresses the uncertainty of the adversary in which user (sender) is correlated to
which output wallet (receiver and transaction). Hence this matches Sender Unobservability most
closely.

232

Relating Simulation Results

With our mapping of protocols to notions from Section D.2.3, we can also relate them to our
anonymity set simulation. However we would like to remind the reader that the simulation repre-
sents a simplified overview and abstracts from details of the different systems, as for instance the
actual epoch or hop time or changes in the set of all users due to users joining and leaving the P3
system (churn).

The anonymity set of Zerocash corresponds to the set of all users (Sender Unobservability without
anonymity set restriction, i.e. Ũ = U). This is the biggest possible sender anonymity set, as the
protocol protects even the fact if users are currently active, or not.

While the goal definition in PathShuffle and CoinShuffle++ is given similar to Sender Unobserv-
ability the additional restriction ensures that their goal actually corresponds to Sender Frequency
Unlinkability. Thus it corresponds to the set of active users. Notice the importance of the epoch
time for the corresponding anonymity set sizes. Naturally, we expect an epoch to be a limited for
the mixing in PathShuffle and CoinShuffle++, but the longer it is, the bigger is the anonymity set
sizes are.

The anonymity sets of TumbleBit are best approximated by the active senders with identical values
(Sender Unlinkability Fixed Value, the sender notion implied by Unlinkability Fixed Value), the
group of the smallest anonymity sets in the experiments above without considering path-based
restrictions.

There is one more category of systems achieving the strongest notion. The approaches Monero,
Quisquis and Zether achieve Sender Unobservability, but explicitly limit the anonymity set and
(assuming none of the users in it is corrupted and the selection is not biased) ensure a fixed
anonymity set size. The sizes are still being discussed and subject to change. E.g. Monero uses 11
and for Quisquis 4, 16 or 64 other senders are picked in their evaluation.

The evaluation of path-based approaches finally corresponds to PCNs like Fulgor and Rayo. Their
anonymity set sizes are best approximated by our evaluation considering path overlap and value
identity.

Take away messages. Depending on the chosen parameters (concrete hop or epoch time, as well
as group sizes for Monero, Quisquis and Zether) the active, value or even path-based anonymity sets
of TumbleBit, PathShuffle or Fulgor and Rayo might perform better or worse than the fixed values
of Monero, Quisquis and Zether. Their expected anonymity set sizes at least can be on a similar
order of magnitude, when compared to the protocol choice of the latter. Although CoinShuffle++
achieves the strongest notion, the overall expected anonymity sets of active users for Zerocash
reach even better sizes. The reason is the difference in the additional assumption.

Limitations. Recall that our protocol assessment has to be taken with grains of salt. We com-
pared systems built on different fundamental assumptions, only with regards to the dimension of
privacy. Each design decision obviously entails differences in performance, like in terms of latency,
bandwidth, computational complexity and scalability, which we have not considered at all in this
work.

233

	Introduction
	Preliminaries
	Anonymous Communication Networks
	Setting
	Adversary
	Goals
	Performance
	Techniques

	Cryptographic building blocks
	Encryption
	Authentication
	Updatable Encryption
	SNARGs

	Privacy Goal Definitions
	Differential Privacy
	Indistinguishability Games
	Ideal Functionalities in the Universal Composability Framework

	Privacy Notions for Anonymous Communication
	Overview
	Our Game model
	Protected Properties
	Simple Properties
	Complex Properties

	Privacy Notions
	Hierarchy
	Relations to Prior Work
	Relation to Existing Analysis Frameworks
	Use Case: Analyzing Loopix's Privacy Goals

	Climbing the Hierarchy: Towards ACN Primitives
	Introducing Primitives
	Primitives Overview
	Encryption Primitives
	Dummy Traffic Primitives
	Indirection Primitives
	Effects in the Hierarchy

	Discussion

	Performance Limits of Anonymous Communication
	Bounds Overview
	Comparison
	Counting-Bound and Optimality-Bound are equivalent
	Protocol Assumptions
	Privacy Goals
	Advantage Definitions
	Additional Restrictions
	Adversary Models
	Bounds
	Comparison across the Aspects

	Implications
	Discussion of Networks
	Final Remarks on Bound Implications for Protocol Proposals

	A Practical Viewpoint: Explaining Limitations
	Strong Privacy Goal Formalizations
	Maximal Anonymity Sets
	Bandwidth Cost Models
	Assumptions

	Onion Routing: Breaking and Fixing the Unidirectional Case
	Background
	Adversary Model
	Onion Routing (OR)
	Existing Schemes and Systems
	Formally treating OR

	First Pitfall: Incomplete Properties
	Attack on Sphinx
	Analyzing the Original Properties
	Security against Malicous Receivers
	Linking Protection
	Improved Properties imply Ideal Functionality

	Second Pitfall: Insufficient Oracle Treatment
	Malleability Attack
	Mistake in the Proofs

	Proving the Adapted Sphinx secure
	Discussion
	Onion-Security Properties vs. Existing OR Attacks
	Adapting Our Properties
	Limitations

	Provably Secure Onion Routing with Replies
	Overview
	Notation
	Model and Ideal Functionality
	Assumptions
	Modeling Replies
	Ideal Functionality

	New Properties
	Our UE-based Scheme
	Building Blocks
	Scheme Description

	Security of Our Repliable OR Scheme
	Our SNARG-based Scheme
	Building Blocks and Setting
	Scheme Description
	Security

	Beyond Anonymous Communication
	Proximity Tracing Notions
	Background
	Application Scenario and Assumptions
	Model
	Properties
	Notions
	Application

	Payment Networks
	Background
	Model
	Notions
	Anonymity Sets for Realistic User Behavior
	Simulation for path-based multihop protocols

	Conclusion
	Details to Notions
	Options for Notions
	Protocol-dependent: Sessions
	Adversary Model: Corruption
	Easier Analysis: Quantification
	Capturing Different Adversaries

	Challenger
	Notions in Pseudocode
	Additional Tables and Figure
	Delayed Proofs
	Advantage Definitions
	Notion Relations
	Multi-Challenge Generalization
	UC-Realizability
	Completeness of Hierarchy

	On the Choice of Notions
	How to Use
	Primitives' Details
	Pseudocode
	Protection

	Dissecting Systems to Primitive Combinations
	Mixnet
	DC-Nets
	Pung
	Loopix

	Improving Bounds
	Tightening the claims
	Adversary Models
	Privacy Notions Specification
	Dropping-Bound – Privacy Notion
	Trilemma – Overview
	Trilemma – Compromising adversary

	Proofs
	Advantage Definitions
	Counting-Bound and Optimality-Bound Bound Equivalence
	Improving the Trilemma
	Impossibility areas
	No latency in the Trilemma

	Extended Results
	Receiver Privacy Goals
	Note on related results

	Details on Formal Onion Routing
	Ideal Functionality
	No replies
	With Replies
	Analyzing the Ideal Functionality without Replies

	Proof of new Properties
	No Replies
	With Replies

	Additional Results without Replies
	Insecure Protocol 1
	Insecure Protocol 2
	Extension for Onion Security
	Sphinx
	Correctness Practical Considerations

	Additional Results with Replies
	Definition of Building Blocks
	Proof Sketches of Further Properties for our UE Scheme
	Security of our SNARG-Based Scheme
	Performance

	Details on Related Areas
	Proximity Tracing Applications
	Examples
	Possible Extensions
	Notes on existing approaches

	Payments
	Hierarchy Proof Sketches
	The Effect of Loops
	Relation to Protocols

