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Abstract. We discuss the transport properties of a single photon in a one-
dimensional waveguide with an embedded three-level atom and utilize both
stationary plane-wave solutions and time-dependent transport calculations to
investigate the interaction of a photon with driven and undriven V- and
3-systems. Specifically, for the case of an undriven V-system, we analyze the
phenomenon of long-time occupation of the upper atomic levels in conjunction
with almost dark states. For the undriven 3-system, we find non-stationary dark
states and we explain how the photon’s transmittance can be controlled by an
initial phase difference between the energetically lower-lying atomic states. With
regard to the driven three-level systems, we discuss electromagnetically induced
transparency in terms of the pulse propagation of a single photon through a
3-type atom. In addition, we demonstrate how a driven V-type atom can be
utilized to control the momentum distribution of the scattered photon.
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1. Introduction

Much of the recent progress in quantum photonics as well as in circuit and cavity quantum
electrodynamics is based on considerable advances in micro- and nanofabrication techniques
and on improvements in the understanding of the underlying physical mechanisms. Different
approaches exist for the realization of quantum optical circuits, e.g. via superconducting
devices [1, 2], semiconductor structures [3] or hybrid systems [4]. For instance, recent works
have demonstrated the efficient coupling of quantum dots as single photon sources to the modes
of integrated waveguiding elements [5] as well as the generation and manipulation of arbitrary
one- and two-photon states in such systems [6].

Although the above approaches differ widely in materials and operating wavelenghts,
their basic building blocks exhibit the same characteristics: they consist of low-dimensional
waveguiding structures with embedded quantum impurities so that quantum interference can
be utilized efficiently. From a theoretical vantage point, already the investigation of the
apparently simple model of a single two-level system (2LS) embedded in a one-dimensional
(1D) waveguide leads to interesting effects such as an energy-dependent mirror [7–10] or strong
nonlinearities on the few-photon level [11–17]. In addition, it has recently been proposed to
utilize these systems as local quantum probes within a Hong–Ou–Mandel setting [18].

These systems exhibit an even richer behavior (and associated level of complexity) if the
2LS is replaced by a three-level system (3LS). Already stand-alone 3LSs display interesting
physical effects such as electromagnetically induced transparency (EIT) [19] and the possibility
of adiabatic population transfer [20] that simply do not occur in 2LSs. EIT with classical
radiation in the case of a single emitter embedded in a 1D system has been realized with the
help of superconducting devices [21, 22]. Furthermore, 3LSs give the possibility to control and
tune effects that do occur in 2LSs, but only in very specific situations that might be difficult to
realize and/or maintain experimentally—the perfect mirror effect alluded to above being a case
in point [23–25].

The stationary scattering properties of single- and two-photon plane-wave states in 1D
waveguides with linearized dispersion relations and embedded driven and undriven 3LS have
been analyzed recently [26–29]. Specifically, EIT for single photons and single atoms has been
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described [27, 28], a proposal for a single-photon transistor has been formulated [27], and 3LS-
mediated photon-bunching effects [28, 29] similar to the 2LS case [7, 8] have been found.

In this work, we give a detailed analysis of the scattering properties and dynamics of
single-photon pulses that propagate in 1D waveguides with arbitrary (i.e. nonlinear) dispersion
relations and interact with a single driven or undriven embedded 3LS. Specifically, we carry out
analytical calculations for single-photon plane-wave states in the stationary regime and perform
time-dependent simulations for single-photon pulses. The paper is organized as follows. We
start with a description of the fundamentals in section 2. This is followed by sections 3 and 4,
where we present the results of our work on undriven and driven V- and 3-3LS, respectively.
Specifically, we will see how a long-time occupation of upper atomic states can be reached, we
consider the role of dark states in the undriven systems and how the relative phase of the atomic
states can influence the single-photon scattering properties. In all these cases, we focus on the
differences between the results of stationary plane-wave calculations and dynamical pulse–state
simulations. In addition, we examine effects that result from the, in general, nonlinear dispersion
relation of the waveguiding system. In section 5, we summarize our work and provide a brief
outlook.

2. Fundamentals

We start by introducing the Hamiltonian of the above-described class of systems. Similar to
other works [7–15, 27, 28], the Hamiltonian Ĥ consists of three parts:

Ĥ = Ĥ W + Ĥ A + Ĥ I. (1)

Here, Ĥ W represents a 1D waveguide for which we assume a tight-binding model that describes
the quantized modes of the waveguide on an equidistant real-space lattice (lattice spacing a = 1)
with nearest neighbor coupling J (h̄ = 1):

Ĥ W =

∑
x

ω0 â†
x âx − J

∑
x

(
â†

x âx+1 + â†
x+1âx

)
. (2)

The operators â†
x and âx denote the bosonic creation and annihilation operators for photons

at site x of the waveguide. The first term of Hamiltonian (2) represents the photonic on-site
energy ω0, i.e. the eigenenergy of an uncoupled site. The second term describes the hopping
between neighboring sites with strength J . Such a model features one band with a cosine-shaped
dispersion relation εk = ω0 − 2J cos(k) that is generic in the sense that it exhibits approximately
linear dispersion near the center of the band and features band edges (cut-off frequencies)
where the dispersion relation is approximately quadratic and a slow-light regime is formed.
Both features are characteristic of a number of physical systems such as mono-mode fibers,
ridge waveguides and coupled-resonator as well as photonic crystal waveguides. The latter
two systems correspond particularly well to a tight-binding model. Clearly, systems with more
than one band and different dispersion relations can be modeled by going beyond the nearest-
neighbor interaction. For instance, in the case of photonic crystals this is facilitated by a Wannier
function approach [30]. Such models allow for the quantitative descriptions of realistic systems
via the same numerical methods that we use below, but such models considerably complicate
the analytical treatment without changing the qualitative features. At this point, we would like to
note that several of the works mentioned above [7, 8, 11–13, 27, 28] utilize linearized dispersion
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Figure 1. The V-system consists of the ground state |2〉 and the two upper states
|1〉 and |3〉. The transition energy between |2〉 and |3〉 is detuned by δ with respect
to the transition energy between |2〉 and |1〉, denoted by �21. The waveguide
mode couples from site x0 to the two atomic transitions with the strengths V1

and V3. The initial single-photon state is a Gaussian wave packet with width s,
carrier wavenumber k0 and is centered around xc.

relations, which are extended to infinity, i.e. the physics associated with slow-light regimes, band
edges and band gaps has not been discussed in these works.

States of natural atoms have well-defined parities, and radiative dipole transitions are only
allowed between states of different parity. Therefore, exactly one of the three transitions of a
3LS is dipole-forbidden. Consequently, one distinguishes between three configurations, the so-
called V-, 3- and ladder configurations. In the V-configuration, a single ground-state dipole
couples to two excited states, which themselves do not couple (see figure 1). Conversely,
in the 3-configuration, two energetically lower lying states dipole couple to one common
excited state (see figure 4). In the ladder-configuration, a ground-state dipole couples to an
energetically intermediate state that in turn dipole couples to an energetically higher-lying state.
The corresponding Hamiltonians Ĥ A will be specified in the respective subsections that deal
with driven and undriven 3LS. In the context of single-photon transport the ladder-configuration
is considerably less important, since in the undriven case and in the single excitation regime
(see below, equation (4)) the highest level is irrelevant and the physics is the same as for a 2LS
consisting of the two lower states of the ladder system. The driven cases of ladder systems are
equivalent to the driven V- and 3-systems. Therefore, we will, in the following, not consider
the ladder system.

As a result, the Hamiltonians Ĥ I, which describe the interaction of the waveguide modes
with the (yet to be specified) 3LS are of the form

Ĥ I =

∑
l = α,β

Vl

(
|l↑〉〈l↓| âx0 + h.c.

)
. (3)

The sum in (3) runs over the two dipole-allowed transitions denoted by α and β. The states
|l↓〉 and |l↑〉 represent the lower and upper states of the transition l, respectively. The coupling
strengths to the waveguide modes are given by Vl . For simplicity, we assume that the coupling
constants are independent of the wavenumber k, so that we obtain a local coupling of the 3LS
to a single waveguide site x0 (cf the above discussion regarding the use of a tight-binding model
for the waveguide).
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The full Hamiltonian (1) commutes with the total number of excitations

Ĉ =

∑
x

â†
x âx +

∑
γ↑

|γ↑〉〈γ↑|. (4)

As a result, the Hilbert space associated with the system waveguide+3LS may be decomposed
into subspaces of conserved excitation number. In turn, this facilitates the utilization of exact
numerics as described below.

The second sum in (4) runs over all upper states |γ↑〉 of the impurity. In this work, we
restrict ourselves to the transport of single photons through the waveguide+3LS system, so that
〈Ĉ(t)〉 = 1 ∀ t . The most general single excitation state |8(t)〉 of our system reads

|8(t)〉 =

∑
x, ξ↓

gx, ξ↓
(t) â†

x |0, ξ↓〉 +
∑
γ↑

sγ↑
(t) |0, γ↑〉, (5)

where the first sum runs over all waveguide sites x and over the lower state(s) |ξ↓〉 of the 3LS.
We denote the corresponding photon occupation amplitudes of the waveguide sites x by gx, ξ↓

(t).
Further, we denote with sγ↑

(t) the occupation amplitude(s) of the upper impurity state(s) |γ↑〉

and there is no photon in the waveguide.
For dynamical transport calculations, we evolve an initial quantum state |9(t0)〉 in time

according to

|9(t)〉 = exp(−i Ĥ (t − t0))|9(t0)〉. (6)

In particular, we utilize a Krylov-subspace-based operator-exponential techniques [10, 14, 15].
In the following, we will exclusively work with initial states without the excitation of the upper
atomic level(s), i.e. sγ↑

(t0) = 0 in (5). For the initial photon amplitudes gx, ξ↓
(t0) we employ a

normalized Gaussian wave packet in one or two of the subspaces associated with the lower
state(s) of the impurity. Observables for transmittance, reflectance and occupation of the atomic
states are defined in analogy to earlier works [10, 14, 15].

3. Single-photon transport through undriven three-level system

We investigate the scattering of single photons by a 3LS that is coupled to a waveguide. To
this end, we employ analytical calculations for stationary situations involving plane wave states
(cf [9, 27]) and compare with numerical analyses that focus on the dynamical features of the
systems (using the time-evolution technique described above, cf [10, 14, 15]).

3.1. Long-time occupation in an undriven V-system

The atomic Hamiltonian Ĥ A and the interaction Hamiltonian Ĥ I for an undriven V-system read,
respectively, as

Ĥ A = (E2 + �21) |1〉〈1| + E2 |2〉〈2| + (E2 + �21 + δ) |3〉〈3|, (7)

Ĥ I =

∑
i=1,3

Vi

(
|i〉〈2|âx0 + h.c.

)
. (8)

Consequently, a general single-excitation state |8(t)〉 and the initial state |9(t0)〉 for an
incoming single photon read, respectively, as

|8(t)〉 =

∑
x

gx(t) â†
x |0, 2〉 + s1(t) |0, 1〉 + s3(t) |0, 3〉, (9)
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Figure 2. Occupation of the upper atomic states |1〉 (panel (a)) and |3〉 (panel (b))
for a simulation of a single-photon pulse of the form (10). The occupation is
shown as a function of the simulation time t and the detuning δ of the two atomic
transitions. Note the long-time occupation for small values of the detuning δ.
The parameters of the simulation are V1 = V3 = J , �21 = εk0 , ω0 = 0, k0 = π/2,
s = 9, xc = 400, and the waveguide has an extent of 999 real-space sites.

|9(t0)〉 =

∑
x

φk0,xc,s
x â†

x |0, 2〉. (10)

Here, the Gaussian wave packet φk0,xc,s
x ∝ exp(−(x − xc)

2/(2s2) + i k0x) of width s and which
is centered at xc is launched with wave vector k0 (corresponding to the photon energy εk0; see
also figure 1).

In figure 2, we display the occupation of the two upper atomic levels as a function of the
simulation time t and the detuning δ, when the atomic transition is on resonance, i.e. �21 = εk0 .
In these plots, pronounced tails occur and this indicates a long-time occupation of the upper
levels. Numerical diagonalizations have revealed that this effect arises from the excitation of
almost dark states, i.e. states with a high occupation of the upper atomic states and a very low
but non-vanishing occupation of the waveguide. Such states are eigenstates of systems whose
detuning δ is small but non-zero and where the carrier wavenumber’s energy is on resonance
with one of the two transitions. These characteristics can be understood as follows.

Inserting (9) into the time-dependent Schrödinger equation leads to the following equations
of motion (we set E2 = 0 and x0 = 0 for simplicity):

i
∂

∂t
gx(t) = −J (gx−1(t) + gx+1(t)) + ω0 gx(t) + V1 s1(t) δx0 + V3 s3(t) δx0, (11a)

i
∂

∂t
s1(t)= �21 s1(t) + V1 g0(t) , (11b)

i
∂

∂t
s3(t)= (�21 + δ) s3(t) + V3 g0(t) . (11c)

Almost dark states correspond to the situation where the emission of the atom into the waveguide
is slow. We assume no initial occupation in the waveguide, i.e.

gx(t0) = 0 ∀ x, (12)
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and a slowly varying amplitude g0, i.e. [|∂/∂t g0(t)|]t=t0� |J |. With the help of (11a), it then
follows that

s1(t0) ≈ −
V3

V1
s3(t0) . (13)

Inserting (13) into (11b) finally leads to

�21 s3(t0) ≈

[
i
∂

∂t
s3(t)

]
t=t0

= (�21 + δ) s3(t0) , (14a)

⇒ �21 ≈ (�21 + δ) ⇒ |δ| � |�21|. (14b)

In other words, the emission of radiation from the atom into the waveguide is slow if the
amplitudes of the upper atomic states follow (13) and if the detuning δ is almost vanishing.
The first condition depends on the amplitudes and the relative phase of the upper atomic levels.
The second condition is exactly the one mentioned above for which these almost dark states
occur.

In the above argumentation, we did not allude to the amplitudes gx 6=x0(t). If the atom
radiates into the waveguide, the sites at x 6= x0 transport the radiation away from the atom.
Effectively, these sites form a loss channel of a cavity (site x0) to which the atom is coupled. In
this picture, a similar long-time occupation effect should occur in a poor man’s model of a single
3LS interacting with a single mode of a leaky cavity. In this model, losses can be modeled by a
negative imaginary part of the cavity’s on-site energy. In the equations of motions (11a)–(11c)
the waveguide part can then be formally replaced by

−J (gx−1(t) + gx+1(t)) + ω0 gx(t) → (Re(ωc) + iIm(ωc)) gc(t) , (15)

and we arrive at the poor man’s model. Here, ωc denotes the cavity’s on-site energy. A general
single-excitation state |2(t)〉 of this system is of the form

|2(t)〉 = gc(t) â†
c|0, 2〉 + sc,1(t) |0, 1〉 + sc,3(t) |0, 3〉. (16)

In figure 3, we display the occupation of the upper atomic levels in our poor man’s model
for the same parameter ranges as in figure 2. In these simulations, the single excitation
initially occupied the cavity mode and the atom was in its ground state, i.e. gc(t0) = 1 and
sc,1(t0) = sc,3(t0) = 0 in (16). As expected, the characteristic tails associated with long-time
occupations can be recovered qualitatively by our effective poor man’s model system.

3.2. Non-stationary dark states and phase-dependent scattering by an undriven 3-system

The Hamiltonian Ĥ A for the free and undriven 3-system reads

Ĥ A = E1|1〉〈1| + (E1 + �12) |2〉〈2| + (E1 − δ) |3〉〈3|, (17)

while the interaction Ĥ I of the waveguide modes with the atom is modeled by

Ĥ I =

∑
i=1,3

Vi(|2〉〈i |âx0 + h.c.), (18)

and a general single-excitation state in this system is of the form

|8(t)〉 =

∑
x

(
g1,x(t) â†

x |0, 1〉 + g3,x(t) â†
x |0, 3〉

)
+ s2(t) |0, 2〉. (19)
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Figure 3. Occupation of the upper atomic states |1〉 (panel (a)) and |3〉 (panel (b))
for the simulation of a V-type three-level atom, which is coupled to a leaky
single-mode cavity in the regime of a single excitation. The long-time occupation
can occur in such systems, too. See text for further details. The parameters of the
simulations are V1 = V3 = 2 Re(ωc), E1 = Re(ωc), Im(ωc) = −2.

The undriven 3-system thus exhibits two energetically lower states, |1〉 and |2〉. From each of
these states the absorption of photons in conjunction with the transition to a (common) higher
state |2〉 is possible. The details depend on the initial state of the atom and we consider here
two possibilities. First, we look at the one-channel case (OCC), whereby the atom is initially in
one of the lower states, e.g. without the loss of generality, in state |1〉. For this OCC, we use the
initial state

|9OCC(t0)〉 =

∑
x

φk0,xc,s
x â†

x |0, 1〉. (20)

The second class of initial states we consider here is that of a coherent superposition of the two
lower atomic states—the two-channel case (TCC). The corresponding initial states read

|9TCC(t0)〉 =

∑
x

φk0,xc,s
x

(
â†

x |0, 1〉 + ei1ϕâ†
x |0, 3〉

)
. (21)

Here, the relative phase exp(i1ϕ) between the two lower atomic states is a new and, as we
shall show below, important parameter. The setup of the corresponding simulations is shown in
figure 4.

As usual, inserting (19) into the time-dependent Schrödinger equation leads to the
equations of motion for this system (E1 = 0, x0 = 0):

i
∂

∂t
g1,x(t)= −J

(
g1,x−1(t) + g1,x+1(t)

)
+ (E1 + ω0) g1,x(t) + V1 s2(t) δx0, (22a)

i
∂

∂t
g3,x(t)= −J

(
g3,x−1(t) + g3,x+1(t)

)
+ (E1 − δ + ω0) g3,x(t) + V3 s2(t) δx0, (22b)

i
∂

∂t
s2(t)= (E1 + �12) s2(t) + V1 g1,0 + V3 g3,0(t) . (22c)

With the help of (22a) and (22b) we can interpret the two cases OCC and TCC as a photonic
excitation in our waveguide, while the 3-atom is in one of its lower states. We will denote this
as the photon being in the channel i , where i indicates the lower atomic state |i〉.
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Figure 4. Illustration of waveguiding systems with a side coupled 3-system. The
notations are essentially the same as in figure 1. The only new parameter here is
the relative phase 1ϕ between the two lower atomic states.

3.2.1. Non-stationary dark states. In a dark state, the upper atomic state |2〉 will always be
unoccupied, i.e. ∂

∂t s2(t) = s2(t) = 0 ∀ t . With the help of (22c), this leads to g1,0 = −V3/V1 g3,0

and, by employing (22b) and (22a), we obtain

δ g1,0(t) = −J

(
g1,1(t) + g1,−1(t) +

V3

V1

(
g3,1(t) + g3,−1(t)

))
, (23a)

δ g3,0(t) = −J

(
V1

V3

(
g1,1(t) + g1,−1(t)

)
+ g3,1(t) + g3,−1(t)

)
. (23b)

As a result, different types of dark states can exist in this system, not only stationary ones.
Assuming zero detuning, i.e. δ = 0, we infer

g1,1(t) = −
V3

V1
g3,1(t) , (24a)

g1,−1(t) = −
V3

V1
g3,−1(t) , (24b)

and with the help of (22a) and (22b), we have

g1,i(t) = −
V3

V1
g3,i(t) . (25)

If the coupling of the waveguide to both atomic transitions is equal, i.e. V1 = V3 and 1ϕ = π ,
the system is in a non-stationary dark state. An example for this case is shown in figure 5.

3.2.2. Phase dependence in the degenerate case. The above raises questions regarding the
properties of stationary scattering solutions. As usual, we employ a time-harmonic ansatz
for (22a)–(22c)

s2(t) = exp (−iEkt) v3, gi,x(t) = exp (−iEkt) w j,x , j ∈ {1, 3} , (26)

where Ek represents the eigenenergy of a stationary solution. The amplitude w j,x describes an
excitation of the waveguide site x in channel j , i.e. in the subspace of the atomic state | j〉.
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Figure 5. Occupation of the waveguide sites as a function of time (panel (a)) and
a snapshot (panel (b)) when the photon has completely passed the waveguide
site to which the three-level quantum impurity is side coupled to (indicated
by a dashed line). The figure displays only one of the two channels since the
occupation is identical in both. The wave packet is transmitted completely, i.e.
the system is in a non-stationary dark state, although the photon energy εk0 is
on resonance with the transition energy �12. The parameters of the simulation
are 1ϕ = π , V1 = V3 = J , �12 = εk0 , δ = 0, k0 = π/2, s = 7, xc = 65, and the
waveguide consists of 249 real-space sites.

To arrive at the stationary scattering solutions for a TCC, we make the ansatz

w1,x =


1

√
2

eik11x + r11 e−ik11x + t13 e−ik13x , for j < 0,

t11 eik11x + t13 eik13x , for j > 0,

(27a)

w3,x =


ei1ϕ

√
2

eik33x + r33 e−ik33x + t31 e−ik31x , for j < 0,

t33 eik33x + t31 eik31x , for j > 0.

(27b)

The physical meaning of the above equations is the following: in both channels, there
are left-moving plane waves with wavenumbers k11 and k33, respectively, that are incident
upon the atom. Although these plane waves are parts of the wavefunction of the same photon,
their stationary scattering process can be treated as a superposition of two independent OCCs.
Specifically, the incoming plane wave in channel 1, i.e. 1/

√
2 eik11x , is scattered by the 3-system

into a reflected and a transmitted part in channel 1 (r11 e−ik11x and t11 eik11x in (27a)) and into a
reflected and a transmitted part in channel 3 (t31 eik31x and t31 e−ik31x in (27b)). By the same
token, the incoming plane wave in channel 3, i.e. ei1ϕ/

√
2 eik33x , is similarly scattered into both

channels (channel 3: r33 e−ik33x and t33 eik33x in (27b), channel 1: t13 eik13x and t13 e−ik13x in (27a)).
The wavenumbers in each of the distinct scattering process above are related via

cos (k31) = cos (k11) −
δ

2J
, (28a)

cos (k13) = cos (k33) +
δ

2J
, (28b)
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due to the conservation of energy. Therefore, in the degenerate system with δ = 0, we have
k31 = k11 and k13 = k33. The wavenumbers k11 and k33, which correspond to the incoming
photon, are independent of each other and can be regarded as free parameters. Physically, if
their values differ, it would mean that the wave function of the photon is a superposition of
different momenta in the two atomic subspaces.

Now, we assume that before any interaction of the photon and the atom takes place, the
combined system of waveguide and atom is in a product state of waveguide modes with atomic
states. In this case, the wavenumbers that describe the incoming photon cannot be different for
the two atomic subspaces, i.e. we have

k11 = k31 = k33 = k13 = k. (29)

Under these conditions our ansatz reads

w1,x =


1

√
2

eikx + rk1 e−ikx , j < 0,

tk1 eikx , j > 0,

(30a)

w3,x =


ei1ϕ

√
2

eikx + rk3 e−ikx , j < 0,

tk3 eikx , j > 0,

(30b)

with
rk1 = r11 + t13, (31a)

tk1 = t11 + t13, (31b)

rk3 = r33 + t31, (31c)

tk3 = t33 + t31. (31d)

Inserting (30a) and (30b) together with (26) into (22a)–(22c), we obtain

rk1 =
−V1 (V1 + exp (i1ϕ)) V3)

√
2

(
V 2

1 + V 2
3 + 2iJ (�12 − εk) sin(k)

) , (32a)

tk1 =
V3 (V3 − exp (i1ϕ) V1) + 2iJ (�12 − εk) sin(k)

√
2

(
V 2

1 + V 2
3 + 2iJ (�12 − εk) sin(k)

) , (32b)

rk3 =
−V3 (V1 + exp (i1ϕ)) V3)

√
2

(
V 2

1 + V 2
3 + 2iJ (�12 − εk) sin(k)

) , (32c)

tk3 =
V1 (exp (i1ϕ) V1 − V3) + 2iJ exp (i1ϕ) (�12 − εk) sin(k)

√
2

(
V 2

1 + V 2
3 + 2iJ (�12 − εk) sin(k)

) . (32d)

The physical interpretation of these coefficients is as follows. Initially, we have a
degenerate 3-atom in an equal superposition of its lower states, i.e.

|atom〉initial =
1

√
2

(|1〉 + exp (i1ϕ) |3〉) . (33)
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Figure 6. The degenerate 3-system for TCC initial conditions: calculated
transmittance in channel 1 (panel (a)), channel 3 (panel (b)) and calculated
reflectance in both channels (panel (c)) as a function of the relative phase
1ϕ and the detuning between the photon energy εk and the transition energy
�12. In contrast to the transmittances, the reflectances in each channel are
identical for all parameters. Panels (d)–(f) show the absolute difference of the
analytical stationary solutions and the results of time-dependent simulations for
Gaussian pulses as described in figure 5. For 1ϕ = π , this difference vanishes
completely. This situation corresponds to the case of time-dependent dark states
mentioned in the text. Generally, the simulated results for the transmittances and
the reflectances differ due to the finite width in momentum space of the pulse.
The parameters of the simulation are V1 = V3 = J, �12 = 0, δ = 0, k0 = π/2,

s = 9, xc = 85 and the waveguide consists of 299 real-space sites.

Then, a single photon with wavenumber k is scattered by the atom. After the scattering, we
detect the photon as either being reflected or transmitted. In the first case, the state of the atom
after scattering is

|atom〉photon reflected = rk1|1〉 + rk3|3〉. (34)

In the second case, the state of the atom after scattering is

|atom〉photon transmitted = tk1|1〉 + tk3|3〉. (35)
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Figure 7. Illustration of the waveguiding system with a side coupled driven 3-
system. The transition between the states |3〉 and |2〉 is driven by a classical time
harmonic electric field that couples to the transition with a strength described
by the Rabi frequency �R. The frequency of the driving field is detuned to the
transition energy by a value of 1. The remaining notations are the same as those
in figures 1 and 4.

In figure 6, we display the transmittances |tki |
2 and reflectances |rki |

2 for each channel
i ∈ {1, 3} according to (32a)–(32d). Furthermore, we depict in figure 6 the absolute deviations
to the corresponding values of |tpulse,i |

2 and |rpulse,i |
2 that we have obtained from Gaussian wave

packet simulations of (21). Here, we have chosen equal coupling strengths V1 = V3 = J , so
that the reflection amplitudes (32a) and (32c) are identical. Therefore, if a reflected photon is
detected, the relative phase factor exp(i1ϕ) in (33) becomes unity. This results in an equal
superposition of the two lower atomic states which are then in phase.

As a result of the atomic superposition being in phase, figure 6 demonstrates that now a
second photon with εk = �12 would be reflected completely—and this is independent of the
energy of the first reflected photon. The atom acting as a perfect mirror is well known from
similar systems where 2LS [9] or V-systems [27] serve as quantum impurities. However, as our
above discussion demonstrates, for an undriven 3-system, this behavior can only occur in a
TCC.

If a transmitted photon is detected, figure 6 demonstrates that the resulting atomic state after
scattering strongly depends on the initial relative phase in (33). Even though both transmittances
|tik|

2 exhibit maxima, after scattering the atomic state remains in a superposition of both lower
states.

4. Single-photon transport through driven three-level system

4.1. Transmittance through a driven 3-system

The Hamiltonian of a free but driven 3-atom in the rotating-wave approximation and in a co-
rotating frame reads (cf [27] and figure 7)

Ĥ A = E1|1〉〈1| + (E1 + �12) |2〉〈2| + (E1 + �12 − 1) |3〉〈3| +
�R

2
(|3〉〈2| + |2〉〈3|) . (36)
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Here, 1 is the detuning between the driving field and the energy of the driven transition. The
Rabi frequency is denoted by �R. This Hamiltonian can be diagonalized, i.e.

Ĥ A = E1|1〉〈1| + E+|+〉〈+| + E−|−〉〈−|, (37)

with the new dressed states

|±〉 =
1

√
2�eff(�eff ∓ 1)

(�R|2〉 − (1 ∓ �eff)|3〉) , (38)

and their corresponding eigenvalues are

E± = E1 + �12 −
1

2
(1 ∓ �eff) . (39)

Further, the effective Rabi frequency is denoted by

�eff =

√
12 + �2

R. (40)

In this dressed-state basis, the interaction Hamiltonian Ĥ I = V (|1〉〈2|âx0 + h.c.) then reads as

Ĥ I =

∑
i=+,−

Vi

(
|i〉〈1|âx0 + h.c.

)
, (41)

where the new coupling strengths are

V± =
V �eff

√
2�eff(�eff ∓ 1)

. (42)

Obviously, equation (41) has the same form as (8). Thus, the side-coupled driven 3-system in
the dressed-basis representation maps onto an undriven V-system with eigenenergies E± and
coupling strengths V± depending on the detuning 1 and the Rabi frequency �eff of the driving
field (cf [27]). For a plane-wave state, the reflection coefficient r in the stationary regime is
determined by

r =
−2iV 2(1 + εk − �12)

2iV 2(1 + εk − �12) + J sin(k)(4(εk − �12)(1 + εk − �12) − �2
R)

. (43)

As calculated in [27] for a linearized dispersion relation, the reflection coefficient (43) vanishes
in the case of two-photon resonance, i.e. εk = �12 − 1, which is also the case in the present
system. In other words, this is a realization of EIT for a single photon and a single atom.

In figure 8, we depict the analytically calculated reflectance |r |
2 and a comparison to

numerical simulations that use Gaussian single-photon pulses. For the pulses, the EIT effect
is not as strong as it is in the case of a monochromatic plane wave, which again, is a result of
the non-vanishing spectral width of the pulse.

4.2. Momentum transfer in a driven V-system

Similar to the driven 3-system, the Hamiltonian of a driven V-system reads in the rotating-wave
approximation and in a co-rotating frame (cf [27] and figure 9)

Ĥ A = (E2 + �21) |1〉〈1| + E2|2〉〈2| + (E2 + 1) |3〉〈3| +
�R

2
(|3〉〈2| + |2〉〈3|) ,

= (E2 + �21) |1〉〈1| + E+|+〉〈+| + E−|−〉〈−|. (44)
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Figure 8. Analytical transmittances |r |
2 for plane-wave states with k = π/2

(panel (a)), corresponding simulated transmittances |rpulse|
2 for a Gaussian pulse

with k0 = π/2 (panel (b)), absolute difference between the simulation and the
analytical calculation (panel (c)). The full transmittance (EIT) in case of the two-
photon resonance (main diagonal in panel (a)) is not perfect in the simulation
due to the finite spectral width of the Gaussian pulse. The parameters of
the simulations are V = �R = J, �12 = εk0, s = 9, xc = 420 and the waveguide
consists of 999 real-space sites.

Figure 9. Parameters in systems with a side coupled driven 3-system. The
parameters are denoted in the same way as in figure 7.

The corresponding dressed eigenstates |+〉 and |−〉 are

|±〉 =
1

√
2�eff(�eff ± 1)

(�R|2〉 + (1 ± �eff)|3〉) , (45)

and the new eigenvalues E+ and E− read

E± = E2 +
1

2
(1 ± �eff) , (46)
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where the effective Rabi frequency �eff is identical to that of section 4.1. Consequently, the
Hamiltonian Ĥ I describing the interaction of the waveguide modes and the atom reads

Ĥ I =

∑
i=+,−

Vi(|1〉〈i |âx0 + h.c.), (47)

where the coupling strengths are

V± =
V �eff

√
2�eff(�eff ± 1)

. (48)

Equation (47) is of the same form as (18). Hence, the driven V-system is mapped to an undriven
3-system. As in section 4.1, the eigenenergies and coupling strengths depend on the detuning
1 and the Rabi frequency �R.

The fact that a driven V-system effectively behaves like an undriven 3-system implies
that we need to consider all possible initial conditions of an undriven 3-system, for instance,
OCCs or TCCs. The two lower states of the mapped driven V-system are the states |+〉 and
|−〉. In general, the initial state of the atom is a superposition of the states |+〉 and |−〉 in
turn, this superposition can be controlled and prepared experimentally by techniques such as
STIRAP [20].

In the following, we do not address the problem of the atomic state preparation and restrict
our investigation to the OCCs. We assume that the atom, without the loss of generality, is
initially in state |+〉. According to (46), the two transition energies of the mapped 3-system
read

�±1 = E1 − E± = �21 −
1

2
(1 ± �eff) . (49)

Let k+ be a wavenumber of a photon, which is absorbed in the channel of state |+〉. Then, the
wavenumber that corresponds to a photon scattered into the channel of state |−〉 is determined
by

εk−
= εk+ + �−1 − �+1. (50)

This is a consequence of energy conservation. Upon combining (50) and (49), we obtain

k− = −i ln
(
γ ±

√
γ 2 − 1

)
, (51)

where

γ = cos(k+) −
�eff

2J
. (52)

The signs in (51) distinguish between the cases where k− belongs to either a transmitted
(plus) or to a reflected wave (minus).

In figure 10, we display the dependence of k− on γ . If γ 6−1, k− is complex with a
constant real part Re(k−) = π. In this case, the radiation emitted into the channel of state |3〉

cannot propagate in the waveguide, gets reabsorbed and emitted into the channel of state |1〉.
Hence, the atom will be in state |+〉 after scattering. This effect can be enhanced to an extreme
by increasing the effective Rabi frequency �eff to �eff > 4J . In this case, the atom will stay
in state |+〉 after scattering independent of the wavenumber k+ of the incoming photon. This
effect is attributed to the existence of band edges and band gaps in the dispersion relation of the
waveguide and cannot occur in waveguiding systems whose spectrum is unbound.
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Figure 10. Real part (panel (a)) and imaginary part (panel (b)) of the
wavenumber k− as a function of the parameter γ in (51). The red lines correspond
to right moving and, therefore, transmitted waves, whereas the blue lines
correspond to left moving and, therefore, reflected waves.

Figure 11. Occupation of momentum space in channel ‘−’ after scattering by
varying the detuning 1 (panel (a)) and the Rabi frequency �R (panel (b))
of a time-domain simulation for a single-photon pulse and the corresponding
wavenumbers calculated from (51) (white dashed lines). Note the cut off due
to the finite bandwidth of the waveguide (red dashed lines). The parameters
of the simulation are (a) �R = V = J , �21 = εk0 , k0 = π/2, s = 9, xc = 420
and (b) 1 = 0, V = J , �21 = εk0 , k0 = π/2, s = 9, xc = 420 and the waveguide
consists of 999 real-space sites.

In figure 11, we display the photon’s momentum distribution in the channel of state |−〉,
i.e. |〈0, −|âk|9pulse〉|

2, as a function of 1 and �R, respectively. The state |9pulse〉 is a Gaussian
pulse of the form (20). The ladder operators âk in momentum space are related to those in real
space via a lattice Fourier transform [10]. We clearly observe the region where the emission into
the channel of state |−〉 is forbidden—as noted above, this is a result of the finite bandwidth of
the waveguide’s dispersion relation.

5. Conclusion

In conclusion, we have investigated the single-photon transport properties in a 1D waveguide
with an embedded three-level quantum impurity. In such systems, the wavepacket dynamics in

New Journal of Physics 15 (2013) 083019 (http://www.njp.org/)

http://www.njp.org/


18

the case of the V-type quantum impurity exhibits the striking feature of long-time occupations
of the upper atomic levels. We have shown that this originates in the excitation of almost dark
states in systems where the upper atomic levels are slightly detuned. Further, we have shown that
this effect also occurs in a simplified poor man’s model, where we have replaced the waveguide
by a leaky cavity. Hence, this effect should be independent of the actual kind of waveguide the
V-type quantum impurity is embedded in. In turn, this effect might, therefore, find applications
in the field of all-optical buffers.

In contrast to a V-atom, a 3-type three-level quantum impurity embedded in a waveguide
supports non-stationary dark states. Furthermore, in the case of TCC and the impurity being
in an equal superposition of its degenerate lower states, we have shown that the scattering
characteristics depend strongly on the relative phase between these lower states. This may be
exploited to characterize the fidelity of preparing a specific state of a 3LS with a prescribed
relative phase.

For driven 3LS, we have found that a transmittance of unity due to an EIT of single photons
cannot be fully realized by a single-photon pulse because of its finite spectral width. We have
further shown how the finite bandwidth of a waveguide’s dispersion relation influences the
scattering properties of driven systems and how a change in the driving field’s parameters affects
both the quantum impurity’s and the photon’s states after scattering.
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