
            

PAPER • OPEN ACCESS

Calorimetric measurement of work in a quantum
system
To cite this article: J P Pekola et al 2013 New J. Phys. 15 115006

 

View the article online for updates and enhancements.

You may also like
ALMA Spatially Resolved Dense Molecular
Gas Survey of Nearby Ultraluminous
Infrared Galaxies
Masatoshi Imanishi,  , Kouichiro Nakanishi
et al.

-

Deeply Buried Nuclei in the Infrared-
luminous Galaxies NGC 4418 and Arp
220. II. Line Forests at  = 1.4–0.4 mm and
Circumnuclear Gas Observed with ALMA
Kazushi Sakamoto, Sergio Martín, David
J. Wilner et al.

-

The Molecular Interstellar Medium in the
Super Star Clusters of the Starburst NGC
253
Nico Krieger, Alberto D. Bolatto, Adam K.
Leroy et al.

-

This content was downloaded from IP address 141.52.248.4 on 06/04/2022 at 09:33

https://doi.org/10.1088/1367-2630/15/11/115006
/article/10.3847/1538-4365/ab05b9
/article/10.3847/1538-4365/ab05b9
/article/10.3847/1538-4365/ab05b9
/article/10.3847/1538-4357/ac29bf
/article/10.3847/1538-4357/ac29bf
/article/10.3847/1538-4357/ac29bf
/article/10.3847/1538-4357/ac29bf
/article/10.3847/1538-4357/ac29bf
/article/10.3847/1538-4357/ac29bf
/article/10.3847/1538-4357/ac29bf
/article/10.3847/1538-4357/ab9c23
/article/10.3847/1538-4357/ab9c23
/article/10.3847/1538-4357/ab9c23


Calorimetric measurement of work
in a quantum system

J P Pekola1,5, P Solinas1,2, A Shnirman3 and D V Averin4

1 Low Temperature Laboratory (OVLL), Aalto University School of Science,
PO Box 13500, FI-00076 Aalto, Finland
2 COMP Centre of Excellence, Department of Applied Physics, Aalto
University School of Science, PO Box 11000, FI-00076 Aalto, Finland
3 Institut für Theorie der Kondensierten Materie and DFG Center for Functional
Nanostructures (CFN), Karlsruhe Institute of Technology, D-76128 Karlsruhe,
Germany
4 Department of Physics and Astronomy, Stony Brook University, SUNY,
Stony Brook, NY 11794-3800, USA
E-mail: jukka.pekola@aalto.fi

New Journal of Physics 15 (2013) 115006 (10pp)
Received 12 May 2013
Published 12 November 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/11/115006

Abstract. We propose a calorimetric measurement of work in a quantum
system. As a physical realization, we consider a superconducting two-level
system, a Cooper-pair box, driven by a gate voltage past an avoided level
crossing at charge degeneracy. We demonstrate that, with realistic experimental
parameters, the temperature measurement of a resistor (environment) can detect
single microwave photons emitted or absorbed by the two-level system. This
method would thus be a way to measure the full distribution of work in repeated
measurements, and to assess the quantum fluctuation relations.

To define the work performed on a driven quantum system in a physically sound way has turned
out to be a truly non-trivial task, except in some special cases of limited applicability [1–12].
This topic has been the focus of intense research recently in the attempts to generalize
the classical fluctuation relations [13–18] into the quantum regime. Here we propose and
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demonstrate that a calorimetric measurement gives both a theoretical and experimental tool to
test the Jarzynski equality (JE) and other fluctuation relations in an open quantum system, and
to analyze the distribution of dissipation in them, based on the very principle of conservation of
energy. We focus on an experimentally feasible two-level system, a superconducting Cooper-
pair box (CPB) [19–21] subject to Landau–Zener (LZ) interband transitions [22–24]. Because
of the small heat capacity and weak relaxation to the phonon bath, the calorimetric measurement
on the electron gas (resistor) turns out to be a very feasible experimental method.

Consider the basic setting for non-equilibrium fluctuation relations [14, 15]: the system
is coupled to a bath and is initially in thermal equilibrium with it. Thereafter it is driven
by a control field in a non-equilibrium fashion. We are interested in the distribution of work
performed on the system in repeated experiments with identical driving protocol among the
realizations. In order to secure thermal equilibrium in the next realization, the interval between
the repetitions is ideally infinitely long. We mainly consider the protocols where the drive signal
returns to its initial position or to an equivalent one with equal free-energy at the end. Our
main statement in this respect is then that, due to the energy conservation, the work W done
on the system under these conditions is equal to the heat Q dissipated to the environment
in the time interval from the beginning of the driving till the end of the equilibration period.
With this premise we can avoid the formidable task of analyzing the work itself during
the quantum evolution, characterized by difficult-to-analyze time-orderings of the operators
involved. The calorimetric principle can, at least in principle, be extended to more general
protocols by bringing the system back to the initial position adiabatically at the end of the
protocol.

Before going into the detailed analysis of the calorimetric method, let us first define the
quantum system and present results in certain limiting cases for the work distribution, which
can be obtained by known methods. We focus on a quantum two-level system, shown in figure 1
and characterized by an avoided level crossing under the operation of the control parameter q.
For simplicity, we consider a symmetric set-up, where the maximum energy spacing between
the ground (g) and the excited (e) level is Emax in the beginning and the end of the drive, and
Emin at the minimum in the middle. We normalize q such that it obtains the values ∓1/2 at
the beginning and the end of the drive, respectively, and assumes a value q = 0 at the avoided
crossing. Suppose for the basic illustration that the system evolves in a unitary way from the
initial state: this represents very weak coupling to the environment. In other words, the system
is initially thermalized by coupling it to a bath with inverse temperature β, and decoupled from
the bath for the duration of the driven evolution. This corresponds to a common situation for
considering the fluctuation relations [10, 11, 14]. The value of work in each realization is then
determined by the internal energy stored in the system during the operation. There are two
possibilities: the system makes an LZ transition around q = 0 between the two states with
probability PLZ, or it does not make the transition with probability 1 − PLZ. If the system makes
the transition, work ±Emax is done on the system (+ for g → e transition, and − for the e → g
transition) by the end of the driving, otherwise the performed work vanishes. The distribution
of work W can then be written as

p(W ) = (1 − ρ0
gg)PLZ δ(W + Emax) + (1 − PLZ) δ(W ) + ρ0

gg PLZ δ(W − Emax) (1)

in agreement with the results in [2, 9]. Here δ(E) refers to the Dirac delta function, and
ρ0

gg = (1 + e−βEmax)−1 is the initial thermal population in the ground state. We may also state
that the same distribution as for work applies for heat in the sense discussed above, since after
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Figure 1. A two-level system with avoided crossing between the ground (g) and
the excited (e) state. In (a) the control parameter q is swept from left to right and
the system is initially in the ground state and evolves either in the ground state
(probability 1 − PLZ) or makes an LZ transition (probability PLZ). (b) Examples
of the distribution of work in repeated sweeps under the conditions that the
system starts in thermal equilibrium at various temperatures, and it is not coupled
to the environment during the evolution. The distributions correspond to (1) with
artificial broadening of the peaks, and for PLZ = 0.3, and βEmax = 0.1, 0.3 and
1.0 (red, blue and black curves, respectively). The peak at W = −Emax arises
from e to g LZ transitions, the peak at W = 0 is for adiabatic evolution, and that
for W = +Emax arises from g to e transitions, as indicated by the diagrams within
the (b) panel.

an infinitely long time, for even weak coupling, the system has relaxed back to the thermal
equilibrium state by exchanging energy with the environment. Examples of work distributions
(with broadening) are shown in figure 1(b) at a few bath temperatures. As for quantum systems
evolving unitarily from a thermal state, the JE holds naturally for the two-level system. Indeed
we see immediately that

〈e−βW
〉 =

∫
∞

−∞

dW p(W ) e−βW
= 1 (2)

for the distribution of (1). Here the brackets 〈·〉 refer to averaging over the experimental
realizations. Equations (1) and (2) simply confirm the earlier understanding of JE in a closed
quantum system. The true challenge, which can be addressed by the here-proposed calorimetric
detection, is, however, the measurement of work in an open quantum system coupled to the
environment also during the driving period.
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Figure 2. Numerical results of the distribution of work in a CPB. The circuit
is shown in the inset of (b). In (a) we present the actual distribution p(W ).
The parameters of the system are EJ/kB = 0.1 K, EC/kB = 1 K, λ = 0.3, bath
temperature (kBβ)−1

= 0.2 K, τ = 1 × 10−9 s and R/RQ = 1/3, 1, 10/3, 10.
Each distribution is based on 9 × 107 repetitions. In (b) we show the
corresponding cumulative distributions 5(W ) =

∫ W
−∞

p(W ′) dW ′ with the same
coloring of the lines as in (a).

Although our proposal and arguments are quite general, as will be discussed below, we
next specify a particular physical system, a CPB, where concrete results about the distribution of
work, and a description and analysis of the calorimetric measurement are immediately possible
and can be implemented experimentally. The CPB [19–21] consists of a superconducting island
connected to a superconducting lead by a Josephson tunnel junction. The system is described
by the circuit scheme in the inset of figure 2 and it is characterized by a voltage source
Vg, coupling gate capacitance Cg, a Josephson junction with energy EJ and capacitance CJ.
We denote C6 ≡ Cg + CJ. Resistor R forms the dissipative environment of the box. In the
regime ε ≡ EJ/(2EC) � 1, where EC = 2 e2/C6 is the charging energy of the box, we can
treat the CPB as a two-level quantum system [21]. Denoting with |0〉 and |1〉 the states with
zero and one excess Cooper-pairs on the island, respectively, the Hamiltonian of the system
reads

Ĥ = −ECq(|1〉〈1| − |0〉〈0|) −
EJ

2
(|1〉〈0| + |0〉〈1|), (3)

where q = CgVg/(2e) is the normalized gate voltage. We assume a linear gate ramp q(t) =

−1/2 + t/τ over a period τ = 1/q̇ starting at t = 0, when the state |0〉 is the ground state of
the CPB. The energy gap separating the ground and the excited state of the system is given
by 1E = 2EC

√
q2 + ε2. Thus the system passes a minimum energy gap Emin = EJ at q = 0,

see figure 1(a), where it makes a transition with the probability PLZ = exp(−
π E2

J τ

4h̄EC
) according

to the standard LZ model [22–24]. The value of the energy gap at the ends of the trajectory is
Emax = EC

√
1 + (EJ/EC)2 ' EC.
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We proceed further by applying the calorimetric principle to an open driven two-level
system, the main example being a CPB. Full description of the statistics of the work done and
the heat generated by the CPB under the driven evolution with LZ transitions in the dissipative
regime is beyond the focus of the present work. We restrict the discussion to the regime when
energies on the order of the minimum gap EJ or smaller can be neglected. In this approximation,
dynamics of the two-level system can be described by the master equation for probabilities p0

and p1 for the system to be in the charge states |0〉 and |1〉:

ṗ0 = 0− p1 − 0+ p0, ṗ1 = − ṗ0 (4)

with the rates of transitions between these states given by

0±(E) =
π

2h̄
E2

JP(±E), (5)

where E = 2ECq is the energy dissipated to or absorbed from the environment (resistor) in the
+ (0 → 1) or − (1 → 0) transition, and

P(E) =
1

2π h̄

∫
dt exp

(
J (t) +

i

h̄
Et

)
(6)

is the corresponding probability density of the system to emit energy E to the environment [25].
The standard correlation function in (6) is given by

J (t) =
4

π

∫
∞

0

dω

ω

<eZ t(ω)

RQ

{
coth

(
1

2
βh̄ω

)
[cos(ωt) − 1] − i sin(ωt)

}
. (7)

Here, RQ ≡ h̄/e2 and the relevant impedance of the CPB reads

<eZ t(ω) =
Reff

1 + (ReffCeffω)2
, (8)

where Reff = λ2 R, Ceff = CJC6/Cg and λ ≡ Cg/C6 is the coupling parameter. This master-
equation-based approach to the description of the system dynamics can be justified most directly
in the ‘incoherent’ regime, when the broadening of the energy levels due to the coupling to
environment is larger than EJ. However, as discussed below, it also quantitatively reproduces
main results for the coherent LZ dynamics.

As an illustration of this, we consider first the case of vanishing temperature T . In this case,
the system dynamics reduces to the transitions out of the state |0〉 only, and equation (4) can be
solved for the probability p0 as follows:

p0(t) = exp

{
−

π E2
J

2h̄

∫ t

τ/2
dt ′P(E(t ′))

}
, t > τ/2 (9)

and p0 = 1 for t < τ/2. Using the normalization condition satisfied by P(E) (6),
∫

dEP(E) =

1, and taking into account that at vanishing temperature, P(E) = 0 for E < 0, one can
immediately see from equation (9) that in the situation of indefinitely increasing energy
difference E between the states |0〉 and |1〉, the LZ probability, i.e. the probability p0(t)|t→∞ to
stay in the state |0〉 at large times, is independent of the coupling to environment:

p0(t)|t→∞ = exp

{
−ξ

∫
∞

0
dEP(E)

}
= e−ξ

= PLZ, ξ ≡
π E2

J

4h̄q̇ EC
.

Such independence of the zero-temperature LZ probability of the dissipation strength is
one of the main known properties of the dissipative LZ dynamics [26–29], and is reproduced
here from very elementary considerations.
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In the evolution protocol relevant for the CPB, when the energy difference is limited by the
maximum EC, the final probability P0 = p0(t = τ) to be in the state |0〉 at the end of each ramp
follows from equation (9) as

P0 = exp

{
−ξ

∫ EC

0
dEP(E)

}
. (10)

Equations (9) and (10) make it possible to find immediately the zero-temperature distributions
of work W done on the CPB by the changing gate voltage and the heat Q released into the
resistor in each cycle. Since at T = 0 the evolution of the CPB starts from the definite charge
state |0〉 and, after complete relaxation, comes back to the same state, the work W and the heat
Q coincide not only on average but for each cycle. This means that the distributions of heat and
work coincide, and the work distribution p(W ) is given by the probability that the transition
from state |0〉 to state |1〉 happens when the energy difference between these states is W :

p(W ) = ξP(W ) exp

{
−ξ

∫ W

0
dEP(E)

}
+ P0δ(W − EC). (11)

Some of the qualitative features of this expression, e.g. existence of the δ-peak at W = EC

with the intensity dependent on the dissipation strength, and a broader peak in the distribution
at W = 0 associated with the known behavior of the energy-loss distribution P(E) at small
energies, P(E)∝Eα, with α = −1 + 4Reff/π RQ (see e.g. [25]), agree with the numerical results
presented in figure 2 even with non-vanishing temperatures. The δ-peak at W = 0 that can be
seen in this figure is the trace of the δ-peak at W = 0 in the dissipation-free distribution (1).

Another case where our master-equation approach to the LZ transitions allows a simple
evaluation of the distribution of work is the limit of weak dissipation, Reff � RQ , and relatively
large temperatures T � EJ. For small Reff (and not too small coupling parameter λ) the cut-off
frequency ωC = 1/ReffCeff of the impedance (8) is large, ωC � EC/h̄. In this case, the tunneling
rates 0± in the relevant energy range up to EC can be calculated from equations (5)–(8) as

0+(E) =
2e2 Reff E2

J

h̄2

1

E2 + γ 2

E

1 − e−βE
, γ =

4e2 ReffT

h̄
(12)

with 0−(E) related to 0+(E) by the detailed balance condition, 0−(E) = e−βE0+(E), that
can be seen in general from equations (5)–(7). Qualitatively, the rate (12) consists of the
resonant peak at E = 0 broadened to width γ � EC by the thermal noise in the resistor, and
the 1/E tail on the ‘emission’ side (E > 0) of the peak. Strong variation of the tunneling
rate with energy, from roughly 0max ∼ E2

J /h̄γ at resonance to 0min ∼ E2
J γ /h̄T EC away from

the resonance, when E ∼ EC, creates different regimes in the system dynamics. If the rate
of change of the gate voltage is very small, i.e. q̇ � 0min, the dynamics is adiabatic and the
system maintains local equilibrium throughout the gate voltage ramp. In such an adiabatic
evolution, the generated heat vanishes proportionally to drive rate q̇, not only on average but
for individual evolution trajectories—see e.g. [18]. Also, in this quasistatic regime, the total
evolution time is much larger than the correlation time of the occupation probabilities of the
charge states, i.e. the total number of the back-and-forth transitions is large, and therefore there
are no correlations between the initial and final occupations of the charge states. This means
that if one neglects completely small adiabatically generated heat, the work distribution in this
regime is given by the expression similar to equation (1) but with different intensities of the
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δ-peaks:

p(W ) = ρ0
gg(1 − ρ0

gg)[δ(W + EC) + δ(W − EC)] + δ(W )
[(

ρ0
gg

)2
+

(
1 −

(
ρ0

gg

)2
)]

. (13)

For a more rapid drive, q̇ ∼ 0max � 0min, the total ramp time is sufficiently small to neglect
completely transitions that could happen away from the resonance. In this regime, one can keep
only the resonant peak in the rate (12), so that both rates 0± coincide:

0+(E) = 0−(E) =
E2

J

2h̄

γ

E2 + γ 2
≡ 0. (14)

With these rates, the solution of the master equation (4) with the initial condition p0(0) = 1 is

p0(t) = 1 −

∫ t

0
dt ′0(t ′) exp

{
−2

∫ t

t ′
dt ′′0(t ′′)

}
=

1

2

[
1 + exp

{
−2

∫ t

0
dt ′0(t ′)

}]
. (15)

Taking the integral of the rate 0 (14) in this expression we obtain the LZ transition probability
p0(t)|t→∞ ≡ PT in this ‘high-temperature’ regime:

PT =
1

2

[
1 + exp

{
−

π E2
J

2h̄q̇ EC

}]
=

1

2
(1 + e−2ξ ). (16)

This is another well-known result for the dissipative LZ transitions [26, 30–32] reproduced here
by a much more elementary means. In the resonant approximation (14) for the transition rates,
used to obtain this result, all transitions happen at energies E ∼ γ � T , i.e. the heat exchanged
with the reservoir is small regardless of the drive rate. Neglecting this heat, one can see that the
work distribution in this regime is again given by equation (1) but with modified LZ transition
probability, PLZ → PT.

For parameter values away from the limiting cases, we have analyzed the distribution of
work numerically by stochastic simulations tracing the paths, assuming rates of (5). Results
of such simulations are shown in figure 2. For all these distributions JE is numerically valid
within 0.1%, and it should naturally be valid identically since P(E), and thus the ± rates in (5)
obey detailed balance [33]. These simulations correspond to the pumping trajectory described
above, with parameters given in the figure 2 caption. The distributions have several features that
can be explained by simple arguments as follows. First of all, the peaks in (a) and the steps
in (b) at W = ±EC, and at 0 correspond to the peaks arising from excitation/relaxation, and
from the adiabatic dynamics of the unitary evolution in (1), respectively, and they get gradually
weaker toward faster relaxation (i.e. toward increasing R). In general, the mean of the work
is positive, i.e. the evolution is dissipative. Furthermore, we have checked numerically that the
Crooks equality [15] is valid in the form p(−W ) = e−βW p(W ) for these distributions.

Next we discuss the calorimetric measurement of the energy deposited on the resistor.
The electronic system of the resistor forms the environment that is then coupled to a super-
bath formed, e.g. by phonons to which these electrons couple by standard electron–phonon
coupling. This leads to the following sequence once an energy quantum 1E is emitted/absorbed
by the two-level system due to ∓ transitions, see figure 3. We assume the standard hot-
electron regime [34, 35]. (i) The temperature T of the resistor (electrons) changes abruptly
by 1T = ±1E/C at the moment of the photon exchange; here C is the heat capacity of the
electron gas in the resistor. (ii) The electronic temperature of the resistor starts to relax back
toward the equilibrium T0 ≡ (kBβ)−1 at the rate governed by the thermal conductance G that
is determined, e.g. by electron–phonon coupling. (iii) New energy pulses may occur during the
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Figure 3. Schematic presentation of the calorimetric measurement. The resistor
in the middle emits (absorbs) heat to (from) the two-level system on the left upon
excitation (relaxation) shown by blue (red). The corresponding heat pulses, i.e.
temperature of the electrons in the resistor versus time, are shown on the right
with the same color conventions. We assume that the electrons are in the so-
called hot-electron regime, where the internal (electron–electron) relaxation is
faster than other time scales in the problem.

evolution. In this evolution the deposited energy (heat) to the bath can be obtained generally
from Q̇ = CṪ + G1T , where 1T = T − T0. Note that the pulses can have either + or − sign,
i.e. the resistor may cool as well. In the considered example, Q̇(t) =

∑
i 1Eiδ(t − ti), where

1Ei is the magnitude of heat released in the i th absorption/emission event, and ti are the time
instants of these events. Note that unlike in the analysis leading to (1) and (2), we allow here
different values for 1Ei for transitions occurring along the driven trajectory. Integrating the
equation for Q̇ for the situation where the system is in thermal equilibrium in the beginning and
at the end, i.e. T (0) = T (∞) = T0, and assuming small temperature rise in the pulses, we have
for the heat in each realization

Q = G
∫

∞

0
1T (t) dt. (17)

To make full use of (17), the following practical issues need to be taken care of [35]. The
thermometer is first calibrated against the bath temperature under the equilibrium conditions
(without applying the driving field), or one uses a primary thermometer that serves without
calibration. The only remaining calibration is then the determination of G: this can be obtained
by applying a known constant power P to the calorimeter, and measuring the temperature rise
δT of the electrons in the thermometer, since G = P/δT .

Before turning to the detailed practical realization and numbers, one further consideration
is in order. Namely, biasing the gate capacitor in the ramp that we consider leads to a current that
dissipates Joule power 1Ed in the resistor R. This dissipation can be estimated by elementary
circuit analysis with the result 1Ed = e2 R/τ . For typical values of τ and R, for instance those
in figure 2, this energy is at most of order 0.01 EC. Since EC is the scale of work performed,
the Joule heating produces only a small error in the calorimetric measurement, even if no
precautions are taken.

We analyze next the feasibility of measuring calorimetrically the distribution of quantum
work in a superconducting two-level system considered. The most straightforward realization
would involve a small lithographic metal resistor, ∼(0.1 µm)3, on the chip [36]. The electronic
heat capacity at T0 = 100 mK temperature is C ∼ 10−20 J K−1, yielding a jump in temperature of
EC/C ∼ 3 mK upon absorbing the relaxation heat at the end of the ramp, assuming a realistic
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EC/kB = 3 K. This is a sizable change of temperature (3%) which can be detected over a
relatively long time of order 10−4 s that is determined by the equilibration of the resistor back
to its initial temperature via electron–phonon coupling. The large sensitivity of the calorimeter
is naturally due to the standard T0/TF ∼ 10−6 suppression of the heat capacity of the electron
gas with Fermi temperature TF ∼ 105 K. If needed, longer relaxation times can be obtained
by, for instance, suspending the resistor on a silicon nitride membrane [37], which would
make the detection even easier. A tunnel probe, in form of a superconducting lead connected
to the resistor, i.e. a superconductor–insulator–normal metal (SIN) junction, measured by RF
reflection or transmission techniques [38], is fully compatible with the requirements of the
presented calorimetric detection of heat.

In the current work we considered only one quantum system (CPB) in a specific
(incoherent) regime as an illustration of the calorimetric method. Yet the same detection method
can be applied to a large class of systems, where the validity of the fluctuation relations
is not necessarily obvious unlike in the current example. First of all, the CPB in a weak
dissipation regime is a qubit that obeys nearly coherent evolution and to be precise, an analysis
respecting energies down to EJ � EC is needed. The calorimetric measurement applies, with
equal conditions, also to this regime, but here the distribution of dissipation would have more
structure at low energies and the theoretical assessment of the fluctuation relations would be
less obvious. Secondly, the calorimetry can be applied to any system, where (i) the coupling
between the quantum system and the calorimeter is the dominant energy relaxation channel,
and where (ii) the sensitivity and the bandwidth of the thermometer are sufficiently high
for observing the exchange of photons. These conditions are valid for mesoscopic electronic
circuits quite generally. Instead of a CPB, one may envision other kinds of superconducting
qubits [39], such as flux qubits (SQUIDs), where the coupling to the calorimeter can be provided
inductively. Moreover, (semiconducting) quantum dot circuits [40] can be coupled capacitively
to the dissipative calorimeter, similarly to what was presented for CPB here. This method can
measure dissipation in many-body systems as well, as long as the systems can be coupled to
a calorimeter. This way the number of possible applications of the method would be further
increased [41–43].

In conclusion, the calorimetric measurement yields a direct determination of quantum work
and quantum fluctuation relations. It can be used to analyze theoretically and experimentally the
work and its distribution in a quantum system.
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