KIT | KIT-Bibliothek | Impressum | Datenschutz

A structure-preserving surrogate model for the closure of the moment system of the Boltzmann equation using convex deep neural networks

Schotthöfer, Steffen ORCID iD icon 1; Xiao, Tianbai 1; Frank, Martin ORCID iD icon 2; Hauck, Cory
1 Institut für Angewandte und Numerische Mathematik (IANM), Karlsruher Institut für Technologie (KIT)
2 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)

Abstract:

Direct simulation of physical processes on a kinetic level is prohibitively expensive in aerospace applications due to the extremely high dimension of the solution spaces. In this paper, we consider the moment system of the Boltzmann equation, which projects the kinetic physics onto the hydrodynamic scale. The unclosed moment system can be solved in conjunction with the entropy closure strategy. Using an entropy closure provides structural benefits to the physical system of partial differential equations. Usually computing such closure of the system spends the majority of the total computational cost, since one needs to solve an ill-conditioned constrained optimization problem. Therefore, we build a neural network surrogate model to close the moment system, which preserves the structural properties of the system by design, but reduces the computational cost significantly. Numerical experiments are conducted to illustrate the performance of the current method in comparison to the traditional closure.


Volltext §
DOI: 10.5445/IR/1000144563
Veröffentlicht am 07.04.2022
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Scientific Computing Center (SCC)
Publikationstyp Forschungsbericht/Preprint
Publikationsdatum 02.08.2021
Sprache Englisch
Identifikator KITopen-ID: 1000144563
Umfang 17 S.
Vorab online veröffentlicht am 28.07.2021
Nachgewiesen in arXiv
Dimensions
Relationen in KITopen
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page