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A B S T R A C T

We investigate volume-element sampling strategies for the stochastic homogenization of
particle-reinforced composites and show, via computational experiments, that an improper
treatment of particles intersecting the boundary of the computational cell may affect the
accuracy of the computed effective properties. Motivated by recent results on a superior
convergence rate of the systematic error for periodized ensembles compared to taking snapshots
of ensembles, we conduct computational experiments for microstructures with circular, spherical
and cylindrical inclusions and monitor the systematic errors in the effective thermal conductivity
for snapshots of ensembles compared to working with microstructures sampled from periodized
ensembles.

We observe that the standard deviation of the apparent properties computed on microstruc-
tures sampled from the periodized ensembles decays at the scaling expected from the central
limit theorem. In contrast, the standard deviation for the snapshot ensembles shows an inferior
decay rate at high filler content. The latter effect is caused by additional long-range correlations
that necessarily appear in particle-reinforced composites at high, industrially relevant, volume
fractions. Periodized ensembles, however, appear to be less affected by these correlations.

Our findings provide guidelines for working with digital volume images of material
microstructures and the design of representative volume elements for computational homog-
enization.

. Introduction

.1. State of the art

The concept of representative volume element (RVE) plays a central role for predicting the effective properties of random
eterogeneous materials. Originally, Hill (1963) defined an RVE as a bounded domain that is statistically typical of the mixture and
ufficiently large to render the effects of artificially imposed boundary conditions negligible. Drugan and Willis (1996) improved
pon the original concept by relaxing the previous definition, that requires the RVE to be typical for all statistics of interest. Rather,
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they focused on the material properties and defined an RVE as a bounded domain whose apparent properties are sufficiently close
to the effective properties of the infinitely large medium. This shift in paradigm, which introduced the infinite-volume limit as a
suitable reference quantity, enabled much smaller RVEs to be used, with obvious advantages in terms of computational complexity.
With this practical definition at hand, representativity of a volume element could be determined by investigating the effective
properties computed on a sequence of volume elements with increasing size, see Gusev (1997) or Segurado and Llorca (2002).
Kanit et al. (2003) enriched this approach by statistical ideas, proposing to monitor the apparent properties of several realizations
of the random material on cells of fixed size. They provided theoretical arguments as well as empirical data in support of using
everal realizations of the ensemble on smaller volumes to arrive at the same accuracy as for a single ‘‘large’’ RVE. However, they
lso showed that care has to be taken for ‘‘small’’ cells, as there may be a bias caused by deterministic size effects which cannot
e eliminated through ensemble averaging. Still, Kanit et al. assume the introduced bias to be small compared to the dispersion,
.e., the variance, of the effective properties on cells of fixed size. They propose to numerically identify the decay behavior of the
ispersion, and to define an RVE as a (finite collection of) volume element(s) with suitably small dispersion.

From a practical point of view, it is imperative to minimize the computational effort associated to numerically determining the
pparent properties of volume elements. Finding an RVE may be regarded as selecting a suitable termination criterion for an iterative

procedure which either processes more realizations with the same cell size or increases the considered volume element size. A
number of different approaches was reported in the literature. In the spirit of Kanit et al. (2003), one may aim at a satisfactory
confidence in average quantities (Gitman et al., 2007; Pelissou et al., 2009; Ghossein and Lévesque, 2012; Harper et al., 2012), for
instance by employing Huet’s partition theorem (Huet, 1990) to deduce confidence intervals of the apparent properties by statistical
sampling. In addition to the effective coefficients (Salmi et al., 2012; Trias et al., 2006; Terada et al., 2000; Shan and Gokhale, 2002),
effective energies (Saroukhani et al., 2015) or mean values and concentrations of the microstructural fields (Trias et al., 2006; Shan
and Gokhale, 2002; Stroeven et al., 2004; Gitman et al., 2007, 2006) may serve as suitable average quantities. Alternatively, bounds
of the effective properties, inferred from Dirichlet and Neumann boundary conditions or analytical estimates, may be monitored,
and RVEs arise provided these bounds are sufficiently close (Ostoja-Starzewski, 2006; Salmi et al., 2012; Hoang et al., 2016). This
strategy was also applied for inelastic (Jiang et al., 2001) materials and at finite strains (Khisaeva and Ostoja-Starzewski, 2006;
Ma et al., 2015). Some authors include further statistical measures, like correlation functions (Trias et al., 2006; Shan and Gokhale,
2002; Niezgoda et al., 2010; Teferra and Graham-Brady, 2018) or deviations from isotropy (for isotropic media) (Salmi et al., 2012a;
Moussaddy et al., 2013), into their RVE definition. Relying on a single criterion may lead to a premature termination (Moussaddy
et al., 2013), and more recent works combine different termination criteria (Salmi et al., 2012; Moussaddy et al., 2013; Trias et al.,
2006; Saroukhani et al., 2015) or rely upon specific adaptive strategies (Doškář et al., 2018) based on microstructural building
blocks, the Wang tiles (Šedlbauer and Lepš, 2019).

The inferred RVE size depends on a number of factors, including the underlying physics, the microstructure geometry and the
material contrast (Stroeven et al., 2004). In the case of high or even infinite material contrast (Dirrenberger et al., 2014) or non-
linear behavior (Stroeven et al., 2004; Gitman et al., 2007; Pelissou et al., 2009), the influence of the microstructure geometry gets
more pronounced, leading to larger RVE sizes or even precluding the existence of an RVE (Gitman et al., 2007). Consequently,
any recommendation for the RVE size depends strongly on the considered material, and cannot be directly transferred to other
materials (Matouš et al., 2017). In particular, studies on the RVE size need to be carried out for each material under consideration,
adding importance to computationally efficient strategies for identifying RVEs. Numerous RVE studies were conducted for various
material classes, including granular materials (Evesque, 2005), heterogeneous polymers (Jean et al., 2011; Figliuzzi et al., 2016;
Mirkhalaf et al., 2016), concrete (Sebsadji and Chouicha, 2012; Escoda et al., 2016), particle-reinforced composites (El Moumen
et al., 2015; Ghossein and Lévesque, 2015; Savvas et al., 2016), polycrystalline materials (Ranganathan and Ostoja-Starzewski,
2008; Qidwai et al., 2012; Bouchedjra et al., 2018), porous metals (Fritzen et al., 2012; Masson et al., 2015; Wang et al., 2015),
random composites (Chen et al., 2019; El Moumen et al., 2021), electrode and anode materials (Prill et al., 2017; Abdallah
et al., 2016), explosives (Gasnier et al., 2015) and materials used in the food industry (Kanit et al., 2006, 2011). Improvements
in computational power and algorithmic advances gave significant impetus to modern multiscale methods in engineering, also
dealing with strain-gradient materials (Kouznetsova et al., 2002, 2004) and materials with softening effects (Nguyen et al., 2010)
or debonding (Swaminathan and Ghosh, 2006), see Matouš et al. (2017) for a recent overview. In general, one may distinguish two
succinctly different strategies for acquiring the microstructures necessary for multiscale methods in engineering. On the one hand,
synthetic microstructures may be generated based on statistical data available on the material under consideration, see Bargmann
et al. (2018) for a recent overview. On the other hand, digital volume images of real microstructures (Landis and Keane, 2010;
Guven and Cinar, 2019) may be obtained directly, serving as what we call snapshots of the random material. Both approaches
complement each other, and may be used cooperatively. Indeed, synthetic microstructures offer full control over the ensemble, and
thorough RVE studies can be conducted. However, the relation of these synthetic structures to their real counterparts is not always
apparent. In contrast, snapshots are real, but their acquisition is typically costly, which makes it hard to study their representativity
and to quantify the underlying uncertainty.

Parallel to developments in engineering, homogenization theory was established as a rigorous foundation for the up-scaling of
random heterogeneous media. Building upon previous work in the periodic setting (De Giorgi and Spagnolo, 1973; Babuska, 1973;
Larsen, 1975), Papanicolaou and Varadhan (1981) and Kozlov (1978) established qualitative results for stochastic homogenization
for stationary and ergodic ensembles of coefficient fields. In this context and informally speaking, stationarity means that the
statistical properties of the ensembles are translation-invariant, whereas ergodicity of a random function means that the variance
of its average over domains with increasing volume vanishes as this volume becomes infinite (Lantuéjoul, 1991), ensuring the
2

convergence of space averages towards expectations for samples with increasing sizes. In particular, as a consequence of Birkhoff’s
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theorem (Zhikov et al., 1994, Thm. 7.2), ergodicity implies that the effective properties may be determined from a single, infinitely
large realization of the microstructure (almost surely).

Classically, the effective properties in stochastic homogenization are defined by spatially averaging so-called corrector fields
hich are defined on the whole space. The RVE methodology, i.e., working with cells of large but finite size, is imperative from
computational point of view. The error of the apparent property associated to a single finite-sized cell compared to the true

ffective properties of stochastic homogenization naturally decomposes into two parts (Gloria et al., 2015, Eq. (13)). The random
rror quantifies the fluctuation of the apparent properties on cells of fixed size, whereas the systematic error measures the deviation
f the expectation of the apparent property on cells of fixed size from the true effective property. These two error contributions
orrespond to the bias and dispersion considered by Kanit et al. (2003). Theoretical guarantees that the systematic as well as the
andom error converge to zero as the cell size goes to infinity were provided by Sab (1992), Bourgeat and Piatnitski (2004) and
whadi (2003) for Dirichlet, Neumann and periodic boundary conditions imposed on the boundary of the considered cells.

These results hold in the general setting of stationary and ergodic random media. Thus, they may only provide qualitative
onvergence results, i.e., convergence of the random and the systematic error to zero, without rates. To obtain specific convergence
ates, the correlation properties of the coefficient field need to be quantified, see Section 2 below for a discussion. Theoretical works
lso shed some light on the two different approaches for obtaining microstructures discussed earlier. For the mathematical analysis,
he full ensemble of microstructures needs to be given, and its stochastic properties are encoded by the underlying correlation
tructure. Acquiring snapshots corresponds to drawing a specific sample of the ensemble, and restricting the microstructure to a cell
f finite size. This approach is straightforward, and is tacitly assumed in the qualitative convergence results (Sab, 1992; Bourgeat
nd Piatnitski, 2004; Owhadi, 2003). Generating synthetic microstructures is more subtle, as those are typically generated on a
ectangular cell with periodic boundary conditions, i.e., on a torus, mathematically speaking. Unlike the ensembles used in the
napshot strategy, these periodized ensembles retain the stationarity property of the whole-space ensemble. However, ergodicity is
ost. The RVE methodology builds upon the fact that the loss of ergodicity fades away as the size of the volume element goes to
nfinity. Synthetically generated elements are more than simple restrictions of the infinite-space ensemble, but require the underlying
‘construction plan’’ to be known (Egloffe et al., 2015, Sec. 3.2.3), for instance via pushing forward a specific probability distribution
y a (deterministic) mapping. With this more fundamental knowledge at hand, it is natural to draw samples from suitably periodized
nsembles for the finitely sized cells, first formalized by (Sab and Nedjar, 2005). In practical engineering terms, microstructure-
eneration algorithms are - in principle - deterministic, but some of their input parameters are drawn from probability distributions.
ombining the random input and the deterministic algorithm gives rise to the ensemble, and drawing samples from the periodized
nsemble corresponds to working on the torus instead of a box in Euclidean space, for instance when computing distances or
pplying filters. From a theoretical point of view, the periodized ensemble arises by drawing samples from the whole-space ensemble
onditioned on periodicity of the realizations (with previously fixed period). This interpretation, however, is of little use for practical
lgorithms.

Over the years, in terms of theoretical reasoning as well as numerical evidence, it has been realized that the snapshot strategy
ay introduce non-negligible boundary effects compared to the periodization approach. This observation surfaced in numerical
ultiscale methods (Hou and Wu, 1997; Ming and Zhang, 2005), where the finite-element ansatz functions were modified in order

o account for heterogeneity on a sub-element scale by solving a corrector-type equation with suitable boundary conditions. In the
etting of periodic homogenization it was realized that working on cubic volume elements with an edge length 𝐿 that is not an
nteger multiple of the period leads to an error in the effective properties that is of order 1∕𝐿. To reduce this so-called resonance
rror, oversampling/filtering techniques (Hou and Wu, 1997; Blanc and Le Bris, 2010) were introduced. Alternative approaches
creen the boundary effect by modifying the cell problem, for instance by adding a ‘‘massive’’, zero-th order term to the elliptic
perator defining the corrector problem (Gloria, 2011, Thm. 1). In a similar spirit, screening strategies based on parabolic (Abdulle
t al., 2019; Mourrat, 2019) or hyperbolic (Arjmand and Runborg, 2016) versions of the corrector problem have been considered.

In the context of stochastic homogenization, the snapshot approach also gives rise to a boundary-layer error, just as for periodic
omogenization with non-matching period. In the stochastic setting, Egloffe et al. (2015, Eq. (3.4)) expected the systematic error to
ecay with the rate 1∕𝐿, as for the periodic case. Recently, Clozeau et al. (2021) provided a theoretical argument for the 1∕𝐿-scaling,
t least in the asymptotic setting of vanishing material contrast. Because of the slow decay of the random boundary layer, filtering
echniques are expected to have no effect on the scaling 1∕𝐿 (Gloria, 2008, Sec. 4). However, screening by a massive term, in
onjunction with extrapolation in the massive parameter, has been shown to reduce the systematic error to 1∕𝐿𝑑 (Gloria et al.,
015, Thm. 2). Based on screening and extrapolation, Mourrat (Mourrat, 2019, Prop. 1.1 & Th. 1.2) devised a numerical algorithm
hat, on the basis of a snapshot, extracts the effective behavior up to the optimal total-error rate 1∕𝐿

𝑑
2 at the cost of on the order

of 𝐿𝑑 operations. Hence, the most effective improvements in the decay of the boundary-layer error rest upon a modification of the
corrector problem. However, from an engineering point of view, modifying the underlying partial differential equation for more
general problems to be homogenized, e.g. elasticity or inelasticity, can only be a last resort, even if it improves the convergence
rate. Apart from physical reasons, such an approach requires modifying existing computational homogenization codes at their core.

Recently, Clozeau et al. (2021) worked out the details of an attractive alternative to modifying the corrector problem. Instead,
they modify the ensemble by periodizing it on cells of finite size, thus recovering the more favorable 1∕𝐿𝑑 convergence rate of
he systematic error (without modifying the corrector equation). This is in line with the existing bounds of Gloria et al. (2015) and
gloffe et al. (2015, Sec. 3.2.3), which concern i.i.d. random conductivities on a discrete lattice, and with Khoromskaia et al. (2020),
ho investigated an ensemble based on a discrete Poisson point process numerically. However, periodizing the aforementioned
nsembles is trivial; on the contrary, Clozeau et al. (2021) deal with a less academic and more realistic class of ensembles, namely
3
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Fig. 1. Illustrating the disturbance in statistical homogeneity created by using periodic boundary conditions for a non-periodic snapshot (left) and by appropriately
reflecting a periodic microstructure (right) for the geometries shown in Fig. 2.

coefficient fields generated by applying a nonlinear transformation to a Gaussian field with (essentially) integrable correlation
function. Moreover, Clozeau et al. (2021) do not only provide an estimate of the systematic error but actually derive the leading-order
term in 𝐿−𝑑 , which is generically non-vanishing.

For applications in engineering, the result (Clozeau et al., 2021) suggests that working with periodized ensembles leads to a
favorable systematic error compared to the snapshot approach. This is very much in line with observations in engineering. For
instance, considering Poisson–Voronoi microstructures, Kanit et al. (Kanit et al., 2003, Sec. 7) observed that "the bias [systematic
error] introduced by the periodic boundary conditions is found to be much smaller than for the other boundary conditions".
This observation was confirmed by other authors (Sab and Nedjar, 2005; Yue and W.E., 2007). For Dirichlet and Neumann
boundary conditions, Salmi et al. (2012) reported faster convergence when using volume elements whose faces do not intersect
with heterogeneities than for a volume elements which intersect the heterogeneities. In their paper on periodization, Sab and Nedjar
(2005) noted that "the use of homogeneous strain or stress boundary conditions introduces a systematic bias in the estimation of the
overall elasticity tensor because the corresponding 𝛤 operator does not preserve the statistical homogeneity of the medium". Notice
the careful wording used by Sab and Nedjar (2005) - they deliberately distinguish periodic boundary conditions and the periodized
ensemble. Indeed, it is possible to use Dirichlet or Neumann boundary conditions for a periodized ensemble (Ostoja-Starzewski and
Schulte, 1996, 1998) and to use periodic boundary conditions for a non-periodic medium (Michel et al., 1999). Both approaches
interfere with the statistical homogeneity of the medium. This is illustrated in Fig. 1(a), which shows the periodic extension of a two-
dimensional non-periodic snapshot of a material with circular inclusions. Due to a mismatch at the boundary, additional non-circular
particle shapes are introduced. Something similar happens when working with Dirichlet and Neumann boundary conditions for a
periodic medium. To see this, let us consider the case of Neumann boundary conditions in isotropic conductivity. To compute the
effective flux corresponding to a prescribed temperature gradient 𝜉, it is possible to use periodic boundary conditions on a doubled
cell (with 𝜉 serving as one of the edges), see Fig. 1 for 𝜉 = 𝑒𝑥, where the coefficients are reflected in the directions orthogonal to
𝜉 and periodically extended in 𝜉-direction. Similar to the periodization of a non-periodic microstructure, this reflection procedure
introduces non-circular particles which disturb statistical homogeneity.

1.2. Contributions

This article presents quantitative results on the consequences of improper treatment of particles intersecting the boundary of
computational volume elements when homogenizing particle-reinforced composites. From an interdisciplinary perspective, the study
provides a quantification for observations made in the engineering community (Kanit et al., 2003; Sab and Nedjar, 2005; Salmi et al.,
2012) and extends related studies in the mathematics community (Khoromskaia et al., 2020; Khoromskaia and Khoromskij, 2020)
to microstructures of industrial relevance and complexity, utilizing real physical parameters, investigating spherical and cylindrical
fillers. In particular, we do not claim to introduce a new method, but inspect the role of the microstructure-acquisition process
4

within RVE-size studies closely.
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Fig. 2. Illustrating snapshot coefficients 𝐴sn
𝐿 vs. periodized coefficients 𝐴per

𝐿 .

More precisely, to assess the effects of taking snapshots, we rely upon well-established microstructure-generation meth-
ds (Williams and Philipse, 2003; Schneider, 2017) for composites with spherical and cylindrical fillers (see Section 3 for details),
hich automatically generate periodic ensembles and take snapshots from sufficiently large periodic structures to emulate snapshots
f real composites, Fig. 2. As discussed in Section 1.1, different criteria may be used for assessing the representativity of a
olume element (or a collection thereof). To minimize the ambiguities and to ensure comparability to the estimates established
n the mathematical community, we monitor the systematic and the random error for the two considered microstructure-synthesis
rotocols, see Section 2 for precise definitions and a streamlined presentation of quantitative stochastic homogenization. Note that
e are primarily interested in computing the effective properties of the random material in an efficient way, and do not focus on
dditional statistics.

Both the systematic and the random error of the apparent properties require the expectation of the apparent properties on cells
f fixed, but finite, size to be computed to high accuracy. Previous studies (Khoromskaia et al., 2020; Khoromskaia and Khoromskij,
020) revealed that 10 000 realizations were sufficient to extract the desired convergence rates. At this point, we would like to
eiterate our word of warning that the study at hand should not be mistaken as a proposal for a practical method (in view of
he 10 000 samples). Rather, we would like to present an accurate study under ‘‘laboratory conditions’’, quantifying the effects of
oundary-particle treatment in particle-reinforced composites. For this purpose, we selected thermal conductivity as the physical
odel under consideration. The (realistic) material properties used have a low material contrast of six, and we utilize modern

omputational homogenization techniques based on the fast Fourier transform (FFT), pioneered by Moulinec and Suquet (1994,
998). Some of our investigations concern a similar setup as Altendorf et al. (2014), but have a different focus. Whereas Altendorf
t al. (2014) identify RVEs for short-fiber reinforced composites to engineering accuracy, balancing accuracy and efficiency, our
nvestigation is focused on a very precise quantification of the uncertainty inherent to the periodized and the snapshot protocols.
ote that we impose periodic boundary conditions for the snapshots as well, see Fig. 1 and the associated discussion.

After exposing the microstructure-generation tools in Section 3, the computational results are presented in Section 4, comprising
ver 250 000 simulation runs, some with up to more than one billion degrees of freedom. We find that the systematic error for the
eriodized protocol is typically lower than for the snapshot approach. The random error shows a similar trend. Moreover, the decay
ehavior of the random error in the snapshot protocol differs from the periodized setting. We discuss the latter finding in Section 5
ore thoroughly, identifying this behavior as a rather natural consequence of the considered setting.

While the ensembles considered here do not fall into the class covered by the theory – they neither have finite range1 of
dependence nor a suitable functional inequality is known, see Duerinckx and Gloria (2020b,a) – we expect that they belong
to the same universality class. Thus, the composites under consideration serve as benchmarks for the established quantitative
homogenization theory, and are expected to stimulate further theoretical research.

1 Finite range of dependence should not be confused with the notion of integral range from geostatistics (Matheron, 1989; Lantuéjoul, 2002), as the latter is
5

eaker.
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From a practical engineering perspective, these results shed light on modern up-scaling techniques based on digital volume
mages, for instance obtained by micro-computed tomography. Indeed, the latter images naturally correspond to snapshots of
nsembles with ‘‘improperly’’ treated particles at the boundaries. For the specified scenario (thermal conductivity with low contrast)
nd the large database at hand, the empirical probability of a computation on a single cell (of predefined size) to provide results
ufficiently close to the effective properties may be deduced. We observe that, for this seemingly innocent setup, two accurate digits
s perfectly reasonable for the snapshot protocol, whereas obtaining three significant digits requires rather large cells.

Last but not least, let us emphasize that periodization of ensembles does not represent a panacea curing the problems of
omputational homogenization. Indeed, there are ensembles which do not admit a periodization (Dirrenberger et al., 2014; Jeulin,
016; Sukiman et al., 2017).

. Theoretical background

We are concerned with a stationary and ergodic random field of thermal conductivity tensors 𝐴 in 𝑑 spatial dimensions, i.e., every
ealization is a field on R𝑑 with values in symmetric positive definite 𝑑×𝑑-matrices. In stochastic homogenization (Papanicolaou and
aradhan, 1981; Kozlov, 1978), the effective conductivity tensor �̄� is sought, and may be determined for any prescribed (negative)

emperature gradient 𝜉 ∈ R𝑑 via the expectation (or ensemble average) ⟨⋅⟩ of the heat flux

�̄�𝜉 = ⟨𝐴𝜉⟩ , (2.1)

here 𝜉 denotes the corresponding local (negative) temperature gradient, i.e.,

𝜉 = 𝜉 + 𝛤𝜉 (2.2)

olds in terms of the Helmholtz projector 𝛤 onto stationary gradient fields, and the associated heat flux 𝑞 = 𝐴𝜉 is divergence-free,
.e., the equation

𝛤𝑞 = 0 (2.3)

s satisfied. Due to the ergodicity assumption, the effective conductivity tensor �̄� may also be computed in terms of a single
ealization involving an infinite-volume limit, see Chapter 7 in Zhikov et al. (1994) for details.

For computational purposes it is necessary to work on finite domains. For a fixed cube 𝑄𝐿 =
[

−𝐿
2 ,

𝐿
2

]𝑑
, assume that we are given

n ensemble 𝐴𝐿 that generates coefficient fields on the cell 𝑄𝐿. The latter can be obtained as snapshots of the random conductivity
ensor field 𝐴, which is given on the whole space, on the cube 𝑄𝐿. In this case, we will write 𝐴sn

𝐿 for the corresponding ensemble.
n alternative approach proceeds by periodizing the ensemble (Sab and Nedjar, 2005). In this case, we will denote the ensemble by
per
𝐿 . Taking snapshots of an ensemble is straightforward because it can be performed on given realizations, whereas periodization

s a more subtle process (to be discussed below) and requires working on the level of the ensemble itself. However, periodization is
uite natural when generating synthetic microstructures. In any case, we assume the periodized ensemble to be stationary (on the
orus).

Let us illustrate what we mean by periodizing the ensemble. For i.i.d. discrete coefficient fields (Gloria et al., 2015) and the
oissonian ensemble (Gloria and Otto, 2016), this procedure is trivial. For Gaussian fields, periodization amounts to periodizing the
orrelation function, see Clozeau et al. (2021). For the article at hand, we consider a particle-reinforced composite with a single
pecies of particles, for instance spherical particles, and specific macroscopic statistics. When taking a snapshot of the coefficient
ield on a box 𝑄𝐿 (thus building 𝐴sn

𝐿 ), particles intersecting the boundary of 𝑄𝐿 are cut, giving rise to another species of particles
ith a different shape, see Fig. 2(a). In particular, taking snapshots of the particles does not preserve the morphological statistics
f the whole-space ensemble, in general.

To understand how periodization (Sab and Nedjar, 2005) proceeds let us look at the way an ensemble of particle-filled composites
s built. In real life, the fillers do not overlap (unless this is part of the production process, for instance in sintering). Thus, when
enerating an ensemble, an overlap check needs to be made. For the periodized ensemble, the particles are placed in a fixed cell
𝐿, and the overlap checks are made not only between the original particles, but also with their periodic translations, see Fig. 3 for
n illustration. Following such a protocol with statistical properties properly matching the whole-space counterpart, see Fig. 2(b),
ives rise to the periodized ensemble and the associated coefficient field 𝐴per

𝐿 . In particular, due to the absence of the cutting process,
o alteration of the particle shape takes place. As will be shown below, the cut particles of 𝐴sn

𝐿 are considered responsible for
eteriorating the quality of the computed homogenized coefficient with respect to the periodized coefficient field 𝐴per

𝐿 (see Eq. (2.10)
versus Eq. (2.11)).

In either case, we denote by �̄�𝐿 the apparent conductivity of 𝐴𝐿 on 𝑄𝐿 endowed with periodic boundary conditions, i.e., in
nalogy to the stochastic setting (2.1), for any 𝜉 ∈ R𝑑 , via spatial averaging

�̄�𝐿𝜉 = −
∫𝑄𝐿

𝐴𝐿𝜉𝐿 𝑑𝑥, (2.4)

nstead of ensemble averaging and where 𝜉𝐿 ∈ 𝐿2(𝑄𝐿;R𝑑 ) solves the equations

𝜉𝐿 = 𝜉 + 𝛤𝐿𝜉𝐿 and 𝛤𝐿𝐴𝐿𝜉𝐿 = 0 (2.5)

n terms of the Helmholtz projector 𝛤𝐿 onto gradient fields of periodic functions on the cube 𝑄𝐿. Notice that the apparent
onductivity tensor �̄� is still a random variable. Also, its expectation

⟨

�̄�
⟩

will be different from the effective conductivity �̄�,
6

𝐿 𝐿
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Fig. 3. Periodizing the distance for a two-dimensional cell 𝑄𝐿 containing two circles (red and green) of equal radius and their shaded periodically replicated
mages.

n general, which is well-known in the engineering community, see Huet (1990) and Sab (1992) for early accounts. However, it can
e shown, either in case 𝐴𝐿 = 𝐴sn

𝐿 (Sab, 1992; Bourgeat and Piatnitski, 2004; Owhadi, 2003) or in case 𝐴𝐿 = 𝐴per
𝐿 , see Gloria et al.

2015) and Clozeau et al. (2021) for specific frameworks, that

�̄�𝐿 → �̄� as 𝐿 → ∞ (2.6)

ith probability one, i.e., the apparent conductivity tensors �̄�𝐿 approximate the effective conductivity tensor �̄� for increasingly
arge cubes 𝑄𝐿. In the engineering community, a sufficiently large cell 𝑄𝐿 is called a representative volume element (Hill, 1963;
anit et al., 2003). Note that boundary conditions different from periodic could be used as well for defining the truncated corrector
roblem (2.5), e.g., Dirichlet or Neumann boundary conditions, but we chose periodic boundary conditions as they tend to be more
ccurate for fixed cell size, see, for instance, Kanit et al. (2003).

The convergence statement (2.6) is purely qualitative and does not permit to analyze the effect of the size of the volume elements.
ndeed, in practice a suitable trade-off between the increased accuracy that accompanies larger computational cells and the limited
omputational resources needs to be identified, for instance based on statistical estimation techniques (Kanit et al., 2003). For this
urpose, quantitative convergence statements become useful. On average, the error may be decomposed in the form

⟨

‖

‖

�̄�𝐿 − �̄�‖
‖

2
⟩

=
⟨

‖

‖

‖

�̄�𝐿 −
⟨

�̄�𝐿
⟩

‖

‖

‖

2
⟩

+ ‖

‖

‖

⟨

�̄�𝐿
⟩

− �̄�‖‖
‖

2
(2.7)

in terms of the Frobenius norm, i.e., the right-hand side consists of a random error, which measures the standard deviation of the
snapshot ensemble, and a systematic error which quantifies the defect induced by working on a cell of finite size. From a physical
point of view, the random error quantifies the lack of statistical representativity of the realization in the finite-sized cell, whereas
the systematic error accounts for artificial long-range correlations induced by periodization for 𝐴per

𝐿 and the boundary-layer error
in case of taking snapshots 𝐴sn

𝐿 .
By using a Monte-Carlo sampling-strategy on cells of fixed size, the random contribution may be decreased — in contrast to the

ystematic error. Indeed, suppose that 𝑁 independent coefficient fields
(

𝐴𝐿,𝑖
)

are sampled. Then, the empirical expectation of the
corresponding effective conductivities satisfies

⟨

‖

‖

‖

‖

‖

‖

1
𝑁

𝑁
∑

𝑖=1
�̄�𝐿,𝑖 − �̄�

‖

‖

‖

‖

‖

‖

2⟩

= 1
𝑁

⟨

‖

‖

‖

�̄�𝐿 −
⟨

�̄�𝐿
⟩

‖

‖

‖

2
⟩

+ ‖

‖

‖

⟨

�̄�𝐿
⟩

− �̄�‖‖
‖

2
.

The decomposition (2.7) is implicit in the statistical approach to estimating the minimum size of a representative volume element
pioneered by Kanit et al. (2003). They assume the systematic error, which they call bias, to be negligible compared to the random
error, which they refer to as dispersion.

In general, due to the central limit theorem (CLT), we cannot expect a decay of the random error better than
√

⟨

‖

‖

‖

�̄�𝐿 −
⟨

�̄�𝐿
⟩

‖

‖

‖

2
⟩

≲ 𝐿− 𝑑
2 . (2.8)

his scaling was confirmed by Kanit et al. (2003) in computational experiments for synthetic Poisson–Voronoi microstructures and
7

hermal conductivity. In case of elasticity, a slightly inferior scaling was observed.
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On the theoretical side, notice that the decay of the error (2.7) may be arbitrarily slow for general stationary and just
ualitatively ergodic coefficient fields. Specific quantified ergodicity assumptions permit drawing stronger conclusions. For instance,
nsembles with finite range of dependence were considered by Armstrong and Smart (2016), who provided quantitative stochastic
omogenization results for convex integral functionals of quadratic growth. Armstrong and Mourrat (2016) relaxed the finite-range
ssumption and provided results for a mixing condition with algebraic decorrelation rate, previously considered by Yurinskii (1986).

As an alternative to the approaches just mentioned, ergodicity may be quantified in terms of suitable functional inequalities in
robability (Naddaf and Spencer, 1998), which compensate the lack of ‘‘natural’’ Poincaré inequality on the probability space. Under
n 𝐿2 spectral gap assumption, either if 𝐴𝐿 is obtained as a snapshot (Egloffe et al., 2015, eq. (3.3)) or by periodization (Duerinckx
t al., 2020, Th. 1) (Gloria et al., 2015, Th. 2), the CLT estimate (2.8) is expected to hold. For the latter case, Duerinckx
t al. (Duerinckx et al., 2020, Th. 1) actually identify the first order term in the expansion of �̄�per

𝐿 −
⟨

�̄�per
𝐿

⟩

. As a consequence,
he CLT scaling (2.8) of the random error is indeed optimal.

However, these quantifications of ergodicity only hold under restrictive assumptions on the underlying random coefficient field
nd may not meet the requirements of practical models of interest to the applied sciences (Torquato, 2002). Thus, spectral gap
ssumptions allowing for thicker stochastic tails were considered, i.e., in terms of an 𝐿𝑝 spectral gap assumption (Fischer and Otto,
017) and via a weighted logarithmic Sobolev inequality (Gloria et al., 2019, Def. 1). Further weighted functional inequalities
atisfied by ensembles of relevance to materials science were studied by Duerinckx and Gloria (2020b,a). Note that the CLT scaling
2.8) may not be valid for all materials, as in the case of Poisson fibers with infinite length (Jeulin, 2016; Dirrenberger et al.,
014), which feature an inferior scaling. Also, in specific situations, a faster decay rate than the CLT scaling is possible. As a specific
xample in one spatial dimension, let us consider an ensemble with microstructures made up of rods with length 𝐿0, where one half

is occupied by a conducting medium with conductivity 𝑎1 and the other half features a conductivity 𝑎2. Then, each microstructure
realization is made up of a series of connected, possibly flipped rods, where the flipping probability is one half. The resulting
ensemble is stationary and ergodic, and the effective (scalar) conductivity �̄� is just the harmonic mean of 𝑎1 and 𝑎2. Moreover, the
apparent conductivity of a random sample of length 𝐿 has a conductivity �̄�𝐿 which satisfies

|

|

�̄� − �̄�𝐿
|

|

�̄�
≤

𝐿0
2𝐿

max (𝑎1, 𝑎2)
|

|

|

|

1
𝑎1

− 1
𝑎2

|

|

|

|

for 𝐿 ≥ 𝐿0, (2.9)

hich is faster than the CLT scaling 𝐿− 1
2 in this dimension. This medium, whose heat flux enjoys a vanishing integral range (Lan-

uéjoul, 1991, p. 393), is, however, non-generic. Concerning the systematic error, the convergence rate is sensitive to the way the
inite-cell ensemble 𝐴𝐿 is built. In general, a boundary-layer error (as introduced earlier) with dimension-independent scaling

‖

‖

‖

⟨

�̄�sn
𝐿
⟩

− �̄�‖‖
‖

≲ 𝐿−1 (2.10)

s expected, see Egloffe et al. (2015, Eq. (3.4)), and proved to be optimal in Clozeau et al. (2021) for a specific class of
oefficient fields. If the coefficient fields 𝐴sn

𝐿 are considered as given, techniques based on modifying the corrector Eq. (2.5) were
roposed (Mourrat, 2019; Abdulle et al., 2019) to screen the influence of the improperly treated boundary of the considered cell
nd to restore a better convergence rate. In contrast, using the periodized coefficient field 𝐴𝐿 = 𝐴per

𝐿 may attenuate the systematic
rror, so that screening techniques are not necessary.

The latter statement could be made rigorous for specific classes of ensembles that allow for a natural periodization. For i.i.d.
iscretely random conductivities, Gloria et al. (Gloria et al., 2015, Th. 2) established the estimate

‖

‖

‖

⟨

�̄�per
𝐿

⟩

− �̄�‖‖
‖

≲ 𝐿−𝑑 (2.11)

or 𝑑 > 2, where there is an additional factor of ln𝑑 (𝐿) on the r.h.s. Such a result is known to hold for the case of overlapping Poisson
andom inclusions. For the case where the ensemble is generated from a Gaussian field with integrable covariance function, Clozeau
t al. (2021) showed estimate (2.11), and proved this scaling to be optimal in this setting by identifying the first order term of the
symptotic expansion of

⟨

�̄�per
𝐿

⟩

− �̄�.

. Computational tools

In this Section we provide details on the microstructure-generation methods used as the basis for the computational experiments
onducted in Section 4.

.1. The mechanical contraction method

For composites with spherical fillers, the simple random sequential adsorption algorithm of Feder (1980) is unable to reach
ndustrial-scale volume fractions in reasonable time. Indeed, the jamming limit of mono-sized spheres is approximately 38% (Meakin,
992), which is insufficient for the computational experiments of Section 4.1 below, taking into account the isolation distance.

For this purpose, collective rearrangement algorithms are necessary, and several methods are available (Lubachevsky and
tillinger, 1990b; Torquato and Jiao, 2010). We shall describe the mechanical-contraction method (MCM) of Williams and Philipse
2003), as there is a modification which generalizes to cylindrical fillers. In its original form, the MCM was designed for generating
ense packings, but we use it for generating packings of spheres with lower filler fraction, as well. The MCM consists of two different
hases which are executed in an alternated fashion: contraction and overlap removal. Upon contraction, a configuration of non-
8

verlapping spheres in a cell 𝑄𝐿 is modified by shrinking the entire cell by a specific factor 𝜌 ∈ (0, 1), keeping the sphere’s radii
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Fig. 4. Illustration of the overlap-removal technique central to the mechanical contraction method (Williams and Philipse, 2003), applied to 25 circles and an
area fraction of 80%.

unchanged, but modifying the sphere centers via a 𝜌-scaling w.r.t. the background Cartesian coordinate system. If the contraction
procedure leads to a configuration without overlap, the reached volume fraction will be increased by a factor of 1∕𝜌3. In case of
overlap, the second phase of the MCM comes into play — the overlap removal. Suppose that 𝑁 spheres with radius 𝑟 and centers
𝑥1,… , 𝑥𝑁 are given in the cubic cell 𝑄𝐿. The MCM applies an overlap-removal technique in order to move the centers 𝑥1,… , 𝑥𝑁 in
such a way that the spheres do not overlap anymore. For this purpose, an overlap energy

𝑊 ∶ 𝑄𝑁
𝐿 → R, (𝑥1,… , 𝑥𝑁 ) ↦ 1

2
∑

1≤𝑖<𝑗≤𝑁
𝛿(𝑥𝑖, 𝑥𝑗 )2, (3.1)

is defined in terms of an overlap indicator

𝛿(𝑥𝑖, 𝑥𝑗 ) = ⟨2𝑟 − dist(𝑥𝑖, 𝑥𝑗 )⟩+, (3.2)

where dist(𝑥𝑖, 𝑥𝑗 ) denotes the 𝑄𝐿-periodic distance of 𝑥𝑖 and 𝑥𝑗 and

⟨𝑧⟩+ = max(0, 𝑧)

is the Macaulay bracket.
Two (open) spheres with radius 𝑟 centered at 𝑥𝑖 and 𝑥𝑗 , respectively, do not overlap if and only if 𝛿(𝑥𝑖, 𝑥𝑗 ) = 0. Thus, the

𝑁 spheres centered at 𝑥1,… , 𝑥𝑁 are in a non-overlapping configuration precisely if 𝑊 (𝑥1,… , 𝑥𝑁 ) = 0. As the overlap energy 𝑊
(3.1) is continuously differentiable, a gradient-descent method may be used for finding a global minimizer of 𝑊 , see Williams and
Philipse (2003) for details. In dimension two, the approach is illustrated in Fig. 4, where 25 disks were placed in an initially random
configuration at 80% area fraction. During the iterations, the centers of overlapping disks are moved, whereas disks without overlap
remain fixed. For this example, the overlap-removal algorithm converged to the desired precision after 288 iterations. The MCM
algorithm used in this work operates as follows. Suppose a decreasing sequence 𝐿1, 𝐿2,… , 𝐿𝑀 of volume-element edge-lengths is
given, together with a fixed radius 𝑟 and an initial configuration 𝑥1, 𝑥2,… , 𝑥𝑁 of sphere centers, contained in 𝑄𝐿1

. If the initial
configuration has overlaps, the overlap-removal technique is applied. Then, for any 𝑚 = 1,… ,𝑀 − 1, the sphere centers are shrunk
by a factor 𝐿𝑘+1∕𝐿𝑘, followed by the overlap-removal stage. If the final overlap removal was successful, a sphere packing with a
volume fraction of 𝜙 = 𝑁 × 4𝜋𝑟3∕𝐿3 is reached.
9
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Some care has to be taken, as there are limits on the volume fractions to be reached. Also, the number of substeps 𝑀 as well
as the size of the shrinking factors 𝐿𝑘+1∕𝐿𝑘 have an influence on the achievable filler fractions. For the study at hand, we fix both
the radius 𝑟 and the volume fraction 𝜙, and suppose that the number of spheres 𝑁 is prescribed. Then, we use the prescription

𝐿𝑚 = 𝑚
𝑀

𝑟 3

√

4𝜋𝑁
3𝜙

, 𝑚 = 1, 2,… ,𝑀,

with 𝑀 = 3.
Up to this point, we described the deterministic algorithm where the number of spheres and the initial configurations are fixed.

o create the ensembles, whose study is of primary concern to this article, this data may be drawn from suitable probability
istributions. Typically, we consider the number of spheres to be fixed. Only in Section 5, we consider the case where the sphere
ount 𝑁 is Poisson distributed. Once the number of spheres is fixed, we sample the initial centers of the spheres from a uniform

distribution on the cube 𝑄𝐿1
. We close describing the MCM algorithm with a few remarks.

1. The described strategy works for dimension two with obvious modifications.
2. The computational effort of the MCM algorithm is hidden in computing the pairwise distances (3.2). A naive implementation

requires on the order of 𝑁2 computations, which can be excessive for large 𝑁 . We rely upon cell-linked lists (Mattson and
Rice, 1999) to reduce the complexity to 𝑂(𝑁).

3. In practice, an isolation distance between the spheres is useful to avoid singularities in the solution field. This is realized by
working with a slightly larger radius 𝑟 > 𝑟 when computing the overlap indicator (3.2).

.2. Sequential addition and migration

The mechanical contraction method of Williams and Philipse (2003) also applies to spherocylinders, i.e., cylinders with spherical
aps attached, provided the overlap indicator (3.2) is modified. A microstructure generated in this way may be used as a model of
fiber-reinforced composite by neglecting the spherical caps of the spherocylinders.

In its original form, however, the method can only generate moderate volume fractions without altering the overall fiber
rientation. For this reason, Schneider (2017) modified the overlap energy 𝑊 (3.1) by a penalty term accounting for the orientation.

Also, in order to reach higher volume fractions, instead of successively shrinking the cell, fibers are added incrementally to a cell
of fixed size. The resulting algorithm is called sequential addition and migration (SAM), see Schneider (2017) for details about the
deterministic algorithm.

To specify the studied ensembles, it is necessary to quantify the uncertainty of the initial data of the SAM algorithm. In this study,
we fix the number 𝑁 of cylindrical fibers. The centers of the cylinders are drawn from a uniform distribution on the considered
cube, whereas the long axes of the cylinders follow a uniform distribution on the unit sphere. The latter is drawn by sampling a
vector from a three-dimensional standard normal distribution which is subsequently normalized.

4. Computational results

4.1. Setup

We are concerned with microstructures of particle-reinforced composites. We used the isotropic thermal conductivity of
polypropylene (0.2 W∕(m K)) for the matrix and of E-glass 1.2 W∕(m K)) for the fillers, see Weidenfeller et al. (2005).

The microstructures were discretized on a regular pixel/voxel grid, segmented according to which phase the center of the
ixel/voxel belongs to. Regular voxel meshes (Kim and Swan, 2003; Lian et al., 2013; Talebi et al., 2019) are commonplace
or computational homogenization of industrial-scale microstructures, despite recent advances in mesh generation (Zhao et al.,
016; Sohn, 2018; Ullah et al., 2019). The static thermal equilibrium problem (2.5) was discretized by the Moulinec–Suquet
iscretization (Moulinec and Suquet, 1994, 1998), an underintegrated Fourier–Galerkin discretization (Vondřejc et al., 2014), see
risard and Dormieux (2012) and Schneider (2015) for convergence proofs. For resolving the discrete system, we used the Eyre–
ilton solver (Eyre and Milton, 1999), a Douglas–Rachford type solution method (Schneider et al., 2019), with a tolerance of 10−6,

mplemented in Python with Cython extensions, see Schneider (2019) for more details. We use periodic boundary conditions for the
napshots, although the microstructures are not periodic. Periodic boundary conditions come naturally with the Moulinec–Suquet
iscretization (Moulinec and Suquet, 1994, 1998).

For the circular and spherical inclusions, a desktop computer with a 6-core Intel i7 CPU and 32GB RAM was utilized. A dual-socket
orkstation with 48 cores and 1 TB RAM was used for the short-fiber microstructures.

.2. Spherical inclusions

We investigate mono-disperse spherical fillers as our first example. For generating microstructures, we follow two protocols. The
irst strategy, which we call periodized, generates 𝑁 = 𝐾3 (𝐾 = 2, 4, 8, 16) non-overlapping spheres by the mechanical contraction

method, see Section 3.1. For the second, snapshot strategy, 𝑁 = (2𝐾)3 non-overlapping spheres are packed as before, but we cut out
1∕8th of the structure. Thus, we arrive at a non-periodic structure of identical size as for the previous protocol. For the first protocol,

3 3
10

𝑁 = 𝐾 spheres are chosen to minimize artifacts for small computational cells. Indeed, a regular configuration would support 𝐾
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Fig. 5. 3D comparison of periodically generated cells and increasing number of inclusions, with 23 = 8, 43 = 64, 83 = 512 and 163 = 4096 spheres (from left to
right).

Fig. 6. A large volume element with 𝐾 = 64, i.e., 643 = 262 144 spheres used for computing the reference effective conductivity (4.2).

spheres, whereas integers close to 𝐾3 may lead to artificial gaps in the structure and increase the systematic error. Please notice also
that the first protocol does not involve any stochastic fluctuation when it comes to the achieved volume fraction. Indeed, by fixing
both the filler count and the volume element, the reached volume fraction is fixed. In practice, however, our voxel-based meshing
strategy introduces a (small) fluctuation in the volume fraction. In contrast, the second protocol will cut out 𝑁 = 𝐾3 spheres on
average and a variation of the volume fraction is present. Slightly abusing terminology, we parameterize the cell size by the number
of fillers 𝑁 = 𝐾3, also for the second protocol.

For both approaches, we fill to 30% by the mechanical contraction method of Williams and Philipse (2003) in 10% steps, and
we use an isolation distance of 20% of the sphere’s radius. Results of this microstructure-generation process are shown in Fig. 5.

A unit cell containing 𝐾3 spheres (on average) is discretized by (16𝐾)3 voxels, i.e., the microstructures for 𝐾 = 16 are discretized
by 2563 = 16777216 elements and contain 4096 spheres. Following Khoromskaia et al. (2020), Section 5, we generated 10000
microstructures for 𝐾 = 2, 4, 8, 16 and the two protocols. The most time-consuming step here was generating the snapshot elements
with 𝐾 = 16, because 10000 volume elements, each containing 32768 non-overlapping spheres, needed to be generated quickly.
11
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Table 1
Computed effective conductivities �̄�𝐿 (left, with 99% confidence intervals) and standard deviations (right) in
W/(m K) for the spheres, computed using 10000 realizations and ten realizations for 𝐾 = 64.
𝐾 Periodized Snapshots 𝐾 Periodized Snapshots

2 0.345553 ± 5 × 10−5 0.356449 ± 4 × 10−4 2 0.0017786 0.0172593
4 0.345538 ± 2 × 10−5 0.351227 ± 2 × 10−4 4 0.0006614 0.0080232
8 0.345382 ± 6 × 10−6 0.348215 ± 1 × 10−4 8 0.0002450 0.0043529

16 0.345291 ± 2 × 10−6 0.346698 ± 5 × 10−5 16 0.0000871 0.0020374

64 0.345224 ± 1 × 10−5 – 64 0.0000107 –

Fig. 7. Convergence behavior of the systematic and the random error for spherical inclusions and the periodized/snapshot protocols, normalized according
to Eq. (4.2).

Table 2
Empirical probability (in %, 10000 realizations) of being 1%-close (left) and 0.1%-close (right) to �̄� (4.2) for
spherical fillers and 30% volume fraction.
𝐾 Periodized Snapshots 𝐾 Periodized Snapshots

2 95.77 12.20 2 17.36 1.42
4 100.00 24.06 4 35.29 2.35
8 100.00 45.45 8 76.06 4.68
16 100.00 82.73 16 99.93 10.13

For each of the 10000 generated microstructures, we computed the 11-component of the effective thermal conductivity. To keep
notation simple, we introduce

�̄� = �̄�11 (4.1)

as our quantity of interest. In contrast to the volume fraction, the ground truth for �̄� is not known exactly. For this reason, we need
to resort to computations on a sufficiently large scale. More precisely, we generated ten large microstructures with the periodization
strategy, see Fig. 6, with 643 = 262144 spherical inclusions, discretized by 10243 ≈ 1.07×109 voxels, and computed the reference

�̄� = 0.345228 ± 0.000015 W/(m K). (4.2)

ere, Student’s 𝑡-distribution for 𝑡 = 10 is used for estimating a 99% two-sided confidence interval based on the (−1)-shifted
tandard deviation computed for these ten samples. Compared to the lower Hashin–Shtrikman bound (Hashin and Shtrikman, 1962),
̄HS ≈ 0.338462 W∕(m K), the computed value �̄� is about 2% higher. Table 1 contains the computed means and standard deviations
or 𝐾 = 2, 4, 8, 16 and the periodized/snapshot protocols. The mean values are supplemented by 99%-two sided confidence intervals,
omputed using the standard deviations, and rounded to the highest significant digit. Due to the large number of samples used,
hese confidence intervals are much tighter for 8 ≤ 𝐾 ≤ 16 than for the ten computations on large volume elements, see Fig. 6.

The systematic error for the periodized ensembles is about an order of magnitude smaller than for their snapshot counterparts,
ee Fig. 7(a). For the latter, an 𝐿−1-convergence behavior is evident. From an engineering point of view, a systematic error below
.1% is sufficient — and this is computed using only eight (!) inclusions.

Taking a look at the relative standard deviation, see Fig. 7(b), we observe that the snapshot-sampling strategy leads to a
onvergence rate of 𝐿−1. In contrast, the standard deviation for the periodized ensemble decreases as 𝐿−3∕2. Also, there is a difference
y an order of magnitude between the two protocols.
12
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Fig. 8. First of the ten microstructures with 10242 disks used for computing the effective conductivity (4.3).

Due to proper scaling of the systematic and random errors in Fig. 7, we may also quantify the uncertainty involved in the
computation. Indeed, the random error is about an order of magnitude larger than the systematic error for both protocols.

Mean and standard deviations only provide a limited amount of information concerning the full distribution of the random
variable 𝑎𝐿. For this purpose, and from an engineering perspective, we may ask the following question: Suppose we run only a
single computation, what is the probability of being 1% (0.1%) close to the reference (4.2)?

Using the 10000 computations for each setup, the empirical probabilities are collected in Table 2. We see that, for the periodized
protocol, more than two correct digits are computed with a chance of more than 95% using 23 = 8 spheres. For higher 𝐾, each
of the 10000 computations predicted two significant digits correctly. In contrast, for the snapshot protocol, even using 163 = 4096
spheres led to a lower success probability than for eight spheres in the periodized setting.

Computing the third significant digit with a single run is more challenging, and 𝐾 ≥ 8 is required for the periodized protocol to
have a higher success than failure probability. Only for 𝐾 = 16, i.e., 4096 spheres, three significant digits may be computed almost
surely. Indeed, only 7 out of 10000 runs failed to provide three significant digits.

In contrast, for the snapshot approach, the success probability is about an order of magnitude smaller.

4.3. Circular inclusions

Subsequent to studying spherical inclusions, we turn to circular inclusions in two spatial dimensions. Microstructures of this type
serve as models for continuous fibers, i.e., parallel cylindrical inclusions whose length is much larger than the diameter, and the
effective behavior may be determined from a two-dimensional model. In turn, we may investigate the changes in convergence rates
for stochastic homogenization when decreasing the ambient dimension.

We followed a similar protocol as for the spherical case, with the notable difference that we only need to cut out 1∕4th from a
sample containing (2𝐾)2 disks to obtain the snapshot. To ensure some degree of compatibility, we retained the area-fraction steps
and the isolation distance for the MCM algorithm. We also used (16𝐾)2 pixels for discretizing the geometries filled by 𝐾2 disks, on
average. Due to the two-dimensional situation, we were able to treat larger 𝐾 than for the three-dimensional case.

For reference, we generated ten microstructures with a periodized protocol with 10242 = 1048576 circular inclusions, see Fig. 8,
discretized by 163842 pixels. We obtained a reference conductivity, measured transverse to the fibers, of

�̄� = 0.3174257 ± 0.0000214 W/(m K), (4.3)

including a two-sided 99%-confidence interval based on Student’s 𝑡-distribution for the ten drawn samples, and using identical
material parameters as for the spherical inclusions. Notice that the effective conductivity (4.3) transverse to continuous fibers is
smaller than the effective conductivity of spherical fillers (4.2) at the same filler fraction. Compared to the (two-dimensional) lower
Hashin–Shtrikman bound (Hashin and Shtrikman, 1962), �̄�HS ≈ 0.309090 W∕(m K) the computed value �̄� is about 2.6% higher.

To assess the convergence behavior of the transverse effective conductivity, we generated 10000 microstructures for 𝐾
ranging from 2 to 64 in dyadic steps, both for the periodized and the snapshot protocol, and computed the �̄�-value. The results
are collected in Table 3, together with the estimated standard deviations. For comparison, also the computed value for 𝐾 = 1024
was included. As for the spherical case, the confidence interval for the 𝐾 = 1024 reference computation is comparatively large,
13
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Table 3
Computed effective conductivities �̄�𝐿 (left, with 99% confidence intervals) and standard deviations (right) in
W/(m K) for the circular inclusions, computed using 10000 realizations and ten realizations for 𝐾 = 1024.
𝐾 Periodized Snapshots 𝐾 Periodized Snapshots

2 0.316286 ± 2 × 10−4 0.324902 ± 1 × 10−3 2 0.007254 0.045318
4 0.317640 ± 1 × 10−4 0.320024 ± 7 × 10−4 4 0.004890 0.026951
8 0.317517 ± 6 × 10−5 0.318881 ± 4 × 10−4 8 0.002419 0.014757

16 0.317505 ± 3 × 10−5 0.318172 ± 2 × 10−4 16 0.001181 0.007808
32 0.317459 ± 2 × 10−5 0.317617 ± 1 × 10−4 32 0.000592 0.004039
64 0.317438 ± 7 × 10−6 0.317591 ± 5 × 10−5 64 0.000291 0.002059

1024 0.317426 ± 2 × 10−5 – 1024 0.000021 –

Fig. 9. Convergence behavior of the systematic and the random error for circular inclusions and the periodized/snapshot protocols, normalized according
to Eq. (4.3).

Table 4
Empirical probability (in %, 10000 realizations) of being 1%-close (left) and 0.1%-close (right) to �̄� (4.3) for
circular inclusions.
𝐾 Periodized Snapshots 𝐾 Periodized Snapshots

2 32.35 5.61 2 3.47 0.67
4 50.27 9.47 4 5.47 0.92
8 80.93 17.52 8 10.81 1.78
16 99.25 30.95 16 21.30 3.24
32 100.00 56.77 32 40.60 5.86
64 100.00 87.47 64 72.71 12.31

approximately identical to the 𝐾 = 32 case. This effect is a consequence of using 10 samples for 𝐾 = 1024 instead of 10000 samples
for 𝐾 = 32. Also notice that 𝐾 = 64 corresponds to 𝐾2 = 4096 circular inclusions, discretized on a regular grid with 10242 pixels.

We observe, see Fig. 9(a), that the systematic error of the periodized protocol is consistently smaller than for the snapshot
approach, almost by an order of magnitude. For the snapshot ensemble, the systematic error follows an 𝐿−1-rate, as predicted.
Evaluating the periodized protocol is much more difficult, as the systematic error is extremely small. In particular, and in view of
the confidence interval of the reference computation, see Table 3, we cannot safely provide a convergence rate. For the standard
deviation, see Fig. 9(b), both protocols lead to an 𝐿−1-convergence rate. Thus, in contrast to the spherical case, there is no difference
in convergence rates between the periodized and the snapshot ensemble. We will discuss the reasons behind this effect in Section 5.
The standard deviation for the snapshot approach is about an order of magnitude larger than for the periodized setting. Comparing
the levels of stochastic and systematic error, see Fig. 9, for both approaches the random error is about an order of magnitude larger
than the systematic error.

As for the spherical inclusions treated in Section 4.2, we take a look at the empirical success probabilities of obtaining two and
three correct significant digits, respectively, with only a single computation, see Table 4. For the periodized protocol, 162 circular
inclusions are required to obtain two correct digits with 99% probability, i.e., more than 100 fibers are required. In contrast, for
the snapshot strategy, 322 = 1024 inclusions are required to exceed 50% success probability, a value that is exceeded for 42 = 16
inclusions in case of the periodized protocol.

Obtaining three correct significant digits is difficult in the two-dimensional setting, even for the periodized protocol. Indeed,
2
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even working with 64 = 4096 inclusions leads to a failure rate of about 30%.
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Fig. 10. Periodically generated short-fiber reinforced elements with increasing fiber count.

Fig. 11. Large volume element with 𝐿∕𝓁 = 10, including 76397 fibers. Smaller cell sizes with 𝐿∕𝓁 ∈ {1, 2, 4} are indicated by white boxes in the lower left
corner.

4.4. Short-fiber reinforced composites

Last but not least, we consider short-fiber reinforced composites, i.e., microstructures consisting of non-overlapping cylindrical
inclusions. More precisely, we consider identically shaped cylindrical fibers with length 𝓁 and diameter 𝑑 at an aspect ratio 𝓁∕𝑑 of
20, with an isotropic fiber orientation, encoded by an isotropic fourth-order fiber-orientation tensor (Advani and Tucker, 1987). In
the periodized setting, we fill to 15% volume in three 5%-steps by Sequential Addition and Migration (Schneider, 2017), see Section
3.2, with a minimum distance of 20% of the fiber’s diameter, and consider cubic volume elements 𝑄𝐿, s.t. the edge length 𝐿 is an
integer multiple of the fiber length 𝓁, i.e., 𝐿∕𝓁 = 1, 2, 3, 4, see Fig. 10 for examples. We refer to Altendorf et al. (2014) for a related
study with the periodized protocol.

For the snapshot protocol, we generate cells 𝑄 3
2 𝐿

with the periodized protocol and extract a subcell of dimension 𝐿3. As in the

previous two Sections, we endow the matrix with the (isotropic) conductivity parameters of PP (0.2 W∕(m K)) and the fibers with
those of E-glass (1.2 W∕(m K)). Each fiber is discretized by 5 voxels per diameter (Müller et al., 2015), i.e., 100 voxels per length
𝓁. This translates into (𝐿∕𝓁 × 100)3 voxels in total, i.e., 1003 voxels for 𝐿 = 𝓁 and 4003 voxels for 𝐿 = 4𝓁.
15
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Table 5
Computed effective conductivities �̄�𝐿 (left, with 99% confidence intervals) and standard deviations (right) in
W/(m K) for short fibers, computed using 10000 realizations and ten realizations for 𝐿∕𝓁 = 10.
𝐿
𝓁

Periodized Snapshots 𝐿
𝓁

Periodized Snapshots

1 0.281079 ± 6 × 10−6 0.280321 ± 1 × 10−4 1 0.000223 0.003678
2 0.281211 ± 2 × 10−6 0.280583 ± 5 × 10−5 2 0.000087 0.001823
3 0.281060 ± 1 × 10−6 0.280716 ± 3 × 10−5 3 0.000047 0.001178
4 0.281042 ± 1 × 10−6 0.280766 ± 2 × 10−5 4 0.000031 0.000837

10 0.281008 ± 6 × 10−6 – 10 0.000006 –

Fig. 12. Convergence behavior of the systematic and the random error for short fibers and the periodized/snapshot protocols, normalized according to Eq. (4.4).

Table 6
Empirical probability (in %, 10000 realizations) of being 1%-close (left) and 0.1%-close (right) to �̄� (4.2) for
fibers.
𝐿
𝓁

Periodized Snapshots 𝐿
𝓁

Periodized Snapshots

1 100.00 55.09 1 77.12 6.14
2 100.00 86.54 2 81.91 11.63
3 100.00 98.02 3 100.00 17.85
4 100.00 99.91 4 100.00 24.59

We use the average of 10 computed effective conductivities for samples with 𝐿∕𝓁 = 10 (10003 voxels, see Fig. 11) as the reference:

�̄� = 0.281008 ± 0.0000055 W/(m K), (4.4)

including a 99% two-sided confidence interval, as before. Compared to the lower Hashin–Shtrikman bound (Hashin and Shtrikman,
1962), �̄�HS ≈ 0.262069 W∕(m K), the computed value �̄� is about 6.7% higher. The empirical means of 10000 computed effective
conductivities for the considered volume-element sizes and the two protocols are listed in Table 5, together with two-sided 99%
confidence intervals and standard deviations. For completeness, the reference data (4.4) is also included.

Notice that the confidence intervals are very tight in this setting. Indeed, due to the shape of the inclusions, even for 𝐿 = 𝓁,
twenty fiber diameters fit across an edge of such a volume element. In fact, the confidence interval for 𝐿 = 𝓁 is very close to the
confidence interval for 𝐿 = 10𝓁, as 10000 samples were evaluated for the former, and only ten samples for the latter. Even for the
snapshot-sampling strategy the random errors are small.

This accuracy is also reflected in the normalized systematic and random errors, see Fig. 12(b). For all settings considered, they
do not exceed 2%.

For the systematic error, see Fig. 12(a), the snapshot strategy shows the already familiar 𝐿−1-scaling, whereas the periodized
sampling protocol appears to scale as 𝐿−3 for 𝐿 ≥ 2𝓁. Between 𝐿 = 𝓁 and 𝐿 = 3𝓁, the systematic error does not decrease
monotonically, presumably due to a geometric influence. Indeed, for 𝐿 = 𝓁, an edge of the volume element under consideration is
exactly equal to a fiber length. The comparatively low systematic error for this case may thus be a results of the severe restrictions
in fiber arrangement for 𝐿 = 𝓁. In magnitude, the systematic error for the snapshot approach is about half an order of magnitude
arger than for the periodized sampling.

For the random error, see Fig. 12(b), we observe an 𝐿−1 and 𝐿− 3
2 scaling for the snapshot and periodized protocol, respectively,
16
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Fig. 13. Convergence behavior of the standard deviation for computing the volume fraction 𝜙𝐿 and periodized/snapshot protocols.

standard deviations for both approaches, already evident in Table 5. It is interesting to note that, for the periodized sampling, the
random error is on the same order of magnitude as the systematic error. This behavior contrasts what we observed for spherical
and circular inclusions.

As for the other inclusion types, the empirical probabilities for remaining within 1% (and 0.1%) relative error for only a single
computation are given in Table 6.

For the periodized sampling strategy, each of the 40000 computation was correct to two significant digits. Also, the chance for
obtaining three correct digits exceeds 3∕4 for 𝐿 = 𝓁, already. For 𝐿 = 3𝓁 and above, each individual computation was guaranteed
to feature three correct digits. In contrast, for the snapshot sampling, the success probabilities are much smaller. An edge length
𝐿 = 3𝓁 is required to obtain two correct digits with 98% probability, and the involved effort is at least 33 = 27 times as high as
using an element from the periodized ensemble and 𝐿 = 𝓁. Obtaining higher accuracy than two digits appears out of reach for the
snapshot strategy. Even for 𝐿 = 4𝓁, only a quarter of the 10000 computations led to results with three correct leading digits.

. On the scaling of the random error in three dimensions

This section is intended to complement the results of the previous section. More precisely, we provide insights into the difference
n the decay behavior of the random error for the snapshot ensembles compared to their periodized counterparts. It will also become
lear why we observe this behavior in three spatial dimensions only.

For a random conducting medium with two distinct (positive) conductivities 𝛼1 and 𝛼2, a series expansion in terms of the
aterial-contrast related quantity

𝜌 =

√

𝛼1 −
√

𝛼2
√

𝛼1 +
√

𝛼2

permits identifying the leading-order term in the estimate
√

⟨

‖

‖

�̄� − �̄�𝐿
‖

‖

2
⟩

≤ 4
√

𝛼1𝛼2
√

Var
(

𝜙𝐿
)

𝜌 + 𝑂(𝜌2). (5.1)

We refer to the Appendix for a self-contained derivation. Thus, the decay rate of the random error is closely tied to the decay rate
of the variance of the sampled volume fraction. In Fig. 13(a), we compare the standard deviations of the volume fractions 𝜙𝐿 for
the periodized and the snapshot protocol and spherical fillers.

As the number of inclusions is fixed to 𝑁 =𝐾3 for the periodized ensemble, the volume fractions are exact up to voxelation,
i.e., the rastering process which furnishes each voxel either by matrix or filler material. The latter process, as it is based on the
voxel’s centroid, shows an 𝐿−3∕2-scaling in accordance with the CLT. For the snapshot ensemble, however, we observe an 𝐿−1-
scaling. In addition, we also sampled the number of spherical inclusions from a Poisson distribution, and used the MCM to generate
a corresponding ‘‘periodized Poisson ensemble’’. Unfortunately, if 𝐾 was too small, the number of cells produced by the Poisson
process often led to a filler content that could not be realized by MCM. For this reason, only results for 𝐾 ≥ 4 are shown. Fig. 13(a)
shows an 𝐿−3∕2-decay of the standard deviation for the periodized Poisson ensemble. However, the absolute values are on a higher
level than for the previously discussed protocols. Note that the mean volume fractions for all three considered scenarios and all
considered 𝐾 were within 0.1% relative error of the target 30% volume fraction.
17
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Fig. 14. Magnitude of the autocorrelation function |ℎ|, depending on ‖𝑥‖.

For comparison, the decay rates of the sampled volume fractions of the circular inclusions are shown in Fig. 13(b). Both the
eriodized and the snapshot-sampling strategies are characterized by a 𝐿−1-scaling, in accordance with the CLT.

As an intermediate result, we conclude that the non-standard scaling of the random error, which we observed in Section 4,
s already present at the level of the volume fraction. Fortunately, understanding the sampling of the volume fraction is simpler
han understanding the random error through homogenization. Indeed, there is a (more) direct link between the autocorrelation
unction and the decay behavior of the volume fraction for the snapshot protocol, which arises as the mean of the (random)
haracteristic-function snapshot on cells 𝑄𝐿 of finite size.

For estimating the decay rate of the volume fraction for snapshot ensembles, the notion of integral range (Matheron, 1989;
antuéjoul, 2002) is very useful, and we will quickly summarize the important points.

Suppose that 𝑍 is a stationary random field on R𝑑 with finite second moment. By stationarity, the mean

𝜇 = ⟨𝑍(𝑥)⟩ and the variance 𝜎2 = Var(𝑍(𝑥)) ≡
⟨

(𝑍(𝑥) − 𝜇)2
⟩

are independent of 𝑥 ∈ R𝑑 . For any compact set 𝑉 ⊆ R𝑑 , let us denote by 𝑍𝑉 the random variable obtained by averaging 𝑍 over 𝑉

𝑍𝑉 = −
∫𝑉

𝑍(𝑥) 𝑑𝑥.

𝑍𝑉 gives rise to an unbiased estimator for the mean 𝜇. For 𝜎 > 0, we are interested in the variance of 𝑍𝑉 ,

Var
(

𝑍𝑉
)

=

⟨

(

−
∫𝑉

𝑍(𝑥) 𝑑𝑥 − 𝜇
)2

⟩

≡ 𝜎2 −∫𝑉
−
∫𝑉

ℎ(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦, (5.2)

expressed in terms of the scaled autocorrelation function

ℎ(𝑥) = 𝜎−2 ⟨(𝑍(0) − 𝜇)(𝑍(𝑥) − 𝜇)⟩ . (5.3)

The identity (5.2) uncovers the relation between the variance of the 𝑉 -averaged variable 𝑍𝑉 and the autocorrelation function (5.3).
If ℎ ∈ 𝐿1, the estimate

Var
(

𝑍𝑉
)

≤ 𝜎2 −∫𝑉
−
∫𝑉

|ℎ(𝑥 − 𝑦)| 𝑑𝑥 𝑑𝑦 ≤ 𝜎2

|𝑉 |

−
∫𝑉 ∫R𝑑

|ℎ(𝑥 − 𝑦)| 𝑑𝑥 𝑑𝑦 =
𝜎2‖ℎ‖𝐿1

|𝑉 |

,

olds, i.e., when evaluated on the cube 𝑉 = 𝑄𝐿,

Var
(

𝑍𝑄𝐿

)

≤ 𝜎2 ‖ℎ‖𝐿1 𝐿−𝑑 .

n particular, 𝑍𝑉 converges to the mean 𝜇 (at least) with the CLT scaling. Thus, if the autocorrelation function ℎ decays to zero
sufficiently rapidly, a CLT scaling is ensured. For slower decorrelations, inferior convergence rates may be expected.

For the problem at hand, we are interested in 𝑍 = 𝜒 , the characteristic function of the random inclusions. Then, we calculate

𝜇 = 𝜙 and 𝜎2 = 𝜙(1 − 𝜙)

in terms of the particle volume fraction 𝜙. Also, in terms of the identification 𝜙sn
𝐿 = 𝜒𝑄𝐿

, Eq. (5.2) becomes

Var
(

𝜙sn
𝐿
)

= 𝜙(1 − 𝜙) − − ℎ(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦. (5.4)
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Fig. 15. Normalized standard deviation of the volume fraction and the effective conductivity for spherical particles.

For spherical inclusions, we investigate the autocorrelation function ℎ more closely, see Fig. 14.
Indeed, if the autocorrelation function ℎ has a sufficiently rapid decay, the volume fraction 𝜙𝐿 of the snapshot will decay (at

east) with the CLT scaling. Conversely, a non-CLT scaling must be rooted in slowly decaying decorrelations.
We considered cells with 323 spheres at 𝜙 = 30% as our point of departure, fixed their size and reduced the generated

olume fractions. The resulting empirical autocorrelation functions, for a single realization and computed by an FFT-based
pproach (Fullwood et al., 2008), are shown in Fig. 14(a). The autocorrelation function ℎ at 𝑥 provides the probability of finding an

inclusion both at 𝑦 and 𝑦 + 𝑥 (averaged over 𝑦). As we consider only statistically isotropic ensembles, the autocorrelation function
depends only on the magnitude ‖𝑥‖ of the vector 𝑥. Thus, the oscillations in Fig. 14(a) indicate closely packed spheres with a
minimum distance between them. This is a result of the enforced minimum distance between the inclusions. With this interpretation
in mind, Fig. 14(a) may be inspected more closely. For increasing volume fraction, the number of ‘‘links’’ in closely packed ‘‘chains’’
of spheres increases. Indeed, even for 𝜙 = 20%, only two spheres will be found in the vicinity of a fixed sphere. The third next
sphere will be further apart already. For 𝜙 = 30%, already seven spheres are found close to a given sphere. For comparison, we
also included the 𝜙 = 35% case, which is even more highly packed. Actually, it was not possible to generate 𝜙 = 40% with the
MCM method. Indeed, due to the 20% isolation distance, we generate packings of spheres with a larger radius, and down-scale
those spheres only in post-processing. For 20% isolation distance and a volume fraction 𝜙 = 40%, we would be generating sphere
packings without isolation distance and a volume fraction 𝜙 = 1.23 × 40% = 69.12%. This number exceeds the jamming limit for
spheres in three dimensions, and is thus extremely difficult, if not possible, to be realized by a random packing.

To assess the reliability of the computed autocorrelation functions, we computed ten realizations of the empirical autocorrelation
functions for 643 spheres at 30% volume fraction, and considered the mean and standard deviation of these samples, see Fig. 14(b).
Notice that the mean autocorrelation function reaches the level of the standard deviation for about ten sphere radii and at a level
of about 10−3. Thus, the actual decay rate of the autocorrelation function cannot be identified from these numerical investigations.

Thus, we turn our attention to Eq. (5.4), and assess the normalized quantity
√

Var
(

𝜙sn
𝐿
)

𝜙(1 − 𝜙)
=

√

−
∫𝑄𝐿

−
∫𝑄𝐿

ℎ(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦. (5.5)

directly.
For increasing volume fraction, the normalized standard deviation (5.5) is shown in Fig. 15(a), where we introduced a reference

length scale 𝐿0, s.t. at 𝜙 = 30%, exactly (𝐿∕𝐿0)𝑑 spheres fit inside a cell with volume 𝐿𝑑 to realize this volume fraction. Thus, 𝐿∕𝐿0
is identical to the parameter 𝐾 used previously, but also makes sense for other values of the filler fraction 𝜙. Note that we only ran
1000 simulations to cover the great variety of considered volume fractions.

Interestingly, up to a volume fraction of 20%, the normalized standard deviation is independent of the volume fraction and decays
as predicted by the CLT. Thus, we observe a regime of rapid decorrelation. Increasing the volume fraction further, in particular from
25% to 30%, leads to an incremental change in the convergence rate, continuously changing from the CLT scaling to a 𝐿−1-rate.
In Section 4.2, we considered precisely this regime. Increasing the volume fraction even further retains the 𝐿−1-rate, but leads to
an overall decrease of the standard deviation. Thus, we observe a regime with slow decorrelation but decreased variance due to an
increased degree of spatial order.

The corresponding empirically computed, normalized standard deviation of the effective conductivity is shown in Fig. 15(b).
Similar to the volume fraction, different regimes emerge, corresponding to rapidly decorrelating ensembles which a favorable
convergence rate (slightly inferior than CLT) and ensembles with long-range order, and an associated 𝐿−1-decay.

Motivated by these observations, we turn to the two-dimensional case of circular inclusions.
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Fig. 16. Normalized standard deviation of the area fraction for circular inclusions.

For spherical inclusions, the observed decay rate deteriorates close to the maximum packing fraction (accounting for the
inimum distance). Thus, we similarly increased the packing area fraction for the circular inclusions, see Fig. 16. Using the MCM

lgorithm, area fractions up to 𝜙 = 55% could be reached. Thus, in contrast to the three-dimensional case, the area fraction 𝜙 = 30%
considered in Section 4.3 is not even close to the maximum packing fraction. Thus, the corresponding normalized standard deviation
of the snapshot area-fractions decays with the CLT scaling. Only for much higher area fractions, at about 𝜙 = 50%, an inferior decay
rate of 𝐿− 1

2 appears. Interestingly, in such cases, there is a transition from a 𝐿− 1
2 -scaling up to 𝐾 = 16 to the expected 𝐿−1-scaling

or larger cells.
It appears reasonable that such a transition to the standard CLT scaling should also appear for spherical and cylindrical fillers

n three spatial dimension. However, the necessary size of the volume elements exceeds current computational capacities. Hence,
e cannot observe it in this study.

These guesses on a CLT scaling for sufficiently large cells can also be backed up by theory. Indeed, Jeulin (2016) showed that
odimension-𝑘 linear varieties randomly dispersed in R𝑑 may lead to an 𝐿𝑑−𝑘-scaling of the variance. Willot (2017) demonstrated

that, for cylindrical fibers at low volume fraction, two scaling regimes for the variance of the volume fraction are observed. Indeed,
for small cells, the fibers appear infinitely long, and an 𝐿−1-scaling arises. For sufficiently large cells, larger than about ten (Willot,
2017, Sec. 4.3) times the fiber length, the fibers are ‘‘small’’ compared to the volume, and the expected CLT scaling is recovered.

For the spherical and the circular fillers, a similar behavior is observed. Indeed, due to the microstructure generation process,
the individual fillers interact in chains, or even networks of chains, see Fig. 4. Thus, one-dimensional structures arise. The average
length of these structures depends on the target volume fraction, and, in turn, determines the decay behavior, see Fig. 15(a).

The situation is visualized in Fig. 17. We compare two microstructures with the same microstructure parameters, but generated by
different algorithms. The vanilla RSA method, see Fig. 17(a), leads to a configuration with a much more homogeneous appearance.
In contrast, the MCM tends to form clusters, see Fig. 17(b). This does not come unexpected. Recall that there is a well-defined
jamming limit for RSA, which limits the expected volume fraction to be reached. At this jamming limit, the microstructures attain
a rather homogeneous appearance, essentially due to a lack of non-occupied spots.

In contrast, the MCM is a collective re-arrangement algorithm which permits reaching much larger volume fractions than the RSA.
It will also reach some sort of uniform jamming state, but at a much higher filler content.

Returning to the real material, of course, we cannot ab initio decide which microstructure generation method is suitable for
the microstructured material at hand. However, for matrix-inclusion composites with industrial filler content, we expect collective
re-arrangement algorithms to be more appropriate. Indeed, sequential algorithms like RSA place the inclusions in a successive
fashion. In particular, the correlation length of the emerging ensemble is on the order of the inclusion size, independent of the
filler fraction. At high filler content, and also motivated by the real production processes, the individual particles are expected to
actually affect their neighbors. Indeed, for instance during injection molding, the filler particles interact with each other, both, in
terms of hydrodynamic interactions, and in terms of direct particle–particle collisions. Thus, the correlation length of the produced
microstructured materials actually depends on the filler content, and may cover a few particle sizes for high volume fraction.

To sum up, the observed inferior decay of the random error for the cut microstructures is a consequence of slowly decaying
decorrelations between the particles in the ensemble. The latter are expected to emerge at high filler content, independently of the
microstructure generation algorithm used. Still, homogenization theory applies as long as the considered volume elements are large
compared to the correlation length. Furthermore, in three dimensions and for the considered ensembles, we were unable to work
on sufficiently large volume elements to reach the regime of the classical CLT scaling.

6. Conclusion

This work was devoted to a comparison of two sampling strategies for representative volume elements of matrix-inclusion
composites. More precisely, we investigated a sampling strategy based on periodizing the ensemble and a snapshot approach which
20
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Fig. 17. Visual comparison of two cells with 642 = 4096 circular inclusions at 𝜙 = 30% area fraction, generated by two different algorithms.

extracts the sample from a larger realization. The latter is typical for microstructures obtained via digital imaging techniques, as real
heterogeneous materials are not periodic, in general. Periodized sampling, on the other hand, is quite natural (Sab and Nedjar, 2005)
when generating microstructures of matrix-inclusion composites synthetically. Our curiosity was driven by recent mathematical
results (Clozeau et al., 2021), which show – under very specific assumptions on the ensemble – that the periodization protocol
may be more advantageous than the snapshot approach in terms of the accuracy of the computed apparent properties. From an
engineering point of view, the benefits of periodization were already realized by Sab and Nedjar (2005), who drew attention to the
disturbance of statistical homogeneity introduced by taking a snapshot.

In the engineering literature, it is typical to rely upon only one of the two approaches, or, at least, to compare the results for the
generated microstructures to either computations on a large digital image or experimental data. The objective of the work at hand
was to study both approaches carefully, and to compare the resulting effective properties in the spirit of the seminal work of Kanit
et al. (2003).

To profit from the periodized ensemble, we utilized periodic boundary conditions for the computations, as well. Imposing
Dirichlet or Neumann boundary conditions on rectangular samples of the periodized ensemble disturbs statistical homogeneity in
a similar way as working with the snapshot ensemble. For the snapshot ensembles, we utilized periodic boundary conditions, as
they are known to lie between the Dirichlet and Neumann results, and the associated apparent properties are typically closer to the
effective properties (Kanit et al., 2003; Ostoja-Starzewski, 2006; Salmi et al., 2012).

We considered the simple setting of thermal conductivity and considered the material parameters of E-glass fillers embedded
in a polypropylene matrix, investigating spherical inclusions as well as continuous and short isotropic cylindrical fibers. For the
computational investigations, we relied upon a voxel discretization (Kim and Swan, 2003; Lian et al., 2013; Talebi et al., 2019). It
is well-known that voxelation introduces an additional error compared to the continuous case (Müller et al., 2015; Lian et al., 2013).
However, once the voxel mesh size is fixed, the discretized microstructures may be regarded, both for the periodized ensemble and
the snapshot strategy, as realizations of a corresponding discrete ensemble, very much like the scenario considered by Gloria et al.
(2015). In particular, the changes in the statistical homogeneity of the samples would be present for the discretized setting, as well.
Another source of potential error is given by the threshold of the termination criterion (Schneider, 2021, Sec. 3.6) used for the
computations. To assess its magnitude, we repeated the computational experiments in two spatial dimensions (Section 4.3) with a
tolerance that was one order of magnitude below the previously considered value. Changes in the plots shown in Fig. 9 were not
visible for the naked eye.

In the computational experiments, we considered 10000 realizations for all but the largest microstructures, as, in previous
studies (Khoromskaia et al., 2020; Khoromskaia and Khoromskij, 2020), this number was reported as sufficient to have enough
confidence in the obtained mean apparent properties to deduce precise convergence rates. For all three considered cases, both the
systematic error and the random error for the periodized ensemble were much lower than their snapshot counterparts by roughly
an order of magnitude. Furthermore, for the three-dimensional examples, we observed a different scaling of the random error for
the snapshot strategy than for the periodization approach. In Section 5, we showed that this behavior does no come unexpected in
view of pertinent results from the field of spatial statistics (Matheron, 1989, 1971), in particular related to the notion of integral
range (Lantuéjoul, 2002). Indeed, at high filler fraction, the particles in such composites may actually be strongly correlated to their
neighbors in terms of their spatial position, leading to comparatively long tails in the correlation, encoded in terms of an increased
integral range. Below or close to the integral range, the inferior scaling of the random error emerges.

This work sheds light on the seeming discrepancy between RVE sizes encountered for particle-reinforced composites. Indeed,
the snapshot-based approaches typically predict a larger RVE size than reported for generated microstructures. Indeed, it should be
21
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clear that a larger variance is expected for snapshots inside a large periodic volume compared to the use of a periodic small volume.
As an example, let us take a glimpse at two studies on short-fiber reinforced composites. Altendorf et al. (2014) conduct simulations
on large periodic cells, and compute the variance of the volume fraction as well as the thermal and elastic fields in non-overlapping
subdomains. This well-established strategy (Escoda et al., 2016; Prill et al., 2017; Gasnier et al., 2015; Abdallah et al., 2015; Willot
et al., 2016) aims to minimize edge effects, and is expected to provide ‘‘better’’ results than a pure snapshot strategy. In contrast,
Schneider (2017) works with periodized ensembles generated by the SAM algorithm. Both simulation studies report on isotropic
short-fiber structures with an aspect ratio of about 30. The elastic properties of the fibers coincide, but Schneider considers a higher
filler content (20% vs 15%) and a lower material contrast (matrix with 3.3 GPa vs 2 GPa). Then, Altendorf et al. (Altendorf et al.,
2014, Tab. 3) report that about 3.3 fiber lengths are necessary for volume elements to produce elastic properties with less than 1%
standard deviation, whereas Schneider (Schneider, 2017, Sec. 3.3.1) reports two fiber lengths to yield about 0.15% relative error
compared to a larger-scale result. Although the scenarios are not fully comparable, it appears that small periodized volumes may
be beneficial when solely effective properties are of interest and computational effort is to be minimized.

It would be interesting to understand whether the inferior accuracy associated to the snapshot strategy may be attenuated
via appropriate countermeasures, for instance by statistical methods (Ohser and Mücklich, 2000) or modified correctors (Mourrat,
2019; Abdulle et al., 2019). Also, the investigations underlined the benefits of proper morphological modeling (Jeulin, 2012) and
microstructure-generation tools (Bargmann et al., 2018), even if digital images are available. Indeed, relying upon periodized ensembles
may lead to substantial savings in computational effort compared to the snapshot strategy. It should be noted, however, that it is not
always apparent how to periodize a given ensemble. For instance, Jeulin and coworkers (Jeulin, 2016; Dirrenberger et al., 2014) and
Sukiman et al. (2017) consider infinitely long Poisson fibers. A naive periodization of this ensemble on the torus would almost surely
be space-filling. Still, for many particle-reinforced composites, producing periodized samples within a microstructure-generation
framework is rather obvious, and the benefits may be exploited.

In view of the work of Kanit et al. (2003), we could confirm their observation that the systematic error for periodized ensembles
does not exceed the random error, at least for the material contrast considered, so that the random error is a good indicator for the
total RVE error (Jeulin, 2012, Sec. 5.5).

We chose to work with thermal conductivity and a small material contrast to show the high probabilities for failing to produce
accurate predictions of effective quantities, emphasizing that already for this seemingly innocent scenario, using the naive snapshot
strategy may be suboptimal. Investigating higher material contrast, effective permeability (Abdallah et al., 2015; Willot et al., 2016)
and mechanical problems, in particular inelastic problems, is of immediate engineering interest. Groundwork was already laid by
Kanit et al. (2003), who reported an inferior convergence rate for the random error associated to mechanical problems. Also, Kanit
et al. (2003) argued that the random error scales as the material contrast, which remains to be confirmed by theoretical means.

From the viewpoint of mathematical analysis, this article is a natural continuation of previous work by Khoromskaia et al. (2020),
Khoromskaia and Khoromskij (2020), where quantitative homogenization results for random media were confirmed by numerical
simulations. Indeed, we go beyond the cited work by investigating microstructure models of higher complexity, as is required for
engineering applications. In particular, we break into terrain previously uncharted from a theoretical point of view. The ensemble
which we studied differs from the simpler one of independently drawing particles conditioned on no overlap. The former permits to
reach higher volume fraction than the latter, in general, which is a desirable property for engineering applications. As the studied
ensemble reveals a cross-over in the error scaling at a volume-fraction dependent intermediate length scale, it appears interesting
to investigate this ensemble in more detail.

As quantitative stochastic homogenization crucially relies upon quantitative versions of ergodicity, typically in the form of
functional inequalities in probability, it may be of interest to study which conditions hold for the ensembles considered in this work,
see Duerinckx and Gloria (2020b,a) for investigations covering Poisson–Voronoi tessellations, as treated by Kanit et al. (2003), and
random sequential adsorption. In a similar direction, it might be interesting to study the intermediate length scale below which the
convergence rate of the random error is inferior for snapshots of matrix-inclusion composites. Modified corrector problems (Gloria
and Habibi, 2016; Mourrat, 2019) aim to upgrade the decay of the systematic error to the level of the random error, but typically
assume a CLT scaling of the random error. For the studied matrix-inclusion composites and the snapshot protocol, a strictly inferior
decay of the random error was observed in an intermediate regime for high filler fraction and moderate cell sizes. It appears sensible
to investigate whether those methods that modify the corrector equation (Gloria and Habibi, 2016; Abdulle et al., 2019) improve
the decay of the random error for such ensembles, as well. As opposed to Khoromskaia et al. (2020), we could not (yet) confirm the
optimal convergence rate of the systematic error and properly periodized ensembles predicted by Clozeau et al. (2021). Computations
on even larger cells could reveal the proper decay rate of the systematic error.

A cornerstone of the seminal paper of Kanit et al. (2003) is the concept of integral range in spatial statistics (Lantuéjoul, 2002;
Matheron, 1989), which quantifies the constant in front of the CLT scaling of a second-order stationary random field. In their study
of the homogenization commutator, Duerinckx et al. (2020) related the 𝑄-tensor, introduced by Mourrat and coworkers (Gu and
Mourrat, 2016; Mourrat and Otto, 2016), to the stochastic fluctuations of the apparent properties associated to RVEs. Due to the
characterization (Duerinckx et al., 2020, Thm. 2) in terms of a limiting procedure, the 𝑄-tensor may be regarded as an extension
of the integral range to stochastic homogenization, and a closer investigation appears desirable.
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ppendix. A series expansion for the effective thermal conductivity

In this appendix, we collect the arguments leading to the estimate (5.1)
√

⟨
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‖
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‖

2
⟩

≤ 4
√

𝛼1𝛼2
√

Var
(

𝜙𝐿
)

𝜌 + 𝑂(𝜌2)

for the convenience of the reader. Let us fix some positive definite reference thermal conductivity tensor 𝐴0. By algebraic
manipulations, see Milton (Milton, 2002, Sec. 14.9), for fixed 𝜉 ∈ R𝑑 , the random vector field 𝜉 solves the Eqs. (2.2) and (2.3)
precisely if 𝑝 = (𝐴 + 𝐴0)𝜉 solves the Eyre–Milton equation (Eyre and Milton, 1999)

(Id −𝑌 𝑍0)𝑝 = 2𝐴0𝜉, (A.1)

involving the Helmholtz reflection 𝑌 = Id−2𝛤 and the Cayley mapping 𝑍0 = (𝐴 − 𝐴0)(𝐴 + 𝐴0)−1. As the reflection 𝑌 is orthogonal
and 𝑍0 is an 𝐿2-contraction provided the coefficient field 𝐴 is essentially bounded and uniformly positive definite (Eyre and Milton,
1999), the polarization 𝑝 solving the Eyre–Milton Eq. (A.1) may be represented in terms of a Neumann series

𝑝 = 2
∞
∑

𝑘=0

(

𝑌 𝑍0)𝑘 𝐴0𝜉 (A.2)
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Taking into account 𝑝 = 𝑞 + 𝐴0𝜉, we obtain
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i.e., using that the expectation vanishes on the image of the Helmholtz projector 𝛤 ,
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, (A.3)

To proceed, we restrict our attention to two-phase isotropic composites, i.e., we suppose that the thermal conductivity tensor takes
the form

𝐴 = 𝛼1𝜒 Id +𝛼2(1 − 𝜒) Id (A.4)

in terms of non-vanishing isotropic thermal conductivities 𝛼1 as well as 𝛼2 and the indicator function 𝜒 of a random set. Define
𝐴0 = 𝛼0 Id with 𝛼0 =

√
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i.e.,
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√

𝛼1 −
√

𝛼2
√

𝛼1 +
√

𝛼2
∈ (−1, 1).

Inserting the latter expression into the Neumann series (A.3), we obtain
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which we might also write in the form

�̄�𝜉 =
√
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We recover the known result, see Milton (Milton, 2002, Ch. 14), that, to first order in 𝜌, the volume fraction 𝜙 ≡ ⟨𝜒⟩ determines
the effective conductivity.

For the snapshot ensemble on the cell 𝑄𝐿, an analogous argument yields the representation
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where the constant in the Landau-𝑂 depends on 𝐿 and the snapshot volume-fraction 𝜙sn
𝐿 is a random variable determined by

𝜙sn
𝐿 = −
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The snapshot volume-fraction 𝜙sn
𝐿 leads to an unbiased estimator for the volume fraction 𝜙, i.e.,
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permits bounding the random error in the form
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In particular, the random error is, up to first order in the material contrast dependent parameter 𝜌, determined by the standard
deviation of the snapshot volume-fraction 𝜙sn

𝐿 . We close this Section with a remark: The expansion (5.1) also holds in case of the
periodized ensemble 𝐴per

𝐿 . If the latter is constructed in such a way that the associated volume fraction for specific 𝐿 is such that
𝜙per
𝐿 = 𝜙 holds, the linear term in 𝜌 will vanish for the standard-deviation expansion (5.1), i.e., the random error may be expected

to become smaller. The latter idea has been extended to higher-order terms by Le Bris et al. (2016) and analyzed by Fischer (2019).

References

Abdallah, B., Willot, F., Jeulin, D., 2015. Stokes flow through a Boolean model of spheres: Representative volume element. Transp. Porous Media 109 (3),
711–726.

Abdallah, B., Willot, F., Jeulin, D., 2016. Morphological modelling of three-phase microstructures of anode layers using SEM images. J. Microsc. 263 (1), 51–63.
Abdulle, A., Arjmand, D., Paganoni, E., 2019. Exponential decay of the resonance error in numerical homogenization via parabolic and elliptic cell problems. C.

R. Math. 357 (6), 545–551.
Advani, S.G., Tucker, C.L., 1987. The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol. 31 (8), 751–784.
Altendorf, H., Jeulin, D., Willot, F., 2014. Influence of the fiber geometry on the macroscopic elastic and thermal properties. Int. J. Solids Struct. 51 (23),

3807–3822.
Arjmand, D., Runborg, O., 2016. A time dependent approach for removing the cell boundary error in elliptic homogenization problems. J. Comput. Phys. 341,

206–227.
Armstrong, S.N., Mourrat, J.-C., 2016. Lipschitz Regularity for elliptic equations with random coefficients. Arch. Ration. Mech. Anal. 219, 255–346.
Armstrong, S.N., Smart, C.K., 2016. Quantitative stochastic homogenization of convex integral functionals. Ann. Sci. de LEcole Norm. Super. 49 (2), 423–481.
Babuska, I., 1973. Solution of interface problems by homogenization I. SIAM J. Math. Anal. 7, 603–634.
Bargmann, S., Klusemann, B., Markmann, J., Schnabel, J.E., Schneider, K., Soyarslan, C., Wilmers, J., 2018. Generation of 3D representative volume elements

for heterogeneous materials: A review. Prog. Mater. Sci. 96, 322–384.
Blanc, X., Le Bris, C., 2010. Improving on computation of homogenized coefficients in the periodic and quasi-periodic settings. Netw. Heterog. Media 5 (1),

1–29.
Bouchedjra, M., Boulemia, C., Amrouche, A., 2018. Determination of the RVE size for polycrystal metals to predict monotonic and cyclic elastoplastic behavior:

statistical and numerical approach with new criteria. Eur. J. Mech. A Solids 72, 1–15.
Bourgeat, A., Piatnitski, A., 2004. Approximations of effective coefficients in stochastic homogenization. Annales de L’Intitut H. Poincaré 40, 153–165.
Brisard, S., Dormieux, L., 2012. Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical

method for the homogenization of composites. Comput. Methods Appl. Mech. Engrg. 217 – 220, 197–212.
Chen, L., Gu, B., Tao, J., Zhou, J., 2019. Modelling mesoporous alumina microstructure with 3D random models of platelets. Compos. Struct. 216, 279–289.
Clozeau, N., Josien, M., Otto, F., Xu, Q., 2021. Bias in the representative volume element method: periodize the ensemble instead of its realizations. in preparation.
De Giorgi, E., Spagnolo, S., 1973. Sulla convergenza degli integrali dell’energia per operatori ellitici del secundo ordine. Ann. Sc. Norm. Super. Pisa Cl. Sci. 8,

391–411.
Dirrenberger, J., Forest, S., Jeulin, D., 2014. Towards gigantic RVE sizes for 3D stochastic fibrous networks. Int. J. Solids Struct. 51 (2), 359–376.
Doškář, M., Zeman, J., Jarušková, D., Novák, J., 2018. Wang tiling aided statistical determination of the representative volume element size of random

heterogeneous materials. Eur. J. Mech. A Solids 70, 280–295.
Drugan, W.J., Willis, J.R., 1996. A micromechanics-based nonlocal constitutive equations and estimates of representative volume element size for elastic

composites. J. Mech. Phys. Solids 44, 497–524.
Duerinckx, M., Gloria, A., 2020a. Multiscale functional inequalities in probability: Concentration properties. ALEA Lat. Am. J. Probab. Math. Stat. 17, 133–157.
Duerinckx, M., Gloria, A., 2020b. Weighted functional inequalities: Constructive approach. Ann. Henri Lebesgue 3, 825–872.
Duerinckx, M., Gloria, A., Otto, F., 2020. The structure of fluctuations in stochastic homogenization. Comm. Math. Phys. 377, 259–306.
Egloffe, A., Gloria, A., Mourrat, J.-C., Nguyen, T.N., 2015. Random walk in random environment, corrector equation and homogenized coefficients: from theory

to numerics, back and forth. IMA J. Numer. Anal. 35 (2), 499–545.
El Moumen, A., Kanit, T., Imad, A., 2021. Numerical evaluation of the representative volume element for random composites. Eur. J. Mech. A Solids 86, 104181.
24

http://refhub.elsevier.com/S0022-5096(21)00289-1/sb1
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb1
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb1
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb2
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb3
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb3
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb3
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb4
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb5
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb5
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb5
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb6
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb6
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb6
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb7
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb8
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb9
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb10
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb10
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb10
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb11
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb11
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb11
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb12
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb12
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb12
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb13
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb14
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb14
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb14
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb15
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb16
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb17
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb17
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb17
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb18
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb19
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb19
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb19
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb20
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb20
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb20
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb21
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb22
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb23
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb24
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb24
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb24
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb25


Journal of the Mechanics and Physics of Solids 158 (2022) 104652M. Schneider et al.

E

E
E
F
F

F

F

F
F

G

G

G

G
G

G
G
G
G

G
G
G
G
G

H

H
H
H

H
H
J

J
J
J

K

K

K

K
K

K

K
K

K

K
L
L
L
L
L

L

El Moumen, A., Kanit, T., Imad, A., El Minor, H., 2015. Effect of reinforcement shape on physical properties and representative volume element of
particles-reinforced composites: statistical and numerical approaches. Mech. Mater. 83, 1–16.

scoda, J., Willot, F., Jeulin, D., Sanahuja, J., Toulemonde, C., 2016. Influence of the multiscale distribution of particles on elastic properties of concrete. Internat.
J. Engrg. Sci. 98, 60–71.

vesque, P., 2005. Fluctuations, correlation and representative elementary volume (REV) in granular materials. Poudres Grains 11, 6–17.
yre, D.J., Milton, G.W., 1999. A fast numerical scheme for computing the response of composites using grid refinement. Eur. Phys. J. Appl. Phys. 6 (1), 41–47.
eder, J., 1980. Random sequential adsorption. J. Theoret. Biol. 87 (2), 237–254.
igliuzzi, B., Jeulin, D., Faessel, M., Willot, F., Koishi, M., Kowatari, N., 2016. Modelling the microstructure and the viscoelastic behaviour of carbon black filled

rubber materials from 3D simulations. Tech. Mech. 32 (1–2), 22–46.
ischer, J., 2019. The choice of representative volumes in the approximation of effective properties of random materials. Arch. Ration. Mech. Anal. 234 (2),

635–726.
ischer, J., Otto, F., 2017. Sublinear growth of the corrector in stochastic homogenization: optimal stochastic estimates for slowly decaying correlations. Stoch.

Partial Differ. Equ. Anal. Comput. 5, 220–255.
ritzen, F., Forest, S., Böhlke, T., Kondo, D., Kanit, T., 2012. Computational homogenization of elasto-plastic porous metals. Int. J. Plast. 29, 102–119.
ullwood, D.T., Niezgoda, S.R., Kalidindi, S.R., 2008. Microstructure reconstructions from 2-point statistics using phase-recovery algorithms. Acta Mater. 56 (5),

942–948.
asnier, J.B., Willot, F., Trumel, H., Figliuzzi, B., Jeulin, D., Biessy, M., 2015. A Fourier-based numerical homogenization tool for an explosive material. Mater.

Tech. 103 (3), 308.
hossein, E., Lévesque, M., 2012. A fully automated numerical tool for a comprehensive validation of homogenization models and its application to spherical

particles reinforced composites. Int. J. Solids Struct. 49 (11–12), 1387–1398.
hossein, E., Lévesque, M., 2015. Homogenization models for predicting local field statistics in ellipsoidal particles reinforced composites: Comparisons and

validations. Int. J. Solids Struct. 58, 91–105.
itman, I.M., Askes, H., Sluys, L., 2007. Representative volume: Existence and size determination. Eng. Fract. Mech. 74 (16), 2518–2534.
itman, I.M., Gitman, M.B., Askes, H., 2006. Quantification of stochastically stable representative volumes for random heterogeneous materials. Arch. Appl.

Mech. 75 (2–3), 79–92.
loria, A., 2008. An analytical framework for numerical homogenization. II. Windowing and oversampling. Multiscale Model. Simul. 7 (1), 274–293.
loria, A., 2011. Reduction of the resonance error - part 1: Approximation of homogenized coefficients. Math. Models Methods Appl. Sci. 21 (8), 1601–1630.
loria, A., Habibi, Z., 2016. Reduction in the resonance error in numerical homogenization II: Correctors and extrapolation. Found. Comput. Math. 16, 217–296.
loria, A., Neukamm, S., Otto, F., 2015. Quantification of ergodicity in stochastic homogenization: optimal bounds via spectral gap on glauber dynamics. Invent.

Math. 199 (2), 455–515.
loria, A., Neukamm, S., Otto, F., 2019. Quantitative estimates in stochastic homogenization for correlated coefficient fields. pp. 1–39, ArXiv:1910.05530.
loria, A., Otto, F., 2016. Quantitative estimates on the periodic approximation of the corrector in stochastic homogenization. ESAIM: Proc. Surv. 48, 80–97.
u, Y., Mourrat, J.-C., 2016. Scaling limit of fluctuations in stochastic homogenization. Multiscale Model. Simul. 14 (1), 452–481.
usev, A.A., 1997. Representative volume element size for elastic composites: A numerical study. J. Mech. Phys. Solids 45 (9), 1449–1459.
uven, I., Cinar, K., 2019. Micromechanical modeling of particulate-filled composites using micro-CT to create representative volume elements. Int. J. Mech.

Mater. Des. 15, 695–714.
arper, L.T., Qian, C., Turner, T.A., Li, S., Warrior, N.A., 2012. Representative volume elements for discontinuous carbon fibre composites. Part 2: Determining

the critical size. Compos. Sci. Technol. 72 (2), 204–210.
ashin, Z., Shtrikman, A., 1962. A variational approach to the theory of the effective magnetic permeability of multiphase material. J. Appl. Phys. 32, 3125–3131.
ill, R., 1963. Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids 11 (5), 357–372.
oang, T.H., Guerich, M., Yvonnet, J., 2016. Determining the size of RVE for nonlinear random composites in an incremental computational homogenization

framework. J. Eng. Mech. 142 (5), 04016018.
ou, T.Y., Wu, X.-H., 1997. A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189.
uet, C., 1990. Application of variational concepts to size effects in elastic heterogeneous bodies. J. Mech. Phys. Solids 38, 813–841.
ean, A., Jeulin, D., Forest, S., Cantournet, S., N’Guyen, F., 2011. A multiscale microstructure model of carbon black distribution in rubber. J. Microsc. 241 (3),

243–260.
eulin, D., 2012. Morphology and effective properties of multi-scale random sets: A review. C. R. Mécanique 340 (4), 219–229.
eulin, D., 2016. Power Laws Variance Scaling of Boolean Random Varieties. Methodol. Comput. Appl. Probab. 18 (4), 1065–1079.
iang, M., Ostoja-Starzewski, M., Jasiuk, I., 2001. Scale-dependent bounds on effective elastoplastic response of random composites. J. Mech. Phys. Solids 49

(3), 655–673.
anit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D., 2003. Determination of the size of the representative volume element for random composites: statistical

and numerical approach. Int. J. Solids Struct. 40 (13–14), 3647–3679.
anit, T., Forest, S., Jeulin, D., N’Guyen, F., Singleton, S., 2011. Virtual improvement of ice cream properties by computational homogenization of microstructures.

Mech. Res. Commun. 38 (2), 136–140.
anit, T., N’Guyen, F., Forest, S., Jeulin, D., Reed, M., Singleton, S., 2006. Apparent and effective physical properties of heterogeneous materials: Representativity

of samples of two materials from food industry. Comput. Methods Appl. Mech. Engrg. 195 (33–36), 3960–3982.
hisaeva, Z., Ostoja-Starzewski, M., 2006. On the size of RVE in finite elasticity of random composites. J. Elasticity 85 (2), 153–173.
horomskaia, V., Khoromskij, B.N., 2020. Tensor-based techniques for fast discretization and solution of 3D elliptic equations with random coefficients. pp. 1–25,

ArXiv:2007.06524.
horomskaia, V., Khoromskij, B.N., Otto, F., 2020. Numerical study in stochastic homogenization for elliptic partial differential equations: Convergence rate in

the size of representative volume elements. Numer. Linear Algebra Appl. 27, e2296.
im, H.J., Swan, C.C., 2003. Voxel-based meshing and unit-cell analysis of textile composites. Internat. J. Numer. Methods Engrg. 56 (7), 977–1006.
ouznetsova, V., Geers, M.G., Brekelmans, W.M., 2002. Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational

homogenization scheme. Internat. J. Numer. Methods Engrg. 54 (8), 1235–1260.
ouznetsova, V., Geers, M.G., Brekelmans, W.M., 2004. Size of a representative volume element in a second-order computational homogenization framework.

Int. J. Multiscale Comput. Eng. 2 (4), 575–598.
ozlov, S.M., 1978. Averaging of differential operators with almost periodic rapidly oscillating coefficients. Math. USSR Sbornik 107 (149) (2 (10)), 199–217.
andis, E.N., Keane, D.T., 2010. X-ray Microtomography. Mater. Charact. 61, 1305–1316.
antuéjoul, C., 1991. Ergodicity and integral range. J. Microsc. 161 (3), 387–403.
antuéjoul, C., 2002. Geostatistical Simulation - Models and Algorithms. Springer, Berlin.
arsen, E., 1975. Neutron transport and diffusion in inhomogeneous media. J. Math. Phys. 16, 1421–1427.
e Bris, C., Legoll, F., Minvielle, M., 2016. Special quasirandom structures: A selection approach for stochastic homogenization. Monte Carlo Methods Appl. 22

(1), 25–54.
ian, W.D., Legrain, G., Cartraud, P., 2013. Image-based computational homogenization and localization: comparison between X-FEM/levelset and voxel-based

approaches. Comput. Mech. 51, 279–293.
25

http://refhub.elsevier.com/S0022-5096(21)00289-1/sb26
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb26
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb26
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb27
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb27
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb27
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb28
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb29
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb30
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb31
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb31
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb31
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb32
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb32
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb32
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb33
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb33
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb33
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb34
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb35
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb35
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb35
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb36
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb36
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb36
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb37
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb37
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb37
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb38
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb38
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb38
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb39
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb40
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb40
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb40
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb41
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb42
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb43
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb44
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb44
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb44
http://arxiv.org/abs/1910.05530
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb46
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb47
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb48
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb49
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb49
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb49
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb50
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb50
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb50
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb51
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb52
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb53
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb53
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb53
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb54
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb55
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb56
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb56
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb56
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb57
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb58
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb59
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb59
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb59
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb60
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb60
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb60
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb61
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb61
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb61
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb62
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb62
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb62
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb63
http://arxiv.org/abs/2007.06524
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb65
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb65
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb65
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb66
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb67
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb67
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb67
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb68
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb68
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb68
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb69
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb70
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb71
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb72
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb73
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb74
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb74
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb74
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb75
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb75
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb75


Journal of the Mechanics and Physics of Solids 158 (2022) 104652M. Schneider et al.

M

M
M
M

M
M
M

M
M
M

M

M

M
M
M

M

N
N

N

O
O
O

O
O
P

P

P

Q

R

S
S
S

S

S

S

S
S

S
S
S

S

Š

S
S
S

S

Lubachevsky, B.D., Stillinger, F.H., 1990b. Geometric properties of random disk packings. J. Stat. Phys. 60 (5–6), 561–583.
Ma, J., Sahraee, S., Wriggers, P., De Lorenzis, L., 2015. Stochastic multiscale homogenization analysis of heterogeneous materials under finite deformations with

full uncertainty in the microstructure. Comput. Mech. 55 (5), 819–835.
asson, D., Abdallah, B., Willot, F., Jeulin, D., Mercadelli, E., Sanson, A., Thorel, A., 2015. Morphological modelling of a metal foam supported SOFC configuration.

ECS Trans. 68 (1), 2951–2960.
atheron, G., 1971. The Theory of Regionalized Variables and Its Applications. Paris School of Mines Publication.
atheron, G., 1989. Estimating and Choosing. Springer, Berlin.
atouš, K., Geers, M.G.D., Kouznetsova, V.G., Gillman, A., 2017. A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials.

J. Comput. Phys. 330, 192–220.
attson, W., Rice, B.M., 1999. Near-neighbor calculations using a modified cell-linked list method. Comput. Phys. Comm. 119, 135–148.
eakin, P., 1992. Random sequential adsorption of spheres of different sizes. Physica A 187 (3), 475–488.
ichel, J., Moulinec, H., Suquet, P., 1999. Effective properties of composite materials with periodic microstructure: a computational approach. Comput. Methods

Appl. Mech. Engrg. 172 (1–4), 109–143.
ilton, G.W., 2002. The Theory of Composites. Cambridge University Press, Cambridge.
ing, W.E.P., Zhang, P., 2005. Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Amer. Math. Soc. 18 (1), 121–156.
irkhalaf, S.M., Pires, F.M. Andrade, Simoes, R., 2016. Determination of the size of the representative volume element (RVE) for the simulation of heterogeneous

polymers at finite strains. Finite Elem. Anal. Des. 119, 30–44.
oulinec, H., Suquet, P., 1994. A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes Rendus de

L’Académie Des Sciences. Série II 318 (11), 1417–1423.
oulinec, H., Suquet, P., 1998. A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput. Methods

Appl. Mech. Engrg. 157, 69–94.
ourrat, J., 2019. Efficient methods for the estimation of homogenized coefficients. Found. Comput. Math. 19, 435–483.
ourrat, J.-C., Otto, F., 2016. Correlation structure of the corrector in stochastic homogenization. Ann. Probab. 44 (5), 3207–3233.
oussaddy, H., Therriault, D., Lévesque, M., 2013. Assessment of existing and introduction of a new and robust efficient definition of the representative volume

element. Int. J. Solids Struct. 50 (24), 3817–3828.
üller, V., Kabel, M., Andrä, H., Böhlke, T., 2015. Homogenization of linear elastic properties of short fiber reinforced composites – a comparison of mean field

and voxel-based methods. Int. J. Solids Struct. 67–68, 56–70.
addaf, A., Spencer, T., 1998. Estimates on the variance of some homogenization problems. pp. 1–14, Unpublished Preprint.
guyen, V.P., Lloberas-Valls, O., Stroeven, M., Sluys, L.J., 2010. On the existence of representative volumes for softening quasi-brittle materials-a failure zone

averaging scheme. Comput. Methods Appl. Mech. Engrg. 199 (45), 3028–3038.
iezgoda, S.R., Turner, D.M., Fullwood, D.T., Kalidindi, S.R., 2010. Optimized structure based representative volume element sets reflecting the ensemble-averaged

2-point statistics. Acta Mater. 58 (13), 4432–4445.
hser, J., Mücklich, F., 2000. Statistical Analysis of Microstructures in Materials Science. Wiley, New York.
stoja-Starzewski, M., 2006. Material spatial randomness: from statistical to representative volume element. Probab. Eng. Mech. 21 (2), 112–132.
stoja-Starzewski, M., Schulte, J., 1996. Bounding of effective thermal conductivities of multiscale materials by essential and natural boundary conditions. Phys.

Rev. B 54 (1), 278.
stoja-Starzewski, M., Schulte, J., 1998. Random field models of heterogeneous materials. Int. J. Solids Struct. 35 (19), 2429–2455.
whadi, H., 2003. Approximation of the effective conductivity of ergodic media by periodization. Probab. Theory Related Fields 125, 225–258.
apanicolaou, G.C., Varadhan, S.R.S., 1981. Boundary value problems with rapidly oscillating random coefficients. In: Random Fields, Vol. I, II (Esztergom,

1979). In: Colloq. Math. Soc. János Bolyai, vol. 27, North-Holland, Amsterdam-New York, pp. 835–873.
elissou, C., Baccou, J., Monerie, Y., Perales, F., 2009. Determination of the size of the representative volume element for random quasi-brittle composites. Int.

J. Solids Struct. 46 (14–15), 2842–2855.
rill, T., Jeulin, D., Willot, F., Balach, J., Soldera, F., 2017. Prediction of effective properties of porous carbon electrodes from a parametric 3D random

morphological model. Transp. Porous Media 120 (1), 141–165.
idwai, S.M., Turner, D.M., Niezgoda, S.R., Lewis, A.C., Geltmacher, A.B., Rowenhorst, D.J., Kalidindi, S.R., 2012. Estimating the response of polycrystalline

materials using sets of weighted statistical volume elements. Acta Mater. 60, 13–14.
anganathan, S.I., Ostoja-Starzewski, M., 2008. Scaling function, anisotropy and the size of RVE in elastic random polycrystals. J. Mech. Phys. Solids 56 (9),

2773–2791.
ab, K., 1992. On the homogenization and the simulation of random materials. Eur. J. Mech. A Solids 11, 585–607.
ab, K., Nedjar, B., 2005. Periodization of random media and representative volume element size for linear composites. C. R. Mécanique 333 (2), 187–195.
almi, M., Auslender, F., Bornert, M., Fogli, M., 2012. Various estimates of representative volume element sizes based on a statistical analysis of the apparent

behavior of random linear composites. C. R. Mécanique 340 (4–5), 230–246.
almi, M., Auslender, F., Bornert, M., Fogli, M., 2012a. Apparent and effective mechanical properties of linear matrix-inclusion random composites: Improved

bounds for the effective behavior. Int. J. Solids Struct. 49 (10), 1195–1211.
aroukhani, S., Vafadari, R., Andersson, R., Larsson, F., Runesson, K., 2015. On statistical strain and stress energy bounds from homogenization and virtual

testing. Eur. J. Mech. A Solids 51, 77–95.
avvas, D., Stefanou, G., Papadrakakis, M., 2016. Determination of RVE size for random composites with local volume fraction variation. Comput. Methods Appl.

Mech. Engrg. 305, 340–358.
chneider, M., 2015. Convergence of FFT-based homogenization for strongly heterogeneous media. Math. Methods Appl. Sci. 38 (13), 2761–2778.
chneider, M., 2017. The sequential addition and migration method to generate representative volume elements for the homogenization of short fiber reinforced

plastics. Comput. Mech. 59, 247–263.
chneider, M., 2019. On the Barzilai-Borwein basic scheme in FFT-based computational homogenization. Internat. J. Numer. Methods Engrg. 118 (8), 482–494.
chneider, M., 2021. A review of non-linear FFT-based computational homogenization methods. Acta Mech. 232, 2051–2100.
chneider, M., Wicht, D., Böhlke, T., 2019. On polarization-based schemes for the FFT-based computational homogenization of inelastic materials. Comput. Mech.

64 (4), 1073–1095.
ebsadji, S.K., Chouicha, K., 2012. Determining periodic representative volumes of concrete mixtures based on the fractal analysis. Int. J. Solids Struct. 49 (21),

2941–2950.
edlbauer, D., Lepš, M., 2019. Wang tiling for particle heterogeneous materials: Algorithms for generation of tiles/cubes via molecular dynamics. Appl. Comput.

Mech. 11 (1), 53–76.
egurado, J., Llorca, J., 2002. A numerical approximation to the elastic properties of sphere-reinforced composites. J. Mech. Phys. Solids 50 (10), 2107–2121.
han, Z., Gokhale, A.M., 2002. Representative volume element for non-uniform micro-structure. Comput. Mater. Sci. 24 (3), 361–379.
ohn, D., 2018. Periodic mesh generation and homogenization of inclusion-reinforced composites using an element-carving technique with local mesh refinement.

Compos. Struct. 185, 65–80.
troeven, M., Askes, H., Sluys, L., 2004. Numerical determination of representative volumes for granular materials. Comput. Methods Appl. Mech. Engrg. 193

(30–32), 3221–3238.
26

http://refhub.elsevier.com/S0022-5096(21)00289-1/sb76
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb77
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb77
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb77
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb78
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb78
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb78
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb79
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb80
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb81
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb81
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb81
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb82
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb83
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb84
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb84
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb84
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb85
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb86
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb87
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb87
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb87
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb88
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb88
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb88
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb89
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb89
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb89
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb90
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb91
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb92
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb92
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb92
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb93
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb93
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb93
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb94
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb95
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb95
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb95
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb96
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb96
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb96
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb97
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb98
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb99
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb99
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb99
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb100
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb101
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb102
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb102
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb102
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb103
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb103
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb103
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb104
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb104
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb104
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb105
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb105
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb105
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb106
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb106
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb106
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb107
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb108
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb109
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb109
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb109
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb110
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb110
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb110
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb111
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb111
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb111
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb112
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb112
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb112
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb113
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb114
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb114
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb114
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb115
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb116
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb117
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb117
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb117
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb118
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb118
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb118
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb119
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb119
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb119
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb120
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb121
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb122
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb122
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb122
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb123
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb123
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb123


Journal of the Mechanics and Physics of Solids 158 (2022) 104652M. Schneider et al.

S

T

T

T

T
T

T

U

V
W

W

W
W
W
Y

Y
Z

Z

Sukiman, M.S., Kanit, T., N’Guyen, F., Imag, A., El Moumen, A., Erchiqui, F., 2017. Effective thermal and mechanical properties of randomly oriented short and
long fiber composites. Mech. Mater. 107, 56–70.

waminathan, S., Ghosh, S., 2006. Statistically equivalent representative volume elements for unidirectional composite microstructures: Part II-with interfacial
debonding. J. Compos. Mater. 40 (7), 605–621.

alebi, H., Silani, M., Klusemann, B., 2019. The scaled boundary finite element method for computational homogenization of heterogeneous media. Internat. J.
Numer. Methods Engrg. 118 (1), 1–17.

eferra, K., Graham-Brady, L., 2018. A random field-based method to estimate convergence of apparent properties in computational homogenization. Comput.
Methods Appl. Mech. Engrg. 330, 253–270.

erada, K., Hori, M., Kyoya, T., Kikuchi, N., 2000. Simulation of the multi-scale convergence in computational homogenization approaches. Int. J. Solids Struct.
37 (16), 2285–2311.

orquato, S., 2002. Random Heterogeneous Materials – Microstructure and Macroscopic Properties. Springer, New York.
orquato, S., Jiao, Y., 2010. Robust algorithm to generate a diverse class of dense disordered and ordered sphere packings via linear programming. Phys. Rev.

E 82 (6), 061302.
rias, D., Costa, J., Turon, A., Hurtado, J., 2006. Determination of the critical size of a statistical representative volume element (SRVE) for carbon reinforced

polymers. Acta Mater. 54 (13), 3471–3484.
llah, Z., Zhou, X.-Y., Kaczmarczyk, L., Archer, E., McIlhagger, A., Harkin-Jones, E., 2019. A unified framework for the multi-scale computational homogenisation

of 3D-textile composites. Composites B 167, 582–598.
ondřejc, J., Zeman, J., Marek, I., 2014. An FFT-based Galerkin method for homogenization of periodic media. Comput. Math. Appl. 68 (3), 156–173.
ang, H., Pietrasanta, A., Jeulin, D., Willot, F., Faessel, M., Sorbier, L., Moreaud, M., 2015. Modelling mesoporous alumina microstructure with 3D random

models of platelets. J. Microsc. 260 (3), 287–301.
eidenfeller, B., Höfer, M., Schilling, F.R., 2005. Thermal conductivity, thermal diffusivity, and specific heat capacity of particle filled polypropylene. Composites

A 35 (4), 423–429.
illiams, S., Philipse, A., 2003. Random packings of spheres and spherocylinders simulated by mechanical contraction. Phys. Rev. E 67, 1–9.
illot, F., 2017. Mean Covariogram of Cylinders and Applications to Boolean Random Sets. J. Contemp. Math. Anal. (Arm. Acad. Sci.) 52 (6), 305–315.
illot, F., Abdallah, B., Jeulin, D., 2016. The Permeability of Boolean Sets of Cylinders. Oil Gas Sci. Technol. Rev. DIFP Energies Nouvelles 71 (4), 52.

ue, X., W.E., 2007. The local microscale problem in the multiscale modeling of strongly heterogeneous media: effects of boundary conditions and cell size. J.
Comput. Phys. 222 (2), 556–572.

urinskii, V.V., 1986. Averaging of symmetric diffusion in random medium. Sib. Math. J. 27, 603–613.
hao, J.-X., Coupez, T., Decencière, E., Jeulin, D., Cárdenas-Peña, D., Silva, L., 2016. Direct multiphase mesh generation from 3D images using anisotropic mesh

adaptation and a redistancing equation. Comput. Methods Appl. Mech. Engrg. 309, 288–306.
hikov, V.V., Kozlov, S.M., Oleinik, O.A., 1994. Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, New York.
27

http://refhub.elsevier.com/S0022-5096(21)00289-1/sb124
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb124
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb124
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb125
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb125
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb125
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb126
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb126
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb126
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb127
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb127
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb127
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb128
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb128
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb128
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb129
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb130
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb130
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb130
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb131
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb131
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb131
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb132
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb132
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb132
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb133
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb134
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb134
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb134
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb135
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb135
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb135
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb136
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb137
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb138
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb139
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb139
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb139
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb140
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb141
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb141
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb141
http://refhub.elsevier.com/S0022-5096(21)00289-1/sb142

	Representative volume elements for matrix-inclusion composites - a computational study on the effects of an improper treatment of particles intersecting the boundary and the benefits of periodizing the ensemble
	Introduction
	State of the art
	Contributions

	Theoretical background
	Computational tools
	The mechanical contraction method
	Sequential addition and migration

	Computational results
	Setup
	Spherical inclusions
	Circular inclusions
	Short-fiber reinforced composites

	On the scaling of the random error in three dimensions
	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix. A series expansion for the effective thermal conductivity
	References


