
1. Introduction
Future climate change projections over Africa show the likelihood of increased extreme weather conditions such 
as very hot days (when the maximum temperature exceeds 35°C), heat waves, and high fire-danger days (Engel-
brecht et al., 2015; I. Niang et al., 2014; Vizy & Cook, 2012). Such changes may have a remarkable negative 
impact on climate-sensitive sectors if appropriate mitigation is not undertaken (e.g., Aich et al., 2014; Asseng 
et al., 2011; Knox et al., 2012; Lalou et al., 2019; Lobell et al., 2011; Sidibé et al., 2020; Sultan & Gaetani, 2016; 
Ulrike et al., 2016). Historical and future temperature increases, as well as future changes in precipitation patterns, 
can be highly variable at regional and local scales, with some regions becoming drier and others becoming wetter 
(Im et al., 2015). Understanding the regional signatures of climate variability and -change is especially important 
in West Africa due to its high natural climate variability and its low capacity to adapt to a changing climate. In 
the context of water resources, climate change and the increase of human water demands may cause a decline of 
the flow of the surface water sources by 20%–40% in 2050 in Western Africa (Misra, 2014).

In the context of agro-climate, crops, livestock, and pests are strongly dependent on the availability and the distri-
bution of the water resources, the temperature (Sultan et al., 2019), and other climate variables (de Wit et al., 2005; 
de Wit & van Diepen, 2008). Hence, improved weather and climate forecast information, for example, in terms of 
characteristics of the rainy season (onset, cessation, rainfall amount) and the probability of extreme events (Dieng 
et al., 2018; Laux et al., 2008; Otto et al., 2017; Serdeczny et al., 2017; Waongo et al., 2015), could potentially 
lead to better farming and pastoral management. Maize, sorghum, and millet are widely produced in West Africa 
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and climate change may affect crop phenology, growth, and yield, and impede sustainable crop production in 
the future. Climate change is also projected to have a negative impact on the quantity and quality of feeds for 
livestock. More generally, linkages between meteorological conditions and agriculture have been investigated 
(Deser et al., 2012; Doto et al., 2015; Fisher et al., 2017; Greenstone & Greenstone, 2007; Mechiche-Alami & 
Abdi, 2020; A. Niang et al., 2017; Schlenker & Roberts, 2009; Sharon et al., 2013; Sultan et al., 2019; Sultan & 
Gaetani, 2016). Estimating this information in future climate projections is complex and involves reliable climate 
change scenarios with a credible representation of different hydro-climatological processes (Tall et al., 2018). 
Despite the recent progress in the development of general circulation models (GCMs), the Intergovernmen-
tal Panel on Climate Change (IPCC) indicates that GCMs still exhibit biases in their ability to simulate key 
features of the observed climate system (Randall et al., 2007). The move from global models to regional climate 
models (RCMs) represents a step forward in the ability to simulate details of local climate and climate change 
that cannot be resolved by coarser-resolution GCMs (Di Luca et al., 2012; Jie et al., 2013; Sheau et al., 2017). 
Sylla et al. (2015) illustrated the necessity of performing assessments of climate variability and future climate 
projections using multiple RCMs to estimate the response of the West African climate to global change. Thus, 
many studies in West Africa emphasize the importance of using multiple climate models to account for structural 
uncertainty when assessing climate change impacts on agriculture (Salack et al., 2012, 2015; Sultan et al., 2019), 
on water resources (Hagemann et al., 2013; Zhang et al., 2011) and Malaria predictability (Diouf et al., 2017).

To date, the majority of climate change assessments (e.g., Almazroui et al., 2020; Buontempo et al., 2015; Diallo 
et al., 2016; Diasso & Abiodun, 2017; Diedhiou et al., 2018; Dosio et al., 2015; Dunning & Allan, 2018; Hein-
zeller et  al.,  2018; Quenum et  al.,  2019; Sylla et  al.,  2016; Todzo et  al.,  2020) have investigated changes in 
precipitation and temperature rather than other meteorological forcing variables. In fact, omitting those other 
variables in climate impact models is likely to bias the predicted impacts of climate change on food security and 
agricultural development (Colston et al., 2018). The modeling study of de Wit et al. (2005) has highlighted the 
importance of taking into account surface solar radiation and its covariation with temperatures in estimating the 
impacts of temperature on crop yields. Wind affects the growth of crops in several ways, for example, by causing 
damage jointly with rain at the time of flowering or by increasing crop water requirements by increased evapo-
transpiration rates. Extremely high or low humidity may likewise affect yields. For example, relative humidity 
showed a statistically significant contribution to the yield of maize crop, but it negatively influenced the yield of 
other crops (Ali et al., 2017).

There is a lack of consensus in the future projection sign of mean and extreme climate conditions for West Africa 
(Akinsanola & Zhou, 2019; Dosio et al., 2020; Monerie et al., 2020; Nikiema et al., 2016; Ogega et al., 2020). 
Climate models fail to capture certain characteristics of present-day climate variability and these biases may be 
amplified when climate change effects are included, such as in agricultural climate impact assessments (Clark 
et al., 2016; Kauffeldt et al., 2016; Rosenzweig et al., 2014; Sidibé et al., 2020). If the climate change impact 
model is calibrated with inaccurate hydrometeorological data in the historical period, the impact of climate 
change can lead to wrong conclusions even if the climate change signal (CCS) itself is accurate.

For agricultural impact studies, Glotter et al. (2014) conclude that no climate model output can reproduce yields 
driven by observed climate unless a bias-correction is applied before. Therefore, bias-correction of RCM outputs 
is a necessary and indispensable prerequisite to the data being used in any climate change impact assessment 
(Ghosh & Mujumdar, 2009). The main goal of bias-correction is to adjust the statistical features (mean, variance) 
of RCM outputs in the historical period so that they are more similar to the observations (Ehret et al., 2012; 
Gudmundsson et al., 2012; Maraun, 2016; Teutschbein & Seibert, 2012a). Bias-correction of precipitation and 
temperature have traditionally received more attention (Laux, Rötter, et al., 2021; Piani et al., 2010; Watanabe 
et al., 2012). However, sunshine radiation, relative humidity, and wind speed likewise have significant biases 
in climate models. Various potential bias-correction techniques have been developed and used over the past 
decades, ranging from simple linear scaling to more skillful and advanced distribution matching methods 
(Ajaaj et al., 2016; Chen et al., 2019; Fang et al., 2015; Gutjahr & Heinemann, 2013; Iizumi et al., 2017; Lafon 
et al., 2013; Mehrotra & Sharma, 2016; Ojha et al., 2013; Piani et al., 2010; Singh et al., 2019; Teutschbein 
& Seibert, 2012b; Tiwari et al., 2016). For impact studies, quantile mapping (QM) or cumulative distribution 
function (CDF) transform approaches, which correct the entire distribution of a variable, are often recommended 
(Gudmundsson et al., 2012; Jie et al., 2013; Teutschbein & Seibert, 2012b). Promising results are obtained by 
Oettli et al. (2011) when applying the CDF transform (CDF-t) method (Colette et al., 2012) to climate model 
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outputs. In particular, the authors showed that means and standard deviations of simulated yields of sorghum 
in Senegal are much more realistic with bias-corrected climate variables than those using raw climate model 
outputs. However, this approach, like other QM methods is univariate, that is, it corrects each climate variable 
independently from each other. Studies that have analyzed inter-variable aspects of bias-correction showed that 
univariate QM retains the inter-variable dependencies as represented by the raw climate model outputs (Ivanov 
& Kotlarski, 2017; Wilcke et al., 2013). But these may not correspond to the local inter-dependencies in observa-
tions. The interdependence of key climate variables, such as air temperature and precipitation, can be important 
when modeling crop yields. While rainfall affects plants photosynthesis activities and leaf area, temperature 
affects the length of the crop growing season (Hatfield & Prueger, 2015; Wheeler et al., 2000). To account for 
such interdependencies, multivariate bias-correction approaches need to be developed and applied.

Here, we present a bias-correction method that uses a non-parametric trend-preserving QM approach jointly 
with the multivariate bias-correction approach (MBCn, Cannon, 2018). It takes into account the interdependency 
between all climate variables during the historical (1980–2005) period and applies it to the near-future period 
(2020–2050). This study is limited to the near-future period (2020–2050) and the RCP4.5 since this period 
tends to be less sensitive to uncertainties related to RCP scenarios (IPCC 2013) and also due to our specific 
RCMs high-resolution climate runs from Heinzeller et al. (2018). Additionally, Sylla et al. (2016) reported that 
temperature changes from RCP4.5 and RCP8.5 start to diverge only from around 2050. The present work takes 
advantage of the high-resolution climate simulations of the West African Science Service Center on Climate 
Change and Adapted Land Use (WASCAL, e.g., Dieng et al., 2018; Dieng et al., 2017; Heinzeller et al., 2018) 
project. We further adapt, apply and analyze a post-processing bias-correction method of seven variables that are 
critical for climate impacts assessments: precipitation (Pr), mean near-surface air temperature (Tas), near-surface 
maximum air temperature (Tx), near-surface minimum air temperature (Tn), surface downwelling solar radiation 
(Rad), relative humidity (Rh, 2m), and wind speed (Wd, 10m). This study provides high-resolution regional 
and bias-corrected climate change information for West Africa. Results are relevant for any kind of agricultural, 
hydrological, or health climate change assessments in West Africa.

2. Materials and Methodology
2.1. RCM Data

The present work uses two regional climate simulation models: COnsortium for Small-scale MOdeling in 
CLimate Mode (CCLM) and Weather Research and Forecasting Model (WRF; see Table 1). The simulations 
cover the period 1980–2100 at 0.11° (12 km) spatial resolution over a domain of sufficient size to capture key 
large-scale circulation features that affect regional climate in West Africa including the displacement of the 
Intertropical Convergence Zone and the West African Monsoon (WAM). Comprehensive additional information 
about the domain setup, physical parameterizations, and boundary conditions are given in Dieng et al. (2017) 
and Heinzeller et al. (2018). We summarize the methodologies very briefly below (see Table 1), and refer the 

Driving GCM GCM-center RCM Abbreviations

MPI-ESM-LR Max Planck Institute for Meteorology CCLM4.8.19 CCLM-M

MPI-ESM-MR Max Planck Institute for Meteorology WRF3.5.1 WRF-M

HadGEM2-ES Met Office Hadley Center WRF3.5.1 WRF-H

GFDL-ESM2M National Oceanic and Atmospheric Administration WRF3.5.1 WRF-G

Run CCLM WRF

Radiation Ritter-Geleyn, Ritter and Geleyn (1992) RRTMG LW/SW

Microphysics Doms et al. (2011) WSM5, Hong et al. (2004)

Cumulus Tiedtke, Tiedtke M (1989) Grell-Dévényi, Grell and Devenyi (2002)

Surface layer Heise et al. (2003) Janjic Eta, (Janjic, 1996, 2002)

Land-surface scheme TERRA-ML, Doms et al. (2011) Noah LSM

Table 1 
Characteristics of the WASCAL Regional Climate Models at (0.11°, 12 km) Employed in the Present Study



Journal of Geophysical Research: Atmospheres

DIENG ET AL.

10.1029/2021JD034836

4 of 27

reader to these publications. The regional climate projections are generated by applying a nested approach to two 
domains at 0.44° (50 km) and 0.11° (12 km) resolution. WRF uses a spectral nudging approach and the setup is 
based on the Klein et al. (2015) experiments which include 27 combinations of microphysics, planetary bound-
ary layer, and cumulus parametrization schemes. Climate change projections have been created by downscaling 
the simulations of three global climate models, namely: MPI-ESM MR (Stevens et al., 2013), GFDL-ESM2M 
(Anon, 2012), and HadGEM2-ES (Jones et al., 2011). CCLM is driven by the lateral boundary conditions from 
the MPI-ESM LR (Stevens et al., 2013) and follows the COordinated Regional-climate Downscaling EXperiment 
domain setup (CORDEX; e.g., Giorgi & Gutowski, 2015; Nikulin et al., 2012; Panitz et al., 2014). Compared to 
those of the driving GCMs including MPI-ESM LR over the present climate, CCLM is found to add value over 
the regions affected by the WAM (Dosio et al., 2014).

2.2. Observed Data

Due to data-paucity, it is a challenge in Africa to gather multiple, homogeneous, temporally, and spatially consist-
ent long-term observation-based hydro-meteorological series necessary for evaluating RCM simulations. For 
instance, by intercomparing different data sources and later validate with the RCMs, Panitz et al. (2014) and Sylla 
et al. (2012), reported substantial discrepancies among the different observational data sets. This makes it diffi-
cult to accurately assess the model performance. As a result, this study evaluates the bias-corrected model results 
against three observational data sets that is, two gauge-based gridded observational data sets; Climate Hazards 
Group Infrared Precipitation with Stations (CHIRPS; Funk et al., 2014) available at 0.05°spatial resolution and 
Climate Prediction Center (CPC; Fan & van den Dool, 2008) available at 0.5°spatial resolution. Additional rain-
fall data taken from the Multi-Source Weighted-Ensemble Precipitation (MSWEP; Beck et al., 2017) was used. 
Other data has been used for evaluation including the EWEMBI, which is the newly compiled reference data set 
employed for bias-correction in the ISIMIP2b (Inter-Sectoral Impact Model Intercomparison Project), and covers 
the entire globe at 0.5°spatial and daily temporal resolution from 1979 to 2013. EWEMBI is the combination 
of EartH2Observe forcing data (Calton et al., 2016), ERA-Interim reanalysis data (Dee et al., 2011), WATCH 
forcing data methodology applied to ERA-Interim reanalysis data (WFDEI; Weedon et al., 2014) and NASA/
GEWEX Surface Radiation Budget data (Stackhouse et al., 2011).

Ground-based radiation, wind speed and relative humidity data sets over West Africa are sparse and not publicly 
available. We used ERA5 reanalysis in addition to the EWEMBI product for bias-correction validation.

The ERA5 data were aggregated to a daily time step and the 12 km model simulations were interpolated to 
ERA5 grid for comparison. Thereby, precipitation was re-gridded by using a first order conservative interpolation 
technique (Schulzweida, 2019) and by bilinear interpolation technique for temperatures, relative humidity, wind 
speed, and surface downwelling solar radiation.

2.3. The Bias-Correction Approach

For bias correction, we apply both methods from Cannon (2018) and Cannon et al. (2015).

First, a univariate QM (for the present period) based on an empirical distribution (QME) is applied to correct the 
systematic distributional error relative to historical ERA5. QM equates the observed and modeled CDFs via the 
transfer function constructed using information from the historical period exclusively; information provided by 
the future model projections is ignored.

Second, a relative and absolute change preserving the form of QM, Quantile Delta Mapping (QDM) from Cannon 
et al. (2015) is used to preserve the simulated relative changes in quantiles from future model projections. The 
algorithm combines two steps in sequence: first, the climate model's change signal (Delta) is removed from all 
projected future quantiles; second: the QM is then applied and the projected changes in quantiles are reintroduced 
to the bias-corrected model output.

Third, the multivariate bias-correction based on N-dimensional probability density function transform 
(Cannon, 2018) method is applied. The MBCn is a multivariate extension of QDM in which a random orthogonal 
rotation is applied to both climate model and observed data; the rotated marginal distributions are corrected using 
QDM, and the corrected variables are rotated back. This sequence of multivariate and univariate transformations 
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is repeated until the corrected and observed multivariate distributions match. In this study, 100 iterations were 
conducted. MBCn has been applied in many studies, including Adeyeri et al. (2020) and Meyer et al. (2019).

2.4. Model Performance Indicators

We consider the five east-west belts which characterize the climate and vegetation in the following subregions 
in West Africa: Guineo-Congolian, Guinean, Sudan, Sahel, and Sahara, shown in Figure 1. By definition, our 
study area contains 5 climate zones that differ in terms of water availability, temperature, rainfall distribution, 
and amount during the growing season. The different agroclimatic conditions determine the possibility for rainfed 
agriculture.

We focus on the season from May to September, when cropping activity is at the maximum as referred by the 
United States Department of Agriculture and the International Production Assessment Division (https://ipad.fas.
usda.gov/rssiws/al/crop_calendar/wafrica.aspx).

To assess model performance, we use a variety of validation measures. The selected model skill score (MSS, 
Equation 5) metric reflects height equally weighted components such as the normalized anomalies (r: standard 
deviation for model divided by observed standard deviation, Equation 1), the mean bias (B, Equation 2), the 
mean absolute error (MAE, Equation 3) and the index of agreement (d, Equation 4) as expressed in Adeyeri 
et al. (2020) and Gbode et al. (2019):

𝑟𝑟 =
1

(𝑛𝑛 − 1)

𝑛𝑛
∑

𝑖𝑖=1

(
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Figure 1. Map of West Africa with the focus on five investigated agroclimatic regions (source: CILSS, 2016).

https://ipad.fas.usda.gov/rssiws/al/crop_calendar/wafrica.aspx
https://ipad.fas.usda.gov/rssiws/al/crop_calendar/wafrica.aspx
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where O represents observation or reanalysis, M model output, σ standard deviation, and n number of data points 
in the series.

We additionally compute further agroclimatic indices shown in Table 2 that are relevant for agricultural applica-
tions in West Africa (Sultan et al., 2019).

A paired t-test (alpha = 0.05) was used to test whether there is a significant difference between observations, 
uncorrected, and bias-corrected WASCAL climate simulations. Considering that a common way to analyze 
changes in extremes is to follow the evolution of the percentiles of the daily climate data (Fischer & Knutti, 2016; 
Pendergrass & Knutti, 2018; Salack et al., 2018; Schär et al., 2016), a 99th percentile threshold is used to define 
extreme events over West Africa for the seven hydrometeorological climate variables considered.

3. Observational Uncertainty
Due to the spatio-temporal consistency in reanalysis products, several bias correction studies and related impact 
studies consider reanalysis or a combination from different sources (reanalysis, satellite, observations) as an alter-
native solution for validation studies over regions where observational data are sparse (e.g., Zhang et al., 2011). 
However, due to the highly spatial precipitation variability, it is mostly inaccurately estimated in reanalysis data 
due to its dependence on the type of assimilation method and model physics, thereby leading to uncertainty in the 
output, especially over West Africa. To circumvent this situation, precipitation variable from ERA5 reanalyses 
was evaluated against CHIRPS, CPC, and MSWEP to obtain a certain measure of consistency with the other data 
sets which are mostly rain-gauge based.

Figure 2 shows the observed probability distribution function (PDF) of precipitation for the dry (October–April) 
and wet months (May–September) over the different geographical areas.

The shape of ERA5 PDFs varies from region to region in similar ways to CHIRPS and MSWEP during the dry 
season. During the rainy period, the mean of the PDFs appears to be quite well represented in ERA5, with the larg-
est similarities in the shape of the PDFs being over Sudan, Sahel, and Sahara. Over Guinean, we observe that the 
mean of daily ERA5 precipitation fields tends to be underestimated by less than 1 mm/day. Extreme rain events 
are well represented. ERA5 presents some uncertainty compared with CHIRPS for very small values of precip-
itation (<5 mm) over Guineo-Congolian which agrees with the findings of Quagraine et al. (2020). However, 
the ERA5 PDF usually falls into the observed range, meaning that, statistically, the ERA5 is able to reproduce 
the observed PDF despite a little uncertainty. It is shown that ERA5 brings extensive changes including higher 

User-relevant indices Description

Mean Annual mean temp. Annual mean surface temperature (°C)

Annual max. temp. Annual maximum surface temperature (°C)

Annual min. temp. Annual minimum surface temperature (°C)

Annual wind speed Annual mean wind speed (m/s)

Annual relative humidity Annual mean relative humidity (%)

Annual solar radiation Annual mean solar radiation (W/m 2)

Annual rainfall Total rainfall amount per year (mm/year)

Number of threshold exceedances Annual rainy days Number of days per year with rainfall above 1 mm

Heavy rainfall events Number of days per year with rainfall exceeding 
30 mm/day

Very heavy rainfall events Number of days per year with rainfall exceeding 
50 mm/day

Rainfall intensity Ratio between total annual rainfall and the 
number of rainy days

Very hot days Number of days per year with daily mean surface 
temperature

Table 2 
Relevant Indices for West-Africa (From Sultan et al., 2019)
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spatial and temporal resolutions as well as a generally improved representa-
tion of, for example, precipitation (Gleixner et al., 2020). Another point of 
interest is that the result of the PDFs coincide with the spatial distribution 
of the differences in the average precipitation between ERA5, CHIRPS, 
CPC, and MWSEP (see Figure  S1). The differences between ERA5 and 
CHIRPS are close to 0 in the dry period. The bias is mostly positive around 
0.25  mm/day over the Guineo-Congolian and not statistically significant. 
Tarek et  al.  (2020) compared nine precipitation and two temperature data 
sets over 1,145 African catchments and they find that MSWEP, CHIRPS, 
and ERA5 outperformed the others for most catchments. ERA5 and CPC 
temperature data sets perform very similarly across all combinations, with 
ERA5 generally slightly outperforming CPC. Regarding radiation, relative 
humidity, and wind speed, more differences are evident between the data sets. 
This confirms the difficulty to quantitatively measure or/and estimate them 
since there are even notable differences among different reference data sets. 
EWEMBI shows higher surface downwelling solar radiation than ERA5 in 
both seasons due the improvement of total cloud cover simulation by ERA5 
compared to that in ERA-Interim which are in turn part of the data sources of 
EWEMBI (Famien et al., 2018; Stackhouse et al., 2011).

4. Results
4.1. Evaluation of the MBCn Correction Method

The annual cycles of monthly precipitation sums from RCM outputs and the 
reference data sets (ERA5 and CHIRPS; Figure S2) are investigated over the 
selected regions. Considerable biases exist between the northern and south-
ern parts of the study area. Values greater than 200 mm in the Guineo-Con-
golian and less than 50 mm over the rest of the domain are observed in the 
wet season of May–September, which ultimately discourages the direct appli-
cation of RCM precipitation projections in local climate change assessments. 
Figure 3 shows the results of the comparative spatio-temporal performance of 
the multi-component scores MSS based on the individual model and ERA5 
statistics over sub-domains and variables during the dry period (October–
April) and the cropping period (May–September) during the historical period 
(1980–2005). Each climate zone is represented by the respective numbers: 
Guineo-Congolian (1), Guinean (2), Sudan (3), Sahel (4), and Sahara (5). 
We note that, for instance, there are some variables over some regions where 
the bias-corrected models have the best performance (high MSS values). In 
contrast, small improvements (lowest MSS) are seen after the bias-correc-
tion with values that generally does not exceed the 25% compared to the 
uncorrected performance. In general, corrections yield consistently higher 
validation scores during the wet season (cropping period) for CCLM-M, 
WRF-H, and WRF-M, and the dry period for WRF-G only. From October to 
March (dry season) with the bias-correction, CCLM-M shows a much better 
MSS performance for wind (+75%) compared to WRFs (difference rang-
ing 10%–30%) but maximum temperature over the Sahel and Sahara, surface 
downwelling solar radiation and relative humidity over the whole domain 
do not show much improvement. Regarding the cropping period, CCLM-M 

and WRF-H are found to have good performance except for relative humidity and wind speed, respectively. 
More important is that the MSS is used to compare and rank the different model performances before and after 
bias-correction. The MSS ranges between 0% and 100% (100 for the best and 0 for the worst performing model). 
Based on the model rankings, WRF-G produces the lowest MSS despite the bias correction. A detailed technical 
description of these WRF model simulations is reported in Heinzeller et al. (2018). Overall, WRF-H indicates 
remarkable skills in reproducing the precipitation and temperature climatology, WRF-G being consistently colder 

Figure 2. Probability density functions (PDF) of ERA5 seasonal rainfall 
for dry (October–April) and rainy (May–September) seasons in comparison 
with observations (CHIRPS and MSWEP) over the five climate land points 
during the historical period (1980–2005). The continuous lines belong to 
PDF average and the shading shows the first quartile (0.25) and the maximum 
(0.95) quartile.
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with the lowest precipitation amount. In addition, some authors (e.g., Anon, 2012; Dunne et al., 2012; Elguindi 
et al., 2014) argue that the GFDL-ESM2M differ from observation and present small CCS due to the physical 
ocean component (ocean mean state). Based on the verification techniques, region of focus, and variables of 
interest, the combination of the characteristics of the forcing models and the complexity of physical parametriza-
tion have stronger influences on the representation of the different variables over the monsoon region (Flaounas 
et al., 2011; Gbode et al., 2019; Klein et al., 2015; Noble et al., 2014, 2017). Moreover, we quantify the uncer-
tainties from the boundary conditions, that is, from the different driving GCMs (Figure S9) to highlight if and 
where substantial differences exist. It is found that apart from WRF-M, all RCMs show a relatively low sensitivity 
to the driving GCMs, which can be attributed to the effect of internal model physics (Gnitou et al., 2021; Laux, 
Dieng, et al., 2021).

Results from various studies (e.g., Diallo et al., 2012; Dosio et al., 2019; Gnitou et al., 2021; Saini et al., 2015) 
show that much of the regional-scale variability, which is resolved by the RCM, were not captured by the GCM. 
Consequently, the CCSs are better represented in RCMs than in GCMs (Diallo et al., 2012; Dosio et al., 2019; 
Gnitou et al., 2021; Saini et al., 2015).

To outline the performance of the applied bias-correction method, the validation is carried out by comparing 
individual RCM simulations with ERA5, CHIRPS, and CPC. The differences in the average precipitation, 2m 
temperature, and maximum temperature between the raw individual climate model and ERA5 (Figure S3) and 
the observations (CHIRPS and CPC) before and after error correction during the cropping period (May–Septem-
ber) are presented in Figure 4. The regions with dots mean significant variations (p < 0.05). We noticed that the 
bias-correction of the different average meteorological variables has improved significantly with good perfor-
mance and confirmed in Table S1 in Supporting Information S1. Capturing the conditions preceding and during 
the cropping season plays a role in surface-related processes like soil moisture, which may alter in the context of 
agroclimate, crops, and livestock (Galmarini et al., 2019). The high bias or error in precipitation ranges between 
2% and 20% (10 mm/day). The bias was substantially reduced after the bias-correction, with biases reaching 
values lower than 1 mm/day over large parts of the domain. Further results also demonstrate that the bias-cor-
rection does not affect the minimum precipitation values as much (see Table S1 in Supporting Information S1). 

Figure 3. Spatio-temporal multi-component MSS index performance in dry period from September to April (left panel) and the cropping period from May to 
September (right panel) for rainfall (Pr), mean temperature (Tas), minimum temperature (Tn), maximum temperature (Tx), radiation (Rad), relative humidity (Rh) and 
wind speed (Wd) during the evaluation period (1980–2005). The included climatic zones are represented by a number: 1 = Guineo-Congolian, 2 = Guinean, 3 = Sudan, 
4 = Sahel, and 5 = Sahara. noBC = uncorrected, BC = corrected.
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It can be concluded that the bias-correction for precipitation leads to good results. Previous research has shown 
that CCLM tends to simulate too far to the north the progression of the WAM (Dieng et al., 2018, 2017) and the 
bias-correction seems to correct for this bias reasonably well.

Before the bias-correction, temperature increase (overestimation) of around 0.5°C–5°C (in the order of 1.2%–
3.5%) with daily mean temperatures greater than 35°C, daily maximum greater than 45°C and the minimum of 
30°C are observed across almost all over the Saharan region. Across Guinean and Guineo-Congolian, tempera-
ture decrease (underestimation) of around 1.5°C–5.5°C (in the order of 5.7%–12.5%) is observed (Figure 4 and 
Figure S3). The MBCn-corrected mean temperature is slightly better for CCLM (−0.3%) than all WRF (1%–2.1%) 
in the North but is slightly worse over the coastal regions. The negative bias (before correction) becomes positive 
after correction. This is also confirmed by Adeyeri et al. (2020). While for the maximum temperature, the high 

Figure 4. Mean bias of CCLM-M, WRF-M, WRF-H, and WRF-G for rainfall to CHIRPS, mean and maximum temperature to CPC before and after bias-correction for 
the cropping period (May–September) from 1980 to 2005. Statistically significant changes (t-test) at 95% confidence level are represented by black dots.
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warm bias in the coastal region (around 5°C) becomes less than 1°C. Differences in temperature have decreased 
significantly to values between −5°C and +2°C (before correction) to values between −2°C and 1°C. Corrections 
are smallest for the maximum temperature.

Near-surface wind speed, radiation and relative air humidity (Figure 5) also exhibit strong biases between uncor-
rected RCMs and ERA5 at every site ranging from −38% to 62% (up to 100 W/m 2 for radiation, −50% for relative 
humidity, and up to 16 m/s for wind speed), and in comparison to corrected simulations data the bias decline 
between −1% and 8.3%. The uncorrected relative humidity (Figure S4) is found to be better for most of the 
domain when compared with the EWEMBI. The bias-correction minimizes the difference between models and 
the EWEMBI drastically over Sudan, Sahel, and Sahara.

Figure 5. Mean bias of CCLM-M, WRF-M, WRF-H, and WRF-G for radiation, relative humidity and wind speed to ERA5 before and after bias-correction for the 
cropping period (May–September) from 1980 to 2005. Statistically significant changes (t-test) at 95% confidence level are represented by black dots.
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The overall area-weighted model ensemble mean difference with observations before bias-correction ranged from 
−7.58 to +2.32 mm/day for precipitation, from −4.4°C to 1.8°C for mean temperature, from −6.5°C to 3.4°C for 
maximum temperature, from −2.8°C to +2.8°C for minimum temperature, from −0.4 to +75 W/m 2 for radiation, 
from −43.9% to +13.5% for relative humidity and +2.2 to +6.6 m/s for wind speed. The average difference is 
satisfactorily reduced by bias-correction. This leads to an improved value from −3.5 to 0.6 mm/day for precipita-
tion, −0.4°C to 1.0°C for mean temperature, of −1.3°C to 0.7°C for maximum temperature, of 0.1°C–2.4°C for 
minimum temperature, of −9.7 to +5.1 W/m 2 for radiation, of −4.3% to +0.6% for relative humidity and −0.25 
to +0.29 m/s for wind speed. Model ensemble means outperform the individual RCMs and the driving GCMs 
because the different RCMs are characterized by different biases which partially offset each other in the ensemble 
average (Diallo et al., 2012). The MBCn-corrected model appears to have better reproduced the historical refer-
ence data in this respect.

Since local variations in rainfall, wind, temperature, and clouds are connected with the West African Monsoon 
system (Thorncroft et al., 2011), we extend the analysis of the previous results to investigate how the intercorrela-
tion of different climate variables is represented (Figure S5). We represented the spatial distribution of the spear-
man rank correlation coefficient for different climate variables combinations Pr-Tas, Pr-rad, Rad-Tas, Rad-Rh, 
Tx-Tn, and Wd-Pr for the cropping period at the evaluation period. The climate model ensemble mean vs. the 
ERA5 is used as an example to demonstrate the results. There is a significant negative relationship (correlation 
coefficient is −0.1 to −0.7, p-value = 0.05) between temperature and rainfall, radiation and relative humidity; 
and wind and rainfall in North Africa. There is a significant positive relationship (correlation coefficient is +0.2 
to +0.6, p-value = 0.03) between radiation and precipitation, relative humidity and radiation; and minimum and 
maximum temperature. In addition, all different combinations show RMSE values between 0.05 and 0.15 (results 
not shown) after error correction. The MBCn method has the capability to correct the simulated correlation coef-
ficients and is able to represent the joint dependencies. Figure 6 shows the spatial Taylor diagrams (as expressed 
in RMSE, R, and SD) for the time-averaged MBCn methods applied to all RCMs during the evaluation period 
(1980–2005) for each climatic region of West Africa. In general, the four models have similar skill scores during 
the evaluation period. However, this is dependent on the climate zone. Results show that MBCn considerably 
improves RCM simulations as RMSE values clearly decrease, SD values get closer to observations and R values 
get higher. Nonetheless, in most regions, the extent of improvements is fairly comparable. Higher correlation 
values (between 0.90 and 0.99) and lower RMSE values (0–0.25) are achieved after bias-correction for most 
climatic regions, as also observed by François et al.  (2020). Uncorrected precipitation, relative humidity, and 
wind speed are lower than their bias-corrected counterparts, suggesting that bias-corrected values better repre-
sent the temporal and spatial patterns of these respective variables over West Africa. Meyer et al. (2019) used 
MBCn to investigate the bias-correction effect in hydrological impact studies. They showed that MBCn-corrected 
GCM-RCM data caused more precipitation to fall as snow. The MBCn method improved the data correlation 
coefficients with better RMSE values of between 0.05 and 0.15 after bias correction. This agrees with previous 
studies, for example, Wilcke et al. (2013) and Zscheischler et al. (2019). Moreover, SD values of uncorrected 
RCM vary significantly across climatic regions, showing marked spatial and temporal heterogeneity. There is a 
tendency of larger spatial standard deviation in uncorrected wind speed and precipitation in the arid zone (Sahel 
and Sahara).

Table 3 shows the percentile values derived from historical WASCAL runs for the period from 1980 to 2005. 
Results show that the MBCn method successfully reduced the bias in extreme maximum temperature, relative 
humidity, and wind speed. However, there are still some inherent biases in precipitation and radiation. Addition-
ally, MBCn led to more realistic results for precipitation during the historical reference period. In the water-lim-
ited Sudan, Sahel, and Sahara, the observed 99th percentile of rainfall events are overestimated from 15% (3 mm/
day) to almost 83% (28  mm/day) and the bias-correction led to underestimated values ranging between 3% 
(0.8 mm/day) and 7% (0.5 mm/day). Over the Guinean-Congolian and Guinea regions, the MBCn has the lowest 
negative percentage bias of approximately −10% (5 mm/day) compared to high positive bias (61%, 20 mm/day) 
for the uncorrected case. Uncertainty in the bias-corrected extreme precipitation events is substantially smaller 
than that of uncorrected RCM precipitations (see Figure 7 and Figures S6 and S7). However, the overestimation 
of wet days (i.e., the number of wet days above a specific precipitation threshold), known as the drizzling effect 
(Gutowski et al., 2003) is very typical for dynamical models. Consistent with the previous results, we conclude 
that the MBCn bias-corrected results are much closer to the reference data sets than before the bias-correction, 
but in some cases of course do not perfectly match them. The non-synchronized internal climate variability 
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Figure 6. Taylor diagrams displaying a statistical comparison of RCMs and observation of the seven climate variables in evaluation runs (1980–2005) before (noBC) 
and after (BC) error corrections in the five investigated climate zones.
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Variables Guineo Guinean Sudan Sahel Sahara

Pr(mm) ERA5 47.5 31.8 33.4 24.4 8.0

CHIRPS 59.7 39.6 34.0 20.0 8.9

CCLM-M 42.7(66.3) 30.1(51.2) 32.0(61.1) 23.6(54.4) 7.4(24.4)

WRF-M 45.3(41.2) 32.6(48.4) 33.5(45.5) 24.2(23.7) 7.6(7.2)

WRF-H 44.7(34.1) 32.5(40.2) 33.6(44.8) 24.1(28.7) 7.6(9.8)

WRF-G 46.1(48.6) 32.2(48.2) 32.8(46.3) 23.6(28.1) 7.1(12.6)

Tas(°C) ERA5 27.4 31.8 32.4 35.7 36.5

CCLM-M 27.3(26.8) 28.2(28.6) 32.1(32.4) 35.6(35.8) 36.5(36.8)

WRF-M 28.0(27.6) 29.0(29.5) 32.9(33.1) 35.8(36.4) 36.5(37.3)

WRF-H 27.7(26.1) 28.8(27.9) 32.8(31.2) 35.8(33.5) 36.5(34.3)

WRF-G 28.1(26.4) 29.1(27.8) 33.0(30.4) 35.8(32.7) 36.6(33.6)

Tx(°C) ERA5 32.9 34.1 38.2 43.1 44.3

CCLM-M 32.3(31.1) 33.4(33.8) 37.5(38.2) 42.7(41.9) 44.3(42.8)

WRF-M 33.3(38.9) 34.2(37.6) 38.3(40.8) 43.0(43.9) 44.4(44.5)

WRF-G 33.1(37.5) 34.2(36.1) 38.2(38.8) 43.0(41.0) 44.4(41.1)

WRF-G 33.3(38.4) 34.4(36.2) 38.3(38.0) 39.8(43.0) 44.38(40.2)

Tn(°C) ERA5 22.6 23.3 26.8 29.7 30.5

CCLM-M 23.3(23.5) 24.3(24.3) 27.9(27.5) 30.1(30.6) 30.5(31.5)

WRF-M 23.57(23.0) 24.5(24.2) 28.4(26.7) 30.2(29.9) 30.5(30.6)

WRF-H 23.3(21.5) 24.3(22.6) 28.3(24.9) 30.2(27.5) 30.5(28.61)

WRF-G 23.6(20.8) 24.7(22.0) 28.5(23.8) 30.3(26.5) 30.5(27.3)

Rad(W/m 2) ERA5 251.5 263.5 282.6 295.9 305.9

CCLM-M 232.4(244.5) 253.0(255.3) 272.8(275.9) 292.2(305.3) 306.4(318.3)

WRF-M 258.1(318.1) 263.1(339.0) 280.7(357.1) 367.2(295.9) 306.9(369.1)

WRF-H 255.6(311.8) 259.7(317.2) 279.1(3,324.8) 295.8(339.1) 307.3(348.2)

WRF-G 255.7(325.3) 259.2(329.7) 276.9(340.3) 294.7(354.2) 306.6(362.9)

Rh(%) ERA5 98.7 98.3 97.6 95.1 89.6

CCLM-M 98.7(104.2) 98.3(101.7) 97.6(102.1) 94.9(96.9) 89.4(87.6)

WRF-M 98.6(93.8) 98.3(90.3) 97.6(87.7) 95.0(73.4) 89.3(59.7)

WRF-H 98.7(91.6) 98.3(87.6) 97.6(88.5) 95.1(77.2) 89.3(60.8)

WRF-G 98.7(92.6) 98.3(88.3) 97.6(87.5) 95.6(74.7) 89.4(64.3)

Wd(m/s) ERA5 2.8 2.9 3.7 5.6 6.5

CCLM-M 2.6(16.9) 3.0(17.9) 4.1(19.7) 6.1(21.9) 7.2(21.7)

CCLM-M 2.7(4.2) 3.0(6.5) 3.8(6.3) 5.7(7.8) 6.7(8.8)

CCLM-H 2.7(4.6) 2.9(6.3) 3.8(6.2) 5.7(7.7) 6.6(8.3)

CCLM-G 2.6(5.0) 2.8(6.4) 3.6(6.0) 5.5(7.9) 6.6(9.3)

Note. The MBCn values are bolded.

Table 3 
Comparative Performance of the 99th Percentile for the Different Bioclimatic Zones From May to September During 
1980–2005
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between the reference and simulated data sets can be one of the sources of 
the remaining bias (Cannon, 2016; Chen et al., 2020; Maraun et al., 2017; 
Maraun & Widmann, 2018).

5. Future Climate Change Signal
5.1. Results for Individual Simulations

Here, we investigate how the MBCn bias-correction method modulates the 
CCS of the seven climatic variables (see Section 2), which are essential for 
crop yields, livestock, hydrologic modeling, and the climate change impact 
assessment over West Africa. The CCS is for the scenario period 2020–2050 
relative to the reference period 1980–2005. The predicted characteristics of 
future climate predicted results of four climate models in 2050 under RCP 
4.5 during the cropping period (May–June–July–August–September) are 
presented in Figure 8 (Table 4). The results show that the projected precip-
itation changes differ between models. Indeed, projection studies based on 
GCMs and RCMs are mostly associated with model uncertainties due to the 
initialization and the parameterization schemes (Domínguez et  al.,  2010; 
Klein et al., 2015; Paxian et al., 2016; Tobin et al., 2013), the limited physi-
cal processes representation (Akinsanola & Zhou, 2019; Dosio et al., 2019; 
Saini et  al.,  2015; Stouffer et  al.,  2017) and the model dynamics (Diallo 
et al., 2012; Dosio et al., 2019; Monerie et al., 2020) which inevitably leads 
to uncertain and mixed results regarding the prospects of precipitation.

More recently, Monerie et al. (2020) investigated the causes of the uncertain-
ties in simulating future changes in precipitation over the Sahel, using a set 
of 29 CMIP5 simulations and of 11 CMIP6 simulations. They found that the 
inter-model spread in precipitation change is mostly associated with model 
uncertainties in projecting changes in atmospheric circulation. By compar-
ing large ensemble RCMs from the CORDEX including CCLM, Dosio 
et al. (2019) found that most regions and indices, where results are robust, are 
independent on the choice of the RCM or GCM.

Regarding the influence of the bias-correction on the CCS, Themeβl 
et al. (2012) point out that the bias-correction methods might falsify the orig-
inal CCS of RCMs with extreme values being more strongly affected than the 
means. The bias-corrected RCMs reveal an increase in precipitation amount, 
as already observed by Oyerinde et al. (2017), ranging between 10% and 50% 
in most regions for WRF. A consistent increase in precipitation by more than 
22% under RCP4.5 were reported by Ilori and Ajayi (2020), who used six 
RCMs CORDEX. Contrarily to WRF, CCLM shows a negative (decrease) 

projected precipitation change by up to −60% in the North and the Coastal regions. When comparing GCMs with 
RCMs (not shown), the results indicate that RCMs can change the signal projected by the forcing GCM across 
the Sahel region (8°W–2°E, 12°–17°N), where rainfall change is particularly sensitive to the representation of 
convection (Jackson et al., 2021). Systematic differences can be found between the two model groups in Figure 8. 
For instance, CCLM shows “dry” conditions, that is, projecting a decrease while WRF (“wet”) is projecting an 
increase in mean precipitation. The possible mechanisms of the differences between the change in projected 
precipitation from WRF and CCLM can be delineated by analyzing the possible roles of (a) the changes in atmos-
pheric circulation pattern (e.g., dynamic effect), as well as (b) the background moisture increase due to warming 
(e.g., thermodynamic effect) based on simplified moisture budget analysis at 850  hPa level following Dosio 
et al. (2020). In this respect, Jackson et al. (2021) conclude that the differences between projections of the WAM 
are fundamentally driven by differences in the diurnal cycles of rainfall, moisture convergence, and atmospheric 
humidity. According to the CCLM projections, mean precipitation is expected to decrease over large parts of the 
Sahel, mainly due to the decrease of horizontal moisture flux convergence. In addition, over the Guineo-Con-
golian and Guinean zones, this rainfall change from May to September is a consequence of the reduction in the 

Variables Guineo Guinean Sudan Sahel Sahara

Pr CCLM-M −5.6 −6.4 −2.9 −14.8 −19.2

WRF-M 3.0 9.2 15.6 12.5 38.7

WRF-H 5.3 8.3 12.1 19.5 26.5

WRF-G 4.8 4.8 3.7 4.5 9.4

Tas CCLM-M 0.5 0.6 0.9 1.5 1.7

WRF-M 1 1.0 1.0 0.9 0.9

WRF-H 1.2 1.2 1.2 1.2 1.5

WRF-G 1.0 1.0 1.0 1.2 1.2

Tx CCLM-M 0.9 1.2 1.5 1.9 1.8

WRF-M 0.8 0.9 0.9 1.0 1.1

WRF-H 1.2 1.2 1.1 1.2 1.4

WRF-G 1.0 1.2 1.2 1.2 1.3

Tn CCLM-M 0.9 1.0 1.1 1.5 1.8

WRF-M 1.1 1.1 1.1 1.1 1.2

WRF-H 1.3 1.3 1.3 1.3 1.2

WRF-G 1.1 1.1 1.1 1.2 1.2

Rad CCLM-M 5.7 8.8 10.2 9.4 6.9

WRF-M −1.7 −1.0 −1.2 −1.3 −1.4

WRF-H −0.1 −0.7 −1.4 −1.5 −1.1

WRF-G 1.3 1.5 1.2 0.6 0.2

Rh CCLM-M 5.5 5.2 5.4 0.8 −1.4

WRF-M −0.1 −0.0 0.4 0.4 −0.0

WRF-H 0.1 −0.1 0.3 1.4 1.5

WRF-G −02 −0.2 −0.0 −0.9 −1.3

Wd CCLM-M 4.9 5.0 3.2 −0.7 −2.0

WRF-M 2.4 2.1 1.4 0.6 0.5

WRF-H −1.7 1.7 2.2 4.1 4.2

WRF-G −1.9 −1.6 −0.4 0.6 −1.4

Table 4 
Projected Future Mean Change (%) for the Different Climate Variables 
Over the Different Bioclimatic Zones During the Cropping Period (May–
September) 2020-–050 Relative to the 1980–2005
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number of rainy days, which, in turn, is positively correlated with the dynamic effect of the moisture budget. 
However, it is also demonstrated that the atmospheric circulation changes can affect precipitation changes, offset-
ting the thermodynamic contribution in the Sahel, as it is the case for the WRF simulations. This dynamic effect 
induces local divergence of horizontal moisture flux, resulting in marginal decreases of precipitation in the Sahel 
region. CCLM and WRF show different patterns of changes in mean and extreme precipitation over West Africa, 
which is caused by differences in dynamic contribution. This highlights the important role of atmospheric circu-
lation changes in determining local responses in extreme precipitation.

For near-surface temperatures, despite the inherent uncertainties due to the climate model physics, the region-
ally downscaled climate models remain consistent in the CCS. The RCMs project an increase ranging between 
1°C and 1.8°C whereas CCLM projected temperature tends to become more pronounced (up to 2.2°C) over the 

Figure 7. Bias (%) of CCLM-M, WRF-M, WRF-H, and WRF-G for the rainy days, the heavy rainfall events, the very heavy rainfall events, the rainfall intensity, and 
the very hot days to CHIRPS and CPC after error correction for the cropping period (May–September) from 1980 to 2005. Statistically significant changes (t-test) at 
95% confidence level are represented by black dots.
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Sahel and Sahara. Likewise, Botongho and Tog-Noma (2015) also noticed a temperature increase of 1.8°C under 
RCP4.5 in their study. The magnitudes of the changes are almost uniform for the whole study region except in 
WRF-M which exhibits changes of less than 1.5°C in most areas.

The expected change in radiation is a little higher for CCLM-M (about 12%, 50 W/m 2) as compared to WRF-G 
(about 6%, 10 W/m 2). An interesting case is CCLM, which underestimates radiation over the reference period, 
and subsequently projects a further increase in the future. The differences remain in the order of 6% of the uncor-
rected signal and the basic pattern of surface downwelling solar radiation change is not strongly altered by MBCn. 
This can be related to fact that model biases do not cancel each other out in the calculation of the CCS (Buser 
et al., 2009; Gobiet et al., 2015).

Figure 8. Mean projected relative change in mean precipitation, radiation, relative humidity, and wind speed, and absolute change in maximum temperature for the 
period 2020–2050 with respect to the historical period (1980–2005) using bias-corrected data from WASCAL-RCMs. The median of precipitation; maximum and 
minimum temperatures are shown in Table 4. Projected changes were estimated for the scenario RCP4.5 against the historical period on the season from May to 
September. Statistically significant changes (t-test) at 95% confidence level are represented by black dots.
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The patterns of change in WRF-M and WRF-H show a radiation decrease of up to 5%, except for the Guineo-Con-
golian region for which the solar radiation is projected to increase by up to 5%.

Contrarily, previous studies conducted over West Africa (e.g., Bazyomo et al., 2016; Bichet et al., 2019) using 
regionally downscaled climate model outputs and the highest radiative forcing, predict a negative trend ranging 
from −0.03 to −0.11 W/m 2/year, but agree with our results on the whole distribution to warmer values suggesting 
the largest trend for temperature with a maximum value of 0.08 K/year. Wind speed conditions in 2020–2050 
are fairly similar to baseline period conditions with an increase of up to 10%, while the magnitude of the change 
in surface wind speed varies from −0.5 to 0.1 m/s. Our results seem to confirm the findings from Akinsanola 
et al. (2021) and Sawadogo et al. (2019) although in our study most grid points exhibit projected increases in 
wind speed, rather than decreases as seen for WRF-G. Furthermore, Bichet et al. (2019) concluded that wind 

Figure 9. Percentage changes (%) in the annual rainy days, the heavy rainfall events, the very heavy rainfall events, the rainfall intensity, and the very hot days 
estimated against the historical reference period of 1980–2005 for the cropping period (May–September). Statistically significant changes (t-test) at 95% confidence 
level are represented by black dots.
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speed is expected to increase everywhere by up to +8%. They suggested that the total uncertainty mostly results 
from model intervariability and GCM uncertainty. However, our results suggest that the bias-adjustments tend 
to enhance the CCS, especially for precipitation. Nevertheless, the change signals of the others climate variables 
are largely preserved after bias-correction, except for the maximum temperature over Sahel and Sahara, and the 

Figure 10. Mean projected relative change in model ensemble mean for the cropping period (May–September) in mean 
precipitation (%), radiation, relative humidity, and absolute change in maximum temperature for the period 2020–2050 with 
respect to the historical period (1980–2005) using bias-corrected data from WASCAL-RCMs. The median of precipitation; 
maximum and minimum temperatures are shown in Table 2. Projected changes were estimated for the scenario RCP4.5 
against the historical period. Statistically significant changes (t-test) at 95% confidence level are represented by black dots.
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radiation over Sudan and Sahel in CCLM. The bias-correction reduces the 
high maximum temperature values by up to 1°C and around 5% (25 W/m 2) 
the radiation. Thus, our results demonstrate that the CCS modification by 
bias-correction is a direct consequence of removing model biases, which was 
also suggested by Ivanov et al. (2018). RCP4.5 ranges of expected extreme 
precipitation changes span both negative and positive values, mostly between 
−30% and + 30% for the annual rainy days, −10% and 100% for both heavy 
and very heavy events, up to 40% for precipitation intensity (Figure  9). 
The increase in very hot days persists throughout the whole domain in all 
models. CCLM and WRF are consistent regarding the projections of the very 
hot days, which is similar to the findings of Fitzpatrick et  al.  (2020) and 
Nangombe et  al.  (2019). It must be noted that it is difficult to determine 
which predicted result is the most accurate among the four models in these 
five climatic regions as the individual models have very different behaviors.

5.2. Results for Model Ensemble Mean

Maraun  (2012) suggested that multi-model ensembles need to be applied 
even after bias-correction when model sensitivities vary considerably in 
some regions. Therefore, the MBCn is applied to the model ensemble mean 
in Figure 10 to reduce the errors and consider the results as climate condi-
tions till 2050.

The t-test between baseline (1980–2005) and future periods (2020–2050) 
shows a statistically significant change in rainfall, relative humidity in the 
Northern Zone, and wind speed in the Coastal Zone. Generally, precip-
itation mean values are projected to increase between 5% and 20%, in 
parallel to an increasing maximum temperature of up to 2°C in the Sahara, 
as also reported by Shiru and Park  (2020). In addition, the results high-
light a zonal contrast as illustrated by Sidibé et  al.  (2020) and the mean 
difference between projections and the historical period (2020–2050 minus 
1980–2005) is expected to be 52, 42, 16, and 6 mm/day in Guineo-Congo-
lian, Guinea, Sudan, and Sahara, respectively. This is also consistent with 
our results shown in Figure  11. Increases in minimum temperatures are 
projected to exceed those of maximum temperatures, which is in line with 
the analysis of Bamba et  al.  (2019). The increase of minimum tempera-
ture could be attributed to the higher atmospheric concentration of green-
house gases which absorb and emit infrared radiation during the nights. 
The climate models suggest an increase in radiation of up to 5 W/m 2 and 
the distribution is more extended over the Western Sahel (Senegal and 
neighboring areas) than the rest of the domain. Using the CORDEX multi-
model ensemble mean, Soares et al. (2019) found an increase in solar radi-
ation of up to +15 W/m 2 (8%) with a band along the south Sahel, from 
Guinea to Ethiopia. The spatial correlation of the different climate vari-
able changes are mostly positive in the range of 0.7–0.94 and statistically 
significant, indicating that the original spatial patterns of the changes 
are approximately kept. The multi-model ensemble mean (see Figure S8 
shows a predominant increase in precipitation extremes accompanied by 
less amplification as compared to the individual raw RCM (<40%). These 
extreme conditions have the potential to increase flash floods and runoff 
(Roudier et al., 2014), reduce soil moisture (Diedhiou et al., 2018; Koné 

et al., 2020), and increase the risk of agricultural droughts (Mechiche-Alami & Abdi, 2020). However, it has to 
be mentioned that the bias-correction has the potential to alter the projected patterns of extreme precipitation 
and temperature; this is not limited to this study or region but has been shown for other works (e.g., Adeyeri 

Figure 11. PDFs calculated from the ERA5 data set (black line), the model 
ensemble mean of the four model's before (continue lines) and after bias-
correction (dotted lines) of daily precipitation, maximum temperature for the 
investigation areas. The first row shows Guineo-Congolian; the second row 
shows Guinean, the third row represents the Sudan, the fourth row presents 
the Sahel and the last row represents the Sahara. The blue lines are the model 
ensemble mean PDF for the historical climate (1980–2005) and red lines are 
for the projected climate (2020–2050).
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et al., 2020; Guo et al., 2018; Yin et al., 2020). The projected declines in 
precipitation and increases in temperature in Western Africa contribute to 
the decline in surface and groundwater availability and accessibility, affect 
the agriculture and hydrology sectors. Finally, the bias-correction is found 
to influence the PDFs of different climate variables (Figures 11 and 12), 
which also impacts the CCS. The shape of the PDF is generally conserved 
by the bias correction, for both regions and variables. As for the effect of 
the bias correction, it mainly affects the magnitude of the CCS rather than 
the direction of changes.

6. Summary and Concluding Remarks
This study is seeking an answer to the question: how does the bias-correction 
improve the climate variables and what are the implications for the derived 
future climate? We applied the multivariate bias correction by N-dimensional 
(MBCn) probability function transform method over the historical period 
(1980–2005) and future period (2020–2050) under RCP4.5 climate change 
scenario for seven variables that is, precipitation, mean near-surface air 
temperature, near-surface maximum air temperature, near-surface minimum 
air temperature, surface downwelling surface radiation, relative humidity, and 
wind speed. The MBCn bias-correction takes into account the dependency 
that exists between different variables. This is important, because some stud-
ies neglecting the variable's interdependency have demonstrated substantial 
consequences on future changes in multivariate extremes (Kirchmeier-Young 
et  al.,  2017; Zscheischler et  al.,  2019; Zscheischler & Seneviratne,  2017). 
In particular, we focused on the analysis of discrepancies between the raw 
model and bias-corrected model output to highlight regions where bias-cor-
rection algorithms might influence historical and projected climate data. 
The simulated present-day climate biases and validation for MBCn are first 
presented, followed by an analysis of the change signals. Evaluation of the 
results over five-agro climatic zones has been carried out on a list of priority 
user-based metrics (Sultan et al., 2019). According to the spatial distribution 
maps, the applied method is generally very effective at removing the biases 
and reducing considerably the biases of different measures even though the 
performance of the method varies across spatial and temporal scales. Results 
show higher uncertainty from the correction of precipitation density distribu-
tions than other analyzed variables for West Africa due to the high variability 
of precipitation in the region (Aloysius et al., 2016; Nikulin et al., 2012; Yira 
et al., 2017). The inability of climate models to capture certain characteristics 
is due to the biases directly inherited from the influence of GCM forcings or 
unrealistic large-scale variability, poor representation of internal variability, 
and imperfections in parameterization schemes and unresolved orography 
at the subgrid-scale orography (Eden et al., 2012; Ehret et al., 2012). This 
consequently affects the bias-correction performance because MBCn does 
not correct such effects. In Sudan and Sahel regions, where the correlation 
between temperature and precipitation is strongly negative, the MBCn mean 

temperature for wet months (May–September) is 0.5°C higher than the uncorrected data. On the other hand, 
poor bias-correction performance in adjusting the observed distribution of daily rainfall, mainly in the Guinean 
region over the historical period, affects the model's ability to reproduce varying extreme precipitation metrics. 
All sub-regions of West Africa are likely to experience a further decrease in annual precipitation and a further 
increase of extremes under RCP4.5. CCLM and WRF downscaling add value in terms of present-day climate 
simulations with improved resolution and are able to produce more reliable projection results at the regional scale. 
However, it should be noted that large uncertainties still exist in future projections. In general, the four RCMs 
do not agree on the same positive/negative sign of change in the magnitude of the seven climate variables for all 

Figure 12. Same as Figure 11 but for surface downwelling solar radiation and 
relative humidity.
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grid points covering the study area. In this study, CCLM and WRF are driven by MPI-ESM-LR, MPI-ESM-MR, 
GFDL-ESM2M, and HadGEM2-ES, respectively. To properly explain the difference of projections to the RCM 
itself or its driving GCM, the simulation of CCLM driven by GFDL-ESM2M and HadGEM2-ES is needed first. 
A multiple physical parameterization scheme ensemble as done in WRF is also needed by CCLM to fully cover 
the future climate change uncertainty. Second, WRF adopts an intermediate solution by conducting 11 yr time 
slice experiments to allows for a one-year spin-up of the soil conditions each time. Therefore as CCLM, a contin-
uous run for WRF over the whole period is needed to fully cover the decadal variability.

The model ensemble mean shows a statistically significant mean change in rainfall, relative humidity in the 
Northern Zone, and wind speed in the Coastal Zone with increasing maximum summer temperature to 2°C in 
the Sahara region. The heavy and very heavy precipitation mean change show areas of alternating positive and 
negative changes moving from north to south, but a prevailing decrease in precipitation. Similarly, the mean and 
maximum temperature ensemble mean is projected to rise significantly across the northern Sahel, and Sahara 
regions respectively with a median increase of more than 3°C.

Caution has to be taken when correcting large geographical areas such as in our case here since the iterations 
permitted to reach convergence between model and observation need more computation time especially with more 
variables involved (Cannon, 2016). François et al. (2020) found that moving from a larger to a small domain conse-
quently results in a good compromise between the number of iterations, the time needed for calculation, and the 
multivariable convergence. Also, the higher the number of dimensions to correct, the stronger the deterioration of 
rank chronology of the simulations (François et al., 2020). Even though the MBCn approach is applied over a big 
domain and over different climate zones in this study, future work needs to be more region-specific. Addressing 
these caveats by a more thorough analysis of constraints for multivariate bias-correction might further probe the 
possibilities and limitations of this method for analyzing climate-impact simulations over West Africa character-
ized by rainfed food crops. Hence, to fill the void, we first need to consider a large ensemble of downscaled GCMs 
climate simulation output. Second, we suggest to exclude simulations with severe and clearly demonstrated defi-
ciencies (Herger et al., 2018; Maraun et al., 2017; Sippel et al., 2016) by using more representational observations 
data sets (Cortés-Hernández et al., 2016; Zscheischler & Seneviratne, 2017). Further investigations on a cross-val-
idation protocol for MBCn bias-correction methods should be carried out for impacts that incorporate multiple, 
inter-dependent climate drivers as agricultural yields. Thus, the validation results could be analyzed and compared 
with a broad combination of indices to assess the added-value and/or any undesired effect of bias-correction.

Data Availability Statement
The raw RCM data can be obtained from https://doi.org/10.1594/PANGAEA.880512 (WRF) and from http://doi.
org/10.5281/zenodo.1255882 (CCLM).
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