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Electric double-layer (EDL) formation occurs at any electrode–
liquid electrolyte electrochemical interface. Understanding 
the EDL structure and dynamics is at the centre of the energy–

water research nexus because it can advance electrochemical 
applications that range from energy storage and conversion to ion 
separation, water desalination, sensing and actuation1,2. At a planar 
polarized metal electrode, the electrolyte solvent and ions undergo 
adsorption based on their charge, solvation state and relative con-
centration with respect to the bulk electrolyte. In the initial formal-
ism proposed by Conway3, the resulting electrochemical capacitance 
is separated into an EDL capacitance that involves non-specifically 
adsorbed ions (where charge is induced, but not transferred) and an 
adsorption pseudocapacitance that involves specifically adsorbed 
ions and protons chemically bound to the electrode.

There has been vigorous discussion in the literature about the 
distinction between these two capacitances4,5, which includes a 
challenge on the utility of the concept of pseudocapacitance itself6,7. 
It was argued that the electrochemical response of some pseudo-
capacitive materials could not arise from redox reactions, but 
instead is the consequence of EDL formation at metallically con-
ductive materials, or of separate surface redox and EDL processes6,7. 
Furthermore, there are numerous interpretations of the ‘true’ mean-
ing of pseudocapacitance with strict borders drawn around each 
individual storage mechanism that primarily aim to discourage 
researchers from mischaracterizing ‘fast’ battery materials as pseu-
docapacitors5,8. In a recent review9, the current interpretations of 
pseudocapacitance are described in more detail.

In this Perspective, we consider the crucial role of confine-
ment to present a unified view of electrochemical capacitance at 
non-ideal interfaces. The electrochemical interface in most tech-
nological applications is not planar, but involves porous or layered  

materials that offer varying degrees of electrolyte confinement  
(Fig. 1). Understanding of electrosorption in such materials requires 
a more refined view of the capacitive mechanism. The purpose of this  
Perspective is to provide an overview of the current understanding 
and discuss open questions regarding electrochemical capacitance, 
and charge storage in general, in porous and layered materials. We 
also propose a concept to reconcile different viewpoints on elec-
trochemical capacitance by considering the continuum between 
double-layer capacitance and Faradaic intercalation under con-
finement. Rather than to strictly delimit each storage mechanism, 
we hypothesize that there can be a seamless transition based on 
the increased charge transfer between an electrolyte ion and host 
associated with the extent of ion desolvation and confinement. We 
first consider the electrochemical interface from electrosorption 
at a two-dimensional (2D) planar surface to electrosorption at 3D 
porous carbon electrodes with a continuous reduction in pore size 
in a step-by-step manner of increasing complexity. Then, we draw 
a parallel to porous or layered materials traditionally considered to 
undergo complete charge transfer with the intercalated ions (asso-
ciated with, for example, a measurable change in the valence of a 
transition metal). We show that in these materials, partial solvation 
or the presence of solvent in the interlayer space can reduce the 
interaction of intercalated ion and host and thereby cause a phe-
nomenon comparable to specific electrosorption or intercalation 
pseudocapacitance.

Electric double-layer at planar electrochemical interfaces
We first review ion adsorption at planar electrochemical interfaces, 
as this forms the foundation of our understanding of electrochemi-
cal adsorption phenomena. The nature of ion solvation at a planar 
electrochemical interface (Fig. 1a) determines how the ion interacts 
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with the electrode and is critically important to understand electro-
chemical capacitance under confinement. In the case of strong ion 
solvation, the electrode’s interaction will be primarily electrostatic, 
in which ions remain in the outer Helmholtz plane. This type of 
interaction can be considered as the induction of charge at the elec-
trochemical interface10. Ions that are not solvated or shed their sol-
vation shell (at least partially) can undergo specific or quasi-specific 
adsorption in the inner Helmholtz plane and chemical bonding 
to the electrode10, the case that was termed adsorption pseudo-
capacitance by Conway3. The shedding of a solvation shell can be 
described as a charge transfer reaction between the electrode and 
adsorbed ion, as exemplified here for the case of the specific adsorp-
tion of a hydrated cation11:

M(H2O)z+m + n∗H2O+ δe− ↔
∗M(H2O)

(z−δ)+
m−x

+(n+ x)H2O
(1)

Here, M(H2O)z+m  represents a hydrated cation, n*H2O represents 
−

carbon nanopores (Fig. 2a)13,14. Confinement of ions in subnano-
metre pores can lead to their (partial) desolvation, which results in 
a capacitance increase, deviating from the linear dependence on the 
surface area15. Of particular interest is the appearance of reversible 
peaks on the capacitive double-layer cyclic voltammogram (CV) 
signature when the carbon pore size is close to the effective ion size 
(Fig. 2b). This additional reversible charge is hypothesized to origi-
nate from increased interactions between the ions and the carbon 
host in the confined nanopore environment when the ion solvation 
shell becomes (partially) stripped off18,19.

Important understanding of the EDL under confinement comes 
from computational and theoretical studies directed towards under-
standing the role of the molecular and nanoconfined microenviron-
ment in the performance of capacitive storage devices. As discussed 
in a recent review, these involve techniques from first principles 
through atomistic simulation to coarse-grained descriptions (such 
as classical density functional theory)20. Many of these theoretical 
efforts were made to understand the increase of capacitance when 
the electrode pore size is comparable with the dimensionality of 
ionic species21–23.

Even for solvent-free electrolytes, such as ionic liquids, confine-
ment effects can cause an increased capacitance when the ion size 
matches the pore size24. For example, Kondrat et al. pointed out that 
the surge in capacitance is caused by image forces that exponentially 
screen out the repulsion of the same-charge counterions inside nar-
row pores25. The existence of a superionic state (creation of co-ion 
pairs), such as that theoretically predicted by Kornyshev’s group, 
was confirmed experimentally by X-ray scattering of ionic liquid 
in 0.7 nm pores of carbide-derived carbon25,26. Even though there is 
no solvent present in a classical sense, the disruption of the network 
(bulk order) of an ionic liquid (where anions typically surround cat-
ions) due to nanoconfinement was shown to increase the capaci-
tance due to the increased presence of co-ions in the ‘first solvation 
shell’ of electrosorbed ionic liquid ions. Ions of the same charge can 
be present next to each other in narrow pores, thus ‘breaking’ the 
Coulomb law26. These insights allow the effective tailoring of the 
carbon pore structure and the increase of the specific capacitance 
of nanoporous carbons27. The effects of confinement on ion desol-
vation and/or arrangement in porous electrodes lead to deviations 
from the classic EDL model at the planar interface. This causes the 
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Fig. 1 | Overview of electrochemical interfaces with varying degrees of electrolyte confinement. a, Electrosorption at an ideal (planar) electrochemical 
interface, in which the degree of ion solvation defines whether the ion is non-specifically adsorbed (charge is induced, but not transferred) or specifically 
adsorbed (and undergoes charge transfer). b, Ion electrosorption under confinement within a typical porous carbon, in which the pore size determines 
the degree of ion solvation. c, Ion electrosorption under confinement within a layered material (between 2D layers), in which the interlayer distance 
determines the degree of ion solvation. O and H atoms are represented by red and white spheres, respectively. IHP, inner Helmholtz plane; OHP, outer 
Helmholtz plane.

electrode-surface-adsorbed water and ∗M(H2O)
(
m
z
−x

δ)+ represents 
an electrode-surface-adsorbed cation. If the adsorbed electrolyte 
species are protons, then δ = 1 (that is, the adsorption of protons is 
associated with a complete electron transfer). The charge-transfer 
reaction depends on the bonding between the ion and electrode, 
which depends on the state of ion solvation12. It can thus be expected 
that ion solvation is also of critical importance for the type of ion–
electrode interaction in nanoconfinement.

Confinement effects in double-layer capacitor materials 
There has been great interest in understanding the relationship 
between the specific capacitance, the surface area and porosity of 
nanoporous carbon materials13–16. Carbon-based EDL capacitors 
(EDLCs) show deviations from the planar electrochemical interface 
behaviour when EDL formation occurs in a nanoconfined environ-
ment (Fig. 1b). In a porous carbon electrode, the pore size is often 
smaller than the Debye length of the electrolyte17. The pore size 
can also be smaller than the solvated ion size, but larger than the 
bare ion size. For potentials less than the potential of zero charge, 
a decreased capacitance is observed due to ion sieving, which lim-
its the transport of ions with effective sizes smaller than that of  



electrochemical signature of ion electrosorption processes to exhibit 
potential-dependent features (Fig. 2).

When using carbon, it is also important to consider the spe-
cific electronic structure of the respective carbon allotropes. 
As carbon is not an ideal metallic conductor, there is a unique 
potential-dependent space-charge capacitance. For graphitic car-
bons, the availability of charge carriers increases during polariza-
tion, which in turn increases the conductivity28. As the insufficient 
supply of charge carriers within the solid limits the charge-screening 
ability at the fluid–solid interface, this leads to an additional 
space-charge-related increase in the capacitance of many carbon 
materials at increased potential29.

Confinement effects in intercalation-type materials
Electrochemical ion intercalation into layered materials is com-
monly considered to involve complete charge transfer and measur-
able change(s) in the bonding of the electrode material. It can show 
electrochemical responses comparable with those of non-Faradaic 
EDL formation in nanoporous carbons, especially when interlayer 
molecules, such as water, organic solvents or functional groups, are 
present in the host material and there are no first-order phase transi-
tions9. The origin of this effect is still a subject of debate. In general, 
we can differentiate between aqueous and non-aqueous electrolyte 
systems, but the phenomenon can be observed in both cases. Given 
the presence of highly mobile protons and many naturally occurring 
hydrated oxides (as opposed to materials with organic molecules 
confined in their interlayer space), the effect is more frequently 
observed in aqueous systems. The electrochemical intercalation of 
ions can then be regarded as lying on a continuum from the electro-
sorption phenomena described in the previous section.

A prominent example is the charge-storage behaviour of a 
hydrated layered transition metal oxide, birnessite, in neutral pH 
aqueous electrolytes30. Some studies ascribe the observed capaci-
tance to EDL formation6, whereas other works found changes in 
the crystal structure and Mn oxidation state during cycling, which 
points to a Faradaic, pseudocapacitive nature of charge storage31,32. 
We have recently shown how these varying viewpoints of the capaci-
tive behaviour of birnessite can be unified when the cation intercala-
tion mechanism responsible for the capacitive response of birnessite 
is considered (Fig. 3)33. Using a multimodal characterization and 
simulation approach, we found that the ion intercalation appears 
capacitive (lacks potential dependence) because K+ intercalates into 
a hydrated interlayer. Simulations show that K+ intercalates directly 

in the middle of the interlayer, surrounded by H2O molecules, and 
with relatively little structural change of the host.

These effects are also observed in systems using organic electro-
lytes. In MXenes34, a growing materials family of 2D transition metal 
carbides, nitrides and carbonitrides, several recent studies analysed 
the effect of organic solvent co-intercalation and observed large 
effects on the electrochemical intercalation of lithium and sodium 
ions35,36. MXenes possess a high electronic conductivity, but also 
transition-metal-oxide-like surfaces capable of reversible redox reac-
tions. Wang et al. demonstrated that the co-intercalation of organic 
solvent with Li+ in Ti3C2Tx MXene reduces the total amount of stored 
charge37, which strongly supports the hypothesis of a reduction in 
the ion–host interaction. First-principles calculations also found a 
dependence of the charge storage mechanism in MXenes on ion sol-
vation, with partial desolvation leading to charge transfer between 
intercalated ions and surface termination, such as oxygen38.

These studies provide clear examples of how capacitive behaviour 
lies on a continuum: double-layer formation in carbon nanopores 
that has been traditionally regarded as outer surface electrosorption 
shares similarities with ‘inner surface’ intercalation, as in birness-
ite MnO2 or MXenes. In both cases, nanoconfinement within pores 
or the interlayer space, respectively, determines the charge storage 
characteristics.

unified model of electrochemical charge storage under 
confinement
In the previous sections, we demonstrated that nanoconfinement 
may cause deviation in the adsorption behaviour of ions from the 
classical EDL model. This is true for materials typically employed 
in both EDLCs and intercalation-type batteries. The examples pro-
vided illustrate how confinement can lead to potential-dependent 
current features reminiscent of battery materials in EDLC mate-
rials, such as nanoporous carbons (for example, ion sieving or 
partial charge transfer for ion/pore size matching), as well as 
potential-independent current features in typical battery materi-
als, such as transition metal oxides (for example, the intercala-
tion of K+ in birnessite in aqueous electrolytes) reminiscent of 
double-layer capacitors.

We illustrate this concept by considering the charge storage char-
acteristics of lithium ions in the graphene system. The electrochem-
ical response of graphene sheets in an organic lithium-containing 
electrolyte was studied by Hui et al. as a function of the number 
of graphene layers39. The CV of single-layer graphene showed a 

Ion sieving effect Pore size matching effect
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Fig. 2 | Examples of potential-dependent effects in carbon EDLCs. Nanoconfinement in pores (shown schematically in Fig. 1b) leads to deviation 
from flat electrochemical interfaces. a, Ion sieving during negative polarization of nanoporous carbons with pore sizes below 1 nm in 1.5 M NEt4BF4 
(tetraethylammonium tetrafluoroborate) in acetonitrile electrolyte. b, CV in 2 M EMI-TFSI (1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl)
imide) in acetonitrile shows that when the effective ion size is close to the carbon pore size (1 nm here), a set of reversible peaks appears on top of the EDL 
capacitive signature. Figure adapted with permission from: a, ref. 14, Elsevier; b, ref. 18, Elsevier.



The higher density of the graphite due to the small interlayer spacing 
would also mean more interactions between the graphene sheets, 
which leads to the structural transitions that give rise to the staging 
mechanism. We hypothesize that this transition between solvated 
Li+ adsorption on a single graphene sheet and the regular intercala-
tion of desolvated Li+ into graphite would occur with a continuous 
change in the charge storage behaviour, accompanied by changes in 
ion solvation, ion mobility and electrochemomechanical behaviour.

We propose a unified approach that involves a transition from 
the ‘binary’ view of electrochemical charge storage in nanocon-
fined spaces as either a purely electrostatic phenomenon or a purely 
Faradaic phenomenon. It should rather be regarded as a continu-
ous transition between the two determined by the extent of ion 
solvation and ion–host interaction. This is the region in which 
some of the ‘pseudocapacitive’ processes are observed. It is similar 
to our understanding of chemical bonding, which is rarely ‘ideally’ 
a primary bonding type, such as covalent or ionic, or electrodes, 
which are rarely ideally non-polarizable (Faradaic) or polarizable 
(non-Faradaic). The same intermediate region exists between physi-
sorption and chemisorption40. Figure 5 illustrates how an increasing  
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Fig. 3 | Cation intercalation into the hydrated interlayer of birnessite. a, The CV appears mostly capacitive, that is, it shows a potential-independent 
current. It correlates with a continuous, reversible change in electrode mass (Δm) measured with an electrochemical quartz crystal microbalance. Regions 
1–3 represent different mass-to-charge ratios. WE, working electrode. b, Snapshot of a ReaxFF Grand Canonical Monte Carlo simulation of K+ and H2O 
intercalation into birnessite. The arrow indicates layer wrinkling due to the inhomogeneity of cation distribution. c, Snapshot after the interlayer is fully 
filled, which flattens the wrinkling in the simulation domain. Figure reproduced with permission from ref. 33, Springer Nature Limited.
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Fig. 4 | Influence of the number of graphene layers on Li+ charge storage. a,b, Current-normalized CVs of single-layer graphene (a) and six-layer 
graphene (b) in a 0.1 M LiBF4 organic carbonate electrolyte. Insets: hypothesized Li+ surface charge storage mechanism for a and Li+ intercalation for  
b, which illustrate the transition from surface storage to intercalation based on the number of graphene layers. Figure reproduced with permission  
from ref. 39, American Chemical Society.

potential-independent (capacitive) current response except at the 
cathodic potential limit (Fig. 4a). Such a response could occur from 
the adsorption of solvated or partially solvated Li+ at the outer 
surface of the single-layer graphene, which is similar to the ideal 
interface shown in Fig. 1a. The current response is mostly potential 
independent because of the lack of specific adsorption and struc-
tural transitions in the graphene. Without other graphene layers, 
Li+ adsorption can occur without a concomitant structural transi-
tion induced by the presence of other graphene layers, that is, in the 
absence of confinement. With an increasing number of graphene 
sheets, starting at four layers, redox peaks associated with the inter-
calation of desolvated Li+ and staging mechanisms emerge in the 
CVs (Fig. 4b).

From this experimental data, we derive a thought experiment as 
to how the electrochemical signature of the system evolves if several 
single-layer graphene sheets are brought closer and closer together, 
up to the point of the interlayer distance of graphite (~0.33 nm). 
With the increasing confinement of Li+ between the graphene layers, 
fewer solvent molecules are present within the interlayer space and, 
with that, the interaction between the host and Li+ ions 
increases. 



degree of confinement is accompanied by a decreasing degree of 
ion solvation, which leads to an increased ion–host interaction. This 
will cause a continuous transition from EDL formation, through a 
transitioning state to Faradaic intercalation for typical EDLC mate-
rials (top row of graphs in Fig. 5) and typical intercalation-type bat-
tery materials (bottom row).

Future opportunities and remaining challenges
Given the importance of electrochemical capacitance under con-
finement for many applications, future opportunities in this area 
must focus on atomistic understanding of the phenomenon to the 

furthest extent possible. Therefore, studies of the electrochemical 
interface of porous and layered materials should aim for a detailed 
understanding of the mechanism by which charges are stored. To 
achieve this understanding, close collaboration between theory 
and experiment is required. From the modelling side, ab initio 
molecular dynamics augmented with machine-learning force 
fields are promising to gain an understanding of the coupling 
between electronic structure and ion distribution in confinement. 
Experimentally, the use of operando techniques to track structural 
or chemical changes of the electrode materials during electrochem-
ical operation at timescales relevant to the charge storage process is 
particularly valuable, such as operando X-ray diffraction or X-ray 
absorption41,42. Techniques capable of probing the composition, 
structure and dynamics of the confined electrolytes are also criti-
cal, such as in situ NMR43.

Fundamental understanding of the EDL and ions in confine-
ment will help to address many open questions of great practical 
importance for energy storage, conversion, water desalination and 
biology. Even a single electron transfer from the ion to the host in 
porous confinement may lead to the energy density of recharge-
able batteries, but with the charging rates and lifetimes of EDLCs, 
as phase transformations and large strains can be eliminated. Can 
more than one electron per atom (or a larger charge, in general) be 
transferred in the case of multivalent ions? Capacitive storage with 
multivalent ions appears to be enabled by a nanoconfined environ-
ment44 and could be a promising approach to increase the energy 
density of double-layer capacitors. The role of the density of states at 
the Fermi level in the electrode material on its charge storage ability 
has not been fully understood. Can electrode materials with metal-
lic conductivity, but a tunable Fermi level, like MXenes or highly 
conductive transition metal nitrides45, lead to a breakthrough in 
charge storage by providing more than one electron to multivalent 
cations? Can metallic MXenes minimize, or even eliminate, mirror 
charge and lead to a higher capacitance in porous confinement?

The ion population within a confined space is of equal impor-
tance in terms of the total number and type of ion transport kinet-
ics. Ionophobic pores will exhibit the unique behaviour of being 
permselective on charging, as they only uptake counterions with 
no need to eject co-ions because the pore is initially empty. This 
is opposite to non-permselective charge storage processes in which 
co-ions and counterions are exchanged2. Although for energy stor-
age both processes yield the ability to store electric charge (and to 
do so efficiently), this is a key question for the field of water desali-
nation: only permselective nanopores will enable electrochemical 
water desalination at a high molar strength46. Electrochemical water 
desalination capitalizes on the concurrence of charge storage and 
ion storage for the purpose of water deionization. The time depen-
dency in the ion populations in systems with multiple cations (and/
or anions) is also of great importance for kinetic ion separation, in 
which selective ion adsorption in a subnanometre pore confine-
ment is influenced by pore size, ionic charge and ion desolvation 
energies47. For example, carbon micropores are known to be quickly 
populated by monovalent ions (like sodium), and yet, still during 
the charging process, all the sodium can be lost in favour of bivalent 
ions, like magnesium or calcium, so that no sodium ion is left in the 
pore during the discharge48.

Narrow slit pores in graphene, MXenes and other 2D materials 
and their hybrids should allow the efficient sieving of ions for water 
deionization and various chemical separation processes. However, 
the issues of controlling the spacing between 2D nanosheets with 
the required accuracy and ensuring a sufficient electronic conduc-
tivity to enable the electrochemical control of transport in 2D con-
finement need to be resolved.

2D confinement between nanosheets allows swelling and con-
traction of the electrode on the intercalation and de-intercalation 
of ions, accompanied by counterions or solvent molecules, which 
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leads to a ‘dynamic’ EDL. Electrode swelling is undesired in 
energy storage devices and water deionization. However, a volume 
change with a small applied potential may be greatly important for 
energy-efficient actuation and soft robotics49. Understanding of this 
process and coupling between electrochemistry and mechanics in 
such systems is needed. It can be achieved, for example, using elec-
trochemical in situ and operando methods, such as atomic force 
microscopy50 and dilatometry51.

Can the complete desolvation of ions and solvent rejection lead 
to increased electrolyte stability and an enlarged voltage window in 
energy storage systems by minimizing the degradation of solvent (or, 
in the case of ionic liquids, of the organic counterions)? Furthermore, 
can the confinement of molecules in those 2D slits reduce the acti-
vation barrier for an electrochemical reaction and allow a more 
efficient electrocatalysis? For ions electrosorbed into micro- and 
nanoporous electrode materials, the change in the ‘microenviron-
ment’ of the ion can be dramatic, depending on the pore chemi-
cal composition, geometry and average size and size distribution. 
Based on decades of experimental, theoretical and/or computational 
research in multiple fields on the impact of the nanoconfinement, we 
can expect that the pressure in the nanoconfined microenvironment 
may be orders of magnitude higher than that in the bulk52, chemi-
cal equilibria may be shifted by orders of magnitude53, ion dynamics 
may be quantitatively54 and even qualitatively changed (for example, 
Fickian diffusion replaced by single-line diffusion in sufficiently nar-
row cylindrical pores)55, confined fluids may undergo order–disor-
der transitions56 and adsorbed electrolyte concentrations may differ 
dramatically from that of the bulk electrolyte57. Understanding con-
fined electrochemical systems and the coupling between chemical, 
electrochemical and transport processes in confinement may open 
tremendous opportunities for energy applications in the future.
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