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Abstract: Changes in marine boundary layer cloud (MBLC) radiative properties in response to aerosol
perturbations are largely responsible for uncertainties in future climate predictions. In particular,
the relationship between the cloud droplet number concentration (Nd, a proxy for aerosol) and the
cloud liquid water path (LWP) remains challenging to quantify from observations. In this study,
satellite observations from multiple polar-orbiting platforms for 2006–2011 are used in combination
with atmospheric reanalysis data in a regional machine learning model to predict changes in LWP
in MBLCs in the Southeast Atlantic. The impact of predictor variables on the model output is
analysed using Shapley values as a technique of explainable machine learning. Within the machine
learning model, precipitation fraction, cloud top height, and Nd are identified as important cloud
state predictors for LWP, with dynamical proxies and sea surface temperature (SST) being the most
important environmental predictors. A positive nonlinear relationship between LWP and Nd is
found, with a weaker sensitivity at high cloud droplet concentrations. This relationship is found to
be dependent on other predictors in the model: Nd–LWP sensitivity is higher in precipitating clouds
and decreases with increasing SSTs.

Keywords: aerosol–cloud interactions; liquid water path; cloud droplet number concentration;
machine learning; gradient boosting regression trees; marine boundary layer clouds; remote sensing;
satellite observations; Southeast Atlantic

1. Introduction

Marine boundary layer clouds (MBLC) make up a large part of global cloud cover
as they are persistently present over more than 20% of the Earth’s oceans in the annual
mean [1]. This is especially the case for the tropical and subtropical oceans off the west
coasts of the continents, where semi-permanent stratocumulus sheets can cover more than
50% of the surface annually [1,2]. By reflecting solar radiation to a much greater degree than
the ocean beneath, while only having a minor effect on the outgoing longwave radiation,
these clouds play an important role in Earth’s energy budget by exerting a large net cooling
effect [1,3]. Therefore, even a comparatively small increase in the albedo of MBLC could
offset part of the global warming due to increasing concentrations of greenhouse gases [4].

Stratocumulus cloud properties and their radiative characteristics, such as cloud
albedo, horizontal and vertical extent, lifetime and precipitation susceptibility, are depen-
dent on environmental conditions. Aerosols in their role as cloud condensation nuclei
(CCN) affect the cloud albedo via changes in the cloud droplet number concentration (Nd),
also known as the Twomey effect [5]. Subsequent cloud adjustments to aerosol perturba-
tions may lead to changes in cloud fraction and in the liquid water path (LWP), further
altering the radiative properties of the cloud. The magnitude and sign of the radiative
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forcing due to these aerosol–cloud interactions remain among the largest uncertainties in
projections of future climate [6–8]. While there is a large body of research on the Twomey
effect from the last decades, e.g., [5,9–17], this is much less the case for LWP adjustments,
where disagreement between observations and models is large and even the sign of the
aerosol effect on LWP is unclear [18]. As LWP is the main controlling factor of liquid-cloud
albedo [18], it is therefore important to better understand the effect of aerosols on LWP to
ultimately improve climate model predictions.

Using the Nd–LWP relationship as a measure for the LWP adjustment of clouds to
an aerosol perturbation, [18] outline several counteracting pathways of how aerosols can
impact the LWP in MBLC. Small cloud droplets in situations with elevated Nd can suppress
the formation of precipitation, prolonging the lifetime of the cloud and increasing LWP [19].
Preliminary results of the CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017
(CLARIFY-2017) and indications from the NASA ObseRvations of Aerosols above CLouds
and their intEractionS (ORACLES) campaigns support this with findings of decreased driz-
zle formation in polluted (high Nd) clouds [20–22]. A second pathway that is hypothesized
to increase LWP is the process of warm cloud invigoration, where the condensation and
LWP build-up under low-Nd conditions is limited by the small droplet surface area, which
is then increased following an increase in Nd [23]. On the other hand, the entrainment of
relatively dry air at the cloud top leads to a decrease in LWP with increasing Nd by way
of faster evaporation of smaller cloud droplets [24–26]. The resulting evaporative cooling
induces a (self-amplifying) positive feedback that enhances the entrainment–evaporation
process, further decreasing LWP [27–29]. The extent to which these processes affect clouds
under different meteorological conditions and cloud states is still unclear and previous
estimates of the relationship between aerosols and LWP span from positive [23,30–34] to
negative [24,25,29,35–37] with some studies showing a bidirectional relationship [38,39]
as summarized in in Gryspeerdt et al. [18]. The recent study by Gryspeerdt et al. [18]
found a possible explanation for these varying results in the non-linear relationship of Nd
and LWP, where the Nd–LWP relationship is positive at low Nd and is reversed in high
Nd situations. A parameter that was found to influence this relationship is the state of the
cloud (precipitating/non-precipitating). Precipitating clouds were shown to display an
increase in LWP with increasing Nd in the past [29,33]. SST is another important controlling
factor for the Nd–LWP relationship [40] and radiative properties [41] in MBLCs. Higher SST
leads to a deeper boundary layer with decreased stability and thus supports entrainment
drying at the cloud top, thereby accelerating the evaporation at the cloud top.

Given the non-linear nature of the Nd–LWP relationship, and its potential dependence
on meteorological factors and the cloud state, machine learning methods are ideally suited
to analyze these processes in observational data sets. While machine learning techniques
are becoming a popular tool in Earth sciences [42], and have been used to study aerosol–
cloud interactions before [43–45], their potential to study LWP adjustment processes has
not yet been explored.

The goal of this study is to improve the understanding of the Nd–LWP relationship
in MBLC of the Southeast Atlantic region, specifically focusing on its dependency on
meteorological conditions and cloud state. To this end, a large data set of polar-orbiting
satellite observations and reanalysis data are analyzed in a machine learning framework.

2. Materials and Methods

This study is conducted for a 10° by 10° region in the Southeast Atlantic (0° E–10° E
and 10° S–20° S), characterised by a high annual coverage of MBLC largely in the form of
stratocumulus clouds [2]. The Southeast Atlantic has recently been the focus of multiple
large aircraft campaigns to better understand interactions of stratocumulus clouds with
the seasonally occurring biomass burning aerosol layer above the cloud deck [20,21,46].
Here, the focus is not explicitly on the effects of biomass burning aerosols on clouds,
but rather on the LWP adjustment of stratocumulus clouds to aerosol perturbations, using
Nd as a mediating variable [18]. A combination of observation data from multiple satellite
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sensors and reanalysis model output is used to create a data set for the period of July
2006–April 2011, which is then utilized to train a machine learning algorithm to predict
LWP. An overview of the variables used in this work is shown in Table 1.

Table 1. Overview of the variables used in the machine learning model.

Variable Name Abbreviation Origin

Predictors

Temperature below cloud Tbc ERA5
Vertical velocity below cloud wbc ERA5
Winds below cloud ubc / vbc ERA5
Winds above cloud uac / vac ERA5
Relative humidity below cloud RHbc ERA5
Relative humidity above cloud RHac ERA5
Mean sea level pressure MSL ERA5
Sea surface temperature SST ERA5
Estimated inversion strength EIS ERA5
Cloud top height CTH CALIPSO
Precipitation fraction PF CloudSat
Cloud droplet number concentration Nd MODIS

Predictand

Liquid water path LWP AMSR-E

2.1. Data

Observation data on cloud properties are taken from the CALIPSO-CloudSat-CERES-
MODIS Merged Release B1 (C3M) product. The C3M data set aggregates observations
from multiple sensors (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO), Cloudsat, Clouds and the Earth’s Radiant Energy System (CERES) and Moder-
ate Resolution Imaging Spectroradiometer (MODIS)) on CERES footprints with a resolution
of ∼20 km [47]. In the C3M data set, each CERES footprint represents an individual obser-
vation with data from all four instruments collocated. To account for the higher resolution
and the vertical profiles provided by the original CALIPSO and CloudSat products, C3M
contains a maximum of 16 cloud groups and a maximum of six cloud layers per CERES
footprint. Individual cloud groups (i.e., clouds within the same CERES Footprint that
are separated by clear sky areas) are distinguished as seen from above while the cloud
layers are distinguished vertically. In order to filter for low-level clouds and to exclude the
influence of additional cloud layers above, only observations of single-layer clouds with a
cloud top height (CTH) below 3 km [48] as detected by CALIPSO are used. CTH is defined
as the median of all cloud groups in a CERES footprint. To inform the machine-learning
model about possible precipitation, the CloudSat precipitation flag is used to calculate
the precipitation fraction (PF). The PF is defined as the number of cloud groups where
precipitation is detected by CloudSat (precipitation classes can either be liquid, solid or
drizzle), divided by the total number of cloud groups for each CERES footprint. The large
majority (>99%) of precipitating clouds in this data set are classified as drizzle with no
instances of solid precipitation detected.

The cloud-droplet number concentration (Nd) is calculated using MODIS retrievals of
the effective cloud-droplet radius (re), the cloud optical depth (τc), the cloud-top tempera-
ture and the cloud-top pressure according to Grosvenor et al. [49]:

Nd =

√
5

2πk

√
fad cw τc

Qext ρw r5
e

(1)
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with k = 0.8, fad = 0.66 and Qext = 2. The overall uncertainty in the calculated Nd due to the
cumulative uncertainties in the retrievals of re and τc are estimated to amount to around
78% [49].

Meteorological reanalysis data are taken from the ERA5 dataset provided by the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF) at a 0.25° × 0.25° resolution
on an hourly basis [50,51]. Data for air temperature, relative humidity (RH), vertical veloc-
ity, u and v wind components, sea-surface temperature (SST) and mean sea-level pressure
(MSL) are collocated with the C3M data. For each CERES footprint the cloud-base height
(CBH) from CALIPSO is used to select the nearest pressure level below the cloud for verti-
cally resolved ERA5 variables (temperature, RH and winds). Additionally, CTH is used to
select RH and winds at the nearest pressure level above the cloud. Finally, the estimated
inversion strength is calculated according to Wood and Bretherton [52] using the 2 m air
temperature and the temperature at 700 hPa from ERA5 and assuming a surface pressure
of 1010 hPa.

The liquid-water path (LWP) is obtained from the Level-2B precipitation product Ver-
sion 3 of the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-
E) sensor aboard the Aqua satellite. This data set is independent of the MODIS-derived Nd
and is utilized to eliminate the potential risk of introducing a pseudo-relationship through
correlated errors in Nd and LWP retrievals. The data have a resolution of 5 km across
track and 10 km along track [53]. To achieve a comparable spatial resolution to the CERES
footprints, the five pixels nearest to the center of each CERES footprint are selected to
calculate the mean LWP for that footprint. One drawback of the AMSR-E LWP is that for
low LWP cases, cloud water cannot be separated from rainwater (mostly drizzle in this
data set), meaning that in such situations, AMSR-E LWP is biased high when compared to
other products [54].

Spatial gradients are inherent in the LWP and many predictors in the data of the
Southeast Atlantic that are used here. However, these are not necessarily directly linked
to the Nd–LWP relationship. To ensure that the model is not primarily exploiting the
spatial gradients to predict the LWP, a secondary data set is created by removing the
spatial gradients (Figure S1). The results based on this anomalous data set are shown in
Figures S2–S5 in the Supplementary.

2.2. Methods

Gradient-boosting regression trees (GBRTs) are used to model the LWP using the set
of 12 predictor variables (model features) described in Table 1. GBRTs are a robust machine-
learning technique that features the advantages of tree-based methods, which allow for
the use of different data types (e.g., categorial or numerical data) and do not make/need
prior assumptions concerning the distribution of the data. They are capable of representing
and quantifying complex non-linear relationships, while considering interactive effects
between the predictors [55]. GBRTs have been successfully applied to study aerosols and
clouds in the past (e.g., [44,56–58]). As a result of uncertainties in the retrieval of re and
τc, unrealistic values for Nd may be calculated. Therefore, only observations where Nd is
within percentiles 1–99 are used for the analysis to remove extreme values in Nd, yielding
N = 29,901 observations. To evaluate the model, the data set is randomly split into training
(70%, N = 20,931) and test data sets (30%, N = 8970). To find the best set of hyperparameters,
multiple instances of the model are first run with manually selected parameters to find a
grid of the most suitable settings. In a second step, the final hyperparameters are chosen by
applying a grid search approach (Table 2).



Atmosphere 2022, 13, 586 5 of 13

Table 2. Overview of the hyperparameters used in the grid search approach. Values in bold are used
in the GBRT model. Parameters not listed here are kept in default configuration.

Hyperparameter Value

n_estimators 600 800 1000 1500 2000
learning_rate 0.01 0.05 0.1 0.25 0.5
max_depth 1 3 5 7 10
min_samples_leaf 1 15 50 80 180

In order to interpret the model predictions and to analyse the Nd–LWP relationship,
an explainable machine learning tool, the Shapley additive explanation (SHAP) values, are
used. SHAP values quantify the contributions of each model feature to each individual
(local) model prediction [59,60]. An example for a single set of observations is provided in
Figure 1. SHAP values retain local accuracy, so that each individual model prediction is
equal to the sum of the SHAP values of all features and the mean model prediction. Follow-
ing from this, individual SHAP values can be positive (increase in the model prediction due
to the specific feature value) or negative (decrease in the model prediction), and are calcu-
lated for each individual feature and each individual model prediction. Figure 1 shows that
the observed Nd = 10.041 contributes a SHAP value of −8.41 to the local prediction. Since
SHAP values are provided in units of the predictand, this translates to a decrease in the
LWP prediction by −8.41 gm−2. Accordingly, the mean absolute SHAP value of a feature
directly indicates the strength of the influence of this feature on the model prediction.
Interactive effects between the predictors are quantified as the change in the contribution of
a feature to the model prediction depending on the presence/absence of a second feature
(SHAP interaction values). For additional information on the theoretical background and
technical details of SHAP values, the reader is referred to Lundberg et al. [59,60]. SHAP
values have seen use in the field of medical science [61] and more recently also in the
environmental sciences [62].

40.0 42.5 45.0 47.5 50.0 52.5 55.0

5 other features

75.111 = RHbc

5.139 = EIS

2.529 = ubc

1.042 = vac

7.038 = vbc

0.883 = CTH

1018.248 = MSL

0 = PF

10.041 = Nd

5 other features

 RHbc

 EIS

 ubc

 vac

 vbc

 CTH

 MSL

 PF

 Nd

+3.75

+1.7

+0.75

+2.32

8.41

6.28

3.21

0.89

0.85

0.81

E[f(X)] = 51.594

f(x) = 39.673

Figure 1. Exemplary plot for a single set of observations (one CERES footprint) showing the individual
contributions (SHAP values) of each feature to the (local) prediction of LWP. Red arrows represent
positive SHAP values (increasing the prediction), negative SHAP values are blue (decreasing the
prediction). The feature values are displayed in grey. The mean model prediction is displayed as
E[ f (X)] = 51.594. The sum of all SHAP values and the mean model prediction result in the final
prediction for this set of observations f (x) = 39.673.
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3. Results and Discussion

Figure 2a shows the correlation between Nd and LWP at the spatial scale of the C3M
data, summarizing all data points in 1° × 1° grid boxes in the study domain. Mostly
positive correlations between Nd and LWP are found in the data sets analyzed here. This
is particularly the case for low Nd values (<30, Figure 2b), where the average weighted
correlation (weighted by number of observations per pixel) is 0.14. However, when consid-
ering only observations with Nd > 30, the correlation decreases overall (average weighted
correlation: 0.05, Figure 2c), with negative correlations apparent in southwestern parts
of the study domain. To account for this non-linearity in the Nd–LWP relationship, and
to analyze its dependence on meteorological factors and cloud state, a machine learning
model is used in the following. This approach allows for the estimation of sensitivities of
LWP to perturbations in Nd, including interaction effects with secondary parameters, that
can be compared to other studies.

Figure 2. Pearson correlation between Nd and LWP for the data aggregated in 1° by 1° pixels for the
study region. A ‘+’ marks significant correlations (p < 0.05). Pixels with less than 20 observations are
excluded (black). The three panels show (a) all observations, (b) only observations with Nd < 30 and
(c) observations with Nd > 30.

A comparison of the model based on the data set with spatial gradients removed
(Figures S2–S5), and the model based on the observations, reveals no significant differences
with respect to the SHAP values and interactive effects. This indicates that the model
performance is not negatively impacted by the spatial gradients present in the data set.
Therefore, only the model based on the untreated observations is discussed in the following.
The GBRT model is able to explain 70% of the variability in the LWP (R2 of the independent
test data = 0.70). An overview of the importance and the contributions of each predictor
to the model-predicted LWP is shown in Figure 3. The predictors are sorted by their
mean absolute SHAP value as a measure of importance with respect to the prediction
of LWP. PF, CTH, MSL and Nd are identified as the most important variables. The fact
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that cloud state variables are among the most important features in the model is to be
expected, given that they are the result of the prevailing environmental conditions, but also
more directly related to the predicted LWP. As such, the importance of the two groups
(cloud state variables and environmental conditions) should not be directly compared.
In Figure 3, each data point is represented by a dot for each of the predictors with the
associated SHAP value (contribution to the predicted LWP) on the horizontal axis, while
the normalized predictor value is indicated by the coloring (ranging from the 5th to the 95th
percentile), where blue shows a below-average feature value, and red an above-average
feature value. A positive sensitivity of LWP to the three most important features PF, CTH
and MSL is apparent. This relationship for PF is to be expected, as only clouds with a
sufficiently high LWP form precipitation, but may also be amplified by the inability of
AMSR-E to distinguish between cloud water and rain water for low LWP values, meaning
that the LWP may contain drizzle/precipitation water in cases where PF > 0. Similarly,
a higher CTH in stratocumulus clouds is linked to a deeper boundary layer and thicker
MBLCs [43,63]. The importance of MSL for the model predictions of LWP underscores the
role of dynamics for MBLCs in the Southeast Atlantic, as suggested by [57,64]. Furthermore,
Figure 3 suggests an overall positive Nd–LWP relationship that is in agreement with the
positive correlations shown in Figure 2. In the following, this Nd–LWP relationship and its
dependence on meteorological factors and cloud state is explored in detail.

20 0 20 40 60 80
SHAP value (impact on model output)

vac

RHac

uac

ubc

RHbc

Tbc

EIS
wbc

SST
vbc

Nd

MSL
CTH

PF

Low

High

Fe
at

ur
e 

va
lu

e

Figure 3. “Beeswarm” plot showing the impact of each feature on the model prediction. Every dot
represents an observation with color signifying the original value and the corresponding SHAP value
shown on the horizontal axis. Density is made visible by stacking dots on the vertical. The features
are sorted by their mean absolute SHAP values in descending order.

The main effects of Nd on LWP are shown in Figure 4. Main effects are equivalent
to the fraction of the SHAP values that are solely attributable to a single feature with all
interaction effects removed. A positive relationship of Nd and LWP is found for low Nd
values. The relationship is much weaker for higher Nd, where the predicted LWP is less
sensitive to a further increase in droplet concentration, underscoring the nonlinearity of
the Nd–LWP relationship. This is partly in agreement with [18], who also found a positive
sensitivity of LWP to Nd at lower Nd. However, the negative Nd–LWP relationship at
higher Nd values found in Gryspeerdt et al. [18] is not apparent in the data set analyzed
here. A potential cause for this difference could be the differences in spatial resolution
and specific cloud filters in both studies, which have been shown to lead to systematic
biases [49]. In particular, the spatial and temporal aggregation of a data set can have a
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significant impact on the statistical relationship between Nd and LWP, and even lead to a
change in its sign when using Level 3-type data [65], as in Gryspeerdt et al. [18]. Another
aspect could be the different method used to calculate the Nd, as Gryspeerdt et al. [18] use
the method from Bennartz and Rausch [66], whereas here, we use the method presented
in Grosvenor et al. [49]. In the study domain, however, the retrieved Nd agrees closely for
both methods [49]. It should be noted that this finding of a nonlinear Nd–LWP relationship
that saturates at higher cloud droplet concentrations agrees well with previous modeling
work done in the Southeast Pacific with a regionally-nested configuration of the Met Office
Unified Model, that has found a very similar relationship [32].
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Figure 4. The main effects of Nd on the prediction of LWP. Main effects show the changes in the
model prediction that are solely attributed to the corresponding observed Nd anomaly by removing
the interaction effects with other model features from the SHAP values.

Figure 5 shows the influence of precipitation fraction on the Nd–LWP relationship.
The SHAP values for Nd are shown in Figure 5a, including interactive effects (in contrast
to Figure 4). The observed PF that corresponds to each data point is indicated by color,
increasing from blue to red. Overall, a higher variability in Nd SHAP values is found
when interaction effects are taken into account, compared to only the main effects of Nd
(Figure 4). This can largely be attributed to the importance of the interaction effects between
Nd and PF (Figure 5b). The positive slope of the interaction effects of PF on the Nd–LWP
relationship suggests that the model actively uses the information of PF to improve the
model performance. This indicates that the strength of the positive Nd–LWP relationship,
which is assumed to be related to precipitation suppression, is amplified in conditions
that already partially develop drizzle. Preliminary results from the CLARIFY-2017 in-
situ measurements support this finding with higher LWP and a lower amount of drizzle
formation in clouds with elevated Nd [20]. A second microphysical process that could
explain the amplified positive Nd–LWP relationship in cases of drizzle could be related
to the simultaneous removal of cloud water and droplets. Since drizzle acts as a sink
for both Nd and LWP at the same time, this could increase the strength of their positive
relationship [67]. The dependency of the LWP response to aerosol/increasing droplet
concentrations on precipitation is also in agreement with previous studies that find a
positive relationship between Nd and LWP in precipitating conditions [29,33].
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Figure 5. Influence of the PF on the Nd–LWP relationship. SHAP values (a) and interaction effects
(b) for Nd with the color showing the PF. The lower panels show the SHAP values for Nd for non-
precipitating situations (PF = 0, (c)) and for situations where at least 50% of the cloud groups
precipitate (PF ≥ 0.5, (d)). mnoprecip and mprecip are defined as the slope of the linear regression for
the corresponding subset of Nd SHAP values.

The lower panels of Figure 5 show a comparison of the Nd–LWP sensitivity for non-
precipitating (mnoprecip, Figure 5c) and precipitating clouds (mprecip, Figure 5d) as the slope
of the linear regression for Nd SHAP values. While the finding of a stronger Nd–LWP rela-
tionship at low Nd and a weakening at higher Nd is consistent across both subsets, precipi-
tating clouds show a markedly higher sensitivity of LWP to changes in Nd (mprecip = 0.108)
compared to non-precipitating clouds (mnoprecip = 0.069).

Figure 6a shows the influence of Nd on LWP predictions, with color showing SST
(same as in Figure 5a for PF). The differences in LWP sensitivity for low (blue dots) and high
(red dots) SST suggest only a minor direct influence of SST on the Nd–LWP relationship.
The details of this influence are shown in Figure 6b as SHAP interactive effects. High (low)
values for SST weaken (enhance) the sensitivity of LWP to changes in Nd. This effect seems
to be more pronounced in situations with a lower amount of cloud droplets. Higher SST
conditions are associated with increased surface fluxes, a deeper and less stable marine
boundary layer, and an increased moisture difference between the marine boundary layer
and the troposphere [68,69]. In these conditions, the evaporation-entrainment process
may be facilitated [40], leading to a less positive Nd–LWP relationship. This finding is in
good agreement with recent studies by Zhou et al. [41] and Zhang et al. [40]. It has to be
noted, that Figure 6b shows the direct impact of SST on the Nd–LWP relationship in MBLC.
However, since SSTs are known to be drivers for other meteorological factors and the cloud
state variables as described above, they may also have an indirect impact on the Nd–LWP
relationship exerted through these features in the model. Compared to other studies, this
approach has the potential to separate the direct influence of SST from the indirect effects
exerted through changes in secondary features like CTH, LTS and RH, as these are included
in the model.
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Figure 6. Influence of SST on the Nd–LWP relationship. Panels (a,b) are the same as in Figure 5 with
color showing SST.

4. Conclusions

In this work, a machine learning model was trained on observation data and reanalysis
model output representing important parameters in cloud development to predict the LWP
of MBLC in the Southeast Atlantic. The goal of this study was to improve the understanding
of how changes in Nd affect the LWP of MBLC and how this relationship is influenced by
meteorological factors and cloud state. The main findings of the study are that

• Within the machine-learning model, the most important cloud state parameters for
the prediction of LWP are PF, CTH, and Nd, while the most important environmental
predictors are MSL, vbc and SST. The machine-learning model is able to explain 70%
of the observed variability in LWP (R2 = 0.70).

• Overall, a nonlinear but positive sensitivity of LWP to changes in Nd is found, with a
positive relationship at low Nd values, which saturates at higher Nd values. Unlike
findings in a previous global study [18], the Nd–LWP relationship at higher Nd is not
negative in the data set used here for the Southeast Atlantic.

• Marked differences are found in the sensitivity of LWP to changes in Nd for precipitat-
ing and non-precipitating cloud groups. The stronger sensitivity is likely due to an
amplified importance of precipitation suppression in situations that already develop
some drizzle.

• Changes in SST show a direct influence on the Nd–LWP relationship, with a de-
creased sensitivity of LWP to Nd at higher SSTs. This may be attributed to increased
evaporation-entrainment and deeper clouds due to the lower stability at higher SSTs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos13040586/s1, Figure S1: Calculation of the spatial anomalies, Figures S2–S5: Results of
the GBRT model based on the data set with the spatial gradients removed.
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