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Abstract
In many granular processes, impacts play a crucial role. These impacts are often described by the coefficient of restitution
(COR). This COR does not only depend on impact velocity but also on the material pairing, the shape of impacting bodies,
number of impacts, etc. This paper analyzes and compares the sensitivity of the COR for often seen material pairings metal–
metal and metal–polymer. For experimental investigations, a steel sphere impacts different planar material probes in a defined
manner, e.g., a sphere–wall contact is reproduced. While the metal–metal impacts show a significant dependency on impact
velocity, the metal–polymer impacts show only little influence of the impact velocity. Also, repeated impacts onto the same
spot have a significant influence on metal–metal impacts, while metal–polymer impacts are not affected. To gain insights
not only about the macroscopic behavior of impacts but also about the microscopic behavior, finite element simulations
are performed using an efficient 2D axisymmetric model and viscoelastic and elastic–viscoplastic material models. A good
agreement between experiments and FEM simulations are achieved for the utilized material pairings. Then, the influence
of the sphere’s size is studied. Afterward, a deeper look into the energy dissipation process during contact is investigated.
Finally, the contact duration and normal force in the contact zone are studied experimentally.

Keywords Coefficient of restitution (COR) · Normal impact · Sensitivity analysis · Experiments · FEM

1 Introduction

The dynamics of granular processes are mainly influenced
by normal impacts of the granular material with each other
and the surrounding walls. However, such impacts are very
complicated events that depend on a variety of influence
parameters, like impact velocity, material pairing, and shape
of contact partners. These parameters significantly influence
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the contact duration, penetration depth, contact force, and
energy dissipation of the contacting bodies [11]. In particular,
the energy dissipation during such contacts is of big inter-
est [11]. The energy dissipation comes, for instance, from
elastic–viscoplastic deformations in metals or viscoelas-
tic deformations in polymers [11,25]. Additionally, kinetic
energy of the rigid body action might be transformed during
impact into wave propagation, especially in impacts involv-
ing slender bodies [20]. However, such slender bodies are not
considered here, since the focus is on impacts that occur in
granular materials. For the description of the global contact
behavior, often a simplified description by the coefficient
of restitution (COR) is used to summarize the energy dis-
sipation during contact. The kinematic COR correlates the
velocities before and after impact of both contact partners. It
varies between zero and one. While a value of one implies no
energy dissipation, a value of zero means maximum energy
dissipation, i.e., both bodies move with the same velocity
after impact [11].

The COR is a key simulation parameter of contact pro-
cedures that normally cannot be determined analytically.
Therefore, in the past various numerical [1,16,19,20,28]
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and experimental [1,7,11,16,17,19,20,24,26] studies were
performed. These studies might be further subdivided into
different classes, like the used test apparatus, body materi-
als, material models, shape of bodies, etc.

As test apparatus, often often drop-down tests [1,17] or
pendulum tests [20] are used. With the drop-down test,
sphere–wall impacts are analyzed. A sphere is released from
a certain height impacting the material probe at the bottom of
the test apparatus. The rebound height of the sphere is mea-
sured using cameras. Thus, the COR can be easily extracted.
Such a test apparatus is set up easily, but no information
about contact duration and contact forces is gained. For the
pendulum test, the contact partners are suspended by thin
wires. By releasing one contact partner from an initial angle,
a reproducible impact is achieved. Here, either sphere–sphere
[24], sphere–rod [20], or sphere–wall impacts [11] have been
analyzed. While Tatara [24] used the sphere’s rebound angle
to determine the COR, nowadays often laser vibrometers are
used to measure the bodies velocities directly [20]. This leads
not only to very accurate results but also enables the analysis
of contact force and contact duration, as will be shown later.
Another special method for determining the COR is the idea
of “listening” the COR [7]. The sound of impact can be mea-
sured accurately using technical equipment. The COR can
then be extracted by this impact noise. Such measurements
also enable the study of the sound radiation of impacts [14].

Due to their high importance for industrial applications,
metal impacts are often analyzed experimentally by many
authors [1,16,17,20,26]. However, also other materials like
brass, glass, or polymers are investigated [11,24,25].

In the last decade, numerical analysis using the finite ele-
ment method (FEM) gained more and more attention for
impact analysis. These simulations enable a deeper under-
standing of the contact procedure and allow quick sensitivity
analysis. Many different material models have been inves-
tigated so far. For instance, steel and aluminum might be
described by elastic, elastic—plastic, or elastic–viscoplastic
material models [16,20]. It is shown that an accurate mate-
rial model is very important for precise results as the material
model has a major influence on the energy dissipation during
contact and thus on the COR [20].

For materials showing a plastic behavior, repeated impacts
are also of importance. Minamoto et al. [16], Weir [26], and
Seifried [20] studied the COR for repeated impacts between
metal contact partners. They found significant rises of the
COR due to material hardening occurring in the contact zone.

While in the literature various influence parameters on
the COR have been studied [1,11,24,26], most of them are
restricted to the analysis of the macromechanical behavior
of impacts. Here, also the connection to micromechanical
processes during impacts are performed. Hence, this paper
presents an intensive analysis of impacts between a steel
sphere and different wall materials using experiments and

FEM simulations. The walls are made of steel, aluminum, or
polymers. Thus, different but also accurate material models
are necessary for the FEM simulations. Multiple influence
parameters are studied, like impact velocity and sphere size.
Using FEM simulations, deeper insights into the conversion
of energy during the impacts are given. Thereby, the ratio of
dissipated energy of sphere to wall is investigated. Addi-
tionally, contact duration and contact force are measured
experimentally and compared for the different material pair-
ings.

This paper is organized in the following way: First, in
Sect. 2 the general impact procedure for a normal contact
of two bodies is explained. In Sect. 3, the different material
models for metals and polymer are presented. In Sect. 4 and
Sect. 5, the experimental setup and the numerical model are
introduced. A comprehensive overview of the results is given
in Sect. 6, and finally, in Sect. 7 the conclusion is given.

2 Impact procedure—macromechanical
considerations

An impact is characterized by a short contact duration of two
or more bodies while a high force is exerted [11]. Figure 1
shows the general structure of a direct central impact prob-
lem. When two bodies collide on their line connecting their
center of gravity, a central impact is achieved. As the result-
ing contact forces are only acting along this connecting line,
the common center of gravity stays unaffected. However,
due to possible dissipation losses during impact, the normal
velocities of the collision partners might change. This ranges
from fully elastic contacts—no energy loss, to fully inelastic
contacts—both contact partners move with the same velocity
afterward. Fully inelastic contacts are also referred as plas-
tic contacts. However, a plastic contact does not necessarily
imply plastic deformations, as this depends on the used mate-
rials [11].

The impact process is generally divided into two phases:
compression and restitution phase. Both phases are described
shortly in the following. See [11] for further information
about this topic. The compression phase starts with the first
contact of both bodies at t = 0 and ends at t = t∗. At
this time point, both bodies have the same rigid body nor-
mal velocity, i.e., zero relative movement. The contact force
FC raises first with time until it reaches its maximum value.
If no wave propagation is present and the material behavior
is rate-independent, this happens at t = t∗ [22]. The linear
momentum of the compression phase is described by

pc =
∫ t∗

0
FC(t)dt . (1)
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Fig. 1 General central impact
problem

v0
I

before (0)

v0
IIbody I body II v1

II

after (1)

v1
I body I body II

t

FC

0 t∗ te

pc pr

(b)(a)

t

FC

0 t∗ te

pc pr

(c)

t0 t∗= te

pc pr=0

FC

Fig. 2 Contact force over time for a fully elastic, b partly plastic, and c fully plastic collision

After the compression phase, the restitution phase follows.
Depending on occurring plastic deformations, the deforma-
tions will vanish or not. The contact force reduces from its
maximum value down to zero at t = te. The linear momen-
tum follows to

pr =
∫ te

t∗
FC(t)dt . (2)

These two phases are visualized in Fig. 2 for the cases of a
fully elastic, partly plastic and fully plastic collision. In case
of a fully elastic contact, the linear momenta of compression
and restitution phase are identical; hence, pc = pr. However,
for partly plastic and plastic contacts this is no longer true.
For partly plastic contacts, pr < pc, and for plastic contacts,
pr = 0 holds.

The kinematic COR ε is a widely used key indicator to
describe the occurring velocity change. It designates the quo-
tient between the velocities right after (1) and before (0) the
impact for the bodies I and II as

ε = −v1
I − v1

II

v0
I − v0

II

, 0 ≤ ε ≤ 1. (3)

For ε = 1, the impact is fully elastic, while for ε = 0 it is
fully plastic. The linear momentum of the compression and
restitution phase correlates as pr = εP pc with εP being the
kinetic coefficient of restitution. For a central straight impact,
kinematic and kinetic COR are identical [22].

If one of the impacting bodies is fixed, e.g., in case of a
clammed wall, Eq. (3) simplifies to

ε = −v1
I

v0
I

. (4)

3 Material models

Using FEM to describe the deformation behavior of a body, a
meaningful material model is required. However, the choice
does not only depend on the body’s material but also on
the forces acting on it. Thus, the material model should be
based on the expected deformation behavior. In this work,
metals and polymers are used for impact analysis. Thus, high
contact forces and high strain rates in the contact zone are
expected. The material models should be able to reproduce
this behavior.

3.1 Metals

Metals show at the beginning of loading first a linear–elastic
material behavior, conforming to Hooke’s law

σ = Eε, (5)

where σ denotes the stress, ε the strain, and E the Young’s
modulus. After reaching the yield stress, metals start to
deform plastically. Also, the plastic flow might depend on
the strain rate ε̇ = dε

dt [13]. Thus, to describe metals accu-
rately, an elastic–viscoplastic material model is necessary
for impact problems [20]. Therefore, many different mod-
els have been developed, like the Bingham model, Perzyna
model, Prager’s rule, or the Armstrong–Frederick kinematic
hardening law [9]. Here, the widely used Perzyna model [18]
is used [9]. This model relates the dynamic yield stress σd

by a factor β with the quasi-static yield stress σy and the
effective plastic strain rate ε̇p by

σd = βσy with β = 1 +
(

ε̇p

η

)λ

. (6)
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Fig. 3 Piecewise linear approximations of quasi-static stress–strain
curves for steel and aluminum [20]

The material viscosity parameter is denoted by η and the
strain rate hardening parameter by λ. Both parameters have
to be obtained from the split Hopkinson pressure bar test
[10]. For this test, the thin cylindrical test specimen is placed
between two different long bars, named pressure and exten-
sion bar. By applying a pressure impulse to one end of the bars
and measuring the other end’s displacement, the stress–strain
curves of the specimen can be calculated. By varying the
thickness of the specimen, different strain rates are obtained.
From the different stress–strain curves, the dynamical yield
stress σd is identified and the scaling factor β determined.
The parameters η and λ are found by minimizing the squared
error between the scaling factors β of the measurements and
the Perzyna model.

In Fig. 3, the piecewise linear approximations of the quasi-
static yield stress σy for the later used metals steel S235 and
aluminum Al6060 are shown, which are taken from [20].
These curves are used in the later FEM simulations with the
corresponding material data and Perzyna coefficients listed
in Table 1. To give an impression about the dynamic yield
stress, Fig. 4 shows the dynamical yield stress σd of S235 and
Al6060 for different plastic strain rates using the Perzyna
model, see Eq. (6). For both metals, the dynamical yield
stress increases for higher strain rates. However, aluminum
is showing only a little dependency on the strain rate. Only
for the highest plotted strain rate of ε̇p = 1000 1

s minor dif-
ferences in the dynamical yield stress are visible. For steel
instead, a high dependency is seen. At the plastic strain rate
of ε̇p = 1000 1

s , a factor of about three between dynamic and
quasi-static yield stress is achieved.

3.2 Polymers

The elastomeric material used in this study is a KRAIBON®

compound SAA9579-52 supplied by Gummiwerk
KRAIBURG GmbH & Co. KG. Based on preliminary exper-
imental investigations by the authors, this elastomer has not

shown any dependence on the load amplitude and is there-
fore considered as isotropic and linear viscoelastic in this
study. The time- and rate-dependent constitutive relation is
expressed by

τ (t) =
∫ t

0
GR (t − s) γ̇ ds (7)

where τ represents the shear stress as the response to the
uniaxial shear strain rate γ̇ . GR is the time-dependent shear
relaxation modulus. These as well as the following relations
describing linear viscoelasticity can be found in [4] and [6].
A normalized relaxation shear modulus can be written as

gR (t) = GR (t)

G0
(8)

where G0 describes the instantaneous linear elastic response
of the material under infinitely fast loading. The relaxation
function gR is modeled using a generalized Maxwell model
in terms of a Prony series

gR (t) = 1 −
N∑
i=1

gi
(

1 − e
− t

τi

)
(9)

The material parameters gi and τi are determined from
experimental dynamic mechanical analysis (DMA) tests
described in [21]. Figure 5 shows the experimentally deter-
mined storage and loss modulus, and the Prony parameters
are summarized in Table 2. The storage and loss moduli G ′
and G ′′ are given by the Fourier transform of the relaxation
modulus GR(t) denoted as the complex shear modulus [4]

G∗(ω) = G ′(ω) + iG ′′(ω), (10)

with i being the complex number. Furthermore, the long-term
relaxation modulus relates to the instantaneous modulus by

G∞ = G0

(
1 −

N∑
i=1

gi

)
. (11)

The long-term shear modulus is calculated from the long-
term Young’s modulus E = 54.97 MPa and Poisson’s ratio
ν = 0.4477.

4 Experimental setup

In this paper, a pendulum testbed is developed to observe
details of the impact, see Fig. 6. The utilized steel sphere of
30 mm diameter shall impact different planar material probes
in the normal direction in a reproducible way. Thus, a sphere–
wall impact is reproduced. The sphere is suspended by thin
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Table 1 Material parameters
and Perzyna coefficients
obtained by the split Hopkinson
pressure bar test [20]

Material E [GPa] ν [−] ρ [kg/m3] σy [MPa] η [−] λ[−]
Steel S235 208 0.3 7800 230 305 0.403

Aluminum Al6060 67.7 0.33 2702 205 5548 1

Fig. 4 Stress–strain curves of
steel S235 (blue –) and
aluminum Al6060 (red –) for
different strain rates by the
Perzyna model
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Fig. 5 Storage modulus, loss modulus, and loss factor determined from
experimental DMA tests

Kevlar wires impacting the material probe glued or fixed to
a rigid steel block. Other authors also investigated this way
sphere–sphere [15] and sphere–rod [20] impacts. The steel
block is assumed to be fixed, as the armature is very stiff. In
the initial position of the sphere, there is only a minimal gap
to the wall probe. In the deflected state, the sphere is held by
an electromagnet. Because the position of the electromagnet
is variable, different initial impact velocities are achieved.
The measurement range for this experimental setup is v0

I =
0.1m

s − 2.5m
s . Repeated impacts on the same spot of the

wall can be measured as well. After release, the velocity of

Table 2 Prony parameters
determined from experimental
DMA data

i gi τi in s

1 0.0358414 5.4×−15

2 0.0325413 9.2×−14

3 0.0323402 1.59×−12

4 0.034239 2.61×−11

5 0.0465026 3.78×−10

6 0.0762799 3.31×−09

7 0.109384 1.83×−08

8 0.0135877 5.48×−08

9 0.142179 1.12×−07

10 0.141801 4.73×−07

11 0.11387 1.7×−06

12 0.0846797 6.33×−06

13 0.0517678 2.75×−05

14 0.0279107 0.000163

15 0.0127789 0.00149

16 0.00707692 0.0226

17 0.0056339 0.57

18 0.00538153 21.7

19 0.00542548 700.

20 0.00510943 23500.

21 0.00398299 805000.

22 0.00947423 4.36×+07

the sphere is measured by a laser scanning vibrometer (LV)
PSV-500 from Polytec with a sampling frequency of 250
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Fig. 6 Schematic representation a and picture b of test bed to determine
the COR for a sphere–wall contact

kHz. The laser is adjusted in the initial state of the sphere on
a reflection foil at the back of the sphere.

Each measurement cycle consists of multiple impacts, i.e.,
the sphere is not caught after the first impact but the first
three rebounds are measured as well. Hence, the effect of
repeated impacts on the same spot can be investigated. The
wall material probe is moved a bit after each cycle to get
an undeformed spot of the material probe and the sphere is
smoothed with sandpaper.

Due to the high sampling frequency of the LV, the contact
process is measured very accurately. This makes it pos-
sible to compute the numerical derivative of the velocity
signal by central finite differences, i.e., the acceleration a.
This acceleration can then be used to calculate the contact
force

FC = ma (12)

acting on the sphere with mass m. By numerical integration
of the measured velocity signal, the sphere’s displacement
and thus the local deformation δ are obtained. Thereby,
it is assumed that all deformation occurs in the contact
area.

5 Numerical setup

Besides the experimental analysis, finite element method
(FEM) simulations are performed to determine the COR
numerically.

5.1 Finite elementmethod

The mathematical description of deformable systems, e.g.,
occurring in structural mechanics, leads to partial differen-
tial equations, which often cannot be solved analytically. The
finite element method (FEM) is an important and powerful
tool to find approximate solutions to such mathematical prob-
lems. There exists extensive literature of the foundations of
FEM, see, for example, [3,23,27]. The idea of the FEM is to
subdivide the solution domain, i.e., the deformable bodies,
into finite elements of simple geometrical shape. Then a set
of shape functions for the finite elements is used to find a
solution of the underlying partial differential equation. The
local equations of all finite elements are then assembled to a
set of equations to describe the full body. Thus, the unknown
quantities of the problem are described by discrete points
(nodes) instead of continuous functions. Instead of solving
the partial differential equations, now ordinary differential
equations have to be solved. The solution of these equations
delivers an approximate solution to the mathematical prob-
lem.

The analysis of impacts yields inherently nonlinear prob-
lems. Hence, the solution methods have to be adjusted to
obtain efficient and robust algorithms; see, e.g., [27]. In this
context, the unilateral contact can be modeled, e.g., using
the penalty method or Lagrange multipliers. For details on
treating unilateral contacts in FEM, see, e.g., [28]. For the
impact problems considered in this research, also nonlinear
material models as described in Sect. 3 have to be included.
Aspects of nonlinear material models in FEM are given, e.g.,
in [8,27].

5.2 Numerical model

The commercial software program Abaqus is used for the
simulations. A schematic representation of the sphere–wall
model is shown in Fig. 7. The sphere is modeled with an
initial radius of 5 mm. The wall is modeled as a cylinder
with its diameter and length being the diameter of the sphere.
The contour of the cylinder is completely clamped. As the
contact zone during impact is much smaller as the spheres
diameter, see [2], and due to the high length and diameter
of the cylinder, the influence of the boundary condition is
negligible and the wall can be seen as semi-infinite. Both
bodies, i.e., sphere and cylinder, can be scaled for different
sizes. This is done by multiplying the node coordinates by
a constant scaling coefficient. The sphere consists of 5907

123



Computational Particle Mechanics

Fig. 7 Schematic representation
of the sphere–wall FEM impact
model

center point axis of symmetry
v0
I

axisymmetric 2D elements, called CAX4R in Abaqus. The
wall consists of 9019 CAX4R elements. The element size
varies between 0.5 mm outside the contact zone and 0.015
mm inside the contact zone. As the cylinder, representing
the wall, is clamped, the sphere is assigned with the impact
velocity v0

I , see also Sect. 2.
The local deformation δ is calculated regarding the

sphere’s center point, see Fig. 7. The kinematic COR is eval-
uated by the normal velocity of the sphere before and after the
collision. The velocity before impact is known a priori. The
velocity after impact is evaluated at the center point of the
sphere. The mean value of the last few time steps is taken, as
the velocity is oscillating a little bit due to mechanical vibra-
tions of the sphere, which are induced through the collision.
As different material pairings are used, the contact duration
and thus the necessary simulation time can vary by multiple
decays. This makes it important to approximate the contact
duration. A formula based on Hertz theory [12] is used, see
[2]. To remove the unnecessary overhead after contact, the
simulation is stopped when the contact force turns zero.

The nonlinear material behavior of steel, aluminum, and
polymer is here described by the relationships and data pre-
sented in Sect. 3. The metal behavior of steel and aluminum
are implemented with the data of Table 1 and Fig. 3. The
implementation of the SAA polymer is done with the so-
called Prony series shown in Table 2.

6 Numerical and experimental results

In this section, experimental and numerical results are
compared for steel–metal and steel–polymer contacts. Fur-
thermore, sensitivity analyses on the sphere’s diameter and
impact velocity are performed. Finally, the contact time and

contact force are compared for the different material pairings
to gain insights into the micromechanical processes during
impact.

6.1 Steel–metal impacts

This section deals with pure metal–metal impacts. Hereby, a
steel sphere impacts different planar metal walls of about 50
mm thickness. As wall material aluminum and steel are used
in the following. These are often seen metals in technical
applications and precise material models for FEM simula-
tions are available, see also Sect. 3. It should be noted that
the used metals are of the same type, but not from the same
measurement charge.

6.1.1 Steel–steel impacts

For steel–steel impacts, the results of simulations and exper-
iments of the COR for a sphere of 30 mm diameter are shown
in Fig. 8. The simulation relates only to the first impact of
the sphere against the wall. For the experiments, only the
first impact, as well as an exponential fit, is plotted. As each
impact velocity is measured five times, the mean values and
their maximum deviation is shown. As every measurement
cycle consists of multiple impacts on the same spot, those
results are plotted as well in Fig. 8 labeled with “repeated
impacts.”

A high dependency on impact velocity is observed in sim-
ulations and experiments. For very small impact velocities,
which cannot be measured experimentally, the COR is close
to one in the simulations. When the impact velocity increases
the COR starts to decrease rapidly in simulations and experi-
ments. For high impact velocities, the COR drops below 0.55
and converges to an almost constant value. For low impact
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Fig. 8 COR for impact of 30 mm-steel sphere against steel wall

velocities v0
I < 0.5m

s , simulations and experiments match
very well. For higher impact velocities, a slight difference of
about 0.03 is seen in the COR. Hence, a good qualitative and
quantitative agreement between experiment and simulation
is achieved.

From the repeated impacts of the experiments, it can be
seen that those have a higher COR than the first impacts.
Thus, during the initial impact much energy dissipates by
plastic deformations. At a repeated impact on the same spot,
this cannot happen again in this amount due to the hardening
of the contact zone. In consequence, the energy dissipation
is lower, hence a higher COR results. See [16,26] for further
discussion on this topic.

The high CORs for low impact velocities can be explained
by considering Hooke’s law. Only if the metal yield stress is
exceeded, plastic deformations occur and thus energy is dis-
sipated. For low impact velocities, this happens only in a
very small area of the contact zone leading to low energy
dissipation and thus to a high COR. For increasing impact
velocity, the plastic deformations are becoming bigger, lead-
ing to a lower COR. For high impact velocities, the COR

converges due to the elastic–viscoplastic material behavior
of steel. This happens as the dynamical yield stress increases
for higher strain rates, see Fig. 4. This leads to lower plastic
deformations compared to a pure plastic material behavior
and vanishes the effect of the increased contact area.

As the numerical model is suitable for calculating CORs
of steel–steel impacts, it is used next for sensitivity analysis
of the sphere’s diameter. The results are shown in Fig. 9
for sphere diameters between 1 mm to 50 mm. All COR
curves show a similar progression but with an offset in the
COR. As higher the sphere’s diameter, the lower the COR.
Similar results were gained in [1] for a much smaller diameter
range. Only for very low impact velocities, the COR seems
to converge to the same high value. However, getting closer
to the smallest/biggest sphere diameter the difference in the
COR decreases. Thus, it is expected that even lower/higher
sphere diameters do not have a significant influence on the
COR anymore.

Next, the energy dissipation during impact can be ana-
lyzed in more detail using the simulation. In this study, the
plastic deformationALLPD (name inAbaqus) and the recov-
erable strain energyALLSE are gathered from the simulation.
Figure 10 shows the time course of those two energy types for
an impact of a 30 mm sphere of 1m

s impact velocity. In addi-
tion to that, the time points of the maximum contact force,
maximum indentation, and the end of impact are indicated.

At the beginning of impact, strain energy and plastic dis-
sipation are quickly raising and showing then an almost
constant slope. However, the plastic dissipation lags a bit in
time. The strain energy reaches its maximum value approxi-
mately at the time of maximum contact force. The maximum
indentation follows a little bit later (5µs) as the maximum
contact force. This can mainly be explained by the elastic–
viscoplastic material behavior of steel. A pure elastic–plastic
material model, i.e., if only the quasi-static yield stress is
used, leads only to a time delay of 1µs. Also, the time the

Fig. 9 COR by FEM
simulations for impact of steel
sphere of different diameters
against steel wall
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Fig. 10 Time course of energy dissipation of a 1 m
s impact between

30 mm-steel sphere and steel wall from simulation

Fig. 11 Location of energy dissipation between 30 mm steel sphere
and steel wall

compression wave needs to travel from the contact zone to
the sphere’s center point will have a small effect. After the
maximum contact force is exceeded, the slope of plastic dis-
sipation reduces a lot. Shortly after the maximum indentation
occurred the energy dissipated by plastic deformation reaches
its maximum. Thus, the plastic dissipation takes mainly place
in the compression phase. Throughout the restitution phase,
the strain energy lowers drastically. At the end of the impact,
there is still some strain energy left, which does not vanish.
This happens due to permanent plastic deformations hinder-
ing a full strain release. Thus, this remaining strain energy
can also be seen as energy dissipation.

Next, it is investigated in which part, e.g., sphere or wall,
the energy is dissipated. Figure 11 shows the energy dissipa-
tion as relative distribution over different impact velocities
for a 30 mm sphere. The dissipation is approximately fifty–
fifty in both parts with only minor influence on impact
velocity. Moreover, there is a negligible dependency on the
sphere’s diameter, which is not shown in Fig. 11. Hence, the
body’s geometry seems to be of negligible influence here.

Fig. 12 COR for impact of 30 mm-steel sphere against aluminum wall

6.1.2 Steel–aluminum impacts

In this section, the impact of a steel sphere against an
aluminum wall is treated. The results of the COR for exper-
iments and simulations are shown in Fig. 12. The COR’s
curve progression looks similar compared to the pure steel
impacts, i.e., high CORs for low impact velocities with a
high decrease at the beginning and converging to an almost
constant value at high impact velocities of about 0.5. The
experimental results show again only a small deviation within
each impact velocity. A good qualitative agreement with a
quantitative difference of about 0.05 is obtained to the sim-
ulations. From the repeated impacts of the experiments, it
can be seen that those have again a higher COR than the first
impacts.

Comparing steel–steel and steel–aluminum impacts, i.e.,
Figs. 8 and 12, the experimental COR values are very close to
each other. The similar COR values might seem unintuitive
as aluminum is a softer material than steel and one could
thus expect more plastic deformations and energy dissipa-
tion and thus lower CORs. However, as will be shown later
in Sect. 6.3, the contact force for steel–aluminum impacts
is lower as for steel–steel impacts due to the lower Young’s
modulus and lower weight of aluminum. Also, for steel–
steel impacts, the energy dissipates equally in wall and
sphere, see Fig. 11. For aluminum impacts, the energy dis-
sipation is dominated by the aluminum wall, as shown in
Fig. 15. Hence, the steel sphere shows almost no plastic
deformations. In summary, this leads to a similar energy
dissipation for steel–steel and steel–aluminum impacts. As
the energy dissipation is concentrated to the aluminum wall,
its contact zone is more hardened compared to pure steel–
steel impacts. This might lead to the fact that the CORs
of repeated impacts for aluminum are higher compared to
pure steel impacts. For details on repeated impacts, see
[16,20,26]. In consequence, general statements about the
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Fig. 13 COR by FEM
simulations for impact of steel
sphere of different diameters
against aluminum wall

COR are only hardly possible for unknown metal material
pairings.

In Fig. 13, the dependency of the sphere’s diameter
regarding the COR is treated. Those curves look similar for
steel–steel and steel–aluminum impacts, i.e., a lower sphere
diameter leads to a higher COR, see Figs. 9 and 13. However,
for steel–aluminum impacts the dependency on the sphere’s
diameter is much less. This behavior might be due to a lower
slope in the stress–strain curve at high strains for aluminum,
see Fig. 3.

As explained in Sect. 6.1.1, the location of energy dissi-
pation can be gathered from the FE analysis. The same is
done for the steel–aluminum impacts and shown in Fig. 14.
The time course of energy dissipation is qualitatively similar
to the pure steel dissipation, compare Figs. 10 and 14. How-
ever, for the steel–aluminum impact the time delay between
maximum contact force to maximum indentation is much
lower with only 2.5µs to 5µs although the total contact time
is higher (133µs to 101µs). This is due to the much lower
dependency of the plastic flow on the strain rate of aluminum
compared to steel. After the maximum indentation, i.e., dur-
ing the restitution phase, almost no plastic dissipation occurs
anymore.

Figure 15 shows, where the energy in both components
dissipates relatively. It can be seen that approximately 90 % of
the dissipated energy dissipates in the aluminum wall almost
independent of impact velocity. Only for very low impact
velocities, the dissipation ratio is a little bit lower. The dif-
ference to steel–steel is significantly, see Fig. 11. This effect
can be explained by the lower yield stress of aluminum com-
pared to steel. Thus, much more plastic deformations occur
in the aluminum wall. This can also be observed after the
experiments as the observable impact zone deformations on
the aluminum block are much bigger than the ones on the
steel block.

Fig. 14 Time course of energy dissipation of a 1 m
s impact between

30 mm-steel sphere and aluminum wall

Fig. 15 Location of energy dissipation between 30 mm-steel sphere
and aluminum wall

6.2 Steel–polymer impacts

In the previous sections, pure metal contacts are dealt with.
Now, contacts between hybrid material combinations are
investigated. The same steel sphere of 30 mm diameter is
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Table 3 Material data of used
polymers

Material T2 SAA PVC

Color light green black gray

Density [kgm3] 1193 1180 1400

Young’s modulus [MPa] ≈ 1 ≈ 55 1000 − 3500

used. As wall material, three different types of polymers are
analyzed. However, due to missing material models, only one
polymer is investigated numerically. The available material
data are listed in Table 3. The Young’s modulus values can
only be seen as rough approximations due to the viscoelas-
tic material behavior of polymers. However, they give an
impression about the material stiffness.

The first investigated polymer is a KRAIBON® compound
SAA9579-52. In the following, it is named SAA. Its vis-
coelastic material behavior is introduced in Sect. 3.2, i.e., this
polymer is also investigated numerically. The second poly-
mer is the widely used Polyvinyl chloride (PVC). The third
one is a cold vulcanizing silicone rubber manufactured by
Zhermack SpA (Badia Polesine, Italy) distributed through
Troll Factory Rainer Habekost e.K. (Riede, Ger-
many) under the name TFC Type 2. In the following, it is
referred to T2. The polymer T2 is significantly softer than
SAA and especially softer than PVC. The densities are on a
similar scale.

6.2.1 Steel–SAA impacts

The used SAA probe is 2.4 mm thick and glued to the rigid
steel block of the test armature. Due to this fact, the ques-
tion arises whether the material thickness affects the COR.
This will be investigated by FEM simulations later. In con-
trast to pure metal impacts, no effect of repeated impact is
seen, i.e., repeated impacts have the same COR as corre-
sponding first impacts. Thus, it is not differentiated between
first or repeated impacts. As for each measurement cycle, the
sphere rebounds until it comes to rest, the lowest measurable
impact velocity reduces to about 0.01m

s . This effect can be
explained as the used polymer shows a viscoelastic material
behavior. Hence, no or almost no plastic deformation occurs
in the contact zone. Instead, the material fully recovers and
no history-dependent behavior takes place.

In Fig. 16, the experimental and numerical results for the
COR are shown. These are significantly different from the
investigated steel–steel and steel–aluminum impacts, i.e., the
dependency of the COR on impact velocity is recognizably
smaller, compare with Figs. 8 and 12. However, the effect
of higher CORs at lower velocities resembles. Already at
the lowest impact velocity of 0.01m

s the COR has a value
of ε = 0.68. The investigated metals have shown here a
tendency to ε = 1. Additional, for the metals an exponential

Fig. 16 COR for impact of 30 mm-steel sphere against 2.4 mm SAA
wall

decay of the COR over impact velocity is observed on a large
measurement range. Here, this is only up to impact velocities
of 0.2m

s the case. Afterward, only a little almost linear decay
is seen in the experiments.

In the following, two different simulation models are used,
once with a 2.4 mm thick SAA layer on a semi-infinite steel
wall (hybrid) and once only a semi-infinite SAA wall (non-
hybrid). Both results are compared to the experiments in
Fig. 16. It can be extracted that the difference between both
simulation models is very small and a non-hybrid simula-
tion can be used in the following. The COR values measured
for impact velocities below 1m

s fit very well with the simula-
tion results. Above this velocity, there is a notable difference.
While in the experiments a small linear decay of the COR
over impact velocity is seen, the simulations COR stays
almost constant. A possible explanation for this behavior
might be the way how the viscoelastic material data is gained
from the experimental DMA tests [21]. Thus, the used sim-
ulation data might only fit for a specific range of impact
velocities. Here, for impact velocities up to 1m

s .
Likewise to the previous sections, for this kind of material

pairing a parameter study regarding the diameter of the sphere
is performed. As for high impact velocities experimental and
numerical results begin to diverge, the analysis is limited to
impact velocities up to 2 m

s . The results are shown in Fig. 17.
The dependency on the sphere’s diameter is small. It is seen
that bigger sphere diameters lead to higher CORs. This is vice
versa to steel–steel (Fig. 9) and steel–aluminum (Fig. 13)
impacts. However, for very small sphere diameters, like 1
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Fig. 17 COR by FEM
simulations for impact of steel
sphere of different diameters
against SAA wall

Fig. 18 Time course of energy dissipation of a 1 m
s impact between 30

mm steel sphere and SAA wall

mm and 2 mm, the convergence does not hold anymore as
the COR values rise again. However, it is hard to judge the
physical effect causing this behavior.

Next, the temporal evolution of energy dissipation is inves-
tigated. This is shown for an impact velocity of 1m

s in Fig. 18.
In addition to the outputs mentioned in Sect. 6.1.1, for the
viscoelastic SAA it is necessary to take the energy dissipation
by viscoelasticity ALLCD into account.

Figure 18 displays that the energy stored in the material
due to strain rises very fast at the beginning of contact, i.e.,
during the compression phase. During this phase, also the
viscoelastic energy dissipation rises fast. Shortly before the
strain energy reaches its maximum value, the maximum con-
tact force occurs. Then, at about half the collision time, the
maximum strain energy and afterward the maximum indenta-
tion is reached. The maximum strain energy lags behind the
maximum contact force, due to the compression waves of
both bodies. After the strain energies maximum, it decreases
with a high slope. However, the gradient of viscoelastic dissi-
pation is reduced. At the end of the contact, the strain energy

Fig. 19 Location of energy dissipation between 30 mm steel sphere
and SAA wall

is not zero but has still a negative slope. The viscoelastic
dissipation increases the same amount as the strain energy
decreases. This effect is also known as “elastic after effect”
[5]. This is different to the steel–steel (Fig. 11) and steel–
aluminum (Fig. 15) progressions, as these show a constant
remaining strain energy after impact. The amount of energy
dissipation due to plasticity in the steel sphere is negligibly
small over the whole contact procedure.

The energy dissipation ratio between 30 mm steel sphere
and SAA wall is shown in Fig. 19. It is seen that more than
99% of energy dissipates in the SAA wall. The result does not
surprise as already for aluminum, which is much softer than
steel, 90% of the dissipated energy is in the aluminum wall.
The Young’s modulus of SAA is multiple decades lower than
steel or aluminum. Due to this lower Young’s modulus, the
strain in the SAA wall is much higher but the resulting contact
forces are way lower. Consequently, the steel sphere shows
almost no plastic deformation and most energy dissipates
thru the viscoelasticity of the SAA.
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Fig. 20 COR for impact of 30 mm steel sphere against 8 mm PVC and
10 mm T2 wall

6.2.2 Steel–PVC impacts and steel–T2 impacts –
experimental results

The previous section has shown a much lower dependency
of the COR on impact velocity for the polymer SAA than
for pure metal impacts. To further investigate this behav-
ior, two additional polymers PVC and T2 are analyzed next.
However, due to missing material models, this is purely done
experimentally. To prevent a slap through the materials dur-
ing impact, both material probes have a high thickness of 8
mm (PVC) and 10 mm (T2).

Figure 20 shows the experimental results for the COR
of both materials. It can be seen that there is only a minor
dependency of the PVC COR on impact velocity. A little
linear reduction of the COR to higher velocities is obtained.
The COR starts at ε = 0.92 and reduces down to ε = 0.87.
The deviations of the measurement results are very low.

The material T2 has an even lower dependency of the
COR on the impact velocity. The COR is almost constant with
values of ε ≈ 0.77 and a small measurement deviation. Thus,
all steel–polymer tests have shown a much lower dependency
on impact velocity and a lower measurement deviation than
the steel–metal impacts. Also, no damage of the material
probes could be observed after tests, and the COR for first
and repeated impacts does not change.

In the previous experiments, the material thickness was
chosen high enough to prevent a slap through the material
during impact. Next, this influence of material thickness shall
be explored using the T2 material. The experiments are per-
formed with multiple thicknesses, i.e., 0.65 mm, 1.5 mm,
2.5 mm, 3.2 mm, 4.0 mm, 4.9 mm, and 10 mm. In Fig. 21 the
results are shown. For better readability, exponential func-
tion fits are inserted through the measurement points. The
10 mm probe can be seen as a reference because the effect
of the steel block behind the wall material is not notable as
will be shown later. While the 10 mm probe is showing an
almost constant COR of ε = 0.77, all other probes exhibit an

impact velocity-dependent behavior. For very small impact
velocities, the COR is about ε ≈ 0.8 for all thicknesses.
However, a strong dependency on impact velocity is seen.
As smaller the thickness the higher the velocity dependency.
Conversely, the thicker the T2 wall gets, the more the curves
seem to converge. This result surprises at first as it could be
thought when the wall material is thinner the effect of the
steel block behind increases. However, for low wall thick-
nesses the COR curves do not converge to the steel–steel
curve, see Fig. 8. Instead, even lower COR values as for
steel–steel impacts are achieved.

To show the influence of the steel block behind the wall
material probe when the probe thickness is small in Fig. 22
the sphere indentation into the wall is shown for an impact
velocity of 2.5m

s and different probe thicknesses. The dashed
vertical lines indicate the thickness of each wall probe in the
same color. The curve for 0.65mm probe has quite a sharp
kink at the beginning of the contact. This indicates that the
effect of the steel block behind begins to predominate. This
kink can also be seen for the thicknesses up to 4mm but in a
weakened form. The 10mm-probe does not have such a kink,
hence it can rightfully be said that there is no serious effect
of the steel block anymore. This wall is not a hybrid probe
but a full polymer probe.

Performing the experiments, the very thin material probes
show small circles in the impact zone or even visible dam-
age. Due to the low wall thicknesses, higher stresses occur in
the contact zone, leading to these plastic deformations. Thus,
additional energy is dissipated in the polymer probes lead-
ing to a lower COR. Consequently, for impact applications,
these little plastic deformations could reduce the long-term
behavior of the material and should thus be avoided. On
the other hand, for technical applications, the COR of such
hybrid impact systems could be measured and used as an
early indicator for the failure of the polymer.

Using the above insights, one might further explain the
difference between simulations and experiments for the
steel–SAA impacts of Sect. 6.2.1, shown in Fig. 16. Instead
of changing the thickness of the SAA, the sphere’s diam-
eter is varied. Hence, plastic deformations within the SAA
should occur in a different amount. Indeed, experiments with
a 20 mm instead of 30 mm diameter sphere (33 g to 110 g
weight) have shown no significant differences in the COR.
Thus, plastic deformations within the SAA are not the rea-
son for the difference between simulations and experiments
at high impact velocities.

6.3 Contact duration and contact force

As mentioned in Sect. 4, an advantage of using a laser vibrom-
eter (LV) for measuring impacts is that the contact duration
and contact force can be investigated. Figure 23 shows the
results for the contact duration for all conducted experiments.
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Fig. 21 COR for impact of 30
mm steel sphere against T2 wall
with different probe thicknesses

Fig. 22 Indentation of a 30 mm steel sphere into T2 wall for 2.5 m
s

impact velocity and different probe thicknesses. The dashed lines of the
same color indicate the thickness of the wall probes

A general observation is that for lower impact velocities, the
contact duration increases in an exponential manner. For the
pure metal impacts, this is in consistency with the Hertzian
impact theory [12], but can also be applied to the polymer
impacts.

The metal–metal contacts are in a region of one-tenth
milliseconds and thus clearly shorter than metal–polymer
contacts. Steel is harder than aluminum, so the duration is
shorter. The same rationale can be applied to the polymer
contacts since PVC is harder than SAA and T2. The PVC
contact durations are in an area from 0.3–1.5 ms. SAA and
T2 are in a region of 1–10 ms.

Next, in Fig. 24 contact force profiles of impacts by a
30 mm steel sphere of 1m

s impact velocity against the dif-
ferent wall material probes are compared. As in Sect. 4
described, the accelerations and thus the contact forces are
calculated by central finite differences of the velocity signal
of the LV with a sampling frequency of 250 kHz. As expected,
the maxima of the metal–metal impacts are much higher than

Fig. 23 Measured contact durations of a 30 mm steel sphere for differ-
ent wall materials

those of metal–polymer contacts, i.e., 3027 N and 2180 N
to 865 N, 388 N, and 50 N. The maxima are directly corre-
lated with the Young’s modulus, i.e., higher Young’s modulus
results in higher force peaks but lower contact times.

7 Conclusion

The analyzed steel–steel and steel–aluminum contacts show
a high dependency on impact velocity. These start at high
COR values for low impact velocities and show an expo-
nential decay toward higher impact velocities. Due to plastic
deformations, repeated impacts onto the same spot show a
much higher COR. The contact times are short compared to
steel–polymer impacts, which results in high contact forces
and much higher noise emission. The finite element simula-
tions are capable to reproduce the qualitative progression of
the COR observed in experiments. However, small quantita-
tive differences remain. Especially for steel–steel impacts, an
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Fig. 24 Measured contact force
profiles for 1 m

s impact velocity
of a 30 mm steel sphere for
different wall materials

effect of spheres diameter is observed. Bigger diameters lead
to lower CORs. Indeed, a convergence to extreme diameters
is visible. While for the steel–steel impacts the energy dis-
sipation is distributed almost equally in sphere and wall, for
steel–aluminum impacts this is dominated by the aluminum
wall. Visible plastic deformations within the aluminum wall
are observed after experiments.

Besides the metal–metal impacts, three different steel–
polymer combinations are investigated. The used polymers
can be roughly classified as soft, medium, and hard. The
steel–polymer contacts show only little dependency on
impact velocity. Often, only a little linear decrease of COR
with impact velocity is observed. Also, the effect of repeated
impacts vanishes, as no plastic deformations in the con-
tact zone occur. The medium-stiff polymer is also analyzed
numerically. A good agreement with experimental measure-
ments is achieved for low impact velocities. At high impact
velocities, bigger differences are seen. The effect of the
sphere size is small for this polymer. The energy dissipation
is completely dominated by the polymer wall and lasts even
after contact has ended, due to the viscoelastic aftereffect of
polymers.
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