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Abstract

This thesis is devoted to the study of the solvability and regularity problems
for the motion of incompressible inhomogeneous viscous fluid flows in the
presence of variable viscosity coefficients.

Chapter [2| is devoted to the existence and the regularity properties of
(a class of) weak solutions to the two-dimensional stationary incompressible
inhomogeneous Navier—Stokes equations with density-dependent viscosity
coefficients. The three-dimensional case under special symmetry assumptions
is also considered.

Chapter [3| proves the existence, uniqueness, and regularity results of
the two-dimensional evolutionary incompressible Boussinesq equations with
temperature-dependent thermal and viscosity diffusion coefficients in general
Sobolev spaces.

In addition to the above results in the domain of fluid mechanics, we
study the turbulence cascades for a two-parameter family of damped Szeg6
equations in Chapter [4
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Zusammenfassung

Diese Arbeit widmet sich der Untersuchung der Losbarkeits- und Regu-
laritatsprobleme fiir die Bewegung inkompressibler inhomogener viskoser
Fluidstromungen in Gegenwart variabler Viskositatskoeffizienten.

Kapitel [2] widmet sich der Existenz und den Regularitéitseigenschaften
(einer Klasse) von schwachen Losungen der zweidimensionalen stationdren in-
kompressiblen inhomogenen Navier-Stokes-Gleichungen mit dichteabhéngigen
Viskositéatskoeffizienten. Der dreidimensionale Fall unter speziellen symmetri-
schen Annahmen wird betrachtet.

Kapitel 3] beweist die Existenz-, Eindeutigkeits- und Regularititsergebnisse
der zweidimensionalen evolutiondren inkompressiblen Boussinesq-Gleichungen
mit temperaturabhéngigen thermischen und Viskositéts-Diffusionskoeffizienten
in allgemeinen Sobolev-Raumen.

Zusétzlich zu den obigen Ergebnissen im Bereich der Stromungsmechanik
untersuchen wir in Kapitel 4] die Turbulenzkaskaden fiir eine zweiparametrige
Familie geddmpfter Szeg6-Gleichungen.

Schliisselworter

Stromungsmechanik, Navier—Stokes-Gleichungen, Boussinesq-Gleichungen,
Losbarkeit, Eindeutigkeit, Regularitét, variabler Viskositédtskoeffizient, varia-
ble Temperaturleitfahigkeit, Sobolev-Raume, Szegd-Gleichung, Turbulenzkas-
kade
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Chapter 1

Introduction

In this thesis, we study the motion of the incompressible inhomogeneous vis-
cous fluid flows through two essential models in the domain of fluid mechanics:
the incompressible inhomogeneous stationary Navier-Stokes equations and
the incompressible evolutionary Boussinesq equations. We are in particular
interested in the case when the viscosity coefficient is variable and depends
on density or temperature.

The incompressible inhomogeneous Navier—Stokes equations are composed
of the incompressibility condition, the mass and momentum conservation
laws. We consider the solvability and regularity problems of the two- and
three-dimensional stationary Navier—Stokes equations

divu=0, zeQcR? d=23,
div(pu) = 0, (Navier—Stokes)
div(pu ® u) — div(uSu) + VII = f.

The unknowns are the density function p : 2 — R, the velocity vector field
u=(ul,...,ud)T : Q — R? and the pressure II : Q2 — R. The external force
f:Q — R%is given. We denote u ® u = (u;u;)1<;j<a and Su = Vu + (Vu)T
with Vu = (0, u;)1<ij<a- We assume that the viscosity coefficient 1 depends

smoothly on the density function p as follows

w="b(p),

where b € C(Ry;[us, +90)) is a given function, and p, > 0 is a positive
constant.

We also study the well-posedness and regularity issues of the two-dimensional
incompressible evolutionary Boussinesq equations as the nonlinear coupling be-
tween the Navier-Stokes type of equations and the thermodynamic equations
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for temperature

div,u =0, (t,2)e[0,00) x R?,
O +u- V0 —div . (kV,0) = 0, (Boussinesq)
Oyu + u - Veu — div . (uSyu) + V, IT = 6é3.

The unknowns are the temperature function 6 = 6(¢,z) : [0,0) x R* — R,
the velocity vector field v = u(t,z) : [0,00) x R* — R? and the pressure
I = TI(t,z) : [0,0) x R* — R. The vector field ¢; = ((1) denotes the
unit vector in the vertical direction, and fe; is the buoyancy force. The
thermal diffusivity x and the viscosity coefficient ;© depend smoothly on the
temperature function 6 as follows

k=a(f) with ae C(R;|[k«, K*]) given,
p=">0(0) with be C(R;[u, p*]) given,

where 0 < K, < K*, 0 < p, < p* are positive constants.

The introduction chapter consists of three parts. Section is devoted
to studying the two-dimensional evolutionary incompressible Navier—Stokes
equations, whose existence, uniqueness and regularity properties have been
widely considered in the literature. We start this chapter with the evolutionary
Navier—Stokes system as a nice background of our main topics.

We state our main results and give explanations on the boundary value
problem of the two- and three-dimensional stationary incompressible Navier—
Stokes equations in Section [I.2] Section [[.3]is devoted to the results of the
two-dimensional evolutionary incompressible Boussinesq equations.

1.1 Evolutionary Navier—Stokes equations

This section is mainly devoted to stating the results of the two-dimensional evo-
lutionary homogeneous/inhomogeneous incompressible Navier—Stokes equa-
tions. The evolutionary Navier—Stokes equation is an essential model in
the domain of fluid mechanics and there are plenty of work devoting to its
well-posedness problem since 19th century. Though the evolutionary Navier—
Stokes equations are not directly related to the main results of this thesis, we
start with it to present a nice background and motivation for the topics we
are going to consider.

This section consists of three parts. Subsection is devoted to present-
ing the models and the existence results of the two-dimensional evolutionary
incompressible homogeneous and inhomogeneous Navier-Stokes equations.
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In Subsection [I.1.2] a remarkable open problem concerning the uniqueness
and regularity properties of the inhomogeneous flows will be introduced. In
Subsection [I.1.3] we summarize some (partial) results concerning the exis-
tence, uniqueness and regularity of the homogeneous and inhomogeneous
incompressible Navier—Stokes equations.

1.1.1 Presentation of the equations and existemce re-
sults

Homogeneous incompressible Navier—Stokes equations

The Cauchy problem of the two-dimensional homogeneous incompressible
Navier—Stokes equations can be written as

div,u =0, (t,z)e[0,4+0) x R?
o+ div (v ®@u) — vAzu + V, I = 0, (1.1)

u|t=0 = Ug.

The unknowns are velocity vector field u = (Zl) : [0, +90) x R? — R? and
2

pressure II : [0, +o0) x R* — R. The viscosity coefficient v is a positive
non-zero constant. We write

u®u=(u% ul?).
U1U Uy
The energy of the system (1.1)) is defined as

t
B(0) = [u®)lfay + 2 | [Vu() ey, ¢ 0.
0

We formally have the following energy estimate for smooth enough solutions.
If u e (C*P([0,+00) x R?))? satisfies the equation (1.1)), then we take the
L*(RY)—inner product of u and (1.1)) to derive

1d

2dt R2

—1// Au - udx + VII-udx = 0.
R2 R2

]u|2dx+/ div (v ®u) - udx
R2

By incompressibility condition, one has

. _ _ [Ciur Gy
div(u®u) =u-Vu, Vu= <(91U2 (92u2> :
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By integration by parts, one has

1
/(U-Vu)-udxz—/ u- Vluf* dv
R2 2 R2

1
= —/ (divu)|u|? dz = 0,
2 Jeo

/VH-udxz—/ II(divu) dx = 0,
R2 R?

and
—y/ Au-udr = UHVUH%Q(RQ).
R2

We integrate ((1.2) over time from 0 to ¢ to derive
E(t) = E(0) = |[uo| 2 (ge)-

The above energy estimate also holds for regular enough solutions of the
equations on R? with d > 3.

The weak solutions of with finite energy is called Leray-Hopf weak
solutions, which is defined as following.

Definition 1.1.1 (Leray-Hopf weak solutions). We say that u is a Leray-Hopf
weak solution of the homogeneous Navier—Stokes equation (1.1)) with the given
initial data ug € (L*(R?))? if

u(t, z) € O([0, +o0); (L*(R?))*) n L*([0, +0); (H' (R?))?)

satisfies the initial condition uli—g = wug, the incompressibility condition
div,u = 0 in the distribution sense and the weak formulation

— [ wug-p(x,0 d:rj+// —u-0
/Rz 0 ¢(,0) R2><[0,+oo){ i (1.3)

— (u®u) : Vo + vVu: Ve}dedt =0,
where divyp = 0 and ¢ € C*([0,+00) x R?)2. Here we define the notation

A:B= Zj,k:I,Q ajkbji for two matrices A = (ajk)jr=12 and B = (bji); k=12
Furthermore, the following energy estimate holds

t
Ju(t) |22 ge) + 21//0 [Vu(r)[72me) dr < luolioge), V> 0.
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The existence of the Leray-Hopf solution was given by celebrated work of
Leray |Ler33| .

Theorem 1.1.1 (Existence of Leray-Hopf weak solutions, [Ler33|). For the
two-dimensional case, there exists a unique global-in-time Leray-Hopf weak

solution of (1.1)).

The existence result also holds for the three-dimensional case. However,
the uniqueness of weak solution fails. More discussions on the existence and
uniqueness problems of the equation (|1.1)) can be found in Subsection [1.1.3]

Remark 1.1.1. We discuss the reqularity of the pressure term VI1I corre-
sponding to the Leray-Hopf weak solutions, which was eliminated in the weak
formulation .

We first introduce the Leray-Helmholtz projector P : LP(R?*) — LP(R?),
p e (1,0), which projects a vector-valued tempered distribution v € S'(R%; R?)
into its div-free part defined as

v=V"V 4+ V;,
and
ViV = VATV o =Py, Vo =VA'V.v=(I-Pu.
We apply the Leray-Helmholtz project P to 2 to derive
diu = —P(div,(u®u)) + vA,u.

Notice that Au e L2 ([0,00); (H ' (R?))?) and u e L} ([0,20); (L*(R?))?). As
a consequence, P(div ,(u®u)), du € L2 ([0,0); (H 1(R?))?). Now we recover

loc
VII in terms of u

VIl = —0u — div,(u®u) + vAue L7 ([0,0); (H 1 (R?))?).

loc

2
loc

The pressure function can be normalised as 11 € L2 ([0,00) x R?) by assuming

[, Tdz =0, where By  R® is the unit disk.

For the incompressible homogeneous Navier—Stokes equation ([1.1]), the
density function is constant. In next paragraph, we will discuss the inhomo-
geneous involving variable density.
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Inhomogeneous incompressible Navier—Stokes equations
The evolutionary two-dimensional incompressible inhomogeneous Navier—
Stokes equations with variable viscosity coefficient can be written as
div,u =0, (t,2)e[0,+w0) x R?,
Op + div . (pu) = 0,
Or(pu) + div . (pu ® u) — div . (uS,u) + V,II = 0,
Plig =ro.  (pu)],_y = mo.

The unknowns are density function p : R? x [0, +00) — [0, +0), velocity
Uy

(1.4)

vector field u = : R%x [0, +o0) — R? and pressure IT : R? x [0, +00) — R.

The variable viscosity coefficient © may depend smoothly on the density
function p with the form

p="b(p), beC([0,0); [, +0))

where p, > 0 is the positive lower bound of b.
We write A 2
o xlul xgul
Vu = (69611,62 8x2u2) ’

26z1u1 (31,2u1 + 53311@2
&UluQ + @Czul 2@$2u2 '

and
Su = Vu+ (Vu)' = <

. . : o O
Notice that %Su is the symmetric part of Vu. We write div = V- = (é 1) .
x2

We recover the homogeneous system from the inhomogeneous system
by setting
p=1 and p=v >0 a positive constant.
In particular, the incompressibility condition divu = 0 ensures that
div (vSu) = vAu.
We define the weak solutions of as in [Li096].

Definition 1.1.2 (Weak solutions of evolutionary inhomogeneous Navier—S-
tokes equations). We say that a pair (p,u) is a weak solution of the Navier—
Stokes equation ([L.4) with the given initial data (pg, mo) satisfying

po=0 ae in R? pye L”(R?),

mo € (L*(R?)?, mo=0 a.e on {py =0}, (1.5)

mol®/po € L*(R?),

iof the following statements hold:
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e The density function
p = plt.x) € L2([0,+20) x R?) 1 C([0,+0); L (RY), 1< p <o
satisfies the mass conservation law
Owp + div(pu) =0
in the sense of distribution.
e The wvelocity vector field
Vu(t,z) € (L*([0, +0) x R*))*, plul* € L*([0, +o0); L' (R?))

satisfies the initial condition puli—g = myg, the incompressibility condition
div,u = 0 in the distribution sense and the weak formulation

- [ mopoaydr [ [ (= puag
R2 R2x[0,+0)

1
—plu®u): Ve + §u5u : Sgo} dzdt = 0,

where div,yp =0 and p € CP([0,+0) x R?)?.

Notice that for the non-vacuum case (0 < p, < po < p*), the assumptions
on the initial values ([1.5)) can be reduced to

pli—o = po € L*(R%),  uli—o = up € (L*(R?*))".

We formally derive the energy estimate for the inhomogeneous equation (|1.4)).
Let (p,u) € L®(R?) x (C*([0,+0) x R?))? satisfy the system (1.4). By
integration by parts, we take L?-inner product of (1.4 and u to derive

t |m0|2
/ plul? dx +/ / p|Sul? dedr = / dx, Vt>0,
R2 0 JR2 Rz o

where we use integration by parts to obatin

1
/ div (uSu) - udr = —/ p|Sul* d.
R2 2 R2

As a consequence of the energy estimate, Lions [Li096] proved the following
existence theorem.

Theorem 1.1.2 (Existence of weak solutions, [Li096]). There exists at least
one weak solution of (1.4)). Furthermore, we have
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o The following energy estimate holds

' [0
/ plul? dx +/ / p|Sul? dedr </ ——dx, VYt>0.
R2 0 JR2 Rz Po

o Forany0<a<f <o

meas {x € R*|a < p(t,x) < B} is independent of t € [0, +c0). (1.6)

Remark 1.1.2. The above existence results allows the vanish of the density
function p on a subset of R?, which is related to the vacuum in the fluids. In
particular, the case that a bubble of homogeneous fluids embeds into vacuum
s allowed. The vacuum case is always more difficult than the non-vacuum
case, since the system is degenerated in the vacuum region.

1.1.2 Open problems and transport equations revisited

Lions [Li096] asked about the density-patch problem for inhomogeneous fluid
flows. Suppose that the initial density has the form

po = 1p,

where D < R? is a smooth domain. Theorem provides at least one
corresponding weak solution

p(t) =1pw and Vu(t,z)e L?([0,+0) x R%RY),

where the property ensures that meas(D) = meas(D(t)). However, it is
unclear whether the regularity of 0D is preserved by the time evolution. This
is so-called the density patch problem. It can also be seen as a free boundary
problem for the homogeneous incompressible Navier—Stokes equation (|1.1]).

The density-patch problem is strongly related to the uniqueness and
regularity properties of the fluid flows, which is still open for the equation
(1.4) with density dependent viscosity coefficient p even in dimension two,
see for example [Li096]. We will summarize some (partial) results for the
homogeneous and inhomogeneous flows in Subsection [I.1.3

If we assume the Lipschitz continuity in the spatial direction on u, i.e.

Vu € Lie([0, +90); (L*(R*)"), (1.7)

then one can obtain the uniqueness and furthermore regularity results on
the corresponding weak solutions. However, with the only bounded density
function p it is very hard to obtain the Lipschitz continuity on u. The constant
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viscosity coefficient case was solved by Danchin and Mucha |[DM19a], see
Theorem [1.1.4] However the variable viscosity coefficient case is still open.

On the one hand, it is natural to ask whether one can obtain uniqueness
and regularity results if we assume appropriated smallness or smoothness on
the density function p or viscosity coefficient . We will summarize some
results towards this direction in Subsection [L.1.3l

On the other hand, it is also interesting to investigate the maximal
regularity of v with only bounded density function p. We will discuss this
problem for the stationary Navier-Stokes equations in Chapter [2]

In the following, we will focus on the transport equation 2 to discuss
the necessity of the Lipschitz continuity on u for the uniqueness and
regularity properties of density function p.

Transport equation: Lipschitz framework

The transport equation (1.4), reads as

(1.8)
P|t:0 = pPo,

{é‘tp+u-vx,0 =0,
where u : [0, +90) x R?> — R? and div,u = 0. In the Lipschitz framework,
namely

w€ Ly ([0, +00); (WH(R?))?), (1.9)

the transport equation (|1.8)) is strongly related to the ordinary differential
equation

%X(t) —u(t,X(t)), X(0)=uzeR? (1.10)

as the solution can be expressed explicitly as p(t, X (t)) = po(x). The Cauchy-
Lipschitz Theorem ensures the existence and uniqueness of the solution for
the equation and hence the equation . Concerning the regularity
problem, we have the following a priori estimate, see for example [BCD11].

e In the low regularity regime with (p,r) € [1,00]? and

2 2 2 . 1 1
—l—max{—, -} <s<1l+- with —+— =1,
pp p p p
the following estimate holds
Clolsg, <CIVol 2
—_— s XX v 2 s .
a1 B e B
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e In the high regularity regime with (p,r) € [1,00]* and s > 1 + ]% or
(s,p,7) = (1+ %,p, 1), the following estimate holds

d
— s < C
lols;, < €IV

Byt Iol;.,-

Notice that even to propagate the low regularity, the Lipschitz continuity
is necessary.

It is natural to ask whether the uniqueness and regularity results hold
without Lipschitz continuity assumption on u. In the following, we discuss
some work considering less regular velocity field, for example, u has Sobolev
regularity (which can not be embedded into W1*(R?)) or BV (bounded
variation) regularity with respect to the spatial variable and integrable over
time.

Transport equation: Uniqueness

DiPerna and Lions |[DL89| relaxed the Lipschitz continuity condition to
Sobolev regularity assumption on u. They assumed the Sobolev regularity

1 1
polx) e LP(R?), 1<p<ow, -+ — =1,
olo) € L) p P (1.11)

u(t, ) € Lige([0, +90); (W (R?)?),

ocC

and that u additionally satisfies
([0, +90); (L1 (R*))?) + Lige ([0, +90); (L (R))*)

u
1
€L loc

14 |z e
then the equation ((1.8)) has a unique solution p € L*([0, +0); LP(R?)). In
particular, for p = oo, the Sobolev regularity u € LL ([0, +o0); (W21 (R?))?)
can be relaxed to

u(t, ) € Lige ([0, +00); (BViae (R*))?),

see |[Amb04].
However, for high dimensional cases d > 3, Modena and Székelyhidi
[MS18] constructed non-unique examples with

11 1
([0, +00); LP(T), ]—)+]3 >14+——

p(t,x) e Ly, T

loc
u(t, ) € Ly ([0, +o0); (WP n LP(TH)%),

for the equation (|1.8]). Notice that, in their example, the index p is smaller
than p’ comparing to ((1.11)
1

+—

>1
p d—1

el =
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Transport equation: Propagation of regularity

The Lipschitz continuity assumption on u seems to be necessary for the
propagation of regularity (comparing to the uniqueness result). Danchin
[Dan05] showed the regularity results with u in some ”almost Lipschitz”
Besov spaces. However, Colombini, Luo, and Rauch [CLR04] showed that
even for the time independent

u(@ye [ (W(R?))?,

1<p<oo

neither continuity nor BV regularity of py can be propagated. Alberti, Crippa,
and Mazzucato [ACM19] constructed counterexamples with

u(t,z)e [ L0, +50); (WHP(R?)?),

1<p<o

and the corresponding solution p(t, -) associated to a compactly supported
smooth initial data py does not belong to H*(R?), for any s > 0 and ¢ > 0.

1.1.3 Uniqueness and regularity results
Homogeneous evolutionary flow

In this paragraph, we focus on the (classical) incompressible Navier—Stokes

equation (1.1)

div,u =0, (t,2)e[0,+0) x R?,
o+ div (v ®u) — vAyu + V,I1 = 0,

u\t:O = Ug.

We observe the following scaling invariance property: If (u,II) is a pair of
solution of (1.1)) on [0,T] x R?, then the scaling pair (uy,IIy) with A € R
defined as
(ux(t, z), I\ (¢, 7)) = (Au(N*t, Ax), N TI(A*t, A1) (1.12)
is also a solution of (L.I) on [0,5] x R%. The functional spaces, whose
norms are invariant under the transformation (1.12)), are so-called critical
. Ld

spaces. For example, H2 !(R%), L4R%) and B2, 1(Rd) are critical spaces for
the system (1.1]). The existence and uniqueness problems in critical spaces
are widely studied.

Fujita and Kato [FK64] showed the following unique local-in-time solutions
in the general Sobolev spaces.
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Theorem 1.1.3 ([FK64]). Let ug e (H2 Y (RY)). Then there exists a unique
local-in-time solution on [0,T] for some T > 0 with

d
2

we C([0,T]: (H2 7 (R)") ~ L2([0, T]; (H (RY))) (1.13)

Furthermore, if ug is small comparing to viscosity coefficient v

then the solution (1.13)) exists globally. Moreover, the following estimate holds

t
2 2 < 2
O sy [ TP g 7 S ol

If the lifespan T is finite, then we have

T
4
| s 7 = (1.15)

For the two-dimensional case, L?(R?) is a critical space, and the solution
holds globally without the smallness assumption ({1.14]), which is a consequence
of the energy estimate

lu®)ig Lz + 2v[Vu(r)Izz 2 < luolLz, VT €0, +o0). (1.16)

Indeed, we consider the blow-up condition ([1.15)), which is globally bounded
for the two dimensional case since

T
| IO oy 7 < Wl Tl 5 S, lunlltz, YT € [0, 20),
0

where we use the interpolation inequality |uf .1 < Hu||%2HVuH%2

For the two dimensional case, one can show uniqueness of the solution by
energy method in Ladyzenskaja and Solonnikov [LS75]. We sketch the idea
here. We consider uy, ug € L2([0, +00); (L*(R?))?) n L*([0, +0); (H*(R?))?)
as two different solutions of (1.18) with the same initial value, then the
differences u = u; — up and Il = II; — Il satisfy

div,u = 0,
Ot + 1 - Vg + ug - Vit — vAL + VI = 0,
u|t:0 = O

We take L2-inner product of the difference equation and 4 to derive

1
= |u|2dx+V/ \Vi|de < | |4 Vuy - 4] de, (1.17)
2 R2 R2 R2
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where we use the fact [o, us - Vi - @ de = 0. The right-hand side of (L.17)) can
be bounded by

[ 24|Vl 22 < Ol 2 Vi 2V | 2

< e|Va(r)|7: dr + Ce| Vur |72 )il 2, e >0,

where we used Gagliardo-Nirenberg’s inequality and Young’s inequality. Then
we have the following estimate

d, . : .
Zlilzage + [ Vil < CIVua]ia]ifze.

Since Vuy € L([0,T]; (L*(R?))*) and 1wy = 0, we obtain % = 0 by Gronwall’s
inequality.

However, for the three-dimensional case, the existence and uniqueness of
the global-in-time smooth solutions without the smallness assumption (|1.14)
are still unknown (Millennium problem).

In the L? frame work, Kato |[Kat84] showed the local well-posedness for
the d-dimensional equation in L%(R?) and this solution exists globally if
the initial value ug is small. As a consequence of the energy estimate ,
the smallness condition can be removed in dimension two.

There are some work studying the equation in the Besov space frame-
work. Chemin |Che99] and Kozono and Yamazaki [KY94] showed the existence

Ld_q
and uniqueness of the local-in-time solution u € L*([0,T]; (Bf» (R%))%) n
.d4q
LY[0,TT; ( ;; (R))4), d < p < oo; Furthermore, under a smallness as-
sumption on the initial value ugy, the corresponding solution exists glob-
ally. For the two-dimensional case, the global-in-time unique solution u €
.2 9
L ([0, +0); (Bhg (R?))? with 2 < p < 0 and 2 < ¢ < © was shown in
[GP02|. For the three-dimensional case, an ill-posed example of the equa-

tion (1.I)) in the functional space L% ([0, +20); (B, (R*))?) was provided in
[BP08] in the sense that the solution corresponding to a small initial value can
grow arbitrarily large in an arbitrarily small time. In the smaller functional
space BMO™"(R?) = B;!, (R?), Koch and Tataru [KT01] showed the global

well-posedness result with the small initial data uqg.

Inhomogeneous evolutionary flow with constant viscosity coefficient

The Cauchy problem of the two-dimensional inhomogeneous incompressible
Navier—Stokes equations (1.4]) with constant viscosity coefficient v > 0 can



14 1.1. Evolutionary Navier-Stokes equations

be written as
div,u=0, (t,2)eR" xR?
Orp + div . (pu) = 0,
Or(pu) + div . (pu ® u) — vAu + V,II = 0,
Plicg = Pos (pu)],_y = mo.

(1.18)

The existence of the global-in-time weak solutions of the above system was
given by Simon [Sim90], which is compatible with Theorem [1.1.2]
The Navier—Stokes equation (1.4) (and (1.18))) is invariant under the

translation with A € R
(IOA(tu (L’)7 U)\(t, ZE)) = <p</\2t’ /\CL’), /\u(/\Qtu )\ZE), )‘2H()‘2t7 /\I))

There are some work considering the non-vacuum fluid in the critical Besov
space framework. For the strictly positive density p > 0, we define

a=—-—1 and ag=——1.
P Po
Then the system ([1.4]) can be written as
div,u =0, (t,2)eR" xR?
dia+u-Vea=0,
ou+u-Veu+ (1+a)(—vAzu+ V,II) =0,

(a,u)|i=0 = (ag, uo).

(1.19)

Danchin |[Dan03] showed the global well-posedness of the equation ((1.19]) with

a € Gy([0, +o0); B3, (R?)) n L*([0, +%0) x R?),

e ] o og (1.20)
u e Cb([O, +OO); (BQ’l(R )) ) NL ([07 +OO>; (32,1(R )) )

under the smallness assumption
Ha0||B%71 + V_lHUOHBng(Rd) < g, ¢ sufficiently small.

In general Sobolev spaces, he [Dan04] showed local well-posedness for the
smooth solutions with (ag, ug) € H*T1(R?) x (H?(R?))? (if a = 1 the Lipschitz
continuity on qg is assumed), where o, 5> 0and a — 1 < f < a + 1.

Remark 1.1.3. e In general, for the velocity vector field, thanks to the
viscosity term, there is a gain of reqularity on spatial direction of order
1 when taking L?>-norm in the time variable and of order 2 when taking
L-norm in the time variable.
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o We have the following embedding onto Lipschitz space

2 2
B;,T(RQ) — Wl,ao(RQ)’ s>1+ ]; or (s,r) = (1+ ]37 1).

Notice that the Besov space BL,(R%) — L*(R?) in (1.20)), which coin-
cides with Lipschitz condition (1.9)) for the transport equation.

Under the smallness assumptions on (ag, po), the global well-posedness
2

L2 2
result with the initial value (ag,u) € B} (R?*) x (B}, 1(RQ))Q, 1 <p<2,

was shown in [Abi0O7]; The case of different regularity exponent (ag, ug) €
2 2

D1 =1 . .
By (R < (B2 (R*)%, |- — | < 3 and 1 < -+ -, was studied in [AP07].
For the three-dimensional case, there are some work studying the global
well-posedness with only smallness assumption on ug, see [AGZ12; |AGZ13)].
There are some work studying the density-patch problem for the non-

vacuum case. The equation ([1.18]) with the density function
p(t,z) = (1 —¢)lpy(x) + Ipey(x), € sufficiently small,

was studied in [DM12; HPZ13b; DM13; |LZ16|; The smallness jump assumption
was moved in [DM13}; [LZ19a; [LZ19b; DM19a].

Danchin and Mucha [DM19a] answered the density-patch problem of the
vacuum case with

p(t’ x) = 1D(t) (Zl?),

in the following theorem.

Theorem 1.1.4 ([DM19a]). Let Q <= R? be a bounded C*—domain. Let
(po,ug) € L®(Q) x (H3 ()%  Then there exists a unique global-in-time
solution of (1.1)) satisfying

pe LP([0,+x0) x Q), wue LP([0,+w0); (Hy(2))*) n L*([0, +0); L*()).
Furthermore,

Vpu e C([0,+o0); L*(Q)),

and for any p < +o0

p e C([0,+0); LP(), wue H)

loc

([0, +00); IP(Q)), 1 < %

They used a time-weighted estimate to obtain the Lipschitz continuity
Vu € LL ([0, +90); (L®(Q))?), and they did not assume any regularity or
positivity conditions on the density function.
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Inhomogeneous evolutionary flow with variable viscosity coefficient

In this subsection, we consider the incompressible inhomogeneous Navier—
Stokes equation (|1.4)) with density-dependent viscosity coefficient

p=">(p), beCRy;[us,+0)) given,

where p, > 0 is the positive lower bound of b. Comparing to the constant
viscosity coefficient case , more difficulties aroused in the presence of
the density-dependent viscosity coefficient u = b(p).

There are some partial results on the well-posedness of the equation (|1.4))
under the smallness assumptions

[b(po) — 1|z» <&, e sufficiently small. (1.21)

Under this assumption, Desjardins [Des97| obtained global-in-time weak
solution (p,u) € L ([0, +o0) x T?) x L¥ ([0, +o0); (H'(T?))?), furthermore,

Vu e Li ([0, +00); (L7(T*)Y),  pe [4,0%), p* ~ |1 — 1]z

However, neither uniqueness nor regularity is ensured for such weak solutions.
Concerning the case |p — 1|z« < ¢ (as a consequence also holds),
the global-in-time unique solutions were obtained in general Sobolev spaces,
see for example [Abi07; |GZ09]. With the assumption that |pg — 1| and u, are
both small, Abidi [Abi07] showed the existence of the global-in-time unique
solution in Besov space B! ;(R?) x (BY;(R?))%, 1 < p < 2; Huang, Paicu, and
Zhang [HPZ13a] showed the unique global-in-time solution in the critical
2 2
space B;’I(RQ) X (B;;l(R2))2 with 1l <g¢g<p<4andl- % < % < % + 1
There are some works only assume the small oscillations on g (1.21).
Abidi and Zhang |AZ15a] proved the existence and uniqueness of the global-
in-time solution with (po — 1,ug) € (L2(R?) n L® n WL (R2)) x (H 2
H'(R?))?, with » > 2 and 0 < § < %. Furthermore, they established the

2
global-in-time regularity of the solutions in the Sobolev setting (po — 1,ug) €

H'5(R?) x (H*(R?))?, s > 1. Paicu and Zhang [PZ20| additionally assumed
that p is Lipschitz continuous in one spatial direction, where the unique
global-in-time solution was obtained with w € L*([0,+00); (H'(R?))?) n
LY([0, +0); (Lip(R?))?). Furthermore, the global-in-time unique solution
corresponding to the piecewise-constant density function

p(t,x) = (1 —e)lpwy(x) + 1pwe(z), € sufficiently small

was obtained, and the H?(R?) regularity of dD(t) is persevered.
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1.2 Stationary Navier—Stokes equations

In this section, we will study the two- and three-dimensional stationary
Navier—Stokes equations. We will extensively show the results of homogeneous
flows in Subsection [I.2.1] The main results of this thesis on the stationary
inhomogeneous Navier-Stokes equations will be discussed in Subsection [1.2.2]

1.2.1 Homogeneous stationary flows

The two- and three-dimensional homogeneous stationary Navier—Stokes equa-
tions in a domain < R%, d = 2, 3, can be written as

{ div(u®u) — vAu + VII = f, (1.22)

divu = 0.

The velocity field u : Q — R? and the pressure II :  — R are unknown. The
external force f : Q) — R? is given.

We follow [Galll] to define the weak solutions of the stationary Navier—
Stokes equation ([1.22]).

Definition 1.2.1 (Weak solutions of the stationary Navier—Stokes equations
on a bounded domain). Let Q = RY, d = 2,3, be a bounded domain. We say
that uw € H}(S;RY) is a weak solution of the Navier-Stokes equation (1.22), if
divu = 0 holds in the distribution sense, and the following integral identity

V/Vu:Vvdxz/u®u:Vvdx+/f~v,
Q Q Q

holds for all ve HL(2;RY) with dive = 0.
Then we have the following existence result.

Theorem 1.2.1 (Existence of weak solutions, Leray |Ler33|). Let Q = R,
d = 2,3 be a bounded Lipschitz domain. Let f € H-1(;R%). Then there exists
at least one weak solution u € H(S;RY) for the stationary Navier—Stokes
equation (|1.22)).

Remark 1.2.1. o This existence result can be extended to the non-homogeneous
boundary value cases

U’asz = Uy,

and also to the unbounded domains. More detailed discussions can be
found in the following paragraphs.



18 1.2. Stationary Navier—Stokes equations

e In general, we do not expect the uniqueness of weak solution in the above
theorem. There are some uniqueness results under smallness or symmet-
ric assumptions, see for example [Galll]. Several non-unique examples
were provided in (Galll]. We here mention the non-unique example of
Hamel flows on the two-dimensional exterior domain B;(0)¢ < R?. We
consider the polar coordinate with

I 2
€r = xT_Q y €= _T;v_l )
T r

and the velocity field reads
u(r,0) = ure, + ugeg, (r,0) € [0, +0) x [0,27).

Then the equation (1.22) with 0 < v < % combined with the boundary

conditions .
Ul (0 = ——€p, lim u =0
14 || —00

has a family of solutions

1 cv
U =——e, +

1
o m(l —r v ey, for any ceR,

and

H:—/ LV ey

v3ir?z (1 —2v2)r3

Non-homogeneous boundary value and fluxes assumptions

Theorem can be generalised to the non-homogeneous boundary value
case. On the bounded domain €2, we combine the stationary Navier—Stokes

equation ((1.22)) with the boundary value
u|aQ = Uyg. (1.23)

For the compatibility of the incompressibility condition divu = 0, we assume
that there is no flux through the boundary 052

F = ug - nds = 0. (1.24)
o0

In the above, n = (ny,ns) or n = (ny,ng,ng) denotes the exterior normal
vector to the boundary 0€2. Furthermore, Leray’s method requires if () =
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uﬁzlﬁi, Q; n Q; = J is multi-connected, then there is no flux through the
boundary of each connected component

Ez/ up-nds =0, V1<i<lI. (1.25)
o,

In another word, this model can be seen as a fix piece of an incompressible flow
on the whole space . So it is natural to ask about the case without the strict
zero fluxes assumption for each 0€2; (1.25]), which allows sink/source outside
of the domain. Galdi [Galll] and Finn [Fin61] relaxed the zero sub-fluxes zero
condition in dimension two and three respectively to the small fluxes
assumption , namely, 22:1 | F;| is sufficiently small. Korobkov, Pileckas, and
Russo [KPR15] proved the existence results under only zero total flux (|1.24)
on bounded two-dimensional multi-connected domains and three-dimensional
axially symmetric domains.

Theorem [1.2.1] can be also generalised to the exterior domains under the
assumption F; = 0, 1 < <[ (and hence the total flux F = 0) by an approx-
imation argument, which will be detailed explained in the next subsection.
The total flux condition was removed for the three-dimensional axially
symmetric exterior domains by Korobkov, Pileckas, and Russo in [KPR1§|
and for two-dimensional exterior domains in [KPR14].

Solvability on the unbounded domains

Leray’s solution of the boundary value problem ([1.22)-(1.23]) can be extended
to the exterior domain Q = (Ul_,€;)¢ under the additional zero flux as-
sumption on each §2; ((1.25). In addition, we assume the boundary value at
infinity

lim u = ug.

|z| >0

The solvability can be shown by an approximation method. Let N € N such
that Q¢ c By(0) = {z e R?||z| < N}. Let Q, = Q n By4,(0) = R?, then
{Q2,} is a monotonically increasing sequence which has €2 as its limit. We
consider the approximation boundary value problem

divu, =0,
div(u, ® u,) — vAu, + VI, = f, (1.26)
U|aQ = Uo,

UloBy 4., (0) = Uco-
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The existence of the weak solutions for the approximation system ((1.26]) are
given by Theorem [1.2.1] and furthermore, there exits a constant C' such that

/ Va2 < C.
Q

Then there exists a weakly convergence subsequence

Up,, — U,

where u is a weak solution of ([1.22))-(/1.23]) and satisfying

/ IV < C.
Q

For the three-dimensional case, thanks to the Hardy inequality
u — Uw
||

which guarantees the limit at large distance of the weak solution u to be .,
in the sense that

< O|Vulrz@), Q<R (1.27)
L3(Q)

[ — ux|* = Ol ).
5‘2
Finn [Fin59] showed the pointwise convergence of the Leray’s approximation
solution u to uy as |x| — o0. As a consequence of the Hardy inequality (1.27]),
Leray’s method works for the case () = R3.

Hardy inequality for the two-dimensional case reads as

u—u
OO < O|Vulre@), Q<R
L2(Q)

|| log ||

This, however, leaves the limit of Leary’s approximation solutions at infinity
as well as the solvability on whole plane R? open. We have more discussion
on this problem in the next paragraph. Guillod and Wittwer |[GW18] showed
the solvability of on the whole plane R?, where they showed that
for any given vector d € R? and a bounded positive measure set D < R2,
there exist at least one weak solution u satisfying the prescribed mean value
d= m [, u e R?. The half plane case was considered in [GW16].

Asymptotic behavior for the two-dimensional case

The D-solutions of the stationary Navier—Stokes equations ([1.22)) are defined
as the solutions with finite Dirichlet integral

/ |Vul?dz < oo, Q<R (D-solution)
0
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Notice that Lerary’s solutions are also D-solutions.

In this paragraph, we summarize some results considering the asymptotic
behaviors of D-solutions of two-dimensional stationary Navier—Stokes equation
(1.22)) with zero boundary value and zero external force on the unbounded

domain < R?
divu = 0,

diviu®u) — vAu + VII = 0, (1.28)
u‘ag = 0.
We assume the boundary value at infinity

|1|i1rn U= Up, Up€ER (1.29)
T |—00

If ug, = 0, we linearise the equation (|1.28)) around infinity, and the linear
equation is the Stokes equations

divu = 0, (1.30)
— Au+ VII = 0. '

We consider the Stokes equations on the two-dimensional exterior
domains. There is only trivial solution if the boundary value uy = 0. In other
words, there is no solution of — provided with u, # 0. This is
the Stokes paradox, which is opposed to the three-dimensional case. In 3D,
a non-trivial solution of - was give by Stokes, see for example
[Galll]

u(z) = —§V X [|x|2v X (uﬁﬂ - iv x V x (uﬁ> + Uep,

4 | ]
3 1
II(x) = —5lo V(m), Uy € R?,

where u|sp,(0) = 0 and im0 U = Ue.

It is natural to ask whether the Stokes paradox happens in the nonlinear
Navier—Stokes equation (1.28). Finn and Smith [FS67] showed the existence
of non-trivial weak solutions of provided with |u| # 0 sufficiently
small, which is ”contradiction” to the Stoke paradox. Moreover, they showed
the leading term of this weak solution coincides with the fundamental solution
of the Oseen equation. The Oseen equation can be seen as the linearisation

of (1.28)) around infinity (us # 0)

divu = 0,
— Au + uy - Vu + VII = 0.
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Gilbarg and Weinberger [GW74; GWT78| showed that for the D-solutions
of the general stationary Navier—Stokes equation ([1.22)) either there exists
Uins € R? such that

2
lim [u(r,8) — wins?dd = 0 (1.31)
r—00 0
or
27
lim lu(r,0)|>df = oo.
r—w J,

Amick [Ami88aj; |Ami9l| showed that for the equation the first case
happens and u — 1,y uniformly in 6.

We recall the Leray’s approximation method in the last paragraph, where
we construct a sequence of approximation solutions {u,} satisfying the ap-

proximation system , where u,, satisfies
Un(2) = up, € By(0)".

However, it is still unknown for Leray’s solutions, whether u;,; and ., in
1.29) are coincident. There are some work studying Leray’s solutions of
1.28)-(1.29)) provided with uy, # 0. Korobkov, Pileckas, and Russo [KPR19]
showed that Leray’s solutions converge uniformly to w;,s. Later on, they
[KPR20] showed that Leray’s solutions of with non-zero boundary
value g are uniformly bounded. They |[KPR21| proved that Leray’s solution
of with ug # 0 is always non-trivial.

There are some work studying the existence of decaying solutions of ,
see for example [Gal04; PR12; [Yam11; HW13|. The problem concerning the
decay rate for u is more complicated. We mention a remarkable work for
the three-dimensional problem by Korolev and Sverdk [KS11]. They showed
that for the solutions decaying like |z| ™!, the leading terms are given by the
Landau solution, which is the scaling invariant solution of satisfying
u(z) = Mu(Ax), A € R. There are some work discussing this problem on R?

see for example |[GW15b; |(GW15a; HW13|.

Liouville problem

Liouville problem asks whether all (D-solution|) of the system ((1.28))-(1.29)

provided u, = 0 on R? or R? are trivial. Similar to the asymptotic behavior,
the Liouville problem also dramatically relies on the dimensions. On R?,
Gilbarg and Weinberger [GWT78| gave a positive answer. This problem is
much more complicated on R and the complete answer is still open. Galdi
[Gall1] showed if u € L3 (R®), then u is a trivial solution. More partial results
are given under regularity or decay rate assumptions, see for example |[CW16;
Cha20; [Ser16).
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1.2.2 Inhomogeneous stationary flows

The stationary inhomogeneous incompressible Navier-Stokes equations read

as
divu =0, e,

div(pu) = 0, (1.32)
div(pu ® u) — div(uSu) + VII = f,

where Su = Vu + (Vu)?. We assume the boundary value condition
U’aQ = Uy, (133)

which satisfies the zero flux condition ([1.25). The density-dependent viscosity
coefficient depends continuously on the density function

f="0(p), beCRy;[p, +0)) given,

where p, > 0 is the positive lower bound.
We define weak solutions as follows.

Definition 1.2.2 (Weak solutions of the inhomogeneous stationary Navier—S-
tokes equations). Let Q@ < R? be a bounded connected CY' domain. We
say that a pair (p,u) € L*(;]0,0)) x Hy(2;R?) is a weak solution of the
inhomogeneous stationary Navier—Stokes equation (|1.32) with the given data
fe HYQ;R?), if divu = 0, div(pu) = 0 hold in Q in the distribution sense,
uy = ulaq 1s the trace of u on 0Q and the following integral identity

1

—/uSu:Svdx—/p(u@u):Vvd:ic+/f~v,

2 Ja Q Q
holds for all v e H}(Q;R?) with divv = 0.

If O = R? is a simply connected domain, then for any solenoidal vector
field u € HJ(f2), there exists a stream function ® : R*> — R, such that

_olgdef [ 0n,®
u=V @—(_azlq)>.

Frolov [Fro93] introduced the weak solutions for (|1.32)) of the form
(p.4) = (n(®), V*0). (134)

where 7 is any given positive bounded scalar function. Under this assumption,
the incompressibility condition and the density equation hold automatically

div(u) =0, div(pu) = 0.
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Indeed, we take a sequence of mollifiers (¢°). on R, with ¢¢ = %gb(g), o€
Cy(R), [g® = 1. We regularize 7 in the following way

n° = ¢ xne CF(R; [0, p*]),
such that
pr=17 (@)= p=n(®) in L*(Q), as -0,

and
div (p7u) = (°F)'V® - Vo = 0.

The following convergence holds

0= —/ div (p*u)p de = / pu-Vipdr — / pu - Vipdr, Vi e CP(R?),
R2 R2 R2

which implies that the density equation
div (pu) =0

holds at least in the distribution sense.

Constant viscosity coefficient

We consider the stationary Navier—Stokes equation of (1.32)) with constant
viscosity coefficient v > 0

divu=0, xe€
div(pu) = 0, (1.35)
div(pu ® u) — vAu + VII = f.

Frolov [Fro93] showed the solvability of (1.35)-(1.33) with the representation
(1.34) on the bounded and exterior domain for the Holder-continuous density
function p. Later on, Santos |[San02] generalised this result to the only
bounded p € L*(Q2). There are also results on the domains with unbounded

boundaries, see for example |[AS06; AS05|.

Inhomogeneous flow with variable viscosity coefficient

One of the main results of this thesis is to show the solvability and regular-
ity property of the stationary inhomogeneous incompressible Navier—Stokes
equation ((1.32)) with the variable viscosity coefficient

p=">(p), beCRy;[ps, +20)) given,
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Figure 1.1: Explicit examples

where p, > 0 is the positive lower bound. We are interested in the influence
of the large variation of the density-dependent viscosity coefficient.

Two-dimensional case

We are going to show the existence and regularity properties of the Forolov
type weak solutions

(p,u) = (n(®), V* @),
of the system ((1.32)) by studying the fourth-order elliptic equations of the

stream functions. More precisely, we substitute the Frolov-type solutions to
the velocity equation (1.32); and apply V*- to the equation to derive

L,® =V f+ V. div(pV e ® V'), (1.36)
where L,, denotes the fourth-order elliptic operator

LH = (6362332 - amlml)u(aﬂﬁzm - axlml) + (28961902)/L<26£12E2)7

such that the identity V* - div (uSu) = L,® holds. In particular, for y = v €
R, , we have

L, = vAZ2

We have the following existence and regularity results.

Theorem 1.2.2 (Existence and regularity results, [HL20]). 1. (Ewistence
of Forlov-type weak solutions). Letn e L*(R;[0,00)), b e C(R; [u«, +0)),
s > 0 be given. Let Q = R? be a bounded connected Lipschitz domain.
Let f € H71(Q;R?) be given. Then there exists at least one weak solution

of with the form
(p,u) = (n(®), V+®) € L*(Q) x Hy(€),

where ® € HZ(Q) is a weak solution of the elliptic equation (1.36)).
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2. (Regularity of the weak solutions). Let Q be a bounded Lipschitz domain.
For any solution (p,u) € L*(Q) x H}(Q;R?) to the stationary Navier—
Stokes equation (1.32) with zero external force f =0, we have

Pdiv(uSu) € LP(Q;R?), Vpe (1,2),

where P denotes the Leray-Helmholtz projector.

Furthermore, if the viscosity coefficient p are variably partially VMO,
namely, one direction is VMO while the other direction is only measur-
able, then we have

Vu, Pdiv(uSu) € LP(Q), Vp e [2,0).

The above existence and regularity results can also be generalised to
non-homogeneous boundary value problem — with smooth enough
boundary value ug. And similar to the classical case , the existence
result can also be generalised to exterior domains by Leray’s approximation
method.

We discuss on the maximal regularity of the weak solutions. We consider
the fourth-order elliptic equation (|1.36)) with vanishing right-hand side

L,® = (Ceszs = Ozyay )M(Orgzy — Oryay )P + (2611x2)U(2ax1x2)(I) = 0. (1'37)

We define ¥ : R? — R satisfying

M(522 - 511)@ _ —20,2¥
N2312(I) (522 - 311)‘1’ ’
then the complex-valued function A = ® 47V solves the following second-order
Beltrami-type equation
2 L — pr=r :
0N = ——02A\, 2z =ux1+ixs.
1+ p

Following the convex integration method for the first order Beltrami equation
in |[AFS0§|, we can show that there exists a measurable function p :  —

{%, K}, K > 1 such that the solutions ® € H?(Q) of the equation (1.37)
satisfies

/ |V2(I>|f%(1 = o0, for any disk B < Q.
B

Although it is not clear whether this constructed solution solves the stationary
Navier-Stokes equation ([1.32)) or not, we expect in general that the solutions
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for ([1.32]) with only bounded viscosity coefficient p (without any smoothness
assumption)
Vu ¢ LP(Q), for any p = p.,

where p, < o depends on the deviation |u — 1.

We formulate the parallel, concentric, and radial flows of the stationary
Navier-Stokes system ([1.32]) by assuming certain symmetries on the density
function in the following theorem. Notice that they are all solutions of Frolov’s

type.

Theorem 1.2.3 (Examples of paralle, concentric and radial flows, [HL20]).
If the density function

p = p(zs) inR% or p(r) in R\{0}, or p(0) in R*\{0}, with p’ # 0,

where (r,0) are polar coordinates in R?, then the velocity vector field u of the
stationary Navier—Stokes equations (1.32) reads correspondingly as

MO, i R\fO),

u = u(zz)e; in R% or rg(r)eg in R*\{0}, or

1 z1 T
where e; = (O)’ e, = (é), eq = <_’”x_1)
Let the external force f = 0 in the system (1.32)), then the scalar functions
u1, g, h above should satisfy the following three ordinary differential equations

of second order respectively

axz (:uaﬂczul) =C,
ar(#r?’aﬁg) = _CT7
ph? + 0p(ndph) + 4(uh) = C,

where C € R can be arbitrarily chosen.

We consider the explicit examples of the above symmetric solutions with
piecewise constant viscosity coefficients as following

,u(:m) = 1{x2<0} + 21{1220},
or u(r) = Liper<1y + 2141y, (1.38)
or u(f) = Lio<r<my + 2Lz ey
Then the motion of the corresponding flows are described in Figure [I.1 We

observe the results in Theorem for the symmetric solutions with the
piece-wise constant viscosity coefficients ((1.38)).
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Remark 1.2.2. 1. These explicit solutions indeed fulfil the Frolov form
(T.34).

2. On the one hand the piece-wise constant viscosity coefficients are variably
partially VMO, since they are smooth in the tangential directions of
the boundary 02 and have jumps in the normal directions. Indeed, the
corresponding solutions satisfy

Vue L? (RA\{0}), Vpe|[l, x.

loc

On the other hand, we verify

Pdiv(pSu) € L (R*\{0}), Vpe[l,00].

3. We have the following irreqular properties
Au ¢ Ly, (R*\{0}) and Vw ¢ L, (R\{0}),

where w = Oy,u1 — Oy Us 1S defined as the vorticity of w.

In particular, for the radial flows with piece-wise constant viscosity

coefficient (1.38]), we have
div(puSu) ¢ Ly, (R*\{0})

while
Pdiv(puSu) € Lj, (R\{0}), Vpe [1,0].

Three-dimensional case

To our best knowledge, there is no existence results on the three-dimensional
inhomogeneous equation . We show the existence of weak solutions of
the three-dimensional stationary incompressible inhomogeneous Navier—Stokes
equations with density-dependent viscosity coefficient in axially symmetric
case.

In the cylindrical coordinate (r, z, ), we write e,, e,, g as the coordinate

cosf 0 —sinf
e, = |sinf |, e, =|0], eg=| cosb
0 1 0

We consider the axially symmetric velocity field

U = Uper + Ugey + U E,,
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where u,., ug, u, are independent of . We define the functional spaces for
axially symmetric functions

H(Q) = {ue Hy(Q) | u is axially symmetric, divu = 0}.
The incompressibility condition of u € H(2) reads as
rdivu = 0,(ru,) + 0,(ru,) = 0.
For v € H(S), there exists a stream function ¢ = p(r, z) € HZ(2) such that
Uy = 0,0, TU, = —0pp.

For any fixed scalar function n € L*(R;[0,0)), if we assume the density
function to be

p=n(y),

then the mass conservation law
rdiv(pu) = 0,p0,p — 0.p0rp =0

holds at least in the distribution sense.
We have the following existence results.

Theorem 1.2.4 (Existence of weak solutions in the three dimensional axially
symmetric case). Let n € L*(R;[0,00)) and b € C(R;[fis, +0)), ps > 0 be
gwen. Let Q be a bounded connected axially symmetric Lipschitz domain. Let
fe HY(Q;R3) be axially symmetric function. Then there exists at least one

axially symmetric weak solution
1 1
(p,u) = (n(p), ;@@er - ;&ngoez + ugeq) € L(Q) x H(Q)

of the three-dimensional system (1.32)), where ¢ € HZ(Q) is a stream function
of u.

This existence result can be generalised to non-homogeneous boundary
value problem — on bounded or exterior domains or R3.

We can obtain the existence of weak solutions under another symmetric
assumption

(p,u) = (n(0), ure, +u.e.) e LP(2) x H' ().
In this case, the mass conservation law also holds immediately
rdiv(pu) = ro.pu, + ro,pu, + dgpug = 0.

The analogue existence results in spherical and Cartesian coordinates will
be given in Section [2.3]
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1.3 Evolutionary Boussinesq equations

The Boussinesq system is the nonlinear coupling between the Navier-Stokes
type of equations and the thermodynamic equations for the temperature (or
density) functions. In this subsection, we consider the Cauchy problem of the
two-dimensional incompressible evolutionary Boussinesq equations

div, u = 0,
O +u - V0 —div . (kV,0) = 0,
w4+ u - Veu — div , (uSyu) + V,IT = féy,
(0,u) [t=0= (b, uo).
The unknowns are the temperature function 6 = 6(¢, z) : [0, +o0) x R? - R,

the velocity vector field u = u(t,z) : [0, +0) x R* — R? and the pressure
I = I1(t, ) : [0, +90) x R* — R. The vector field €5 denotes the unit vector

(1.39)

in the vertical direction with e; = , and 0é5 is the buoyancy force.

(0
1

The thermal diffusivity x and the viscosity coefficient ; may depend on
the temperature function # smoothly as follows

k=a(d), p=00), withaeCLHR;[r,r*]),be CLHR; [, 1*]),

where 0 < K, < K*, 0 < p, < p* are positive constants.

1.3.1 Constant thermal and viscosity coefficients

When k, v > 0 are constant thermal diffusivity and viscosity coefficient, the

Cauchy problem (|1.39) reads as

div, u = 0,

0 +u- Va0 — kA0 =0,

O+ u - Vou — vAzu + V II = 0é5,
(0, u)|t=0 = (6o, uo),

If £, v > 0, the strong diversities lead to the global well-posed smooth
solutions, see for example [CD80]. If £ > 0, v =0 or k = 0, v > 0, the unique
global-in-time unique smooth solutions were obtained, see for example |[Cha06;
HLO5|. In their results, the key point is to use the sharp Sobolev embedding
in dimension two with a logarithm correction

(1.40)

[Vulpere) <C(|Au[r2re) + [Vu|r2re) + 1)
1
X (log(HAVuHLz(Rz) + HVUHL2(R2) + 6))2,
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which provides the Lipschitz continuity on u, and hence the global well-
posedness results. There are some work concerning horizontal and vertical
dissipation, see for example [DP11; |[LLT13; | ACW10; ACW11; CW13]. For
k = pu = 0, the two-dimensional inviscid Boussinesq equations can
be compared with the three-dimensional incompressible axisymmetric Euler
equations with swirl. The local-in-time wellposedness as well as some blowup
criteria have been well known for decades, see e.g. [CN97; Danl3; [ES94;
Danl3|. The global-in-time regularity problem for the Euler equation is a
remarkable open problem, for which the partial results are given in [EJ20;
Elg21].

1.3.2 Temperature-dependent thermal and viscosity
coefficients

In this subsection, we consider the Boussinesq equation (1.39)) with temperature-
dependent x and p as following

k=a(d), p=00), withaeCL(R;[ky,r*]),be CHR; [, n*]), (1.41)

where 0 < ky < kK%, 0 < e < p* are positive constants.
Lorca and Boldrini [LB99| proved the global-in-time weak solutions on
the smooth bounded domain with

(0,u) € (Lige ([0, %0): L*()))”,

and they also showed the local-in-time strong solutions. Wang and Zhang
[WZ11] showed the existence of global unique smooth solutions

(0,u) € (L

loc

([0,90); H*(R*)) N Lige ([0, 0); H*"H(R)))?, s> 2.

Notice that H*(R?) — W1*(R?), for s > 2. Sun and Zhang [SZ13| showed
the global well-posedness result with (6p,uo) € (H?*(R?))? on the bounded
smooth domain.

Existence, uniqueness and regularity results in general Sobolev
spaces

The author and Liao [HL22] showed the existence, uniqueness and regularity
results in the (optimal) regularity exponent ranges respectively, in particular
in the low regularity region s < 2.
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1 2 3 4 b
Figure 1.2: Admissible regularity exponents of ({1.39)

Theorem 1.3.1 (Existence, uniqueness & regularity, [HL22|). For any initial
data 0y € L*(R?) and uy € (L*(R?))?, there exists a global-in-time weak solution

(6, u) € C([0,0); (L*(R*)*) n Lj

loc
of the initial value problem —.
If 6 € H'(R?), up € (L*(R?))? and the functions a € CE(R; [k, k*]),
b € CE(R; s, u*]) have finite first and second derivatives, then the weak
solution 1s indeed unique, and satisfies

([0,90); (H'(R))?)

0 e C([0,00); H(R?)) n L3,

loc

([0,90); H*(R?)).

Furthermore, the general H®-regularities can be propagated globally in time in
the following sense: For any initial data

(6o, up) € H*(R?) x (H**(R?))? with
(50, 5u) € {(s9,54) < [1,00) x [0,00) | 50 =1 < 89 < 50 + 2]\{(2,0), (1, 2)}

and the functions a € C2 n Clelt1 b e C2 A Clsud*1 | the unique solution (6, u)
stays in

C([0,90); H* (R?) x (H**(R))*) n Lj

loc

([0,00); H***H(R?) x (H™*(R*))?).
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The grey area in Figure represent the admissible regularity exponent
range. In the following, we will give some explanations and discussions on
the optimality of the regularity exponents for the solutions of the initial value
problem — in Theorem . We will also discuss the influence
of the variation of the variable coefficients x and g on the uniqueness and
regularity properties.

Existence and uniqueness results.

The global-in-time weak solutions can be seen as a consequence of energy
estimates. Indeed, we take L%-inner product of 2 and 6, 3 and u,
then the following energy estimates hold for any given 7" > 0,

1017522 + IVOI72 12 < Cllfol72,
luliers + 1 VulZz 2 < C(T16o]1Z2 + JuolZ2),
where the positive constant C' depends only on sy, ft.

Concerning the uniqueness result with (6y,ug) € H'(R?) x (L*(R?))?, we
have the following H'-estimate of 6:

10122y + (260, V20) 25 12

< Cl0o]l 7 (1 + [ V6| 72) exp (C(T?[60]2> + |uollz2))-
Based on the above energy estimates, one can show the difference (9, u) €
(LYH! n L2H?) x (LFL? n L%H]}) of two weak solutions with the same
initial value is indeed trivial in the Sobolev space H'**(R?) x (H°(R?))? with
9 € (—=1,0). On the other hand, non-uniqueness is expected in the lower-

regularity region with 6y € H*(R?) 4> L*(R?), 0 < s < 1, since the coefficients
K, |4 are in general not continuous uniformly in time.

Regularity results.
To show the propagation of regularity, in the lower regularity region 6, or
up € H*(R?) > W1*(R?), with s < 2, we use the commutator estimate

129, AJ‘]V@/J||L2(R2))j>1||ll < CIVo|av@we) | VY

where the exponents (s, ) € R? satisfies -1 < s <v+1and —1 < v < 1, and
the positive constant C' depends only on s, . In the high regularity region
0o, up € H*(R?) — WH*(R?), with s > 2, we use the commutator estimate

0 )
C(IVYl Lo®e) [V rs1rey + VOl re1m2) [ Vo] Lo Ry ) -

On the other hand, to propagate the H*¢, sy > 2-regularity of 6, we require
the transport term u- V6 in the f-equation to be at least in L2 ([0, c0); Hse~1),

Hs—v(R2),
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1 2 3 4 b
Figure 1.3: Admissible regularity exponents of ([1.40)

which requires u € L2 ([0, 00); H:*~') and hence the initial assumption ug €

H** with the restriction s, > sy — 2. Similarly, in order the propagate
the H*®* s, > 2-regularity of u, we require the viscosity term div (#Su) in
the u-equation to be at least in L2 ([0,0); H:»~1), which requires puSu €
L2 ([0, 00); H2*) and hence the initial assumption 6y € H* with the restriction
Sp = S, — 1.

Remark 1.3.1 (Excepted admissible regularity exponent ranges for the
constant coefficient case ) We expect that a similar argument as for the
equation can also show the optimal optimal reqularity exponent range
for the equation with constant thermal and viscous coefficients. More
precisely, the H®—regularity of the equation 15 expected to propagated
in the following range (see the grey area in Fz'gure

(0o, ug) € H*(R?) x (H**(R?))? with
(89, 5u) € {(89,54) = [0,00) x [0,00) | s, — 1 < s < 5 +2}\{(2,0)}.

We compare the Figure[1.9 and the Figure to see that the temperature-
dependent coefficients k and p indeed influence the admissible regularity
exponent range.

For the equation , the coupling between 6 and u happens only through
the transport term u - V.60 in the equation 2 and the force term fes in
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the equation (L.40),. The solution is unique with (6o, uo) € (L*(R%))3. Similar
to the variable thermal and viscosity coefficients case, to propagate the H*?,
sg = 2-reqularity of 0, we require the transport term u - V.0 to be at least
in L2 ([0,00); H:™Y), and hence the initial value ug € H with s, > sg — 2
1s required. To propagate the H®, s, = 2-reqularity of u, we require fes to
be at least in L2 ([0,00); H:1), which requires 0y € H® with the restriction
Sp = S, — 2.

Partial diffusion case.

Concerning the case with thermal diffusion x = a(f) > 0 while no viscous
diffusion p = 0, Li and Xu [LX13] and Chen and Jiang |[CJ14] showed the
existence of the unique global-in-time smooth solution

0 e C([0,+0); H*(R?)) n L2 ([0, +0); H*"(R?)),

loc

ue C([0,+0); (H5(R?))?), s>0.

We remark that the structure of the system lacking of heat diffusion
(i.e. kK =0, p = b(M)) is similar but simpler compared to the two-dimensional
inhomogeneous incompressible Navier-Stokes equations with density-
dependent viscosity coefficient. The similar difficulties of the regularity and
uniqueness issues arise, and it is still not clear whether there will be finite
time singularity.

There are some work approaching this case, where less heat diffusion is
assumed, namely,

00 +u-VO+v|D|*0 =0, v>0,

where |D|* is the Fourier multiplier defined as

D] f(&) = [€1°£(©).

Notice that o = 2 recovers the heat equation in ((1.39). Under the small
viscosity variation assumption (|1.21))

I = 1oe <,

Abidi and Zhang [AZ17] studied the cases when o = 1; Dong, Ye, and Zhai
[DYZ20] considered the case when 0 < o < 1.
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Chapter 2

Two- and three-dimensional
incompressible inhomogeneous
Navier—Stokes equations with
variable viscosity coefficient

In this chapter, Section and Section are devoted to showing the
existence and the regularity properties of (a class of) weak solutions to
the two-dimensional stationary incompressible inhomogeneous Navier—Stokes
equations with variable viscosity coefficient, by analyzing a fourth-order
nonlinear elliptic equation for the stream function. The density function and
the viscosity coefficient may have large variations. In addition, we formulate
the solutions for the parallel, concentric and radial flows respectively, and we
give some irregularity results as well as some explicit examples in the case of
piecewise-constant viscosity coefficients. The regularity of the divergence-free
part of the viscous term is discussed separately.

In Section 2.3 we show the existence of (a class of) weak solutions to the
three-dimensional stationary incompressible inhomogeneous Navier—Stokes
equations with density-dependent viscosity coefficient in the axially symmetric
case. More symmetric solutions in cylindrical coordinate, spherical coordinate
and cartesian coordinate are also discussed.

Section [2.1) and Section [2.2] are based on the joint work with JProf. Xian
Liao in [HL20].

37
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2.1 Main results in two-dimensional case

In Section 2.1 and Section [2.2], we are going to study the two-dimensional
stationary inhomogeneous incompressible Navier—Stokes equations

{ div(pu ® u) — div(pSu) + VII = f,

2.1
divu =0, div(pu) =0. (2.1)

The unknown density function p = 0, the unknown velocity vector field u =
(u1,us) € R? and the unknown pressure IT € R depend on the spatial variable
x = (x1,72) € R%. The variable viscosity coefficient depends continuously on
the density function

p=">(p), beCRy;[ps,ps]) given,

where /i, i, are positive constants[] The external force f : R? — R? is given.

Let V = 0”31), then Vu = (a‘“ul a”ul) and the deformation strain

aacg ax1u2 ax2u2
tensor in ([2.1) reads as
def T 281; Uq 890 Uy + 8@, U9
Su=(V+V')u= ! 2 ! :
< ) (6I2u1 + é’xlug 265(;2“2
. U12 U1U9 . .
Let div = V- and u®u = 5|, then the convection term in ([2.1))
UiUs U2

reads as

: _ aﬁm (pu12> + a’m (pu1u2)
div (pu ®© u) B (aml (Puluz) + O, (Puzz) '

We will give the existence and the regularity properties of the weak solu-
tions, of Frolov’s form below (p,u) = (n(®), V+®), to the stationary
Navier—Stokes equations on a two-dimensional domain 2 = R? in Sub-
section (the proof of which is postponed in Section . Here €2 could
be a bounded (simply) connected C'! domain, or the exterior domain of a
bounded connected C*! set, or the whole plane R2. If Q has a boundary 052,
we associate the system (2.1)) with the following boundary value condition

uloq = uo, (2.2)

and assume no flux through the boundary 052

/ up - nds = 0. (2.3)
o0

1t is sufficient to assume b€ C(R.; [ps, +0)), since we are going to consider bounded
density functions p. For convenient, we fix an upper bound p* for b here.
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In the above, n = (ny,ny) denotes the exterior normal to the boundary o).
We will consider indeed the stream function ®, such that the velocity vector

field
_ulgpdef [ On®
u=V o= <_azlq)>.

We will solve the fourth-order nonlinear elliptic equation which is derived by
applying V+- to the velocity equation (2.1),

L,® =Vt f+Vt div(pV e ® V'),
where L,, denotes the fourth-order elliptic operator

Ly = (Oras = Oryay ) Opwy — Oryey) + (202125 ) 10(20z12, ),
and the identity V* - div (uSu) = L,® holds. Then for any given nonnegative
bounded measurable function n € L*([0, o)), the pair (p,u) = (n(®), V+®)
is a weak solution of the stationary Navier—Stokes system ({2.1]).

In Subsection [2.1.3| we are interested in the symmetric solutions to the
stationary Navier—Stokes equations , and in particular we will formulate
the solutions for the parallel, concentric and radial flows respectively:

(p.0) = (plaz). wie)er). or (p(r), rg(r)eo), or (p(6). ==e.).

1
Here (r,0) are the polar coordinates on R?, e; = (é), e = (x_’“Q), ey =

T

-
_m
.
order ordinary differential equations respectively (see Theorem below
for more details). In particular for the case of piecewise-constant viscosity
coefficients, we derive some irregularity results such as (see Corollary

below)

T2
( ), and uq, g, h are scalar functions satisfying three different second-

Au ¢ Li (R\{0}), div(uVu) ¢ Li (R*\{0}),

loc loc

and we also calculate some explicit examples (see Examples below).
On the other side, in Subsection [2.1.4] we will show the LP-boundedness
of the divergence-free part of the viscous term (see Theorem [2.1.4])

Pdiv (uSu) € LP(2)

for the given solutions (e.g. the solutions given in Theorem or in Theorem
2.1.3)). Here P is the Leray-Helmholtz projector on a bounded C' domain
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2. We observe here also the following (formal) one-to-one correspondence
between P div(uSu) and L, ®:

L,® = V"' Pdiv(uSu), Pdiv(uSu) =V+A™'L,®.

We will conclude this introduction part with some further discussions on the
fourth-order elliptic operator L,,.

We first start with some related known works for the incompressible
Navier-Stokes equations in Subsection below.

2.1.1 Related works

There are a few works in the literature contributing to the study of the
evolutionary two-dimensional incompressible inhomogeneous Navier—Stokes
equations with variable viscosity coefficient

Op +div(pu) =0, (t,x) e R" x Q,
Or(pu) + div(pu ® u) — div(2uSu) + VII = 0,
divu =0, (t,x)eR" x Q,

p‘t:O = Po; (pU)’t:O = Mo-

(2.4)

In [Lio96], P. L. Lions showed the global-in-time existence of weak solutions
(p,u) € (L*(RT x Q), (L*(RT; H'(2)))?) of the system under the initial
condition py € L*(2), 7¢ € (L*(2))*. The uniqueness and the regularity
properties of such weak solutions are still open, even in dimension two. There
are some partial results toward this issue, but to our best knowledge they are
all limited to the case where the viscosity coefficient p(x) is close to some
positive constant v € R*:

[1(z) = V] Lo <é, (2.5)

where ¢ is some small enough positive constant. B. Desjardins in [Des97]
showed the regularity property of the velocity vector field u € L®(R*; (H'(T?%))?)
for initial data u|,—o € (H'(T?))?, if the smallness condition holds. H.
Abidi and P. Zhang |AZ15a] proved the existence and uniqueness of the solu-
tion under and further smoothness assumptions on the initial density
function py — 1 € L*(R?*) n L® n W' (R?), r > 2. M. Paicu and P. Zhang in
[PZ20] considered the so-called density-patch problem with piecewise-constant
density function py = m1lg(z) + nelge(x), m,m2 € RT, and showed that the
H3(R?)-boundary regularity of the domain is propagated by time evolution
provided with ([2.5). The case where p(x) = v is a positive constant has been
intensively studied in the past two decades, see e.g. [Dan04; DM19b} LS75|
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and the references therein. It is also worth mentioning the work [VK97] for
the study of the compressible Navier—Stokes equations with variable viscosity
coefficient.

If we consider the stationary homogeneous incompressible flow where
the density function p = 1 and the viscosity coefficient © = v is a positive
constant, then the system becomes the following classical stationary
Navier—Stokes equations

diviu®u) —vAu+ VII = f, x e,
divu = 0, (2.6)

Ul = up.

It has been studied extensively in the literature, whenever the underlying
domain is a connected bounded domain €2 , or a multi-connected domain
U, or the exterior of a multi-connected set U = (U_,;)¢, or the whole
plane R?, see the celebrated books [Galll; Lad69]. J. Leray [Ler33|] showed
the existence of weak solutions u € (H'(9))? on a simply connected bounded
domain €2 under the zero flux condition . This solvability result can be
generalized straightforward to a multi-connected domain case U} ,€;, if we
assume no flux through the boundary of each connected component

]—"i:/ up-nds =0, Vl<i<n. (2.7)
09

If we assume only the smallness of the fluxes F; or assume some further
symmetric properties, the solvability of the system ([2.6)) was also obtained,
cf. |Gal9l]. On a multi-connected domain with only the zero total fluz
condition , the solvability was shown by M. Korobkov, K. Pileckas and
R. Russo in [KPR15|. J. Leray in [Ler33| studied the system also on the
exterior domain of a multi-connected set U = (Uf,Q;)¢ under the boundary
condition (2.7)), and obtained the weak solutions u € (H'(U))? by constructing
a sequence of weak solutions on the bounded domains which converge to U.
If the fluxes F; are small, the solvability of on U was established by
R. Finn in [Fin59]. Concerning the whole plane R? case, J. Guillod and P.
Wittwer [GW18] showed that for any given vector d € R* and a bounded
positive measure set D < R?, there exist solutions u € (H'(R?))? satisfying the
prescribed mean value on D: d = m f pUE R2. However, the existence
of decaying solutions, as well as the uniqueness and the asymptotic behaviour
of the solutions on the unbounded domains are still open, see e.g. [GW15b;
Guil7; Rus09] for further related discussions. We also mention that J. Leray
in [Ler33| studied also (2.6)) in dimension three, as well as the evolutionary
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classical Navier-Stokes equations (i.e. (2.4) with p =1 and p = v, see also
the celebrated books |CF88; [Tem77]).
The stationary inhomogeneous incompressible flow with constant viscosity
coefficient is described by
divijpu ®u) —vAu+ VII = f,  x €,
divu = 0, div(pu) = 0,
ulon = up.
On a simply connected domain in dimension two, by using the incompressibility

condition divu = 0 and the zero flux condition (2.3)), the velocity vector field
u can be written as

u= Vo,
where @ is the stream function of w. If
p=n(®),

for some well-chosen function 7 : R — [0,00), then the density equation
div(pu) = 0 should be automatically satisfied. N.N. Frolov showed in [Fro93|
the existence and regularity results for the solutions of the following form

(pyu) = (n(®), V*@), (2.8)

where 1 is a Hélder continuous function. From now on, we call the form
(2.8) as Frolov’s form. M. Santos in [San02] improved this existence result to
only bounded n-functions. M. Santos and F. Ammar-Khodja in [AS05; |ASO6]
considered the unbounded Y-shape domain.

However, as far as we know, there are neither existence nor regularity
results of solutions to the two-dimensional stationary Navier-Stokes system
(2.1) with variable viscosity coefficient. The rest of this introduction part
is organised as follows. We are going to give some existence and regularity
results for the solutions of Frolov’s form to the system in Subsection
2.1.2] whose proof is postponed in Section We will formulate the solutions
with certain symmetry properties in Subsection [2.1.3] where some irregularity
results as well as some explicit examples with piecewise-constant viscosity
coefficients will also be given. Finally we will discuss further the regularity
issues in Subsection R.1.4

2.1.2 Existence and regularity results

We study here the two dimensional stationary inhomogeneous incompressible
Navier-Stokes equation ({2.1)) with general variable viscosity coefficient

= b(p),
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where b € C(R; [ftx, ftx]), s, s > 0 is a given function. We will search for
the weak solutions of Frolov’s form above. We are going to consider the
stream function ®, which satisfies a fourth-order nonlinear elliptic equation
(see below). To our best knowledge, this is the first time such elliptic
equation for the stream function has been found in the case of variable
viscosity coefficient.

If Q = R? is a simply connected C* domain, by the zero flux condition
and the divergence free condition divu = 0, there exists a stream function

® : Q — R such that
u = vl®d§f< Or,® )

—0z, P
and ¢ satisfies the boundary value condition
0P 0P
a_n‘aﬂ = Uo- T, E‘GQ = TUo- T,

where 7 = (ny, —ny) denotes the tangential vector field on the boundary
0. If we parameterize the boundary 0Q by 7 : [0,27) — 09 such that
v (s) = 7(7(s)), then with a constant Cj € R,

def

Dloa(v(s)) = Po(v(s)) = — /OS up -ndf + Cy, se|0,2m),

Z_i‘ag(ﬂs)) = CI)I(WS))d:ef(Uo -7)(v(s)), s€[0,2m).

(2.9)

We fix this constant Cy = 0 from now on.

We apply V*+- = (_agz ) - to the first equation in (2.1 to arrive at
71

V- div(puSu) = =Vt - f + V- div (pu @ u),

where the left-hand side reads as a fourth-order elliptic operator with positive
variable coefficient p > py > 0 on é:

L 3; _ vl . a; 2&11332@ (afﬂzﬂlz - a331161>(I)
V- - div (uSu) = V- - div (,u <(am2m2 L) 50, D

= (Cugrs — Onyay) (H(Ongzy — Oy )P) + 2010, (11205,2, D).
That is, the first equation in becomes
L,®= -Vt f+ V. div(pV e ® V), (2.10)
where L,, denotes the fourth-order elliptic operator

Lu = (amzzz - amm)ﬂ(axm - a1'1$1) + (2aw1x2)/~5<28x1x2)'
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In particular, if u(x) = v is a positive constant, then L, = vAZ.

We recall here the definition of elliptic operators in divergence form of order
2m, m € N (see e.g. [ADN59; |ADN64; DK11]) for readers’ convenience. Let
Lu = 30 151<m D%(ansDPu) where o and'ﬁ are multi-indices, u : R? — R"
is a vector-valued function and a,g = [afjﬂ(x)]jjzl, lal,|B] < m, are n x n
matrix-valued functions. We say that £ is an ellfptic operator of 2mth-order
if there exists a constant 0 € (0,1) such that

el < Y, Re(ans(@)gs &) < 37eP,

|lal=|B8|=m

for any z € R and ¢ = (§a)jaj=m » §a € R™. Here we can rewrite L, as

Lo [l

L# :axlfﬂl/’baxll'l + a9E2272:u(33023€2 - aﬂ?lm (:U' - ?)aﬂfzm - aﬂaxz (M - 7)827111
ILL def e}
+ 2a$1w2 (:u - 7*)&901332 + 2(’)962901/110332961 = Z D (aZﬁDIB>>
la|=]B]=2

where 1., 1 > 0 are the positive lower and upper bounds for the function .
Then for any £ = (fa)|a|:2 , &, € R? the following inequality holds:

Sl < Y dis(@)ésta
la|=|B|=2

B %(5%1 )+ (1= %)(SH —&22)” +2(n - %)f?z + 2065, < 2u*IE)%.

Hence, L, is a fourth-order elliptic operator as we can simply take § =
min{%*, 2}+*, %}

Following Frolov’s idea in [Fro93], we make an Ansatz

p=n(®),

where the nonnegative function € L*(R; [px, p*]) with 0 < p, < p* can be
arbitrarily chosen, such that

div (pu) = div (n(®)V*+®) = 0

holds in the distribution sense provided with e.g. ® € HZ_(2). Notice
that, in this case we assume a priori that p satisfies the boundary condition
ploa = n(Py) where @ is given in (2.9).

We then aim to verify that if ® solves the boundary value problem for

the fourth-order elliptic equation

L,® =V f+ V. div(pVd® V'),
L) (2.11)

Plan = Do, a_n’aﬂ = @,
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where p = n(®), u = (bon)(P), then the pair of Frolov’s form ({2.8]):
(p,u) = (n(®), V@)

solves the boundary value problem for the stationary Navier-Stokes equations
div(pu ® u) — div(puSu) + VII = f,
divu = 0, div(pu) = 0, (2.12)
ulaq = o,

where the boundary value ug satisfies the zero flux condition : f 20 U0 °

nds = 0 if € is a simply connected domain. We first take into account the
functional framework to define the weak solutions.

Definition 2.1.1 (Weak solutions of the Navier-Stokes equations on a
bounded connected domain). Let Q = R? be a bounded connected C*-domain.
We say that a pair (p,u) € L*(Q;[0,00)) x HY(Q;R?) is a weak solution
of the boundary value problem (2.12) with the given data ug € H%(ﬁQ; R?),
fe H YR, of divu =0, div(pu) = 0 hold in Q in the distribution sense,
uy = ulaq is the trace of u on 0Q and the following integral identity

l/,uSu:Svdm=/p(u®u):Vvdx—k/fw, (2.13)
2 Ja Q Q

holds for all v e H}(Q;R?) with divv = 0. Here A: B dzefZijzl A;;jB;; for the
matrices A = (Aij)lﬁi,j<2 G/ﬂd B = (Bij)lgi,j<2-

In the above, g € H%@Q) the fractional Sobolev space means that g €
L?(092) with the following norm

def |
ol 3oy ol + ([ =80 a4

being finite. The Sobolev space H} () is defined as H} () = C’(‘)’O(Q)”HHI(Q)
with the norm |gllmi) = 920 + V9| (z2(@))2, and H7'(Q) is the dual
space of H}(Q) with respect to the L*(Q) inner product. We recall the trace
theorem and inverse trace theorem (see e.g. [HWO08| Section 4.2]) below.

1

Theorem 2.1.1 (Trace theorem & Inverse trace theorem). 1. Let € be a
C'-domain. Then there exists a linear continuous trace operator

Yo : H'(Q) > H2(09),

which is an extension of you = ulaq for u e C°(Q), and there exists a
linear continuous right inverse I'y to o with

H%(ﬁQ) — HY(Q) and vo(To(ug)) = uo, for all ug € H%(ﬁQ).
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2. Let Q be a C' -domain. Then there exist two linear continuous trace
operators

o HX(Q) > H2(3Q), 7 : HA(Q) — H?(09),

which are extensions of
00 0P 300
Y0P = @loq for P e C°(Q), 7P = A o for ® e C°(92).
n

Inversely, there exists a linear continuous right inverse I'y to (Yo, 71)
with

Ty : H2(09) x H2(0Q) — H*(Q) and v;(T1(®g, ®1)) = ®;, j =0,1,
for all (g, ®1) € H2(0Q) x Hz(39).

In the above, g € H%@Q) the fractional Sobolev space means that g €
L?(0K2) with the following norm

def lg(s) —g(s)* N2
oy ol + ([ [ B
HgHHj(m) l9l2(60) salea  |s—

being finite.
We now define the weak solutions of the elliptic equation ([2.11]).

Definition 2.1.2 (Weak solutions of the elliptic equation on a bounded
connected domain). Let © < R? be a bounded connected C*'-domain. Let
ne€ L*(R;[0,00)) and b € C(R; [, *]), tos, u* > 0 be two given functions.
We say that ® € H*(Q) is a weak solution of the boundary value problem
with the given data ®y € H2(0Q), &, € Hz(0Q), f € HY(Q;R?),
if ®g = ®|oq and P =

i in the trace sense and the following integral

wdentity
[ ((@oas® = 01y @) o = sy ) + (20012,8)(20012,0) )
Q
= / f-Vidr + / p(VI® @ V1d) : VV du,
Q Q

holds for all ¢ € HZ ().

Let €2 be an exterior domain or the whole plane. We define the functional
spaces we are going to use

DF(Q) := H*(Q) n (mus1 H¥(Q A B,(0)), k=1,2,
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where B,,(0) denotes the disk centered at 0 with radius » and the homogeneous
Sobolev space H*(Q), k € N is defined as

HYQ) = {g € Li,() : g € L*(), |o] = k}.
We define the corresponding weak solutions as follows.

Definition 2.1.3. (i) (Weak solutions of the Navier—Stokes equations on
an exterior domain). Let Q < R? be the exterior domain of a bounded
simply connected C' set. We say that a pair (p,u) € L*(Q;[0,00)) x
D(;R?) is a weak solution of the boundary value problem with
the given data ug € Hz(0Q;R?), f e H(Q;R?), if divu = 0, div(pu) =
0 hold in Q in the distribution sense, ug = ulsq s the trace of u on
02 and the integral identity holds for all v € C*(2;R?) with
diwv = 0.

(i) (Weak solutions of the elliptic equation on an exterior domain). Let
Q < R? be the exterior domain of a bounded connected C*' set. Let
ne L*(R;[0,00)) and b e C(R; [px, 1*]), tos, u* > 0 be two given func-
tions. We say that ® € D?*(Q) is a weak solution of the boundary value
problem ([2.11)) with the given data ®, € H?(0S)), ®; € H2(0S), and
fe HYRY), if &g = @|og and O, = g—:‘a in the trace sense, and

0
the identity (2.1.2)) holds true for all W e CF (4 R).

(iii) (Weak solutions on R?). We define the weak solutions of the equations

[2-1) (resp. (2.10)) on R? as in (i) (resp. in (ii)) without any boundary

condition.

Since for any v € H}(Q;R?) (resp. v € C*(92;R?)) defined on a bounded
connected C'!'-domain Q (resp. on the exterior domain of a bounded con-
nected C! set or on the whole space R?) with dive = 0 there exists a
corresponding stream function ¢ € HZ(Q2) (resp. ¥ € C*(Q;R?)) such that
v = V+, the equality implies the equality with u = V1.
Therefore we have the following fact which transfers the solvability of the
Navier-Stokes system to the solvability of the elliptic equation ([2.10]).

Fact. Let Q < R? be a bounded connected C*'-domain. Let n € L*(R;[0,0)),
b e C(R; [ps, 1*]) with py, p* > 0 and f € H1(Q;R?) be given. Let ug €
H2(0Q;R?) satisfy and let Dy € H2(0Q) be given in in terms of
ug and some fized constant Cy € R.

If ® € H*(Q) is a weak solution of the boundary value problem ,
then the pair of Frolov’s form [2.8): (p,u) = (n(®), V*®) is a weak solution
of the boundary value problem .
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The above holds true for the exterior domain of a bounded connected C'+*
set or for the whole plane domain R?.

Our main theorem concerning the existence and the regularity properties
of the weak solutions to the Navier-Stokes system (2.1)) as well as to the
elliptic equation (2.10]) reads as follows.

Theorem 2.1.2 (Existence and regularity results for the weak solutions of
Frolov’s form, [HL20]).
Let ne L*(R;[0,0)), b€ C(R;[fta; *]); pa, * > 0 be given.

(i) Let Q < R? be a bounded simply connected C''-domain (resp. the
exterior domain of a simply connected CY' set). Let f € H™'(Q;R?)
(resp. f = divF, where F € L*(2;R? x R?)) be given. Then for any
Do € H3(0Q) and &, € H2(0Q), there exists at least one weak solution
® e H*(Q) (resp. ® € D*(Q)) of the boundary value problem ([2.11)).

Let Cy € R and ug € H2(0Q; R2) satisfy [@2.3). If &y € H2(09) is given
by (2.9) and ® € H%(Q2) (resp. ® € D*(Q)) is a weak solution of (2.11])

given above, then the pair of Frolov’s form
(0.0) = (n(®), V*-0) (214)

is a weak solution of the boundary value problem (2.12)) with u €
HY(2;R?) (resp. ue D'Y(Q;R?)).

(ii) Let Q = R? and D < Q be a bounded subset of positive Lebesque measure.
Let f = div F, where F € L*(R%R? x R?). Then for any fived vector
d € R?, there exists at least one weak solution ® € D*(R?) of the elliptic
equation on R%, such that u = V+® € DY(R%R?) is a weak

solution of the equation ([2.1) on R* and WS(D) [pu=d.

Furthermore, we have the following reqularity results under additional
smoothness assumptions.

(1) If Q is a connected C**-domain, the function 1 is taken to be continuous
and f e L*(Q;R?), then for any ® € H?(0Q), &, € H2(0Q) (resp.
up € H2 (01 R?)) the weak solution ® (resp. u) given in (i) belongs to
W2P(Q) (resp. WP(Q;R?)), for all p € [1,0).

(2) Let k = 2 be an integer. If ) is a connected C**M-domain, the func-
tions 1,6 € CF(R) = {h € CFKR)|[|hY|rx < o0, V0 < j < k} and
f e HY(Q:R?), then for any ®y € H*2(0), @1 € H*2(0Q) (resp.
up € H*2(09)), the weak solution ® (resp. u) given in (i) belongs to
WHkHLP(Q) (resp. WHFP(Q;R?)) for all 1 < p < o0. In particular, if k = 2,
then u e W2P(Q;R?), p > 2 is Lipschitz continuous.
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Theorem 2.1.2] will be proved in Section [2.2] where we will follow J. Leray’s
approach in [Ler33| for the resolution of the classical stationary Navier-Stokes
equation. By virtue of the above Fact, it remains to study the fourth-order
nonlinear elliptic equation for the stream function ®. Compared to the
classical case, we here have to pay more attention on the nonlinear dependence
of the density p and the viscosity coefficient p on ®.

We give here some remarks on the results in Theorem [2.1.2]

Remark 2.1.1. (i) (Recover the classical results) If n,b are positive con-
stant functions, then the system becomes the classical stationary
Navier-Stokes equations and the above theorem recover the classical
existence and regularity results in [Lad69).

(ii) (Relaxation on the reqularity assumption) For k > 2, we can relax
the hypotheses on the data f, ®g, ®1 (resp. ug) to f € WE=2p0(Q; R?),
Dy € Whtaro(0Q), &y € Wr220(3Q) (resp. ug € WH2#0(0Q; R?)),
po > 2, and show that the weak solutions have the reqularity properties
O e WHLP(Q) (resp. uwe WHP(Q;R?)).

(i1i) (Domains of other types) We can also consider the system (2.1)) in
domains of other types, following the arguments for the classical Navier—

Stokes equations ([2.6]).

For example, it is obvious that the existence and regularity results in
Theorem [2.1.9 hold true on a bounded multi-connected domain U} ,€Y;,
under zero flux assumption on the boundary of each connected component

&D.

The ezistence result in Theorem [2.1.3 can also be easily extended to the
strip domain R x [0, 1] by use of Poincaré inequality.

We can follow the idea in [GW16] by J. Guillod and P. Wittwer for
(2.6) on the half plane, to show the solvability of (2.1)-(2.2)-(2.3) on

the half plane R x [0,00) by assuming small boundary value ||ugl|p» on
the unbounded boundary R x {0}.

(iv) (Boundary conditions on unbounded domains) If Q is an unbounded

domain, we denote the “boundary condition” of the solutions u at infinity
by U

lim w(z) = Uy, uy e R

|| —a0
The existence result in Theorem does not give the information
of uw. We even don’t know the existence of decaying solutions of the
Navier-Stokes system (2.1)) on the exterior domain or the whole plane.
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The solvability of the classical stationary Navier-Stokes equation on
the exterior domain with uy = 0 (under some symmetric assumptions)
was established in e.g. [HW15; |Yam11|]. There are also some works
considering the asymptotic behaviors of the (general) weak solutions:
In [VG74; |GW7S], D. Gilbarg and H.F. Weinberger showed that the
solutions of satisfy imyg o [o [uf?> = 00 orlimyg e [ [u—al? =
0 for some @ € R?, and J. Amick discussed the relation between u., and
w in [Ami88b).

In (Galll], Galidi showed the non uniqueness of the solutions to the
classic Navier—Stokes equation with certain boundary condition
ug and up = 0. Hence the weak solutions of the system are also
not unique, at least in the case without any smallness or symmetric
assumptions.

2.1.3 Symmetric solutions

We turn to study the stationary Navier-Stokes equations under some
symmetry assumptions on the density function in this subsection.

We give first an observation when we write the velocity vector field
u = V+® in terms of the stream function ®. Let U < R? be an open set and
we consider another coordinate system (y;,%-) on it. We suppose that the
Jacobian V,y = (gTy;'_)lgingz is not degenerate and we consider the stationary

Navier-Stokes system (2.1) on U. If the density function depends only on y;

p = aly),
and o’ # 0 does not vanish, then, by formal calculations, the equation
0 =div (pu) = div (pV'®) = o/ (V,y1 - V32)0, @ = o/ det(V,y) 0, P

implies that ® = 5(y;) depends also only on y; on U. Nevertheless it is not
necessary that there exists a function n such that p = n(®). Similarly, if ®
depends only on 1,

¢ = 5(3/1)7

and & # 0 does not vanish, then p = a(y;) depends also only on y; and
p =n(®) with n = a0 7. In this case the pair (p,u) = (a(y1), Vi(B(y1)))
is a solution of the form to the stationary Navier-Stokes system ([2.1))
if it further satisfies the first equation in ({2.1)).

We formulate the solutions to the stationary Navier-Stokes system ([2.1))
when assuming certain symmetries on the density function in the following
theorem. In particular, the Couette flow between a parallel channel, the
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concentric flow between concentric rotating circles, and the radial flow (also
called the Jeffery-Hamel flow) between two nonparallel converging/diverging
lines are described.

Theorem 2.1.3 (Formulation for the parallel, concentric and radial flows,
[HL20]). If the density function

p = p(zs) inR% or p(r) in R\{0}, or p(0) in R*\{0}, with p’ # 0,

where (r,0) are polar coordinates in R%, then the velocity vector field u of the
stationary Navier—Stokes equations (2.1) reads correspondingly as

u = u(zy)e; in R% or rg(r)es in R2\{0}, or @er in R\{0}, (2.15)

1 z1 T
where e; = (O)’ e, = (x_g), ey = <_7;,_1)
Let the external force f = 0 in the system (2.1)), then the scalar functions

u1, g, h above satisfy the following three ordinary differential equations of
second order respectively

awz (:uaxzul) =C,
Oy (uro.g) = —C'r, (2.16)
ph? + 0p(udph) + 4(uh) = C,

where C' € R can be arbitrarily chosen. Correspondingly the stream function
O = D(xy) or O(r) or d(0)
satisfies the following elliptic equations of fourth order respectively
sy (11022, @) = 0,
e (1r°0,(0,0)) = 0.
Opo(140pe®) + Op (,0(&‘9(13)2 + 4,u6’9<I>) =0.

Remark 2.1.2. (i) (Recover the classical results) If p, u are positive con-
stants, then the solutions ([2.15)-(2.16) are solutions to the classical
stationary Navier-Stokes equations ([2.6|).

(i1) (Resolution of the ODEs) In the case p = p(xs) or p = p(r), the velocity
vector field u is related only to the viscosity coefficient p (while not p).
Under some Dirichlet boundary conditions the above ODFEs with
gien functions p, ;. can be solved up to a real constant, and hence there
are uncountably many solutions to the corresponding boundary value

problems of the system (12.1)).
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Proof of Theorem[2.1.5. We are going to consider the cases p = p(x2), p =
p(r) and p = p(0) separately. We notice that if we take the polar coordinate
(r,0) on the plane R?, with

(x1,m9) = (rcosf,rsind),

then

e e
V., =60, — —969, V= "0y + eg0,, with e, = (
r r

|
/|\
= |§ﬁ §
~

X1
é) ) €o
Case p = p(72)
If p = p(xg) with p’ # 0, then the equations div (pu) = 0 and divu = 0
imply that us = 0 and d,,u; = 0. Thus u; = u;(z,). Hence

p(u-V)u=0eR? div(u(Su)) = Op,(110s,u1) €1, AU = (Opyzytt1) €1.
(2.17)
If f =0, then the system (2.1 reads as

— 0, (10 u1) + 05, 1T (0
Oy 11 ~\0/)"

The equation 0,,IT = 0 implies IT = II(x;). Thus there exists a constant
C € R such that
Oy (102 u1) = —0p, 11 = C.

Case p = p(r)

If p = p(r) with p’ # 0, then the equations div (pu) = 0 and divu = 0
imply that u - e, = 0 and hence u = g¢;(r,0)ey for some scalar function g;.
The incompressibility divu = 0 then implies (J,g1)e, - €9 — (Ogg1)%2 - €9 = 0,
that is, dpg1 = 0. Thus u = g1(r)ey.

Let

, such that u = rg(r)ey,

g(r) = ar)

then it is straightforward to calculate

Vu = o ) Su=Vu+ Viu=rg 2 r? ,

T
2 2
_ T 5 I 1) o s Y ¥.13 K22}
g—TrgE —Trgo3 = 255

and

0 (r*udrg)

= eo, Au = (r0.,9+30.9)ey.

(2.18)

p(u-V)u = —rpg’e., div(u(Su)) =
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If f =0, then the system (2.1) reads as

O (13 10,9)

(—T,O92 + arﬂ)er + (— 2

- %aen)eg = 0. (2.19)
Since p = p(r) and g = g(r), we derive from the above equation (2.19) in
the ep-direction that dpIl = «a(r), where « is a function depending only on r.
Then II has the form II(r,0) = a(r)8 + B(r), where S is a function depending
only on r. The above equation in the e,-direction implies that 0,11
depends only on 7 and hence a(r) = C' is a constant, such that

(r,8) = CO + B(r).
We substitute dgIl = C' into the equation (2.19)) to obtain (2.16),.

Case p = p(0)

If p = p(f) with p' # 0, then the equations div (pu) = 0 and divu = 0
imply that u - ey = 0 and hence u = hy(r,0)e, for some scalar function h;.
The incompressibility divu = 0 then implies

1
&,hl + —h; =0.
T

Thus hq(r,0) = b0 and u = @67«. It is straightforward to calculate

r

Vy — 1 (—(a] = a3)h —zyxel’ —2my20h + 23N
4 —2xyx9h — 22N/ (22 — 22)h + 1100 )
Su = Vu+ Vi
1 (=22} = a3)h — 2mywoh! —dayxoh + (2 — 23)R
ot \ —dxymoh + (22— 23R 2(aF — 23)h + 2z20R
and
h2
plu-Viu=—p—zer,
. Og(1dph Og(ph
div (u(s)) = UL, UM (220)
Opoh Oph
Au = = ey — 2—369
Thus the system ([2.1)) with f = 0 reads as
h? h h 1
(=075 - Ooludoh) oT)e, + (26"(’; ) _ “opM)ep =0, (2:21)
r r r r
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We derive from the above equation (2.21) in the eg-direction that dpI1 =
2r=20y(ph). Since p = () and h = h(6), I has the form

(r,0) = 2r—2(uh) + o(r),

where « is a function depending only on r. We substitute 0,11 = —%(,uh) +

o/(r) into (2.21) to derive
ph® + 0p(10sh) + 4(uh) = r’a/(r),

where the left-hand side depends only on ¢ and the right-hand side depends
only on 7. Hence there exists C' € R such that (2.16]), holds.
O

We have the following irregularity results, as a straightforward consequence

from Theorem 2.1.3]

Corollary 2.1.1 (Irregularity results in the case of piecewise-constant viscos-
ity coefficients). For the parallel, concentric and radial flows formulated in

Theorem above, if we assume that the viscosity coefficient

po=p(wa), or p(r), or p(f)

. . , , , (2.22)
is a step function with the jump point at a € (0, 27),

p, b have positive lower and upper bounds, and that
0wty € Ly, (R), or 0,g€ L, (RY), or h and dshe Ly ([0,27)) (2.23)

do not vanish in a neighborhood U, of a,

then
Au = (Opyuur) €1 ¢ L, (R?),

loc

or (Tam"g + 367“9)69 ¢ Llloc(R2\{O})7

Opoh Oph .
or 767 - 2769 ¢ LZOC(R \{O})

In the case of radial flow (p,u) = (p(0), ™ De.), we also have

Op(110ph) Op(ph)
r3 €

rm2— 50 Li,.(R\{0}).

div(puSu) =

Proof. 1f the viscosity coefficient 1 = p(xq) or u(r) or p(#) is a step function
with the jump point at a, then p’ is the delta distribution 4, (up to a
constant) which does not belong to L'(U,), with U, a neighborhood of a. The

expressions for Au, div (Su) in Corollary can be found in (2.17)), (2.18))
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and ([2.20) above. We are going to discuss the cases p = p(x2), p = p(r) and
p = p(0) separately, by contradiction argument.
We assume by contradiction that

Ay = (6132502“1)61 € Llloc<R2)?
or (ré,g + 30,9)es € L .(R*\{0}),
or 767‘ — 2769 € Lloc(R \{0}),
then by the assumptions (2.23) we have

a$2u1 € VVI})’cl(R> < LIOSC(R>7
or 0,9 WL (RY) c LE.(RY),

loc

or h,dph e Wi ([0,2m)) = L5 ([0, 27)).

loc

Thus by the ODEs (2.16)), in the neighborhood Uy,

1
axz“ = axzul (C - Ha’mwzul) € Llloc(Ua)7
1 3 1
or Opft = %(—CT — por(r’0,9)) € Li.(Us),
1
or Ogpt = ao—h(C — 4dph — ph® — pdgeh) € L (Uy).

This is a contradiction to ([2.22]).
Similarly, in the case of radial flow (p,u) = (p(0), @er), if we assume by
contradiction that

Op(110ph)

r3

-2 1 RO,

div (uSu) =
then by the ODE ({2.16]); and the assumptions (2.23) we have
Op(udgh) = C — 4uh — ph* € Ly, ([0,27)), and hence dy(uh) € Li,.([0,27)),

which implies the following which is a contradiction to (2.22)):
1
ﬁg,u = E(ae(llh) - :ua@h> € Llloc(Ua)'

]

We can indeed calculate explicitly the solutions to the Navier-Stokes
system [2.1] in the case of piecewise-constant viscosity coefficients. We will see
that they can indeed be of Frolov’s form (2.14) in some particular cases.
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Example 2.1.1 (Explicit solutions in the case of piecewise-constant viscosity
coefficients). We give examples of parallel, concentric and radial flows with
piecewise-constant viscosity coefficients respectively.

e FExample of parallel flows

If (p,u) = (p(x2), ui(ws)er) (not necessarily p' # 0) solves the system
(2.1) with f = 0, then u satisfies (2.16),: Oy, (1t0s,u1) = C € R. In

particular, with the following viscosity coefficient

= p(2) = 21,500 + Lizy<oy,

we have for some constant Cy € R that

C C
&ngu = U1/($2) €1 = ((51’2 + 71)1{:02>0} + (CI’Q + 01)1{12<0})@1’
and hence
C C
ulll(‘CEQ) = 51{([2>0} + Cl{x2<0} - 7150(332>

There exists a real constant Cy € R such that u € H} (R?) reads as

C C C
u= ((Zx%+711‘2+02)1{x2>0}+(§$3+015L‘2+02)1{x2<0}>61. (224)

If we consider the Couette flow on the strip Rx [—1, 1] with the boundary
conditions

Uulrx 41} = ax €1 € R?, (2.25)
then there hold only two equations for the three constants C,Cy, Cy
C=4(a_—a,)+6C,, Cy=2a, —a_ —2C;, CieR.
Hence there are uncountably many solutions with the density function
p(2) = b (2L oy + b7 (Dm0 (2.26)

and the velocity vector field (2.24) to the boundary value problem ([2.1)-

22). A

2For the homogeneous flow 1 = 1, the velocity vector field in the form of u; (22) e; reads

as u = (%1’% + Cizo + C2)€1 with C7 = a+ga_, % +C5 = #.
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It is easy to see that if ay < a_ < 2a4 and 0 < C; < 2a+ =, then
C,Cy > 0 and uy(x2) > 0 for xo € [—1,1]. Hence 0., = ul > O and
there exists a constant Cs € R such that the stream function

C C
o = (E g + leg + 021'2 + 03)1{x2>0}
C C
+ (E g + 711'3 -+ CQZL‘Q + 03)1{12<0}
is a strictly increasing function from [—1,1] to [®_, ®, |, where
3 4 1
d_ = (I)(—l) = 501 + Cg - 3CL+ + 30,,
) 5) 2
P, = (I)(l) = _4_101 +C5+ 3CL+ — ga_.

Then the pair (2.26)-(2.24) is a solution of the system (2.1) in the
Frolov’s form (2.14) with

bH2) ifye (Cs, 0.,
n(y) ={ b1(1) z'fggje [@_, C5].

e FExamples of concentric flows

If (p,u) = (p(r), rg(r)eq) (not necessarily p' # 0) solves the system (2.1
with f =0, then u satisfies [2.16),: 0, (ur*d.g) = —Cr. In particular,
with the following viscosity coefficient u

p=p(r) =21y + sy, (2.27)
we have for some real constant Cy € R that
C,.2
—sre+C
a’/‘g = 2’ 3 .
wur
cl1 C C1
= (*Z; + 21 )1{0<r<1} + (*5— +Ch 3)1{r>1}7 C,CreR
There exists a constant Cy € R such that (for ue H} (R*\{0}))
C C
g(r) = (_Z Inr — Zl(_Q —-1)+ Cg)l{0<r<1}
o o 7” (2.28)
1
+ (—51 r— ?(ﬁ - ].) + 02)1{7"21}-

If we consider the concentric flow on the annulus {x € R? | § < || < 2}
and suppose the boundary conditions

1

Uiagol=1y = 59-Colgalioi=3y Ulialiai=2) = 29+ €0l alip=2,  (2:29)
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then

31112 -1 9 19
C:( 4 ) (gcl_ﬁh +gf), CQI §(§01+g++297)’ ClER.

Hence the density function
p=pr)= b_1(2)1{0<r<1} + 6_1(1)1{r>1}

and the velocity vector field u = rgeq with g given in s a solution
of the boundary value problem -. We can follow the argument
at the end of Case p = p(x3) to find the function n such that p = n(®P),
provided with more restrictions on g_, g, C1. We leave this to interested
readers.

Examples of radial flows

If (p,u) = (p(0), h(f) e;) (not necessarily p' # 0) solves the system ([2.1))
with f =0, then u satisfies [2.16)5: ph® + dg(ndph) + 4(ph) = C € R.
Let the viscosity coefficient 1 be

p=p0) = 21p,2) + Liz.5)-

INE]
(ME}

Then (p,u) = (p(0), @er) with h(0) satisfying the following
Op(110gh) = 0, ph+4p =0

is a solution of (2.1) with f =0, and in particular h, p can be taken as
follows

Oph = — = —1pz) = 21iz.5),
T T 4u
h=(—— —01li =~ —— —20)1jx = = ——F
( 2 ) [O> )+< 4 ) [4 2]7 p h

such that p = b(p) holds.

This radial flow moves toward the origin and mowves faster when closer
to the origin. There are obviously other solutions of form (p,u) =
(p(0), "De.) to the system [2.1)) with f = 0 and the viscosity coefficient

r

(2.1.1)), and we do not go to details here.
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2.1.4 Further discussions on the regularity issues

In contrast to the irregularity results for the solutions of the stationary
Navier-Stokes system ([2.1) with piecewise-constant viscosity coefficients (see

Corollary
Au¢ Ligo(RM{0}),  div (uSu) ¢ Lo (R*\{0}),

we should have some regularity results for the divergence-free part of the

viscous term div (uSu)
Pdiv (uSu),

where P is the Leray-Helmholtz projector. On the whole plane R?, by use
of Fourier transform, any vector-valued tempered distribution v € S'(R?; R?)
can be decomposed into its div-free and curl-free parts separately

v =V + Vi,
with V2V, = VFAT'VE .o =Py, VI, =VA“'V.u=(1-P),

and the Leray-Helmholtz projector P (as Calderén-Zygmund operator) maps
L?(R% R?) into itself, for any p € (1,00). We can also define P on L?(€);R?),
1 < p < o where Q is a bounded C* domain and we recall here briefly a
possible definition (see [FMMO98| for more details). Let v € LP(Q;R?) and
let ¢ : &(Q) — D'(Q) be the Newtonian potential operator which acts
component-wise on vector fields. We define the Leray-Helmholtz projector as
follows:
Pv=v—Vdiv g(v)—VV,

where V' € W1P(Q) solves the following Laplacian equation with Neumann

boundary condition

AV =0in Q,
L = (v—Vdiv q(v)) - non .

By the results in Section 11 in [FMMO98], we have the following Helmholtz-
decomposition

LP(Q;R?) = Ly, o() ® gradW'?(Q),
where

Lh o) E{ve LP(Q;R?) [divo = 0, v -n|axm = 0},

grad W' (Q) LYvV |V e WH(Q)},

and the orthogonal Leray-Helmholtz projector P : LP(Q) — Li () is
bounded and onto.
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In this subsection we always consider the stationary Navier-Stokes system
([2.1) on a bounded C' domain 2, with zero external force f = 0 (noticing
div (pu ® u) = pu - Vu by the density equation div (pu) = 0)

{pu - Vu — div(uSu) + VII = 0, (2.30)

divu = 0, div(pu) = 0.

We apply the Leray-Helmholtz projector P to the first equation of the station-
ary Navier-Stokes system (2.30]) to derive (whenever one side is well-defined)

Pdiv (uSu) = P(pu - Vu). (2.31)

We can then analyze Pdiv (uSwu) by use of the given information on u and
V.

Theorem 2.1.4 (LP-boundedness for Pdiv (uSu), [HL20]). Let Q be a bounded
Ct-domain.

For any weak solution (p,u) € L®(Q) x HY(Q;R?) to the boundary value
problem of the stationary Navier-Stokes system with zero external force
f =0 (e.g. the solutions given in Theorem , we have

Pdiv(uSu) € LP(;R?), Vpe (1,2). (2.32)

If furthermore the boundary value ug € WH*(0Q) and the viscosity coef-
ficient p € [y, 1*], pis, p* > 0 is a variably partially BMO coefficient (e.g.
all the solutions in Theorem [2.1.5 which are continuous in one direction),
i.e. there exist Ry € (0,1] and v = v(p, ps, 1*) € (0,1/20) such that for any
x € Q and any r € (0, min{ Ry, dist(x, 0Q)/2}) there ezists a coordinate system
(y1,y2) depending on x and r such that

1 1 puetr
1B ()] J B, () Y1 y2) = 2 /y2_r w(yr, ) ds|dy < 7,
then we have
Vu e LP(;RY) and Pdiv(uSu) € LF(Q;R?), Vpe [2,0). 2.3

Proof. By Sobolev embedding and Holder’s inequality, we have for the solu-
tions (p,u) € L®(2) x H*(;R?) that

u e L¥(Q;R?) for any s € [1,00), and hence pu-Vu € LP(Q;R?) for any p € [1,2).

By the LP-estimate for the Leray-Helmholtz projector P and the equality

(2.31)), we have (2.32)).
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Recall the fourth-order elliptic equation (2.10) for the stream function &
(we assume f = 0)
L,®=V"'-div(pu®u),

with LM = (a@m - 8961901)#(6362:52 - awlﬂh) + (2(9;51952),&(2@;1;32). By Sobolev
embedding and Hélder’s inequality again, for any solutions (p, u) € L*(Q) x
H'(Q;R?) we have

pu®ue LP(QRY), Vpe[2,0).

For any boundary value ug € Wl_%’p(aQ), p € [2,00), we may assume P, €
W?2P(Q) to be the extension of the boundary value defined in (2.9) with
|Po|[w2r(2) S ”uonl’%’p(aQ)' By the LP-Estimate for the fourth-order elliptic

equation with variably partially BMO coefficient in Theorem 8.6 in [DK11],
we have for any p € [2, 0)

| = ollwsiay < Cps e, Ro, 190) (Ipu @ sy + ol 1y )

As u e L*(2;R?), Vs € [1,0) by Sobolev embedding, we have
® e W*P(Q) and hence u e WH(Q) < L*(2), Vpe [2,0).
Thus ([2.33) follows from the equation (2.31]). ]

Remark 2.1.3 (Symmetric flows in Theorem revisited). Notice that in
the parallel flow case and in the concentric flow case, we have

Pdiv(pSu) = div(pSu),

which is smooth by view of (2.16)), (2.17) and (2.18)).

In the radial flow case p = p(0), we assume that

Oy v XD,

r2

div(pSu) = V*H(

where o = a(0), B = B(0) are scalar functions depending only on 6. Then by
(2.20) and (2.16));, o and 5 satisfy

— 28 +a = (uh')
B+ 2a = 2(uh),

o +da = 4(uh) + (ph')" = —(ph?)',
B" + 48 = =2(uh’) + 2(uh)" = 2(ph* + 4uh — C) + 2(uh)".

that s,
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We calculate straightforward (in the sense of distribution) that

_ sin(26) cos(20)

0
a= 5 /0 cos(2s)(ph?) (s) ds +

+ Cy sin(20) + Cy cos(26),

0 0
dpov = — COS(QH)/O cos(2s)(ph?) (s) ds — sin(29)/o sin(2s)(ph*) (s) ds
+ 2C cos(20) — 2C5 sin(26).

0
/0 in(2s)(ph2) (s) ds

for some real constants Cy,C, € R. It is then easy to see that if ph?® €
LP([0,27)) then a, dpcx € LP([0,27)) and hence

o 2a 3/1e"
)= Tzt tgere Ly, (R:\{0}).

P div(uSu) = V*(

r2

We conclude this introduction part with some further discussions on the
fourth-order elliptic equation (2.10)). If the right-hand of the equation ([2.10))
simply vanishes, that is,

LH(I) = (612362 - 8961%)“(&90212 - a361961>(I) + (2511362):u(2ax112)q) = 07 (2'34>

then with the function ¥ : R> — R satisfying

(022 — 1)@\ _ —2012¥
p2012P (522 - 911)‘11 ’
the complex value function A = ® + ¢¥ solves the following second-order
Beltrami-type equation

1—

02\ 2N, z =121 +ixs.

z :1+u

This description can be compared with the first-order Beltrami equation

1—0

0, 0.

52711 ==

Here w = u + 70 is a complex value function, where the real part u satisfies a
second-order elliptic equation of divergence form

div(o(x)Va) = 0, (2.35)

and the imaginary part @ is related by o(z)Vi = V40. According to [AIMO09),
on a bounded domain Q — R2?, there exists a measurable function o : Q —
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{#, K}, K > 1 such that the solutions @ € H'(Q2) to the equation (2.35)) with
the boundary condition | = 1 satisfies

[ vai —
B

for any disk B < Q. That is, @ ¢ W'*(Q) for any p > 2.
Following the convex integration method in |[AIMO09|, we can show that
there exists a measurable function p : Q +— {+, K}, K > 1 such that the

solutions ® € H?(Q) of the equation (2.34) satisfies

[ vl — o,
B

for any disk B < 2. Although it is not clear whether this constructed solution
(p,u) = (b= (1), V*®) solves the stationary Navier-Stokes equation ([2.1]), we
expect in general that the solutions for (2.1)) with only bounded viscosity
coefficient p (without any smoothness assumption)

Vu ¢ LP(Q), for any p = p.,

where p, < o depends on the deviation |y — 1].

2.2 Proofs in two-dimensional case

In this section we are going to prove Theorem [2.1.2]

By virtue of the Fact and Definitions in Subsection [2.1.2] in order to prove
(i) in Theorem [2.1.2} it suffices to show the existence of the weak solutions
O e H*(Q) (resp. ® € H*(Q2)) of the boundary value problem

L,® =Vt f+ V. div(pVie® V'),

p=n(®), w=(bon)(®), (2.36)

0
Q|o0 = Do, a—n\aa = Py,

where L,, denotes the following fourth-order elliptic operator

w = (Ceses = Ozyay )M (Orgzy — Oryay) + (202129) (20012, )-

Here the functions n € L*(R; [0, p*]), 0 < p*, b € C(R; [s, £*]), pts, u* >0
and f e H1(;R?) (resp. f =divF, F € L*(Q;R? x R?)) are given. We will
focus on the solvability on a bounded simply connected C''-domain in Sub-
section [2.2.1] and the solvability on the exterior domain of a simply connected
CM! set will be achieved by an approximation argument in Subsection [2.2.2]

L
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In Subsection we will follow the method in [GW1§| to show the
existence of weak solutions to the system on the whole plane, taking the
prescribed mean value d = m f p u on some set D of positive Lebesgue
measure.

Finally more regularity results will be proved in Subsection [2.2.4]

2.2.1 The bounded domain case

Let © be a bounded connected C*! domain on R?.
We first treat the boundary condition ®|sq = ®o € H?(0€2) and 20 =

®, € H2 (092). By the inverse trace Theorem and the Whitney’s extension
Theorem, we extend @, on the whole plane R? (still denoted by ®;) such
that ®g € H*(R?) and 2¢[,n = ®;. We then take a sequence of truncated
functions ¢(z;d) on the boundary 0 and define

®y () = Po()¢(230) € H*(R?). (2.37)

Here ((z;6) is a smooth function, with {(x;¢) = 1 near 0 and ((x;6) = 0 if
dist(x, 0€2) = 6, such that

IC(z;8)] < C, |V¢(z;0)| < OS5, VY5e (0,d1],
for some fixed constants C' > 0 and d; > 0. Then

0P 0P
Po|oq = @ Va0 = =—oa-
HES 0log; an ES pealle
Fix § > 0. If ® € H?(Q) is a weak solution of the elliptic problem ([2.36]),
then
P L O — D) H(Q)

satisfies

1

5 /QHJ<(522%06 — 0119") (0220 — O1®) + (2512%06)(2512@) dx

=/p(vl(q>g+go5)®w(q>g+<p5)):vvwdw/f-vwdx
Q Q

— 1/ u((éggq)g — 0119)) (Pa2t) — ) + (2612<I>3)(2812@/))) dzx,
0

(2.38)

2
with p = n(®) + ¢°) and pu = b(p), Vi e HZ(Q),

and vice versa. We hence search for ¢° € HZ(f) satisfying (2.38).
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Fix ¢ € HZ(Q) and set

P =@+ @), i’ = (bon)(®)+ @)

We take a sequence of mollifiers (09). on R?, with 0 = %0(%), o € C°(R?),
Jso 0 = 1, and a sequence of mollifiers (¢°). on R, with ¢° = %gb(g), »e CP(R),
fR ¢ = 1. We regularize ®),°, ji’, f (we simply extend f trivially on the
whole plane)

D) = 0%« B e HAR?), f°=0%«fe LR,
n" = ¢+ ne CER[0,p7]), 07 = ¢« be GY(Rs [, 1*]),
P =t (47 + @) < pt, 1O =0 (p7F) € HP( [pna, 7)),
such that
o — @) in HA(R?), [ — fin HH(QR),
P2 550 and 1% A 0 in L*(Q) as € — 0. (2.39)
In the following we are going to find ° € H2(Q) satisfying (2.38)) in three
steps. In Step 1 we will search for the unique p € HZ(Q) satisfying
1 ~0,e
B / i ((52290 — 0np) (02t — ony) + (2512<P)(2312¢)) dx
Q
- / PE(VHEE + @) @ VHDT + ) : VV g dr + / fo-Vigde
Q 9)

1 € £ £
~3 /Q /15’5<(822<I>87 - 511(138’ ) (0220 — O110) + (2912‘1)3’ )(2512¢)> dz,
Vi e H2(Q).

(2.40)

This unique solution will be denoted by %°.
Similarly, let A € [0, 1] be a parameter. Then there exists a unique solution
©3° e H3(Q) satisfying

/ jis? ((52290(;’5 — O ) (a2t — Ou1t)) + (251290§’8)(2912¢)> dzx

Q

= A / P (VEOADS + @) @ VDY + 057)) : VVE da + A / fe -Vt da
Q Q

- / A (0037 = 01®Y7) (Ot — Q11) + (2002857 (20120) ) dir,
Q

with 5% = F(A®Y° + @) and i = b (50°), Vo e H2(Q).
(2.41)
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Notice that (2.40) is (2.41]) with A = 1.

In Step 2 we will define the map
7% :0,1] x HF() 3 (A, @) = @5° € H (Q).

Notice that, if goi’e satisfies gpf\’s = T%¢(), goi’s), then (2.41)) can be seen as an
equality for @5 = A + 3

1
5 [ 5 (Pears 5 = i 85) o = vy ) + (20012,85) (200,10 )
Q

z/f-VLwd:ch/pi(VL(Df\@VLq)i):VVLwd:c, Vi € H2(Q),
Q Q
(2.42)

where p5 = 7°(D5), 15 = 0°(p5). We observe that @5 is independent of 4.
This fact is going to be used to show a uniform bound on the sequence (90(/5\’8).
We are going to show that the map 7%° has a fixed point with A = 1

(denoted by ¢%¢) satisfying (2.40]) with ¢ = @°:
/ Mé’a <(522906’€ - 511906’6)(522¢ —ony) + (2912906’6)(23121/1)) dx
Q
= / PP (VD + %) @ VDI + 0*9)) : VV o da + / fe-Viyde
Q Q

B / 10 (@205 — 21 ®)7) (@0 — 0uip) + (20005) (2010) ) di
Q

with p¥¢ = na(fbg’g + %) and p’F = be(ﬂi’s)a vy e Hi(Q).
(2.43)

To show the existence of the fixed point, we will apply the following Leray-
Schauder’s fixed point theorem, after checking the conditions (LS1), (LS2)
and (LS3) one by one.

Theorem 2.2.1 (Leray-Schauder’s fixed point theorem, [MPS00]). Let B be
a Banach space. If

(LS1) T(0,u) =0, for all u € B,
(LS2) T is a compact map from B x [0,1] to B,

(LS8) The solutions of u = T(u, \) for all A € [0,1] are uniformly bounded
in B.

Then there ezists u € B such that uw = T(1,u).
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In Step 3 we will take £ — 0 in the sequence {(©>¢} such that the limit ¢°
satisfies (2.38)), and hence ® = ®J + ¢° solves the boundary value problem
(2.36)) on the bounded domain 2.

Step 1 Unique solvability of (2.40).
Let ¢ € H3(Q) be given. We are going to search for p € HZ(Q) satisfying
(2.40) under the following assumptions on the given functions:
P = (BT + @) < pt, B0 e[ pt], ®Y° e HAR?), fe H'(%R?).
(2.44)

For notational simplicity we do not indicate the upper indices ¢, € explicitly
in this step.

We define the inner product ¢+, -) on the Hilbert space HZ(2) as follows:

{p, & ) ﬂ<(922%0 — 01 ) (O2¢) — O + (2(71290)(2512?/1)> dx.

Then the corresponding norm (-, )2 is equivalent to the H2-norm on H2(1).
Indeed,

s < o, ) = / ﬁ((ﬁzzso — onp)’ + (251290)2> dr < p*a,
Q

where

ad:ef/ (((322g0 — (31190)2 + (2612g0)2) dx = 0.
Q
By integration by parts, for ¢ € HZ(f2) there holds
a= / <((911S0)2 + ((92280)2 — 201190220 + (2512@2) dx
Q
= / <(511S0)2 + (0n2p)” + 2511%0522<P> dx
Q

- [ @up + gl do = I8¢l

Thus
1
Vit | Al 2) < {0, 97 < Vi Ag| ),
and hence by virtue of the equivalence of the norms |A - [2(0) ~ | - | m2@) on

HZ(2), we have the equivalence of the norms

1
oo~ | a2y, on Hi(Q).
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Notice that the left-hand side of (2.40)) reads as {p, ). We are going to
show that the right-hand side of ([2.40) is a linear functional on HZ(2)

(1),
which by Lax-Milgram theorem defines a unique element (denoted by Ay) in
HZ() such that
W) = (Ap, ).

Then we will verify the conditions (LS1), (LS2) and (LS3) in Leray-Schauder’s
fixed point Theorem for the map

QA [0,1] x H3(Q) — HI(Q),
to show the existence of the unique solution for the equation
o= Ap

and hence ([2.40)).

Definition of the operator A. By virtue of (2.44)), the right-hand side of
(2.40)) depends linearly on % and can be bounded by

</)*”(I’0 + @lwra|Po + @llwra + | fllar + 8M*H‘I’0||H2> || g2
< C(p* + p* + 1)(|Pollmz + |2 a2 + | f [ r-2) (1 + [@oll 2 + ] 1r2) 140] 2,

for some constant C' > 0. Here we used the Sobolev’s inequality

lgl 2@ < Clglme), Vge Hy(Q).

Hence the right-hand side of (2.40]) defines a linear functional I(1)) on HZ(12),

which defines correspondingly by Lax-Milgram theorem an element (denoted

by Ap) such that I(¢) = (Ap, ).

Verification of Condition (LS1). If o = 0, then the map aA = 0.
Verification of Condition (LS2). In order to show the compactness of the
operator a4, we take a weak convergent sequence (a,, ©,) < [0,1] x HZ(Q).

By virtue of the compact embedding HZ(2) — W'4(Q), there exists a
subsequence (still denoted by (v, ,)) converging strongly in [0, 1] x W4(Q),
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and hence

HO‘nASOn - OémAQDMHH2
< sup (‘Oén<A90n — Apm, V)| + [(n — am)(Apm, 7/}>D

Il g =1

< sup ‘/Qp(vl(cbo + @) ® V- (0n — ¢om)) :vvlz/;dx]

\WJHH2=1
+ |an — am|| Apm| 12
< C(|en = @mlwia + lam — anl)

< (" @0 + lwra(L+ lomlwra) + [ fla-r + 17| Po]m2)
— 0 as n,m — 0.

Verification of Condition (LS3). The solutions of ¢ = aAp are uniformly
bounded in HZ(2). Indeed, if ¢ = aAp € HZ(Q), then {p, 1) = alAp,1) =
al(y) for any ¢ € HZ(2), and in particular when ¢ = ¢,

() =a [ HVH@0+ 9@ VB +9): TV pdsta [ [ Viods
Q Q
— Oé/ ﬂ<(522q30 — 011P0) (0220 — O11p) + (2512(130)(2512%0)) dz.
Q

Notice the equality
/ p(VH(Dy + §) @ VTp) : VV o da
Q

= / pVEH( P + @) - VV o - Vg dr (2.45)
Q

1
=5 [ div (V@0 + )|Vl do =,
Q

where we used p = n(®¢ + @) in the last equality. We hence derive from
() = al(yp) above and g/ 14) < C[g]m1 (o) that
(oo < Calp + 1+ p*) (| @ofl 2 + |Gz + [ flr-2) (1 + |Pofl ) 0] =

Since the norm (-, )z > /x| A - |12(0) is equivalent to | - | g2(q) on HE (),
there is a uniform bound for all ¢ € HZ(Q) such that ¢ = a Ay, a € [0,1]:

[l < Cu (" + 1+ 1) (|Pollirz + |6 sz + [f 1) (1 + [ @oflar2). (2.46)

By Leray-Schauder’s Theorem [2.2.1] there exists a solution of ¢ = Ay in
HZ(€). This solution solves (2.40)): (¢, ¥y = (Ap, 1) = () for all vp € HZ(Q).
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This solution is unique. Indeed, if there exist two solutions ¢y, s € HZ(Q) of
([2.40), then their difference ¢ = 1 — 5 € HZ(N2) satisfies

(oo = /Q V(@0 + @) - VY- Ve, Wb e H2(Q).

Take 1 = ¢, then by the calculation in (2.45) the right-hand side above
vanishes and hence ¢ = 0, i.e., 1 = ps.

Step 2 Solvability of ([2.43).
By the procedure in Step 1 above, we can solve @ uniquely for any
A € [0,1], and we denote this unique solution satisfying (2.41)) by gpi’e.

We are going to check the conditions (LS1), (LS2) and (LS3) for the map

T% : (N, p) = (pi’g, in order to show the existence of the fixed point of T%¢
with A = 1 by the Leray-Schauder fixed point Theorem [2.2.1]

Verification of Condition (LS1). Let A = 0 in (2.41)) and let ©)° satisfy
©0F = T%¢(0, ). We take ¢ = @) in (2.41)), which implies

INCR PR

Since ) € H2(Q), o2 = 0.
Verification of Condition (LS2). The map

T [0,1] x H3(Q) 3 (A, @) — 3 € HZ(Q)

is compact, where <p‘f\’€ is the solution of (2.41]), under the following assump-
tions on the regularized data:

O e HAR?), A" =10\ + ) <pt, e HAQ), [ e LAQRY).

Indeed, let (A, @,) be a bounded sequence in [0, 1] x HZ(£2). Then there
exists a subsequence (still denote by (\,, ¢,)), such that

‘)\m_)\n| —>0, Hgém—(ﬁnle,zx —>O, as m,n — 0.

We denote g = T2 (A, G), 757 = 7F (@G + @) and ji5° = b%(537). We
take the difference between (2.41) with (A, ¢.m) and (2.41)) with (\,, ¢,). Let
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) = 8025,5 = gp g055 then (noticing (2.45)) again and | - |ze@) S| - [wrag)

><<(<922s0 ~ ol )(522<p amo’>+<2al2gof,f><2am¢“>)dx]

 [Am P (THAm @ + Pn) @ VH(An @ + ¢57)) - VYA da
| [ M = BT OB + 50 © VOB + ) : VY
" / M (T (= M) B35 © V(M@ +00i)) : TV 0% dy

+ / AnP2E (VB — @n) @ VEAR @Y + ©0F)) : Ve dgc’
Q

| [ M (O + 6) © TH(On — A)8) s TV
Q

+ /Q(ﬁg’f - /1;5{6) ((‘922‘1)8’5 — 511‘1)8’5)(@229b5’5 — 5119'05’5) + (2612<I>3’5)(2612¢57€)) d:L’D

s,
< C(p* s 1*) (1 + | Appy? 0" l2)
< ([Am = Anl + &m = @nllwra) (1 + [6°(07) lwroo + 0% lwreo)
(5, = 57
x (1 + [ @7 [wra)(1+ @7

o lwia)[Ag™

2. 47)
Notice that, since {(,} is uniformly bounded in H?, the uniform bound of
{[|A@%°| 12} can be derived similarly to (2.46)). Hence, the following strong
convergence holds

[AGen = a2 < Clém = Gullwra + [Am = Aul) = 0 as m, n — .

The map T%¢ : (A, @) — @i’s is compact.

Verification of Condition (LS3). Let ¢)° denote the fixed point of
= T°¢(), ¢) satistying (2.41)). We are going to derive a uniform bound on

Hgo Vg2 by a contradlctlon argument. Suppose by contradiction that there
exists a subsequence (gpii) < (¢5°) such that
67
H%\i H2 = 0.

Then we drive from ([2.41)) with ¢ = goA that (noticing again the equality
2.45))

e A3 < Clp* g, ) (1253

i / pi,jviwé,s . Vvlso(sﬁ . VLCI)S’e d{]j)) (248)
Q

s, s,
[+ 195% | a2) |35 a2
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d,e
Let us denote gf\’e = H;AIIL , then we drive from the above inequality that
" A I H2
_ Clp" ps, Hfbol\m 1Sl E-1)

+ O/)vigif Vg - v oge| da.
Q

lo

Since | gf\f = 1, there exist subsequences (still denoted by (gf\f)) such that

gy° —gin H3(Q), ¢¥° — gin WH(Q).

Here the limit g does not depend on ¢. Indeed, notlce that the (5—i/ndependent
function @5 = MY +5° = MDY €+ < satisfies (2 (2-42). Then Hgof\f

and

H2 — 0,

5/’5 6,5 6,5 6’,6
@y, 2 AP — AP,
= lim 5
=0 || e o3 |22
(pé,a @6,5
zlim#zlim An =g.

el oo IRl (2 8
Then taking n — oo in the above inequality we arrive at
1< C/Q’VLQ-VVlg-VLCDS dz.
Recall the definition of ® in (2.37), such that
[VA0g| = [V (@o(2)¢(2:6))| < O @o| + [VDol). (2.49)

Hence with ° denoting the boundary strip of width &, we derive from the
above inequality that

< C/ Vg - VVg| (67 Po| + [VPo|) dz:
(o)

_ 2.50
< 067 Vgl 12009 991100 | Bol - (2:30)
+ C Vgl 105 V9] 1205 | V8o 103y
Since by Poincaré’s inequality and g € HZ({2) we have
IVali2s) < CO|Vg|12(0), (2.51)

the above inequality yields

1< C”Vng%Q(Qé)HQOHHQ(Q‘S%
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where the right-hand side tends to 0 as 0 — 0. This is a contradiction. Thus
there is a constant C' independent on A such that

Q) < C.

57
HSOAE

By Leray-Schauder’s fixed point theorem, the map T%¢(1,-) has a fixed
point ¢*¢ satisfying (2.43)).
Step 3 Passing to the limit ¢ — 0.

Let (¢%¢) € H3(Q) be the solution of ([2.43)) given in Step 2. We can follow
exactly the argument to verify Condition (LS3) in Step 2 to show the uniform
bound

167 20y < C,

where C' is independent of . Hence there exists a subsequence (still denoted
by ¢%¢) such that

@6’6 _ 905 in W1’4(Q).
Thus up to a subsequence ®5° 4+ % — & + ¢° in L2(Q) and
g, : —
PP = (05° + ) B p* = (D + ¢°),
pe =7 (p%) S = b(p’) i LF(Q), ase—0.

Similar to (2.47), we take the difference between (2.43)° and (2.43)° to
derive the inequality for (%€ = ¥ — %'

<c(|f o

X ((52290 € — 0119%) (0207 — 0119°F) + (2012¢6’€)(2512¢5’5)) dl"

|Ag®

+ \/ NVHBY + ) @ VH@YT + 7)) : YV dm’

" (uw €m0 — IV + @)+ 1 = £ ) [

+ ‘/ 622q> - 611(1) )(622(,56’6 — 611gb5’5) + (2@12@8’6)(25129235’6)) dl")
(2.52)

Therefore by view of the above convergence results
0 — ©° in H*(Q).

Finally we take ¢ — 0 in (2.43)), then the limit ¢° satisfies (2.38). Hence
P = ¢° + B is a weak solution of (2.36]).
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2.2.2 The exterior domain case

Let Q be the exterior domain of a simply connected C*! set. Let N € N such
that Q¢ < By(0) = {x € R?||z| < N}. Let ©, = Q n Byy,(0) = R?, then
{Q,} is a monotonically increasing sequence which has the exterior domain
Q2 as its limit. By the solvability result in Subsection [2.2.1] for any given
ne LP(R;[0,00)), be C(R; [, 1*]), ps, p* > 0, and f = div F € H~1(Q;R?),
there exists a weak solution ®, € H?(€,) of the boundary value problem
on €, with the boundary condition ®,|aq = ®o € H2(9), P | =
D, € H%(ﬁﬁ), and @, a5, ., ©0) = 0. Furthermore, for any fixed small enough
0 > 0, we can write

®, = 5 + @), with ¢} € HZ(Q,) satisfying (2.38),

and ®(z) = ®o(z)((;6) is defined in (2.37). We extend ¢? from €, to
by simply taking ¢2 |o\q, = 0 (still denoted by ¢?,).
We are going to show that ¢ | fr2(n) 18 uniformly bounded. We take

Y = ¢° in the equation (2.38) for ¢?, to derive

/ Mn((am@fl — o))’ + (20129))%) dz

Q

= [ pu(VH@ ) @VH@+ ) TV da [ PV ds
Q Q

- / fn ((822Q>8 — 011 ®))(Paapl, — 119 + (2312q’8)(2512902)> dz,
Q

where p, = n(®,) = (2 +®3) and j,, = b(p,). Similarly as in the derivation
of (2.48)), we have

|Agh 720 < C(p*,u*,u*>((!\®3\|§ﬂ + 1F|lz2 + [ 96]2) | A0y | 2o

(2.53)
+ / PV VYL VAR dr).
Q

By the Riesz inequality (cf. [DD12]), we have [|A@S| 2 ~ [¢° .. We are
going to follow exactly the contradiction argument in Step 3 in Subsection
to show the uniform boundedness of ||| ;- () and hence we will just
sketch the proof and emphasize the difference for the exterior domain case.
Suppose by contradiction that there exists a subsequence (¢}, ) < (¢9) such
that

HASOinHm(Q) — o, as k, — .
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5
5 _ Pl
Denote gy = 1802 12

a subsequence (still denoted by (gp, )) and g € H2() with tr(g)|sq = 0 such
that

, then [Ag) |12y = 1, tr(g}, )|oo = 0 and there exist

gp — gin H?*(Q), as k, — .

Here the limit function g does not depend on §. Recall that Q° is the boundary
strip of width §. By Poincaré’s inequality we obtain g} s — glas in H*(Q°)
and by Sobolev embedding g} |os — glos in W*(Q°). We take k,, — o0 in

(2.53) to derive that

1<c |
Qs

By using the same estimates (2.49)-(2.50)-(2.51) we arrive at

Vig - VVtg Vi) dz.

1 < C|Ag[72os ) Pol a2,

where the right-hand side tends to 0 as 6 — 0. This is a contradiction. Hence
there exists a constant C' independent of n such that

[l 2y < C.

Then there exists a subsequence (still denote by (¢9)) converging weakly to a
limit ¢° in H%(Q), with tr |sq(¢°) = 0. Let

<I>=<I>g+<p5,

then @, = ®) + ¢ — & in H2(Q). By Poincaré’s inequality and a Cantor
diagonal argument, there exists a subsequence (still denoted by (®,,)) such
that

®, — ® ae. in Qand p, >p=n(®), p, —~b(p) = pin L*(Q) as n — 0.

We are going to show that ® is a weak solution of the equation on
the exterior domain . Fix any test function ¥ € C¥(2). Then there exists
a ball containing Q¢ U Supp(¥) and without loss of generality we suppose it
to be B1(0). Let V = B1(0) n €, then, up to a subsequence,

@) — " in H*(V).

Indeed, we take a smooth cutoff function y with y =1 on B;(0) and x =0
outside By(0). We take the difference between the equation (2.38)) for ¢° and



76 2.2. Proofs in two-dimensional case

the equation (2.38) for ¢?, and then take ¥ = x¢% ., ¢, = ¥ — 0, We
arrive at the following inequality similar as (2.52)

/ Mn((am — 011)¢0, 1 (O22 — 011) (XD, ) + 2612(@2,m)2612()<90§17m)>
B2(0)nQ

<

~

/ (. — pm) ((522 — 011)D, (022 — O11) (X ) + 2012(90(2”)2(312(9(902,”1)) dﬂ«"‘
B2(0)nQ2
H (Ve @V = 0,V 0 @ VR ) TV () o
B2(0)nQ ’
- / (#tn — pm) ((522 — 011)®(P22 — 011) (XY ) + (2512‘1’3)2512(X<P2,m)> dw’-
B2(0)nQ

The left-hand side above is bigger than

/v“n<((a22 - a11)%47(:L,m)2 . (2512(¢2’m))2>

- ‘/ /Ln((an — 011) @) ((O22 — 11)X 0, 1
B2(0)\B1(0)

+ Q(aQXaQQOfL,m - alXalwa,m))

+ 20128, 1 (202X + 20X0058 1 + 2000188 )|
As up to a subsequence we may assume

@0 — 0in H'(By(0) N ),
®,, — ®,, — 0in WH4(By(0) N Q) as n,m — o,

we have ¢ — 0 in H*(V). Therefore ®, — ® in H?(V), and the limit

® (together with the limits p, ) satisfies the integral equality (2.1.2)). As
U e CP(2) has been chosen arbitrarily, ® is a weak solution of equation
(2.36) on ).

2.2.3 The whole plane case

We follow the idea in [GW18] to prove (ii) in Theorem [2.1.2] We will denote

o = measmy Jp- We take a bounded simply connected C' domain U = D
and we make an Ansatz

u=d+w—w,
where w € Hj(U), divw = 0 and @ = f, w. In other words, if v is the stream

function of w, then
u=V43,
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where we take
F=y+(d—w)(vy —x)" +C, u_)zj[VL”yeRQ
D

with any fixed constant C' € R. We can typically choose

C=c, :=—]i7dx—]i(d—w)- (_””“’;J dz,

such that f,% = 0. We then search for v € Hg(U) satisfying

/UM<(522’Y — 0117) (029 — 011¥) + (25127)(2612¢)> dx

z/p(Vl’y®VL’y):VVLwda:—/F-VVLwdx, vy e H2(U;R),
U

U

where p = n(5) and p = b(p). Such v exists by Subsection [2.2.1] and hence
there exists w € H}(U) satisfying

1
5/ wSw : Svdr = / p(w+d—w)R@(w+d—w) : Vv da:—/ F-Vvdx (2.54)
U U U

for any v € H}(U;R?) with dive = 0. By taking v = w in (2.54)), we obtain

lwll iy < Clp) | F 2 (r2)-

And we arrive at a weak solution u = d + w — w of the system ([2.1)) on the
set U.

As in Subsection [2.2.2] we take the approximation argument to show the
existence of the solution on the whole plane R?. Indeed, if we take U = B, (0)
in the above, then we have arrived at a weak solution of in B,(0):

U, = d + w, — W, € H'(B,(0)),

with w, € Hj(B,(0);R?) and f Uy, = d.
D

We extend w, trivially to R? (that is, we simply take w, = 0 outside B,(0))
and take u,, = d — W, outside B,(0). Let

Tn = Wy, — W, with ][Tn = 0, such that u, = d + 7,,
D

then
|7l 1 gy = lwnll gy < C(ps) [ Fl L2 (re).-
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Let v € C*(R?;R?) with divv = 0 be any test function, then there exists
N e N such that Supp(v) u D < By(0). By the above uniform bound on (7,),
there exists a subsequence (still denoted by (7,,)) such that 7, — 7 in H'(R?)
as n — o, and in H'(By(0)) by Poincaré’s inequality. Thus u, — u in
H'(By(0)). Since f, %, = 0, by Poincaré inequality again, {7,} is uniformly
bounded in H?(By(0)), and up to a subsequence 7,, — 4 in H?(Bx(0)), with
VY4 = wand f,5 = 0. Thus %, — 7 in W(By(0)) = CV?(By(0)), and
pr = 1) = p = 0(3), ftn = b(pa) =i = b(p) in L*(By(0)). Exactly as the
end of Subsection 2.2.2] u,, — uin H'(By(0)). Thus the limits u, p, u satisfy
the integral equality for given test function v, and hence u is a weak
solution of equation on R?.

2.2.4 More regularity results

In this subsection we prove the regularity results in Theorem in the
cases when 7 is continuous and when n € C¥, k > 2, respectively.

Case when 7 is continuous

If Q is a connected C%'-domain, ®, € H3 () and ®; € H2(09Q), then we
can extend the function @, to the whole plane (still denoted by @) such that
®, € H*(R?) with compact support and 22|, = ®;. Since the weak solution
obtained in Subsection [2.2.1] ® € H*(Q) = C*(Q2), Va € (0,1), then

p=n(®) and p = b(p) € Cy(),

if n is continuous. Since f € L?(Q;R?) and HY(Q) — LP(Q), Vp € [2,20), we
can rewrite the elliptic equation ({2.36) as the fourth-order elliptic equation
for ¢ = ® — Oy € HZ(Q):

Lyp=-V' f+ V- div(pV'e@Vid) — L,(d).

By the L” estimate for the above fourth-order elliptic equation in Theorem
8.6 in [DK11] again, we have ¢ € Wy*(Q) and hence ® = & + ¢ € W??(Q)
for all finite p.

Case when ne Cf, k > 2

If Q is a connected C**1! domain and we assume the boundary condition

®y € H*3(0Q), @1 € H*2(09), then the above extended function @, €

HF¥2(R?) < WF1P(R?), Vp > 2 with compact support and 22|, = ®;. We

assume also smoothness in the data n,b € CF and f e H*1(Q) for k > 2.
As ® € W?P(Q) is proved in the case when 7 is continuous, we first

prove that ® € W3P?(Q) under the assumptions ®, € H*(R?) — W3P(Q),
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f e H(R?) — L*(Q) and n,b € CZ. We rewrite the elliptic equation (2.30])
as follows:
A%p = M_l(—((ﬁm — 1)) ((Ga2 — 011)p) — ((2012) 1) ((2012) )

- 2(82/0((5222 - 6112)gp) + 2@1#) ((5122 - 6111)g0)
— 2(011)(20122)p — 2(02p1) (20112) 0 — Lyu(Po)

VY div (Ve ® vicb)),

(2.55)

where p = ®—®y € H3(Q)nW?P(Q). Notice that p = n(®) and p = (bon)(P)
belong to W2P(Q) for any p € (2,00). Then for any fixed ¢ € Wy 4(Q),
1 < g <2 we have

Viuip e LUQ), VpyeWy(Q),
pVipe WH9(Q), p e Wyl(Q),

and hence the righthand side of is in W~19(Q), the dual space of
W,4(Q). Therefore by ([2.55), ¢ € W3?(Q) for all p € (2,0) and the same
holds for & = &y + .

We assume inductively n,be CF and ® € W*P(Q), for k > 3, Vp € (2, 0),
then p = n(®), u = b(p) and ¢ belong to WHP(Q) for any p € (2,0). Thus
the righthand side of belongs to W*=37(Q)), and hence ¢ € WF1r(Q),
which implies ® = &y + ¢ € WHT1P(Q).

2.3 Three-dimensional axially symmetric case

The three-dimensional stationary inhomogeneous incompressible Navier—Stokes
equations read as

2.56
divu = 0, div(pu) = 0. (2.56)

{ div(pu ® u) — div(uSu) + VII = f, xe Q<R
The velocity field u : Q — R3, the density function p : 2 — R, and the
pressure II :  — R are unknown. The external force f : Q — R3 is given.
We write Vu = (0ju;)1<ij<3, Su = Vu + (Vu)” and 3Su is the symmetric
part of Vu. We denote v @ w = (v;w;)1<; j<3 for vectors v = (v, va,v3)" and
w = (wy, wq, ws)T.
The viscosity coefficient 1 depends smoothly on the density function p
with the form

p=">b(p), beCRy;[usp*]) given,
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where ., u* > 0 are the positive lower and upper bounds.
On the bounded domain €2, we consider the boundary value problem of
(2.56)) under the boundary condition

ulon = uo (2.57)

satisfying the zero flux condition

/ up - ds = 0. (2.58)
o9

Leray [Ler33| showed the solvability of the classical stationary incompress-
ible Navier—Stokes equation

diviu® u) — vAu + VII = f,
divu = 0.

on some bounded, exterior domains or R3. There are some work devoted
to considering the asymptotic behavior of Leray’s solutions, see for example
[Fin59; |Ami91]. We mention a celebrated book on the stationary fluid flows
by Galdi |Galll].

However, to our knowledge, there are not so many works on the stationary
inhomogeneous Navier—Stokes equations . For the equation (2.56|) with
constant viscosity coefficient

div(pu ® u) — vAu + VII = f,
divu = 0, div(pu) = 0,

Frolov [Fro93| showed the existence of the weak solutions with the form

(o) = @) 7). 7= ()

where @ is the stream function of u and n is any given Hélder continuous
function. Under this assumption, the density equation holds immediately

div(pu) = Vn(®) - V*+d = 0.

Later on Santos [San02] generalised this existence result to the only bounded
function 7. Concerning the density-dependent viscosity coefficient, the author
and Liao [HL20| showed the existence and regularity results of the equation
. We mention a celebrated book on the evolutionary incompressible inho-
mogeneous Navier-Stokes equations by Lions [Li096]. To our best knowledge,
there is no existence results on the three-dimensional stationary inhomoge-
neous incompressible Navier—Stokes equation (2.56]).
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Organization of this section

Subsection [2.3.1] is devoted to stating our main existence result Theorem
for the equation (2.56) in the axially symmetric case. Subsection [2.3.2]

is devoted to showing more symmetric solutions in cylindrical, spherical and
cartesian coordinates. We sketch the proof of Theorem in Subsection
2.9.9l

2.3.1 Main result

We consider the cylindrical coordinate (r, z,0) € [0,00) x R x [0, 27) and write
e, €5, €9 as the coordinate axis with

cos 0 —sinf
e, = |sinf |, e,=|0], e =] cos |. (2.59)
0 1 0

We consider the system ([2.56]) on the axially symmetric simply connected
domain

Q=[0,7r1) x (21, 22) x [0,27), (2.60)
where 0 < ry < 400 and —o0 < z; < 29 < +00. The velocity field
U = Upe, + Ugey + U €,

is called axially symmetric, if u,, ug, u, are independent of #. We define the
functional spaces for axially symmetric functions

HY(Q) = {ve H'(Q) | v is axially symmetric, divv = 0}.

The incompressibility condition of u € H}() reads
1 1
divu = —=0,(ru,) + —=0,(ru,) =0, r #0. (2.61)
r r

If w also satisfies the non-flux assumption then there exists an axially sym-
metric stream function ¢ = ¢(r, z) such that

U, = 0,0, TU, = —0pp.

We take any fixed scalar function n € L*(R;[0,0)). If we take the density
function as p = (), then the mass conservation law

1 1
div(pu) = =0,p0,0p — —=0,p0rp =0, 1 #0
r r
holds in the distribution sense.
Our main result states as following and we will sketch the proof in Subec-

tion 2.3.31
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Theorem 2.3.1. Let ne L*(R;[0,0)) and b e C(R; [ws, 1*]), ts, * > 0 be
given. Let £ be a bounded connected axially symmetric domain defined as
in (2:60). Let ug € Hy*(0Q0) = {tr(u) | u € H:R®)} and f e H™'(S;R?) be
axially symmetric functions satisfying . Then there exists at least one
axially symmetric weak solution

1 1
0. e, — —0Opipe, + ugeg) € L () x HL(N)
T

oz

(p,u) = (n(p), .

of the boundary value problem (2.56)-(2.57), where o € H?(Q) is a stream

function of u, in the sense that div(pu) = 0 holds in Q, uy = ulaq is the trace
of w on 02, and the integral identity

l/uSu:Svdxz/(pu@)u):Vydx+/f.vdx
2 /g 0 0

holds for allv e HL(Q) n HY(Q). Here A: B (izefZijzl A;;Bij for the matrices
A = (Aij)i<ij<z and B = (Bij)i<ij<s-

Remark 2.3.1. o The domain ([2.60)) can be relaxed to any C*'-symmetric
domains with respect to the coordinate axis. The CY'-reqularity is nec-
essary to estend ug € H'/?(0QY) to a H'-regularity function on R3.

e One can generalise the above solvability theorem to axially symmetric
multi-connected domain 0Q) = U¥_,T'; and there is no flux through each
component

/uo-ﬁds—O, i=1,...k. (2.62)
T

e Following the Leray’s approximation method in [Ler33)/, one can gen-

eralise the existence result to the exterior domains and whole space
R3.

2.3.2 Other symmetric solutions

In this section, we will show the existence of symmetric solutions of —
in cylindrical coordinate, spherical coordinate and Cartesian coordinate.
The key point is to choose the structure of p carefully such that the density
equation

div(pu) = 0 (2.63)

holds automatically. We will also formulate explicit examples in the cartesian
coordinate.
More precisely, we consider the following two types of symmetries
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o Symmetry type I: We assume that u is a three-dimensional vector-valued
function depending only on a two-dimensional variable, and hence there
exits a stream function ¢ of u. We take any bounded positive function
1 and the density function of the form

p=n(yp).
This is the case in Theorem 2.3.11

o Symmetry type II: We assume that u is a two-dimensional vector-valued
function and vanishing in the spatial direction e,, with respect to the
variable x,,. The density function p has the form

p=n(Tw).

Then the mass conservation law holds immediately for the above
symmetric types.

We recall the coordinate axis e,,e,, ey as in in the cylindrical
coordinate. We denote the unit standard vectors in the cartesian coordinate
(71,19, 23) € R® by

1 0 0
€1 = 0 s €g = 1 s €3 = 0 s
0 0 1

and in the spherical coordinate (7, «,0) € [0,00) x [0, 7] x [0,27) by

sin «v cos 0 cos o cos —sin@
e = | sinasinf |, e, = | cosasinf |, ey=| cosl
COS (v —sina 0

Then we have the following existence theorem with respect to Symmetric
type I and II in cylindrical coordinate, spherical coordinate and cartesian
coordinate.

Theorem 2.3.2. Let n € L*(R;[0,0)) and b € C(R;[ps, u*]), s, u* > 0
be given. In the cylindrical, cartesian, and spherical coordinates, let £ be a
bounded connected symmetric CYt-domain with respect to coordinate axis. Let

ug € H'?(09) satisfy the no-flux assumption [2.62) and let f € H'(;R3).

o Symmetry type I: If ug and f depend only on r,z, or xi,xq, or 7, a.
Then there exists at least one solution in the weak sense as in Theorem
(2311

(p,u) € L* () x H(Q)
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with the form

or

or

1 1
(p,u) = (n(), ~Czper — —Crpe. + ugey) (2.64)
©, ug depending only on r, z,
(p,u) = (n(p), Daper — drpes + uses) (2.65)

@, ug depending only on 1, T,

1 1
5 = ) ~o - aoz (I af a T
(p,u) = ((p) g CaPer = —Orpe ugep)

o, uy depending only on T, « (2.66)

of the boundary value problem ([2.56[)-(2.57]).

o Symmetry type II: If uy and f have the form

Ug = Ug,rCr + Up,2€z, f = frer + fzeza
or Uy = Upae1 + upoe2, f = fier + faeo,

or Uy = Upi€;i + UpaCa, [ = fier + fa€a-

Then there exists at least one weak solution

(p,u) € L* () x H(Q)

with the form

(P, u) = (77(9),’[17«67, + uzez)y
or (p7 u) = (77(1‘3)7%61 + U262)7
u

or (p,u) = (n(0), urer + unty)

of the boundary value problem (2.56))-(2.57]).

Proof. For the symmetric solutions of Symmetric type I, the cylindrical case
was shown in Theorem [2.3.1] analogously we can show the Cartesian and
spherical cases. The proof of Symmetry type Il is similar to type I, see the
solvability in Remark [2.3.3] We omit the detailed proof here. O

Remark 2.3.2. The stream functions (2.64)) and (2.66) are called the Stokes
stream functions. The above existence results hold also for solutions of the
Symmetric type I and II with respect to other axis. We write down the
rest of solutions of Symmetric type I and II in the cylindrical and spherical
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coordinates
1
(p:u) = (n(p), urer — —dowes + Oape)
©, u, depending only on z, 0,
1
or (P, u) = (77(90)7 ;699067" tuze, — 57"9069)

©, u, depending only on r, 0,

and

1
. 5990% - aaQOGG)
SN «¢

©, ui depending only on «, 0,

(:07 u) = (77(90)7 uper +

1
Jrpeq)

or (p,u) = (n(y) 6ww+%%—;

" 72 sin a
©, uq depending only on 7, 6.

In the following, we verify the mass conservation law for the solutions
in Theorem In cylindrical, cartesian, and spherical coordinates, the
gradient operators can be written as

e

V = 6,0, + €,0, + —0p,
T

V = 6181 + 6282 + 6353,

and
€y

e
V =607 + — 0o + ——0p-

T Tsin «
For the solutions of Symmetric type II, the mass conservation laws hold
immediately since

div (pu) = Vp - u.

Concerning the solutions of Symmetric type I, the case of Cylindrical coordi-
nate was shown in Section [2.3.1] In Cartesian and spherical coordinates we
consider

U = U1€1] + Uy + U3, U = UF€; + UqCq T+ UpCy,

where uq,us, us depend only on x1,ze and us, u.,uy depend only on 7, «.
Then the incompressibility conditions can be written as

Oa(sin auy) = 0.
(2.67)

1 N
divu = dyuy + Ggug = 0,  divu = — 0x(F2uz) + =
72 7 sin o
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For u satisfies ([2.67)) and the zero-flux assumption (2.57)), there exists stream
functions ¢ = ¢(x1,22) and ¢ = ¢(7, @) such that

U = 5290; Ug = —51%07

and

up = %%@, Uy = —= ,1 07 p.
72 sin «v 7 sin «
Then the pair
(p,u) = (n(p), Caper — drpes),
and . .
(p,u) = (n(p) Oatps — ————0ppeq + Ugeyp)

" 72 sin « 7 sin o
satisfies the mass conservation laws, since

div (pu) = 01pdsp — Oapd1p = 0,

and . . )
div (pu) = Orp—5———0utp — =0ap=———0rp = 0.
72 sin « 7 Fsina
In the following, we formulate explicit solutions of of the Symmetry
type I and II in the Cartesian coordinate. The similar explicit solutions for
the two-dimensional stationary Navier—Stokes equation ([2.56|) were given in

[[IL.20].

o Symmetry type I: We consider p and u depending only on x1, x5, then
the system ([2.56) with f = 0 reads as

ulﬁlul + u202u1 281 (u@lul) + (%(/J(&ﬂig + 52u1))
U1 01Uy + UsOous | — | Oy (,u(&luQ + 6gu1)) + 262([11621@)
U161U3 + UQaQU3 é’l (/M%Ug) + 62(u(92u;;)
o011
+ | &I | =0.
o511

We consider II = II(zy,x2), then (p,uje; + uges) satisfies the two-
dimensional stationary Navier—Stokes equation . We base on the
radial solutions of the two-dimensional equation given in [HL20]
to derive a solution satisfy

p=rp(r), (r6) = (m, arctan(xs/z1)),

up = (rgsinf), wuy = —(rgsiné), 0,(udyusz) =0,
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where ¢ satisfies the ODE
o (ur*o.g) = —Cr, CeR.

The corresponding stream function ® satisfies
1
B (Wf’)ar(—ar@)) - _C.
r
o Symmetry type II: We assume tat

(psu) = (p(x3), ur(ws)er + ua(xs)ez),
then the equation (2.56|) with f = 0 reads as

83(,ué’3ul) 611_[
83</L03U2) = 821'[
0 0311

The equation dsI1 = 0 implies that II is independent of x3. Then the
following there exit constants C', Cs € R such that

Ol = 03(udsuy) = Cy, oIl = 03(pdsug) = Cs.

2.3.3 Proof of existence

We sketch the proof of Theorem [2.3.1} which is based the method in [Ler33].
We define the functional space

H(Q) = H,(Q) n Hy(Q).

For any u € H({2), as a consequence of (2.61))-(2.58)), there exists a stream
function ¢ € HZ() such that

1 1
u = —0,pe, — —0.pe, + Ugey.
r r

We are going to prove Theorem in the following three steps.

Boundary condition

We extended the axially symmetric boundary value ug to R?® (still denote

by uy € HY(R?)). Then there exists a axially symmetric stream function
w0 € H?*(R®) such that

1 1
Uy 1= =00y — —Orpoe, + Uppep, 1T > 0.
r r
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Recall the axially symmetric domain ©Q = [0,7]) x (21,29) % [0,27). We
define the smooth cut-off function {(r, z; §) such that ((r, z; ) = 1 if min{|r —
rl, |z — 2]} < $, i =1,2 and ((r, 2;0) = 0 if min{|r — r1|,|z — 2|} = 6, and
there exists a constant such that

C(r,2z:0)| < C, |[VC(r,2;0)] < Co7"
We write
0 ) 1 0 1 )
wo(r,z) = wo(r, 2)C(r, z;0), uy = ;é’zgpoer — ;&gpoez + ugpeq-
Then for a fixed § > 0, and we only need to search for the weak solutions
u’ =u—u)e H(Q)

satisfying

%/,u‘sSu‘s:Svd:c:/p‘s(ug+u5)®(ug+u6)):Vvdx+/f-vdx
Q Q Q

1
_ 5/#6‘5“8 :Svdx, VYve H(Q>7
Q
(2.68)

where p° = () + %), u® = b(p°), and ©° € H3(Q) is a stream function of
5
ul.

Linearised system

We fix an axially symmetric o € H(2) and write its stream function as
¢ € H3(Q). Then we define the density function and viscosity coefficient
correspondingly as

P =n@+ep), [ =0bp).

In the proof, we will need the Lipschitz regularity of ;. We can regularize
the given quantities to be obtain a sequence of approximation solutions and
pass to the limit in the last step. For simplicity, we omit these two steps here.

We consider the linearised problem with a parameter A € [0, 1]

1
é/ﬂiSu :Svdx = )\/ P + @) ® (Muf + u) : Vod
Q Q (2.69)

A
—l—)\/f-vdac—a//l/\Sug:Svdx, Vv e H(Q),
Q Q
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where g5 = n(p+ Ap)) and ji° = b(p3). Notice that if A = 1 and u{ = @, then
u? satisfies the weak formulation (2.68)).
The left-hand side of (2.69)) defines an inner product (-, -) on H(2) through

ef 1 [
<u,v>(]1=f—/uASu : Svdx,
2 Ja
moreover,

1
V2|Vl 20y < (u, w2 < A/p* /2| Vu|r2q),
1
G2~ lavey on H(),

where p, and p* are the positive lower and upper bound of b. The right-hand
side of (2.69) defines a bounded linear functional for v € H(2). By using
Leray-Schauder’s Principle, there exists a unique weak solution ui € H(Q) of

the linear problem (12.69)).

Nonlinear problem

We define the map
T°:00,1] x H(Q) 3 (\, @) — u € H(Q).

One can show the existence of the fixed point u$ = T(1,u3) by Leray-Shauder
principle. The uniform bound of |u} |z with u§ = T'(\,u3) can be shown by
a contraction argument as in [Ler33].

Notice that the foxed point v’ = uf € H(Q) satisfying (2.68). And the
pair (p°, uf + u’) € L2(Q) x H} () is a weak solution of (2.56).

Remark 2.3.3. We can follow the above proof to show the sovability under the
assumption Symmetry type II. In this case, p and p are fived and independent
of u. As a consequence, we do not need to fixr u as in Subsection|2.3.3. The
solvability can be obtained by directly applying Leray-Schauder principle.
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Chapter 3

Two-dimensional Boussinesq
equations with
temperature-dependent thermal
and viscosity diffusions in
general Sobolev spaces

In this chapter, we study the existence, uniqueness as well as regularity
issues for the two-dimensional incompressible Boussinesq equations with
temperature-dependent thermal and viscosity diffusion coefficients in general
Sobolev spaces. The optimal regularity exponent ranges are considered.
This chapter is based on the joint work with JProf. Xian Liao in [HL22].

3.1 Introduction and main results

In the present chapter we consider the two-dimensional incompressible Boussi-
nesq equations

00+ u- V0 —div,(kV,.0) =0,
o+ u - Veu — divy (uSzu) + V. I1 = poes, (3.1)

div, u = 0,

where (t,7) € [0,00) x R? denote the time and space variables respectively.
The unknown temperature function § = (¢, x) : [0,0) x R? — R satisfies
the parabolic-type equation (3.1]),, and the unknown velocity vector field
u = u(t,z) : [0,00) x R* — R? together with the unknown pressure term

91
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I =TI(¢,z) : [0,00) x R — R satisfies the incompressible Navier-Stokes type
equations (3.1),— 3 respectively. We are going to study the well-posedness
and regularity problems for the Boussinesq system together with the
initial data

(0, 1) |t=0= (6o, uo)- (3.2)

We write x = <§1> € R? with x1, 25 denoting the horizontal and vertical
2

1
components respectively. Let u = (ZQ) :[0,00) x R* - R? and let

1 1 .
§SIU = §(qu + (VIU)T), Wlth VIU = (@juz)lgmgg

denote the symmetric deformation tensor in the second equation 2 above.
0

1 Y
and [0e; stands for the buoyancy force, with the constant parameter 5 > 0
denoting the thermodynamic dilatation coefficient which will be assumed to
be 1 in the following context for simplicity.

We consider the cases when the heat diffusion and the viscosity in the fluids
are sensitive to the change of temperatures, that is, the thermal diffusivity
and the viscosity coefficient ;1 may depend on the temperature function 6 as
follows

The vector field e; denotes the unit vector in the vertical direction: €5 =

k=a(l), p=>5b(0), withk, <a<k", p, <b<p®, (3.3)

where Kk, < K*, py < p* are positive constants. We will not assume any
smallness conditions on k* — K, or u* — s, and large variations in these
diffusivity coefficients are permitted.

The Boussinesq system arises from the zero order approximation to
the corresponding inhomogeneous hydrodynamic systems, which are nonlinear
coupling between the Navier-Stokes equations or Euler equations and the
thermodynamic equations for the temperature or density functions: The
Boussinesq approximation [Bou72] ignores density differences except when
they appear in the buoyancy term. They are common geophysical models
describing the dynamics from large scale atmosphere and ocean flows to solar
and plasma inner convection, where density stratification is a typical feature
|Gi182; [Maj03].

The temperature or density differences in the inhomogeneous fluids may
cause density gradients. When the thermodynamical coefficients such as the
heat conducting coefficients and the viscosity coefficients are assumed to be
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constant in the Boussinesq approximation (i.e. k, p are constants in ),
density gradients influence the motion of the flows only through the buoyancy
force, which may lead to finite time singularity in the flows (the formation of
the finite time singularity is sensitive to the thermal and viscous dissipation
and see Subsection below for more references on this topic).

However, the temperature variations do influence the thermal conductivity
and the viscosity coefficients effectively, even for simple fluids such as pure
water [Lid05| Section 6][|P] In many applications in the engineering one also
aims for effective thermal conductivities in building thermal energy storage
materials [Gae+20]. Therefore in plenty of physical models density gradients
would influence the motion of the fluids not only through buoyancy force, but
also through the variations of the diffusion coefficients. It is then interesting
to study the wellposedness and regularity problems of the Boussinesq system

B-1-B3)-

3.1.1 Known results

The wellposedness and regularity problems on the two - dimensional Boussi-
nesq equations have attracted considerable attention from the PDE community.
Many interesting mathematical results have been established in the past two
decades, mainly in the cases with constant thermal diffusivity coefficient x
and viscosity coefficient u:

00 +u-V,0 —rA0=0,
O+ u - Vou — pAgu + VI1 = fés,

div, u =0,
(euu) |t=0: (607u0>‘

(3.4)

If Kk = p = 0, the two-dimensional inviscid Boussinesq equations
can be compared with the three-dimensional incompressible axisymmetric
Euler equations with swirl, where the buoyancy force corresponds to the
vortex stretching mechanism [MB02|. The local-in-time wellposedness as well

IThe absolute viscosity of the water under nominal atmospheric pressure in units of
millipascal seconds is given by 1.793 (0°C), 0.547 (50 °C), 0.282 (100 °C) respectively |Lid05,
Page 6-186]. The thermal conductivity of the water under nominal atmospheric pressure
in units of watt per meter kelvin is given by 0.5562 (0°C), 0.6423 (50°C), 0.6729 (100 °C)
respectively [Lid05|, Page 6-214].

2It is common to adapt the exponential viscosity law u(T) = C; exp(Co/(C3 + T)) and
quasi-constant heat conductivity law x(T) = Cy for the liquids, while the viscosity law
w(T) = (M(Tm))Tlm Tji’fc%” and the thermal conductivity law x(T) = Cgu(T) for the gases,
where T' denotes the absolute temperature, 7, denotes the reference temperature and Cj,
1 < j < 6 are positive constants [PTBCO8, p. I].
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as some blowup criteria have been well known for decades, see e.g. [CNIT7;
Dan13; [ES94]. We mention that an (improved) lower bound for the lifespan
which tends to infinity as the initial temperature tends to a constant (and
correspondingly, as the initial swirl tends to zero for the 3D axisymmetric
Euler equations) was given in [Danl3|. The fundamental global regularity
problem for the 2D inviscid Boussinesq equations remains still open. Recently
an interesting example of finite-energy strong solutions with a finite weighted
Holder norm in a wedge-shaped domain, which become singular at the origin
in finite time, has given in [EJ20] (see also an interesting example of solutions
in Holder-type spaces with finite-time singularity for 3D axisymmetric Euler
equations in [Elg21]).

If Kk > 0 and p > 0 are positive constants, on the contrary, the convection
terms can be controlled thanks to the strong diffusion effects, and the global-
in-time existence and regularity results can be established (see e.g. [CD80]).
Particular interests then raised if only partial dissipation is present, that is,
either k = 0 whereas u > 0 or k > 0 whereas p = 0 (see e.g. H.K. Moffatt’s
list of the 21st Century PDE problems [Mof01]). The global-in-time results
continue to hold, thanks to a priori estimates in the LP-framework as well as
the sharp Sobolev embedding inequality in dimension two with a logarithm
correction, which help the partial diffusion terms to control the demanding
term 0,0 successfully (see [Cha06; HLO5] and see [HK09| for less regular
cases). Further developments were made for horizontal dissipation cases (see
e.g. [DP11]), for vertical dissipation cases (see e.g. [CW11]), and for the
fractional dissipation cases (see e.g. [HKR10; HKR11]). See the review notes
[Wu| and the references therein for more interesting results and sketchy proofs.

There also have been remarkable progresses in solving the two dimensional
Boussinesq equations — when the thermal and viscosity diffusion
coefficients k, pu are variable and depend smoothly on the unknown tempera-
ture function €. In the variational formulation framework, the global-in-time
existence of a solution of (3.1)-(3.3) has been established in [DL72] (see
[FMO0G] for a similar formulation of ([3.1)-(3.3))) for the motion of the so-called
Bingham fluid (as a non-Newtonian fluid), where & is a positive constant,
B =0 and p depends not only on 6 but also on Su/|Su|. The Boussinesq-
Stefan model has been investigated in [Rod92|, where the phase transition was
taken into account. The global-in-time existence as well as the uniqueness of
the solutions for (3.1)-(3.3) have been shown in [DGIS8} |(Gon02; [LB9J] under
Dirichlet boundary conditions and in [PTBCO8| under generalized outflow
boundary conditions. We remark that the resolution of the nonhomogeneous
Boussinesq system under more physical boundary conditions (e.g. with Dirich-
let boundary conditions only on the inflow part of the boundary while with
no prescribed assumptions on the outflow part) remains unsolved.
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S. Lorca and J. Boldrini [LB99] (see also [DG98;|Gon02]) studied the initial-
boundary value problem of the Boussinesq system — in dimension two
and three under the initial condition and Dirichlet boundary conditions,
and obtained a global-in-time weak solution

(0. ) € (Lig ([0, 20); L*(2)))°
as well as a local-in-time unique strong solution

(0,u) e Ly

loc

([0,00); H*(2)) x (L

loc

([0, 00); H' (€))% (3.5)

The remarkable global-in-time existence and uniqueness results of the smooth
solutions

(0, u) € (Lie([0,0); H*(R*)) N Ly

loc

([0,0); H**H(R?)))*, s>2  (3.6)

have been successfully established by C. Wang and Z. Zhang [WZ11|, which
affirms the propagation of high regularities (without finite time singularity)
of the two dimensional Boussinesq flow in the presence of viscosity variations
(see [SZ13] for the case s = 2). We remark that the L2-norm of the velocity
vector field may grow in time due to the buoyancy forcing term, even provided
with constant diffusion coefficients and smooth and fast decaying small initial
data |[BS12|, and hence the norm with respect to the time variable in
and is only locally in time.

It is still not clear whether there will be finite time singularity for the two
dimensional Boussinesq flow — in the presence of viscosity variations
while no heat diffusion (i.e. kK =0, = p(#)), and we mention a recent work
[AZ17] toward this direction in the case of less heat diffusion (with div (xV6)
replaced by (—A)"?) and the small viscosity variation assumption: |u—1| < e.
A closely related question would pertain to the global-in-time wellposedness
problem of the two-dimensional inhomogeneous incompressible Navier-Stokes
equations with density-dependent viscosity coefficient

Op+u-Vep =0,
Or(pu) + dive(pu @ u) — div, (uS,u) + V. II = 0,

div, u = 0,

(p; pu)|,_y = (Po; M)

(3.7)

The global-in-time existence results of weak solutions of (see e.g. [AKMOO0;
Li096]) as well as the local-in-time well-posedness results (see e.g. [LS75])
have been well known, while the global-in-time regularities still remain open
(see e.g. |AZ15b; Des97] for some interesting results under the assumption on
the weak inhomogeneity).
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To the best of our knowledge, there are no global-in-time regularity
propagation results by the two-dimensional Boussinesq flow with temperature-

dependent diffusion coefficients —— in the low regularity regime
H® s<2,
or in the general Sobolev setting
0o € H;*(R?), o€ (H;"(R))?

with different regularity indices sy and s,. In this chapter we are going to
investigate the existence, uniqueness as well as the regularity problems in
these general Sobolev functional settings.

To conclude this subsection let us just mention some recent interesting
progresses on the stability of the stationary shear flow solutions (together with
the corresponding striated temperature function) to the Boussinesq equations
, with full dissipation or partial dissipation, in e.g. [DWZ21; [TWZZ20;
7i121] and references therein. It should also be interesting to investigate the
stability of the stationary striated solutions of the Boussinesq equations with
variable diffusion coefficients . We mention a recent work in this direction
on the incompressible Navier-Stokes equations with constant density function
but with variable viscosity coefficient |[LZ21].

3.1.2 Main results

We are going to show the global-in-time existence of weak solutions to the
Cauchy problem for the Boussinesq system —— in the whole
two-dimensional space R? under the low-regularity initial condition (6, ug) €
L?(R?) x (L?(R?))%. The uniqueness result holds true if the initial temperature
function becomes smoother (0y,u) € H'(R?) x (L*(R?))2. Finally we will
establish the global-in-time regularity of the solutions in the general Sobolev
setting (0, ug) € H*(R?) x (H**(R?))? ¢ H'(R?) x (L*(R?))? with the restric-
tion s, — 1 < sy < s, + 2. These regularity exponent ranges are optimal for
the existence, uniqueness and regularity results respectively, by view of the
formulations of the Boussinesq equations with temperature-dependant
diffusion coefficients (see Remark below for more details).

We first define the weak solutions as follows.

Definition 3.1.1 (Weak solutions). We say that a pair (6,u) is a weak
solution of the Boussinesq equations (3.1))-(3.3)) with the given initial data
(0o, uo) € (L2(R%))3 if the following statements hold:
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e The temperature function

0 = 0(t,z) € C([0,0); L2(R?)) n L2

loc

([0, 90); H (R*))

satisfies the initial condition 6|,—g = 0y, the enerqy equality

1 T 1
10T Mz + [ [ (V0PN E)do dt = 51000z (3
for all positive times T > 0, and the equation
Ol +u - VO — div,(kVE) =

2
wn L,

([0,00); H7H(R?)).
e The velocity vector field
= u(t, x) € C([0,0); (L3(R*))?) n Lie([0,0); (H;(R?))?)

satisfies the initial condition ul—g = ug, the divergence-free condition
div,u = 0, the energy equality

1
(T, g + // ulSu)(t, ) da dt

. (3.9)
= S0 s+ [ [ Gut a0,
0o Jr2
and the equation
o+ u - Vau — divy (uS,u) + V,IT = 0é; (3.10)

in L7 ([0, 0); (H;1(R?))?) for some scalar function 11 € L2 ([0, 00) x R?)
with VII € L, ([0,00); (H, ' (R?*))?) and [, Tldz =0 a.e. t (with B

denoting the unit disk in R?).

For any fixed T'> 0, p>1, ¢ > 1, s > 0 and for any fixed (vector-valued)
function f: [0,7] x R? — R™, m > 1, we denote

HfHL';XI = HHf(t)HXx(RZ%R’”)HL{'([O,T]) with X = H® or LY. (3.11)

The functional space LF([0,T]; H*(R*;R™)) consists of all functions f :
[0,00) x R?* — R™ satisfying |f||zn; < 0. We have the following exis-
tence, uniqueness as well as global-in-time regularity results for the solutions
of the Cauchy problem for the Boussinesq equations —— on the
whole two dimensional space R?.



98 3.1. Introduction and main results

Theorem 3.1.1 (Existence, uniqueness & global-in-time regularity, [HL22]).
For any initial data 0y € L*(R?) and ug € (L*(R?))?, there exists a global-in-
time weak solution

(6, u) € C([0,0); (L*(R*)*) n Lj

loc

of the initial value problem —-.

If 6 € H'(R?), up € (L*(R%))? and the functions a € CF(R;|[k«, k*]),
b € CER;[s, u*]) have finite first and second derivatives, then the weak
solution s indeed unique, and satisfies

([0,90); (H'(R))?)

0 e C([0,0); H'(R?)) n L?

loc

([0, 00); H*(R?)),
as well as the following energy estimates for any given T > 0,
lulZz 1z + [VulZs 2 < C(T00] 72 + JuolZ2). (3.12)
and ) o
1002 1z + 11020, VO) 12 1
< O3 (1 + [V80o[72) exp (C(T?6o] 72 + [uollz2)),

where C' is a positive constant depending only on |a|Lip, ks, K, fh.

Furthermore, the general H?®-reqularities can be propagated globally in time
in the following sense: For any initial data (see the grey unbounded quadrangle
n Figure for the admissible regularity exponent range)

(3.13)

(0o, ug) € H*(R?) x (H**(R?))? with (sg,54) € D,

(3.14)

D = {(sg,5u) < [1,00) x [0,0) [ sy — 1 < sp < s + 2}\{(2,0), (1,2)}

and the functions a € C} A Clelt1 b e OF A Clsd*1 | the unique solution (0, u)
stays in

C([0,00); H* (R?) x (H**(R*))*) n Lj

loc

([0, 00); H**H(R?) x (H™F1(R?))?).
(3.15)

Theorem [3.1.1| will be proved in Section [3.2. The proof of the existence of
weak solutions is rather standard, and we are going to sketch the proof in
Subsection for the reason of completeness, as we did not find the proof in
the literature. As mentioned before, some well-posedness results have already
been established for smooth data in the bounded domain case (see above
in e.g. [DGY98; DL72; Gon02; LB99|) or in smoother functional frameworks
in the whole space case (see above in e.g. [WZ11]). We are going to
focus on the proofs of the uniqueness result and the global-in-time regularity
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1 2 3 1 5
Figure 3.1: Admissible regularity exponents

result (in the low regularity regimes) in Subsection and Subsection m
respectively, where different regularity exponents for different unknowns are
permitted. The commutator estimates as well as the composition estimates
in Lemma [3.2.1] will play an important role, and the a priori estimates for
a general linear parabolic equation in Lemma [3.2.2] will be of independent
interest.

We conclude this introduction part with several remarks on the results in

Theorem B.1.1]

Remark 3.1.1. To show the regularity results in the admissible exponent
range D as in (3.14)), we only need to prove on

OD\{(2,0),(1,2)} and {(2,5). (s +1,2)]s € (0,1)},
since the admissible exponent range D (the grey area in Figure 18 CONVEL.

Remark 3.1.2 (Optimality of the regularity exponent ranges in Theorem
. We are going to follow the standard procedure to show the existence of
weak solutions for L?-initial data by use of the a priori energy (in)equalities
and (see Subsection [3.2.1] below).

Under the lower-regularity assumption 0y € H) with 0 < s < 1, the
coefficients K, ju are not expected to be continuous uniformly in time, and
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hence no uniqueness or H®-reqularity results for 6 or H*', s1 > 0-reqularity
results for u are expected. Nevertheless with constant diffusion coefficients
(e.g. k = pu = 1), the uniqueness result for the weak solutions holds true by
virtue of the L2-energy (in)equalities (similar as the classical global-in-time
well-posedness result for the classical two dimensional incompressible Navier-
Stokes equations).  Furthermore, if k = 1 is a positive constant, then the
H:, s € (0,1)-Estimate for 6 holds true, provided with uw e L} (L3(R?*))? (or
with ug € (L*(R%))?), simply by an interpolation argument between and
. Similarly if p = 1 is a positive constant, then the H?, s > 0-Estimate
for w holds true, provided with 6 € L7 (H:'(R?)).  Thus with constant

diffusion coefficients (e.g. k = u = 1), the Sobolev regularities
(60, uo) € (H*(R*)) x (L*(R*)* or (L*(R?)) x (H*(R*))*, 0<s<1

can be propagated globally in time, and the admissible reqularity exponent
set (3.14)) extends itself indeed to the closed set consisting of all non-negative
admissible reqularity exponents:

(S0, 5u) € {(S9,54) = [0,00) x [0,00) | s, — 1 < s < 5 + 2}\{(2,0)}.

In order to propagate the H*®, sy > 2-reqularity of 8, we require the
transport term w - VO in the 0-equation to be at least in L7 ([0, 00); Hi™1),
which requires w € L2 ([0,00); H:~') and hence the initial assumption ug €
H** with the restriction s, = sg — 2 (as there is a gain of reqularity of oder 1
when taking L*-norm in the time variable in general). Similarly, in order
the propagate the H**, s, = 2-reqularity of u, we require the viscosity term
div (uSu) in the u-equation to be at least in L2 ([0, 00); Hi»~1), which requires

puSu e L2 ([0,00); HS*) and hence the initial assumption 0y € H* with the
restriction sg = S, — 1.
Concerning the endpoints (2,0) or (1,2) in the Figure (3.1, in general we

can not show the regularity results. Because the boundedness of

T T
/ VAR -Vu-Vn|de dt or / V2 - Su - VAu|dx dt,
0 Jr2 0

R2

1s lacking with

(n,u) € Lig (Hy x (L3)*) 0 Lipo(H; x (H)?)

T loc T

or (n,u) € Lig.(Hy x (H3)?*) 0 Lig (H; x (H;)?),

loc
as a consequence of the failure of the Sobolev embedding H'(R?) 4> L*(R?).

Remark 3.1.3 (Precise H:-Estimates in the high regularity regime). The
global-in-time regularity in the high regularity regime (3.14)-(3.15) follows

immediately from the following borderline a priori estimates:
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o If0y e H*(R?), ug € (L*(R?))* with s € (1,2) and the function a € CZ(R),
then

1612115 + V0125 5y < C ()60

2
Hs X

(3.16)
x exp(Clo, 5, lallen, 10 ) (VU312 + V02 1) )

o If6y € H'(R?), up € (H*(R?))? with s € (0,2) and the functionb € CZ(R),
then

lull s + IVullzz gy < C(se)(Juolzzg + T0l Lz + 1]

2LQTH;*1)

(3.17)
x exp(Clptrs, o, 10z ) (19015 15 + 19612, 1))

o If 0y € H*(R?), ug € (H*(R?))? with € € (0,1) and the function a €
C%(R), then

101212 + [ VOIZz g2 < Clhis, lallce, 5%) 100 32 (1 + [ VB0 72)

(3.18)

 exp( s gl v + el s + 90123 1))
o If 0y € H'*(R?) and up € (H*(R?))*> with € € (0,1) and the function
be CZ(R), then
lul Lz mz + IV Ul Lz g2 < (lullZgmy + 1Vulzz m)
+ C(HAUoH%g t Nl 2 (1l g 2 2 4 VO 1<)

80 312 [ Aul g 22 ) % exp(C (1w, TO) Ly 1y + V2012 1))
(3.19)

where the constant C' depends on pu, €, b o2, 0] o gra+e, VO] 12 111

o Ifye H*(R?), ug € (H*2(R?))? with s > 2 and the function a € C1¥1*1,
then for s € (2,3) it holds

10Zp g + V022, < Chin)[00] 75 30
X eXp(C(/f*,S,C% HQHL%L;;O)(HUHiZ’TH;*1 + Hve”%%LgO)>v (820
and for s = 3 it holds
1017 s + IVOZz 1 < Cris, ) (100 + IVON L e | Vil ye2)

x exp(C (ki 8, a, [0z ) (VulZz o + V0|72 100)).
(3.21)
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o IfOye H'(R?), ug € (H*(R?))? with s > 2 and the function b e ClsI+1,
then for s € (2,3) it holds

lull T mrs + IVulzz gy < C ) (luoliry + TNON e p51) (32
x exp(C(a, 8, b, [0 22 ) (IVUl72 g + HVQHiQTH;q)), '
and for s = 3 it holds
.
< Cpe)(luolfyy + TNOI gz + VUl 1o VO )% (3.23)
< exp(Clp 5,b 012 ) IVl 1 + [VOIEs 1),

We are going to prove the above borderline estimates one by one in Subsection

below.

Remark 3.1.4 (L?-in time Estimate V.S. L'-in time Estimate). Instead
of the classical L H n Ly Hi ?-type estimate in the literature, we derive
LPHS A L?H5 ' -type estimate here, since e.g. only the L? H-a priori estimate
for the wvelocity vector field is available from the energy estimates (roughly
speaking, the L?-in time norm asks less spacial regularity on the coefficients).
See Lemma below for the a priori HS, s € (0,2)-estimates for a general
linear parabolic equation with divergence-free L? H-velocity vector field, which
is of independent interest.

It is in general not true that € LIH*™ (or w € LIH™) in the low
reqularity regime, although it holds straightforward in the high regularity
regime.

Remark 3.1.5 (Remarks on the smoothness assumptions on the functions
a,b). It is common to assume smooth heat conductivity law and viscosity
law (PTBCOS, p. I] in fluid models.

The Lipschitz continuity assumption a,b € Lip is enough for the H' x L2-

Estimates (3.12))-(3.13) in Theorem [5.1.1,  As for the uniqueness result, due

to the following H!-Estimate for the difference of the diffusion coefficinets
la(01) — a(02)] g < [(a'(61) — a'(602))VOi] L2 + [a(02)V (01 — 0a)] L2
< |@Lipl VO L4 0r = 0224 + [l [V (61 — 62)] 12,

the Lipschitz continuity assumptions a’,b’ € Lip are required.

The dependance on the function a of the constants C' in (3.20))-(3.21))
reads precisely as (similarly for the constants in (3.22))-(3.23))

sup sup ‘_ka(y)
b=0, [s]41 lyl<el6] s 0 DY

)
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and hence only a € CEIF! instead of a € C’,ES]H 15 required.

For the integer reqularity exponents, we can simply derive the energy
estimates by integration by parts (instead of the application of the commutator
estimates or the composition estimates in Lemma below), such that the
requirement for a € C*1+1 and b e Cl5«*1 can be relaxed.

3.2 Proofs of existence, uniqueness and regu-
larity

Recall the Cauchy problem for the two dimensional Boussinesq equations

B-1-B3)

0 +u -V —div(kVe) = 0,
o+ u - Vu — div(pSu) + VII = 6é3,
divu = 0,
(0, 1) [1—o= (6o, uo),
where k = a(0) € CL(R; [Kx, £*]), = b(0) € CH(R; [, 1*]) With s, 5%, i, p1*
four positive constants.
We are going to show the existence result in Theorem in Subsection
B:2.1] We derive of the a priori H:, s € (0,2)-Estimate for a general linear

parabolic equation in Subsection [3.2.2] The uniqueness as well as the global-
in-time regularity results in Theorem [3.1.1]in Subsection [3.2.3] and Subsection

respectively.
Recall the definition of the | - | rox,-norm in (3.11). The Gagliardo-

Nirenberg’s inequality

1 1
||f||L§L§(R2) < CHfH[Z%L%(F\m)||vf||[2,%Lg(R2) (325)

as well as the equivalence relations between the norms

(3.24)

1AD]2R2) ~ V0l 2Ry '

will be used freely in the proof.

3.2.1 Existence of weak solutions

We will follow the standard procedure to show the existence of the weak
solutions under the initial condition

(00, u0) € L*(R?) x (L*(R%))?,

namely
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Step 1 We construct a sequence of approximate solutions, which satisfy the
energy estimates uniformly:.

Step 2 We show the convergence of this approximate solution sequence to a
weak solution and study the property of the weak solution.

We are going to sketch the proof and pay attention to the low-regulartiy
assumptions.

Step 1: Construction of approximate solutions with uniform bounds
We use the Friedrich’s method to construct a sequence of approximate
solutions. We consider the following system of (6,,, u,,)

010, + Py(u, - V0,) — P, div(k,V6,) =0,
Oy, + PP (u, - Vu,) — P,Pdiv(u,Su,) = P(0,63), (3.27)
un(0,2) = Pyug(x), 6,(0,2) = P,0u(x),

where k, = a(f,) and pu, = b(f,). The operator P,, n € N, is the low-
frequency cut-off operator which is defined as follows

Pof(x) = F' (15, () F£(§))(2),

where B,, — R? is the disk with center at 0 and radius n, and F, F~! are
the standard Fourier and inverse Fourier transformations. The operator P
in denotes the Leray-Helmholtz projector on R?, which decomposes
the tempered distributions v € §’(R%;R?) into div-free and curl-free parts as
follows

v=V*V + VVy, (3.28)
where
VIV = —VH=A)'V*t v =Py, VVp=-V(-A)"'V.v=(1-P

with V+ = (0,,, —0,)T. Notice that P maps LP(R? R?) into itself for any
p € (1,0) and it is commutative with the projection operator F,.
We define the Banach spaces L? and L*° as following

Ly(R*) = {f e L*(R*) | f = Puf},
Ly (R?) = {f € (L (R"))* | div.(f) = 0}.

The system (3.27)) turns out to be an ordinary differential equation system in
L2(R?) x L%7(R?). Indeed, the following estimates hold

Hpn(un : Ven) — Py div(’{nven)”L% < CRS(HUTL”L% + K*)H9n|‘L§>
| PP (- V) = PoP div(pnSun) |2 < Cn®(un|zz + 1) |unl 2.
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Hence, for any n € N, there exists 7,, > 0 such that the system (3.27)) has a
solution (6, u,) € C([0,T,]; L2(R?)) x C([0, T,.]; L% (R?)).
We take the L?(R?)-inner product of the equation (3.27)), and 6,, to derive

1d
—— | @ 0,> = 0.
zdt/Fp”Jr/,qz'{”'v”' .

Then the following uniform estimate for (6,,) holds
Lo 2 1 2 Lo
s+ 103yt < LIPS, < 1ol YT >0, (329)

Similarly we take the L?(R?)-inner product of the equation (3.27)), and u,, to
derive

1d 1 1 1

S lunlzs + SlinSualis < 10nlr2lunlzz < S(TI0lZ + Fluallzz),

2 dt 2 2 T

for all positive times 7" > 0, and thus by Gronwall’s inequality we arrive at

the following uniform estimate for (u,) (noticing |Su,|7: = 2|Vu,|32)

(166l + lluolz2), ¥T >0.  (3.30)

1 e
§||unH%OTOL§ + :UJ*”VURH%QTL; S )

Thus the approximate solutions (6, u,) exist for all positive times.
Step 2: Passing to the limit

By the above uniform bounds — there exists a subsequence, still
denote by (6,,u,), converging weakly to a limit (6,u) € L ([0, 0); (L?)3) n
12,0, ); (L))
0, =0 in Ly

loc

([0,0); L*(R*)), Vb, — VO in Li ([0,%0); (L*(R*))?),
([0,90); (L*(R*))*),  Vu, — Vu in Lig ([0, %0); (L*(R*))").

Uy —u in LE
Since by the Gagliardo-Nirenberg’s inequality (6, u,) is a bounded sequence
in L1.L% for any T > 0, the sequence of the time derivatives (J;0,,, duy,) is
bounded in L2.(H_') (by use of the equations in (3.27)), and hence {(6,,, u,)}
is relatively compact in L%, L2(Bpg) for any fixed disk Bg = R? and p € [1, %0),
which implies the pointwise convergence (up to a subsequence)

0, — 0, wu, — u for almost every t e R, € R?

as well as the convergence of the nonlinear terms (noticing e.g. u,p — up in

L3.L4 for fixed ¢ € C*((0,T) x R?))

UnOp — b, U, @u, — u®uin D'((0,T) x R?) and hence weakly in L3.L2.
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Consequently, x, = a(0,) — k = a(f) and p, = b(0,) — p = b(#) almost
everywhere and

kn VO, — kVO,  p,Su, — pSu in L2TL§.
Thus the equation (noticing P, — Id as an operator from H*(R?) to itself)
040 + div (uf) — div (kV6) = 0 holds in L

loc

(0, 0); H, ' (R?)),

2 ([0,00); H}) to arrive at the energy equality
(3.8)) for 0, such that 0];—¢ = 6y and 0 € C([0,0); L?) hold true.
Similarly, the equation

and we can test it by § € L?

Ovu + Pdiv (u ® u — pSu) = P(6&,) holds in L2 .((0,0); (H, '(R*))?)
(3.31)
and we can test it by the divergence-free velocity field u € L _((0,00); (H}(R?))?)
to arrive at the energy equality (3.9), which implies u € C([0, c0); (L2(R?))?)
and ul;—g = ug. We take the solution IT of the Poisson equation

AIl = div (1 — P)(0é&; — div (u ® u — pSu)) (3.32)
under the renormalisation condition | B, IIdz = 0, such that
VII = (1= P)(0&; — div (u®u — pSu)) € Li((0, 0); (H,* (R*))?),
and the equation holds in L2 ((0,0); (H;1(R?))?).

loc

3.2.2 Estimates for the general parabolic equations

In this subsection, we will derive a priori H?, s € (0, 2)-Estimate for a general
linear parabolic equation. We are going to use these a priori estimates to
establish the uniqueness and regularity results of the Boussinesq equation
in Subsection and Subsection respectively.

For readers’ convenience we recall here briefly the Littlewood-Paley dyadic
decomposition and the definition of the H*(R")-norms (see e.g. Chapter 2 in
the book [BCD11] for more details). We fix a nonincreasing radial function
X € CgO(B%) with y(z) = 1 for x € B;, where B, < R™ denotes the ball

centered at 0 with radius r. We define the function ¢(§) = X(%) — x(¢) and
©i(&) = p(279¢) with j = 0. We do the Littlewood-Paley decomposition in

the following way

g=2A7_19+ ) Ayg, (3.33)

j=0
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where

F(A19)(&) = x(E)F(9)(€), F(A;9)(&) = pi(§)F(9)(€), Jj=0,

and F denotes the Fourier transform. We have the following Bernstein’s
inequalities for some universal constant C' (depending only on n)

1A-19]r2rm) < Cgllzerry,
C 2|09l r2rey < IV(A59)|lr2rey < C27|Ajglr2wrny, Vi =0 (3.34)

Let s = 0 and p, r = 1. We define the nonhomogeneous Besov spaces B; .(R")
as the spaces consisting of all tempered distributions g € §'(R") satisfying

< Q0.

lgllss,_y = |(2°12i9] o)) j= ],

The inhomogeneous Sobolev spaces H*(R") = B3 ,(R™) can be defined by

H*(R") = {g e S'(R") | |g]

wewy = ([ L+ EPHFDOP ) <),

where the H*(R™)-norm reads in terms of Littlewood-Paley decomposition as
follows

1
ey ~ gl + (32718501 Faqeny ) (3.35)

§=0

lgl

It is straightforward to derive the following interpolation inequality
|ullgte < Clullied |ulFe, where t, = (1 —0)to + ot1,0 € [0,1].  (3.36)

We are going to use the following known estimates to control the nonlinear
terms in the Boussinesq system (3.1]).

Lemma 3.2.1. We have the following commutator, product and composition
estimates.

(1) [DL12, Proposition 2.4] In the low regularity regime where (s,v) € R?
satisfy
—l<s<v+1l, and —1<v<l,

the following commutator estimate holds true (in R?):

12716, A1V 12me)) oy 0 < CIVE] v re) IV

Hsfu(R2)7 (337)

where C' 1is a constant depending only on s, v.
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(2) (BCD11, Lemma 2.100] For any s > 0, the following commutator estimate
holds true

122116, AV 2ge) 1oy

(3.38)
< C(IVYl o @ IVl s-1rmy + VO 51 R [ V] oo R

(8) [DL12, Proposition 2.3] In the low reqularity regime if s1,s9 < 1, and
s1 + s > 0, the following product estimate holds true

Y| o1 +s2-1(r2y < C 9| Hs2 (R2)- (3.39)

e R2) 9]

(4) [BCD11, Corollary 2.86] For any s > 0, the following product estimate
holds true

oV gs@ey < C (|0 Lo@ey [€] s ey + [ ars mmy [0 oo rmy)-

(5) [BCD11, Theorem 2.87 & Theorem 2.89] For any s > 0 and g € Ck*1

with k = [s] € N, the following composition estimate holds true
V(g0 0)| ey < Clg 0] oo rr)) | VO o1 (3.40)

If g€ CF™ with k = [s] € N, then the above estimate can be improved in
the spacial dimension two as follows

V(g0 0)morrey < Cllglerr, 0] w2) VO] 1ro1r2)- (3.41)

The commutator estimate will present its power in the low regularity
regime, and the classical commutator estimate will help in the high
regularity regime (see Subsection {4| below).

The composition estimate will help to bound the diffusion coeffi-
cients r, j1 in terms of € in the low regularity regime, where only H'(R?)-norm
(instead of L¥-norm) of f is available, which will be used in Subsection [3.2.3]
and Subsection [3.2.4] intensively.

We derive in this paragraph a priori H®, s € (0, 2)-Estimates for a general
linear parabolic equation, which should be of independent interest.

Lemma 3.2.2. Let ¢ = ¢(t,z) : [0,00) x R* — R™, m > 1 be a smooth

solution with sufficiently decay of the following linear parabolic equation

{aw +u- Voo — divy (kV1) = f,

Pleco = o (3.42)

where
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o u = u(t,z) : R" x R? — R? is a given divergence-free vector field:
divzu = 0;

o 1= k(t,x) : RT x R? — [ky, £*] with ks, k* € (0,00);
o f=f(t,x) : R" x R2 — R™ denotes the given external force.

Then the following a priori H:-Estimates for (3.42) holds true:

[0 + 1015y < ) (Il + 17125 )
X exp(C’(/{*, s 1/)(||VuHL2 2t HVKHQ/VH + HfHLlTH;s)) (3.43)
for any s€ (0,2) andv e (s—1,1) c (—1,1).

Proof. Tt is straightforward to derive the following L2-Estimate by simply
taking the L?(R?) inner product of the equation (3.42) and 1) itself

T
9105 + V93255 < Clo) (Il + / W, D dt), VseR

(3.44)
We next consider the a priori estimates for the H*(R?)-norm. By virtue of
the description (3.35)) of the H*(R?)-norm, we consider the dyadic piece of 1:

Y= Aph, j=0. (3.45)

where the operator A; is defined in (3.33). We apply A, to the linear -
equation to derive the equation for 1;:

oy +u- Vi, —div(eVy;) = [u, Aj] - Vo —div ([k, A;]VY) + f;,  j=0.
(3.46)
We take the L? inner product of the equation (3.46) and ¢; and make use of

divu = 0 and k > k. to derive

T Wls + RV < sl A Ve
+ IVsllezlils, A1Vl ez + 1 filzzllbslrz, 5 = 0.
By use of Bernstein’s inequality we have
13 + 291,
g rale: Jilr2
<C(ka) W51z (1w, A1 - V22 + 27| [k, D]Vl 2 + [ fl22) »
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that is,

d .
Tl + 275 2
<C(r:) (Iw, Aj] - Ve + 2705, AjIVY 22 + | fille2) . 7= 0.
We make use of the commutator estimate (3.37) in Lemma to
estimate the commutators |[u, A;]- V|| 2 and 27 [k, A;]V;|| 2 in the above

inequality in the following way. Let (I;);s0 be a normalised sequence in ¢*(N)
such that [; > 0 and >}, /; = 1. Then we have

(3.47)

[0, A9 < )20 [V 2 [V 1, for s € (0,2),
2|[k, A1V 2 < C (s, )27 |V k| |V e (3.48)
forve (—1,1),se (-1, v+1).
Therefore we have
d )
EH%‘HL; + 2774 .2

< Clky 5, )20 (VU] 2 [V gt + IV [Vl rsv) + Ol fl2
forve(—-1,1),se (0,v+1),5=0.

We use Duhamel’s Principle to derive

t
402 —(t—7)22]
[9il2 < ™7 [[(Wo);l 2 +C(/f*)/0 e f5(7) | 2 dr

(1—s KA 3.49
# Clhess, )20 [ (Tun) i [F0(0) e
0

+ Ve[ V() | ygs-v) dr, j = 0.
We multiply the inequality ([3.49) by 2’ to derive

2z < 2% |yl + Clen)2 [ e |y ar
0

(3.50)

t .
+C(%*,S,V)2jlj/ (| V() |2 [ V(7)1
0
+ [VE(T) |y [V (T)]

We take L* ([0, T'])-norm in ¢ of (3.50) and the L?([0, T'])-norm in ¢ of 27-(3.50)),
to derive by use of Young’s inequality that

2l egrs + 2V Wil zre < 2°(w0)illez + Clka)2C 7V £l 1212

+ Cloons 8, VG| IVl 2 [V gz + [Vl [V o

H;ﬁ) dr, j=0.

(3.51)

5"
Lz
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We take square of (3.51)) and sum them up for j € N to derive

> (27 s s + 27121 )

j=0
Swvn 23 (2N Wo)i1s + 29V, 1)
j=0
T
+ [ IVl 90l + [Vrlf VLt 0

that is, by virtue of the L%-estimate ([3.44)),

PR A S (3

T
2+ 112 + / o6 1 e
0
T
2 2 2 2
" / IVl (V612 + [Vl V12
0

(3.52)
We next consider the norm V| s-». By the interpolation inequality (3.36)
we have

IVl e < € (0,1),
which implies by Young’s inequality that
T
[ IVt < [l v

< e[ VYl2s e + C / Vi u””nw\m Lt

To conclude, by taking € small enough and Gronwall’s inequality, we derive

the H*-Estimate (3.43)). O

3.2.3 Energy estimates & Uniqueness of the weak solu-
tions

We first introduce a scalar function 7, which is given in terms of the tempera-
ture function as follows (recalling k = a(0) € CL(R; [k, k*]))

n = A(0), with A(z) := / a(a) da the primitive function of a.  (3.53)
0

As A'(0) = a(f) = k4 > 0, the function A is invertible and we can write

0 =A"(n), (3.54)
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where (A1) (n) = m < =z We have the following equivalence relations
&

FaBllz < |nllzz < w710 L2,

R |[ VO 2 < [Vl L2 = [a(0) V]2 < &7 VL2,

Fu| 002 < [0l L2 = a(0)00] L2 < K¥[010] 12,

IV#nlcs < laluiplVOIZs + 57 IV20l2 < (Claluip| VOIz + £%)[V?0) 22,

A ||Li 1 Al 1i 1
(V261 < 1wy gy Ly < ol gy Loy,
(3.55)
That is,
(t,-) e H*(R*) < n(t,-) e H*(R?), k=0,1,2. (3.56)

Let (0,u) € C([0,0); (L*(R?))®) n L2 ([0, 0); (H'(R?))3) be a weak solu-

tion of the Cauchy problem (3.24)) in the sense of Definition with
00 + u - VO — div (kV0) = 0 holding in L} ([0,0); H; '(R?*)).  (3.57)

loc
Since Y := LY, ([0, 0) x R*) n L ([0, 0); H;(R?)) is an algebra (in the sense
that the product of any two elements in Y still belongs to Y'), we can multiply
the above f-equation by x = a(f) (with a(f) — a(0) € V), to arrive at the

parabolic equation for n = A(#) € C([0,0); L*(R?)) n L2 ([0, «0); H'(R?)):

loc
om + u - Vn — kAn = 0 holding in the dual space Y. (3.58)

We are going to derive the H'-Estimate for n (and hence for 0 E[) as well
as the L2-Estimate for u first. Then we will show the uniqueness result of the
weak solutions by considering the difference of two possible weak solutions in

H(R?) x (H°(R%))? < HY(R?) x (L*(R%))? with —1 < < 0.
H' x L*-Estimate for (0, u)

By virtue of the energy equalities (3.8) and (3.9) and the derivation of the
uniform estimates ([3.29) and (3.30)), we have the L*-Estimate

10122 + IVOILz 12 < Ce)fo]72, (3.59)

3We can easily compute

Vi =a(0)V0, VO=——_Vp,

a'(A~ (n))

-1
Vi =d (0)VOR VO + a(0)V?0, V= —— 12
e i (A T()

1
VnVn+ —— V2.
POV QAT "

4The introduction of the n-function makes the derivation of the H'-Estimate for
straightforward (and possible).
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and the L?-Estimate (3.12)) for u. By Gagliardo-Nirenberg’s inequality (3.25))
it holds
[ullzs s < C () (VT 60l 22 + o 22)- (3.60)

We assume a priori that the function 7 is smooth and decay sufficiently
fast at infinity. We test the n-equation (3.58|) by An to derive by integration
by parts that

1d

s [ wnPds 4 [ wldnPde = [ uVadnde < ol Valo
R2 R2 R2

By Gagliardo-Nirenberg’s inequality (3.25)), the equivalence ||An||r2r2) ~
V21|12 (r2) and Young’s inequality we arrive at

1d

14 P de + 5 / Agl2de < Cra)ults [Vl2.
th R2 2 R2 z z

Gronwall’s inequality gives
V(D) 72 + V0722 < C(6:) Vo] 72 exp(C () ] 74 14)
for any positive time 7' > 0. Thus by the n-equation

l0mleaze = lu-Vn—rAn|iz 1z < lulg s Valoscs + 5[A0] 522

< Ok, ) Vo] 22 exp(C (k) Jul 74 14 )-
By virtue of the equivalence relation (|3.55):
IVOI a2 + V2072 12 < Clhia, laluip) (VT2 + L+ IV T2 22) V072 12)
and -, we have the a priori H!-Estimate for 6:

16125 53 + V0123 113 + 10612 15

) (3.61)
< Ok, alip, 5*)100] 71 (1 + [V 00]72) exp(C (ki )l 74 14 )-

Therefore both the parabolic equations (3.57)) and (3.58)) for # and 1 hold
in L2 ([0, 0); L?(R?)). A standard density argument ensures the H'-Estimate

loc

(3.13)) for #, and hence 6 € C([0, 0); HL(R?)).

Proof of uniqueness

Let (61, u1,11;) and (02, ug, I15) be two weak solutions of the Cauchy problem
(3.24)) with the same initial data (6, uo) € H'(R?) x (L?*(R?))?, which satisfy
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the energy estimates (3.12))-(3.13]). Recall (3.53)) for the definition of the

function A, and we set
m=A(01), m2 = A(b2).
We consider the difference
(777 ?l, VH) = (771 — T2, U1 — Uy, Vl_Il - VH2)7

which lies in

(C([0,00); H'(R?)) N Li, ([0, 0); H*(R?)))

x (C([0,90); (L*(R*)?) N Lige ([0, 0); (H'(R?))?))

x L ([0, 0); (H(R?))?)).

The goal of this paragrah is to derive the H°*! x H°-Estimate for (1, )
with —1 < < 0 to show (n,u) = (0,0).

Notice that for a divergence free fled v we have div (u®v) = v - Vu, where
u®v = (4;v;)1<i j<o- In this paragraph, we write div (u®u) instead of u - Vu.
Then (n,u, VII) satisfies the following Cauchy problem

O + uy - Vi — k1An = £Any — - Vg,

Ot + div (4 @ uy) — div(p St) + VII = 065 — div (up @ ) + div(Sus),

divu = 0,

(h07 uO) = (07 0)7
(3.62)

where
R1 = a(@l), H1 = 6(01), 9 = Ql - 02, K = CL(91> — CL(@Q), ,LL = b(@l) - b(QQ)
Similarly as in (3.55)) we have the following equivalence relationships
ROz < Iz < w6022,

1Villz < laluip| V6318151 + w*[ V6] 2. (3.69

) laws ) 1 )
V02 < —= V| lilcs + —] VL2
K Ky

*

Moreover, we have the equivalence estimate of 0 and 7) in the Sobolev space

H°™(R?), —1 < § < 0. We first use the commutator estimate (3.37)) to derive

the following product inequality with —1 < s < 1, p,q € [1, 0] and }D + % = %

lo¥lmsmey < (2725 (0) |r2mm)) oy e
<270 Ajlramey) oyl + 127000, A1 rawe)) oy e (3.64)
Slellzera) [¢]5: ,R2) + IVl L2y [¥]

HS(R2).
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Now we are ready to estimate 8 and 7. We recall the definition of n as in

(3.53) and write

1 1

. ) . 1
1 =10 a(fs + 70)dr and 92’/ — dT. 3.65
0= | atts s ) )y @oA Dm0

By using the product estimate (3.64]) with (p,q) = (90, 2), we have

ce)

asrey < |ilasmey < Cl0|ps@ey, —1<s<1, (3.66)
where C' = C(K*, Kx, |a|Lip, (01, 02)] 1 (r2)). Correspondingly by using the

composition estimate (3.41]), we have

(I(a, 0)[Lip, ) 177 2.

C
/ , (3.67)
O (ks &7 [ (@, 0) [uips (01, 02) [ 111 r2)) [V ] -

[(R i)z <
IV )] g <

We are going to follow exactly the procedure in Subsection to derive
the H°™! x H°-Estimate for (1,u) with —1 < < 0.

(i) H°tl'—estimate of 1), —1 < § < 0.
Similarly as (3.47)), we have the following preliminary estimate for
i 12 227 |n. 112, < g AL (KA A4V
S millze + 27 mil2s S lsllee (12 (RAm) 12 + 145 (- Vo) 12

+ [[ur, 21Vl 2 + 1, Aj1A%0]12) + /R2 |7,V - V| d.

(3.68)
By using Gagliardo-Nirenberg’s inequality (3.25) and Young’s inequality,

we have

[ i Vil de <19 i Dy
R

3 1
<V 2 [y 2: 1 9 | .
<[ Vsl + C)IViglzz iz [V [,

where ¢ > 0 is a sufficient small constant. By using the commutator
estimate (3.37)) we have the following estimate with 0 € (—1,0)

[, A1V 2
I, Aj]AﬁHLg

CL27 |V | 2 V) s,
Clﬂ_ﬁ“v’leHé HAﬁHH;s—l :

<
< 3
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We follow a similar argument as (3.49)-(3.52), and similarly bound
IA_1nllzzre + A1V L2 2 to arrive at

”ﬁHi%’H;ﬁ“ + ”VUHizTHg”
T
< O(n*)/o I3 s [V rea g + [ 8ma s + - Vel At (3 69
T
+ C(’f*ﬁ)/ V|22V s + [Vea]? 4 |A7% 5y dt.
0 T x [—Iz2 H, 2

By interpolation inequality (3.36)) we have
VP 4 18017y < CIVRl il il e

< e[ Vil + CE Ml IVl ) +1).

We use the product estimate ([3.39) and the equivalence relation (3.66))
to show

| & AR < C\|’%|\i1g+1\|A772||%3 < C||7'7||12Hg+1HA772H%37
and the product estimate with (p,q) = (4,4) implies

i Vmaliy < lilly IV 2s + lillrg IV 2

S il s ] s [ V2l 2a + s | Ve 7y

< e Vil + Cle, o) [alfs (1 + [ Vielza + [Vnal7p).
Now we take € small enough to arrive at

12 g+ 112 ygen < Ol . | (00, 02) i)
T T
[ Vil 19l + 19ml) dt+ [ il (Vi 5.0

T
+ Vel + V|7 + IVmH;%)dH€/ |V 75 dit.
z 0

H’—estimate of 1, —1 < § < 0.
Recall for the definition of the Leray-Helmholtz projector P such
that

Pu=wu, PVII=0.

We apply P to the velocity equation (3.62)), to arrive at

Oviu + P(uy - Vi) — Pdiv(p Si) = P(6¢3) — P(t - Vug) + P div(uSus)
(3.71)
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We apply A, to the above equation (3.71) to arrive at the equation for
Q:Lj = AJU

Optij + Puy - Vi — P div(p Sty) = Pdiv ([ur, Aj] ® )

(3.72)
We take the L?(R?)-inner product between (3.72) and the divergence-free
dyadic piece 1; = Pu; to arrive at

d, . o . . )
—liillez + 27l e S sl (1w, 5] Vilzz +16;122)

+ 27 g 22 (1 Aj (S us) | rz + |l 23180l 2 + | Ay (u2 @ @)12), 5 = 0.

(3.73)
By using the commutator estimate (3.37)) we have the following estimate
for 6 € (—1,0)

[ur, Aj] - Vil 2 < CL2M0 [ Vun | 2] s,
D1l AJSilge < L2yl 31Vl
We follow the steps (3.49)-(3.52), and similarly estimate |A 11|z +
|A_1Vi|z 2 to derive
T .
12 C 2 2 . 2 c 12
il g + 1Vl g s [ 100+ 1Sl + oo il

T
o [ Il + [Vl Vil

We use the product estimate (3.39) and the equivalence relation (3.66))
to show

|aSuslns < Cllil gaer 1Suz] 2 < Clnll s [Vuz| 2,
and we use the product estimate (3.64) with (p,q) = (4,4) to show
lua @l < Clluallpa il , + lualslal )
< e[Vl + Cle, o) alfs (1 + [uzlzs + [uzlzy)-
We use the interpolation inequality (3.36|) to derive
Viaal? IV, < CIVmIE , il ms [Vl
H H, H

< eVl + CEIVmI? o lilzs.



118 3.2. Proofs of existence, uniqueness and regularity

Now we take ¢ > 0 sufficient small to arrive at
[l s + |V l72 s <C (ks 0, [bllcz, | (O1, 02) |z )
T
[ Wilgen (1 + 19 lEs) + il (1 + Ll (3.74)
+ [Vl + sl + V]! ) de.
To conclude, we add the estimates and and and take ¢
sufficient small to derive

||77||i%ng+1 + ||U||%°TCH;§ + HVU”%?TH;; + HVﬁ”iQTH:‘Z“

< O, 10, )i 100 s s, 6,02 )
T
< [ BOU e + il i
where

B(t) =1+ ||(u1, u2) 7 + 1(V, Vi) 24 + Jualzs + |An2| 7 + ||V771H2%~

x

By virtue the energy estimates (3.12) and (3.13)) , we have B(t) € Li ([0, +0)).

In particular, we use the interpolation inequality (3.36|) to verify that

T T
/ HVTI1H4 1 dt < / HV’th%z HAUIH%Q dt < oo.
0 HZ 0 * z

At the last step, Gronwall’s inequality implies then 1 = 0 and @ = 0. The
uniqueness of the weak solutions follows.

3.2.4 Propagation of the general H*-regularities

In this Subsection, we are going to derive the precise H:-estimates ({3.16)-
(3.23) in Remark in the subsequent paragraphs:

e In Paragraph (1| the global-in-time H*(R?) x (L2(R?))?, s € (1,2) -
regularities (i.e. (3.16])) will be established.

e In Paragraph 2| the global-in-time H.(R?*) x (H:(R?))? s € (0,2)-
regularities (i.e. (3.17))) will be established.

e In Paragraph [3] the global-in-time H2(R?) x (H%*(R?))? or H!*(R?) x
(L2(R?))%regularities will be established.
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e In Paragraph [4] the global-in-time H$(R?) x (Hs 2(R%))? (i.e. (8. 20
(3.21)) and H:' x (H:(R?))?, s > 2-regularities (i.e. (3.22))-(3.23)) w
be established respectively.

As far as the borderline estimates (3.16))-(3.23)) are established, the global-in-
time regularity (3.15]) follows immediately.

1. Case (6y,up) € H*(R?) x (L*(R*))?, 1 <s <2

In this paragraph we are going to prove the H®-Estimates for
the unique solution (6, u) of the Boussinesq equations with the
initial data (6y,uo) € H(R?) x (L*(R?))?, s € (1,2), following exactly
the procedure in Subsection [3.2.2l We will pay more attention on the
“nonlinearities” in the equations such as k = a(f), u - Vu when using
the commutator estimates and will sketch the proof.

Similarly as (3.47), we have the following preliminary estimate for

d . .
aHejHLg +2%0;] 12 < C(ks) (J[w, A - V|12 + 27|[r, A;]VE]|12) -

(3.75)
By use of the commutator estimates (3.48) and the action estimate

(13.41)):
IVElar < Cllalcz, 10] )| VO] 1 for v e (0,1),

we derive similar as (3.51)

29010, 3 s + 25002 13 < 2 (B0)
T
+ s ol g 07 [ (19190
0

+ [VOlE, VOl

o (3.76)

2. V>dt, l<s<v+l<2
By using the interpolation inequality , we have
VO VO - < CIVO 5
Recall the L?-Estimate for 6:
1017222 + V072 12 < Clsa) 16072 (3.77)

1—
s, O0<v<l

Therefore by Young’s inequality we arrive at

10012z + I V072 11 < C(r) 1607

Hz

T
+ Clka 5,03 aln, 0] m) / (Ivul + 19013, ) 170121t

which, together with Gronwall’s inequality, implies (3.16]).
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2. Case (0y,ug) € H'(R?) x (H*(R?))%, 0 < s <2

In this paragrah we are going to sketch the proof of the H*, s € (0, 2)-
Estimate for the divergence-free vector field u of the unique
solution (@, u) to the Boussinesq equations , under the assumption
that 6, € H'(R?), following the procedure in Subsection [3.2.2]

Recall (3.28)) for the definition of the Leray-Helmholtz projector P such
that
Pu=wu, PVII=0.

We apply P to the velocity equation ({3.1), to arrive at

o+ P(u - Vu) — Pdiv(uSu) = P(fé3). (3.78)
We apply A; to the above equation (3.78|) to arrive at the equation for
uj = Aju

Opuj+Pu-Vu,;—P div(puSu;) = Plu, A;]-Vu—Pdiv ([p, A;]Su)+P(6;é3).

(3.79)
We take the L?(R?)-inner product between (3.79) and the divergence-
free dyadic piece u; = Pu; and follow the similar argument as to arrive

at (3.47)), to deduce

—luillez + 27wy 2 |
<C(ps) (I[u, Ag) - Valzz + 27| [, Aj]Vul 2 + 05]12) -

By use of the commutator estimate (3.37) in Lemma again, we
have the following commutator estimates as in (3.48)):

[ A1Vl 2 < CL2Z V| 12|V
27| [, 2]Vl 2 < CL2Y | V] [Vl
forve(—1,1),se (-1, v+1).
By virtue of the composition estimate in Lemma :
Vil < C(bllcease, [0]m) [ VO],
we derive similar as that, for 0 <s<v+1<2,

2%° |30 2 + 22j(5+1)||“j”i2TLg < 2% (uo); 72

(3.80)

s, for s € (0,2),

HZ "

T
+ C(u*)/o 27CD0;172dt + Cps, 5, v, bl asa, 0] ng ) (1) %

T
Y RGZAN
0

2 )dt.

2+ V0Vl

(3.81)
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By the interpolation inequality (3.36]):

IVOay [Vl gy < CIVOI " VO [Vl

e [Vl
for v € (0,1), and the L*-Estimate (3.12):
lulfers + [Vul7z 2 < Clus)(Juolzz + Tl60]72), (3.82)

we arrive at the following by Young’s inequality

e + T100l3: + 1012, 1)

[l g + 92 12 < Cloaa) (J1o T

T
+ O, 5,0, [V 2, 10] L 12) /O (IVulzz + V03Vl

2
Hsfl dt,

which, together with Gronwall’s inequality, implies (3.17)).

3. Case (6p,up) € H*(R?) x (H®(R?))? or H*™'(R?) x (L*(R?))? with
O<exl1

In this paragraph, we will show the estimate with (6p, ug) € H*(R?) x
(H¢(R?))? and H*'(R?) x (L*(R?))?, 0 < € < 1 by using a similar
argument as in proof of the H'—estimate of 6 in Subsection [3.2.3] We
will sketch the proof here.

e Case (y,ug) € H*(R?) x (H®(R?))?,0<e <1
We recall the function n = A71(f) defined in (3.54)), and the
parabolic n-equation (3.58]):

om+u-Vn—rAn = 0. (3.83)

We are going to derive the a priori H?2-Estimate for n under the
conditions

divu =0, Vue L2 ([0,00); (H (R?)%),

and Vi € L, ([0, 0); (L*(R%))?).

We test the above n-equation (3.83]) by A?n, to arrive at

1d
—— Anl? Anl?
2dt/R2‘ 7| dx+/R2/f|V n|*dx

= _/ (u -VnA%n + Vi - VAnAn) dx .
R2
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By integration by parts and divu = 0, we have
—/ w- VnAinds = / VAn-Vu-Vn—Vu:V*nAn dz,
R2 R2

where

[ 1V Vil de < Va9
R
< V2 Al 2V A
K
< 2|V ARL, + Cls) IVl A0l

Similarly we have

[V Vananlde < |9kl Y Anlz |

K
< 7 IVAnlE; + Cl) Vel An],.

By using the Sobolev embedding H¢(R?) — L% (R?) and H'(R?) —
2
L= (R?), we have
IV A Vu - Vil do < 5V Al + €0 9u- Vil
R2
K
< 7 IVAnlL: + ClE) IVl 2 [Vl
L;~¢ L
K
< 7IVANlL: + Clee, )| Vule [Vl

To conclude, we have the following a priori H 2_Estimate for n and
any positive time 7" > 0 by Gronwall’s inequality

[AN(T) 72+ IV ATz 12 < Clhsw, ) (| AnolZe + [Vul72 e V0T r2)

< exp( O, )l e + 1Vl 1))
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By view of the equivalence relation as well a&ﬂ
V20212 < Ok, afc2)

(U902 g + 1901300 Vs + 190052,
we derive the H2-Estimate for 6 by virtue of the H'-Estimate
(13.61)):

10122 + V072 12 < Clhis, [allc2, ) [00]2(1 + [V o[ 72)
x exp(Clrn, & Jalli) (1l pve + Pl o + V612 10)),
e Case (fy,ug) € H1(R?) x (L*(R*))%, 0<e <1

We are going to derive the a priori H?2-Estimate for n under the
conditions

divu =0, Vue L2 ([0,0);(H*(R*)")

loc

and Vi e Lt ([0, 0); (L*(R?))?).

loc

We recall the u-equation (3.78)) where
div (uSu) = pAu + V- Su.
We test (3.78) by the divergence-free vector field A%u, to arrive at

1d
—— Aul? V Aul? =/ —u - VuA?
th/Rz| ul d:E+/R2,u| u|” dx R2<u ulA*u

+Vu-Su-A2u—Vu-VAu-Au+A0Au2>dx.

By use of the embedding H¢(R?) — LIL—E(RQ) with 0 < e < 1, the
righthand side can be bounded by

C(IVulZs + lulza|Voul s + [Vl V] 1
+ [ Vples [Vl L) IV Aul 2 + [ A0 12 | A zs.

5Tt is also straightforward to calculate

Ojrum = a”(0)(0;00,00,0) + ' (0)(0;100,0 + 0;10k0 + 03100;0) + a(0)0;1.0,
(A ) | 347 ()2

o0 = (=i + A )0

(47 ()

1
- m (53‘1#75177 + dmaoim + @kmajn) + maﬂcﬂl
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Thus we have the following a priori Hg—Estimate for v and any
positive time T > 0 by Young’s inequality and Gronwall’s inequal-

ity
|Au(T)|2, + |V Aul;
< C(pa) (| Auol2 + [Vulbs o + V2l e [Vul3ie 2
+ |A8] L2 2 [ Auf Lz 2)
x exp(Clu) (1w, Vi)l by 1y + V20122 12)).

Notice that

(3.84)

IVl s < 16" (0)(VO)* | 12,02 + |6/ (0)V?0] 2 1
S CUblle2) IV L 1s [ V20 12 102 + ||0HL°TOH%HVQH%%H;
+ V20 2.z (1 + 0] 1))

the above inequality and ([3.84)) give (3.19).

4. Case (0y,ug) € H*(R*) x (H*"%(R%))? or H* ! x (H*(R?))?, s > 2

We are going to use the estimates in the high regularity regime in

e Case (0, ug) € H*(R?) x (H*"%(R?))?, s > 2
We can view the transport term u - V8 simply as a source term of
the #-equation:

010 — div (kV) = —u - VO

Then the preliminary estimate for §; = A;f in (3.75) can be
replaced by

d | .
Z163l12z + 271052 < Clra) (I (- V)52 + 2[5, 2,1V 12)

for 7 = 0. We apply Lemma to derive the following estimates
for s > 1:

[ V02 < CL2 (Jul Lz VO] s + 1l a2 [ VO ),
2|k, A;]V0] 12 < CU2TY ) (| Vi 1 [ VO] w3 [ VO Le)-
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Therefore we have the following estimate similarly as in (3.76|) for
s € (2,3) by virtue of H*"}(R?) — L*(R?):

2900;1 e + 27CTVN0;1Z5 12 < 2%7°(80)s]125

T
# OGP [l 96 e
0

T
e, [0z re) (1) / V02, V02, dt, =0,
0

which, together with the L?-estimate (3.77) and the Gronwall’s
inequality, implies (3.20]).

For s > 3, we make use of the following commutator estimate
[, A1V 12 < CL2T (| Va2 | V)

- [Vl g2 VO] ),
(3.85)
such that the estimate follows.
e Case (0y,ug) € H*1(R?) x (H*(R%))2, s > 2
We recall the preliminary estimate for u; in . We apply

Lemma to derive the following commutator estimates for
s€(2,3)and ve (s—2,1) < (0,1)

Il AVl 2 < CL2O) |y | Py,
2| [, AVl 2 < CLPO (|Vpa] | V] o
)

<
<

which implies then

22js 22j(s+1

lujlie s + M7 12

T
<22 (ug); |25 + (1) / 22001 g, 2,
0

T

O, 5, 0) (1) / N
0

+ Clps, 5, Dl o, 0]z m2) (1)

T
< [ IVOI IVully s + VO [Vulipdt, 520,
0

This, together with the L2-estimate and Sobolev’s embed-
ding H*7'(R?) — L*(R?), implies where v € (0,1) is taken
to be a small constant bigger than s — 2.

For s > 3, we use the commutator estimate (3.85)) with 6 replaced

by u, to arrive at (3.23)).
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Chapter 4

Turbulent Cascades for a family
of damped Szeg6 equations

In this chapter, we study the transfer of energy from low to high frequencies
for a family of damped Szegd equations. The cubic Szegd equation has been
introduced as a toy model for a totally non-dispersive degenerate Hamiltonian
equation. It is a completely integrable system which develops the growth of
high Sobolev norms. Here, we consider a two-parameter family of damped
Szegd equations, and give a panorama of the dynamics for such equations on
a six-dimensional submanifold.

This Chapter is based on the joint work with Prof. Patrick Gérard and
Prof. Sandrine Grellier in [GGH21].

4.1 Introduction

An interesting aspect of turbulence is the transfer of energy from long to
short-wavelength modes, leading to concentration of energy on small spatial
scales. It is usually quantified by growth of Sobolev norms. In this chapter,
we study turbulent cascades for the family of damped Szeg6 equations on the
one-dimensional torus

idpu + iv(ull) = H(Jul*u) + a(u|l) — BSTI(|S*u|*S*u), (4.1)

where v > 0 and «, 8 € R are given parameters.
In this chapter, u : T — C is an unknown complex-valued function. We
consider the space L?(T) endowed with the inner product
(o) = o= [ u(eitea
up) = — u(e™)v(er) dr.
27

—T
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The Fourier transform on L?(T) is defined as
a(k) = —/ u(z)e *dr, keZ,

and

The Szegd projector II: L*(T) — L2 (T) is the Fourier multiplier defined by
(u) = ) a(k)e™ e L2(T).
k>0
The term v is the damping term on the smallest Fourier mode

1 i )
(u]l) = . /_7T u(e) dx.
The shift operator S : L2 (T) — L%(T) and its adjoint are defined by
Su=e"u and S*u=e " (u— (ull)).
When v = a = = 0, we recover the usual cubic Szegé equation
i0pu = I(Ju*u), (4.2)

which was introduced by the first two authors [GG10| as a toy model of a
non-dispersive Hamiltonian system. The a-deformation in (4.1) was first
introduced by Xu [Xul4] in the a-Szegé equation

i0u = TI(Jul?u) + a(ull), (4.3)

and the S-deformation in (4.1)) was introduced by Biasi and Evnin [BE20] in
the [5-Szeg6 equation

i0pu = TI(|u|*u) — BSTI(|S*u2S*u). (4.4)

Observe that, on the Fourier side, this equation corresponds to

di 0 L
Z# - Z C’r(l@,kla(m>a(k)ﬁ(l), neN
m,k,l=0
n+m=Il+k
where
oB 1 if nmkl =0
okt 1— 3 otherwise.

When g = 1, the equation is so called the truncated Szeg6 equation
and corresponds to the case where most of the interaction of the Fourier
coefficients disappeared. Some other variants of the Szegd equation have also
been studied, see e.g. ([Pocll; Thil9)]).
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4.1.1 Promoted turbulence

The Szeg6 equation is a completely integrable Hamiltonian system with
two Lax pair structures displaying some turbulence cascade phenomenon for
a generic set of initial data, in spite of infinitely many conservation laws.
Namely, there exists a dense G5 subset of initial data in L2 n C*®, such that
the solutions of the cubic Szegd equation satisfy, for every s > %,
limsup |[u(t)|gs = 400, liminf ||u(t)|gs < +o0 .
t—+00 t—+0

Furthermore, this subset has an empty interior, since it does not contain any
trigonometric polynomial [GG17].

However, there is no explicit examples of such phenomenon, and even less
is known about the existence of solutions with high-Sobolev norms tending
to infinity.

Later the first two authors |[GG20] added a damping term to the cubic
Szegb equation

iou + iv(ull) = I(jul*u), v > 0. (4.5)
Paradoxically, the turbulence phenomenon is promoted by the damping term.
Indeed, a nonempty open set of initial data generating trajectories with
high-Sobolev norms tending to infinity was observed. In comparison, this is
not the case for the damped Benjamin-Ono equation, see |Gas22].

The goal of this chapter is to generalise the study of turbulent cascades
for the damped Szegd equation to a family of damped Szegd equations (4.1]).
Biasi and Evnin [BE20] suggested the study of a two-parameter family of
equations referred as the («, 5)-Szegé equations given by

i0yu = H(Ju*u) — BSTI(|S*ul>S*u) + a(u|l), «,BeR. (4.6)

Inspired by this, we study the damped (o, 3)-Szegd equations (4.1). The
family is constructed in such a way that part of the Lax-pair structure
inherited from the cubic Szeg6 equation is preserved but the damping term
breaks the Hamiltonian structure. In our case, similar to the damped Szeg6
equation, the damping term promotes the existence of unbounded trajectories.
We have the following turbulent cascades result.

1
Theorem 4.1.1 ([GGH21]). There exists an open subset @ < H? = Hz r L%
independent of (o, ) such that, for every s > %, the set Q n H? 1s nonempty
and, for every B # 1, every solution u of (4.1)) with u(0) € Q N HY satisfies

Ju®)]

Furthermore, there exist rational initial data in ) which generate stationary

solutions of (4.1)) for 8 = 1.

Hs ——> +OO .
t—00
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When f is different from 1, the damping term acts on the (a, 3)-Szegd
equations as on the cubic Szegd equation|GG20]. The case § = 1 of the
damped truncated Szeg6 equation appears to be more degenerate, and we do
not know whether there exists a nonempty open subset of blowing up data.

We define the functional

where (07); is the strictly decreasing sequence of positive eigenvalues of Hi
(defined in Subsection 4.1.2)). We have the following sufficient conditions for
the exploding trajectories.

Theorem 4.1.2 (|GGH21]). Assume 8 # 1. Let s > 5. If ug € HS satisfies
o cither |up|2. < F(u),
o or|lug|3, = F(uo) and (up|l) # 0,
then the solution of the damped («, 3)-Szegd equation satisfies
Ju(t) | > +.

The wave turbulence phenomenon for Hamiltonian systems has been ac-
tively studied by mathematicians and physicists in the last decades. Bourgain
[BouO0| asked whether there is a solution of the cubic defocusing nonlin-
ear Schrodinger equation on the two-dimensional torus T? with initial data
ug € H*(T?), s > 1, such that

lim sup |u(t)| gs = 0.
¢

—00
There is still no complete answer to this question. However, the first mathe-
matical evidence of such behaviour has been exhibited in the seminal work
[CKSTT10] in which it is proven that, given any initial data with small
Sobolev norm, it is possible to find a sufficiently large time for which the
Sobolev norm of the solution is larger than any prescribed constant. This
phenomenon also occurs for the half-wave equations on the real line or on the
one-dimensional torus, see e.g. [Pocl3;|GG12|. Based on this, the first author,
Lenzmann, Pocovnicu, and Raphaél [GLPR18| gave a complete picture for
a class of solutions on the real line. Namely, after the transient turbulence,
the Sobolev norms of such solutions remains stationary large in time. The
turbulence also occurs for two-dimensional incompressible Euler equations,
the sharp double exponentially growing vorticity gradient on the disk was
constructed by Kiselev and Sverak [KS14] and the existence of exponentially
growing vorticity gradient solutions on the torus was shown by Zlatos [Zlal5].
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4.1.2 Preliminary observations

For the damped («, 5)-Szegé equations (4.1)), the momentum

k=1

is preserved by the flow. An easy modification of the arguments in |[GG10]
shows that is globally wellposed on H? for every s > % Our goal is to
study the behaviour of solutions of as t — +o0, in particular the growth
of H®-Sobolev norms for s > %

The main property which allows us to do computations, is the existence
of a Lax pair. Namely, if u satisfies (4.1)) then

—H, = [C, — BBgx,, H,],
7 I BBs ]

where H, is the Hankel operator

LM — L3
o B0

and H, = S*H, is the shifted Hankel operator. The operators B, and C', are
the anti-self-adjoint operators appearing in the Lax pairs of the cubic Szeg6
equation, and defined as following

B, = ~illyz + 3H; and C, = —il},p2 + S H, (4.7)

where T}, denotes the Toeplitz operator of symbol b given on L2 by T,(f) =
II(bf).

Thanks to this Lax pair, there are invariant manifolds consisting of the
functions u such that rank (H,) = k, k£ = 0. From a well known result by
Kronecker [Kro81], these manifolds consist of the rational functions

Pl <€zx)
P2(€im)’

u(z) =

where P, and P, are polynomials of degrees at most k with deg(P) = k
or deg(P,) = k, no common roots and P, has no roots inside the disk
{zeC||z| <1}
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4.1.3 An invariant six-dimensional submanifold

In this section, we restrict ourselves to the lowest dimensional submanifold
where H,, has rank 1

W .= {U(ZL’) :b—i_Lv b,C,pEC,C#O, |p| < 1}
1 — pew

We will give a complete picture of (4.1)) on W, which consists of periodic,
blow-up and scattering trajectories.
We consider the trajectories with a fixed momentum M > 0, and define

Eu = fue W | M(u(t) = M}, Cus = {u(w) = cc | |ef? = A},
Notice that Cy; < &) consists of the periodic trajectories. We write
Sup(t)ug = u(t)

for the solution of the equation (4.1)) with initial data ug € H?(T). Then we
have the following theorem.

Theorem 4.1.3 (|GGH21|). Let v > 0 and «, 5 € R. There exists a three-
dimensional submanifold ¥pr, 653 < Enr disjoint from Cyy, invariant under the
flow'S, , p(t) and such that Xp1,.65 O Car is closed and

1. Ifup € Ep\(Emvaps Y Cur), then

ISv.a.5(t)uol

1
Hs ~suy,a,8,M t87%7 s > 5 (48)

2. If ugp € Xprpap, then dist(S, . p(t)ug, Car) ~ e, for some ¢ > 0.

Let us emphasize that on this submanifold VW, unlike on higher dimensional
submanifolds, there is no difference between the case f = 1 and the other
cases.

Compared to Theorem [.1.1] in Theorem the open set consisting of the
initial data generating blow-up trajectories, is dense in WW. Furthermore, the
Sobolev norms of such generating trajectories grow at a uniform polynomial
rate ~ ts_%, independent of v, a,, 8. This is consistent with the blow-up rate
for the damped Szego6 equation , see [GG20]. In contrast, the initial data
in W generate only bounded trajectories in the case of the Szegd equation,
the av and [-szegd equations with negative o and 3, see |GG10j; Xul4; BE20].
However, if @ > 0 and g > 0, then even faster blow-up solutions occur for
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the o and [3-Szegé equations. In this case, there exist trajectories u(t), whose
Sobolev norms grow exponentially in time with

) ~ 0D, 5> o (4.9)
Moreover, if § > 9, then there also exists a class of solutions for the 5-Szegd
equation with the polynomially growing Sobolev norms at the rate (4.8)),
see [BE20]. In other words, the authors exhibit various strong turbulence
phenomena for §-Szegé equations when [ is large enough.
One important feature of the damped (v, §)-Szegd equations is the exis-
tence of the Lyapunov functional

d
—Svas(t)uolzz +20[(Syas(t)uel1)]* = 0.

Together with the conserved momentum, one infers the weak limit points of
u(t) ast — oo in Hz. In the second part of Theorem when § = 1, such
weak limit points are also strong limit points. Namely, there exists u, € Cyy
such that

Hs—>0, VS>§

Let us complete this paragraph by a few more remarks about stationary
solutions in the case § = 1. On W, we already observed that these solutions
are of the form ce™ with ¢ # 0. An elementary calculation shows that such
initial data generate periodic solutions in the case § # 1 and arbitrary (a, v).
However, as stated in Theorem |4.1.1], one can construct rational stationary
solutions in the case § = 1 which generate blow up solutions for every 3 # 1,
v > 0 and arbitrary a € R.

HSV,a,l (t)uﬂ - UOO‘

4.1.4 The Lyapunov functional

As in the case of the damped Szeg6 equation, an important tool in the study
of equation (4.1)) is the existence of a Lyapunov functional. Precisely, the
following lemma holds.

Lemma 4.1.1. Let ug € Hip(T). Then, for anyteR,

d
—Svas(t)o]zz +20[(Sy.apuo(t)[1)]* = 0. (4.10)

As a consequence, ifv > 0, t — ||S, o 5(t)uo| 12 is decreasing, and |(S, o 5(t)uo|1)]
is square integrable on [0, +00), tending to zero ast goes to +0.
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Proof. Denote by u(t) := S, 4 5(t)ug the solution of (4.1)) with u(0) = uo. We
first observe the Lyapunov functional (4.10))

d :
E”U(t)H%? = 2Re(u|u) = 2Im(idyu|u)

= 2Im (I (Jul*u)|u) — 28Im(STI(|S*u|>S*u)|u) + 2Im((a — i) ((u|1)|u))
— ()P <0,

which implies the decreasing of ¢ — [u(t)] 12, and hence, t — |lu(t)|?. admits
a limit at infinity.
The finiteness of [;” |(u(s)|1)[?ds is given by

t
21// [(u(s)|)* ds = Jluo|Z> — [u(t)[Z> < oLz, VE>0.
0

Then, to show the decay of |(u(t)|1)|, we only need to show the boundedness
of L](u(t)[1)|?. We calculate

d 2
2| ((®]1)[* = 2Re((0,u]1) (1]u)

= 2Tm((a — iv)(u|1)(L]u)) + 20m((TT(|ul*u|1)(1]u)))
— 2BTm((STI(|S™ul*S*u|1)(1|u)))
= —2v|(u[1)* + 2Im((u*|u)(L]u)),

where
[(u(®)|1)] < Jullze < [uol 2

and
[ @)|u()] < Julze x Julfs < Julze x JulFe < Juolz(M(uo) + JuolZ2)-
Now we conclude that |(u(t)|1)] — 0 as t — co. O

By Lemma and the conservation of the momentum, the H'/? norm of
S..05(t)up remains bounded as ¢t — +00, hence one can consider limit points
Uy of S,05(t)ug for the weak topology of HY/? as t — +co. The following
lemma describes more precisely these limit points, according to LaSalle’s
invariance principle.

Proposition 1. Let ug € HY*(T). Any H'Y?- weak limit point u, of
(Svap(t)ug) ast — 400 satisfies (S,a.5(t)uw|l) =0 for all t. In particular,
Svap(t)usg solves the (o, B)- Szegd equation, in other words S, 4 5(t)use =
Sa”g(t)uoo.
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Proof. We denote @ := limy_,o, — [S, a,5(t)u|7.. By the weak continuity of
the flow in H}r/z(T), one has

u(t +t,) = Spap(t)u(ty) = Spap(t)ue ast, — o
weakly in H'2. Hence, thanks to the Rellich theorem
Jult + ta) |72 = [Svas(tuslz: asty — .
On the other hand, Lemma [4.1.1] ensures that
|u(t +t,)]7: — Q ast, — .

We conclude that for any ¢t € R

O A R I o A
We recall the Lyapunov functional , which implies
(Svap(t)uell) =0, VteR.
Hence, S, . 5(t)use = Sap(t)ue is a solution to the («, 3)-Szegd equation
without damping. O
4.2 The six-dimensional manifold revisited

In this section, we provide a panorama of the dynamics of the damped (a, f)-
Szegd equations for any fixed (v, 3) € R? on the six-dimensional submanifold

I ezx

1 — peix’

bye,peC,c#0, |p| < 1}.

Recall that W is preserved by the damped (a, §)-Szeg6 flow since it corre-
sponds to the symbol of the shifted Hankel operator of rank 1.

For u € W, we calculate the mass and the conserved momentum as
following

el

1 —|p*’

el
(1 =1p[*)*

We will repeatedly use the relation between the mass and the momentum

JulZ = [b]* + M(u) =

lulZz = [b]* + M(u)(1 = [p[*). (4.11)
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We are going to consider the solutions of (4.1) with a fixed momentum
M(u(t)) = M > 0. We define two subsets of W

Ev={ueW | M)=M}, Cy={u(x)=ce”||c]*=M}.

We observe that Cy; < &y is invariant by the damped (v, 8)-flow (4.1)) which
consists of the periodic trajectories.

We write the damped («, 5)-Szeg6 equations on £y in the (b, ¢, p)-coordinate
as

it + (iv — a)b = (|b]* + 2M (1 — |p|*))b + Mcp,
i = 2bPc + 2M (1 — [p|*)bp + (1 — )M, (4.12)
ip = cb+ (1— B)Mp(1— |p]),

where v > 0 is the coefficient of the damping term in (4.1)).
We will determine all types of trajectories of the damped («, 3)-Szeg6 equa-

tions on Ey,/\Cpy < W, which consists of blow-up and scattering trajectories.
By Lemma [4.1.1] the L? norm of u(t) converges

lu(®)[7> = b@)]* + M1 = p(t)]*) > Q and [b(t)] = [(u(t)|1)] — 0,

as t — oo, which implies M (1 — |p()|?) — Q. As a consequence, |p(t)| admits
a limit in [0, 1]. We claim that this limit can only be 0 or 1, which corresponds
to the scattering trajectories or the blow-up trajectories respectively.

We prove that the limit of |p(¢)| can only be 0 or 1 by contradiction.
Indeed, if 0 < lim; o [p(#)]?> < 1, then the trajectory {u(t)} is compact in
H*(T). As a consequence, u(t) has a weak limit u,, € W. By Proposition [}

Co(t)e™

S,ap(t =by(t) + ———
() oo o(t) + 1 — po(t)e®

is a solution of the (a, §)-Szegé equation (4.6)) with (S, (t)uw|l) = bu(t) =
0. Moreover, the triplet (0, ¢y, pyo) satisfies the ODE system (4.12)),, which
implies

Meco(t)po(t) = 0.

On the other hand, the momentum conservation law
M(Sya5()us) = M(uxw) = M(ug) > 0

ensures that ¢y, cannot be 0. Therefore, p,, = 0, which contradicts our
assumption.
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We will show that all the initial value ug with corresponding |p(t)| — 1
form a dense open set of W, on which the growth of the H* norm of S, , g(t)ug
is of order £*72 as ¢ — 0. Since in this case|S, q5(t)upl3. — 0, we have

ISy.a.5(t)uol32 < M, for some t.
We remark that the sufficient condition in Theorem 1.2l on W reads
luolz> < M,
since F(ug) = M(up) = M with ug € W.
We will show that the case |p(t)| — 0 corresponds to trajectories which

|l
(1-[p|?)?

exponentially converge to Cys. The conserved momentum M (u) =
M implies that
lc(t)]* — M.

On the other hand, the decay of |b(t)| (showed in Lemma [4.1.1]) implies that
Ju(®)]72 = @) + M1 = [p(t)]*) — M.

Since |Ju(t)|3. decays monotonically, to study the non-periodic trajectories
corresponding to |p(t)| — 0, one only needs to study the trajectories {u(t)}
disjoint from C,; and

lu®)|3: = M, Vt=0.

The following theorem of the alternative holds:

Theorem 4.2.1 (|GGH21]). Let v > 0 and o, 8 € R. Then there exists a
three dimensional submanifold Xpr .05 < Enr, disjoint from Cpy and invariant

under the flow S, 4 5(t), such that Xpryap 0 Car is closed and the following
holds:

1. Ifup € Eu\(Empaps Y Cur), then |S,q.5(t)uol

2 blows up with the rate

1
2 ~adt* 7 s> 5 (4.13)

1Sv.a.5(t)uol

where

1—2s
a*(s, v, 00, B, M) = T(2s + 1)M*! (”2 (TS a)?) |

2. If up € Xprr.ap, then S, o p(t)ug tends to Cyy ast — o0, and

_vtoy

dist (Sy.a5(t)ug,Car) ~€™ 2 °,

=

= V.

where o = ( 5

(1/2—a2—4Ma)+\/(1/2—a2—4Ma)2+4V2(2M+a)2 ) 2
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This alternative behavior holds for all (v, a, ), which is consistent with
the dynamics of the damped Szeg6 equation (aw = § = 0). Indeed, we will
follow a similar argument as for the damped Szeg6 equation [GG20| to show
the above theorem and mainly point out the differences. The first and second
parts of the above theorem will be proved in Subsection 4.1 and Subsection
4.2 respectively.

4.2.1 Blow-up trajectories
We introduce a reduced system with
n=1bf, y=MQ1-pf), ¢=Mcp,
which satisfy the following ODE system
n' + 2vn = 2Im(,

v = —2Im(,
¢+ (v +i(1 = B)M —ia)¢ = iC((3 = B)y —n) — 2y M +iv*(M —~ + 3n).
(4.14)
For u € W, notice that 4(k) = cp*~1, k > 1, then we have
= [(2s+1)M
(1 + E*)*la(k)]* ~ =D(2s + 1) M>~(t) 2.
Hence, we only need to show
K 2+ (1= B)M — a)?
7<t) ~ zv k= 2wM (415>
to obtain (4.13])
Ju(®) s ~ a®t*~

with
a’(s,v,a, B, M) = T'(2s + 1) M* k' 7%,

We observe some facts in this case. The conserved momentum implies
that 1 — |p|? and |c| decay with the same rate. The integrability and decay of
|b| were given in Lemma As a consequence, in (7,7, ()-coordinate one
has

ne L'(Ry) and (= o(y). (4.16)

To show (4.15)), we take the imaginary part of ( equation and use v =
—2Im( to derive

I ! /
me % — Imf + Imr, (4.17)

v+i((1—06)M — «) B
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where

_ oa ¢
and

r=— 1 (¢ +2vM —37%).

(= B)M —a)

The boundedness of 7,7, ¢ and the integrability of  ensure that r € L'(R,).
As a consequence of , one has Imf € L'(R, ). Furthermore, the structure
of f ensures that v* € L'(R.).

Now, one can integrate the both side of to derive

(I+o(1))v(t) = 2/15OO Imf + Q/too Imr,

where in the left-hand side, we use the fact that ( = o(7y). Computing the
right hand side, we have

/tOO Imf(s)ds = i(/toov(s)z ds)(l + 0o(1))

and

/too Im r(s)ds = O(/too n(s)y(s) ds) = o(sup(s)),

s=t

where the last equality holds due to the integrability of 7.
Now we arrive at

1 0
~(t) = —(/ 7(5)2 ds) (14 0(1)) + o(sup~(s)). (4.18)
K t s=t
We take sup,., on the above equality to get
1 o0
supv(s) = —</ v(s)? ds) (1+ o(1)).
s>t K\ Jy

Inserting this equality in the equation (4.18)) gives

GG " (5)2ds) (1 + of1).

K

Solving this integral equation gives

At) = S (1+o(1))

as desired.
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4.2.2 Scattering trajectories

In this subsection, we the investigate trajectories {u(t)} with momentum M,
which do not lie in Cj; but converge to it. As a consequence of Lemma [4.1.1],
the L? norm of u(t) decays to the momentum M, namely

lu®)]72 = [b()[* + M1~ [p(t)]) — M,
and  u(t)|7: = M, Vt=0.

We first define the set Xy, 3 as follows
Yvvap = {uo € Ev\Cu | HSV7Q7,3(t)U0||%2 > M, Vt = 0}. (4.19)

At the end of this subsection, we will see that ¥, 3 is a three-dimensional
submanifold in &);. We first observe a few facts of the trajectories with
Ug € ZM,u,a,B:

e Since |u(t)]7, = [b]* + M(1 — |p|*) = M, one has

[b(t)[* = M]p(t)|*. (4.20)

e One has
Vie Ry, b(t) #0. (4.21)

Otherwise, b and p would cancel at the same time and the trajectory
would not be disjoint from Cy;.

e From Lemma [4.1.1 ([4.20) and the equality |c(t)]*> = M(1 — [p(t)|*)?,

one has

(), Ip(t)* € L'(Ry) and |c(t)|* € L*(R,) (4.22)

We are going to show the second part of Theorem in the following
four steps: In step 1, we show that u(t) converges to Cp; as t — co; In step 2,
we establish a scattering property of a reduced system related to b, ¢, p; In
step 3, the asymptotic behavior of u(t) can be recovered on the basis of step
2. The geometric structure of ¥y;,,, 3 Will be discussed in step 4.

Step 1: Convergence of ¢(t) and %. We show that there exists 6 € T

such that ‘ '
eth(lfﬁ)C(t) — = /MezO

and

e MO R
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as t — +00. Here
¢ =sgn(a+2M)e{-1,1} (4.24)

and o, p are real non negative numbers satisfying
o? — p* =1 —a? —4aM and cop = v(a + 2M). (4.25)

In particular

=

((ug—ag—élMa)+\/(u2—a2—4Ma)2+4y2(a+2M)2 ’
o= :
2

(4.26)
We first derive the convergence of ¢(t). The c¢(t)-equation in the ODE
system (4.12]) implies that

i%(eitM(l—ﬁ)c(t)) — (itM(1-p) [2]b(t)|20(t) +2M(1 — |p(t)|2)b(t)p(t)], (4.27)

The fact (4.22)) ensures the integrability of the right-hand side of the above
ODE, together with the conserved momentum, one obtains that

MA=Be(t) ¢y = VMe?, feT.

Since [b(t)| — 0, we choose ¢ = |b(T')| for some T" >> 1. As a consequence of
(4.20), one has |p(T)| < 7+ Furthermore, we claim that

0
(1) = e THAD| O [ p) o) = O,
T
Indeed, in the above equation, the first equality holds by integration of (4.27)).
For the second estimate, one integrates the Lyapunov functional (4.10)

%(!b(tw + M1 = [p(t)) = —2v[b(t)[* .

from T to o to get

0
O() = WT)? ~ D) =20 [~ b(0)? .
T
It proves the second estimate.
We combine these estimates of b, ¢, p at time T and the structure of u on
W to obtain the following estimates in any H*(T)

dist (uw(T), cpoe TMA=Aeizy — O(e),

dist (u(T), coe  TMA=Bei® L h(T) + cpoe  TMI=Rp(T) ) = O(e?).
(4.28)
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Now we are ready to show the convergence of \/7 by a linearisation
argument. Roughly speaking, we use the convergence to linearise the
trajectories after time T and check the L?-norm of the solution. For reader’s
convenience, we mention that a baby example of the linearisation procedure
around solutions with periodic trajectories for the damped Szeg6 equation
was provided in |[GG20].

As a consequence of , we study the following trajectory

SvasOu(T)(z) = e MMU=B) (¢ e TMU=B iz o oyt 1) + 2w(t, x)),
where w is uniformly bounded in the sense
Jw(t)|m

To derive the equation v satisfied, we calculate the following quantities

« < Csp for any t € [0, R].

MR o uE(t) = —iM (1 — B)(coe MRl 4 cp) + 20w + O(e?),
MU (A (1)]1) = e(v]1) + O(?),
GMO=BTT(|u (£) 20 (1)) = Mege Tl 4 o2 TT(e=2TM0-P) gizory)
+e2Mv + O(£?),
GMO=0) STI(|5*u (1) 2S*uE (1)) = Mege  TMA=8) i
+ e e 2TMA=B) o] (7)) 4 e2M e TI(e ™)
e e BTMA=B) 2 (G TTY 4 O(c2).

Then v satisfies the equation

10w + (iv — a)(v]1) = A e TMUA](e225) 4+ (6 + 1) Mo
. ﬂcgoefiZTM(lfﬁ)eixH(eixﬂ) . 2ﬁM€mH<€7 U) + ﬁcooefﬂTM(lfB)ein(,wl).

with the initial value v(0,2) = @ + cwe*iTM(lfﬁ)@em. We observe the

equation of v and make the ansatz

v(t,x) = qo(t) + qi(t)e™ + qo(t)e™,

where
igy + (iv — a)go = (1 + B)Mgqo + coe > TMU-P)g,,
id, = (1= B)(che M0 g, + Mg,
idy = (1 — B)Mgy + 2 2 TM0-P)g
b(T B (T
w(0) = %’%(0) = cpoe TMA=F) (g )
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We take the derivative of the gg-equation and substitute the equation of ¢, to
derive

g + (v +i(a +268M))gy — (1= B)(iv — a) M + *M?)qy = 0,

b(T

q(0) = —

(1_5)p(T)
—

q(0) = —(v +i(a+ (1 + B)M))b(g_T) —iMeye ™

The characteristic equation of this second-order ODE reads
A+ (v +i(a+28M)A — (1= B)(iv — a)M + B2M?) = 0.

The solutions are given by

—(v+i(a+26M)) £ (0 + isp)
2 Y

where ¢, p, o are defined by equations (4.24)), (4.25).
We will prove in the end of Subsection that

At =

g —VUV
>0

o+v

so that o > v. Hence, the real parts of A, and A\_ admits different signs as
Re(A\y) =0c—v>0 and Re(A.)=-0—-v <0.

And hence, the solution ¢q is given by

Q(t) = AyeMt + At (4.29)
where
AL (T) = q6(0))\ __)‘)\QO(O)
_ (v I i+ (1+ B)YM) + A )b(T) + iMcpeTMA=8)p(T)
e(T)(o +ivo?2 — 12+ a? + 4Ma) ’
A(T) = A+40(0) — 46(0)

A — M
C(wHila+ 1+ B)M) + A )b(T) + iMcge TP p(T)
- e(T)(o +ir/0? — V2 + a2 + 4Ma)) '
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Now we are ready to check the L?-norm of S, , 5(t)u(T), especially the
two important features: S, o g(t)u(T)|3: = M and the Lyapunov functional.
Indeed, the following estimate holds for any fixed T" and t € [0, R]

0<[Spas®)u(T)|z: — M

(T2 — M — 20 /0 (S p(8)u(T)|L)P ds
— B(T)? — Mip(T)? — 2022 / (I(o()|1)? + Or(e)) ds.

We divide the above inequality both sides by [b(T)|* to derive

M@ )|?

= ‘2 Y /]v(s ]l/]st > epe(T), tel0,R],

<1

where cp is a constant depending only on R. Recall qo(t) = A, (T)eM! +
A_(T)e*t. By computing the integral of gy and using the above estimate,
we infer the existence of a constant B such that

|AL(T))2e" 8 < cpe(T) + B,
We first take upper limit in 7" of the above inequality

limsup | A, (T)[>e“F < B.

T—o0

Then we take limit in R — oo, the above inequality holds only if

limsup |A, (T)|* = 0,

T—o0

which implies the convergence (4.23))

~iTM(1— p(T) v+ +ila+ (1+B)M) —if
e B\ﬁ o(T) — i e
:(gp—oa+i(1/—a) B

2M

Step 2: Scattering properties for 7,6, We write

n = |b]*, 8 = M|p|?, ¢ = Mcpb,
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which satisfy the ODE system

n' + 2vn = 2Im¢,
§' = 2Imc,
¢+ (v —i2M + )¢ = —i((3 = B)5 + )¢ + i(M — 6)*(6 + n) — 2ind(M — ).
(4.30)
Due to the decay and boundedness of (b, ¢, p) in (4.22)), we have (n(t), 0(t),((t)) —
(0,0,0) and € L*(R,). The Lyapunov functional in the (7, d, ¢)-coordinate
can be written as

n(t) — 6(t) = 20 /too n(s) ds. (4.31)

The convergence (4.23) implies that

2

o(t) sp—a+i(v—o)
— -1 t— . 4.32
) i , as +0 (4.32)

We will prove in the end of Subsection that
: 2
sp—a+i(v—o) o—v

-1 = 4.33
2M o+v (4:33)

Combining the Lyapunov functional (4.31)) and the convergence (4.32]),
the decay rate of 7(t) is given by

t
) —o+v, ast— 4w, (4.34)

U n(s)ds
o0

log (/t n(s)ds) — —(o + v)t(1 + o(1)), ast -+,

and
n(t) < C.e= ==t ¢ >0, for any £ > 0. (4.35)
We write
n(t)
4(1) s
X = e R,
Cr(t) = Re((?)
Cr(t) = Im((t)

then the ODE system of (7,4, () can be written as

X'+ AX = Q(X), (4.36)
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where
U 0 0 -2
A 0 0 0 -2 7
0 0 v 2M + «
—-M? —M? —(2M + «) v
and
0
Q(X) = !
(n+(3—=p)0)¢1

—(n+ (3—B)0)Cr — 2M 52 — 4Mnd + §° + 3ns°
The matrix A has the eigenvalues
v+o, vtip.
Now we write the ODE as

DX (1)) = QX (1),

dt
where the solution X (¢) is given by the Duhamel formula
0
X(t) =e X, — / e VAQ(X (s)) ds. (4.37)
¢

Since o + v is the largest eigenvalue of A, and (@) is a quadratic-cubic form of
X, one has the following estimates

X (1) e et
e QX (1)) S e,
eCDA(Q(X (1)))] Se e@FE=O=2etv=a)s o 4> g
and "
/ [eCIHQX (D)) ds Se e = 0.
We substitui;e the above estimates to the Duhamel formula to obtain
e X, = O(e” ), (4.38)

This shows that X, is an eigenvector of A for the eigenvalue o + v.
Consequently, there exists a constant 7, € R, such that

1

o —V

o+v
X = _
© = el o 4 a) L2

V—0
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We substitute X to the Duhamel formula (4.37) to conclude that there exists
N > 0 (since 1y (t) > 0) such that

n(t) = nme” T+ O(e” 7)),
o—v

_ —(o+v)t —(o+v)t
3(t) = —— e (1+0(e ) (4.39)
sp—a+ilv—o (otv —(o+v
olt) = (L= pgyemon(a 4 0femre01),

where the last equality holds since, using (4.25))

(v—0) v—0o cp—a+i(lv—o)
2M =
(2M + o) 5 T 5

— M.

Conversely, we claim that for every n,, > 0, there exists a unique triple
(n,6,¢) such that

n' + 2vn = 2Im¢,
§" = 2Im(,
(4 (v—i(2M + «))¢ = —i((3 = B)3 + n)C + (M — §)*(§ + n) — 2ind(M — 6)
(4.40)
satisfying the asymptotic behavior (4.39). Indeed, by a standard fixed point
argument one can solve (4.37) on [T, 00), where T is large enough such that
| X |e= )T < 1, with the norm

|1X |7 := sup e+ X (¢)].
t=T
Then the extension to the whole real line is ensured by, say, the identities

o0
G = (0 = 8705, 80 + 20 [ n(s)ds = n(t)
t
which, combined with the first equation, lead to

nl = 0) .

Furthermore, following the same argument as for the damped Szegd
equation in [GG20], the lower (upper) bounds of initial value 7(0) ensure the
lower (upper) bounds for 7,,. Namely, for every C' > 0, there exists C’ > 0
such that

e if n(0) = C~', then 1, = (C")71,

e if n(0) < C, then n, < .
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Step 3: Asymptotic behavior for b,c,p
We first show that there exists

(7700767Q0)€ (0700) XTXT

such that, as t - +o

— ot —it(2M +a) (552 ) +ip
)

b(t) ~ \/Noe™ 2
c(t) ~ V Me tMA=F) 0
N [ SPp— O+ i(V — O') 7u+70t+4t(a+2M,8)J+(2M+a)u+.(07 )
t ~ FYa - 1 2 ¢ 20 g ® .
pt) ~ A 3f ( i )6
(4.41)
Notice that, the convergence of ¢(t) was shown in (4.2.2). We combine the
equations for b and 7, p and J to derive
d, b R b
= n—25+2M+a+—eC)—

@E(\/—ﬁ) ( PN

= ((2M + a)y;— 2+ O(em )

.d N Mp Rel\vMp
Z%(\/g):((l_ﬂ)(M—é)"' 5) Vo
. (a+2MB)o + (2M + a)v - v Mp
= ( 5 +0( )>—\6 ,

Sl

Then there exist ¢, such that
b(t) - \/777067 vEC L —it(2M +a) %L +in7

1
No (O —V\2 _vtoy, g(@+2MB)o+(2M+ajr .
p(t) ~ o e~ 2 t+it 5 +u/).
M\o+v

On the other side, we recall the convergence ({4.23])

e—iTM(l—,B)mp(T) . <<,0 — 05;-]\2(1/ —0) B 1) -0

o(T)
and the equality (4.33)
(a—y)% _ ‘§p—oz—|—i(l/—a) _1‘
c+v 2M '

This implies that

p(t) - T <§P — o+ i(l/ - O') B 1) eiquTgth(a+2Mﬂ);;(2M+Q)u+i(67¢).
M 2M
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Now we show that the asymptotic behavior (4.41]) holds conversely. Namely,
for a fixed (94,0, ) € (0,00) x T x T, there exists a unique trajectory
c(t)e®
1—p(t)e™

satisfying the asymptotic behavior (4.41]). From step 2, for such (1,0, ¢) €
(0,00) x T x T there exists a unique trajectory (n,0,() € R x R x C such that

u(t,z) = b(t) +

0(t) = 1oe” (L + O(e™ ),

ag—UV
5(t) = —(o+v)t 14+0 —(o+v)t
(t) = ——— e (L4 O(e7 7)),

C(t) _ (§p -« +2’i(V - U) . M) nooef(oJru)t(l + O(ef(a+z/)t)).

Due to the structure of 7, 9, {, there exists a fixed large enough 7' > 0 such
that M > §(T) > 0, ((T') # 0 and n(T) > 0. Then there exists (b, c1,p1)
solving the ODE system (4.12)) such that

bi(T) = \/n(T), ~VMp(T) =+/8(T), Mey(T) = %

Furthermore, due to the uniqueness of the Cauchy problem of the ODE
system for (7,4, (), the above equations hold for all £ € R. On the other hand,
(b1, c1, p1) satisfies the asymptotic behavior (4.41)) with a pair (61,p1) € Tx T,
ie.

v+o . v+o .
— t—it(2M+« +1
bl (t) ~ \/Mp€ 2 ( e @17

1 (t) ~ /Me—itM(l—B)eiG'l’
N [SPp— Q+ i(V — 0') _vtoy ot BMB)o M ta)y g
pl(t) ~ —_— ( — 1) e 2 % 1—¥1 .
\V M 2M

Then the triplet (b, ¢, p) with

b(t) = €i(¢_@1)b1(t), c(t) = e 0=, (t), pt) = ei(e_‘p_elJr‘m)pl (t)

satisfies the ODE system (4.12) with the desired asymptotic properties.

At the last step, we show the uniqueness of the solution (b,c¢,p). We
assume that (b, &, p) is another solution of the ODE system (4.12)) with the
same asymptotic properties . Then by the uniqueness of (1,4, (), for
any t € R

b()[* = n(t), MIpO) = (), Me()b(t)p(t) = ¢(t)
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and hence, b — b and p — p satisfy

d ,b—b vto oy b= b

25(7) = (M + ) —~ (e ))W’
d(V (p p)) — (_ (CJ{+2MB)U+(2M+O()V O( (v+0) )) VM(p_ﬁ)
it Vo 20 NG

The first ODE implies

b — b / O V+o')s

Combining this estimate with the boundedness of |b;\/7§’|, one can show that

b—b

" ()]s

b(t) = b(t) for any t € R by an iterative argument. By a _similar argument,
we have p(t) = p(t) for all t € R. Since c(t)b(t)p(t) = é(t)b(t)p(t) = C(t), we
conclude that ¢(t) = ¢&(¢), for all ¢t € R.

Step 4: Geometric structure of X);, 3 < £y. We define the map
J:(()?OO)XTXT_)‘S‘Ma (7700707@)'_)“(0)7

where u is the unique solution of corresponding to the asymptotic
behavior (4.41)). One can follow a similar argument as in [GG20| to show
that J is an one-to-one proper immersion, and hence, Y7, 4 is a three-
dimensional submanifold of £,;. We only point out the following different
identity as in |[GG20]

€?Su.p,(t +T) [J(es, 00, 00)] (z + 0 — )
=Se5.(t) [J (70,0, %)] (),

where .
7700 _ nooef(a+l/) 7
0=0,+60—-MQ1- BT,
o v
952900+90—(M+§)(1+;)T~

A calculation

At the end of this subsection, we give the details of the calculations on

§,0—oc+i(l/—a)_12_a—y

7 =
oM o+v’
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where ¢, g, p are given by (4.24)) and (4.25)). We recall the following equalities.
o? — p* =1 —a? —4aM and cop = v(a + 2M).

Remark first that the case 0 = v is excluded. Indeed, if ¢ = v then
p? = o + 4Moa which is not compatible with the second condition. We
calculate

—1

‘qp—oﬁ—ly—a) ’2

2 2
=1+4M2<(§p—a) +(v—o) —4M(gp—a))
2 2 2 2
— 1+ ;07 + 0%+ 02 + 02— 200 + 4Ma — 2p(a + 2M))
1 o
=1 2uH (1 - 2.
+ o (A=)

Then as above

pPP+1vio—v

1-2)v+o0)= WT(O+U)
_ 2&\42 (0202 + 0% — 2p? — oY)
= 2L2((a+2M)2+02—p2—V2)
- 2]\”42((a+2M)2—a2—4Ma)
= 2v.

According to the above calculation, one has

2v o—v
— d Z = .
1-Z vrooan o+v
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